WorldWideScience

Sample records for pseudocalymma elegans bignoniaceae

  1. Phytochemical and Biological Activities of Pseudocalymma elegans: A False Garlic.

    Science.gov (United States)

    Wahid, Sana; Versiani, Muhammad Ali; Jahangir, Sajid; Jawaid, Khurshid; Shafique, Maryam; Khan, Huma; Faizi, Shaheen

    2017-10-01

    Evaluation of phytochemical constituents and antioxidant and antimicrobial activities of hexane (PELH), dichloromethane (PELDCM), ethyl acetate (PELEA), and MeOH (PELM) extracts of young leaves of Pseudocalymma elegans have been carried out. Moreover, extracts have also been explored for the presence of sulphur containing compounds, 1,2-dithiolane (33), diallyl disulfide (35), 3-vinyl-1,2-dithiacyclohex-5-ene (37), and diallyl trisulfide (38) responsible for the garlic like smell of P. elegans. All the extracts were found to be antioxidant and showed potent inhibition with IC 50 values of 0.168 ± 0.001, 0.128 ± 0.002, 0.221 ± 0.011, and 0.054 ± 0.001, respectively, as compared to standard drugs ascorbic acid (AA) and butylated hydroxytoluene (BHT). The ethyl acetate extract (PELE) showed excellent activities against few Gram-positive and Gram-negative bacteria and some fungi as compared with standard drug ceftriaxone (3rd generation cephalosporin) and nystatin, respectively. Chemical constituents of hexane, dichloromethane, and ethyl acetate extracts were identified by gas chromatography-mass spectrometry and mass spectral library search. Over all 55 chemical constituents were first time identified from the leaves which included branched and n-hydrocarbons, fatty acids, fatty acid methyl esters, fatty alcohols, terpenes, alkaloid, vitamins, glycosides, aromatic compounds, and sulfur containing compounds. Two known chemical constituents, ursolic acid (1) and β-amyrin (2), were also purified for the first time from the MeOH extract. To elucidate the structures of these compounds, UV, IR, EI-MS, 1 H- and 13 C-NMR spectroscopy were used. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. O antagonismo com acetamida em experimentos com ovinos, caprinos e coelhos indica monofluoroacetato como princípio tóxico de Pseudocalymma elegans Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Michel A Helayel

    2011-10-01

    Full Text Available O presente trabalho teve como objetivo avaliar o efeito protetor da acetamida nas intoxicações experimentais por Pseudocalymma elegans em ovinos, caprinos e coelhos, com a finalidade de comprovar indiretamente que o monofluoroacetato (MF é responsável pelos sinais clínicos e a morte dos animais que ingerem essa planta. Foram realizados experimentos para determinar a dose letal da planta coletada em Rio Bonito, RJ, em diferentes épocas do ano para ovinos e caprinos e ajustar a dose de acetamida a ser administrada. - No primeiro experimento, dois ovinos e dois caprinos receberam 1,0g/kg de P. elegans fresca e um animal de cada espécie foi tratado previamente com 2,0g/kg de acetamida. Nenhum animal apresentou alterações clínicas ou morreu. Ao que tudo indica a planta poderia estar menos tóxica, já que foi coletada no fim da estação das águas. - No segundo experimento, dois ovinos e dois caprinos receberam 0,67 e 1,0g/kg da planta dessecada, após tratamento prévio, com 2,0 e 3,0g/kg de acetamida, respectivamente. Todos os animais morreram, pois administramos doses muito altas de P. elegans. - No terceiro experimento, dois ovinos e dois caprinos receberam 0,333g/kg de P. elegans dessecada, após administração prévia de 2,0 g/kg de acetamida. Uma semana depois, o protocolo acima foi repetido, porém sem o antídoto. Nos experimentos com coelhos, foram administradas doses de 0,5 e 1,0g/kg de elegans dessecada após a administração de 3,0g/kg de acetamida. Sete dias depois, repetiu-se o protocolo, com exceção da administração de acetamida. Esta, quando administrada previamente, evitou o aparecimento dos sinais clínicos e a morte dos ovinos, caprinos e coelhos, já os animais não tratados com acetamida apresentaram sintomatologia e morreram. Clinicamente, os ovinos e caprinos manifestaram taquicardia, jugulares ingurgitadas, pulso venoso positivo, decúbito esternal e tremores musculares. Na "fase dramática", os animais ca

  3. Nuptial nectary structure of Bignoniaceae from Argentina

    Directory of Open Access Journals (Sweden)

    Guillermo L. Rivera

    2000-01-01

    Full Text Available Rivera, G. L. 2000. Estructura de nectarios nupciales en Bignoniaceae de Argentina.Darwiniana 38(3-4: 227-239.Se investigaron las características de los nectarios florales en 37 especies de Bignoniaceae. Se encontróun nectario nupcial asociado al eje floral en todas las especies, pudiéndose distinguir dos tipos principalesde acuerdo a su grado de desarrollo y funcionalidad: 1 vestigial y no secretor y 2 bien desarrollado ysecretor. El primero es característico de las especies de Clytostoma mientras que el segundo está presenteen el resto de las especies estudiadas. Dos variedades del tipo secretor pueden discernirse de acuerdo a suposición y forma: 1 anular, encontrado en Adenocalymma, Amphilophium, Anemopaegma, Arrabidaea,Dolichandra, Eccremocarpus, Macfadyena, Melloa, Pithecoctenium, Tabebuia, y Tecoma y 2 cilíndrico,presente en Argylia, Cuspidaria, Jacaranda, Mansoa, Parabignonia, Pyrostegia, y Tynnanthus.Anatómicamente se distinguen dos tejidos: 1 una epidermis monoestratificada, cubierta por una cutículay con un número variable de estomas y 2 un tejido secretor compuesto por células parenquimáticasdispuestas en forma compacta. Tanto el tamaño del nectario como la relación nectario/ovario fueusualmente más grande en lianas (Bignoniaceae que en árboles (Tecomeae. El tipo de nectario fueinvariable entre las especies de un mismo género, pero no así entre los géneros de una misma tribu. Lascaracterísticas de los nectarios analizados en este estudio como la vascularización, la presencia detricomas y el tipo de nectario fueron constantes en las especies analizadas, adquiriendo por lo tanto unimportante valor taxonómico

  4. Implicações químicas na sistemática e filogenia de Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Franciane Auxiliadora Cipriani

    2012-01-01

    Full Text Available Our solemn homage to the great Master Otto R. Gottlieb who knew how to teach the mystery of evolutionary relationships between chemistry and its natural sources. The micromolecular chemical study of the family Bignoniaceae shows a profile predominantly characterized by the occurrence of metabolites derived from acetic acid biosynthetic pathways such as terpenoids, quinones, flavonoids and special aromatic derivatives. Analysis of different chemosystematic parameters for the metabolite data collected, provided valuable information for the systematic characterization of the Bignoniaceae family within the Angiosperm derived taxa.

  5. Bignoniaceae Metabolites as Semiochemicals

    Directory of Open Access Journals (Sweden)

    Lucía Castillo

    2010-10-01

    Full Text Available Members of the family Bignoniaceae are mostly found in tropical and neo-tropical regions in America, Asia and Africa, although some of them are cultivated in other regions as ornamentals. Species belonging to this family have been extensively studied in regard to their pharmacological properties (as extracts and isolated compounds. The aim of this review is to summarize the reported scientific evidence about the chemical properties as well as that of the extracts and isolated compounds from species of this family, focusing mainly in insect-plant interactions. As it is known, this family is recognized for the presence of iridoids which are markers of oviposition and feeding preference to species which have became specialist feeders. Some herbivore species have also evolved to the point of been able to sequester iridoids and use them as defenses against their predators. However, iridoids also exhibit anti-insect properties, and therefore they may be good lead molecules to develop botanical pesticides. Other secondary metabolites, such as quinones, and whole extracts have also shown potential as anti-insect agents.

  6. Contribuição ao estudo palinologico das bignoniaceae

    OpenAIRE

    Maria Stella Fernandes Silvestre

    1984-01-01

    Resumo: Foram estudados os grãos de polém de 25 (vinte e cinco) espécies de Bignoniaceae nativas na reserva Biológica do Parque Estadual das Fontes do Ipiranga. Estas espécies puderam ser agrupadas em cinco tipos morfológicos de acordo com a presença, forma e número de aberturas: 1. Inapertubados: Pithecoctenius crucigerum (L.) A. Gentry, P. dolichoides Schum. 2 . Tricolpados: Callichlamys latifolia (L. Rich.) K. Schum., Cybistax antisyphilitica Mart., Macfadyena unguiscati (L.) A. Gentry, Me...

  7. The family Bignoniaceae in the Environmental Protection Area Serra Branca, Raso da Catarina, Jeremoabo, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Luiza Regina Silva

    2016-12-01

    Full Text Available Bignoniaceae comprises 82 genera and 827 species distributed mostly in tropical and subtropical regions, with a few species in temperate climates, and is most diverse in South America. The Brazil is the center of diversity for the group, with about 406 species in 33 genera, of which 22 genera and 90 species occur in the Caatinga. The floristic survey of Bignoniaceae in the Environmental Protection Area Serra Branca included analysis of 31 specimens collected from August 2009 to February 2012. The analyses were supplemented with dried collections from the following herbaria: ALCB, HRB and HUEFS. Nine genera and 11 species were recorded: [Anemopaegma Mart ex DC; Bignonia L.; Cuspidaria DC.; Fridericia Mart.; Handroanthus Mattos; Jacaranda Juss; Lundia DC.; Mansoa DC. and Tabebuia Gomes ex DC.]. Fridericia was the most representative genus with three species. The taxonomic treatment includes a key for the identification, descriptions, illustrations, photos, data of the geographical distribution, reproductive phenology and comments about the species.

  8. Morfoanatomia de Memora nodosa (Silva Manso Miers, Bignoniaceae Morpho-anatomy of Memora nodosa (Silva Manso Miers, Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Leonice M. F. Tresvenzol

    2010-12-01

    Full Text Available Memora nodosa (Silva Manso Miers, Bignoniaceae, é uma planta do Cerrado utilizada popularmente como cicatrizante de úlceras e feridas externas (folhas e caules. O objetivo deste trabalho foi caracterizar morfologicamente essa espécie e fazer o estudo anatômico de suas folhas. O estudo morfológico foi realizado à vista desarmada e com o auxílio de microscópio estereoscópico. Para o estudo anatômico as folhas foram seccionadas e as lâminas histológicas confeccionadas de acordo com as técnicas convencionais. Memora nodosa é um arbusto com folhas opostas cruzadas, recompostas, bipinadas, imparipinadas, com foliólulos pequenos, lanceolados, verde-escuros e brilhantes. A inflorescência é racemosa com flores infundibuliformes e corola amarelo-ouro; glândulas nectaríferas são observadas no terço superior do cálice; androceu com quatro estames férteis, didínamos e um estaminódio reduzido; gineceu com estilete terminal, ovário súpero, assentado sobre um disco nectarífero. O fruto é do tipo cápsula septífraga achatada, com sementes aladas. Anatomicamente a lâmina do foliólulo é hipoestomática com estômatos predominantemente paracíticos. O parênquima paliçádico é pluriestratificado, ocupando cerca de dois terços do mesofilo dorsiventral. Tricomas glandulares e tectores são observados, em maior número, nas folhas jovens.Memora nodosa (Silva Manso Miers, Bignoniaceae, is a Brazilian Savannah plant, popularly used as external wound and ulcer healing (leaves and stems. The goal of this research was to perform the morphological study of M. nodosa species and the anatomical study of its leaves. The morphological study was done to the naked eye and with the aid of a stereoscopic microscope. For the anatomical study leaves were sectioned and histological slides made in accordance with conventional techniques. Memora nodosa is a shrub with decussate leaves recomposed, bipinnate, imparipinnate with small leaflets

  9. Floral visitors and reproductive strategies in five melittophilous species of Bignoniaceae in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Yuriko A. N. Pinto Yanagizawa

    2007-11-01

    Full Text Available In order to evaluate the pollination strategies of Bignoniaceae, the floral biology and the floral visitors in five species, three cerrado shrubs (Arrabidaea brachypoda (DC. Bor., Jacaranda decurrens Cham., and Jacaranda oxyphylla Cham., and two lianas from the border of a semideciduous seasonal forest (Arrabidaea samydoides (Cham. Sandw., and Arrabidaea triplinervia H. Baill. were studied in Botucatu, São Paulo State, Southeastern Brazil. The flowering periods were partially overlapping, especially between species in the same habitat. All the five species were functionally allogamous, melittophilous, nototribic and mainly pollinated by long tongued large bees. Some medium-sized and small pollen-foraging bees were occasional legitimate visitors, whereas others visitors were robbers/thieves. Each species showed a particular set of pollinators. Only two pollinator species were observed in more than one bignon. There was no partition of pollinators even among the species of bignons blooming at the same time at the same habitat.Com objetivo de avaliar as estratégias de polinização de espécies de Bignoniaceae, foram estudados a biologia floral e os visitantes florais de cinco espécies, três arbustivas do cerrado (Arrabidaea brachypoda (DC. Bor., Jacaranda decurrens Cham. e Jacaranda oxyphylla Cham. e duas lianas da orla da floresta estacional semidecidual (Arrabidaea samydoides (Cham. Sandw. e Arrabidaea triplinervia H. Baill., na região de Botucatu (22º52'20" S e 48(026'37" W, estado de São Paulo, sudeste do Brasil. Os períodos de florescimento, principalmente entre espécies do mesmo habitat, apresentaram sobreposição parcial. Observou-se que as cinco espécies são alogâmicas funcionais, melitófilas, nototríbicas, polinizadas principalmente por abelhas grandes de língua comprida. Algumas abelhas coletoras de pólen de tamanho médio e pequeno atuaram como polinizadoras ocasionais, enquanto outros visitantes foram pilhadores. Cada

  10. Taxonomic revision of Pachyptera (Bignonieae, Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Jessica Nayara Carvalho Francisco

    2018-01-01

    Full Text Available Pachyptera DC. is a small genus of neotropical lianas included in tribe Bignonieae (Bignoniaceae. The genus has a complicated taxonomic history but currently includes species distributed from Belize to Southern Amazon. Pachyptera is characterised by four main synapomorphies, namely, a papery peeling bark, prophylls of the axillary buds organised in a series of three, patelliform glands arranged in lines in the upper portions of the calyx and corolla tube. Furthermore, members of the genus also have stems with four phloem wedges in cross-section and conspicuous extrafloral nectaries between the interpetiolar region and at the petiole apex, although these characters are also shared with other genera of tribe Bignonieae. Here, we present a taxonomic revision of Pachyptera, which includes a complete list of synonyms, detailed morphological descriptions of species and an identification key, as well as information on the habitat, distribution and phenology, nomenclatural notes, taxonomic comments and illustrations of all the species. In addition, we designate three lectotypes, propose one new combination, raise one variety to species status and describe a new species. After these adjustments, a Pachyptera with five well-defined species is recognised.

  11. Taxonomic revision of Pachyptera (Bignonieae, Bignoniaceae).

    Science.gov (United States)

    Francisco, Jessica Nayara Carvalho; Lohmann, Lúcia G

    2018-01-01

    Pachyptera DC. is a small genus of neotropical lianas included in tribe Bignonieae (Bignoniaceae). The genus has a complicated taxonomic history but currently includes species distributed from Belize to Southern Amazon. Pachyptera is characterised by four main synapomorphies, namely, a papery peeling bark, prophylls of the axillary buds organised in a series of three, patelliform glands arranged in lines in the upper portions of the calyx and corolla tube. Furthermore, members of the genus also have stems with four phloem wedges in cross-section and conspicuous extrafloral nectaries between the interpetiolar region and at the petiole apex, although these characters are also shared with other genera of tribe Bignonieae. Here, we present a taxonomic revision of Pachyptera , which includes a complete list of synonyms, detailed morphological descriptions of species and an identification key, as well as information on the habitat, distribution and phenology, nomenclatural notes, taxonomic comments and illustrations of all the species. In addition, we designate three lectotypes, propose one new combination, raise one variety to species status and describe a new species. After these adjustments, a Pachyptera with five well-defined species is recognised.

  12. Domacios y nectarios extraflorales en Bignoniáceas: componentes vegetales de una interacción mutualística Domatia and extrafloral nectaries in Bignoniaceae: two components of a mutualistic interaction

    Directory of Open Access Journals (Sweden)

    Ana M Gonzalez

    2011-12-01

    Full Text Available Las plantas presentan relaciones mutualísticas con insectos a cambio del control de sus herbívoros u hongos patógenos; por medio de los domacios les ofrecen albergue y mediante la secreción de néctar de nectarios extraflorales les brindan alimento. Se examinó la anatomía foliar en 52 especies de Bignoniaceae con microscopía óptica y electrónica de barrido, con el objetivo de describir los domacios y los nectarios extraflorales. Los domacios presentes son de dos tipos: mechones de pelos y bolsillos, siendo un carácter taxonómico útil en varias especies. Los nectarios extraflorales se encuentran en todas las especies, ubicándose en diversas posiciones: a lo largo de la vena media, asociados a los domacios o agrupados en campos glandulares, que pueden ser foliares o interpeciolares. Las Bignoniaceae presentan simultáneamente domacios y nectarios extraflorales en sus hojas, los cuales se describen como componentes vegetales de un probable mecanismo de defensa indirecta.Plants have mutualistic relationships with insects in two ways: through domatia provide housing of predators, and extrafloral nectaries secreting nectar and provide food in exchange for control of herbivores or fungal pathogens. The foliar anatomy of 52 species of Bignoniaceae was examined by light and scanning electron microscopy, in order to describe the different types of domatia and extrafloral nectaries. Two types of domatia were observed: small hair-tufts and pockets; the presence and type of domatia represents important taxonomic characters in Bignoniaceae. Extrafloral nectaries are found in all studied species. They are located in different positions: along the midvein, associated with domatia, or grouped in glandular fields, either in leaf or interpetiolar. The Bignoniaceae have simultaneously domatia and extrafloral nectaries on their leaves, these features are described as plant components in a probable mechanism of indirect defense.

  13. A reduced, yet functional, nectary disk integrates a complex system of floral nectar secretion in the genus Zeyheria (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Silvia Rodrigues Machado

    Full Text Available ABSTRACT The genus Zeyheria (Bignoniaceae comprises only two species, both of which have been described as possessing a reduced and non-functional nectary disk. Despite the importance of this evolutionary change in the floral nectary, these functional assumptions have been based on disk size and on the distribution, abundance and histochemistry of corolla-borne trichomes. By combining methods on light and electron microscopy, here we investigated the functionality of the reduced nectary disk and describe all of the tissues and structures of the nectar chamber in order to determine the sites of floral nectar secretion in both Zeyheria species. . Our data find the floral nectary traits of both species to be very similar, although differing in their cellular contents. Subcellular evidence in both species indicated that disk, stipe and petal axils were, predominantly, involved in hydrophilic secretion, while capitate glandular trichomes produced lipophilic secretion and papillae produced mixed secretion. Our study shows that in spite of its reduced size, the reduced disk functions in nectar secretion in both species of Zeyheria. This kind of nectary system is a novelty for Bignoniaceae, since it comprises several tissues and structures functioning in an integrated fashion.

  14. Chemical review and studies related to species from the genus Tynanthus (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Colombi Cansian

    2015-09-01

    Full Text Available Species from the Bignoniaceae Family, including the genus Tynanthus, are very prevalent in the tropical Americas, with specimens found in a large part of the Brazilian territory. These plants are commonly used in traditional medicine for several purposes, and some studies have described their chemical structure, in addition to other reports related to some species from this genus. This review aimed to gather information from published works concerning species of the genus Tynanthus, as well as to detect flaws in research related to these plants, which may have great biological and pharmaceutical importance. Also, this review points out some common chemical characteristics of these species, providing information that may help new researchers to improve their knowledge about these plants.

  15. Sistema reprodutivo de Sparattosperma leucanthum (Vell. K. Schum. (Bignoniaceae The reproductive system of a Sparattosperma leucanthum (Vell. K. Schum. (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Leandro Pereira Polatto

    2009-04-01

    Full Text Available Sparattosperma leucanthum (Vell. K. Schum. (Bignoniaceae é uma árvore polinizada por mamangavas, apesar de outros visitantes florais explorarem néctar ou pólen das flores sem exercerem benefício reprodutivo. Neste estudo, focalizaram-se aspectos do sistema de polinização, além de inferir se o espaçamento interplantas encontrado na área amostral e a quantidade de flores produzidas por árvore limitavam ou não a polinização por xenogamia em S. leucanthum. Assim, foram realizados testes reprodutivos, para obtenção da relação fruto-flor, contagens do número de sementes por fruto e das árvores nos transectos amostrados e estimativa da quantidade de flores por árvores. S. leucanthum é autoincompatível e necessita dos visitantes florais para efetuar a polinização, pois se reproduz apenas por xenogamia. A razão fruto-flor obtida foi de 0,0054, indicando alto custo energético, atribuído à baixa eficiência dos visitantes florais em promover a polinização. A distância interplantas foi relativamente menor que a distância máxima percorrida pelas mamangavas, enquanto as árvores produziram poucas flores por inflorescência e em intensidade moderada, auxiliando o processo de polinização por xenogamia, realizada pelas mamangavas. Entretanto, os frutos produziram grande quantidade de sementes, permitindo ampla proliferação de S. leucanthum na área estudada.Sparattosperma leucanthum (Vell. K. Schum. (Bignoniaceae is a tree pollinated by carpenter bees, although other floral visitors also explore the nectar or pollen of the flowers without exerting any reproductive benefit. This study focused on aspects of the pollination system and attempted to infer whether the inter-plant spacing found in the sampled area and the number of flowers produced by the tree limited pollination by crossbreeding with S. leucanthum. Reproductive tests were carried out to obtain fruit-flower relationship, counting of the number of seeds per fruit

  16. Biologia floral e polinização de Arrabidaea conjugata (Vell. Mart. (Bignoniaceae Floral and pollination biology of Arrabidaea conjugata (Vell. Mart. (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Maria Célia Rodrigues Correia

    2005-09-01

    Full Text Available O trabalho aborda a biologia floral, a atividade forrageira dos visitantes florais (polinizadores e pilhadores, os eventos fenológicos e o sistema de reprodução de Arrabidaea conjugata (Vell. Mart. (Bignoniaceae, em área de vegetação de restinga, município de Maricá, Rio de Janeiro, no período 1997 a 2000. A espécie estudada tem flores com antese diurna, lilases, tubulosas, hermafroditas, odoríferas e oferecem néctar como recurso floral. O néctar é secretado por um disco localizado na base do gineceu e é acumulado em câmara nectarífera. Os grãos de pólen são liberados gradativamente, prolongando-se a fase de doação de pólen. As abelhas Euglossa cordata Linnaeus, Centris analis Fabricius e C. tarsata Smith são os polinizadores da espécie. Destaca-se pilhagem primária de néctar, por abelhas, e secundária, por borboletas e beija-flor. A espécie é auto-incompatível, apresentando baixos índices de formação de frutos em condições naturais (Frutos/Flores = 12,2%. Foi registrado padrão de floração "cornucópia", entre os meses de dezembro a março (estação quente/chuvosa, com pico em janeiro. As sementes são anemocóricas e liberadas gradativamente na estação fria e seca.This work deals with the floral biology, the foraging activities of floral visitors (pollinators and robbers, phenology and reproductive system of Arrabidaea conjugata (Vell. Mart. (Bignoniaceae in the "restinga" of Maricá, Rio de Janeiro, Brazil, from 1997 to 2000. The flowers display daytime anthesis and last only one day. These attractive pink flowers are tubular, hermaphroditic, odoriferous and produce nectar as the floral reward. The nectar is secreted by a nectariferous disk concealed within a chamber. The pollen grains are gradually released throughout anthesis, extending the pollen presentation phase. The bees Euglossa cordata Linnaeus, Centris analis Fabricius and C. tarsata Smith are the pollinator species. Primary and secondary

  17. Jacaranda cuspidifolia Mart. (Bignoniaceae) as an antibacterial agent.

    Science.gov (United States)

    Arruda, Ana Lúcia A; Vieira, Carla J B; Sousa, Daniella G; Oliveira, Regilene F; Castilho, Rachel O

    2011-12-01

    This study evaluated, in vitro, the antimicrobial activity of the hexane extract (JCHE), methanol extract (JCME), and chloroform fraction (JCCF) of bark from Jacaranda cuspidifolia Mart. (Family Bignoniaceae), a Brazilian medicinal plant, traditionally used as anti-syphilis and anti-gonorrhea treatment. The antimicrobial activity was evaluated using the disc diffusion method followed by the determination of minimum inhibitory concentration (MIC) values. JCHE was not active against the bacteria evaluated. JCME presented antibacterial activity against Streptococcus pyogenes, Staphylococcus aureus, and Neisseria gonorrhoeae with MIC values of 16.3 mg/mL, 9.1 mg/mL, and 25.2 mg/mL, respectively. JCCF was active against Staphylococcus epidermidis, S. aureus, Proteus mirabilis, Serratia marcescens, S. pyogenes, Enterobacter aerogenes, and N. gonorrhoeae with MIC values of 18.3 mg/mL, 9.3 mg/mL, 6.3 mg/mL, 6.1 mg/mL, 9.2 mg/mL, 6.2 mg/mL, and 25.2 mg/mL, respectively. Phytochemical analysis of JCME and JCCF gave positive results for saponins, coumarins, flavonoids, tannins, quinones, alkaloids, triterpenes, and steroids. Verbascoside was isolated and identified as a major peak in JCME and JCCF high-performance liquid chromatography fingerprints and might contribute to the observed antimicrobial activity.

  18. C. elegans microRNAs.

    Science.gov (United States)

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  19. Sistema reprodutivo do Ipê-Branco: Tabebuia roseo-alba (Ridley Sandwith (Bignoniaceae Breeding system of the White Trumpet Tree: Tabebuia roseo-alba (Ridley Sandwith (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Gabriel Gandolphi

    2010-09-01

    Full Text Available Estudos sobre sistemas reprodutivos têm indicado o predomínio da autoincompatibilidade de ação tardia (AIT em Bignoniaceae, embora poucas espécies tenham sido investigadas e ocorram outros tipos de sistemas reprodutivos na família. O presente estudo objetivou determinar o sistema reprodutivo de T. roseo-alba através de experimentos de polinizações controladas, análise histológica dos eventos posteriores à polinização, verificação do desenvolvimento in situ dos tubos polínicos e testes de germinação de sementes. Apesar de os tubos polínicos penetrarem e fecundarem a maioria dos óvulos em pistilos autopolinizados, o aborto de 100% dos mesmos foi verificado e, embora sua abscisão tenha ocorrido entre o quarto e o sexto dia após o início da antese, observou-se um ligeiro crescimento dos óvulos e do ovário precedendo a abscisão, porém inferior ao crescimento nos pistilos submetidos à polinização cruzada. A endospermogênese inicial e a formação do tubo proembriônico também foram mais lentas nos pistilos autopolinizados. A longevidade dos pistilos autopolinizados foi maior que a de pistilos não polinizados, e a taxa de germinação de sementes foi de 93%, sendo todas as sementes monoembriônicas. Os resultados demonstram que T. roseo-alba é espécie auto-estéril, destituída de poliembrionia e que apresenta AIT pós-zigótica.Breeding system studies have indicated the predominance of late-acting self-incompatibility (LSI in Bignoniaceae, despite the relatively few species investigated, and the occurrence of other kinds of breeding systems in this family. This study aimed to determine the breeding system in T. roseo-alba by means of controlled experimental pollination, histological analysis of post-pollination events, and studies of pistil longevity, in situ pollen tube growth and seed germination. Despite pollen tube penetration and fertilization of most ovules of selfed pistils, 100% of these pistils aborted

  20. Photosynthesis, Growth and Development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae in Flooded Soil

    Directory of Open Access Journals (Sweden)

    Viviane M. Davanso

    2002-09-01

    Full Text Available Morphological, anatomical and ecophysiological modifications caused by flooding in the growth and development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae were studied and correlated with tolerance to the excess of water in the soil. Three-month-old plants, grown in a greenhouse, underwent a period of 56 days of flooding and a post-flooding period. Photosynthesis rate and growth decreased in T. avellanedae when flooding duration increased. Though not much tolerant, plant adapted itself to short flooding periods. This relative tolerance was probably due to the capacity of T. avellanedae in developing structures which lessened flooding effects and promoted internal diffusion of oxygen from the aerial part to the roots, such as stem fissures, superficial roots and hypertrophied lenticels in the roots. As there was no great variation in the internal anatomy of T. avellanedae leaves and roots, metabolic alterations might have helped in the survival of the species during flooding.Foram estudadas as modificações morfo-anatômicas e ecofisiológicas que o alagamento provoca em Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae, correlacionando-as com sua capacidade de tolerar o excesso de água no solo. Plantas com três meses de idade, crescendo em casa de vegetação, foram submetidas a 56 dias de alagamento e a um período de pós-alagamento. A taxa fotossintética e o crescimento de T. avellanedae decresceram conforme aumentou o tempo de alagamento, mas mesmo não sendo altamente tolerante, a espécie foi capaz de se adaptar a curtos períodos de alagamento. Esta relativa tolerância provavelmente se deve à capacidade apresentada por T. avellanedae de desenvolver estruturas que amenizam os efeitos do alagamento, promovendo a difusão interna de oxigênio da parte aérea para as raízes, tais como rachaduras caulinares, raízes superficiais e lenticelas hipertrofiadas nas raízes. Como não houve acentuada variação na anatomia interna

  1. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    Science.gov (United States)

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  2. Bignoniaceae Juss. do Parque Estadual do Itacolomi, Minas Gerais, Brasil: florística, similaridade e distribuição geográfica

    OpenAIRE

    Araújo, Ricardo de Souza

    2008-01-01

    Este trabalho consiste do levantamento florístico de Bignoniaceae do Parque Estadual do Itacolomi (PEI), Minas Gerais, da distribuição geográfica das espécies e da similaridade entre trilhas do PEI e entre outras áreas do Brasil. As coletas foram realizadas mensalmente em 15 trilhas pré- estabelecidas, sendo sete em campo rupestre e oito em Floresta Estacional Semidecídua, totalizando 15 expedições de agosto/2006 a outubro/2007. O material foi herborizado e incorporado ao acervo do Herbário V...

  3. Caenorhabditis elegans response to salt

    NARCIS (Netherlands)

    O.O. Umuerri (Oluwatoroti Omowayewa)

    2012-01-01

    textabstractThis thesis describes my work, where I used genetic methods to identify new genes involved in salt taste in C. elegans. In addition, I used calcium imaging to characterize the cellular response of C. elegans to salt. The thesis is divided into five sections and each section is summarized

  4. Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae submitted at the flooding and the "Ethrel" and silver nitrate application

    Directory of Open Access Journals (Sweden)

    Viviane M. Davanso

    2003-01-01

    Full Text Available Three-month-old Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae plants cultivated in the greenhouse were submitted to 56 days of flooding and to "Ethrel" and silver nitrate applications to find out it’s capacity for morphological and physiological modifications to survive under flooding conditions and at which degree such responses were correlated with alterations in the ethylene level. Flooding and the "Ethrel" application caused growth reduction and epinasty in T. avellanedae and the application of silver nitrate lessened some these symptoms. Certain symptoms shown during flooding by this species and its ability to develop structures which lessen hypoxia effects, such as stem fissures and hypertrophied lenticels in the roots, modifications which enable the species to adapt to short flooding periods, could be related to increases in the ethylene concentration in the plant tissues.Plantas de Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae com três meses de idade e cultivadas em casa de vegetação, foram submetidas a 56 dias alagamento e à aplicação de "Ethrel" e de nitrato de prata. Objetivou-se verificar qual a capacidade desta espécie apresentar modificações morfológicas e fisiológicas para sobreviver durante períodos de inundação e em que grau tais respostas podem estar relacionadas com alterações nos níveis de etileno. O alagamento e a aplicação de "Ethrel" provocaram redução do crescimento e epinastia em T. avellanedae e a aplicação de nitrato prata amenizou em certos aspectos estes efeitos. Alguns sintomas apresentados por esta espécie durante a inundação e sua capacidade de desenvolver estruturas que amenizam os efeitosda hipoxia, como rachaduras corticaise hipertrofia de lenticelas nas raízes (modificações que possibilitaram a adaptação a curtos períodos de inundação podem estar relacionados a aumentos na concentração de etileno nos tecidos da planta.

  5. The Si elegans project at the interface of experimental and computational Caenorhabditis elegans neurobiology and behavior

    Science.gov (United States)

    Petrushin, Alexey; Ferrara, Lorenzo; Blau, Axel

    2016-12-01

    Objective. In light of recent progress in mapping neural function to behavior, we briefly and selectively review past and present endeavors to reveal and reconstruct nervous system function in Caenorhabditis elegans through simulation. Approach. Rather than presenting an all-encompassing review on the mathematical modeling of C. elegans, this contribution collects snapshots of pathfinding key works and emerging technologies that recent single- and multi-center simulation initiatives are building on. We thereby point out a few general limitations and problems that these undertakings are faced with and discuss how these may be addressed and overcome. Main results. Lessons learned from past and current computational approaches to deciphering and reconstructing information flow in the C. elegans nervous system corroborate the need of refining neural response models and linking them to intra- and extra-environmental interactions to better reflect and understand the actual biological, biochemical and biophysical events that lead to behavior. Together with single-center research efforts, the Si elegans and OpenWorm projects aim at providing the required, in some cases complementary tools for different hardware architectures to support advancement into this direction. Significance. Despite its seeming simplicity, the nervous system of the hermaphroditic nematode C. elegans with just 302 neurons gives rise to a rich behavioral repertoire. Besides controlling vital functions (feeding, defecation, reproduction), it encodes different stimuli-induced as well as autonomous locomotion modalities (crawling, swimming and jumping). For this dichotomy between system simplicity and behavioral complexity, C. elegans has challenged neurobiologists and computational scientists alike. Understanding the underlying mechanisms that lead to a context-modulated functionality of individual neurons would not only advance our knowledge on nervous system function and its failure in pathological

  6. Characterization of hydroxyurea resistance in C. elegans

    DEFF Research Database (Denmark)

    Brejning, Jeanette

    The soil nematode Caenorhabditis elegans has become a prominent model organism for studying aging and many age-related diseases. We use C. elegans to study the relationship between cancer and aging. To prevent cancer, cells are equipped with surveillance systems that detect damage and stop cells...... from dividing. These surveillance systems are collectively called cellular checkpoints. We have found that inactivation of certain checkpoint proteins, including p53, also cause resistance to the chemotherapeutic drug hydroxyurea (HU) that stalls replication. We have found that in C. elegans, HU...... inhibits ribonucleotide reductase (RNR). RNR is involved in synthesis of deoxyribonucleotide (dNTP) precursors for DNA replication and repair. Previously we have shown that inactivation of some checkpoint proteins can increase stress resistance and lifespan of C. elegans1. Interestingly, several genes...

  7. Variação da toxidez de Arrabidaea bilabiata (Bignoniaceae em coelhos Variation of the toxicity of Arrabidaea bilabiata (Bignoniaceae in rabbits

    Directory of Open Access Journals (Sweden)

    Flávia F. Jabour

    2006-09-01

    Full Text Available A brotação e as folhas maduras dessecadas e trituradas de Arrabidaea bilabiata, um cipó ou arbusto escandente da família Bignoniaceae, foram administradas em suspensão aquosa por via intragástrica a 15 coelhos adultos nas doses que variaram de 0,25-6,0g/kg. Nos experimentos com a brotação coletada em outubro (fim da época de seca, a menor dose que causou a morte dos coelhos foi de 0,5g/kg e em maio (fim da época de cheia, a menor dose que causou a morte foi de 1,0g/kg. Já com as folhas maduras coletadas em outubro a menor dose que causou a morte dos coelhos foi de 4,0g/kg e em maio, a menor dose que causou a morte foi de 6,0g/kg. A evolução em todos os casos letais foi superaguda. Clinicamente os coelhos de súbito debatiam-se com força na gaiola, caiam em decúbito lateral ou esternal, faziam movimentos de pedalagem, apresentavam acentuada dispnéia e morriam. À necropsia não foram observadas alterações significativas e ao exame histopatológico as lesões mais importantes caracterizaram-se, nos rins, por degeneração hidrópico-vacuolar das células epiteliais dos túbulos contornados distais, no fígado por vacuolização difusa do citoplasma e necrose de hepatócitos, predominantemente centro-lobular e paracentral e presença de esférulas eosinofílicas nos sinusóides hepáticos, no coração, por grupos de fibras cardíacas com eosinofilia aumentada, além de congestão nos rins, fígado, coração e pulmão. Neste estudo ficou estabelecido que a toxidez de A. bilabiata varia de acordo com a época do ano e o estado de maturação, pois essa planta foi mais tóxica em outubro e quando em brotação, confirmando, assim, os dados obtidos previamente em bovinos e búfalos.The dried and powdered mature leaves and sprouts of Arrabidaea bilabiata (fam. Bignoniaceae, a liana or scandent shrub, were administered by stomach tube to 15 rabbits at doses of 0.25-6.0g/kg. The lowest dose of the sprouts collected in October (End of

  8. C. elegans as a model in developmental neurotoxicology.

    Science.gov (United States)

    Ruszkiewicz, Joanna A; Pinkas, Adi; Miah, Mahfuzur R; Weitz, Rebecca L; Lawes, Michael J A; Akinyemi, Ayodele J; Ijomone, Omamuyovwi M; Aschner, Michael

    2018-03-14

    Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Screening for bioactivity of Mutinus elegans extracts

    Science.gov (United States)

    Gajendiran, A.; Cyriac, RE; Abraham, J.

    2017-11-01

    Mutinus elegans is a species of fungi that is commonly called as Elegant Stinkhorn. The aim of this study was to screen the crude extracts of the fungus for phytochemical analysis, antimicrobial activity, antioxidant assay and anticancer activity. Extraction of the fungal sample in Soxhlet apparatus was done with n-hexane and methanol as the solvent. Stock solutions of the crude methanol extract were prepared and used for microbiological assay. Thin layer chromatography was performed in order to determine the number of active components in n-hexane, and methanol solvent system for the fungus Mutinus elegans. Further, antioxidant assay was performed using DPPH radical scavenging assay. The fungal sample was then tested for cytotoxicity assay against MG63 osteosarcoma cell lines. The antimicrobial assay of Mutinus elegans extract exhibited activity against five pathogens. The zone of inhibition was measured with respect to standard antibiotics. Gas chromatography and Mass spectrometry (GC/MS analysis), revealed the presence of dibromo-tetradecan-1-ol-acetate, 2-myristynoyl-glycinamide, fumaric acid, and cyclohexylmethyldecyl ester compounds were presented in methanol and n-hexane extract of Mutinus elegans. The present study concludes the presence of bioactive compound in the extract which exhibited antimicrobial and antioxidant activity in Mutinus elegans.

  10. Immobilization of Caenorhabditis elegans to Analyze Intracellular Transport in Neurons.

    Science.gov (United States)

    Niwa, Shinsuke

    2017-10-18

    Axonal transport and intraflagellar transport (IFT) are essential for axon and cilia morphogenesis and function. Kinesin superfamily proteins and dynein are molecular motors that regulate anterograde and retrograde transport, respectively. These motors use microtubule networks as rails. Caenorhabditis elegans (C. elegans) is a powerful model organism to study axonal transport and IFT in vivo. Here, I describe a protocol to observe axonal transport and IFT in living C. elegans. Transported cargo can be visualized by tagging cargo proteins using fluorescent proteins such as green fluorescent protein (GFP). C. elegans is transparent and GFP-tagged cargo proteins can be expressed in specific cells under cell-specific promoters. Living worms can be fixed by microbeads on 10% agarose gel without killing or anesthetizing the worms. Under these conditions, cargo movement can be directly observed in the axons and cilia of living C. elegans without dissection. This method can be applied to the observation of any cargo molecule in any cells by modifying the target proteins and/or the cells they are expressed in. Most basic proteins such as molecular motors and adaptor proteins that are involved in axonal transport and IFT are conserved in C. elegans. Compared to other model organisms, mutants can be obtained and maintained more easily in C. elegans. Combining this method with various C. elegans mutants can clarify the molecular mechanisms of axonal transport and IFT.

  11. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  12. Nectar robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae).

    Science.gov (United States)

    Singh, Vineet Kumar; Barman, Chandan; Tandon, Rajesh

    2014-01-01

    The net consequence of nectar robbing on reproductive success of plants is usually negative and the positive effect is rarely produced. We evaluated the influence of nectar robbing on the behaviour of pollinators and the reproductive success of Tecomella undulata (Bignoniaceae) in a natural population. Experimental pollinations showed that the trees were strictly self-incompatible. The three types of floral colour morphs of the tree viz. red, orange and yellow, lacked compatibility barriers. The pollinators (Pycnonotus cafer and Pycnonotus leucotis) and the robber (Nectarinia asiatica) showed equal preference for all the morphs, as they visited each morph with nearly equal frequency and flower-handling time. The sunbirds caused up to 60% nectar robbing, mostly (99%) by piercing through the corolla tube. Although nectar is replenished at regular intervals, insufficient amount of nectar compelled the pollinators to visit additional trees in bloom. Data of manual nectar robbing from the entire tree showed that the pollinators covered lower number of flowers per tree (5 flowers/tree) and more trees per bout (7 trees/bout) than the unrobbed ones (19 flowers/tree and 2 trees bout). The robbed trees set a significantly greater amount of fruits than the unrobbed trees. However, the number of seeds in a fruit did not differ significantly. The study shows that plant-pollinator-robber interaction may benefit the self-incompatible plant species under conditions that increases the visits of pollinators among the compatible conspecifics in a population.

  13. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  14. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  15. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  16. Phyto chemical study and evaluation of allelopathy in Memora peregrina, 'ciganinha', Bignoniaceae, an invading species in pastures in Mato Grosso do Sul, Brazil; Estudo fitoquimico e avaliacao alelopatica de Memora peregrina - 'ciganinha' - Bignoniaceae, uma especie invasora de pastagens em Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Rafaela Ferreira [Mato Grosso do Sul Univ., Campo Grande, MS (Brazil). Dept. de Quimica; Resende, Ubirazilda Maria [Mato Grosso do Sul Univ., Campo Grande, MS (Brazil). Dept. de Biologia; Silva, Walciane da; Macedo, Maria Ligia Rodrigues [Mato Grosso do Sul Univ., Campo Grande, MS (Brazil). Dept. de Ciencias Naturais; Butera, Ana Paola; Tulli, Elayne de Oliveira; Saffran, Francis Paes; Siqueira, Joao Maximo de [Mato Grosso do Sul Univ., Campo Grande, MS (Brazil). Dept. de Farmacia-Bioquamica]. E-mail: jmaximo@nin.ufms.br

    2005-04-01

    Memora peregrina (local name: 'ciganinha' - Bignoniaceae) is a weed that often invades pastures in the Brazilian state of Mato Grosso do Sul. From its leaves and subterranean parts, the following compounds were isolated: allantoin (20.7 w/w in subterranean parts), the iridoid 6{beta}-hydroxyipolamiide, hyperin, 3'-O-methylhyperin, 4-hydroxy-N-methylproline, {beta}-sitosterol, {alpha}-amirin and {beta}-amirin, and lupeol. Allantoin exhibited an activity of inducing germination in seeds of Lactuca sativa used as a biological model, and the iridoid showed moderate activity in the larval development of Anagasta kuehniella. These results, associated with this plant's behavior, are suggestive of the occurrence of adaptive and competitive strategies in relation to other plant species. (author)

  17. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  18. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Kirienko, Natalia V; Cezairliyan, Brent O; Ausubel, Frederick M; Powell, Jennifer R

    2014-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the interaction between bacterial pathogens such as Pseudomonas aeruginosa and the metazoan innate immune system. Powerful genetic and molecular tools in both C. elegans and P. aeruginosa facilitate the identification and analysis of bacterial virulence factors as well as host defense factors. Here we describe three different assays that use the C. elegans-P. aeruginosa strain PA14 host-pathogen system. Fast Killing is a toxin-mediated death that depends on a diffusible toxin produced by PA14 but not on live bacteria. Slow Killing is due to an active infection in which bacteria colonize the C. elegans intestinal lumen. Liquid Killing is designed for high-throughput screening of chemical libraries for anti-infective compounds. Each assay has unique features and, interestingly, the PA14 virulence factors involved in killing are different in each assay.

  19. Dissecting the C. elegans response during infection using quantitative proteomics

    DEFF Research Database (Denmark)

    Simonsen, Karina Trankjær; Møller-Jensen, Jakob; Kristensen, Anders Riis

    2008-01-01

    The adherent invasive E. coli isolated from patients with Crohn’s disease in humans is pathogenic for C. elegans. We show here that when C. elegans feeds on the pathogenic E. coli, the life span is shortened significantly compared to the normal laboratory food, the OP50 E. coli. In this study...... the infection process is followed using GFP-expressing bacteria and persistence assays. A quantitative proteomic approach was used to follow the C. elegans host response during the infection process. C. elegans were metabolic labeled with the stable isotope 15N and samples from three different time points......, many of which also have been found in studies using other pathogens. So far, large-scale investigations of the C. elegans immune response have been performed using micro-arrays. This study is the first to make use of quantitative proteomics to directly follow the protein dynamics during the infection...

  20. Caenorhabditis elegans intersectin: a synaptic protein regulating neurotransmission

    DEFF Research Database (Denmark)

    Rose, Simon; Malabarba, Maria Grazia; Krag, Claudia

    2007-01-01

    the characterization of intersectin function in Caenorhabditis elegans. Nematode intersectin (ITSN-1) is expressed in the nervous system, and it is enriched in presynaptic regions. The C. elegans intersectin gene (itsn-1) is nonessential for viability. In addition, itsn-1-null worms do not display any evident...

  1. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  2. Formation of longitudinal axon pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Hutter, Harald

    2017-11-18

    The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well. Copyright © 2017. Published by Elsevier Ltd.

  3. Phyto chemical study and evaluation of allelopathy in Memora peregrina, 'ciganinha', Bignoniaceae, an invading species in pastures in Mato Grosso do Sul, Brazil

    International Nuclear Information System (INIS)

    Grassi, Rafaela Ferreira; Resende, Ubirazilda Maria; Silva, Walciane da; Macedo, Maria Ligia Rodrigues; Butera, Ana Paola; Tulli, Elayne de Oliveira; Saffran, Francis Paes; Siqueira, Joao Maximo de

    2005-01-01

    Memora peregrina (local name: 'ciganinha' - Bignoniaceae) is a weed that often invades pastures in the Brazilian state of Mato Grosso do Sul. From its leaves and subterranean parts, the following compounds were isolated: allantoin (20.7 w/w in subterranean parts), the iridoid 6β-hydroxyipolamiide, hyperin, 3'-O-methylhyperin, 4-hydroxy-N-methylproline, β-sitosterol, α-amirin and β-amirin, and lupeol. Allantoin exhibited an activity of inducing germination in seeds of Lactuca sativa used as a biological model, and the iridoid showed moderate activity in the larval development of Anagasta kuehniella. These results, associated with this plant's behavior, are suggestive of the occurrence of adaptive and competitive strategies in relation to other plant species. (author)

  4. Visible light reduces C. elegans longevity.

    Science.gov (United States)

    De Magalhaes Filho, C Daniel; Henriquez, Brian; Seah, Nicole E; Evans, Ronald M; Lapierre, Louis R; Dillin, Andrew

    2018-03-02

    The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.

  5. Self-sterility in the hexaploid Handroanthus serratifolius (Bignoniaceae, the national flower of Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Alves

    2013-12-01

    Full Text Available Polyploidization is common among angiosperms and might induce typically allogamous plants to become autogamous (self-compatible, relying on sexual self-fertilization or apomictic (achieving asexual reproduction through seeds. This work aimed to determine whether neopolyploidy leads to the breakdown of the self-incompatibility system in the hexaploid non-apomictic species Handroanthus serratifolius (Vahl S. Grose, through analyses of its floral biology, pollination biology and breeding system. Although anthesis lasted for three days, increasing the overall floral display, receptivity decreased as of the second day. Centridini and Euglossini bees were the main pollinators, and low nectar availability (1.95 ± 1.91 µl/flower might have obliged them to visit multiple flowers. We observed low reproductive efficacy. That might be explained by self-sterility and by the great number of flowers per individual, which could increase the frequency of geitonogamy. Ovule penetration by the pollen tubes in self-pollinated pistils with posterior abscission indicated late-acting self-incompatibility in H. serratifolius, as observed in other diploid Bignoniaceae species, although inbreeding depression cannot be excluded. The self-sterility found in the monoembryonic, hexaploid individuals studied here contrasts with the results for other neopolyploid Handroanthus and Anemopaegma species, which are often autogamous and apomictic. Our results suggest that neopolyploidy is not the main factor leading to self-fertility in Handroanthus.

  6. Caenorhabditis elegans Egg-Laying Detection and Behavior Study Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Palm Megan

    2005-01-01

    Full Text Available Egg laying is an important phase of the life cycle of the nematode Caenorhabditis elegans (C. elegans. Previous studies examined egg-laying events manually. This paper presents a method for automatic detection of egg-laying onset using deformable template matching and other morphological image analysis techniques. Some behavioral changes surrounding egg-laying events are also studied. The results demonstrate that the computer vision tools and the algorithm developed here can be effectively used to study C. elegans egg-laying behaviors. The algorithm developed is an essential part of a machine-vision system for C. elegans tracking and behavioral analysis.

  7. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  8. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning.

    Directory of Open Access Journals (Sweden)

    C Ryan Oliver

    Full Text Available Caenorhabditis elegans (C. elegans is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry.

  9. Forward and reverse mutagenesis in C. elegans

    Science.gov (United States)

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  10. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  11. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.

    Science.gov (United States)

    Gomez-Amaro, Rafael L; Valentine, Elizabeth R; Carretero, Maria; LeBoeuf, Sarah E; Rangaraju, Sunitha; Broaddus, Caroline D; Solis, Gregory M; Williamson, James R; Petrascheck, Michael

    2015-06-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. Copyright © 2015 by the Genetics Society of America.

  12. Antioxidant activity from the leaf extracts of Jacaranda puberula Cham., Bignoniaceae, a Brazilian medicinal plant used for blood depuration

    Directory of Open Access Journals (Sweden)

    Paula Macedo Lessa dos Santos

    Full Text Available The antioxidant activity of leaf extracts from Jacaranda puberula Cham., Bignoniaceae, was assayed by the DPPH (2,2-diphenyl-1-picryl-hydrazyl free radical scavenging method. Three phytomedicines (F1, F2, and F3 used as blood depurative, were tested by the same method. The free radical scavenger potential was measured by the discoloration of the solution. The EC50 values from Gingko bilobaEGb 761® extract and rutin, used as antioxidant for medical purposes, were used as reference. The ethanol extract (EE, ethyl acetate (EA, butanol (EB, aqueous (EAq and the sample A (obtained from extract EB, showed lower EC50 values than other extracts and phytomedicines. The antioxidant activity (AA of the extracts was related with the presence of the polyphenol compounds such as verbascoside (1 and cis-caffeoyl aldehyde (2. These structures were determined by chemical and spectroscopic methods and comparison with literature data.

  13. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses.

    Directory of Open Access Journals (Sweden)

    Jakob Begun

    2007-04-01

    Full Text Available Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.

  14. Stable nuclear transformation of Eudorina elegans

    Directory of Open Access Journals (Sweden)

    Lerche Kai

    2013-02-01

    Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and

  15. Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1.

    Science.gov (United States)

    Li, Wen-Hsuan; Shi, Yeu-Ching; Chang, Chun-Han; Huang, Chi-Wei; Hsiu-Chuan Liao, Vivian

    2014-04-01

    Selenium is an essential micronutrient. In the present study, trace amount of selenite (0.01 μM) was evaluated for oxidative stress resistance and potential associated factors in Caenorhabditis elegans. Selenite-treated C. elegans showed an increased survival under oxidative stress and thermal stress compared to untreated controls. Further studies demonstrated that the significant stress resistance of selenite on C. elegans could be attributed to its in vivo free radical-scavenging ability. We also found that the oxidative and thermal stress resistance phenotypes by selenite were absent from the forkhead transcription factor daf-16 mutant worms. Moreover, selenite influenced the subcellular distribution of DAF-16 in C. elegans. Furthermore, selenite increased mRNA levels of stress-resistance-related proteins, including superoxide dismutase-3 and heat shock protein-16.2. Additionally, selenite (0.01 μM) upregulated expressions of transgenic C. elegans carrying sod-3::green fluorescent protein (GFP) and hsp-16.2::GFP, whereas this effect was abolished by feeding daf-16 RNA interference in C. elegans. Finally, unlike the wild-type N2 worms, the oxidative stress resistance phenotypes by selenite were both absent from the C. elegans selenoprotein trxr-1 mutant worms and trxr-1 mutants feeding with daf-16 RNA interference. These findings suggest that the antioxidant effects of selenite in C. elegans are mediated via DAF-16 and TRXR-1. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-01-01

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.

  17. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun, E-mail: lijunzhou@tju.edu.cn

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.

  18. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  19. Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Xiaowen Huang

    Full Text Available Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of P. marneffei remain largely unknown. In this work, we developed a model host by using nematode Caenorhabditis elegans to investigate the virulence of P. marneffei. Using two P. marneffei clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live P. marneffei was lethal to C. elegans (P<0.001. Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in C. elegans than the strain 486, which can't produce red pigment (P<0.001. Microscopy showed the formation of red pigment and hyphae within C. elegans after incubation with P. marneffei for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used C. elegans as an in vivo model to evaluate different antifungal agents against P. marneffei, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodesinfected by P. marneffei. Overall, this alternative model host can provide us an easy tool to study the virulence of P. marneffei and screen antifungal agents.

  20. Use of the induced gene-expression in the soil nematode Caenorhabditis elegans as a biomonitor; Nutzung der induzierbaren Genexpression des Nematoden Caenorhabditis elegans als Biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, R.; Reichert, K.; Achazi, R. [Freie Univ. Berlin (Germany). Inst. fuer Biologie - Oekotoxikologie und Biochemie

    2002-07-01

    The soil nematode Caenorhabditis elegans is one of the simplest animals having the status of a laboratory model. Its already completely sequenced genome contains the remarkable number of 80 cytochrome P450 genes (CYP) and many further genes coding for enzymes involved in biotransformation. In order to study xenobiotically induced gene expression in C. elegans, liquid cultures were exposed to different, well-known xenobiotic inducers. The mRNA expression was detected by two different types of DNA arrays and semi-quantitative RT-PCR. {beta}-naphthoflavone, PCB52 and lansoprazol were the most active and, in particular, induced almost all CYP35 isoforms strongly. In conclusion, the xenobiotic dependent gene expression of C. elegans is a useful tool to reveal defense mechanisms against potential damaging substances as well as for developing a biomonitoring system. (orig.) [German] Der Bodennematode Caenorhabditis elegans gilt als das einfachste mehrzellige Tier mit dem Status eines Labormodels. Basierend auf seinem entschluesselten Genom konnte die bemerkenswerte Zahl von 80 Cytochrom P450 Genen (CYP) und eine Vielzahl weiterer Gene, welche fuer Enzyme der Biotransformation kodieren, identifiziert werden. Die differentielle Genexpression von C. elegans nach Schadstoffzugabe wurde in Fluessigkulturen mit 18 Xenobiotika aus unterschiedlichen Schadstoffgruppen untersucht. Anschliessend wurde die mRNA Expression mit DNA Arrays und semi-quantitativer RT-PCR bestimmt. {beta}-Naphthoflavone, PCB52 and Lansoprazol erwiesen sich dabei als die wirksamsten Induktoren und konnten unter anderen alle CYP 35 Isoformen stark induzieren. Mit diesen Untersuchungen konnte gezeigt werden, dass die schadstoffinduzierte Genexpression in C. elegans ein adaequates System ist, um sowohl Detoxifikationsmechanismen zu untersuchen als auch ein Biomonitorscreening aufzubauen. (orig.)

  1. The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival.

    Science.gov (United States)

    van der Horst, Armando; Schavemaker, Jolanda M; Pellis-van Berkel, Wendy; Burgering, Boudewijn M T

    2007-04-01

    In yeast, increasing the copy number of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase Sir2 extends lifespan, which can be inhibited by nicotinamide (Nam), the end-product of Sir2-mediated NAD-breakdown. Furthermore, the yeast pyrazinamidase/nicotinamidase PNC-1 can extend yeast lifespan by converting Nam. In Caenorhabditis elegans (C. elegans), increased dosage of the gene encoding SIR-2.1 also increases lifespan. Here, we report that knockdown of the C. elegans homologue of yeast PNC-1 as well as growing worms on Nam-containing medium significantly decreases adult lifespan. Accordingly, increased gene dosage of pnc-1 increases adult survival under conditions of oxidative stress. These data show for the first time the involvement of PNC-1/Nam in the survival of a multicellular organism and may also contribute to our understanding of lifespan regulation in mammals.

  2. Shape memory alloy-based small crawling robots inspired by C. elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yuk, Hyunwoo; Kim, Daeyeon; Shin, Jennifer H [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Honggu; Jo, Sungho, E-mail: shjo@kaist.ac.kr, E-mail: j_shin@kaist.ac.kr [Department of Computer Science, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2011-12-15

    Inspired by its simple musculature, actuation and motion mechanisms, we have developed a small crawling robot that closely mimics the model organism of our choice: Caenorhabditis elegans. A thermal shape memory alloy (SMA) was selected as an actuator due to the similarities of its properties to C. elegans muscles. Based on the anatomy of C. elegans, a 12-unit robot was designed to generate a sinusoidal undulating motion. Each body unit consisting of a pair of SMA actuators is serially connected by rigid links with an embedded motion control circuit. A simple binary operation-based motion control mechanism was implemented using a microcontroller. The assembled robot can execute C. elegans-like motion with a 0.17 Hz undulation frequency. Its motion is comparable to that of a real worm.

  3. Molecular control of memory in nematode Caenorhabditis elegans

    OpenAIRE

    Ye, Hua-Yue; Ye, Bo-Ping; Wang, Da-Yong

    2008-01-01

    Model invertebrate organism Caenorhabditis elegans has become an ideal model to unravel the complex processes of memory. C. elegans has three simple forms of memory: memory for thermosensation, memory for chemosensation, and memory for mechanosensation. In the form of memory for mechanosensation, short-term memory, intermediate-term memory, and long-term memory have been extensively studied. The short-term memory and intermediate-term memory may occur in the presynaptic sensory neurons, where...

  4. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    Science.gov (United States)

    Jung, Jaehoon; Nakajima, Masahiro; Tajima, Hirotaka; Huang, Qiang; Fukuda, Toshio

    2013-08-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system.

  5. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Tajima, Hirotaka; Fukuda, Toshio; Nakajima, Masahiro; Huang, Qiang

    2013-01-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC 50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system. (paper)

  6. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek; Lee, Weontae

    2014-01-01

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding

  7. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sunjin [Structural Biochemistry and Molecular Biophysics Lab, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Yong Woo; Kim, Woo Taek [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Structural Biochemistry and Molecular Biophysics Lab, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-01-10

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.

  8. Chemical constituents and biological activities of Dianthus elegans var. elegans.

    Science.gov (United States)

    Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla

    2018-06-01

    Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.

  9. The ETS-5 transcription factor regulates activity states in Caenorhabditis elegans by controlling satiety

    DEFF Research Database (Denmark)

    Juozaityte, Vaida; Pladevall-Morera, David; Podolska, Agnieszka

    2017-01-01

    Animal behavior is shaped through interplay among genes, the environment, and previous experience. As in mammals, satiety signals induce quiescence in Caenorhabditis elegans Here we report that the C. elegans transcription factor ETS-5, an ortholog of mammalian FEV/Pet1, controls satiety......-induced quiescence. Nutritional status has a major influence on C. elegans behavior. When foraging, food availability controls behavioral state switching between active (roaming) and sedentary (dwelling) states; however, when provided with high-quality food, C. elegans become sated and enter quiescence. We show......-regulated behavioral state switching. Taken together, our results identify a neuronal mechanism for controlling intestinal fat stores and organismal behavioral states in C. elegans, and establish a paradigm for the elucidation of obesity-relevant mechanisms....

  10. Behavioral response and cell morphology changes of caenorhabditis elegans under high power millimeter wave irradiation

    International Nuclear Information System (INIS)

    Ren Changhong; Gao Yan; Wu Yonghong; Xu Zhiwei; Zhang Chenggang; Yuan Guangjiang; Xu Shouxi; Su Yinong; Liu Pukun

    2010-01-01

    C. elegans were exposed to high power millimeter waves (MMWs) with different mean power densities, to investigate their behavioral response and cell morphology changes under MMW irradiation. The time-course photomicrography system was used to record the behavioral changes of C. elegans. The behavioral response and cell morphology changes were further observed by stereoscopic microscopes. The results show that freely moving C. elegans will escape from the MMW irradiation region quickly. After the exposure to MMWs with output mean power of 10 W and 12 W, the bending speed of C. elegans increases significantly at first, while the movement gradually slows down until the bodies get rigid. However, exposed to 5 W MMW, C. elegans show a distinctive tolerant reaction because of the thermal effect. In addition, cell morphological observations show that the nuclear structure of the eggs are abnormal after abnormal after MMW irradiation. High power MMW significantly affects the behaviors and cell morphology of C. elegans, which suggests the C. elegans could be used as a typical model species to study the biological effects of MMW irradiation. (authors)

  11. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-03-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.

  12. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-01-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds. PMID:26241504

  13. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity

    International Nuclear Information System (INIS)

    Cole, Russell D.; Anderson, Gary L.; Williams, Phillip L.

    2004-01-01

    Fifteen organic phosphate pesticides were tested by computer tracking for their acute behavioral toxicity with the nematode Caenorhabditis elegans. Thirteen of these 15 chemicals are used as insecticides and are anticholesterase agents. The other two chemicals are used as herbicides. EC50 values for each chemical were compared to the corresponding LD50 acute lethality value in rats and mice. Order of toxicity was found to be significantly correlated in comparisons of C. elegans to both rats and mice. Mechanistic investigations were conducted by assaying 8 of the 15 chemicals for anticholinesterase activity in C. elegans. Significant cholinesterase inhibition was confirmed for five chemicals that had displayed high behavioral toxicity, while three chemicals of low behavioral toxicity showed no significant decrease in cholinesterase activity. Toxicity for two chemicals that do not inhibit cholinesterase in mammals was linked to pH effects. Detailed comparison of individual chemicals and metabolic issues are discussed. These results have positive implications for the use of C. elegans as a mammalian neurological model and support the use of C. elegans in early rounds of chemical toxicity screening

  14. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Kokel, David; Li, Yehua; Qin, Jun; Xue, Ding

    2006-06-01

    Naphthalene (1) and para-dichlorobenzene (PDCB, 2), which are widely used as moth repellents and air fresheners, cause cancer in rodents and are potential human carcinogens. However, their mechanisms of action remain unclear. Here we describe a novel method for delivering and screening hydrophobic chemicals in C. elegans and apply this technique to investigate the ways in which naphthalene and PDCB may promote tumorigenesis in mammals. We show that naphthalene and PDCB inhibit apoptosis in C. elegans, a result that suggests a cellular mechanism by which these chemicals may promote the survival and proliferation of latent tumor cells. In addition, we find that a naphthalene metabolite directly inactivates caspases by oxidizing the active site cysteine residue; this suggests a molecular mechanism by which these chemicals suppress apoptosis. Naphthalene and PDCB are the first small-molecule apoptosis inhibitors identified in C. elegans. The power of C. elegans molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economic animal model for both toxicological studies and drug screens.

  15. In vivo visualization and quantification of mitochondrial morphology in C. elegans

    NARCIS (Netherlands)

    Smith, R.L.; De Vos, W.H.; de Boer, R.; Manders, E.M.M.; van der Spek, H.; Weissig, V.; Edeas, M.

    2015-01-01

    Caenorhabditis elegans is a highly malleable model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity.

  16. Tat-mediated protein delivery in living Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric

    2007-01-01

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm

  17. A living model for obesity and aging research: Caenorhabditis elegans.

    Science.gov (United States)

    Shen, Peiyi; Yue, Yiren; Park, Yeonhwa

    2018-03-24

    Caenorhabditis elegans (C. elegans) is a free-living nematode that has been extensively utilized as an animal model for research involving aging and neurodegenerative diseases, like Alzheimer's and Parkinson's, etc. Compared with traditional animal models, this small nematode possesses many benefits, such as small body size, short lifespan, completely sequenced genome, and more than 65% of the genes associated with human disease. All these characteristics make this organism an ideal living system for obesity and aging studies. This review gives a brief introduction of C. elegans as an animal model, highlights some advantages of research using this model and describes methods to evaluate the effect of treatments on obesity and aging of this organism.

  18. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    Science.gov (United States)

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  19. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    Directory of Open Access Journals (Sweden)

    Félix Marie-Anne

    2012-06-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000 contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures.

  20. Genome wide analyses of metal responsive genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Michael eAschner

    2012-04-01

    Full Text Available Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans (C. elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study how the mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.

  1. The Nucleolus of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Li-Wei Lee

    2012-01-01

    Full Text Available Nucleolar size and appearance correlate with ribosome biogenesis and cellular activity. The mechanisms underlying changes in nucleolar appearance and regulation of nucleolar size that occur during differentiation and cell cycle progression are not well understood. Caenorhabditis elegans provides a good model for studying these processes because of its small size and transparent body, well-characterized cell types and lineages, and because its cells display various sizes of nucleoli. This paper details the advantages of using C. elegans to investigate features of the nucleolus during the organism's development by following dynamic changes in fibrillarin (FIB-1 in the cells of early embryos and aged worms. This paper also illustrates the involvement of the ncl-1 gene and other possible candidate genes in nucleolar-size control. Lastly, we summarize the ribosomal proteins involved in life span and innate immunity, and those homologous genes that correspond to human disorders of ribosomopathy.

  2. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ichiro N. Maruyama

    2017-05-01

    Full Text Available Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US. It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS, and potassium chloride (KCl as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM and long-term memory (LTM, respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected

  3. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  4. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  5. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  6. Application of Digital (Motic and Scanning electron microscope in histological study of leaf of Tecoma gaudichaudi DC (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Kedar Kalyani Abhimanyu

    2016-03-01

    Full Text Available Tecoma gaudichaudi DC (Bignoniaceae is a shrub or a small tree found in various regions of Maharashtra. The objective of the study was to develop various standardization parameters for the evaluation of leaves of this plant. Microscopy, powder characteristics and scanning electron microscopy (SEM of leaves were observed and results were recorded. Histological study of leaves shows underlined palisade cells on the upper epidermal surface, anomocytic stomata on the lower epidermis with covering (2–3 cells and glandular trichomes etc. The specific observed characteristics such as types of stomata and trichomes were predominantly observed on the lower epidermal surface of the leaf. Physicochemical analysis such as extractive value includes petroleum ether, ethanol, ethyl acetate and aqueous soluble extractive values of 3.08, 10.50, 8.5, and 13.4% w/w respectively; extracts were analysed by chemical test and showed presence of flavonoids, tannins, steroids and triterpenoids etc. Fluorescence analysis is one of the parameters that help in the analysis of chemical constituents. So these parameters are useful in the authentication of T. gaudichaudi DC and can play a vital role in authentication and standardization of botanicals.

  7. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  8. Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    John T Murphy

    2011-03-01

    Full Text Available Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1 gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.

  9. Tracking C. elegans and its neuromuscular activity using NemaFlex

    Science.gov (United States)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  10. Gustatory Behaviour in Caenorhabditis elegans

    NARCIS (Netherlands)

    R.K. Hukema (Renate)

    2006-01-01

    textabstractThe nematode C. elegans is an ideal model-organism to study the genetics of behaviour (Brenner, 1974). It is capable of sensing salts and we discriminate three different responses: it is attracted to low salt concentrations (Ward, 1973; Dusenbery et al., 1974), it avoids high salt

  11. Lipid droplets as ubiquitous fat storage organelles in C. elegans

    Directory of Open Access Journals (Sweden)

    Guo Fengli

    2010-12-01

    Full Text Available Abstract Background Lipid droplets are a class of eukaryotic cell organelles for storage of neutral fat such as triacylglycerol (TAG and cholesterol ester (CE. We and others have recently reported that lysosome-related organelles (LROs are not fat storage structures in the nematode C. elegans. We also reported the formation of enlarged lipid droplets in a class of peroxisomal fatty acid β-oxidation mutants. In the present study, we seek to provide further evidence on the organelle nature and biophysical properties of fat storage structures in wild-type and mutant C. elegans. Results In this study, we provide biochemical, histological and ultrastructural evidence of lipid droplets in wild-type and mutant C. elegans that lack lysosome related organelles (LROs. The formation of lipid droplets and the targeting of BODIPY fatty acid analogs to lipid droplets in live animals are not dependent on lysosomal trafficking or peroxisome dysfunction. However, the targeting of Nile Red to lipid droplets in live animals occurs only in mutants with defective peroxisomes. Nile Red labelled-lipid droplets are characterized by a fluorescence emission spectrum distinct from that of Nile Red labelled-LROs. Moreover, we show that the recently developed post-fix Nile Red staining method labels lipid droplets exclusively. Conclusions Our results demonstrate lipid droplets as ubiquitous fat storage organelles and provide a unified explanation for previous studies on fat labelling methods in C. elegans. These results have important applications to the studies of fat storage and lipid droplet regulation in the powerful genetic system, C. elegans.

  12. Dietary regulation of hypodermal polyploidization in C. elegans.

    Science.gov (United States)

    Tain, Luke S; Lozano, Encarnación; Sáez, Alberto G; Leroi, Armand M

    2008-03-12

    Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  13. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model

    Directory of Open Access Journals (Sweden)

    Virk Bhupinder

    2012-07-01

    Full Text Available Abstract Background Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. Results Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. Conclusions In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.

  14. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-01-01

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen

  15. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Science.gov (United States)

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J; Saghatelian, Alan; Ausubel, Frederick M

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  16. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Brent Cezairliyan

    2013-01-01

    Full Text Available Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  17. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  18. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  19. A mutational analysis of Caenorhabditis elegans in space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yang [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Lai, Kenneth [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Cheung, Iris [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Youds, Jillian [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Maja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Sanja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Rose, Ann [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada)]. E-mail: arose@gene.nce.ubc.ca

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  20. A mutational analysis of Caenorhabditis elegans in space

    International Nuclear Information System (INIS)

    Zhao Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-01-01

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight

  1. Caenorhabditis elegans as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction.

    Science.gov (United States)

    Maurer, Laura L; Ryde, Ian T; Yang, Xinyu; Meyer, Joel N

    2015-11-02

    The nematode Caenorhabditis elegans is extensively utilized in toxicity studies. C. elegans offers a high degree of homology with higher organisms, and its ease of use and relatively inexpensive maintenance have made it an attractive complement to mammalian and ecotoxicological models. C. elegans provides multiple benefits, including the opportunity to perform relatively high-throughput assays on whole organisms, a wide range of genetic tools permitting investigation of mechanisms and genetic sensitivity, and transparent bodies that facilitate toxicokinetic studies. This unit describes protocols for three nanotoxicity assays in C. elegans: lethality, growth, and reproduction. This unit focuses on how to use these well-established assays with nanoparticles, which are being produced in ever-increasing volume and exhibit physicochemical properties that require alteration of standard toxicity assays. These assays permit a broad phenotypic assessment of nanotoxicity in C. elegans, and, when used in combination with genetic tools and other assays, also permit mechanistic insight. Copyright © 2015 John Wiley & Sons, Inc.

  2. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  3. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates.

    Science.gov (United States)

    Irazoqui, Javier E; Urbach, Jonathan M; Ausubel, Frederick M

    2010-01-01

    The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?

  4. Evolution of host innate defence: insights from C. elegans and primitive invertebrates

    Science.gov (United States)

    Irazoqui, Javier E.; Urbach, Jonathan M.; Ausubel, Frederick M.

    2010-01-01

    Preface The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in the identification of host response pathways that are involved in the defence against infection. Strikingly, C. elegans seems to detect and respond to infection without the involvement of its Toll-like receptor homologue, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans, and what can they tell us about innate immunity in higher organisms? PMID:20029447

  5. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance

    International Nuclear Information System (INIS)

    Lee, Eun-Young; Shim, Yhong-Hee; Chitwood, David J.; Hwang, Soon Baek; Lee, Junho; Paik, Young-Ki

    2005-01-01

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthetic pathway, it requires sterol as an essential nutrient. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. 7-Dehydrocholesterol reductase (DHCR) catalyzes the reduction of the Δ 7 double bond of sterols and is suspected to be defective in C. elegans, in which the major endogenous sterol is 7-dehydrocholesterol (7DHC). We microinjected a human DHCR expression vector into C. elegans, which was then incorporated into chromosome by γ-radiation. This transgenic C. elegans was named cholegans, i.e., cholesterol-producing C. elegans, because it was able to convert 7DHC into cholesterol. We investigated the effects of changes in sterol composition on longevity and stress resistance by examining brood size, mean life span, UV resistance, and thermotolerance. Cholegans contained 80% more cholesterol than the wild-type control. The brood size of cholegans was reduced by 40% compared to the wild-type control, although the growth rate was not significantly changed. The mean life span of cholegans was increased up to 131% in sterol-deficient medium as compared to wild-type. The biochemical basis for life span extension of cholegans appears to partly result from its acquired resistance against both UV irradiation and thermal stress

  6. Neuronal and non-neuronal signals regulate Caernorhabditis elegans avoidance of contaminated food.

    Science.gov (United States)

    Anderson, Alexandra; McMullan, Rachel

    2018-07-19

    One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host-pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. © 2018 The Authors.

  7. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Færgeman, Nils J.

    2012-01-01

    in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely labeled with heavy-labeled lysine by feeding worms on prelabeled lysine auxotroph Escherichia coli for just one generation. We applied this methodology to examine the organismal response to functional loss or RNAi...... gene knockdown by RNAi provides a powerful tool with broad implications for C. elegans biology....

  8. Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans.

    Science.gov (United States)

    Yan, Baolong; Sun, Weiwei; Shi, Xiaomeng; Huang, Liyang; Chen, Lingzi; Wang, Suhua; Yan, Lanzhu; Liang, Shaohui; Huang, Huicong

    2017-06-15

    The insulin-like signaling (IIS) pathway is considered to be significant in regulating fat metabolism, dauer formation, stress response and longevity in Caenorhabditis elegans. "Dauer hypothesis" indicates that similar IIS transduction mechanism regulates dauer development in free-living nematode C. elegans and the development of infective third-stage larvae (iL3) in parasitic nematodes, and this is bolstered by a few researches on structures and functions of the homologous genes in the IIS pathway cloned from several parasitic nematodes. In this study, we identified the insulin-like receptor encoding gene, Acan-daf-2, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. The sequence of Acan-DAF-2, consisting of 1413 amino acids, contained all of the characteristic domains of insulin-like receptors from other taxa. The expression patterns of Acan-daf-2 in the C. elegans surrogate system showed that pAcan-daf-2:gfp was only expressed in intestine, compared with the orthologue in C. elegans, Ce-daf-2 in both intestine and neurons. In addition to the similar genomic organization to Ce-daf-2, Acan-DAF-2 could also negatively regulate Ce-DAF-16A through nuclear/cytosolic translocation and partially restore the C. elegans daf-2(e1370) mutation in longevity, dauer formation and stress resistance. These findings provided further evidence of the functional conservation of DAF-2 between parasitic nematodes and the free-living nematode C. elegans, and might be significant in understanding the developmental biology of nematode parasites, particularly in the infective process and the host-specificity. Copyright © 2017. Published by Elsevier B.V.

  9. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  10. Dietary regulation of hypodermal polyploidization in C. elegans

    Directory of Open Access Journals (Sweden)

    Lozano Encarnación

    2008-03-01

    Full Text Available Abstract Background Dietary restriction (DR results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Results Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. Conclusion We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  11. Splicing of a C. elegans myosin pre-mRNA in a human nuclear extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogg, S C; Anderson, P; Wickens, M P [Univ. of Wisconsin, Madison (USA)

    1990-01-11

    Splicing of mammalian introns requires that the intron possess at least 80 nucleotides. This length requirement presumably reflects the constraints of accommodating multiple snRNPs simultaneously in the same intro. In the free-living nematode, C. elegans, introns typically are 45 to 55 nucleotides in length. In this report, the authors determine whether C. elegans introns can obviate the mammalian length requirement by virtue of their structure or sequence. They demonstrate that a 53 nucleotide intron from the unc-54 gene of C. elegans does not undergo splicing in a mammalian (HeLa) nuclear extract. However, insertion of 31 nucleotides of foreign, prokaryotic sequence into the same intron results in efficient splicing. The observed splicing proceeds by the same two-step mechanism observed with mammalian introns, and exploits the same 3{prime} and 5{prime} sites as are used in C. elegans. The branch point used lies in the inserted sequences. They conclude that C. elegans splicing components are either fewer in number or smaller than their mammalian counterparts.

  12. Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans.

    Science.gov (United States)

    Vita-More, Natasha; Barranco, Daniel

    2015-10-01

    Can memory be retained after cryopreservation? Our research has attempted to answer this long-standing question by using the nematode worm Caenorhabditis elegans, a well-known model organism for biological research that has generated revolutionary findings but has not been tested for memory retention after cryopreservation. Our study's goal was to test C. elegans' memory recall after vitrification and reviving. Using a method of sensory imprinting in the young C. elegans, we establish that learning acquired through olfactory cues shapes the animal's behavior and the learning is retained at the adult stage after vitrification. Our research method included olfactory imprinting with the chemical benzaldehyde (C6H5CHO) for phase-sense olfactory imprinting at the L1 stage, the fast-cooling SafeSpeed method for vitrification at the L2 stage, reviving, and a chemotaxis assay for testing memory retention of learning at the adult stage. Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing.

  13. Estruturas secretoras em cipó-d'alho (Mansoa standleyi (Steyerm. A. H. Gentry, Bignoniaceae: ocorrência e morfologia Secretory structures in cipó-d'alho (Mansoa standleyi (Steyerm. A. H. Gentry, Bignoniaceae: occurrence and morphology

    Directory of Open Access Journals (Sweden)

    Raimunda Conceição Vilhena-Potiguara

    2012-09-01

    Full Text Available Espécies de Mansoa são denominadas de "cipó-d'alho", por exalarem odor de alho das partes vegetativas e reprodutivas. Contudo, dados sobre morfologia e distribuição das estruturas secretoras presentes em Mansoa são escassos e ausentes para M. standleyi. O presente trabalho objetivou caracterizar a ocorrência e morfologia das estruturas secretoras do eixo vegetativo aéreo de M. standleyi. Para tanto, amostras da lâmina foliolar e de regiões nodais foram fixadas e submetidas às técnicas histológicas e de microscopia eletrônica de varredura. Testes histoquímicos, com os respectivos controles foram aplicados nas estruturas secretoras em fase secretora. Indivíduos de formigas e moscas, que visitavam a espécie foram amostrados, preservados e identificados por entomólogo. As estruturas secretoras do eixo vegetativo aéreo de M. standleyi estão representadas por tricomas glandulares dos tipos pateliformes e peltados. Todos com desenvolvimento assincrônico e presentes nas regiões nodais e lâmina foliolar, principalmente nas partes mais jovens. Nas regiões nodais, os tricomas formam um complexo secretor e, na lâmina foliolar, estão dispersos. As análises histoquímicas revelaram que os tricomas pateliformes são de fato nectários extraflorais e que os tricomas peltados, apresentam uma fração de alcaloides. Os visitantes das glândulas nodais correspondem a formigas Crematogaster (Formicidae e Ectatomma brunea (Vespoidea, Formicidae e moscas Oxysarcodexia (Sarcophagidae, subfamília Utitidae (Ulidiidae. Mansoa standleyi possui as estruturas secretoras do eixo vegetativo aéreo semelhantes às citadas pela literatura para Bignoniaceae, sendo esta a primeira vez, que um nectário extrafloral é descrito para a espécie.Species of Mansoa are called "cipó-d'alho" because of the smell of garlic that wafts from their vegetative and reproductive parts. Since data on the morphology and occurrence of their secretory structures are

  14. microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Pocock, Roger

    2015-01-01

    Layered strategies to combat hypoxia provide flexibility in dynamic oxygen environments. Here we show that multiple miRNAs are required for hypoxic survival responses during C. elegans embryogenesis. Certain miRNAs promote while others antagonize the hypoxic survival response. We found...... of the full mRNA target repertoire of these miRNAs will reveal the miRNA-regulated network of hypoxic survival mechanisms in C. elegans....

  15. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  16. The Effect of Phylogeny, Environment and Morphology on Communities of a Lianescent Clade (Bignonieae-Bignoniaceae) in Neotropical Biomes

    Science.gov (United States)

    Alcantara, Suzana; Ree, Richard H.; Martins, Fernando R.; Lohmann, Lúcia G.

    2014-01-01

    The influence of ecological traits to the distribution and abundance of species is a prevalent issue in biodiversity science. Most studies of plant community assembly have focused on traits related to abiotic aspects or direct interactions among plants, with less attention paid to ignore indirect interactions, as those mediated by pollinators. Here, we assessed the influence of phylogeny, habitat, and floral morphology on ecological community structure in a clade of Neotropical lianas (tribe Bignonieae, Bignoniaceae). Our investigation was guided by the long-standing hypothesis that habitat specialization has promoted speciation in Bignonieae, while competition for shared pollinators influences species co-occurrence within communities. We analyzed a geo-referenced database for 94 local communities occurring across the Neotropics. The effect of floral morphological traits and abiotic variables on species co-occurrence was investigated, taking into account phylogenetic relationships. Habitat filtering seems to be the main process driving community assembly in Bignonieae, with environmental conditions limiting species distributions. Differing specialization to abiotic conditions might have evolved recently, in contrast to the general pattern of phylogenetic clustering found in communities of other diverse regions. We find no evidence that competition for pollinators affects species co-occurrence; instead, pollinator occurrence seems to have acted as an “environmental filter” in some habitats. PMID:24594706

  17. Cadmium Tolerance and Removal from Cunninghamella elegans Related to the Polyphosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Hercília M. L. Rolim

    2013-03-01

    Full Text Available The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109 growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compared to the control. Moreover, C. elegans removed 70%–81% of the cadmium added to the culture medium during its growth. The C. elegans mycelia showed a removal efficiency of 280 mg/g at a cadmium concentration of 22.10 mg/L, and the removal velocity of cadmium was 0.107 mg/h. Additionally, it was observed that cadmium induced vacuolization, the presence of electron dense deposits in vacuoles, cytoplasm and cell membranes, as well as the distinct behavior of polyphosphate fractions. The results obtained with C. elegans suggest that precipitation, vacuolization and polyphosphate fractions were associated to cadmium tolerance, and this species demonstrated a higher potential for bioremediation of heavy metals.

  18. Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection.

    Directory of Open Access Journals (Sweden)

    Inja Radman

    Full Text Available We report a simple, cost-effective, scalable and efficient method for creating transgenic Caenorhabditis elegans that requires minimal hands-on time. The method combines biolistic bombardment with selection for transgenics that bear a hygromycin B resistance gene on agar plates supplemented with hygromycin B, taking advantage of our observation that hygromycin B is sufficient to kill wild-type C. elegans at very low concentrations. Crucially, the method provides substantial improvements in the success of bombardments for isolating transmitting strains, the isolation of multiple independent strains, and the isolation of integrated strains: 100% of bombardments in a large data set yielded transgenics; 10 or more independent strains were isolated from 84% of bombardments, and up to 28 independent strains were isolated from a single bombardment; 82% of bombardments yielded stably transmitting integrated lines with most yielding multiple integrated lines. We anticipate that the selection will be widely adopted for C. elegans transgenesis via bombardment, and that hygromycin B resistance will be adopted as a marker in other approaches for manipulating, introducing or deleting DNA in C. elegans.

  19. Research progress in neuro-immune interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jin-ling CAI

    2012-09-01

    Full Text Available The innate immune response may be activated quickly once the organism is invaded by exotic pathogens. An excessive immune response may result in inflammation and tissue damage, whereas an insufficient immune response may result in infection. Nervous system may regulate the intensity of innate immune responses by releasing neurotransmitters, neuropeptides and hormones. Compared with the complicated neuro-immune system in mammals, it is much simpler in Caenorhabditis elegans. Besides, C. elegans is accessible to genetic, molecular biology and behavioral analyses, so it has been used in studies on neuro-immune interactions. It has been revealed recently in the studies with C. elegans that the neuronal pathways regulating innate immune responses primarily include a transforming growth factor-β (TGF-β pathway, an insulin/insulin-like growth factor receptor (IGF pathway and dopaminergic neurotransmission. Since these pathways are evolutionally conservative, so it might be able to provide some new ideas for the research on neuro-immune interactions at molecular levels. The recent progress in this field has been reviewed in present paper.

  20. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction.

    Science.gov (United States)

    Zhao, Yang; Zhao, Liang; Zheng, Xiaonan; Fu, Tianjiao; Guo, Huiyuan; Ren, Fazheng

    2013-04-01

    In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

  1. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  2. C. elegans as a virulence model for E. coli strain 042

    OpenAIRE

    Kjærbo, Rasmus E. R.; Godballe, Troels; Hansen, Klaus G.; Petersen, Pernille D.; Tikander, Emil

    2010-01-01

    During the last decade the nematode Caenorhabditis elegans has been used to model the pathogenesis of several bacterial species. The emerging pathogen enteroaggregative Escherichia coli (EAEC) is a considerable cause of both acute and persistent diarrhea worldwide. Travellers to developing countries, immunocompromised people and young children are high-risk groups prone to infection. Virulence models using C. elegans might provide valuable information about the host-pathogen interactions whic...

  3. Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening

    DEFF Research Database (Denmark)

    Schøler, Lone Vedel; Møller, Tine Hørning; Nørgaard, Steffen

    2012-01-01

    The soil nematode Caenorhabditis elegans has become a popular genetic model organism used to study a broad range of complex biological processes, including development, aging, apoptosis, and DNA damage responses. Many genetic tools and tricks have been developed in C. elegans including knock down...... of gene expression via RNA interference (RNAi). In C. elegans RNAi can effectively be administrated via feeding the nematodes bacteria expressing double-stranded RNA targeting the gene of interest. Several commercial C. elegans RNAi libraries are available and hence gene inactivation using RNAi can...

  4. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands

    Directory of Open Access Journals (Sweden)

    Jansen Gert

    2006-07-01

    Full Text Available Abstract Background G-protein-coupled receptors (GPCRs play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro systems. Caenorhabditis elegans is a soil-dwelling, bacteria-feeding nematode that uses GPCRs expressed in chemosensory neurons to detect bacteria and environmental compounds, making this an ideal system for studying in vivo GPCR-ligand interactions. We sought to test this by functionally expressing two medically important mammalian GPCRs, somatostatin receptor 2 (Sstr2 and chemokine receptor 5 (CCR5 in the gustatory neurons of C. elegans. Results Expression of Sstr2 and CCR5 in gustatory neurons allow C. elegans to specifically detect and respond to somatostatin and MIP-1α respectively in a robust avoidance assay. We demonstrate that mammalian heterologous GPCRs can signal via different endogenous Gα subunits in C. elegans, depending on which cells it is expressed in. Furthermore, pre-exposure of GPCR transgenic animals to its ligand leads to receptor desensitisation and behavioural adaptation to subsequent ligand exposure, providing further evidence of integration of the mammalian GPCRs into the C. elegans sensory signalling machinery. In structure-function studies using a panel of somatostatin-14 analogues, we identified key residues involved in the interaction of somatostatin-14 with Sstr2. Conclusion Our results illustrate a remarkable evolutionary plasticity in interactions between mammalian GPCRs and C. elegans signalling machinery, spanning 800 million years of evolution. This in vivo system, which imparts novel avoidance behaviour on C. elegans, thus provides a simple means of studying and screening interaction of GPCRs with extracellular agonists, antagonists and intracellular binding partners.

  5. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2.

    Directory of Open Access Journals (Sweden)

    Mark G Sterken

    Full Text Available Orsay virus (OrV is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi. However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.

  6. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics

    DEFF Research Database (Denmark)

    Sidoli, Simone; Vandamme, Julien; Elisabetta Salcini, Anna

    2016-01-01

    We applied a middle-down proteomics strategy for large scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized post-translational modifications (PTMs) on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval......-occurring PTMs. We measured temporally distinct combinatorial PTM profiles during C. elegans development. We show that the doubly modified form H3K23me3K27me3, which is rare or non-existent in mammals, is the most abundant PTM in all stages of C. elegans lifecycle. The abundance of H3K23me3 increased during...... that is transmitted during dauer formation. Collectively, our data describe the dynamics of histone H3 combinatorial code during C. elegans lifecycle and demonstrate the feasibility of using middle-down proteomics to study in vivo development of multicellular organisms. This article is protected by copyright. All...

  7. Optimizing Host-Pathogen In-Flight Assays for C.Elegans and Methicillin-Resistant Staphylococcus Aureus

    Science.gov (United States)

    Hammond, Timothy G.; Birdsall, Holly H.; Hammond, Jeffrey S.; Allen, Patricia L.

    2013-02-01

    This study addresses controls for an assay of bacterial virulence that has been optimized for space flight studies. Caenorhabditis elegans (C. elegans) worms ingest microorganisms, but are also killed by virulent bacteria. Virulence is assessed by the number of bacteria surviving in co-culture with C. elegans , as measured by optical density at 620 nm. Co -cultures of Methicillin-resistant Staphylococcus aureus (MRSA) with C. elegans have a higher OD620 than MRSA grown alone, which could reflect debris from dead worms and/or enhanced growth of the MRSA in response to worm-derived factors. The use of media conditioned by pre-incubation with worms demonstrated the presence of temperature-stable factors that change MRSA growth in a strain-dependent manner. Some sources of deionized water contain an undefined antibacterial activity present in conditioned, but not fresh untreated media.

  8. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C.elegans embryos?

    International Nuclear Information System (INIS)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann

    1991-01-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs

  9. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1991-09-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  10. Courtship herding in the fiddler crab Uca elegans.

    Science.gov (United States)

    How, Martin J; Hemmi, Jan M

    2008-12-01

    Male and female animals are not always complicit during reproduction, giving rise to coercion. One example of a system that is assumed to involve sexual coercion is the mate herding behaviour of fiddler crabs: males push females towards the home burrow with the goal of forcing copulation at the burrow entrance. We recorded and analysed in detail the courtship behaviour of a North Australian species of fiddler crab Uca elegans. Courtship was composed of four main phases: broadcast waving, outward run, herding and at burrow display. During interactions males produced claw-waving displays which were directed posteriorly towards the female and which varied in timing and structure depending on the courtship phase. We suggest that courtship herding in U. elegans is driven primarily by mate choice for the following reasons, (1) females can evade herding, (2) no other reproductive strategies were observed, (3) males broadcast their presence and accompany courtship with conspicuous claw waves, and (4) the behaviour ends with the female leading the male into the home burrow. As an alternative function for herding in U. elegans we suggest that the behaviour represents a form of courtship guiding, in which males direct complicit females to the correct home burrow.

  11. Closing in on the C. elegans ORFeome by cloning TWINSCAN predictions

    DEFF Research Database (Denmark)

    Wei, Chaochun; Lamesch, Philippe; Arumugam, Manimozhiyan

    2005-01-01

    The genome of Caenorhabditis elegans was the first animal genome to be sequenced. Although considerable effort has been devoted to annotating it, the standard WormBase annotation contains thousands of predicted genes for which there is no cDNA or EST evidence. We hypothesized that a more complete...... experimental annotation could be obtained by creating a more accurate gene-prediction program and then amplifying and sequencing predicted genes. Our approach was to adapt the TWINSCAN gene prediction system to C. elegans and C. briggsae and to improve its splice site and intron-length models. The resulting...... be significantly increased by replacing its partially curated predicted genes with TWINSCAN predictions. The technology described in this study will continue to drive the C. elegans ORFeome toward completion and contribute to the annotation of the three Caenorhabditis species currently being sequenced. The results...

  12. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    Science.gov (United States)

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-03-18

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  13. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  14. Using Caenorhabditis elegans as a Model for Obesity Pharmacology Development.

    Science.gov (United States)

    Zheng, Jolene; Vasselli, Joseph R; King, Jason F; King, Michael L; We, Wenqian; Fitzpatrick, Zachary; Johnson, William D; Finley, John W; Martin, Roy J; Keenan, Michael J; Enright, Frederic M; Greenway, Frank L

    The Caenorhabditis elegans model is a rapid and inexpensive method to address pharmacologic questions. We describe the use of C. elegans to explore 2 pharmacologic questions concerning candidate antiobesity drugs and illustrate its potential usefulness in pharmacologic research: (1) to determine a ratio of betahistine-olanzapine that blocks the olanzapine-induced intestinal fat deposition (IFD) as detected by Nile red staining and (2) to identify the mechanism of action of a pharmaceutical candidate AB-101 that reduces IFD. Olanzapine (53 μg/mL) increased the IFD (12.1 ± 0.1%, P < 0.02), which was blocked by betahistine (763 μg/mL, 39.3 ± 0.01%, P < 0.05) in wild-type C. elegans (N2). AB-101 (1.0%) reduced the IFD in N2 (P < 0.05), increased the pharyngeal pumping rate (P < 0.05), and reversed the elevated IFD induced by protease inhibitors atazanavir and ritonavir (P < 0.05). AB-101 did not affect IFD in a ACS null mutant strain acs-4(ok2872) III/hT2[bli-4(e937) let-?(q782) qIs48](I;III) suggesting an involvement of the lipid oxidation pathway and an upregulation of CPT-1. Our studies suggest that C. elegans may be used as a resource in pharmacologic research. This article is intended to stimulate a greater appreciation of its value in the development of new pharmaceutical interventions.

  15. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.

    Science.gov (United States)

    Irazoqui, Javier E; Troemel, Emily R; Feinbaum, Rhonda L; Luhachack, Lyly G; Cezairliyan, Brent O; Ausubel, Frederick M

    2010-07-01

    The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with

  16. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.

    Directory of Open Access Journals (Sweden)

    Javier E Irazoqui

    2010-07-01

    Full Text Available The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs. Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C

  17. Transmission electron microscope studies of the nuclear envelope in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Cohen, Merav; Tzur, Yonatan B; Neufeld, Esther; Feinstein, Naomi; Delannoy, Michael R; Wilson, Katherine L; Gruenbaum, Yosef

    2002-01-01

    Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.

  18. Untwisting the Caenorhabditis elegans embryo

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  19. Untwisting the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  20. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Science.gov (United States)

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  1. Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions.

    Science.gov (United States)

    Freyth, Katharina; Janowitz, Tim; Nunes, Frank; Voss, Melanie; Heinick, Alexander; Bertaux, Joanne; Scheu, Stefan; Paul, Rüdiger J

    2010-10-01

    Laboratory breeding conditions of the model organism C. elegans do not correspond with the conditions in its natural soil habitat. To assess the consequences of the differences in environmental conditions, the effects of air composition, medium and bacterial food on reproductive fitness and/or dietary-choice behavior of C. elegans were investigated. The reproductive fitness of C. elegans was maximal under oxygen deficiency and not influenced by a high fractional share of carbon dioxide. In media approximating natural soil structure, reproductive fitness was much lower than in standard laboratory media. In seminatural media, the reproductive fitness of C. elegans was low with the standard laboratory food bacterium E. coli (γ-Proteobacteria), but significantly higher with C. arvensicola (Bacteroidetes) and B. tropica (β-Proteobacteria) as food. Dietary-choice experiments in semi-natural media revealed a low preference of C. elegans for E. coli but significantly higher preferences for C. arvensicola and B. tropica (among other bacteria). Dietary-choice experiments under quasi-natural conditions, which were feasible by fluorescence in situ hybridization (FISH) of bacteria, showed a high preference of C. elegans for Cytophaga-Flexibacter-Bacteroides, Firmicutes, and β-Proteobacteria, but a low preference for γ-Proteobacteria. The results show that data on C. elegans under standard laboratory conditions have to be carefully interpreted with respect to their biological significance.

  2. Nanoscale mechanical stimulation method for quantifying C. elegans mechanosensory behavior and memory

    OpenAIRE

    Kiso, Kaori; Sugi, Takuma; Okumura, Etsuko; Igarashi, Ryuji

    2016-01-01

    Here, we establish a novel economic system to quantify C. elegans mechanosensory behavior and memory by a controllable nanoscale mechanical stimulation. Using piezoelectric sheet speaker, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses and memory under the control of each vibration property. This system will facilitate understanding of physiological aspects of C. elegans mechanosensory behavior and memory.

  3. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.

    Directory of Open Access Journals (Sweden)

    Piper R Hunt

    Full Text Available Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

  4. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations

    Directory of Open Access Journals (Sweden)

    Katie Nicoll Baines

    2017-05-01

    Full Text Available Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.

  5. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    Science.gov (United States)

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    Science.gov (United States)

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  7. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Science.gov (United States)

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-02

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.

  8. of Caenorhabditis elegans: Adaptive and developmental regulation

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... cursor for the synthesis of flavin adenine dinucleotide (FAD) ... an excellent animal model for performing integrated in vivo ..... amino acid sequence of C. elegans RFT-2 with human hRFT2 (RFVT3), rat rRFT2 and mice.

  9. Advanced Behavioral Analyses Show that the Presence of Food Causes Subtle Changes in C. elegans Movement

    OpenAIRE

    Angstman, Nicholas B.; Frank, Hans-Georg; Schmitz, Christoph

    2016-01-01

    As a widely used and studied model organism, Caenorhabditis elegans worms offer the ability to investigate implications of behavioral change. Although, investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plate...

  10. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response.

    Science.gov (United States)

    Powell, Jennifer R; Kim, Dennis H; Ausubel, Frederick M

    2009-02-24

    Innate immunity is an ancient defense system used by both vertebrates and invertebrates. Previously characterized innate immune responses in plants and animals are triggered by detection of pathogens using specific receptors, which typically use a leucine-rich repeat (LRR) domain to bind molecular patterns associated with infection. The nematode Caenorhabditis elegans uses defense pathways conserved with vertebrates; however, the mechanism by which C. elegans detects pathogens is unknown. We screened all LRR-containing transmembrane receptors in C. elegans and identified the G protein-coupled receptor FSHR-1 as an important component of the C. elegans immune response to Gram-negative and Gram-positive bacterial pathogens. FSHR-1 acts in the C. elegans intestine, the primary site of exposure to ingested pathogens. FSHR-1 signals in parallel to the known p38 MAPK pathway but converges to regulate the transcriptional induction of an overlapping but nonidentical set of antimicrobial effectors. FSHR-1 may act generally to boost the nematode immune response, or it may function as a pathogen receptor.

  11. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  12. Biophysical and biological meanings of healthspan from C. elegans cohort

    International Nuclear Information System (INIS)

    Suda, Hitoshi

    2014-01-01

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory

  13. Biophysical and biological meanings of healthspan from C. elegans cohort

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hitoshi, E-mail: suda@tsc.u-tokai.ac.jp

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.

  14. Locomotion-learning behavior relationship in Caenorhabditis elegans following γ-ray irradiation

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya; Hamada, Nobuyuki; Suzuki, Michiyo; Kobayashi, Yasuhiko; Ikeda, Daisuke D.; Yanase, Sumino; Ishii, Naoaki

    2008-01-01

    Learning impairment following ionizing radiation (IR) exposure is an important potential risk in manned space missions. We previously reported the modulatory effects of IR on salt chemotaxis learning in Caenorhabditis elegans. However, little is known about the effects of IR on the functional relationship in the nervous system. In the present study, we investigated the effects of γ-ray exposure on the relationship between locomotion and salt chemotaxis learning behavior. We found that effects of pre-learning irradiation on locomotion were significantly correlated with the salt chemotaxis learning performance, whereas locomotion was not directly related to chemotaxis to NaCl. On the other hand, locomotion was positively correlated with salt chemotaxis of animals which were irradiated during learning, and the correlation disappeared with increasing doses. These results suggest an indirect relationship between locomotion and salt chemotaxis learning in C. elegans, and that IR inhibits the innate relationship between locomotion and chemotaxis, which is related to salt chemotaxis learning conditioning of C. elegans. (author)

  15. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.

    Science.gov (United States)

    Honda, Yoko; Honda, Shuji; Narici, Marco; Szewczyk, Nathaniel J

    2014-01-01

    The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.

  16. Analysis of the C. elegans Nucleolus by Immuno-DNA FISH.

    Science.gov (United States)

    Lanctôt, Christian

    2016-01-01

    Caenorhabditis elegans is a well-established model organism which allows, among others, to investigate the link between nucleolar structure/function on the one hand and cell fate choices and cellular differentiation on the other. In addition, C. elegans can be used to study the role of the nucleolus in processes that can be difficult to faithfully reproduce in vitro, such as gametogenesis, disease development, and aging. Here I present two complementary techniques, immunofluorescent staining and DNA fluorescence in situ hybridization, that have been adapted to label nucleolar components at various stages of the life cycle of the worm.

  17. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress...... to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  18. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans.

    Science.gov (United States)

    Yang, Ying-Fei; Lin, Yi-Jun; Liao, Chung-Min

    2017-01-01

    Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK)/toxicodynamic (TD) properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe 0 ) nanoparticles (NPs) are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe 0 NP application contributes to long-term environmental and human health impacts. The nematode Caenorhabditis elegans is a surrogate in vivo model that has been successfully applied to assess the potential nanotoxicity of these nanomaterials. Here we present a TBTK/TD approach to appraise bioaccumulation and nanotoxicity of Fe 0 NPs in C. elegans . Built on a present C. elegans bioassay with estimated TBTK/TD parameters, we found that average bioconcentration factors in C. elegans exposed to waterborne and food-borne Fe 0 NPs were ~50 and ~5×10 -3 , respectively, whereas 10% inhibition concentrations for fertility, locomotion, and development, were 1.26 (95% CI 0.19-5.2), 3.84 (0.38-42), and 6.78 (2.58-21) μg·g -1 , respectively, implicating that fertility is the most sensitive endpoint in C. elegans . Our results also showed that biomagnification effects were not observed in waterborne or food-borne Fe 0 NP-exposed worms. We suggest that the TBTK/TD assessment for predicting NP-induced toxicity at different concentrations and conditions in C. elegans could enable rapid selection of nanomaterials that are more likely to be nontoxic in larger animals. We conclude that the use of the TBTK/TD scheme manipulating C. elegans could be used for rapid evaluation of in vivo toxicity of NPs or for drug screening in the field of nanomedicine.

  19. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    Science.gov (United States)

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  20. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  1. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yang YF

    2017-06-01

    Full Text Available Ying-Fei Yang, Yi-Jun Lin, Chung-Min Liao Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan Abstract: Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK/toxicodynamic (TD properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe0 nanoparticles (NPs are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe0NP application contributes to long-term environmental and human health impacts. The nematode Caenorhabditis elegans is a surrogate in vivo model that has been successfully applied to assess the potential nanotoxicity of these nanomaterials. Here we present a TBTK/TD approach to appraise bioaccumulation and nanotoxicity of Fe0NPs in C. elegans. Built on a present C. elegans bioassay with estimated TBTK/TD parameters, we found that average bioconcentration factors in C. elegans exposed to waterborne and food-borne Fe0NPs were ~50 and ~5×10–3, respectively, whereas 10% inhibition concentrations for fertility, locomotion, and development, were 1.26 (95% CI 0.19–5.2, 3.84 (0.38–42, and 6.78 (2.58–21 µg·g–1, respectively, implicating that fertility is the most sensitive endpoint in C. elegans. Our results also showed that biomagnification effects were not observed in waterborne or food-borne Fe0NP-exposed worms. We suggest that the TBTK/TD assessment for predicting NP-induced toxicity at different concentrations and conditions in C. elegans could enable rapid selection of nanomaterials that are more likely to be nontoxic in larger animals. We conclude that the use of the TBTK/TD scheme manipulating C. elegans could be used for rapid evaluation of in vivo toxicity of NPs or for drug screening in the field of nanomedicine. Keywords: zerovalent iron nanoparticles, Caenorhabditis elegans

  2. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms

    DEFF Research Database (Denmark)

    Srinivasan, Supriya; Sadegh, Leila; Elle, Ida C

    2008-01-01

    We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat...... feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses...

  3. Microfluidic Device to Measure the Speed of C. elegans Using the Resistance Change of the Flexible Electrode

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-03-01

    Full Text Available This work presents a novel method to assess the condition of Caenorhabditis elegans (C. elegans through a resistance measurement of its undulatory locomotion speed inside a micro channel. As the worm moves over the electrode inside the micro channel, the length of the electrode changes, consequently behaving like a strain gauge. In this paper, the electrotaxis was applied for controlling the direction of motion of C. elegans as an external stimulus, resulting in the worm moving towards the cathode of the circuit. To confirm the proposed measurement method, a microfluidic device was developed that employs a sinusoidal channel and a thin polydimethylsiloxane (PDMS layer with an electrode. The PDMS layer maintains a porous structure to enable the flexibility of the electrode. In this study, 6 measurements were performed to obtain the speed of an early adult stage C. elegans, where the measured average speed was 0.35 (±0.05 mm/s. The results of this work demonstrate the application of our method to measure the speed of C. elegans undulatory locomotion. This novel approach can be applied to make such measurements without an imaging system, and more importantly, allows directly to detect the locomotion of C. elegans using an electrical signal (i.e., the change in resistance.

  4. Autophagy in C. elegans development.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2018-04-27

    Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  6. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Russell, Joshua; Vidal-Gadea, Andrés G; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T

    2014-06-03

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm's cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans.

  7. A distance constrained synaptic plasticity model of C. elegans neuronal network

    Science.gov (United States)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  8. Role of DAF-21protein in Caenorhabditis elegans immunity against Proteus mirabilis infection.

    Science.gov (United States)

    JebaMercy, Gnanasekaran; Durai, Sellegounder; Prithika, Udayakumar; Marudhupandiyan, Shanmugam; Dasauni, Pushpanjali; Kundu, Suman; Balamurugan, Krishnaswamy

    2016-08-11

    Caenorhabditis elegans is emerging as one of the handy model for proteome related studies due to its simplest system biology. The present study, deals with changes in protein expression in C. elegans infected with Proteus mirabilis. Proteins were separated using two-dimensional differential gel electrophoresis (2D-DIGE) and identified using MALDI-TOF. Twelve distinctly regulated proteins identified in the infected worms, included heat shock proteins involved stress pathway (HSP-1 and HSP-6), proteins involved in immune response pathway (DAF-21), enzymes involved in normal cellular process (Eukaryotic translation Elongation Factor, actin family member, S-adenosyl homocysteine hydrolase ortholog, glutamate dehydrogenase and Vacuolar H ATPase family member) and few least characterized proteins (H28O16.1 and H08J11.2). The regulation of selected players at the transcriptional level during Proteus mirabilis infection was analyzed using qPCR. Physiological experiments revealed the ability of P. mirabilis to kill daf-21 mutant C. elegans significantly compared with the wild type. This is the first report studying proteome changes in C. elegans and exploring the involvement of MAP Kinase pathway during P. mirabilis infection. This is the first report studying proteome changes in C. elegans during P. mirabilis infection. The present study explores the role and contribution of MAP Kinase pathway and its regulator protein DAF-21 involvement in the immunity against opportunistic pathogen P. mirabilis infection. Manipulation of this DAF-21 protein in host, may pave the way for new drug development or disease control strategy during opportunistic pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  10. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

    Directory of Open Access Journals (Sweden)

    Yook Karen

    2011-01-01

    Full Text Available Abstract Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO. The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and

  11. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Landt Larsen, Ane; Færgeman, Nils J.

    2010-01-01

    The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method....... Bleach-rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut-granule-loss (glo) mutants with reduced...... homologues of Niemann-Pick C disease proteins. Our approach is generally useful for identifying fluorescent probes in the presence of high cellular autofluorescence....

  12. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Wharam, Barney; Weldon, Laura; Viney, Mark

    2017-08-22

    Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.

  13. Control of neuropeptide expression by parallel activity-dependent pathways in caenorhabditis elegans

    DEFF Research Database (Denmark)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. Elegans, CO 2 sensing...... is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO 2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. Elegans to avoid high CO 2. Here we show that c...... that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability...

  14. Caenorhabditis elegans reveals novel Pseudomonas aeruginosa virulence mechanism

    NARCIS (Netherlands)

    Utari, Putri Dwi; Quax, Wim J.

    The susceptibility of Caenorhabditis elegans to different virulent phenotypes of Pseudomonas aeruginosa makes the worms an excellent model for studying host-pathogen interactions. Including the recently described liquid killing, five different killing assays are now available offering superb

  15. Essential oil alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Yu, Chan-Wei; Li, Wen-Hsuan; Hsu, Fu-Lan; Yen, Pei-Ling; Chang, Shang-Tzen; Liao, Vivian Hsiu-Chuan

    2014-07-02

    Cinnamomum osmophloeum Kaneh. is an indigenous tree species in Taiwan. The present study investigates phytochemical characteristics, antioxidant activities, and longevity of the essential oils from the leaves of the mixed-type C. osmophloeum tree. We demonstrate that the essential oils from leaves of mixed-type C. osmophloeum exerted in vivo antioxidant activities on Caenorhabditis elegans. In addition, minor (alloaromadendrene, 5.0%) but not major chemical components from the leaves of mixed-type C. osmophloeum have a key role against juglone-induced oxidative stress in C. elegans. Additionally, alloaromadendrene not only acts protective against oxidative stress but also prolongs the lifespan of C. elegans. Moreover, mechanistic studies show that DAF-16 is required for alloaromadendrene-mediated oxidative stress resistance and longevity in C. elegans. The results in the present study indicate that the leaves of mixed-type C. osmophloeum and essential oil alloaromadendrene have the potential for use as a source for antioxidants or treatments to delay aging.

  16. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress

    Directory of Open Access Journals (Sweden)

    Wu Yonghong

    2010-09-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is both sensitive and tolerant to hypoxic stress, particularly when the evolutionarily conserved hypoxia response pathway HIF-1/EGL-9/VHL is involved. Hypoxia-induced changes in the expression of a number of genes have been analyzed using whole genome microarrays in C. elegans, but the changes at the protein level in response to hypoxic stress still remain unclear. Results Here, we utilized a quantitative proteomic approach to evaluate changes in the expression patterns of proteins during the early response to hypoxia in C. elegans. Two-dimensional difference gel electrophoresis (2D-DIGE was used to compare the proteomic maps of wild type C. elegans strain N2 under a 4-h hypoxia treatment (0.2% oxygen and under normoxia (control. A subsequent analysis by MALDI-TOF-TOF-MS revealed nineteen protein spots that were differentially expressed. Nine of the protein spots were significantly upregulated, and ten were downregulated upon hypoxic stress. Three of the upregulated proteins were involved in cytoskeletal function (LEV-11, MLC-1, ACT-4, while another three upregulated (ATP-2, ATP-5, VHA-8 were ATP synthases functionally related to energy metabolism. Four ribosomal proteins (RPL-7, RPL-8, RPL-21, RPS-8 were downregulated, indicating a decrease in the level of protein translation upon hypoxic stress. The overexpression of tropomyosin (LEV-11 was further validated by Western blot. In addition, the mutant strain of lev-11(x12 also showed a hypoxia-sensitive phenotype in subsequent analyses, confirming the proteomic findings. Conclusions Taken together, our data suggest that altered protein expression, structural protein remodeling, and the reduction of translation might play important roles in the early response to oxygen deprivation in C. elegans, and this information will help broaden our knowledge on the mechanism of hypoxia response.

  17. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  18. Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2.

    Science.gov (United States)

    Massey, Holman C; Ranjit, Najju; Stoltzfus, Jonathan D; Lok, James B

    2013-06-01

    We hypothesise that developmental arrest in infectious larvae of parasitic nematodes is regulated by signalling pathways homologous to Caenorhabditis elegans DAF (dauer formation) pathways. Alignment of Strongyloides stercoralis (Ss) DAF-2 with DAF-2 of C. elegans and homologs of other species shows that most structural motifs in these insulin-like receptors are conserved. However, the catalytic domain of Ss-DAF-2 contains two substitutions (Q1242 and Q1256), that would result in constitutive dauer formation in C. elegans or diabetes in vertebrate animals. Ss-daf-2 also shows two alternately spliced isoforms, the constitutively expressed Ss-daf-2a, and Ss-daf-2b, which is only expressed in stages leading to parasitism. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  19. Resveratrol effects on life span and fertility of caenorhabditis elegans subject to 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    Ye Kai; Ji Chenbo; Guo Xirong; Gu Guixiong

    2011-01-01

    Caennorhabditis elegans was used as experimental model to investigate radiation effect of resveratrol on caenorhabditis elegans irradiated by 60 Co γ ray. Treatment with resveratrol can increase average life span and spawning rate, improve the survival rate of eggs, and protect their mitochondrion function of caenorhabditis elegans exposure to 60 Co γ ray. The results indicate that resveratrol has radiation protection effects, which might be related to its action on ROS decrease and mitochondrial defend. (authors)

  20. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  1. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    Science.gov (United States)

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  2. X-ray inactivation of Caenorhabditis elegans embryos or larvae

    Energy Technology Data Exchange (ETDEWEB)

    Ishi, N; Suzuki, K [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    1990-11-01

    The lethal effects of X-irradiation were examined in staged populations of Caenorhabditis elegans embryos or larvae. Radiation resistance decreased slightly throughout the first, proliferative phase of embryogenesis. This might be due to the increase in target size, since most cells in C. elegans are autonomously determined. Animals irradiated in the second half of embryogenesis were about 40-fold more resistant to the lethal effects of X-rays. This is probably due to the absence of cell divisions during this time. The radiation resistance increased still more with advancing larval stages. A radiation hypersensitive mutant, rad-1, irradiated in the first half of embryogenesis, is about 30-fold more sensitive than wild-type, but in the second half it is the same as wild-type. (author).

  3. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.; Snyder, Daniel W.; Freedman, Jonathan H.

    2010-01-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC 50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  4. Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Thioredoxin reductase-1 (TRXR-1 is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se were identical to selenite, but selenate was 1/4(th as toxic (LC50 0.95 mM Se as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.

  5. Caenorhabditis elegans as a model to study renal development and disease: sexy cilia.

    Science.gov (United States)

    Barr, Maureen M

    2005-02-01

    The nematode Caenorhabditis elegans has no kidney per se, yet "the worm" has proved to be an excellent model to study renal-related issues, including tubulogenesis of the excretory canal, membrane transport and ion channel function, and human genetic diseases including autosomal dominant polycystic kidney disease (ADPKD). The goal of this review is to explain how C. elegans has provided insight into cilia development, cilia function, and human cystic kidney diseases.

  6. A contribution to the pollination ecology of Tabebuia pulcherrima (Bignoniaceae in a sandbank area of the south of Santa Catarina State, Brazil

    Directory of Open Access Journals (Sweden)

    Afonso Inácio Orth

    2004-11-01

    Full Text Available Studies on pollination mechanisms in Bignoniaceae have show some evidence of co-evolution with its pollen vectors. Floral biology and flower visitors of Tabebuia pulcherrima were investigated in a sandbank area. Flower phenology, the nectar production, pollen/ovule ratio, and identification of the flower visitors, as well as their behavior, were studied. Tabebuia pulcherrima displays typical melitophilous flowers, due to its morphology, diurnal anthesis and day-long nectar secretion. In the morning, the nectar volume is smaller, which is associated with a higher frequency of visitors. The pollen/ovule ratio indicates facultative xenogamy. We collected 88 insects on the flowers, 52% of which were bees; the rest were wasps, flies, ants end beetles. The most abundant species were Niltonia virgilii (42%, Bombus morio (20% and Xylocopa brasilianorum (18%. According to their frequency, abundance and visiting behavior, Bombus morio and Niltonia virgilii were considered to be the potencial pollinators of T. pulcherrima and Epicharis dejeanii, a secondary pollinator. The carpenter bee Xylocopa brasilianorum is a nectar robber of T. pulcherrima. The flowers of T. pulcherrima are an important food source for the entomofauna of the restinga, offering nectar and pollen as floral rewards.

  7. Untwisting the Caenorhabditis elegans embryo

    OpenAIRE

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Col?n-Ramos, Daniel A

    2015-01-01

    eLife digest Understanding how the brain and nervous system develops from a few cells into complex, interconnected networks is a key goal for neuroscientists. Although researchers have identified many of the genes involved in this process, how these work together to form an entire brain remains unknown. A simple worm called Caenorhabiditis elegans is commonly used to study brain development because it has only about 300 neurons, simplifying the study of its nervous system. The worms are easy ...

  8. Precision Electrophile Tagging in Caenorhabditis elegans.

    Science.gov (United States)

    Long, Marcus J C; Urul, Daniel A; Chawla, Shivansh; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Wang, Yiran; Aye, Yimon

    2018-01-16

    Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile-sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile-sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation.

  9. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan; Wang, Hao; Qian, Peiyuan

    2012-01-01

    multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid

  10. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    Science.gov (United States)

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  11. Characterization of the interaction between the human pathogen Listeria monocytogenes and the model host C. elegans

    DEFF Research Database (Denmark)

    Simonsen, Karina T.; Nielsen, Jesper S.; Hansen, Annie A.

    In nature, C. elegans lives in the soil and feeds on bacteria. This constant contact with soil-borne microbes suggests that nematodes must have evolved protective responses against pathogens which makes the worm an attractive host-pathogen model for exploring their innate immune response....... In addition, C. elegans is a promising model for the identification of novel virulence factors in various pathogens. A large number of human, animal, plant and insect pathogens have been shown to kill the worm, when C. elegans was allowed to feed on pathogens in stead of its normal laboratory diet [1......]. However, the mechanisms that lead to the shortened life span of the worm have been shown to be very different depending on the nature of the pathogen. Examples include Yersinia pestis, which forms a biofilm layer on the cuticle of C. elegans thus inhibiting feeding [2], enteropathogenic Escherichia coli...

  12. The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis

    DEFF Research Database (Denmark)

    Svensson, Emma; Olsen, Louise Cathrine Braun; Mörck, Catarina

    2011-01-01

    in the nematode C. elegans, named paqr-1, paqr-2 and paqr-3. These are differently expressed in the intestine (the main fat-storing tissue), hypodermis, muscles, neurons and secretory tissues, from which they could exert systemic effects. Analysis of mutants revealed that paqr-1 and -2 are novel metabolic...... regulators in C. elegans and that they act redundantly but independently from paqr-3. paqr-2 is the most important of the three paqr genes: mutants grow poorly, fail to adapt to growth at low temperature, and have a very high fat content with an abnormal enrichment in long (C20) poly-unsaturated fatty acids...... when combined with the paqr-1 mutation. paqr-2 mutants are also synthetic lethal with mutations in nhr-49, sbp-1 and fat-6, which are C. elegans homologs of nuclear hormone receptors, SREBP and FAT-6 (a Δ9 desaturase), respectively. Like paqr-2, paqr-1 is also synthetic lethal with sbp-1. Mutations...

  13. Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms

    Directory of Open Access Journals (Sweden)

    Ebany J. Martinez-Finley

    2011-01-01

    Full Text Available Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans, contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.

  14. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans.

    Science.gov (United States)

    Su, Shan; Wink, Michael

    2015-09-01

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites, which have a wide range of bioactivities. Yet, their antiaging potential has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The antioxidant and antiaging properties of the isolated lignans were studied using Caenorhabditis elegans as a relevant animal model. All lignans at concentrations of 10 and 100 μM significantly extended the mean life span of C. elegans. The strongest effect was observed with matairesinol, which at a concentration of 100 μM extended the life span of worms by 25%. Additionally, we observed that five lignans are strong free radical-scavengers in vitro and in vivo and all lignans can improve survival of C. elegans under oxidative stress. Furthermore, the lignans can induce the nuclear translocation of the transcription factor DAF-16 and up-regulate its expression, suggesting that a possible underlying mechanism of the observed longevity-promoting activity of lignans depends on DAF-16 mediated signaling pathway. All lignans up-regulated the expression of jnk-1, indicating that lignans may promote the C. elegans longevity and stress resistance through a JNK-1-DAF-16 cascade. Our study reports new antiaging activities of lignans, which might be candidates for developing antiaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies

    Directory of Open Access Journals (Sweden)

    David A. Bulger

    2017-01-01

    Full Text Available Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2. CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways.

  16. Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Myriam Passannante

    Full Text Available Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes.

  17. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  18. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  19. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...

  20. A microfluidic device with multi-valves system to enable several simultaneous exposure tests on Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Masaru, Takeuchi; Nakajima, Masahiro; Huang, Qiang; Fukuda, Toshio

    2014-01-01

    In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans. (paper)

  1. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  2. Gengnianchun Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1 Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Fanhui Meng

    2018-01-01

    Full Text Available Gengnianchun (GNC, a traditional Chinese medicine (TCM, is believed to have beneficial effects on ageing-related diseases, such as antioxidant properties and effects against Aβ-induced toxicity. We previously found that GNC extended the lifespan of Caenorhabditis elegans. However, the mechanism underlying this effect was unclear. In this study, we further explored the mechanisms of GNC using a C. elegans model. GNC significantly increased the lifespan of C. elegans and enhanced oxidative and thermal stress resistance. Moreover, chemotaxis increased after GNC treatment. RNA-seq analysis showed that GNC regulated genes associated with longevity. We also conducted lifespan assays with a series of worm mutants. The results showed that GNC significantly extended the lifespan of several mutant strains, including eat-2 (ad465, rsks-1 (ok1255, and glp-1 (e2144, suggesting that the prolongevity effect of GNC is independent of the function of these genes. However, GNC failed to extend the lifespan of daf-2 (e1370, age-1 (hx546, and daf-16 (mu86 mutant strains. Our findings suggest that GNC extends the lifespan of C. elegans via the insulin/IGF-1 signalling pathway and may be a potential antiageing agent.

  3. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics

    Science.gov (United States)

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-01-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies.

  4. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Science.gov (United States)

    Law, Wenjing; Wuescher, Leah M; Ortega, Amanda; Hapiak, Vera M; Komuniecki, Patricia R; Komuniecki, Richard

    2015-04-01

    Monoamines, such as 5-HT and tyramine (TA), paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for the identification

  5. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Directory of Open Access Journals (Sweden)

    Wenjing Law

    2015-04-01

    Full Text Available Monoamines, such as 5-HT and tyramine (TA, paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for

  6. Simulation of C. elegans thermotactic behavior in a linear thermal gradient using a simple phenomenological motility model.

    Science.gov (United States)

    Matsuoka, Tomohiro; Gomi, Sohei; Shingai, Ryuzo

    2008-01-21

    The nematode Caenorhabditis elegans has been reported to exhibit thermotaxis, a sophisticated behavioral response to temperature. However, there appears to be some inconsistency among previous reports. The results of population-level thermotaxis investigations suggest that C. elegans can navigate to the region of its cultivation temperature from nearby regions of higher or lower temperature. However, individual C. elegans nematodes appear to show only cryophilic tendencies above their cultivation temperature. A Monte-Carlo style simulation using a simple individual model of C. elegans provides insight into clarifying apparent inconsistencies among previous findings. The simulation using the thermotaxis model that includes the cryophilic tendencies, isothermal tracking and thermal adaptation was conducted. As a result of the random walk property of locomotion of C. elegans, only cryophilic tendencies above the cultivation temperature result in population-level thermophilic tendencies. Isothermal tracking, a period of active pursuit of an isotherm around regions of temperature near prior cultivation temperature, can strengthen the tendencies of these worms to gather around near-cultivation-temperature regions. A statistical index, the thermotaxis (TTX) L-skewness, was introduced and was useful in analyzing the population-level thermotaxis of model worms.

  7. Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2007-01-01

    textabstractThe life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals.

  8. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    Science.gov (United States)

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  9. The RNAi Inheritance Machinery of Caenorhabditis elegans.

    Science.gov (United States)

    Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott

    2017-07-01

    Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.

  10. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response

    DEFF Research Database (Denmark)

    Jakobsen, Henrik; Bojer, Martin Saxtorph; Marinus, Martin G.

    2013-01-01

    pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity....... Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.......The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin...

  11. Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2009-09-01

    Full Text Available The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF and extinction (EXT of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT and log(TOF growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF and log(EXT, growth rates, and time to reach change points showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent

  12. An Investigation of the Potential Antifungal Properties of CNC-2 in Caenorhabditis elegans.

    Science.gov (United States)

    Zehrbach, Angelina M D; Rogers, Alexandra R; Tarr, D Ellen K

    2017-12-01

    Caenorhabditis elegans responds to infections by upregulating specific antimicrobial peptides. The caenacin-2 ( cnc-2 ) gene is consistently upregulated in C. elegans by infection with the filamentous fungus Drechmeria coniospora , but there have been no direct studies of the CNC-2 peptide's in vivo or in vitro role in defending the nematode against this pathogen. We compared infection of wild-type and cnc-2 knockout nematode strains with four potential pathogens: D. coniospora , Candida albicans , Staphylococcus aureus , and Bacillus subtilis . There was no significant difference in survival between strains for any of the pathogens or on the maintenance strain of Escherichia coli . While we were unable to demonstrate definitively that CNC-2 is integral to fungal defenses in C. elegans , we identified possible explanations for these results as well as future work that is needed to investigate CNC-2's potential as a new antifungal treatment.

  13. Shigella flexneri infection in Caenorhabditis elegans: cytopathological examination and identification of host responses.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.

  14. C. elegans model of neuronal aging

    OpenAIRE

    Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min; Pan, Chun-Liang

    2011-01-01

    Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and...

  15. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies.

    Science.gov (United States)

    Bulger, David A; Fukushige, Tetsunari; Yun, Sijung; Semple, Robert K; Hanover, John A; Krause, Michael W

    2017-01-05

    Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP) and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2 CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways. Copyright © 2017 Bulger et al.

  16. Lack of the RNA chaperone Hfq attenuates pathogenicity of several Escherichia coli pathotypes towards Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Jakobsen, Henrik; Struve, Carsten

    2012-01-01

    as a model for virulence characterization and screening for novel antimicrobial entities. Several E. coli human pathotypes are also pathogenic towards C. elegans, and we show here that lack of the RNA chaperone Hfq significantly reduces pathogenicity of VTEC, EAEC, and UPEC in the nematode model. Thus, Hfq...... is intrinsically essential to pathogenic E. coli for survival and virulence exerted in the C. elegans host.......Escherichia coli is an important agent of Gram-negative bacterial infections worldwide, being one of the leading causes of diarrhoea and urinary tract infections. Strategies to understand pathogenesis and develop therapeutic compounds include the use of the nematode Caenorhabditis elegans...

  17. IMPACT OF FOOD AND FOLATE SUPPLEMENTATION DURING Salmonella TYPHI INFECTION IN Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Bhagavathi Sundaram Sivamaruthi

    2012-06-01

    Full Text Available Caenorhabditis elegans is an instructive and suitable model for studying pathogenesis of almost all human pathogens. Salmonella Typhi is gram-negative facultative intracellular anaerobe that causes several pathetic infections. Necessary enriched nutrient ingestion during pathological conditions may reduce the harshness of the infection. We investigated the impact of folate and food supplementation during S. Typhi infection on the model system, C. elegans. Our data indicated that folate supplementation (10 µg increases the lifespan of S. Typhi infected C. elegans up to 20%. In combination with laboratory food source E. coli OP50, folate increases the infected the worm’s lifespan to 40%. The wild type C. elegans infected by S. Typhi died with the LT50 of 60 ± 12 h. The LT50 of S. Typhi infected folt-1 mutant strain VC959 was 96 ± 6 h. However, the folate supplemented mutant worms exhibited an extended life with LT50 of 120 ± 6 h. The short time exposure and pharyngeal pumping studies confirmed that folt-1 mutant worm exhibited increased survival rate during pathogenic course at significant level when compared to wild-type. Our data revealed that folt-1 plays a significant role in host defense system against S. Typhi infection and the folate supplementation in combination with food increases the host survival during S. Typhi infection.

  18. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  19. Characterization of Two C. Elegans Homologuses of Oncogenic Inhibitor of Apoptosis Proteins (IAPs) and Identification of Interacting Genes

    National Research Council Canada - National Science Library

    Fraser, Andrew

    2000-01-01

    .... I have previously identified two BIR-containing Proteins (BIRPs) in the nematode worm C. elegans. One of these, BIR-l, appears to play no role in the regulation of programmed cell death in C. elegans...

  20. Postzygotic incompatibilities between the pupfishes, Cyprinodon elegans and Cyprinodon variegatus: hybrid male sterility and sex ratio bias.

    Science.gov (United States)

    Tech, C

    2006-11-01

    I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.

  1. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan

    2012-08-01

    The polychaete . Hydroides elegans (Serpulidae, Lophotrochozoa) is a problematic marine fouling organism in most tropical and subtropical coastal environment. Competent larvae of . H. elegans undergo the transition from the swimming larval stage to the sessile juvenile stage with substantial morphological, physiological, and behavior changes. This transition is often referred to as larval settlement and metamorphosis. In this study, we examined the possible involvement of calmodulin (CaM) - a multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid residues. It was highly expressed in 12. h post-metamorphic juveniles, and remained high in adults. . In situ hybridization conducted in competent larvae and juveniles revealed that . He-CaM gene was continuously expressed in the putative growth zones, branchial rudiments, and collar region, suggesting that . He-CaM might be involved in tissue differentiation and development. Our subsequent bioassay revealed that the CaM inhibitor W7 could effectively inhibit larval settlement and metamorphosis, and cause some morphological defects of unsettled larvae. In conclusion, our results revealed that CaM has important functions in the larval settlement and metamorphosis of . H. elegans. © 2012 Elsevier Inc..

  2. Developmental stage- and DNA damage-specific functions of C. elegans FANCD2

    International Nuclear Information System (INIS)

    Lee, Kyong Yun; Yang, Insil; Park, Jung-Eun; Baek, Ok-Ryun; Chung, Kee Yang; Koo, Hyeon-Sook

    2007-01-01

    In this study, we set out to investigate the role of Fanconi anemia complementation group D2 protein (FANCD2) in developmental stage-specific DNA damage responses in Caenorhabditis elegans. A mutant C. elegans strain containing a deletion in the gene encoding the FANCD2 homolog, FCD-2, exhibited egg-laying defects, precocious oogenesis, and partial defects in fertilization. The mutant strain also had a lower hatching rate than the wild-type after γ-irradiation of embryos, but not after the irradiation of pachytene stage germ cells. This mutation sensitized pachytene stage germ cells to the genotoxic effects of photoactivated psoralen, as seen by a greatly reduced hatching rate and increased chromosomal aberrations. This mutation also enhanced physiological M-phase arrest and apoptosis. Taken together, our data reveal that the C. elegans FANCD2 homolog participates in the repair of spontaneous DNA damage and DNA crosslinks, not only in proliferating cells but also in pachytene stage cells, and it may have an additional role in double-stranded DNA break repair during embryogenesis

  3. Turing mechanism for homeostatic control of synaptic density during C. elegans growth

    Science.gov (United States)

    Brooks, Heather A.; Bressloff, Paul C.

    2017-07-01

    We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans is an important animal model for understanding cellular mechanisms underlying learning and memory. Our mathematical model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors, which switch between forward and backward moving states (bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the insertion of new concentration peaks as the length increases. Taking the passive component to be the protein kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites can be maintained.

  4. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence

    Directory of Open Access Journals (Sweden)

    Shawn Lewenza

    2014-08-01

    Full Text Available Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. The standard virulence assays rely on the slow and fast killing or paralysis of nematodes but here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. We monitored the food preferences of nematodes fed the wild type PAO1 and mutants in the type III secretion (T3S system, which is a conserved mechanism to inject secreted effectors into the host cell cytosol. A ΔexsEΔpscD mutant defective for type III secretion served as a preferred food source, while an ΔexsE mutant that overexpresses the T3S effectors was avoided. Both food sources were ingested and observed in the gastrointestinal tract. Using the slow killing assay, we showed that the ΔexsEΔpscD had reduced virulence and thus confirmed that preferred food sources are less virulent than the wild type. Next we developed a high throughput feeding behaviour assay with 48 possible food colonies in order to screen a transposon mutant library and identify potential virulence genes. C. elegans identified and consumed preferred food colonies from a grid of 48 choices. The mutants identified as preferred food sources included known virulence genes, as well as novel genes not identified in previous C. elegans infection studies. Slow killing assays were performed and confirmed that several preferred food sources also showed reduced virulence. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for P. aeruginosa PAO1.

  5. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress.

    Science.gov (United States)

    Kılıçgün, Hasan; Göksen, Gülden

    2012-10-01

    The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals' life span or not. To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises.

  6. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death.

    Science.gov (United States)

    Kirienko, Natalia V; Kirienko, Daniel R; Larkins-Ford, Jonah; Wählby, Carolina; Ruvkun, Gary; Ausubel, Frederick M

    2013-04-17

    The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109 Remoção de metais pesados por quitina e quitosana isoladas de Cunninghamella elegans (IFM 46109

    Directory of Open Access Journals (Sweden)

    Luciana de Oliveira Franco

    2004-09-01

    Full Text Available Chitin and chitosan were extracted from mycelial biomass of Cunninghamella elegans and the performance for copper, lead and iron biosorption in aqueous solution was evaluated. The growth curve of C. elegans was accomplished by determination of biomass, pH, glucose and nitrogen consumption. Chitin and chitosan were extracted by alkali-acid treatment and the yields were 23.8 and 7.8%, respectively. For the adsorption analysis, the process of heavy uptake metal sorption was evaluated using polysaccharides solutions (1% w/v. The rate of metallic biosorption was dependent upon the concentration and pH of metal solutions, and the best results were observed with pH 4.0. Chitosan showed the highest affinity for copper and chitin for iron adsorption. The results suggest that C. elegans (IFM 46109 is an attractive source of production of chitin and chitosan, with a great potential of heavy metals bioremediation in polluted environments.Quitina e quitosana foram extraídas a partir da massa micelial de Cunninghamella elegans (IFM 46109 e avaliou-se a aplicação destes polissacarídeos na remoção dos metais pesados cobre, chumbo e ferro preparados em solução aquosa. O crescimento de C. elegans foi acompanhado através da determinação de biomassa, pH, consumo de glicose e de nitrogênio. A extração de quitina e quitosana realizou-se através de tratamento álcali-ácido e a produção dos polissacarídeos foi de 23,8 e 7,8 %, respectivamente. A avaliação do processo de remoção dos metais pesados foi realizada utilizando-se os polissacarídeos em solução a 1% (p/v. Os níveis de biossorção de metais foram dependentes da concentração e do pH das soluções. Os melhores resultados foram obtidos em pH 4,0. A quitosana mostrou maior índice de biossorção para o íon cobre e a quitina para o ferro. Os resultados sugerem que C.elegans pode ser considerada uma fonte atrativa para a produção alternativa de quitina e quitosana, e que demonstra

  8. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics

    Science.gov (United States)

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-05-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. [Figure not available: see fulltext.

  9. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.

    Science.gov (United States)

    Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica

    2012-06-27

    Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.

  10. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds

    OpenAIRE

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Coleman, Jeffrey J.; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2017-01-01

    Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F...

  11. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases

    Directory of Open Access Journals (Sweden)

    Carmen I. Nussbaum-Krammer

    2014-01-01

    Full Text Available Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.

  12. Gelsemium elegans Poisoning: A Case with 8 Months of Follow-up and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2017-05-01

    Full Text Available BackgroundGelsemium elegans (G. elegans is a toxic plant indigenous to Southeast Asia. It is highly poisonous due to its strong respiratory depressive effect. However, G. elegans poisoning cases have not been summarized comprehensively and are rarely reported in English journals. Furthermore, none of the present reports present prognosis in detail.Case presentationA 26-year-old female was found comatose at home and brought to the hospital with deep coma, hypoxia, and acidosis. After mechanical ventilation for hours, the patient recovered from coma with sequelae of impaired short-term memory, disorientation, and childish behaviors. Brain magnetic resonance imaging (MRI showed bilateral hippocampus and basal ganglia damage due to hypoxia. During 8 months of follow-up, both her symptoms and brain MRI scan improved significantly.ConclusionG. elegans is highly toxic. Although patients may die within 30 min due to its strong respiratory depressive effect, they can survive with timely respiratory support and enjoy gradual improvement without delayed postanoxic encephalopathy.

  13. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    , little is known of its importance in the control of axon guidance. In a screen of prolyl 4-hydroxylase (P4H) mutants, we found that genetic removal of a specific P4H subunit, DPY-18, causes dramatic defects in C. elegans neuroanatomy. In dpy-18 mutant animals, the axons of specific ventral nerve cord......Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  14. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  15. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep.

    Science.gov (United States)

    Huang, Huiyan; Zhu, Yong; Eliot, Melissa N; Knopik, Valerie S; McGeary, John E; Carskadon, Mary A; Hart, Anne C

    2017-06-01

    We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Investigating the biological impacts of nanoengineered materials in Caenorhabditis elegans and in vitro

    Science.gov (United States)

    Contreras, Elizabeth Quevedo

    In nematode Caenorhabditis elegans, the chronic and multi-generational toxicological effects of commercially relevant engineered nanoparticles (ENPs), such as quantum dots (QDs) and silver (AgNP) caused significant changes in a number of physiological endpoints. The increased water-solubility of ENPs in commercial products, for example, makes them increasingly bioavailable to terrestrial organisms exposed to pollution and waste in the soil. Since 2008, attention to the toxicology of nanomaterials in C. elegans continues to grow. Quantitative data on multiple physiological endpoints paired with metal analysis show the uptake of QDs and AgNPs, and their effects on nematode fitness. First, C. elegans were exposed for four generations through feeding to amphiphilic polymer coated CdSe/ZnS (core-shell QDs), CdSe (core QDs), and different sizes of AgNPs. These ENPs were readily ingested. QDs were qualitatively imaged in the digestive tract using a fluorescence microscopy and their and AgNP uptake quantitatively measured using ICP-MS. Each generation was analyzed for changes in lifespan, reproduction, growth and motility using an automated computer vision system. Core-shell QDs had little impact on C. elegans due to its metal shell coating. In contrast, core QDs lacked a metal shell coating, which caused significant changes to nematode physiology. iii In the same way, at high concentrations of 100 ppm, AgNP caused the most adverse effect to lifespan and reproduction related to particle size, but its adverse effect to motility had no correlation to particle size. Using C. elegans as an animal model allowed for a better understanding of the negative impacts of ENPs than with cytotoxicity tests. Lastly, to test the toxicity of water-dispersed fullerene (nanoC60) using human dermal fibroblast cells, this thesis investigated a suite of assays and methods in order to establish a standard set of cytotoxicity tests. Ten assays and methods assessed nanoC60 samples of different

  17. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    Science.gov (United States)

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  18. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Dennis H; Ausubel, Frederick M

    2005-02-01

    Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.

  19. Advanced Behavioral Analyses Show that the Presence of Food Causes Subtle Changes in C. elegans Movement.

    Science.gov (United States)

    Angstman, Nicholas B; Frank, Hans-Georg; Schmitz, Christoph

    2016-01-01

    As a widely used and studied model organism, Caenorhabditis elegans worms offer the ability to investigate implications of behavioral change. Although, investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plates with an E. coli lawn or with no lawn. Using an advanced software, WormLab, the full skeleton and outline of worms were tracked to determine whether the presence of food affects behavioral traits. In all seven investigated parameters, statistically significant differences were found in worm behavior between those moving on NGM-agar plates with an E. coli lawn and NGM-agar plates with no lawn. Furthermore, multiple test groups showed differences in interaction between variables as the parameters that significantly correlated statistically with speed of locomotion varied. In the present study, we demonstrate the validity of a model to analyze C. elegans behavior beyond simple speed of locomotion. The need to account for a nested design while performing statistical analyses in similar studies is also demonstrated. With extended analyses, C. elegans behavioral change can be investigated with greater sensitivity, which could have wide utility in fields such as, but not limited to, toxicology, drug discovery, and RNAi screening.

  20. Advanced behavioral analyses show that the presence of food causes subtle changes in C. elegans movement

    Directory of Open Access Journals (Sweden)

    Nicholas eAngstman

    2016-03-01

    Full Text Available As a widely used and studied model organism, C. elegans worms offer the ability to investigate implications of behavioral change. Although investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plates with an E. coli lawn or with no lawn. Using an advanced software, WormLab, the full skeleton and outline of worms were tracked to determine whether the presence of food affects behavioral traits. In all seven investigated parameters, statistically significant differences were found in worm behavior between those moving on NGM-agar plates with an E. coli lawn and NGM-agar plates with no lawn. Furthermore, multiple test groups showed differences in interaction between variables as the parameters that significantly correlated statistically with speed of locomotion varied. In the present study, we demonstrate the validity of a model to analyze C. elegans behavior beyond simple speed of locomotion. The need to account for a nested design while performing statistical analyses in similar studies is also demonstrated. With extended analyses, C. elegans behavioral change can be investigated with greater sensitivity, which could have wide utility in fields such as, but not limited to, toxicology, drug discovery, and RNAi screening.

  1. Energetics, thermoregulation and torpor in the Chilean mouse-opossum Thylamys elegans (Didelphidae Energética, termorregulación y sopor en la yaca Thylamys elegans (Didelphidae

    Directory of Open Access Journals (Sweden)

    Francisco Bozinovic

    2005-06-01

    Full Text Available In this paper we studied the energetic expenditure and thermoregulation of the Chilean mouse-opossum Thylamys elegans (Dielphidae a nocturnal small marsupial, endemic of southern South America. We studied their standard energetic and determined whether they exhibit shallow daily torpor or deep prolonged torpor as a function of ambient temperature and food availability. Thylamys elegans partially supports the hypothesis that Neotropical marsupials have somewhat a higher basal metabolic rate (BMR and thermal conductance (Cm than Australian ones. In fact, BMR was higher but Cm was lower than expected for their body mass. The higher mass-independent BMR of the Chilean mouse-opossum may be explained by its insectivorous food habits and its low Cm by its temperate habitats. Euthermic Chilean mouse-opossum showed daily fluctuations in body temperature being significantly higher during night time. In addition T. elegans entered in daily torpor and aroused spontaneously only was food was absent. That is, this species display a facultative type of daily torpor because propensity to enter in torpor was dependent of the combination of food absence and low ambient temperature. No torpor was observed when food was available. During torpor ambient temperature was slightly above ambient temperature between 0.3 to 0.5 °C. Torpor in this species as well as in marsupials in general, appears to be a flexible and an opportunistic response to unpredictable environmental conditionsEstudiamos la energética y termorregulación de Thylamys elegans o "yaca" (Dielphidae un marsupial pequeño y endémico de Sudamérica. Estudiamos su energética estándar y determinamos si presentan estados de sopor superficial o profundo en función de la temperatura ambiente y la disponibilidad de alimento. Thylamys elegans apoya de manera parcial la hipótesis que sostiene que los marsupiales Neotropicales poseen tasas metabólicas basales (BMR y conductancias térmicas (Cm mas altas

  2. Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Neale Harrison

    Full Text Available N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368, but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.

  3. High-throughput screening for novel anti-infectives using a C. elegans pathogenesis model.

    Science.gov (United States)

    Conery, Annie L; Larkins-Ford, Jonah; Ausubel, Frederick M; Kirienko, Natalia V

    2014-03-14

    In recent history, the nematode Caenorhabditis elegans has provided a compelling platform for the discovery of novel antimicrobial drugs. In this protocol, we present an automated, high-throughput C. elegans pathogenesis assay, which can be used to screen for anti-infective compounds that prevent nematodes from dying due to Pseudomonas aeruginosa. New antibiotics identified from such screens would be promising candidates for treatment of human infections, and also can be used as probe compounds to identify novel targets in microbial pathogenesis or host immunity. Copyright © 2014 John Wiley & Sons, Inc.

  4. Inhibition of HMG-CoA reductase induces the UPR pathway in C. elegans

    DEFF Research Database (Denmark)

    Elmelund-Præstekær, Louise Cathrine Braun; Hansen, Nadia Jin Storm; Pilon, Marc

    -requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF-6). Using a transgenic GFP reporter strain of the model organism C. elegans, we have recently identified that inhibition of the enzyme HMG-CoA reductase (HMG-CoAR) with Fluvastatin and knock down of HMG-CoAR using RNA interference (RNAi) both...... including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) which are necessary for posttranslational prenylation of several small G proteins. C. elegans are cholesterol auxotrophs, which enable us to investigate the isoprenoid branch and its role in UPR induction. We found...

  5. A Multiparameter Network Reveals Extensive Divergence between C. elegans bHLH Transcription Factors

    DEFF Research Database (Denmark)

    Grove, C.; De Masi, Federico; Newburger, Daniel

    2009-01-01

    parameters remain undetermined. We comprehensively identify dimerization partners, spatiotemporal expression patterns, and DNA-binding specificities for the C. elegans bHLH family of TFs, and model these data into an integrated network. This network displays both specificity and promiscuity, as some b......HLH proteins, DNA sequences, and tissues are highly connected, whereas others are not. By comparing all bHLH TFs, we find extensive divergence and that all three parameters contribute equally to bHLH divergence. Our approach provides a framework for examining divergence for other protein families in C. elegans...

  6. SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants.

    Directory of Open Access Journals (Sweden)

    Claudia Welz

    2011-04-01

    Full Text Available The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379. Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379 and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831. Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5' flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379 and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms

  7. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior.

    Directory of Open Access Journals (Sweden)

    Kyle Moy

    Full Text Available The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the

  9. Behavioral and metabolic effects of the atypical antipsychotic ziprasidone on the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Priscila Gubert

    Full Text Available Atypical antipsychotics are associated with metabolic syndrome, primarily associated with weight gain. The effects of Ziprasidone, an atypical antipsychotic, on metabolic syndrome has yet to be evaluated. Here in, we evaluated lipid accumulation and behavioral changes in a new experimental model, the nematode Caenorhabditis elegans (C. elegans. Behavioral parameters in the worms were evaluated 24 h after Ziprasidone treatment. Subsequently, lipid accumulation was examined using Nile red, LipidTox green and BODIPY labeling. Ziprasidone at 40 µM for 24 h effectively decreased the fluorescence labeling of all markers in intestinal cells of C. elegans compared to control (0.16% dimethyl sulfoxide. Ziprasidone did not alter behaviors related to energetic balance, such as pharynx pumping, defecation cycles and movement. There was, however, a reduction in egg-production, egg-laying and body-length in nematodes exposed to Ziprasidone without any changes in the progression of larval stages. The serotoninergic pathway did not appear to modulate Ziprasidone's effects on Nile red fluorescence. Additionally, Ziprasidone did not alter lipid accumulation in daf-16 or crh-1 deletion mutants (orthologous of the transcription factors DAF-16 and CREB, respectively. These results suggest that Ziprasidone alters reproductive behavior, morphology and lipid reserves in the intestinal cells of C. elegans. Our results highlight that the DAF-16 and CREB transcription factors are essential for Ziprasidone-induced fat store reduction.

  10. A description of the life stages of Echinoparyphium elegans ...

    African Journals Online (AJOL)

    The life cycle of Echinoparyphium elegans Looss 1899 is described from the Free State, South Africa.The freshwater snail Bulinus tropicus (Krauss 1848), the intermediate host of Calicophorort microbothrium (Paramphistomum microbothrium Fischoeder, 1901) in this area, serves as first intermediate host. The same snail ...

  11. Redefining the role of syndecans in C. elegans biology

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Couchman, John; Pocock, Roger

    2016-01-01

    in the activation of several downstream signaling pathways. We identified a previously unappreciated role of syndecans in cytosolic calcium regulation in mammals that is conserved in C. elegans. We concluded that calcium regulation is the basic, evolutionarily conserved role for syndecans, which enables them...

  12. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

    Science.gov (United States)

    Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda

    2017-09-13

    This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

  13. Effects of phosphorus on polyphosphate accumulation by Cunninghamella elegans Efeitos do fósforo sobre a acumulação de polifosfato em Cunninghamella elegans

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Barbosa de Lima

    2003-12-01

    Full Text Available The content of inorganic polyphosphate and the polymeric degree of these compounds were evaluated during the growth of Cunninghamella elegans in medium containing varying orthophosphate (Pi concentrations. For this purpose, a combination of chemical methods for polyphosphate extraction and ultrastructural cytochemistry were used. The orthophosphate and glucose consumption was also determined during the fungal cultivation. At Pi concentrations of 0.5, 2.5 and 0.0 g/L, the maximum amounts of biomass were 3.18, 3.29 and 0.24 g/L, respectively. During growth the cells accumulated Pi from the medium. At three days of growth the biomass consumed up to 100 and 95% of Pi from the media at initial concentrations of 0.5 and 2.5 g/L, respectively. Polyphosphate was observed at different Pi concentrations in medium and at different stages of growth. Polyphosphate was assayed by the content of labile phosphorus in water, acid-insoluble and alkali-soluble fractions. The content of fractions changed according to phosphorus concentration in the media and growth phase. During growth on all three media used, the cytochecmical behavior of polyphosphate changed considerably. The results obtained in this study reveal a potential of Cunninghamella elegans in the polyphosphate accumulation, and suggest a future application in the biotechnological processes.O crescimento, consumo de fosfato e glicose, bem como o conteúdo de fósforo, a distribuição, estrutura e localização de polifosfato foram avaliados no micélio de Cunninghamella elegans cultivado em meios contendo diferentes concentrações de fosfato. Os resultados permitiram verificar a influência dessas concentrações de fosfato sobre o crescimento do fungo estudado. A maior concentração de fosfato proporcionou maior rendimento da biomassa ao longo do crescimento. Uma relação entre consumo de fosfato e glicose do meio foi observada em relação ao crescimento e a quantidade de polifosfato total nos

  14. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans

    Directory of Open Access Journals (Sweden)

    Andoni Mujika

    2017-12-01

    Full Text Available This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.

  15. A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.

    Science.gov (United States)

    Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F

    2009-04-01

    Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.

  16. Complete mitochondrial genomes of the yellow-bellied slider turtle Trachemys scripta scripta and anoxia tolerant red-eared slider Trachemys scripta elegans.

    Science.gov (United States)

    Yu, Danna; Fang, Xindong; Storey, Kenneth B; Zhang, Yongpu; Zhang, Jiayong

    2016-05-01

    The complete mitochondrial genomes of the yellow-bellied slider (Trachemys scripta scripta) and anoxia tolerant red-eared slider (Trachemys scripta elegans) turtles were sequenced to analyze gene arrangement. The complete mt genomes of T. s. scripta and elegans were circular molecules of 16,791 bp and 16,810 bp in length, respectively, and included an A + 1 frameshift insertion in ND3 and ND4L genes. The AT content of the overall base composition of scripta and elegans was 61.2%. Nucleotide sequence divergence of the mt-genome (p distance) between scripta and elegans was 0.4%. A detailed comparison between the mitochondrial genomes of the two subspecies is shown.

  17. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... The Zinnia elegans cell suspension culture is excellent for ... development and therefore dimensions of TEs in an in vitro .... Electrical conductivity and light intensity effects on ..... cell wall formation in the woody dicot stem.

  18. Structural and functional evaluation of C. elegans filamins FLN-1 and FLN-2.

    Directory of Open Access Journals (Sweden)

    Christina R DeMaso

    Full Text Available Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD followed by multiple immunoglobulin-like repeats (IgFLN. They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function.

  19. A Fasting-Responsive Signaling Pathway that Extends Life Span in C. elegans

    Directory of Open Access Journals (Sweden)

    Masaharu Uno

    2013-01-01

    Full Text Available Intermittent fasting is one of the most effective dietary restriction regimens that extend life span in C. elegans and mammals. Fasting-stimulus responses are key to the longevity response; however, the mechanisms that sense and transduce the fasting stimulus remain largely unknown. Through a comprehensive transcriptome analysis in C. elegans, we find that along with the FOXO transcription factor DAF-16, AP-1 (JUN-1/FOS-1 plays a central role in fasting-induced transcriptional changes. KGB-1, one of the C. elegans JNKs, acts as an activator of AP-1 and is activated in response to fasting. KGB-1 and AP-1 are involved in intermittent fasting-induced longevity. Fasting-induced upregulation of the components of the SCF E3 ubiquitin ligase complex via AP-1 and DAF-16 enhances protein ubiquitination and reduces protein carbonylation. Our results thus identify a fasting-responsive KGB-1/AP-1 signaling pathway, which, together with DAF-16, causes transcriptional changes that mediate longevity, partly through regulating proteostasis.

  20. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans.

    Science.gov (United States)

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-10-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence.

  1. Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning

    OpenAIRE

    Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew

    1998-01-01

    Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a singl...

  2. DAF-16: FOXO in the Context of C. elegans.

    Science.gov (United States)

    Tissenbaum, Heidi A

    2018-01-01

    In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism. © 2018 Elsevier Inc. All rights reserved.

  3. Role for β-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions

    Science.gov (United States)

    Irazoqui, Javier E.; Ng, Aylwin; Xavier, Ramnik J.; Ausubel, Frederick M.

    2008-01-01

    We used the model nematode Caenorhabditis elegans infected with the human pathogen Staphylococcus aureus to identify components of epithelial immunity. Transcriptional profiling and reverse genetic analysis revealed that mutation of the C. elegans β-catenin homolog bar-1 or the downstream homeobox gene egl-5 results in a defective response and hypersensitivity to S. aureus infection. Epistasis analysis showed that bar-1 and egl-5 function in parallel to previously described C. elegans immune-response pathways. Overexpression of human homologs of egl-5 modulated NF-κB-dependent TLR2 signaling in epithelial cells. These data suggest that β-catenin and homeobox genes play an important and conserved role in innate immune defense. PMID:18981407

  4. Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions.

    Science.gov (United States)

    Irazoqui, Javier E; Ng, Aylwin; Xavier, Ramnik J; Ausubel, Frederick M

    2008-11-11

    We used the model nematode Caenorhabditis elegans infected with the human pathogen Staphylococcus aureus to identify components of epithelial immunity. Transcriptional profiling and reverse genetic analysis revealed that mutation of the C. elegans beta-catenin homolog bar-1 or the downstream homeobox gene egl-5 results in a defective response and hypersensitivity to S. aureus infection. Epistasis analysis showed that bar-1 and egl-5 function in parallel to previously described C. elegans immune-response pathways. Overexpression of human homologs of egl-5 modulated NF-kappaB-dependent TLR2 signaling in epithelial cells. These data suggest that beta-catenin and homeobox genes play an important and conserved role in innate immune defense.

  5. Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Simonsen, Karina Trankjær; Olsen, Louise Cathrine Braun

    2011-01-01

    -deficient yeast cells, and that they exhibit distinct temporal- and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however we find that functional loss of ACBP-1 leads to reduced triglyceride...... storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans....... of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs; four basal forms and three ACBP-domain proteins. We find that each of these paralogues is capable of complementing growth of ACBP...

  6. Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Diane C Shakes

    2009-08-01

    Full Text Available In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex.

  7. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  8. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    OpenAIRE

    Schroeder Fabian; Muschiol Daniel; Traunspurger Walter

    2009-01-01

    Abstract Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, ...

  10. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  11. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.

    Science.gov (United States)

    Bretscher, Andrew Jonathan; Busch, Karl Emanuel; de Bono, Mario

    2008-06-10

    Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in CO2 levels within seconds. Responses to CO2 do not reflect avoidance of acid pH but appear to define a new sensory response. Sensation of CO2 is promoted by the cGMP-gated ion channel subunits TAX-2 and TAX-4, but other pathways are also important. Robust CO2 avoidance in well fed animals requires inhibition of the DAF-16 forkhead transcription factor by the insulin-like receptor DAF-2. Starvation, which activates DAF-16, strongly suppresses CO2 avoidance. Exposure to hypoxia (avoidance via activation of the hypoxia-inducible transcription factor HIF-1. The npr-1 215V allele of the naturally polymorphic neuropeptide receptor npr-1, besides inhibiting avoidance of high ambient O2 in feeding C. elegans, also promotes avoidance of high CO2. C. elegans integrates competing O2 and CO2 sensory inputs so that one response dominates. Food and allelic variation at NPR-1 regulate which response prevails. Our results suggest that multiple sensory inputs are coordinated by C. elegans to generate different coherent foraging strategies.

  12. Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Berman, R S; Kenneth, O; Sznitman, J; Leshansky, A M

    2013-01-01

    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological undulatory swimmers, we apply the particle-based approach to study locomotion of the model organism nematode Caenorhabditis elegans using the swimming gait extracted from experiments. The analysis reveals that even though the amplitude and the wavenumber of undulations are similar to those determined for the best performing sinusoidal swimmer, C. elegans overperforms the latter in terms of both displacement and hydrodynamic efficiency. Further comparison with other undulatory microorganisms reveals that many adopt waveforms with characteristics similar to the optimal model swimmer, yet real swimmers still manage to beat the best performing sine-wave swimmer in terms of distance covered per period. Overall our results underline the importance of further waveform optimization, as periodic undulations adopted by C. elegans and other organisms deviate considerably from a simple sine wave. (paper)

  13. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W; Heymsfield, Steven B; Greenway, Frank L; Li, Zhaoping; Heber, David; Burton, Jeffrey H; Johnson, William D; Laine, Roger A

    2017-05-04

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P Glucose reduced lifespan (P fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated.

  14. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Wang, Hao

    2010-04-19

    Hydroides elegans is a common marine fouling organism in most tropical and subtropical waters. The life cycle of H. elegans includes a planktonic larval stage in which swimming larvae normally take 5 days to attain competency to settle. Larval metamorphosis marks the beginning of its benthic life; however, the endogenous molecular mechanisms that regulate metamorphosis remain largely unknown. In this study, a PCR-based suppressive subtractive hybridization (SSH) library was constructed to screen the genes expressed in competent larvae but not in precompetent larvae. Among the transcripts isolated from the library, 21 significantly matched sequences in the GenBank. Many of these isolated transcripts have putative roles in the reactive oxygen species (ROS) signal transduction pathway or in response to ROS stress. A putative novel p38 mitogen-activated protein kinase (MAPK), which was also isolated with SSH screen, was then cloned and characterized. The MAPK inhibitors assay showed that both p38 MAPK inhibitors SB202190 and SB203580 effectively inhibited the biofilm-induced metamorphosis of H. elegans. A cell stressors assay showed that H2O2 effectively induced larval metamorphosis of H. elegans, but the inductivity of H2O2 was also inhibited by both SB inhibitors. The catalase assay showed that the catalase could effetely inhibit H. elegans larvae from responding to inductive biofilm. These results showed that the p38 MAPK-dependent pathway plays critical role in controlling larval metamorphosis of the marine polychaete H. elegans, and the reactive oxygen radicals produced by biofilm could be the cue inducing larval metamorphosis. © 2010 Wiley-Liss, Inc.

  15. Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans and T. catigua (Meliaceae); Constituintes quimicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andreia Pereira; Nebo, Liliane; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da [Universidade Federal de Sao Carlos (UFSCAR), Sao Carlos, SP (Brazil). Dept. de Quimica], e-mail: paulo@dq.ufscar.br; Rodrigues, Ricardo Ribeiro [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Biologicas

    2009-07-01

    Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11{beta}-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, {beta}-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda. (author)

  16. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds

    Science.gov (United States)

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.

    2017-01-01

    ABSTRACT Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis, and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z′ factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro. Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 μg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans-F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia. PMID:28652232

  17. Alcohol disinhibition of behaviors in C. elegans.

    Directory of Open Access Journals (Sweden)

    Stephen M Topper

    Full Text Available Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals.

  18. Combination therapy with thioridazine and dicloxacillin combats meticillin-resistant Staphylococcus aureus infection in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Poulsen, Marianne Ø; Schøler, Lone; Nielsen, Anette

    2014-01-01

    the thresholds of toxicity, determined by larval development, and induction of stress-response markers. No measurable effects were seen at concentrations of less than 64 mg TZ l(-1). Seven different MRSA strains were tested for pathogenicity against C. elegans, and the most virulent strain (ATCC 33591......) was selected for further analyses. In a final experiment, full-grown C. elegans were exposed to the test strain for 3 days and subsequently treated with 8 mg DCX l(-1) and 8 mg TZ l(-1) for 2 days. This resulted in a 14-fold reduction in the intestinal MRSA load as compared with untreated controls. Each drug...... alone resulted in a two- to threefold reduction in MRSA load. In conclusion, C. elegans can be used as a simple model to test synergy between DCX and TZ against MRSA. The previously demonstrated in vitro synergy can be reproduced in vivo....

  19. Combination therapy with thioridazine and dicloxacillin combats methicillin-resistant Staphylococcus aureus infection in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Poulsen, Marianne Østergaard; Schøler, Lone; Nielsen, Anette

    2014-01-01

    the thresholds of toxicity, determined by larval development, and induction of stress-response markers. No measurable effects were seen at concentrations of less than 64 mg TZ l(-1). Seven different MRSA strains were tested for pathogenicity against C. elegans, and the most virulent strain (ATCC 33591......) was selected for further analyses. In a final experiment, full-grown C. elegans were exposed to the test strain for 3 days and subsequently treated with 8 mg DCX l(-1) and 8 mg TZ l(-1) for 2 days. This resulted in a 14-fold reduction in the intestinal MRSA load as compared with untreated controls. Each drug...... alone resulted in a two- to threefold reduction in MRSA load. In conclusion, C. elegans can be used as a simple model to test synergy between DCX and TZ against MRSA. The previously demonstrated in vitro synergy can be reproduced in vivo....

  20. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    Science.gov (United States)

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E. W.

    2014-01-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  1. Transgenic C. elegans dauer larvae expressing hookworm phospho null DAF-16/FoxO exit dauer.

    Directory of Open Access Journals (Sweden)

    Verena Gelmedin

    Full Text Available Parasitic hookworms and the free-living model nematode Caenorhabtidis elegans share a developmental arrested stage, called the dauer stage in C. elegans and the infective third-stage larva (L3 in hookworms. One of the key transcription factors that regulate entrance to and exit from developmental arrest is the forkhead transcription factor DAF-16/FoxO. During the dauer stage, DAF-16 is activated and localized in the nucleus. DAF-16 is negatively regulated by phosphorylation by the upstream kinase AKT, which causes DAF-16 to localize out of the nucleus and the worm to exit from dauer. DAF-16 is conserved in hookworms, and hypothesized to control recovery from L3 arrest during infection. Lacking reverse genetic techniques for use in hookworms, we used C. elegans complementation assays to investigate the function of Ancylostoma caninum DAF-16 during entrance and exit from L3 developmental arrest. We performed dauer switching assays and observed the restoration of the dauer phenotype when Ac-DAF-16 was expressed in temperature-sensitive dauer defective C. elegans daf-2(e1370;daf-16(mu86 mutants. AKT phosphorylation site mutants of Ac-DAF-16 were also able to restore the dauer phenotype, but surprisingly allowed dauer exit when temperatures were lowered. We used fluorescence microscopy to localize DAF-16 during dauer and exit from dauer in C. elegans DAF-16 mutant worms expressing Ac-DAF-16, and found that Ac-DAF-16 exited the nucleus during dauer exit. Surprisingly, Ac-DAF-16 with mutated AKT phosphorylation sites also exited the nucleus during dauer exit. Our results suggest that another mechanism may be involved in the regulation DAF-16 nuclear localization during recovery from developmental arrest.

  2. Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Barker Gary LA

    2009-07-01

    Full Text Available Abstract Background The free-living nematode Caenorhabditis elegans makes a developmental decision based on environmental conditions: larvae either arrest as dauer larva, or continue development into reproductive adults. There is natural variation among C. elegans lines in the sensitivity of this decision to environmental conditions; that is, there is variation in the phenotypic plasticity of dauer larva development. We hypothesised that these differences may be transcriptionally controlled in early stage larvae. We investigated this by microarray analysis of different C. elegans lines under different environmental conditions, specifically the presence and absence of dauer larva-inducing pheromone. Results There were substantial transcriptional differences between four C. elegans lines under the same environmental conditions. The expression of approximately 2,000 genes differed between genetically different lines, with each line showing a largely line-specific transcriptional profile. The expression of genes that are markers of larval moulting suggested that the lines may be developing at different rates. The expression of a total of 89 genes was putatively affected by dauer larva or non-dauer larva-inducing conditions. Among the upstream regions of these genes there was an over-representation of DAF-16-binding motifs. Conclusion Under the same environmental conditions genetically different lines of C. elegans had substantial transcriptional differences. This variation may be due to differences in the developmental rates of the lines. Different environmental conditions had a rather smaller effect on transcription. The preponderance of DAF-16-binding motifs upstream of these genes was consistent with these genes playing a key role in the decision between development into dauer or into non-dauer larvae. There was little overlap between the genes whose expression was affected by environmental conditions and previously identified loci involved in

  3. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mark D Mathew

    Full Text Available BACKGROUND: There are four main phenotypes that are assessed in whole organism studies of Caenorhabditis elegans; mortality, movement, fecundity and size. Procedures have been developed that focus on the digital analysis of some, but not all of these phenotypes and may be limited by expense and limited throughput. We have developed WormScan, an automated image acquisition system that allows quantitative analysis of each of these four phenotypes on standard NGM plates seeded with E. coli. This system is very easy to implement and has the capacity to be used in high-throughput analysis. METHODOLOGY/PRINCIPAL FINDINGS: Our system employs a readily available consumer grade flatbed scanner. The method uses light stimulus from the scanner rather than physical stimulus to induce movement. With two sequential scans it is possible to quantify the induced phototactic response. To demonstrate the utility of the method, we measured the phenotypic response of C. elegans to phosphine gas exposure. We found that stimulation of movement by the light of the scanner was equivalent to physical stimulation for the determination of mortality. WormScan also provided a quantitative assessment of health for the survivors. Habituation from light stimulation of continuous scans was similar to habituation caused by physical stimulus. CONCLUSIONS/SIGNIFICANCE: There are existing systems for the automated phenotypic data collection of C. elegans. The specific advantages of our method over existing systems are high-throughput assessment of a greater range of phenotypic endpoints including determination of mortality and quantification of the mobility of survivors. Our system is also inexpensive and very easy to implement. Even though we have focused on demonstrating the usefulness of WormScan in toxicology, it can be used in a wide range of additional C. elegans studies including lifespan determination, development, pathology and behavior. Moreover, we have even adapted the

  4. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system

    Science.gov (United States)

    Muhammed, Maged; Fuchs, Beth Burgwyn; WU, Michael P.; Breger, Julia; Coleman, Jeffrey J.; Mylonakis, Eleftherios

    2013-01-01

    Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen. PMID:22225407

  5. rBTI reduced β-amyloid-induced toxicity by promoting autophagy-lysosomal degradation via DAF-16 in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Jiao; Cui, Xiaodong; Ma, Xiaoli; Wang, Zhuanhua

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease, of which β-amyloid (Aβ) induced toxicity was suggested as a main cause. Some substances with prolongevity effects have been shown to be protective against AD. In a previous study we demonstrated that a recombinant buckwheat trypsin inhibitor (rBTI) could prolonge the lifespan in Caenorhabditis elegans (C. elegans). Here, we investigated whether rBTI may benefit to mitigate the AD symptom by feeding the AD model C. elegans CL4176. CL4176 is a transgenic C. elegans expressing human Aβ 3-42 in muscle tissue. The results showed that rBTI not only could extend lifespan but also could reduce Aβ toxicity-triggered body paralysis in AD worms. Further study found the accumulation of Aβ was decreased and autophagy-lysosomal degradation pathway was activated in AD worms treated with rBTI. Moreover, the inhibition of autophagy reduced rBTI-mediated paralysis delay. Genetic analyses showed rBTI increased the transcriptional activity of dauer formation abnormal-16 (DAF-16) and the disruption of daf-16 abolished rBTI-mediated protective effect in AD worms. Taken together, these data indicated that rBTI promoted the autophagy-lysosomal degradation pathway to reduce the Aβ-induced toxicity via DAF-16 in an AD model C. elegans, implying that BTI has the potential to protect against AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biotransformation of furanocoumarins by Cunninghamella elegans

    Directory of Open Access Journals (Sweden)

    Ghada Ismail El-shahat Ali Attia

    2015-06-01

    Full Text Available Biotransformation of Furanocoumarins; psoralen (1, bergapten (2, xanthotoxin (3 and imperatorin (4 was explored by Cunninghamella elegans NRRL 1392, revealing the metabolism of psoralen (1 and bergapten (2 into bergaptol (5, while xanthotoxin (3 and imperatorin (4 were converted into xanthotoxol (6. On the other hand unexpected conversion of xanthotoxin (3 into 3,4 dihydroxanthotoxin (7 occurred. The structure of the isolated pure metabolites was established using physical and spectroscopic techniques including, melting points, IR, 1H NMR, 13C NMR and mass spectroscopy.

  7. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Roz Laing

    Full Text Available The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid

  8. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Directory of Open Access Journals (Sweden)

    Shanqing Zheng

    Full Text Available DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS, and this is notably true when Caenorhabditis elegans (C. elegans is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  9. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Science.gov (United States)

    Zheng, Shanqing; Liao, Sentai; Zou, Yuxiao; Qu, Zhi; Liu, Fan

    2014-01-01

    DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS), and this is notably true when Caenorhabditis elegans (C. elegans) is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  10. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  11. Helminth fauna of a turtle species introduced in Japan, the red-eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Oi, M; Araki, J; Matsumoto, J; Nogami, S

    2012-10-01

    The red-eared slider turtle (Trachemys scripta elegans) was intentionally introduced from the United States to Japan as a pet in the 1950s and has become established throughout much of the country. We examined red-eared slider turtles from two localities in Japan for foreign parasitic helminths. Consequently, a total of seven species of helminths were found: two monogeneans (Neopolystoma exhamatum and Polystomoides japonicum), three digeneans (Spirorchisartericola, Spi.elegans and Telorchis clemmydis) and two nematodes (Serpinema microcephalum and Falcaustra wardi). Of these, three helminths are alien to Japan-Spi.artericola, Spi. elegans and F. wardi-which represent the first report of their presence in the red-eared slider turtle from Japan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms.

    Science.gov (United States)

    DePina, Ana S; Iser, Wendy B; Park, Sung-Soo; Maudsley, Stuart; Wilson, Mark A; Wolkow, Catherine A

    2011-07-12

    Evolutionary theories of aging propose that longevity evolves as a competition between reproduction and somatic maintenance for a finite pool of resources. Reproduction is thought to shorten lifespan by depleting resources from processes promoting somatic maintenance. Maternal yolk production, vitellogenesis, represents a significant maternal cost for reproduction and is suppressed under genetic and environmental conditions that extend lifespan. However, little is known about the pathways regulating vitellogenesis in response to prolongevity cues. In order to identify mechanisms that suppress vitellogenesis under prolongevity conditions, we studied factors regulating vitellogenesis in C. elegans nematodes. In C. elegans, vitellogenesis is depressed in the absence of insulin-like signaling (IIS). We found that the C. elegans daf-2/IIS pathway regulates vitellogenesis through two mechanisms. vit-2 transcript levels in daf-2 mutants were indirectly regulated through a germline-dependent signal, and could be rescued by introduction of daf-2(+) sperm. However, yolk protein (YP) levels in daf-2 mutants were also regulated by germline-independent posttranscriptional mechanisms. C. elegans vitellogenesis is regulated transcriptionally and posttranscriptionally in response to environmental and reproductive cues. The daf-2 pathway suppressed vitellogenesis through transcriptional mechanisms reflecting reproductive phenotypes, as well as distinct posttranscriptional mechanisms. This study reveals that pleiotropic effects of IIS pathway mutations can converge on a common downstream target, vitellogenesis, as a mechanism to modulate longevity.

  13. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms

    Directory of Open Access Journals (Sweden)

    Wilson Mark A

    2011-07-01

    Full Text Available Abstract Background Evolutionary theories of aging propose that longevity evolves as a competition between reproduction and somatic maintenance for a finite pool of resources. Reproduction is thought to shorten lifespan by depleting resources from processes promoting somatic maintenance. Maternal yolk production, vitellogenesis, represents a significant maternal cost for reproduction and is suppressed under genetic and environmental conditions that extend lifespan. However, little is known about the pathways regulating vitellogenesis in response to prolongevity cues. Results In order to identify mechanisms that suppress vitellogenesis under prolongevity conditions, we studied factors regulating vitellogenesis in C. elegans nematodes. In C. elegans, vitellogenesis is depressed in the absence of insulin-like signaling (IIS. We found that the C. elegans daf-2/IIS pathway regulates vitellogenesis through two mechanisms. vit-2 transcript levels in daf-2 mutants were indirectly regulated through a germline-dependent signal, and could be rescued by introduction of daf-2(+ sperm. However, yolk protein (YP levels in daf-2 mutants were also regulated by germline-independent posttranscriptional mechanisms. Conclusions C. elegans vitellogenesis is regulated transcriptionally and posttranscriptionally in response to environmental and reproductive cues. The daf-2 pathway suppressed vitellogenesis through transcriptional mechanisms reflecting reproductive phenotypes, as well as distinct posttranscriptional mechanisms. This study reveals that pleiotropic effects of IIS pathway mutations can converge on a common downstream target, vitellogenesis, as a mechanism to modulate longevity.

  14. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits

    Science.gov (United States)

    Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.

    2015-01-01

    Background: Modern toxicology is shifting from an observational to a mechanistic science. As part of this shift, high-throughput toxicity assays are being developed using alternative, nonmammalian species to prioritize chemicals and develop prediction models of human toxicity. Methods: The nematode Caenorhabditis elegans (C. elegans) was used to screen the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ Phase I and Phase II libraries, which contain 292 and 676 chemicals, respectively, for chemicals leading to decreased larval development and growth. Chemical toxicity was evaluated using three parameters: a biologically defined effect size threshold, half-maximal activity concentration (AC50), and lowest effective concentration (LEC). Results: Across both the Phase I and Phase II libraries, 62% of the chemicals were classified as active ≤ 200 μM in the C. elegans assay. Chemical activities and potencies in C. elegans were compared with those from two zebrafish embryonic development toxicity studies and developmental toxicity data for rats and rabbits. Concordance of chemical activity was higher between C. elegans and one zebrafish assay across Phase I chemicals (79%) than with a second zebrafish assay (59%). Using C. elegans or zebrafish to predict rat or rabbit developmental toxicity resulted in balanced accuracies (the average value of the sensitivity and specificity for an assay) ranging from 45% to 53%, slightly lower than the concordance between rat and rabbit (58%). Conclusions: Here, we present an assay that quantitatively and reliably describes the effects of chemical toxicants on C. elegans growth and development. We found significant overlap in the activity of chemicals in the ToxCast™ libraries between C. elegans and zebrafish developmental screens. Incorporating C. elegans toxicological assays as part of a battery of in vitro and in vivo assays provides additional information for the development of models to predict a chemical

  15. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  16. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Wang, Hao; Qian, Peiyuan

    2010-01-01

    inhibitors SB202190 and SB203580 effectively inhibited the biofilm-induced metamorphosis of H. elegans. A cell stressors assay showed that H2O2 effectively induced larval metamorphosis of H. elegans, but the inductivity of H2O2 was also inhibited by both SB

  17. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity.

    Science.gov (United States)

    Zhang, Yanqiong; Chen, Dongliang; Smith, Michael A; Zhang, Baohong; Pan, Xiaoping

    2012-01-01

    Despite rapid development and application of a wide range of manufactured metal oxide nanoparticles (NPs), the understanding of potential risks of using NPs is less completed, especially at the molecular level. The nematode Caenorhabditis elegans (C.elegans) has been emerging as an environmental model to study the molecular mechanism of environmental contaminations, using standard genetic tools such as the real-time quantitative PCR (RT-qPCR). The most important factor that may affect the accuracy of RT-qPCR is to choose appropriate genes for normalization. In this study, we selected 13 reference gene candidates (act-1, cdc-42, pmp-3, eif-3.C, actin, act-2, csq-1, Y45F10D.4, tba-1, mdh-1, ama-1, F35G12.2, and rbd-1) to test their expression stability under different doses of nano-copper oxide (CuO 0, 1, 10, and 50 µg/mL) using RT-qPCR. Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, were employed to evaluate these 13 candidates expressions. As a result, tba-1, Y45F10D.4 and pmp-3 were the most reliable, which may be used as reference genes in future study of nanoparticle-induced genetic response using C.elegans.

  18. Effects of ionizing radiation on locomotory behavior and mechanosensation in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Suzuki, Michiyo; Sakashita, Tetsuya; Kikuchi, Masahiro; Ohba, Hirofumi; Hamada, Nobuyuki; Funayama, Tomoo; Fukamoto, Kana; Kobayashi, Yasuhiko; Yanase, Sumino; Higashitani, Atsushi; Tsuji, Toshio

    2009-01-01

    Locomotory behavior (motility) and mechanosensation are of vital importance in animals. We examined the effects of ionizing radiation (IR) on locomotory behavior and mechanosensation using a model organism, the nematode Caenorhabditis elegans. Bacterial mechanosensation in C. elegans induces the dopamine-mediated slowing of locomotion in the presence of bacteria (food), known as the basal slowing response. We previously reported an IR-induced reduction of locomotory rate in the absence of food. In the present study, we observed a similar IR-induced reduction of locomotory rate in the cat-2 mutant, which is defective in bacterial mechanosensation. The dose response pattern of the locomotory rate in the presence of food was relatively flat in wild-type animals, but not in cat-2 mutants. This suggests that the dopamine system, which is related to bacterial mechanosensation in C. elegans, might have a dominant effect on locomotory rate in the presence of food, which masks the effects of other stimuli. Moreover, we found that the behavioral responses of hydrogen peroxide-exposed wild-type animals are similar to those of IR-exposed animals. Our findings suggest that the IR-induced reduction of locomotory rate in the absence of food is mediated by a different pathway from that for bacterial mechanosensation, at least partially through IR-produced hydrogen peroxide. (author)

  19. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans.

    Science.gov (United States)

    Mohan, Nitin; Chen, Chao-Sheng; Hsieh, Hsiao-Han; Wu, Yi-Chun; Chang, Huan-Cheng

    2010-09-08

    Nanoscale carbon materials hold great promise for biotechnological and biomedical applications. Fluorescent nanodiamond (FND) is a recent new addition to members of the nanocarbon family. Here, we report long-term in vivo imaging of FNDs in Caenorhabditis elegans (C. elegans) and explore the nano-biointeractions between this novel nanomaterial and the model organism. FNDs are introduced into wild-type C. elegans by either feeding them with colloidal FND solution or microinjecting FND suspension into the gonads of the worms. On feeding, bare FNDs stay in the intestinal lumen, while FNDs conjugated with biomolecules (such as dextran and bovine serum albumin) are absorbed into the intestinal cells. On microinjection, FNDs are dispersed in the gonad and delivered to the embryos and eventually into the hatched larvae in the next generation. The toxicity assessments, performed by employing longevity and reproductive potential as physiological indicators and measuring stress responses with use of reporter genes, show that FNDs are stable and nontoxic and do not cause any detectable stress to the worms. The high brightness, excellent photostability, and nontoxic nature of the nanomaterial have enabled continuous imaging of the whole digestive system and tracking of the cellular and developmental processes of the living organism for several days.

  20. A multitasking Argonaute: exploring the many facets of C. elegans CSR-1.

    Science.gov (United States)

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-01

    While initial studies of small RNA-mediated gene regulatory pathways focused on the cytoplasmic functions of such pathways, identifying roles for Argonaute/small RNA pathways in modulating chromatin and organizing the genome has become a topic of intense research in recent years. Nuclear regulatory mechanisms for Argonaute/small RNA pathways appear to be widespread, in organisms ranging from plants to fission yeast, Caenorhabditis elegans to humans. As the effectors of small RNA-mediated gene regulatory pathways, Argonaute proteins guide the chromatin-directed activities of these pathways. Of particular interest is the C. elegans Argonaute, chromosome segregation and RNAi deficient (CSR-1), which has been implicated in such diverse functions as organizing the holocentromeres of worm chromosomes, modulating germline chromatin, protecting the genome from foreign nucleic acid, regulating histone levels, executing RNAi, and inhibiting translation in conjunction with Pumilio proteins. CSR-1 interacts with small RNAs known as 22G-RNAs, which have complementarity to 25 % of the protein coding genes. This peculiar Argonaute is the only essential C. elegans Argonaute out of 24 family members in total. Here, we summarize the current understanding of CSR-1 functions in the worm, with emphasis on the chromatin-directed activities of this ever-intriguing Argonaute.

  1. Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christian Frøkjaer-Jensen

    2008-06-01

    Full Text Available Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH(4Ac. NH(4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant.Here we show that over a range of concentrations NH(4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH(4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc and ammonium-chloride (NH(4Cl are not detected as Na(+ and Cl(- specific stimuli, respectively.These findings clarify the behavioral response of C. elegans to NH(4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans.

  2. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16

    Directory of Open Access Journals (Sweden)

    Wim Wätjen

    2013-06-01

    Full Text Available Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue and SKN-1 (Nrf2 homologue, which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038. Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.

  3. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    Science.gov (United States)

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  5. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Waltz, Tyler B; Kassahun, Henok

    2017-01-01

    in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves...... many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating...... occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging....

  6. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  7. Optical silencing of C. elegans cells with arch proton pump.

    Directory of Open Access Journals (Sweden)

    Ayako Okazaki

    Full Text Available BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch, a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm. Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR in optogenetic studies of C. elegans.

  8. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  9. A Run-Length Encoding Approach for Path Analysis of C. elegans Search Behavior

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-01-01

    Full Text Available The nematode Caenorhabditis elegans explores the environment using a combination of different movement patterns, which include straight movement, reversal, and turns. We propose to quantify C. elegans movement behavior using a computer vision approach based on run-length encoding of step-length data. In this approach, the path of C. elegans is encoded as a string of characters, where each character represents a path segment of a specific type of movement. With these encoded string data, we perform k-means cluster analysis to distinguish movement behaviors resulting from different genotypes and food availability. We found that shallow and sharp turns are the most critical factors in distinguishing the differences among the movement behaviors. To validate our approach, we examined the movement behavior of tph-1 mutants that lack an enzyme responsible for serotonin biosynthesis. A k-means cluster analysis with the path string-encoded data showed that tph-1 movement behavior on food is similar to that of wild-type animals off food. We suggest that this run-length encoding approach is applicable to trajectory data in animal or human mobility data.

  10. β-Catenin-Dependent Wnt Signaling in C. elegans: Teaching an Old Dog a New Trick

    Science.gov (United States)

    Jackson, Belinda M.; Eisenmann, David M.

    2012-01-01

    Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans. PMID:22745286

  11. The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans.

    Directory of Open Access Journals (Sweden)

    Meng Xie

    2015-06-01

    Full Text Available AMP-activated kinase (AMPK is a key regulator of many cellular mechanisms required for adjustment to various stresses induced by the changing environment. In C. elegans dauer larvae AMPK-null mutants expire prematurely due to hyperactive Adipose Triglyceride Lipase (ATGL-1 followed by rapid depletion of triglyceride stores. We found that the compromise of one of the three C. elegans orthologues of human cgi-58 significantly improves the survival of AMPK-deficient dauers. We also provide evidence that C. elegans CGI-58 acts as a co-activator of ATGL-1, while it also functions cooperatively to maintain regular lipid droplet structure. Surprisingly, we show that it also acts independently of ATGL-1 to restrict lipid droplet coalescence by altering the surface abundance and composition of long chain (C20 polyunsaturated fatty acids (PUFAs. Our data reveal a novel structural role of CGI-58 in maintaining lipid droplet homeostasis through its effects on droplet composition, morphology and lipid hydrolysis; a conserved function that may account for some of the ATGL-1-independent features unique to Chanarin-Dorfman Syndrome.

  12. Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner.

    Science.gov (United States)

    Mukherjee, Madhumati; Chaudhari, Snehal N; Balachandran, Riju S; Vagasi, Alexandra S; Kipreos, Edward T

    2017-12-15

    Dafachronic acid (DA) is a bile acid-like steroid hormone that regulates dauer formation, heterochrony, and lifespan in C. elegans. Here, we describe that DA is an inhibitor of C. elegans germ stem cell proliferation in adult hermaphrodites. Using a C. elegans germ cell primary culture system, we show that DA inhibits the proliferation of germ cells in vitro. Exogenous DA reduces the frequency of large tumors in adult tumorous germline mutants and decreases the proliferation of wild-type germ stem cells in adult hermaphrodites. In contrast, DA has no appreciable effect on the proliferation of larval-stage germ cells in wild type. The inhibition of adult germ cell proliferation by DA requires its canonical receptor DAF-12. Blocking DA production by inactivating the cytochrome P450 DAF-9 increases germ cell proliferation in wild-type adult hermaphrodites and the frequency of large tumors in germline tumorous mutants, suggesting that DA inhibits the rate of germ cell proliferation under normal growth conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Modern techniques for the analysis of chromatin and nuclear organization in C. elegans.

    Science.gov (United States)

    Askjaer, Peter; Ercan, Sevinç; Meister, Peter

    2014-04-02

    In recent years, Caenorhabditis elegans has emerged as a new model to investigate the relationships between nuclear architecture, cellular differentiation, and organismal development. On one hand, C. elegans with its fixed lineage and transparent body is a great model organism to observe gene functions in vivo in specific cell types using microscopy. On the other hand, two different techniques have been applied in nematodes to identify binding sites for chromatin-associated proteins genome-wide: chromatin immunoprecipitation (ChIP), and Dam-mediated identification (DamID). We summarize here all three techniques together as they are complementary. We also highlight strengths and differences of the individual approaches.

  14. Bile Acid Look-Alike Controls Life Span in C. elegans

    NARCIS (Netherlands)

    Groen, Albert K.; Kuipers, Folkert

    2013-01-01

    Extensive transcriptional networks maintain sterol homeostasis across species, underscoring the importance of sterol balance for healthy life. Magner et al. (2013) now show that, in C. elegans, the nuclear receptor NHR-8 is key in regulation of cholesterol balance and production of dafachronic acid,

  15. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  16. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods.

    Directory of Open Access Journals (Sweden)

    Kelvin Yen

    Full Text Available The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor, rict-1 (rictor and sgk-1 (serum glucocorticoid kinase. CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead

  17. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  18. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds.

    Science.gov (United States)

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Coleman, Jeffrey J; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M; Lee, Kiho; Nau, Gerard J; Ausubel, Frederick M; Mylonakis, Eleftherios

    2017-09-01

    Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans - F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis , and we developed a robust F. tularensis -mediated C. elegans killing assay with a Z' factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti- F. tularensis activity in vitro Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 μg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans - F. tularensis LVS assay described here allows screening for anti- F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia. Copyright © 2017 American Society for Microbiology.

  19. Evaluation of the antioxidant property and effects in Caenorhabditis elegans of Xiangxi flavor vinegar, a Hunan local traditional vinegar*

    Science.gov (United States)

    HUANG, Run-ting; HUANG, Qing; WU, Gen-liang; CHEN, Chun-guang; LI, Zong-jun

    2017-01-01

    Xiangxi flavor vinegar (XV) is one of Hunan Province’s traditional fermented vinegars. It is produced from herb, rice, and spring water with spontaneous liquid-state fermentation techniques. In this study, we investigated the antioxidant property of XV by analyzing its antioxidant compounds, its free radical scavenging property in vitro and in vivo, and its effects on antioxidant enzyme activity and apoptosis in Caenorhabditis elegans. The results showed that XV is rich in antioxidants. In particular, ligustrazine reached 6.431 μg/ml. The in vitro 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•), hydroxyl radical (•OH), and superoxide anion radical (O2 •−) scavenging rates of XV were 95.85%, 97.22%, and 63.33%, respectively. The reactive oxygen species (ROS) content in XV-treated C. elegans decreased significantly (P<0.01) compared to the control group. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities were remarkably increased (P<0.01) in C. elegans after XV treatment. In addition, XV could upregulate CED-9 protein expression and downregulate CED-3 protein expression in C. elegans. These results prove that XV is rich in antioxidants and scavenges radicals in vitro efficiently. XV inhibits apoptosis in C. elegans probably by scavenging ROS and increasing the activities of its antioxidant enzymes. PMID:28378570

  20. Adverse Effects of Hydroalcoholic Extracts and the Major Components in the Stems of Impatiens balsamina L. on Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Hong-Fang Jiang

    2017-01-01

    Full Text Available Impatiens balsamina L. (Balsaminaceae, an annual herb found throughout China, has been extensively used in traditional Chinese medicine (TCM. However, our knowledge regarding the adverse effects of I. balsamina in vivo is very limited. In this present study, the nematode Caenorhabditis elegans model was employed to fully assess the adverse effects of hydroalcoholic (EtOH 55% extracts of I. balsamina stems (HAEIBS in vivo. After exposure to 10 mg/mL HAEIBS, the major organism-level endpoints of C. elegans of percent survival, frequency of head thrash and body bends, and reproduction had decreased by 24%, 30%, and 25%, respectively. The lifespan of C. elegans was also greatly reduced after HAEIBS exposure compared to the controls. The active compounds in HAEIBS were separated using high speed countercurrent chromatograph (HSCCC and characterized by high performance liquid chromatography (HPLC and nuclear magnetic resonance (NMR. Two compounds, lawsone and 2-methoxy-1,4-naphthoquinone (MNQ, and their adverse effects were then more thoroughly detailed in this study. It was found that lawsone is the major toxin in HAEIBS with a higher toxicity than MNQ in terms of negative impact on C. elegans mortality, locomotion, reproduction, and lifespan. Our data also suggests that the C. elegans model may be useful for assessing the possible toxicity of other Chinese medicines, plant extracts, and/or compounds.

  1. Monascin from Monascus-Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in Caenorhabditis elegans.

    Science.gov (United States)

    Shi, Yeu-Ching; Pan, Tzu-Ming; Liao, Vivian Hsiu-Chuan

    2016-09-28

    Amyloid-β (Aβ)-induced oxidative stress and toxicity are leading risk factors for Alzheimer's disease (AD). Monascin (MS) is a novel compound proposed for antioxidative stress applications and is derived from an edible fungus secondary metabolite. This study assessed the effects of MS on oxidative stress, paralysis, Aβ accumulation, and lifespan in the nematode Caenorhabditis elegans and investigated its underlying mechanisms of action. The results showed that MS increased the survival of C. elegans under juglone-induced oxidative stress and attenuated endogenous levels of reactive oxygen species. Furthermore, MS induced a decline in Aβ-induced paralysis phenotype and Aβ deposits in the transgenic strains CL4176 and CL2006 of C. elegans, which expresses human muscle-specific Aβ1-42 in the cytoplasm of body wall muscle cells. In addition, mRNA levels of strain CL4176 of several antioxidant genes (sod-1, sod-2, sod-3, hsp16.2) and daf-16 were up-regulated by MS treatment when compared to the nontreated controls. Further evidence showed that MS treatment in C. elegans strains lacking DAF-16/FOXO did not affect paralysis or lifespan phenotypes. The findings indicate that MS reduces oxidative stress and Aβ toxicity via DAF-16 in C. elegans, suggesting that MS can be used for the prevention of AD-associated oxidative stress complications.

  2. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    Full Text Available Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  3. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  4. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Vandamme, Julien; Sidoli, Simone; Mariani, Luca

    2015-01-01

    described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23......Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been...

  5. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...

  6. Investigations of Caenorhabditis Elegans Using Soft X-ray Contact Microscopy

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernardinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Mocek, Karel; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Juha, Libor; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 20, č. 3 (2004), s. 121-125 ISSN 1120-1797 R&D Projects: GA MŠk LN00A100 Keywords : C. elegans * soft X-ray contact microscopy * intense laser plasma * gold target Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.341, year: 2004

  7. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method.

    Science.gov (United States)

    Muschiol, Daniel; Schroeder, Fabian; Traunspurger, Walter

    2009-05-16

    The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20 degrees C with 5 x 10(9) Escherichia coli ml-1 as food source. High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (r m d(-1)), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R 0) 291, the mean generation time (T) 90 h, and the minimum generation time (T min) 73.0 h. The corresponding values for strain MY6 (n = 72) were r m = 1.460, R0 = 289, T = 84 h, and T min = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d(-1). Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however

  8. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    Directory of Open Access Journals (Sweden)

    Schroeder Fabian

    2009-05-01

    Full Text Available Abstract Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK and MY6 (Münster, Germany were compared at 20°C with 5 × 109 Escherichia coli ml-1 as food source. Results High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69, the intrinsic rate of natural increase (rmd-1, calculated according to the Lotka equation, was 1.375, the net reproductive rate (R0 291, the mean generation time (T 90 h, and the minimum generation time (Tmin 73.0 h. The corresponding values for strain MY6 (n = 72 were rm = 1.460, R0 = 289, T = 84 h, and Tmin = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d-1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days

  9. The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sakiko Honjoh

    2017-12-01

    Full Text Available Organismal lifespan is highly plastic in response to environmental cues, and dietary restriction (DR is the most robust way to extend lifespan in various species. Recent studies have shown that sex also is an important factor for lifespan regulation; however, it remains largely unclear how these two factors, food and sex, interact in lifespan regulation. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites are essential for the short-term succession of the species. Here, we report an extreme sexual dimorphism in the responsiveness to DR in C. elegans; the essential hermaphrodites show marked longevity responses to various forms of DR, but the males show few longevity responses and sustain reproductive ability. Our analysis reveals that the sex determination pathway and the steroid hormone receptor DAF-12 regulate the sex-specific DR responsiveness, integrating sex and environmental cues to determine organismal lifespan.

  10. Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16.

    Science.gov (United States)

    Shen, Peiyi; Yue, Yiren; Sun, Quancai; Kasireddy, Nandita; Kim, Kee-Hong; Park, Yeonhwa

    2017-05-06

    Piceatannol is a natural stilbene with many beneficial effects, such as antioxidative, anti-inflammatory, antiatherogenic activities; however, its role on aging is not known. In this study, we used Caenorhabditis elegans as an animal model to study the effect of piceatannol on its lifespan and investigated the underlying mechanisms. The results showed that 50 and 100 µM piceatannol significantly extended the lifespan of C. elegans without altering the growth rate, worm size and progeny production. Piceatannol delayed the age-related decline of pumping rate and locomotive activity, and protected the worms from heat and oxidative stress. This study further indicated that lifespan extension and enhanced stress resistance induced by piceatannol requires DAF-16. Since DAF-16 is conserved from nematodes to mammals, our study may have important implications in utilizing piceatannol to promote healthy aging and combat age-related disease in humans. © 2016 BioFactors, 43(3):379-387, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  11. Illigera elegans (Hernandiaceae), a ner species from Christmas Island, Indian Ocean

    NARCIS (Netherlands)

    Duyfjes, B.E.E.

    1994-01-01

    Illigera elegans (Hernandiaceae) is described as a new species. The species is remarkable because it has uncleft staminal appendages, a condition up till now only found in two other species, from New Guinea and East Africa (Madagascar, Tanzania), respectively.

  12. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements

    International Nuclear Information System (INIS)

    Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L.

    1991-01-01

    In this study the utility of 254-nm ultraviolet light (UV) as a magnetic tool in C.elegans is determined. It is demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m 2 . This rate resembles that for 1500 R γ-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals [mapping to Linkage Group (LG)III or LGV] or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in micro-organisms, a large fraction of the C.elegans UV-induced mutations were found to be not simple intragenic lesions, but deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C.elegans chromosomes, and that C.elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. (author). 46 refs.; 5 figs.; 4 tabs

  13. Effects of genetic mutations and chemical exposures on Caenorhabditis elegans feeding: evaluation of a novel, high-throughput screening assay.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2007-12-01

    Full Text Available Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neuromuscular activity, i.e., feeding. Current feeding methodologies, however, are labor intensive and only semi-quantitative.Here a high-throughput assay is described that uses flow cytometry to measure C. elegans feeding by determining the size and intestinal fluorescence of hundreds of nematodes after exposure to fluorescent-labeled microspheres. This assay was validated by quantifying fluorescence in feeding-defective C. elegans (eat mutants, and by exposing wild-type nematodes to the neuroactive compounds, serotonin and arecoline. The eat mutations previously determined to cause slow pumping rates exhibited the lowest feeding levels with our assay. Concentration-dependent increases in feeding levels after serotonin exposures were dependent on food availability, while feeding levels decreased in arecoline-exposed nematodes regardless of the presence of food. The effects of the environmental contaminants, cadmium chloride and chlorpyrifos, on wild-type C. elegans feeding were then used to demonstrate an application of the feeding assay. Cadmium exposures above 200 microM led to a sharp drop in feeding levels. Feeding of chlorpyrifos-exposed nematodes decreased in a concentration-dependent fashion with an EC(50 of 2 microM.The C. elegans fluorescence microsphere feeding assay is a rapid, reliable method for the assessment of neurotoxic effects of pharmaceutical drugs, industrial chemicals or environmental agents. This assay may also be applicable to large scale genetic or

  14. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Höss, Sebastian; Menzel, Ralph; Gessler, Frank; Nguyen, Hang T.; Jehle, Johannes A.; Traunspurger, Walter

    2013-01-01

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L −1 ), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  15. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity.

    Science.gov (United States)

    Love, Dona C; Ghosh, Salil; Mondoux, Michelle A; Fukushige, Tetsunari; Wang, Peng; Wilson, Mark A; Iser, Wendy B; Wolkow, Catherine A; Krause, Michael W; Hanover, John A

    2010-04-20

    Nutrient-driven O-GlcNAcylation of key components of the transcription machinery may epigenetically modulate gene expression in metazoans. The global effects of GlcNAcylation on transcription can be addressed directly in C. elegans because knockouts of the O-GlcNAc cycling enzymes are viable and fertile. Using anti-O-GlcNAc ChIP-on-chip whole-genome tiling arrays on wild-type and mutant strains, we detected over 800 promoters where O-GlcNAc cycling occurs, including microRNA loci and multigene operons. Intriguingly, O-GlcNAc-marked promoters are biased toward genes associated with PIP3 signaling, hexosamine biosynthesis, and lipid/carbohydrate metabolism. These marked genes are linked to insulin-like signaling, metabolism, aging, stress, and pathogen-response pathways in C. elegans. Whole-genome transcriptional profiling of the O-GlcNAc cycling mutants confirmed dramatic deregulation of genes in these key pathways. As predicted, the O-GlcNAc cycling mutants show altered lifespan and UV stress susceptibility phenotypes. We propose that O-GlcNAc cycling at promoters participates in a molecular program impacting nutrient-responsive pathways in C. elegans, including stress, pathogen response, and adult lifespan. The observed impact of O-GlcNAc cycling on both signaling and transcription in C. elegans has important implications for human diseases of aging, including diabetes and neurodegeneration.

  16. Pathological and parasitological characterization of Prosthenorchis elegans in a free-ranging marmoset Callithrix geofroyi from the Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Ayisa R. de Oliveira

    Full Text Available ABSTRACT: Prosthenorchis elegans is an acanthocephalan intestinal parasite reported in neotropical primates. Despite parasitism by P. elegans having already been described in wild marmosets in the Brazilian Atlantic Forest, there are no reports of this infection in wild Geoffroy’s marmoset (Callithrix geofroyi. The aim of this study is to report one case of P. elegans parasitism in a free-ranging C. geoffroyi from Brazilian Atlantic Forest in Espírito Santo state, and characterize the pathological and parasitological findings of this infection. One Geoffroy’s marmoset necropsied at the Vila Velha University’s Veterinary Pathology Laboratory presented intense chronic transmural ulcerative enteritis associated with twenty cylindrical helminths present in the jejunum and ileum. We can conclude that parasitism by P. elegans occurs in free-ranging groups of Geoffroy’s marmosets. Its infection produced severe intestinal lesions even in free-ranging marmoset and therefore is a threat to this animal’s survival in wildlife and can have some impact on primate conservation in the Brazilian Atlantic Forest.

  17. Proteomic analysis uncovers a metabolic phenotype in C. elegans after

    Czech Academy of Sciences Publication Activity Database

    Pohludka, M.; Šimečková, K.; Vohanka, J.; Yilma, P.; Novák, Petr; Krause, M. W.; Kostrouchová, M.; Kostrouch, Z.

    2008-01-01

    Roč. 374, č. 1 (2008), s. 49-54 ISSN 0006-291X R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : nuclear hormone receptors * caenorhabditis elegans * nhr-40 Subject RIV: EE - Microbiology, Virology Impact factor: 2.648, year: 2008

  18. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity.

    Directory of Open Access Journals (Sweden)

    Yanqiong Zhang

    Full Text Available Despite rapid development and application of a wide range of manufactured metal oxide nanoparticles (NPs, the understanding of potential risks of using NPs is less completed, especially at the molecular level. The nematode Caenorhabditis elegans (C.elegans has been emerging as an environmental model to study the molecular mechanism of environmental contaminations, using standard genetic tools such as the real-time quantitative PCR (RT-qPCR. The most important factor that may affect the accuracy of RT-qPCR is to choose appropriate genes for normalization. In this study, we selected 13 reference gene candidates (act-1, cdc-42, pmp-3, eif-3.C, actin, act-2, csq-1, Y45F10D.4, tba-1, mdh-1, ama-1, F35G12.2, and rbd-1 to test their expression stability under different doses of nano-copper oxide (CuO 0, 1, 10, and 50 µg/mL using RT-qPCR. Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, were employed to evaluate these 13 candidates expressions. As a result, tba-1, Y45F10D.4 and pmp-3 were the most reliable, which may be used as reference genes in future study of nanoparticle-induced genetic response using C.elegans.

  19. The nematode Caenorhabditis elegans displays a chemotaxis behavior to tuberculosis-specific odorants

    Directory of Open Access Journals (Sweden)

    Mário F. Neto

    2016-08-01

    Full Text Available A simple, affordable diagnostic test for pulmonary tuberculosis (TB is urgently needed to improve detection of active Mycobacterium tuberculosis. Recently, it has been suggested that animal behavior can be used as a biosensor to signal the presence of human disease. For example, the giant African pouched rats can detect tuberculosis by sniffing sputum specimens while trained honeybees respond to three of the volatile organic compounds (VOCs detected in the breath of TB positive patients by proboscis extension. However, both rats and honeybees require animal housing facilities and professional trainers, which are outside the scope of most disease testing facilities. Here, we report that the innate olfactory behavioral response of the roundworm nematode Caenorhabditis elegans can be used to detect the TB-specific VOCs methyl p-anisate, methyl nicotinate, methyl phenylacetate and o-phenylanisole, in chemotaxis assays. Dauer larvae, a long-lived stress resistant alternative development state of C. elegans in which the animals can survive for extended periods of time in dry conditions with no food, were also demonstrated to detect the VOCs. We propose that exposing naive dauer larvae to TB-related VOCs and recording their response in this behavioral assay could lead to the development of a new method for TB diagnostics using breath as the sample type. Keywords: Tuberculosis, Caenorhabditis elegans, Chemotaxis, Volatile organic compounds, Diagnostics, Odorants

  20. C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization.

    Science.gov (United States)

    Kim, Joanne S M; Hung, Wesley; Narbonne, Patrick; Roy, Richard; Zhen, Mei

    2010-01-01

    Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.

  1. Model-independent phenotyping of C. elegans locomotion using scale-invariant feature transform.

    Directory of Open Access Journals (Sweden)

    Yelena Koren

    Full Text Available To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans' phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior.

  2. XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Takashi S Miki

    2016-09-01

    Full Text Available XRN2 is a conserved 5'→3' exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs. In Caenorhabditis elegans (C. elegans, the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2',5'-bisphosphate nucleotidase 1 (BPNT1 through hydrolysis of an endogenous XRN inhibitor 3'-phosphoadenosine-5'-phosphate (PAP. Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons.

  3. Optically Highlighting Basement Membrane Components in C. elegans

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Elliott Hagedorn & David Sherwood ### Abstract Green fluorescent protein (GFP) and other genetically encoded fluorescent proteins provide a means to study gene expression pattern and protein localization in living tissues. Recently discovered GFP-like fluorophores and engineered variants have further expanded the fluorescent protein toolkit for in vivo imaging. Here we describe a technique using transgenic C. elegans that contain laminin or type IV collagen fused to the green...

  4. In vitro cytotoxic activity of Brazilian Middle West plant extracts

    Directory of Open Access Journals (Sweden)

    Talal Suleiman Mahmoud

    2011-06-01

    Full Text Available Cytotoxic activity of eight plant extracts, native from the Mid-West of Brazil comprising Cerrado, Pantanal and semideciduous forest, was evaluated for MDA-MB-435, SF-295, and HCT-8 cancer cell strains. A single 100 µg.mL-1 dose of each extract was employed with 72 h of incubation for all tests. Doxorubicin (1 µg.mL-1 was used as the positive control and the MTT method was used to detect the activity. Cytotoxicity of distinct polarities was observed in thirty extracts (46%, from different parts of the following species: Tabebuia heptaphylla (Vell. Toledo, Bignoniaceae, Tapirira guianensis Aubl., Anacardiaceae, Myracrodruon urundeuva Allemão, Anacardiaceae, Schinus terebinthifolius Raddi, Anacardiaceae, Gomphrena elegans Mart., Amaranthaceae, Attalea phalerata Mart. ex Spreng., Arecaceae, Eugenia uniflora L., Myrtaceae, and Annona dioica A. St.-Hil., Annonaceae. Extracts of at least two tested cell strains were considered to be highly active since their inhibition rate was over 75%.

  5. Changes in miRNA expression profile of space-flown Caenorhabditis elegans during Shenzhou-8 mission

    Science.gov (United States)

    Xu, Dan; Gao, Ying; Huang, Lei; Sun, Yeqing

    2014-04-01

    Recent advances in the field of molecular biology have demonstrated that small non-coding microRNAs (miRNAs) have a broad effect on gene expression networks and play a key role in biological responses to environmental stressors. However, little is known about how space radiation exposure and altered gravity affect miRNA expression. The "International Space Biological Experiments" project was carried out in November 2011 by an international collaboration between China and Germany during the Shenzhou-8 (SZ-8) mission. To study the effects of spaceflight on Caenorhabditis elegans (C. elegans), we explored the expression profile miRNA changes in space-flown C. elegans. Dauer C. elegans larvae were taken by SZ-8 spacecraft and experienced the 16.5-day shuttle spaceflight. We performed miRNA microarray analysis, and the results showed that 23 miRNAs were altered in a complex space environment and different expression patterns were observed in the space synthetic and radiation environments. Most putative target genes of the altered miRNAs in the space synthetic environment were predicted to be involved in developmental processes instead of in the regulation of transcription, and the enrichment of these genes was due to space radiation. Furthermore, integration analysis of the miRNA and mRNA expression profiles confirmed that twelve genes were differently regulated by seven miRNAs. These genes may be involved in embryonic development, reproduction, transcription factor activity, oviposition in a space synthetic environment, positive regulation of growth and body morphogenesis in a space radiation environment. Specifically, we found that cel-miR-52, -55, and -56 of the miR-51 family were sensitive to space environmental stressors and could regulate biological behavioural responses and neprilysin activity through the different isoforms of T01C4.1 and F18A12.8. These findings suggest that C. elegans responded to spaceflight by altering the expression of miRNAs and some target

  6. Caracterização anatômica e química de folhas de Jacaranda puberula (Bignoniaceae presente na Mata Atlântica

    Directory of Open Access Journals (Sweden)

    Maria Bernadete Gonçalves Martins

    Full Text Available A espécie Jacaranda puberula (Bignoniaceae é conhecida popularmente como "carobinha" sendo utilizada na medicina popular em comunidades tradicionais. O objetivo deste trabalho foi realizar a caracterização anatômica e química das folhas de J. puberula. Para a análise anatômica utilizou-se a microscopia de luz e microscopia eletrônica de varredura (MEV. Para a análise química utilizou-se a Cromatografia Líquida de Alta Eficiência (CLAE. O mesofilo é dorsiventral, a epiderme unisseriada com cutícula espessa, tricomas glandulares do tipo peltado e tricomas tectores em ambas as faces da epiderme, parênquima clorofiliano com duas a três camadas de células paliçádicas e quatro a cinco camadas de células formando o parênquima lacunoso, de tamanho pequeno, com muitos espaços intercelulares, hipoestomática com nervura pinada. Os estudos através de MEV evidenciaram a epiderme recoberta com cera epicuticular e glândulas peltadas com maior incidência na epiderme da face abaxial, constituídas por oitos células secretoras apicais. A análise cromatográfica do extrato etanólico evidenciou a presença de fitoquinóides e flavonóides.

  7. lin-12 Notch functions in the adult nervous system of C. elegans

    Directory of Open Access Journals (Sweden)

    Tucey Tim M

    2005-07-01

    Full Text Available Abstract Background Notch signaling pathways are conserved across species and traditionally have been implicated in cell fate determination during embryonic development. Notch signaling components are also expressed postdevelopmentally in the brains of adult mice and Drosophila. Recent studies suggest that Notch signaling may play a role in the physiological, rather than developmental, regulation of neurons. Here, we investigate a new non-developmental role for Caenorhabditis elegans lin-12 Notch signaling in neurons regulating the spontaneous reversal rate during locomotion. Results The spontaneous reversal rate of C. elegans during normal locomotion is constant. Both lin-12 gain and loss of function mutant animals had significantly increased reversal rates compared to wild type controls. These defects were caused by lin-12 activity, because the loss of function defect could be rescued by a wild type lin-12 transgene. Furthermore, overexpression of lin-12 recapitulated the gain-of-function defect. Increasing or decreasing lin-12 activity in the postdevelopmental adult animal was sufficient to rapidly and reversibly increase reversals, thereby excluding a developmental role for lin-12. Although lin-12 is expressed in the vulval and somatic gonad lineages, we find that these tissues play no role in regulating reversal rates. In contrast, altering lin-12 activity specifically in the nervous system was sufficient to increase reversals. These behavioral changes require components of the canonical lin-12 signaling cascade, including the ligand lag-2 and the transcriptional effector lag-1. Finally, the C. elegans AMPA/kainate glutamate receptor homolog glr-1 shows strong genetic interactions with lin-12, suggesting that glr-1 and/or other glutamate gated channels may be targets of lin-12 regulation. Conclusion Our results demonstrate a neuronal role for lin-12 Notch in C. elegans and suggest that lin-12 acutely regulates neuronal physiology to

  8. On the growth rate of the foliicolous lichen Strigula elegans

    NARCIS (Netherlands)

    Wilde-Duyfjes, de B.E.E.

    1967-01-01

    The diametral growth rate of the foliicolous lichen Strigula elegans (Fée) Müll. Arg., measured under natural conditions in the African tropical rainforest, has been established to amount to (0.7-)3-3-6(-8) mm annually. As compared to the diametral growth rate of lichens from temperate regions,

  9. The computational worm: spatial orientation and its neuronal basis in C. elegans.

    Science.gov (United States)

    Lockery, Shawn R

    2011-10-01

    Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans.

    Science.gov (United States)

    Kurino, Chiho; Furuhashi, Tsubasa; Sudoh, Kaori; Sakamoto, Kazuichi

    2017-04-01

    The possibility that odor plays a role in lifespan regulation through effects on the nervous system is indicated by research on Caenorhabditis elegans. In fact, ablation of AWA and AWC, which are suggested as olfactory neurons, has been shown to extend lifespan via DAF-16, a homolog of FoxO. However, the effects of odor stimuli on the lifespan still remain unclear. Thus, we here aimed to clarify the effect of attractive and repulsive odors on longevity and stress tolerance in C. elegans and to analyze the pathways thereof. We used isoamyl alcohol as an attractive odor, and acetic acid as a repellent component, as identified by chemotaxis assay. We found that isoamyl alcohol stimulus promoted longevity in a DAF-16-dependent manner. On the other hand, acetic acid stimulus promoted thermotolerance through mechanisms independent of DAF-16. Above all, our results indicate that odor stimuli affect the lifespan and stress tolerance of C. elegans, with attractive and repulsive odors exerting their effects through different mechanisms, and that longevity is induced by both activation and inactivation of olfactory neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2014-04-01

    Many studies on thermotolerance have been done in Caenorhabditis elegans in order to extend survival under heat stress; Daf-16, a homolog of FoxO in C. elegans, was detected as the key factor in thermotolerance. However, the recovery process from heat stress damage has been seldom discussed. In this study, we analyzed the roles of FoxO/Daf-16 on the recovery from heat stress damage by monitoring thrashing movement. Heat shock reduced the movement, which was restored by culturing at 20°C. Thrashing movement was not restored in the daf-16 mutant, which suggests that Daf-16 is one of the essential factors in repairing the damage. Movement restoration was promoted in the daf-2 mutant, a homolog of insulin/IGF-1-like receptor, in a daf-16-dependent manner. In addition, heat stress decreased the expression of daf-28 and ins-7, agonists of Daf-2. Taken together, these results revealed that FoxO/Daf-16 removes heat stress damage and restores movement via inhibition of the insulin-like signaling pathway in C. elegans, suggesting that FoxO/Daf-16 plays a critical role in thermotolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny

    International Nuclear Information System (INIS)

    Wang Dayong; Wang Yang

    2008-01-01

    Whether the multiple biological toxicities from nickel exposure could be transferred to progeny has not been clarified. In this report, we explored the Caenorhabditis elegans to analyze the multiple toxicities of nickel and their possibly transferable properties. The nickel toxicity caused multiple biological defects in a concentration-dependent manner. Moreover, most of these toxicities could be transferred and could be only partially rescued in progeny. Some specific phenotypes in progeny were also found to exhibit no obvious rescue phenotypes or to show even more severe defects than their parents. The defects caused by nickel exposure could be classified into four groups according to their transferring properties. That is, the defects caused by nickel exposure could be largely, or partially, or unable to be rescued, or became even more severe in progeny animals. Therefore, most of the nickel exposure-caused defects can be transferred from parents to their progeny to different degrees in C. elegans. - Nickel exposure can cause multi-biological toxicities and these defects can be transferred from parents to their progeny in C. elegans

  13. Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans.

    Science.gov (United States)

    Lee, Eun Byeol; Kim, Jun Hyeong; An, Chang Wan; Kim, Yeong Jee; Noh, Yun Jeong; Kim, Su Jin; Kim, Ju-Eun; Shrestha, Abinash Chandra; Ham, Ha-Neul; Leem, Jae-Yoon; Jo, Hyung-Kwon; Kim, Dae-Sung; Moon, Kwang Hyun; Lee, Jeong Ho; Jeong, Kyung Ok; Kim, Dae Keun

    2018-03-14

    In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans ( C. elegans ) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans , and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

  14. Tenebrio molitor Extracts Modulate the Response to Environmental Stressors and Extend Lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Won, Seong-Min; Cha, Hye-Uk; Yi, Sun Shin; Kim, Sung-Jo; Park, Sang-Kyu

    2016-09-08

    Tenebrio molitor are large insects and their larvae are consumed as food in many countries. The nutritional composition of T. molitor has been studied and contains high amounts of proteins, unsaturated fatty acids, and valuable minerals. However, the bioactivity of T. molitor has not been fully understood. We examined the effects of T. molitor extracts on resistance to oxidative stress and organism's lifespan using Caenorhabditis elegans as a model system. The response to heat shock and ultraviolet (UV) irradiation was monitored in vivo. The extracts from T. molitor showed significant effects on resistance to oxidative stress and UV irradiation and extend both mean and maximum lifespan of C. elegans. The number of progeny produced significantly increased in animals supplemented with T. molitor extracts. In addition, the expression of hsp-16.2 and sod-3 was markedly upregulated by supplementation with T. molitor extracts. These findings suggest that T. molitor extracts can increase response to stressors and extend lifespan by the induction of longevity assurance genes in C. elegans.

  15. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.

    Science.gov (United States)

    Hulme, S Elizabeth; Whitesides, George M

    2011-05-16

    This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (1000 cells), transparent, and genetically tractable. Despite its simplicity, the worm exhibits complex phenotypes associated with multicellularity: the worm has differentiated cells and organs, it ages and has a well-defined lifespan, and it is capable of learning and remembering. This Review argues that the balance between simplicity and complexity in the worm will make it a useful tool in determining the relationship between molecular-scale phenomena and organism-level phenomena, such as aging, behavior, cognition, and disease. Following an introduction to worm biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  17. Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dayong [Department of Genetics and Developmental Biology, Southeast University, Nanjing 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Ministry of Education (China)], E-mail: dayongw@seu.edu.cn; Wang Yang [Department of Genetics and Developmental Biology, Southeast University, Nanjing 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Ministry of Education (China)

    2008-02-15

    Whether the multiple biological toxicities from nickel exposure could be transferred to progeny has not been clarified. In this report, we explored the Caenorhabditis elegans to analyze the multiple toxicities of nickel and their possibly transferable properties. The nickel toxicity caused multiple biological defects in a concentration-dependent manner. Moreover, most of these toxicities could be transferred and could be only partially rescued in progeny. Some specific phenotypes in progeny were also found to exhibit no obvious rescue phenotypes or to show even more severe defects than their parents. The defects caused by nickel exposure could be classified into four groups according to their transferring properties. That is, the defects caused by nickel exposure could be largely, or partially, or unable to be rescued, or became even more severe in progeny animals. Therefore, most of the nickel exposure-caused defects can be transferred from parents to their progeny to different degrees in C. elegans. - Nickel exposure can cause multi-biological toxicities and these defects can be transferred from parents to their progeny in C. elegans.

  18. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans.

    Science.gov (United States)

    McEwan, Deborah L; Kirienko, Natalia V; Ausubel, Frederick M

    2012-04-19

    Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Identification of Novel Candidate Tumor Suppressor Genes Using C. elegans as a Model

    National Research Council Canada - National Science Library

    Sternberg, Paul

    1999-01-01

    Molecular genetic analysis of the model organism Caenorhabditis elegans was used to identify and study mechanisms of action of negative regulators of tyrosine kinase/RAS mediated signal transduction...

  20. Identification of Novel Candidate Tumor Suppressor Genes Using C. elegans as a Model

    National Research Council Canada - National Science Library

    Sternberg, Paul

    1998-01-01

    Molecular genetic analysis of the model organism Caenorhabditis elegans was used to identify and study mechanisms of action of negative regulators of tyrosine kinase/RAS mediated signal transduction...

  1. Expression of ceramide glucosyltransferases, which are essential for glycosphingolipid synthesis, is only required in a small subset of C. elegans cells

    DEFF Research Database (Denmark)

    Marza, Esther; Simonsen, Karina T; Færgeman, Nils J

    2009-01-01

    mutants with essentially no GSLs. The C. elegans genome encodes three ceramide glucosyltransferase (CGT) genes, which encode enzymes required for GSL biosynthesis. Animals lacking CGT do not synthesize GSLs, arrest growth at the first larval stage, and display defects in a subset of cells...... suggest that GSLs are dispensable in most C. elegans cells, including those of the nervous system.......Glycosphingolipids (GSLs) are glycosylated derivatives of ceramide in the lipid bilayer. Their ubiquitous distribution and complexity suggest that they have important functions, but what these are in vivo is still poorly understood. Here, we characterize the phenotype of Caenorhabditis elegans...

  2. Non-linear imaging techniques visualize the lipid profile of C. elegans

    Science.gov (United States)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  3. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    Science.gov (United States)

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  4. Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans AND T. catigua (Meliaceae

    Directory of Open Access Journals (Sweden)

    Andréia Pereira Matos

    2009-01-01

    Full Text Available Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda.

  5. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    Science.gov (United States)

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  6. Catalytic-independent roles of UTX-1 in C. elegans development

    DEFF Research Database (Denmark)

    Vandamme, Julien; Salcini, Anna Elisabetta

    2013-01-01

    We recently analyzed the functional roles of UTX-1 during development. utx-1 is an essential gene required for the correct embryonic and post-embryonic development of C. elegans, and it displays an H3K27me3 demethylase activity. Rescue experiments demonstrated that the enzymatic activity of UTX-1...

  7. Interplay among Resistance Profiles, High-Risk Clones, and Virulence in the Caenorhabditis elegans Pseudomonas aeruginosa Infection Model.

    Science.gov (United States)

    Sánchez-Diener, Irina; Zamorano, Laura; López-Causapé, Carla; Cabot, Gabriel; Mulet, Xavier; Peña, Carmen; Del Campo, Rosa; Cantón, Rafael; Doménech-Sánchez, Antonio; Martínez-Martínez, Luis; Arcos, Susana C; Navas, Alfonso; Oliver, Antonio

    2017-12-01

    The increasing prevalence of nosocomial infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa is frequently linked to widespread international strains designated high-risk clones. In this work, we attempted to decipher the interplay between resistance profiles, high-risk clones, and virulence, testing a large ( n = 140) collection of well-characterized P. aeruginosa isolates from different sources (bloodstream infections, nosocomial outbreaks, cystic fibrosis, and the environment) in a Caenorhabditis elegans infection model. Consistent with previous data, we documented a clear inverse correlation between antimicrobial resistance and virulence in the C. elegans model. Indeed, the lowest virulence was linked to XDR profiles, which were typically linked to defined high-risk clones. However, virulence varied broadly depending on the involved high-risk clone; it was high for sequence type 111 (ST111) and ST235 but very low for ST175. The highest virulence of ST235 could be attributed to its exoU + type III secretion system (TTSS) genotype, which was found to be linked with higher virulence in our C. elegans model. Other markers, such as motility or pigment production, were not essential for virulence in the C. elegans model but seemed to be related with the higher values of the statistical normalized data. In contrast to ST235, the ST175 high-risk clone, which is widespread in Spain and France, seems to be associated with a particularly low virulence in the C. elegans model. Moreover, the previously described G154R AmpR mutation, prevalent in ST175, was found to contribute to the reduced virulence, although it was not the only factor involved. Altogether, our results provide a major step forward for understanding the interplay between P. aeruginosa resistance profiles, high-risk clones, and virulence. Copyright © 2017 American Society for Microbiology.

  8. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans

    KAUST Repository

    Zhang, Yu

    2014-08-22

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  9. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans

    KAUST Repository

    Zhang, Yu; Sun, Jin; Zhang, Huoming; Chandramouli, Kondethimmanahalli; Xu, Ying; He, Lisheng; Ravasi, Timothy; Qian, Peiyuan

    2014-01-01

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  10. Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans and T. catigua (Meliaceae)

    International Nuclear Information System (INIS)

    Matos, Andreia Pereira; Nebo, Liliane; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da; Rodrigues, Ricardo Ribeiro

    2009-01-01

    Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda. (author)

  11. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans.

    Science.gov (United States)

    Zhang, Yu; Sun, Jin; Zhang, Huoming; Chandramouli, Kondethimmanahalli H; Xu, Ying; He, Li-Sheng; Ravasi, Timothy; Qian, Pei-Yuan

    2014-09-01

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  12. Nocardia elegans infection: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Itaru Nakamura

    2017-01-01

    Full Text Available A case of disseminated nocardiosis caused by Nocardia elegans in a 72-year-old man with rheumatoid arthritis, treated with tacrolimus and prednisolone, is reported herein. The patient had impaired vision and was diagnosed with endophthalmitis and an abdominal skin abscess. He was started on trimethoprim–sulfamethoxazole treatment, followed by cefepime. The patient was then switched to a combination of imipenem–cilastatin and minocycline. Although the patient survived as a result of surgery and prolonged antibiotic treatment, he eventually lost vision after the infection became resistant to antibiotic treatment. Molecular analysis of samples from the abscess and vitreous fluid confirmed the extremely rare pathogen N. elegans, which accounts for only 0.3–0.6% of infections caused by Nocardia species. This organism is almost always associated with pulmonary infection, and disseminated infections are rare. As with previously reported norcardial infections, the current case was treated successfully with trimethoprim–sulfamethoxazole, carbapenems, and aminoglycosides. However, the clinical characteristics of this organism remain unclear. Further studies are therefore required to develop more effective treatment protocols for disseminated nocardiosis caused by this problematic pathogen.

  13. Microsporidia in aquatic microcrustacea: the copepod microsporidium Marssoniella elegans Lemmermann, 1900 revisited

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Oborník, Miroslav; Vossbrinck, C. R.

    2005-01-01

    Roč. 52, 1/2 (2005), s. 163-172 ISSN 0015-5683 Institutional research plan: CEZ:AV0Z60220518 Keywords : Microsporidia * Marssoniella elegans * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.138, year: 2005

  14. Approaches for Studying Autophagy in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yanfang Chen

    2017-08-01

    Full Text Available Macroautophagy (hereafter referred to as autophagy is an intracellular degradative process, well conserved among eukaryotes. By engulfing cytoplasmic constituents into the autophagosome for degradation, this process is involved in the maintenance of cellular homeostasis. Autophagy induction triggers the formation of a cup-shaped double membrane structure, the phagophore, which progressively elongates and encloses materials to be removed. This double membrane vesicle, which is called an autophagosome, fuses with lysosome and forms the autolysosome. The inner membrane of the autophagosome, along with engulfed compounds, are degraded by lysosomal enzymes, which enables the recycling of carbohydrates, amino acids, nucleotides, and lipids. In response to various factors, autophagy can be induced for non-selective degradation of bulk cytoplasm. Autophagy is also able to selectively target cargoes and organelles such as mitochondria or peroxisome, functioning as a quality control system. The modification of autophagy flux is involved in developmental processes such as resistance to stress conditions, aging, cell death, and multiple pathologies. So, the use of animal models is essential for understanding these processes in the context of different cell types throughout the entire lifespan. For almost 15 years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. This review presents a rapid overview of physiological processes involving autophagy in Caenorhabditis elegans, the different assays used to monitor autophagy, their drawbacks, and specific tools for the analyses of selective autophagy.

  15. Identification of novel protein functions and signaling mechanisms by genetics and quantitative phosphoproteomics in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Møller-Jensen, Jakob

    2014-01-01

    knockdown by feeding the nematode on pre-labeled lysine auxotroph Escherichia coli. In this chapter, we describe in details the generation of the E. coli strain, incorporation of heavy isotope-labeled lysine in C. elegans, and the procedure for a comprehensive global phosphoproteomic experiment.......Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology for measuring relative changes in protein and phosphorylation levels at a global level. We have applied this method to the model organism Caenorhabditis elegans in combination with RNAi-mediated gene...

  16. Interpreting a sequenced genome: toward a cosmid transgenic library of Caenorhabditis elegans.

    Science.gov (United States)

    Janke, D L; Schein, J E; Ha, T; Franz, N W; O'Neil, N J; Vatcher, G P; Stewart, H I; Kuervers, L M; Baillie, D L; Rose, A M

    1997-10-01

    We have generated a library of transgenic Caenorhabditis elegans strains that carry sequenced cosmids from the genome of the nematode. Each strain carries an extrachromosomal array containing a single cosmid, sequenced by the C. elegans Genome Sequencing Consortium, and a dominate Rol-6 marker. More than 500 transgenic strains representing 250 cosmids have been constructed. Collectively, these strains contain approximately 8 Mb of sequence data, or approximately 8% of the C. elegans genome. The transgenic strains are being used to rescue mutant phenotypes, resulting in a high-resolution map alignment of the genetic, physical, and DNA sequence maps of the nematode. We have chosen the region of chromosome III deleted by sDf127 and not covered by the duplication sDp8(III;I) as a starting point for a systematic correlation of mutant phenotypes with nucleotide sequence. In this defined region, we have identified 10 new essential genes whose mutant phenotypes range from developmental arrest at early larva, to maternal effect lethal. To date, 8 of these 10 essential genes have been rescued. In this region, these rescues represent approximately 10% of the genes predicted by GENEFINDER and considerably enhance the map alignment. Furthermore, this alignment facilitates future efforts to physically position and clone other genes in the region. [Updated information about the Transgenic Library is available via the Internet at http://darwin.mbb.sfu.ca/imbb/dbaillie/cos mid.html.

  17. Imaging C. elegans embryos using an epifluorescent microscope and open source software.

    Science.gov (United States)

    Verbrugghe, Koen J C; Chan, Raymond C

    2011-03-24

    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples(1,2). Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage(3), thus providing an ideal experiment model for studying questions in cell biology(4,5)and development(6-9). C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis(10,11)) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis(12-15)). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters(16,17). These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo(18-21). In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.

  18. Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Portal-Celhay Cynthia

    2012-03-01

    Full Text Available Abstract Background A powerful approach to understanding complex processes such as aging is to use model organisms amenable to genetic manipulation, and to seek relevant phenotypes to measure. Caenorhabditis elegans is particularly suited to studies of aging, since numerous single-gene mutations have been identified that affect its lifespan; it possesses an innate immune system employing evolutionarily conserved signaling pathways affecting longevity. As worms age, bacteria accumulate in the intestinal tract. However, quantitative relationships between worm genotype, lifespan, and intestinal lumen bacterial load have not been examined. We hypothesized that gut immunity is less efficient in older animals, leading to enhanced bacterial accumulation, reducing longevity. To address this question, we evaluated the ability of worms to control bacterial accumulation as a functional marker of intestinal immunity. Results We show that as adult worms age, several C. elegans genotypes show diminished capacity to control intestinal bacterial accumulation. We provide evidence that intestinal bacterial load, regulated by gut immunity, is an important causative factor of lifespan determination; the effects are specified by bacterial strain, worm genotype, and biologic age, all acting in concert. Conclusions In total, these studies focus attention on the worm intestine as a locus that influences longevity in the presence of an accumulating bacterial population. Further studies defining the interplay between bacterial species and host immunity in C. elegans may provide insights into the general mechanisms of aging and age-related diseases.

  19. insights from a linkage map of the damselfly Ischnura elegans

    Indian Academy of Sciences (India)

    tion of achiasmiatic meiosis. Biochem. Genet. 19, 1237–. 1245. Cooper G., Miller P. L. and Holland P. W. H. 1994 Molecular genetic analysis of sperm competition in the damselfly Ischnura elegans (Vander Linden). Proc. R. Soc. London, Ser. B 263,. 1343–1349. Huxley J. S. 1928 Sexual differences in linkage in Gammar-.

  20. Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pan-Young Jeong

    Full Text Available When Caenorhabditis elegans senses dauer pheromone (daumone, signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1 and normal growth media plus liquid culture (Path 2. Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h and is complete at S6 (72 h. Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.

  1. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Zhendong Yang

    2015-12-01

    Full Text Available Aflatoxins B1 (AFB1, deoxynivalenol (DON, fumonisin B1 (FB1, T-2 toxin (T-2, and zearalenone (ZEA are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model.

  2. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress

    International Nuclear Information System (INIS)

    Ye Kan; Gu Guixiong; Ji Chenbo; Ni Yuhui; Chen Xiaohui; Guo Xirong; Lu Xiaowei; Gao Chunlin; Zhao Yaping

    2010-01-01

    Resveratrol, a member of a class of polyphenolic compounds known as flavonols, has been extensively studied for its anticancer, antiviral, anti-inflammatory, and neuroprotective roles. Caenorhabidits elegans is a well-established animal for investigating responses to radiation. We found that resveratrol may provide protection against hazardous radiation. Pre-treatment with resveratrol extended both the maximum and mean life span of irradiated C. elegans. Resveratrol acted as a strong radical scavenger and regulated superoxide dismutase (SOD) expression. In addition, resveratrol was shown to be capable of alleviating γ-ray radiation exposure-induced reduction in mitochondrial SOD expression. Ultimately, a correlation may exist between dietary intake of trace amounts of resveratrol and anti-aging effects. A specific response mechanism may be activated after the administration of resveratrol in irradiated animals. Our results suggest the protective effect of resveratrol is due to its strong ability to protect from oxidative stress and protective effects in mitochondria. Therefore, resveratrol is potentially an effective protecting agent against irradiative damage. (author)

  3. RNAi targeting Caenorhabditis elegans α-arrestins has small or no effects on lifespan [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Sangsoon Park

    2017-10-01

    Full Text Available Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had small or no effects on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.

  4. A maternal-effect genetic incompatibility in Caenorhabditis elegans

    OpenAIRE

    Burga, Alejandro; Ben-David, Eyal; Kruglyak, Leonid

    2017-01-01

    Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing a genetic incompatibility between strains of the nematode Caenorhabditis elegans . The element is made up of sup-35 , a maternal-effect toxin that kills developing embryos, and pha-1 , its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development based on its mutant phenotype, but this phenotype in fact arises fro...

  5. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    Directory of Open Access Journals (Sweden)

    Henrik Jakobsen

    Full Text Available The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  6. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    Science.gov (United States)

    Jakobsen, Henrik; Bojer, Martin S; Marinus, Martin G; Xu, Tao; Struve, Carsten; Krogfelt, Karen A; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  7. Pyrrolnitrin and Hydrogen Cyanide Production by Pseudomonas chlororaphis Strain PA23 Exhibits Nematicidal and Repellent Activity against Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Munmun Nandi

    Full Text Available Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN, phenazine (PHZ, hydrogen cyanide (HCN, and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA, and the Phz quorum-sensing system. Beyond pathogen-suppression, the success of a biocontrol agent is dependent upon its ability to establish itself in the environment where predation by bacterivorous organisms, including nematodes, may threaten persistence. The focus of this study was to investigate whether PA23 is able to resist grazing by Caenorhabditis elegans and to define the role played by exoproducts in the bacterial-nematode interaction. We discovered that both PRN and HCN contribute to fast- and slow-killing of C. elegans. HCN is well-established as having lethal effects on C. elegans; however, PRN has not been reported to be nematicidal. Exposure of L4 stage nematodes to purified PRN reduced nematode viability in a dose-dependent fashion and led to reduced hatching of eggs laid by gravid adults. Because bacterial metabolites can act as chemoattractants or repellents, we analyzed whether PA23 exhibited attractant or repulsive properties towards C. elegans. Both PRN and HCN were found to be potent repellents. Next we investigated whether the presence of C. elegans would elicit changes in PA23 gene activity. Co-culturing the two organisms increased expression of a number of genes associated with biocontrol, including phzA, hcnA, phzR, phzI, rpoS and gacS. Exoproduct analysis showed that PHZ and autoinducer signals were upregulated, consistent with the gene expression profiles. Collectively, these findings indicate that PA23 is able to sense the presence of C. elegans and it is able to both repel and kill the nematodes, which

  8. Effect of gamma rays on some qualitative and quantitative characters in Zinnia elegans Jacq

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Jayabalan, N.

    1997-01-01

    Mutations were induced in Zinnia elegans Jacq. cv. Crimson Red by using gamma irradiation for plant morphology and flower colour. Significant effects were observed as shown by the increased mean value of plant height, branch number, flower number, and flower diameter up to 7.5 kR dose. Among the gamma-ray doses, only 7.5 kR produced significant morphological changes in Zinnia elegans, which may be due to additive gene effect. Four types of new flower colour mutations were induced: majenta, yellow, red and red with white spots. The number of petals (ray florets) was significantly higher in the mutants over control. Two types of structural anomalies were also identified

  9. A Caenorhabditis elegans Host Model Correlates with Invasive Disease Caused by Staphylococcus aureus Recovered during an Outbreak in Neonatal Intensive Care

    Directory of Open Access Journals (Sweden)

    Kaiyu Wu

    2012-01-01

    Full Text Available BACKGROUND: Caenorhabditis elegans has previously been used as a host model to determine the virulence of clinical methicillin-resistant Staphylococcus aureus isolates. In the present study, methicillin-susceptible S aureus (MSSA strains associated with an outbreak in a neonatal intensive care unit (NICU were investigated using the C elegans model.

  10. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans.

    Science.gov (United States)

    Andachi, Yoshiki; Kohara, Yuji

    2016-07-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans Here, we show a novel WISH method for miRNA detection in C. elegans Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. © 2016 Andachi and Kohara; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea; Alstrup Jensen, Keld; Johansen, Anders

    2012-01-01

    Toxicity of nano-formulated silver to eukaryotes was assessed by exposing nematodes (Caenorhabditis elegans) to two types of silver nanoparticles (AgNPs): with average primary particle diameters of 1 nm (AgNP1) and 28 nm (AgNP28, PVP coated), respectively. Tests were performed with and without pr...

  12. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Directory of Open Access Journals (Sweden)

    Rhonda L Feinbaum

    Full Text Available Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700 were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  13. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Science.gov (United States)

    Feinbaum, Rhonda L; Urbach, Jonathan M; Liberati, Nicole T; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  14. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay.

    Directory of Open Access Journals (Sweden)

    Ikechukwu Okoli

    2009-09-01

    Full Text Available Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans-C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.

  15. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    2011-03-01

    Full Text Available The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as "dauer pheromones" because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development.Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone. After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions.Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings

  16. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    Science.gov (United States)

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  17. Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model

    Science.gov (United States)

    Gao, Chenfei; King, Michael L.; Fitzpatrick, Zachary L.; Wei, Wenqian; King, Jason F.; Wang, Mingming; Greenway, Frank L.; Finley, John W.; Burton, Jeffrey H.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Zheng, Jolene

    2016-01-01

    Prowashonupana barley (PWB) is high in β-glucan with moderate content of resistant starch. PWB reduced intestinal fat deposition (IFD) in wild type Caenorhabditis elegans (C. elegans, N2), and in sir-2.1 or daf-16 null mutants, and sustained a surrogate marker of lifespan, pharyngeal pumping rate (PPR), in N2, sir-2.1, daf-16, or daf-16/daf-2 mutants. Hyperglycaemia (2% glucose) reversed or reduced the PWB effect on IFD in N2 or daf-16/daf-2 mutants with a sustained PPR. mRNA expression of cpt-1, cpt-2, ckr-1, and gcy-8 were dose-dependently reduced in N2 or daf-16 mutants, elevated in daf-16/daf-2 mutants with reduction in cpt-1, and unchanged in sir-2.1 mutants. mRNA expressions were increased by hyperglycaemia in N2 or daf-16/daf-2 mutants, while reduced in sir-2.1 or daf-16 mutants. The effects of PWB in the C. elegans model appeared to be primarily mediated via sir-2.1, daf-16, and daf-16/daf-2. These data suggest that PWB and β-glucans may benefit hyperglycaemia-impaired lipid metabolism. PMID:27721901

  18. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    Science.gov (United States)

    Watts, Jennifer L.

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697

  19. Chemotaxis of C. elegans in 3D media: a model for navigation of undulatory microswimmers

    Science.gov (United States)

    Patel, Amar; Bilbao, Alejandro; Rahman, Mizanur; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2017-11-01

    While the natural environment of C. elegans consists of complex 3D media (e.g., decomposing organic matter and water), most studies of chemotactic behavior of this nematode are limited to 2D. We present a 3D chemotaxis model that combines a realistic geometrical representation of body movements associated with 3D maneuvers, an analysis of mechanical interactions of the nematode body with the surrounding medium to determine nematode trajectories, and a simple memory-function description of chemosensory apparatus that controls the frequency, magnitude, and timing of turning maneuvers. We show that two main chemotaxis strategies of C. elegans moving in 2D, i.e., the biased random walk and gradual turn, are effective also in 3D, provided that 2D turns are supplemented by the roll maneuvers that enable 3D reorientation. Optimal choices of chemosensing and gait-control parameters are discussed; we show that the nematode can maintain efficient chemotaxis in burrowing and swimming by adjusting the undulation frequency alone, without changing the chemotactic component of the body control. Understanding how C. elegans efficiently navigates in 3D media may help in developing self-navigating artificial microswimmers. Supported by NSF Grant No. CBET 1603627.

  20. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  1. Developmental wiring of specific neurons is regulated by RET-1/Nogo-A in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Nørgaard, Steffen; Høye, Anette M.

    2017-01-01

    Nogo-A is a membrane-bound protein that functions to inhibit neuronal migration, adhesion, and neurite outgrowth during development. In the mature nervous system, Nogo-A stabilizes neuronal wiring to inhibit neuronal plasticity and regeneration after injury. Here, we show that RET-1, the sole Nog...... present a previously unidentified function for RET-1 in the nervous system of C. elegans.......-A homolog in Caenorhabditis elegans, is required to control developmental wiring of a specific subset of neurons. In ret-1 deletion mutant animals, specific ventral nerve cord axons are misguided where they fail to respect the ventral midline boundary. We found that ret-1 is expressed in multiple neurons...

  2. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.

    Science.gov (United States)

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-07-03

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.

  3. Effects of Genetic Mutations and Chemical Exposures on Caenorhabditis elegans Feeding: Evaluation of a Novel, High-Throughput Screening Assay

    OpenAIRE

    Boyd, Windy A.; McBride, Sandra J.; Freedman, Jonathan H.

    2007-01-01

    Background Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neurom...

  4. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    Science.gov (United States)

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  5. Regulation of lead toxicity by heat shock protein 90 (daf-21) is affected by temperature in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yunbiao; Xu, Songbai; Liu, Jing; Zhang, Yanhui; Guo, Tai L

    2014-06-01

    In the nematode Caenorhabditis elegans, stress resistance can be regulated by dauer formation (daf) genes. In the present study, regulation of heavy metal lead (Pb) toxicity by the 90-kDa heat shock proteins (Hsp90; daf-21) was investigated in both wild-type C. elegans and daf-21/Hsp90 mutants by focusing on the effects of varied temperatures below (15°C) or above (25 and 30°C) the presumptive optimum growth temperature (20°C). More acute toxicity of Pb, indicated by the 24-h median lethal concentrations (LC50), was observed in wild-type adults than in the daf-21 mutant adults at 15, 20 and 25°C; however, the daf-21 mutant adults showed more sensitivity at 30°C. Enhanced Pb sensitivity (e.g., decrease LC50) in both types of C. elegans was observed with both increased and decreased temperatures when compared to that at 20°C. Additional examined endpoints included time course of toxicity at LC50s, pharyngeal pumping, reproduction, life span, and Hsp90 expression. Collective results showed that temperatures both above and below 20°C exacerbated Pb toxicity, and that the protein level of daf-21/Hsp90 was one of the most sensitive indicators of Pb toxicity in wild-type C. elegans, while pharyngeal pumping was more Pb sensitive in daf-21 mutants. Therefore, the expression of daf-21/Hsp90 has apparent utility for the prediction and assessment of Pb-induced toxicity in nematodes. Further, the stress responses related to Hsp90 expression in C. elegans may have considerable potential as sensitive biomarkers for the monitoring of environmental Pb contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  7. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity

    Science.gov (United States)

    Fenk, Lorenz A.; de Bono, Mario

    2015-01-01

    Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry. PMID:26100886

  8. Gait modulation in C. elegans: An integrated neuromechanical model

    Directory of Open Access Journals (Sweden)

    Jordan Hylke Boyle

    2012-03-01

    Full Text Available Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. Wepresent a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimentalpredictions, in particular with respect to nonlinearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body.

  9. The Alkaloid Compound Harmane Increases the Lifespan of Caenorhabditis elegans during Bacterial Infection, by Modulating the Nematode’s Innate Immune Response

    Science.gov (United States)

    Marinus, Martin G.; Xu, Tao; Struve, Carsten; Krogfelt, Karen A.; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs. PMID:23544153

  10. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delawary, Mina; Nakazawa, Takanobu; Tezuka, Tohru; Sawa, Mariko; Iino, Yuichi; Takenawa, Tadaomi; Yamamoto, Tadashi

    2007-01-01

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans

  11. Radiation sensitivity and DNA repair in Caenorhabditis elegans strains with different mean life spans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P S; Simpson, V J; Johnson, T; Mitchell, D

    1988-06-01

    The sensitivities to three DNA damaging agents (UV and ..gamma..-radiation, methyl methanesulfonate) were measured in four recombinant inbred (RI) strains of Caenorhabditis elegans with mean life spans ranging from 13 to 30.9 days, as well as in the wild-type strains used to derive these RI's. Sensitivities at several stages in the developmental cycle were tested. There were no significant correlations between mean life span and the lethal effects of these 3 agents. Excision of two UV-radiation-induced DNA photoproducts was also measured. Long-lived strains were no more repair competent than shorter-lived strains. These data indicate that DNA repair plays at best a minor role in the aging process of C. elegans. 33 refs.; 4 figs.

  12. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport

    OpenAIRE

    Blacque, Oliver E.; Reardon, Michael J.; Li, Chunmei; McCarthy, Jonathan; Mahjoub, Moe R.; Ansley, Stephen J.; Badano, Jose L.; Mah, Allan K.; Beales, Philip L.; Davidson, William S.; Johnsen, Robert C.; Audeh, Mark; Plasterk, Ronald H.A.; Baillie, David L.; Katsanis, Nicholas

    2004-01-01

    Bardet-Biedl syndrome (BBS) is a genetically heterogeneous developmental disorder whose molecular basis is largely unknown. Here, we show that mutations in the Caenorhabditis elegans bbs-7 and bbs-8 genes cause structural and functional defects in cilia. C. elegans BBS proteins localize predominantly at the base of cilia, and like proteins involved in intraflagellar transport (IFT), a process necessary for cilia biogenesis and maintenance, move bidirectionally along the ciliary axoneme. Impor...

  13. Liuwei Dihuang (LWDH, a traditional Chinese medicinal formula, protects against β-amyloid toxicity in transgenic Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jatinder S Sangha

    Full Text Available Liuwei Dihuang (LWDH, a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of β-amyloid (Aβ induced paralysis in Caenorhabditis elegans using ethanol extract (LWDH-EE and water extract (LWDH-WE. Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts. LWDH-WE was rich in polar components such as monosaccharide dimers and trimers, whereas LWDH-EE was enriched in terms of phenolic compounds such as gallic acid and paeonol. In vitro studies revealed higher DPPH radical scavenging activity for LWDH-EE as compared to that found for LWDH-WE. Neither LWDH-EE nor LWDH-WE were effective in inhibiting aggregation of Aβ in vitro. By contrast, LWDH-EE effectively delayed Aβ induced paralysis in the transgenic C. elegans (CL4176 model which expresses human Aβ1-42. Western blot revealed no treatment induced reduction in Aβ accumulation in CL4176 although a significant reduction was observed at an early stage with respect to β-amyloid deposition in C. elegans strain CL2006 which constitutively expresses human Aβ1-42. In addition, LWDH-EE reduced in vivo reactive oxygen species (ROS in C. elegans (CL4176 that correlated with increased survival of LWDH-EE treated N2 worms under juglone-induced oxidative stress. Analysis with GFP reporter strain TJ375 revealed increased expression of hsp16.2::GFP after thermal stress whereas a minute induction was observed for sod3::GFP. Quantitative gene expression analysis revealed that LWDH-EE repressed the expression of amy1 in CL4176 while up-regulating hsp16.2 induced by elevating temperature. Taken together, these results suggest that LWDH extracts, particularly LWDH-EE, alleviated β-amyloid induced toxicity, in part

  14. Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Nigel J O'Neil

    Full Text Available The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the

  15. The Effect of Vitamin E on the Survival Rate of unc-13 Caenorhabditis elegans mutants under Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jessica Porcelan

    2012-01-01

    Full Text Available Caenorhabditis elegans unc-13 mutants express decreased neuronal activity and thus are a good model strain for examining defective nervous systems. These unc-13 mutants as well as wild type N2 strains, show rapid mortality when under oxidative stress. However, the antioxidant vitamin E may prolong survival in unc-13 mutant and N2 strains under oxidative stress. The addition of vitamin E to organisms under oxidative stress has a protective effect in both N2 and unc-13 C. elegans strains. Interestingly, vitamin E resulted in a greater increase in survival rate in N2 worms than with unc-13 mutant worms. While both strains displayed lower mortality rates with the addition of vitamin E, this finding suggests that vitamin E more efficiently increases survival rates of C. elegans with typical nervous system function. The efficacy of vitamin E implies that use of antioxidants may lessen the damage caused by oxidative stress in both N2 and mutant worms.

  16. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1

    DEFF Research Database (Denmark)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha

    2017-01-01

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically...... inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene...... of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins...

  17. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

    OpenAIRE

    Gjorgjieva, Julijana; Biron, David; Haspel, Gal

    2014-01-01

    Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thru...

  18. A sexually conditioned switch of chemosensory behavior in C. elegans.

    Directory of Open Access Journals (Sweden)

    Naoko Sakai

    Full Text Available In sexually reproducing animals, mating is essential for transmitting genetic information to the next generation and therefore animals have evolved mechanisms for optimizing the chance of successful mate location. In the soil nematode C. elegans, males approach hermaphrodites via the ascaroside pheromones, recognize hermaphrodites when their tails contact the hermaphrodites' body, and eventually mate with them. These processes are mediated by sensory signals specialized for sexual communication, but other mechanisms may also be used to optimize mate location. Here we describe associative learning whereby males use sodium chloride as a cue for hermaphrodite location. Both males and hermaphrodites normally avoid sodium chloride after associative conditioning with salt and starvation. However, we found that males become attracted to sodium chloride after conditioning with salt and starvation if hermaphrodites are present during conditioning. For this conditioning, which we call sexual conditioning, hermaphrodites are detected by males through pheromonal signaling and additional cue(s. Sex transformation experiments suggest that neuronal sex of males is essential for sexual conditioning. Altogether, these results suggest that C. elegans males integrate environmental, internal and social signals to determine the optimal strategy for mate location.

  19. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells.

    Directory of Open Access Journals (Sweden)

    Shun Kitaoka

    Full Text Available Caenorhabditis elegans (C. elegans is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS, that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT, we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01, indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.

  20. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Jung, In-Ho; Lee, Jai-Young; Choi, Jinhee

    2007-07-31

    In this study, di(2-ethylhexyl)phthalate (DEHP) toxicities to Caenorhabditis elegans were investigated using multiple toxic endpoints, such as mortality, growth, reproduction and stress-related gene expression, focusing on the identification of chemical-induced gene expression as a sensitive biomarker for DEHP monitoring. The possible use of C. elegans as a sentinel organism in the monitoring of soil ecosystem health was also tested by conducting the experiment on the exposure of nematode to field soil. Twenty-four-hour median lethal concentration (LC50) data suggest that DEHP has a relatively high potential of acute toxicity to C. elegans. Decreases in body length and egg number per worm observed after 24h of DEHP exposure may induce long-term alteration in the growth and reproduction of the nematode population. Based on the result from the C. elegans genome array and indicated in the literatures, stress proteins, metallothionein, vitellogenin, xenobiotic metabolism enzymes, apoptosis-related proteins, and antioxidant enzyme genes were selected as stress-related genes and their expression in C. elegans by DEHP exposure was analyzed semi-quantitatively. Expression of heat shock protein (hsp)-16.1 and hsp-16.2 genes was decreased by DEHP exposure. Expression of cytochrome P450 (cyp) 35a2 and glutathione-S-transferease (gst)-4, phase I and phase II of xenobiotic metabolism enzymes, was increased by DEHP exposure in a concentration-dependent manner. An increase in stress-related gene expressions occurred concomitantly with the deterioration on the physiological level, which suggests an increase in expression of those genes may not be considered as a homeostatic response but as a toxicity that might have physiological consequences. The experiment with the soil from the landfill site suggests that the potential of the C. elegans biomarker identified in laboratory conditions should be calibrated and validated for its use in situ.

  1. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    Science.gov (United States)

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  2. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis

    NARCIS (Netherlands)

    Holmberg, Mats; Nollen, Ellen A A; Hatters, Danny M.; Hannan, Anthony J.

    2013-01-01

    The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer's and Parkinson's disease as well as polyglutamine expansion disorders such as Huntington's disease. Caenorhabditis elegans disease models with transgenic

  3. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    Science.gov (United States)

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    Science.gov (United States)

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  5. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis

    Directory of Open Access Journals (Sweden)

    Araya Carlos L

    2006-06-01

    Full Text Available Abstract Background The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. Results We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. Conclusion By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.

  6. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans.

    Science.gov (United States)

    Fung, Wong Yan; Fat, Ko Frankie Chi; Eng, Cheah Kathryn Song; Lau, Chow King

    2007-11-01

    We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.

  7. Quantitative Assessment of Fat Levels in Caenorhabditis elegans Using Dark Field Microscopy

    Directory of Open Access Journals (Sweden)

    Anthony D. Fouad

    2017-06-01

    Full Text Available The roundworm Caenorhabditis elegans is widely used as a model for studying conserved pathways for fat storage, aging, and metabolism. The most broadly used methods for imaging fat in C. elegans require fixing and staining the animal. Here, we show that dark field images acquired through an ordinary light microscope can be used to estimate fat levels in worms. We define a metric based on the amount of light scattered per area, and show that this light scattering metric is strongly correlated with worm fat levels as measured by Oil Red O (ORO staining across a wide variety of genetic backgrounds and feeding conditions. Dark field imaging requires no exogenous agents or chemical fixation, making it compatible with live worm imaging. Using our method, we track fat storage with high temporal resolution in developing larvae, and show that fat storage in the intestine increases in at least one burst during development.

  8. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.

    Science.gov (United States)

    Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian

    2015-12-16

    Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.

  9. The longevity effect of echinacoside in Caenorhabditis elegans mediated through daf-16.

    Science.gov (United States)

    Wang, Xue; Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-01-01

    Echinacoside (ECH), a natural polyphenolic compound, has been reported to possess important pharmacological activities. However, very little is known about whether or how ECH affects longevity in vivo. We have examined the effects of ECH on the life span and stress tolerance in Caenorhabditis elegans. Our studies demonstrate that the life span of wild-type worms could be extended in the presence of ECH. Furthermore, ECH was found to increase tolerance of worms to heat shock and oxidative stress, while not exerting any influence on pharyngeal pumping rate and progeny production. Our mechanistic studies indicate that supplementation of ECH increases the transcript level of daf-16. ECH treatment also modulates the nuclear localization and transcriptional activities of daf-16, thus fine tunes the expression of daf-16 target genes to promote longevity and increases stress response in C. elegans. Overall, this work reveals the longevity effect of ECH and elucidates the underpinning mechanisms.

  10. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  11. Identification and characterization of a novel allele of Caenorhabditis elegans bbs-7.

    Directory of Open Access Journals (Sweden)

    Kara Braunreiter

    Full Text Available Primary cilia play a role in the sensation of and response to the surrounding environment. Caenorhabditis elegans (C. elegans have primary cilia only on the distal tips of some dendrites. In order to better understand the relationship between receptor localization to cilia, cilia structure and cilia function, we have characterized a mutation originally identified in a forward genetic screen for mutants with defective PKD-2 ciliary localization. Through behavioral assays and examination of the structure of cilia in the cil-5 (my13 mutant animals, we have found that my13 disrupts not only receptor localization, but also some cilia-mediated sensory behaviors and cilia structural integrity. We have identified the my13 lesion and found that it is a missense mutation in bbs-7, an ortholog of human BBS-7, a gene known to affect human cilia and to be involved in Bardet-Biedl syndrome. Finally, we show that bbs-7(my13 also affects the glia cells which support the cilia.

  12. Registro de un ejemplar de Trachemys scripta elegans (Wied 1839) en la provincia de Jujuy, Argentina

    OpenAIRE

    Quiroga, María Fernanda; González Baffa Trasci, Noelia; Akmentins, Mauricio

    2015-01-01

    La tortuga de orejas rojas (Trachemys scripta elegans) es originaria del centro este de los Estados Unidos y noreste de México (Ernst, 1990), pero debido al comercio internacional de animales silvestres se ha convertido en un invasor biológico a nivel global. En Argentina, Trachemys scripta elegans ha sido reportada para dos localidades en la provincia de Buenos Aires y en ambos casos se trató del registro de individuos aislados, por lo que se desconoce si la tortuga de orejas rojas ha lograd...

  13. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle.

    Directory of Open Access Journals (Sweden)

    Kevin Drace

    2009-08-01

    Full Text Available The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-beta signaling pathway.

  14. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Directory of Open Access Journals (Sweden)

    Tong Young Lee

    2016-04-01

    Full Text Available The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory.

  15. CAMKII and calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.

    Science.gov (United States)

    Tao, Li; Xie, Qi; Ding, Yue-He; Li, Shang-Tong; Peng, Shengyi; Zhang, Yan-Ping; Tan, Dan; Yuan, Zengqiang; Dong, Meng-Qiu

    2013-06-25

    The insulin-like signaling pathway maintains a relatively short wild-type lifespan in Caenorhabditis elegans by phosphorylating and inactivating DAF-16, the ortholog of the FOXO transcription factors of mammalian cells. DAF-16 is phosphorylated by the AKT kinases, preventing its nuclear translocation. Calcineurin (PP2B phosphatase) also limits the lifespan of C. elegans, but the mechanism through which it does so is unknown. Herein, we show that TAX-6•CNB-1 and UNC-43, the C. elegans Calcineurin and Ca(2+)/calmodulin-dependent kinase type II (CAMKII) orthologs, respectively, also regulate lifespan through DAF-16. Moreover, UNC-43 regulates DAF-16 in response to various stress conditions, including starvation, heat or oxidative stress, and cooperatively contributes to lifespan regulation by insulin signaling. However, unlike insulin signaling, UNC-43 phosphorylates and activates DAF-16, thus promoting its nuclear localization. The phosphorylation of DAF-16 at S286 by UNC-43 is removed by TAX-6•CNB-1, leading to DAF-16 inactivation. Mammalian FOXO3 is also regulated by CAMKIIA and Calcineurin. DOI:http://dx.doi.org/10.7554/eLife.00518.001.

  16. Impact of a Complex Food Microbiota on Energy Metabolism in the Model Organism Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Elena Zanni

    2015-01-01

    Full Text Available The nematode Caenorhabditis elegans is widely used as a model system for research on aging, development, and host-pathogen interactions. Little is currently known about the mechanisms underlying the effects exerted by foodborne microbes. We took advantage of C. elegans to evaluate the impact of foodborne microbiota on well characterized physiological features of the worms. Foodborne lactic acid bacteria (LAB consortium was used to feed nematodes and its composition was evaluated by 16S rDNA analysis and strain typing before and after colonization of the nematode gut. Lactobacillus delbrueckii, L. fermentum, and Leuconostoc lactis were identified as the main species and shown to display different worm gut colonization capacities. LAB supplementation appeared to decrease nematode lifespan compared to the animals fed with the conventional Escherichia coli nutrient source or a probiotic bacterial strain. Reduced brood size was also observed in microbiota-fed nematodes. Moreover, massive accumulation of lipid droplets was revealed by BODIPY staining. Altered expression of nhr-49, pept-1, and tub-1 genes, associated with obesity phenotypes, was demonstrated by RT-qPCR. Since several pathways are evolutionarily conserved in C. elegans, our results highlight the nematode as a valuable model system to investigate the effects of a complex microbial consortium on host energy metabolism.

  17. Use of C. Elegans as a model organism for sensing the effects of ELF-EMFs

    Energy Technology Data Exchange (ETDEWEB)

    Lacchini, A H; Everington, M L; Augousti, A T; Walker, A J [School of Life Sciences, Kingston University London (United Kingdom)

    2007-07-15

    For the past two decades, there have been concerns and controversy about the effects on human health of the increased exposure to extremely-low-frequency (ELF) electromagnetic fields (EMFs) resulting from electrification, in both residential and industrial settings. Several epidemiological studies have implicated ELF-EMFs averaging 0.4 {mu}mUTesla (T) or more in increased risk of cancer, especially childhood leukaemia [1,2]; there have also been many reports demonstrating effects of power-frequency EMFs on cells [outlined in 1,3]. Unfortunately, however, the precise mechanisms by which ELF-EMFs exert biological effects have proven difficult to define and results of various studies have often been hard to reproduce [1]. We believe that C. elegans offers an exciting opportunity to elucidate the effects of power-frequency EMFs on cell signalling pathways within the whole organism and are therefore investigating the effects of ELF-EMF exposure on MAPK signalling in intact worms and fertilized embryos. Through taking a targeted approach to studying the effects of ELF-EMF's on MAPK signalling in C. elegans we aim to gather data that is physiologically relevant. Presently, this research is at a preliminary stage of preparation, and more detailed results on the exposure of Caenorhabditis elegans to ELF-EMF radiation will be presented at the conference itself.

  18. Carqueja (Baccharis trimera Protects against Oxidative Stress and β-Amyloid-Induced Toxicity in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Franciny Aparecida Paiva

    2015-01-01

    Full Text Available Carqueja (Baccharis trimera is a native plant found throughout South America. Several studies have shown that Carqueja has antioxidant activity in vitro, as well as anti-inflammatory, antidiabetic, analgesic, antihepatotoxic, and antimutagenic properties. However, studies regarding its antioxidant potential in vivo are limited. In this study, we used Caenorhabditis elegans as a model to examine the antioxidant effects of a Carqueja hydroalcoholic extract (CHE on stress resistance and lifespan and to investigate whether CHE has a protective effect in a C. elegans model for Alzheimer's disease. Here, we show for the first time, using in vivo assays, that CHE treatment improved oxidative stress resistance by increasing survival rate and by reducing ROS levels under oxidative stress conditions independently of the stress-related signaling pathways (p38, JNK, and ERK and transcription factors (SKN-1/Nrf and DAF-16/Foxo tested here. CHE treatment also increased the defenses against β-amyloid toxicity in C. elegans, in part by increasing proteasome activity and the expression of two heat shock protein genes. Our findings suggest a potential neuroprotective use for Carqueja, supporting the idea that dietary antioxidants are a promising approach to boost the defensive systems against stress and neurodegeneration.

  19. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw

    2016-11-05

    Highlights: • Fe{sup 0} NPs induced infertility risk in C. elegans. • A C.elegans-based probabilistic risk assessment model is developed. • In situ remediation-released Fe{sup 0} NPs impair soil ecosystems health. - Abstract: There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe{sup 0} NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe{sup 0} NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration–fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe{sup 0} NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe{sup 0} NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18–57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe{sup 0} NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02 mg L{sup −1} of Fe{sup 0} NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe{sup 0} NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation.

  20. Snakebites and ethnobotany in the northwest region of Colombia. Part III: neutralization of the haemorrhagic effect of Bothrops atrox venom.

    Science.gov (United States)

    Otero, R; Núñez, V; Barona, J; Fonnegra, R; Jiménez, S L; Osorio, R G; Saldarriaga, M; Díaz, A

    2000-11-01

    Thirty-one of 75 extracts of plants used by traditional healers for snakebites, had moderate or high neutralizing ability against the haemorrhagic effect of Bothrops atrox venom from Antioquia and Chocó, north-western Colombia. After preincubation of several doses of every extract (7.8-4000 microg/mouse) with six minimum haemorrhagic doses (10 microg) of venom, 12 of them demonstrated 100% neutralizing capacity when the mixture was i.d. injected into mice (18-20 g). These were the stem barks of Brownea rosademonte (Caesalpiniaceae) and Tabebuia rosea (Bignoniaceae); the whole plants of Pleopeltis percussa (Polypodiaceae), Trichomanes elegans (Hymenophyllaceae) and Senna dariensis (Caesalpiniaceae); rhizomes of Heliconia curtispatha (Heliconiaceae); leaves and branches of Bixa orellana (Bixaceae), Philodendron tripartitum (Araceae), Struthanthus orbicularis (Loranthaceae) and Gonzalagunia panamensis (Rubiaceae); the ripe fruits of Citrus limon (Rutaceae); leaves, branches and stem of Ficus nymphaeifolia (Moraceae). Extracts of another 19 species showed moderate neutralization (21-72%) at doses up to 4 mg/mouse, e.g. the whole plants of Aristolochia grandiflora (Aristolochiaceae), Columnea kalbreyeriana (Gesneriaceae), Sida acuta (Malvaceae), Selaginella articulata (Selaginellaceae) and Pseudoelephantopus spicatus (Asteraceae); rhizomes of Renealmia alpinia (Zingiberaceae); the stem of Strychnos xinguensis (Loganiaceae); leaves, branches and stems of Hyptis capitata (Lamiaceae), Ipomoea cairica (Convolvulaceae), Neurolaena lobata (Asteraceae), Ocimum micranthum (Lamiaceae), Piper pulchrum (Piperaceae), Siparuna thecaphora (Monimiaceae), Castilla elastica (Moraceae) and Allamanda cathartica (Apocynaceae); the macerated ripe fruits of Capsicum frutescens (Solanaceae); the unripe fruits of Crescentia cujete (Bignoniaceae); leaves and branches of Piper arboreum (Piperaceae) and Passiflora quadrangularis (Passifloraceae). When the extracts were independently administered

  1. Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Shingai Ryuzo

    2008-11-01

    Full Text Available Abstract Background Multi-sensory integration is necessary for organisms to discriminate different environmental stimuli and thus determine behavior. Caenorhabditis elegans has 12 pairs of amphid sensory neurons, which are involved in generating behaviors such as thermotaxis toward cultivation temperature, and chemotaxis toward chemical stimuli. This arrangement of known sensory neurons and measurable behavioral output makes C. elegans suitable for addressing questions of multi-sensory integration in the nervous system. Previous studies have suggested that C. elegans can process different chemoattractants simultaneously. However, little is known about how these organisms can integrate information from stimuli of different modality, such as thermal and chemical stimuli. Results We studied the behavior of a population of C. elegans during simultaneous presentation of thermal and chemical stimuli. First, we examined thermotaxis within the radial temperature gradient produced by a feedback-controlled thermoregulator. Separately, we examined chemotaxis toward sodium chloride or isoamyl alcohol. Then, assays for simultaneous presentations of 15°C (colder temperature than 20°C room temperature and chemoattractant were performed with 15°C-cultivated wild-type worms. Unlike the sum of behavioral indices for each separate behavior, simultaneous presentation resulted in a biased migration to cold regions in the first 10 min of the assay, and sodium chloride-regions in the last 40 min. However, when sodium chloride was replaced with isoamyl alcohol in the simultaneous presentation, the behavioral index was very similar to the sum of separate single presentation indices. We then recorded tracks of single worms and analyzed their behavior. For behavior toward sodium chloride, frequencies of forward and backward movements in simultaneous presentation were significantly different from those in single presentation. Also, migration toward 15°C in simultaneous

  2. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan.

    Science.gov (United States)

    Bansal, Ankita; Kwon, Eun-Soo; Conte, Darryl; Liu, Haibo; Gilchrist, Michael J; MacNeil, Lesley T; Tissenbaum, Heidi A

    2014-01-01

    Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

  3. Análise comparativa do potencial alelopático do extrato hidroalcoólico e do óleo essencial de folhas de cipó-d'alho (Bignoniaceae Comparative analyses of the allelopathic potential of the hydroalcoholic extract and essential oil of "Cipo-d'alho" (Bignoniaceae leaves

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza Filho

    2009-01-01

    Full Text Available A alelopatia é um importante mecanismo que influencia a estabilidade de agroecossistemas. A identificação desse caráter, em muitos casos, realiza-se via análise dos efeitos de extratos brutos polares. No presente trabalho, caracterizou-se a atividade alelopática do cipó-d'alho (Mansoa standleyi - Bignoniaceae, analisando-se, comparativamente, o extrato hidroalcoólico e o óleo essencial das folhas da planta, procurando-se estabelecer a necessidade de se considerar, em estudos dessa natureza, a abordagem envolvendo extratos apolares. Realizaram-se bioensaios de germinação e desenvolvimento da radícula e do hipocótilo de malícia (Mimosa pudica, em períodos de dez dias, empregando-se concentrações de 0,5%, 1,0% e 2,0%. Foram identificados, ainda, os principais constituintes químicos do óleo essencial. Os resultados indicaram que tanto o extrato hidroalcoólico como o óleo essencial apresentaram potencial para inibir a germinação e o desenvolvimento da radícula e do hipocótilo. O extrato hidroalcoólico manifestou maior potencial inibitório sobre a germinação, enquanto o óleo essencial promoveu inibições mais expressivas sobre o desenvolvimento da radícula e do hipocótilo. Os efeitos estiveram positivamente associados à concentração, com efeitos máximos e mínimos obtidos nas concentrações de 2,0% e 0,5%, respectivamente. Compostos sulfurados, como o dissulfeto de dialila (42,15% e o trissulfeto de dialila (11,25%, isoladamente ou em associação, estão envolvidos nos efeitos alelopáticos promovidos pelo óleo essencial. Adicionalmente, os resultados obtidos apontam para a necessidade de se considerar a utilização de extratos apolares quando da análise da atividade alelopática de uma dada planta, especialmente se não houver informações sobre a produção de óleo essencial pela planta prospectada.Allelopathy is an important mechanism that affects the stability of agro-eco systems. The identification of

  4. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans

    NARCIS (Netherlands)

    Mentink, Remco A; Middelkoop, Teije C; Rella, Lorenzo; Ji, Ni; Tang, Chung Yin; Betist, Marco C; van Oudenaarden, Alexander; Korswagen, Hendrik C

    2014-01-01

    Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into

  5. Population and reproductive dynamics of the polychaete Pygospio elegans in a boreal estuary complex

    DEFF Research Database (Denmark)

    Thonig, Anne; Knott, K Emily; Kesäniemi, Jenni E

    2016-01-01

    Pygospio elegans is an opportunistic, wide-spread spionid polychaete that reproduces asexually via fragmentation and can produce benthic and pelagic larvae, hence combining different developmental modes in one species. We documented the density, size distribution, and reproductive activity of P....... elegans at four sites in the Danish Isefjord-Roskilde Fjord estuary complex, where all modes of reproduction were reported. We compared population dynamics of this species to environmental parameters such as salinity, temperature, and sediment characteristics (grain size, sorting, porosity, water content......, organic content, C/N). We observed that new cohorts—resulting either from sexual or asexual reproduction—appeared in spring and fall, and old ones disappeared in late summer and winter. Sexual reproduction occurred from September until May, and although their timing was variable, there were two...

  6. EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Gramstrup Petersen, Jakob; Rojo Romanos, Teresa; Juozaityte, Vaida

    2013-01-01

    that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms......Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral...

  7. VARIACIÓN GENÉTICA INTERPOBLACIONAL E INTRAPOBLACIONAL EN Lupinus elegans H. B. K. CON MARCADORES MOLECULARES (RAPD’s).

    OpenAIRE

    ALEJANDRE MELENA, NANCY

    2012-01-01

    Lupinus elegans HBK. es una especie representativa de la Flora del Centro-Occidente de México. Esta especie se utiliza en proyectos de restauración de bosques de coníferas en la Meseta Purépecha porque crea microambientes para el establecimiento de especies de Pinus, además de fijar nitrógeno y mejorar las condiciones del suelo empobrecido. En este estudio se evalúa la variación genética de poblaciones de L. elegans por medio de RAPD. Se colectaron un total de 159 individuos en...

  8. The Effect of Variation in Developmental Mode on the Population Dynamics of a Spionid Polychaete (Pygospio elegans) in a Heterogeneous Environment

    DEFF Research Database (Denmark)

    Thonig, Anne

    by the short life span of P. elegans and sweepstakes reproductive success. Additionally, stochastic events, such as rain storms, can lead to abrupt drops in salinity which can be detrimental for P. elegans and hence introduce further changes in population structure. Seasonal dynamics, including sexual...... of poecilogonous species that show a polymorphism in developmental mode might be more useful than are comparisons between species, since no confounding effects due to speciation arise. In this study, I documented the population ecology and genetics of the poecilogonous polychaete P. elegans and investigated...... the impact of abiotic and biotic variables on population dynamics. Four focal populations from the Isefjord-RoskildeFjord estuary complex, Denmark were sampled over one year. I observed highly dynamic population structure in both size cohort data and population genetic data that is possibly explained...

  9. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    Science.gov (United States)

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  10. Evaluation of the antioxidant property and effects in Caenorhabditis elegans of Xiangxi flavor vinegar, a Hunan local traditional vinegar.

    Science.gov (United States)

    Huang, Run-Ting; Huang, Qing; Wu, Gen-Liang; Chen, Chun-Guang; Li, Zong-Jun

    Xiangxi flavor vinegar (XV) is one of Hunan Province's traditional fermented vinegars. It is produced from herb, rice, and spring water with spontaneous liquid-state fermentation techniques. In this study, we investigated the antioxidant property of XV by analyzing its antioxidant compounds, its free radical scavenging property in vitro and in vivo, and its effects on antioxidant enzyme activity and apoptosis in Caenorhabditis elegans. The results showed that XV is rich in antioxidants. In particular, ligustrazine reached 6.431 μg/ml. The in vitro 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH • ), hydroxyl radical ( • OH), and superoxide anion radical (O 2 •- ) scavenging rates of XV were 95.85%, 97.22%, and 63.33%, respectively. The reactive oxygen species (ROS) content in XV-treated C. elegans decreased significantly (Pantioxidants and scavenges radicals in vitro efficiently. XV inhibits apoptosis in C. elegans probably by scavenging ROS and increasing the activities of its antioxidant enzymes.

  11. Acute drug treatment in the early C. elegans embryo.

    Directory of Open Access Journals (Sweden)

    Ana Carvalho

    Full Text Available Genetic and genome-wide RNAi approaches available in C. elegans, combined with tools for visualizing subcellular events with high-resolution, have led to increasing adoption of the early C. elegans embryo as a model for mechanistic and functional genomic analysis of cellular processes. However, a limitation of this system has been the impermeability of the embryo eggshell, which has prevented the routine use of small molecule inhibitors. Here, we present a method to permeabilize and immobilize embryos for acute inhibitor treatment in conjunction with live imaging. To identify a means to permeabilize the eggshell, we used a dye uptake assay to screen a set of 310 candidate genes defined by a combination of bioinformatic criteria. This screen identified 20 genes whose inhibition resulted in >75% eggshell permeability, and 3 that permeabilized embryos with minimal deleterious effects on embryo production and early embryonic development. To mount permeabilized embryos for acute drug addition in conjunction with live imaging, we combined optimized inhibition of one of these genes with the use of a microfabricated chamber that we designed. We demonstrate that these two developments enable the temporally controlled introduction of inhibitors for mechanistic studies. This method should also open new avenues of investigation by allowing profiling and specificity-testing of inhibitors through comparison with genome-wide phenotypic datasets.

  12. Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans

    International Nuclear Information System (INIS)

    Cerniglia, C.E.; Lambert, K.J.; Miller, D.W.; Freeman, J.P.

    1984-01-01

    Cunninghamella elegans metabolized 1- and 2-methylnaphthalene primarily at the methyl group to form 1- and 2-hydroxymethylnaphthalene, respectively. Other compounds isolated and identified were 1- and 2-naphthoic acids, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, and phenolic derivatives of 1- and 2-methylnaphthalene. The metabolites were isolated by thin-layer and reverse-phase high-presure liquid chromatography and characterized by the application of UV-visible absorption, 1 H nuclear magnetic resonance, and mass spectral techniques. Experiments with [8- 14 C]2-methylnaphthalene indicated that over a 72-h period, 9.8% of 2-methylnaphthalene was oxidized to metabolic products. The ratio of organic-soluble to water-soluble metabolites at 2 h was 92:8, and at 72 h it was 41:59. Enzymatic treatment of the 48-h aqueous phase with either β-glucuronidase or arylsufatase released 60% of the metabolites of 2-methylnaphthalene that were extractable with ethyl acetate. In both cases, the major conjugates released were 5-hydroxy-2-naphthoic acid and 6-hydroxy-2-naphthoic acid. The ratio of the water-soluble glucuronide conjugates to sulfate conjugates was 1:1. Incubation of C. elegans with 2-methylnaphthalene under an 18 O 2 atmosphere and subsequent mass spectral analysis of 2-hydroxymethylnaphthalene indicated that hydroxylation of the methyl group is catalyzed by a monooxygenase. 23 references

  13. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  14. C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling.

    Directory of Open Access Journals (Sweden)

    Sebastian J Honnen

    Full Text Available The planar cell polarity (PCP pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we describe a novel role of VANG-1, the only C. elegans ortholog of the conserved PCP component Strabismus/Van Gogh. We show that two alleles of vang-1 and depletion of the protein by RNAi cause an increase of mean life span up to 40%. Consistent with the longevity phenotype vang-1 animals also show enhanced resistance to thermal- and oxidative stress and decreased lipofuscin accumulation. In addition, vang-1 mutants show defects like reduced brood size, decreased ovulation rate and prolonged reproductive span, which are also related to gerontogenes. The germline, but not the intestine or neurons, seems to be the primary site of vang-1 function. Life span extension in vang-1 mutants depends on the insulin/IGF-1-like receptor DAF-2 and DAF-16/FoxO transcription factor. RNAi against the phase II detoxification transcription factor SKN-1/Nrf2 also reduced vang-1 life span that might be explained by gradual inhibition of insulin/IGF-1-like signaling in vang-1. This is the first time that a key player of the PCP pathway is shown to be involved in the insulin/IGF-1-like signaling dependent modulation of life span in C. elegans.

  15. Virulence variations in Shigella and enteroinvasive Escherichia coli using the Caenorhabditis elegans model.

    Science.gov (United States)

    Fung, Crystal Ching; Octavia, Sophie; Mooney, Anne-Marie; Lan, Ruiting

    2015-01-01

    Shigella species and enteroinvasive Escherichia coli (EIEC) belong to the same species genetically, with remarkable phenotypic and genomic similarities. Shigella is the main cause of bacillary dysentery with around 160 million annual cases, while EIEC generally induces a milder disease compared to Shigella. This study aimed to determine virulence variations between Shigella and EIEC using the nematode Caenorhabditis elegans as a model host. Caenorhabditis elegans killing- and bacterial colonization assays were performed to examine the potential difference in virulence between Shigella and EIEC strains. Statistically significant difference in the survival rates of nematodes was demonstrated, with Shigella causing death at 88.24 ± 1.20% and EIEC at 94.37 ± 0.70%. The intestinal load of bacteria in the nematodes was found to be 7.65 × 10(4) ± 8.83 × 10(3) and 2.92 × 10(4) ± 6.26 × 10(3) CFU ml(-1) per nematode for Shigella and EIEC, respectively. Shigella dysenteriae serotype 1 which carries the Shiga toxin showed the lowest nematode survival rate at 82.6 ± 3.97% and highest bacterial colonization of 1.75 × 10(5) ± 8.17 × 10(4) CFU ml(-1), whereas a virulence plasmid-negative Shigella strain demonstrated 100 ± 0% nematode survival and lowest bacterial accumulation of 1.02 × 10(4) ± 7.23 × 10(2) CFU ml(-1). This study demonstrates C. elegans as an effective model for examining and comparing Shigella and EIEC virulence variation. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Enhanced Biotransformation of Fluoranthene by Intertidally Derived Cunninghamella elegans under Biofilm-Based and Niche-Mimicking Conditions

    Science.gov (United States)

    Mitra, Sayani; Pramanik, Arnab; Banerjee, Srijoni; Haldar, Saubhik; Gachhui, Ratan

    2013-01-01

    The aims of the investigation were to ascertain if surface attachment of Cunninghamella elegans and niche intertidal conditions provided in a bioreactor influenced biotransformation of fluoranthene by C. elegans. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disc allowed comparison of fluoranthene biotransformation between CCFs with a hydrophobic surface (PMMA-CCF) and a hydrophilic glass surface (GS-CCF) and a 500-ml Erlenmeyer flask (EF). Fluoranthene biotransformation was higher by 22-fold, biofilm growth was higher by 3-fold, and cytochrome P450 gene expression was higher by 2.1-fold when C. elegans was cultivated with 2% inoculum as biofilm culture in PMMA-CCF compared to planktonic culture in EF. Biotransformation was enhanced by 7-fold with 10% inoculum. The temporal pattern of biofilm progression based on three-channel fluorescence detection by confocal laser scanning microscopy demonstrated well-developed, stable biofilm with greater colocalization of fluoranthene within extracellular polymeric substances and filaments of the biofilm grown on PMMA in contrast to a glass surface. A bioreactor with discs rotating at 2 revolutions per day affording 6-hourly emersion and immersion mimicked the niche intertidal habitat of C. elegans and supported biofilm formation and transformation of fluoranthene. The amount of transformed metabolite was 3.5-fold, biofilm growth was 3-fold, and cytochrome P450 gene expression was 1.9-fold higher in the process mimicking the intertidal conditions than in a submerged process without disc rotation. In the CCF and reactor, where biofilm formation was comparatively greater, higher concentration of exopolysaccharides allowed increased mobilization of fluoranthene within the biofilm with consequential higher gene expression leading to enhanced volumetric productivity. PMID:24038685

  17. Establishing in vitro Zinnia elegans cell suspension culture with high tracheary elements differentiation

    NARCIS (Netherlands)

    Twumasi, P.; Schel, J.H.N.; Ieperen, van W.; Woltering, E.J.; Emons, A.M.C.

    2009-01-01

    The Zinnia elegans mesophyll cell culture is a useful system for xylogenesis studies. The system is associated with highly synchronous tracheary element (TE) differentiation, making it more suitable for molecular studies requiring larger amounts of molecular isolates, such as mRNA and proteins and

  18. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Vrablik, Tracy L. [Washington State Univ., Pullman, WA (United States); Petyuk, Vladislav A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Emily M. [Washington State Univ., Pullman, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watts, Jennifer [Washington State Univ., Pullman, WA (United States)

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  19. Maple Syrup Decreases TDP-43 Proteotoxicity in a Caenorhabditis elegans Model of Amyotrophic Lateral Sclerosis (ALS).

    Science.gov (United States)

    Aaron, Catherine; Beaudry, Gabrielle; Parker, J Alex; Therrien, Martine

    2016-05-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing death of the motor neurons. Proteotoxicity caused by TDP-43 protein is an important aspect of ALS pathogenesis, with TDP-43 being the main constituent of the aggregates found in patients. We have previously tested the effect of different sugars on the proteotoxicity caused by the expression of mutant TDP-43 in Caenorhabditis elegans. Here we tested maple syrup, a natural compound containing many active molecules including sugars and phenols, for neuroprotective activity. Maple syrup decreased several age-dependent phenotypes caused by the expression of TDP-43(A315T) in C. elegans motor neurons and requires the FOXO transcription factor DAF-16 to be effective.

  20. Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model.

    Science.gov (United States)

    Begun, Jakob; Sifri, Costi D; Goldman, Samuel; Calderwood, Stephen B; Ausubel, Frederick M

    2005-02-01

    Staphylococcus aureus is an important human pathogen that is also able to kill the model nematode Caenorhabditis elegans. We constructed a 2,950-member Tn917 transposon insertion library in S. aureus strain NCTC 8325. Twenty-one of these insertions exhibited attenuated C. elegans killing, and of these, 12 contained insertions in different genes or chromosomal locations. Ten of these 12 insertions showed attenuated killing phenotypes when transduced into two different S. aureus strains, and 5 of the 10 mutants correspond to genes that have not been previously identified in signature-tagged mutagenesis studies. These latter five mutants were tested in a murine renal abscess model, and one mutant harboring an insertion in nagD exhibited attenuated virulence. Interestingly, Tn917 was shown to have a very strong bias for insertions near the terminus of DNA replication.

  1. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Kruse, Rikke; Harvald, Eva Bang

    2013-01-01

    Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2...... that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR......, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24), while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22). Here we show that functional loss of HYL-2 decreases lifespan, while loss...

  2. Delayed innocent bystander cell death following hypoxia in Caenorhabditis elegans.

    Science.gov (United States)

    Sun, C-L; Kim, E; Crowder, C M

    2014-04-01

    After hypoxia, cells may die immediately or have a protracted course, living or dying depending on an incompletely understood set of cell autonomous and nonautonomous factors. In stroke, for example, some neurons are thought to die from direct hypoxic injury by cell autonomous primary mechanisms, whereas other so called innocent bystander neurons die from factors released from the primarily injured cells. A major limitation in identifying these factors is the inability of current in vivo models to selectively target a set of cells for hypoxic injury so that the primarily injured cells and the innocent bystanders are clearly delineated. In order to develop such a model, we generated transgenic Caenorhabditis elegans strains where 2-3% of somatic cells were made selectively sensitive to hypoxia. This was accomplished by cell type-specific wild-type rescue in either pharyngeal myocytes or GABAergic neurons of a hypoxia resistance-producing translation factor mutation. Surprisingly, hypoxic targeting of these relatively small subsets of non-essential cells produced widespread innocent bystander cell injury, behavioral dysfunction and eventual organismal death. The hypoxic injury phenotypes of the myocyte or neuron sensitized strains were virtually identical. Using this model, we show that the C. elegans insulin receptor/FOXO transcription factor pathway improves survival when activated only after hypoxic injury and blocks innocent bystander death.

  3. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Directory of Open Access Journals (Sweden)

    Elizabeth Moreno-Arriola

    2014-01-01

    Full Text Available Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.

  4. Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16.

    Science.gov (United States)

    Havermann, Susannah; Humpf, Hans-Ulrich; Wätjen, Wim

    2016-09-01

    The flavonoid baicalein has been demonstrated to be an activator of the transcription factor Nrf2 in mammalian cell lines. We show that it further modulates the Nrf2 homolog SKN-1 in Caenorhabditis elegans and by this pathway mediates beneficial effects in the nematode: baicalein enhances the resistance of C. elegans against lethal thermal and sodium arsenite stress and dose-dependently prolongs the life span of the nematode. Using RNA interference against SKN-1 we were able to show that the induction of longevity and the enhanced stress-resistance were dependent on this transcription factor. DAF-16 (homolog to mammalian FOXO) is another pivotal aging-related transcription factor in the nematode. We demonstrate that DAF-16 does not participate in the beneficial effects of baicalein: since baicalein causes no increase in the nuclear translocation of DAF-16 (DAF-16::GFP expressing strain, incubation time: 1h) and it still induces longevity even in a DAF-16 loss-of-function strain, we conclude, that baicalein increases stress-resistance and life span in C. elegans via SKN-1 but not DAF-16. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model

    KAUST Repository

    Wong, Yee-Chin

    2018-05-29

    A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.

  6. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model

    KAUST Repository

    Wong, Yee-Chin; Abd El Ghany, Moataz; Ghazzali, Raeece N. M.; Yap, Soon-Joo; Hoh, Chee-Choong; Pain, Arnab; Nathan, Sheila

    2018-01-01

    A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.

  7. Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans

    Science.gov (United States)

    Grompone, Gianfranco; Martorell, Patricia; Llopis, Silvia; González, Núria; Genovés, Salvador; Mulet, Ana Paula; Fernández-Calero, Tamara; Tiscornia, Inés; Bollati-Fogolín, Mariela; Chambaud, Isabelle; Foligné, Benoit; Montserrat, Agustín; Ramón, Daniel

    2012-01-01

    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans. PMID:23300685

  8. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Gianfranco Grompone

    Full Text Available Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2O(2. One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.

  9. Morphology, ultrastructure, molecular phylogeny, and autecology of Euplotes elegans Kahl, 1932 (Hypotrichida; Euplotidae) isolated from the anoxic Mariager Fjord, Denmark.

    Science.gov (United States)

    Julian Schwarz, M V; Zuendorf, Alexandra; Stoeck, Thorsten

    2007-01-01

    The morphology, autecology, and molecular phylogeny of an euryhaline Euplotes isolate collected from the anoxic water column of the Mariager Fjord in Denmark were investigated. The isolate matches the original description of Euplotes elegans Kahl, 1932 very well. However, its dorsal silverline system is clearly distinct from the redescription of this species by Tuffrau. Thus, a neotypification is proposed for E. elegans Kahl, 1932. The oval-shaped cell has a mean size of 107 x 51 microm and is characterized by 9.4 dorsolateral kineties, seven prominent dorsal ridges, large elongated ampullae, which encircle the dorsal kinetids, 18 kinetids in the middorsal row, nine frontoventral cirri, five transversal cirri, and three caudal cirri (two right caudal cirri and one left marginal cirrus). The dorsal silverline system is of the double type with the narrow polygons located on the right side of the dorsal kinetids. The ecological tolerances of this species to pH, salinity, temperature, and oxygen match the ambient environmental conditions of the sampling site. Molecular phylogeny was studied using small subunit rRNA (SSU rRNA) gene sequences. The molecular data cluster E. elegans with Euplotes raikovi, a member of the Euplotopsis group. The data suggest that the E. elegans-E. raikovi clade represents an isolated and deep branch at the base of the Euplotes tree.

  10. Biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) chitinase against Caenorhabditis elegans (Rhabditida: Rhabditidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Yu, J.; Xie, Y.; Lin, H.; Huang, Z.; Xu, L.; Gelbič, Ivan; Guan, X.

    2014-01-01

    Roč. 107, č. 2 (2014), s. 551-558 ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * Caenorhabditis elegans * chitinase Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/pdf/10.1603/EC13201

  11. Coupling of Rigor Mortis and Intestinal Necrosis during C. elegans Organismal Death

    Directory of Open Access Journals (Sweden)

    Evgeniy R. Galimov

    2018-03-01

    Full Text Available Organismal death is a process of systemic collapse whose mechanisms are less well understood than those of cell death. We previously reported that death in C. elegans is accompanied by a calcium-propagated wave of intestinal necrosis, marked by a wave of blue autofluorescence (death fluorescence. Here, we describe another feature of organismal death, a wave of body wall muscle contraction, or death contraction (DC. This phenomenon is accompanied by a wave of intramuscular Ca2+ release and, subsequently, of intestinal necrosis. Correlation of directions of the DC and intestinal necrosis waves implies coupling of these death processes. Long-lived insulin/IGF-1-signaling mutants show reduced DC and delayed intestinal necrosis, suggesting possible resistance to organismal death. DC resembles mammalian rigor mortis, a postmortem necrosis-related process in which Ca2+ influx promotes muscle hyper-contraction. In contrast to mammals, DC is an early rather than a late event in C. elegans organismal death.

  12. A DOG’s View of Fanconi Anemia: Insights from C. elegans

    Directory of Open Access Journals (Sweden)

    Martin Jones

    2012-01-01

    Full Text Available C. elegans provides an excellent model system for the study of the Fanconi Anemia (FA, one of the hallmarks of which is sensitivity to interstrand crosslinking agents. Central to our understanding of FA has been the investigation of DOG-1, the functional ortholog of the deadbox helicase FANCJ. Here we review the current understanding of the unique role of DOG-1 in maintaining stability of G-rich DNA in C. elegans and explore the question of why DOG-1 animals are crosslink sensitive. We propose a dynamic model in which noncovalently linked G-rich structures form and un-form in the presence of DOG-1. When DOG-1 is absent but crosslinking agents are present the G-rich structures are readily covalently crosslinked, resulting in increased crosslinks formation and thus giving increased crosslink sensitivity. In this interpretation DOG-1 is neither upstream nor downstream in the FA pathway, but works alongside it to limit the availability of crosslink substrates. This model reconciles the crosslink sensitivity observed in the absence of DOG-1 function with its unique role in maintaining G-Rich DNA and will help to formulate experiments to test this hypothesis.

  13. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yoko Honda

    Full Text Available One of the most important challenges in the study of aging is to discover compounds with longevity-promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ has been reported to possess diverse beneficial properties. Furthermore, protease-treated RJ (pRJ has additional pharmacological activities. Exactly how RJ and pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis elegans and to gain insights into the active agents in RJ and their mechanism of action.We found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5. pRJ-Fr.5 increased the animals' lifespan in part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C. elegans by reducing insulin/IGF-1 signaling (IIS. pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA, which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity.These results demonstrate that RJ and its related substances extend lifespan in C. elegans, suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse species and may lead to the development of nutraceutical

  14. Pancreatitis associated with the helminth Serpinema microcephalus (Nematoda: Camallanidae) in exotic red-eared slider turtles (Trachemys scripta elegans).

    Science.gov (United States)

    Hidalgo-Vila, Judit; Martínez-Silvestre, Albert; Ribas, Alexis; Casanova, Joan Carles; Pérez-Santigosa, Natividad; Díaz-Paniagua, Carmen

    2011-01-01

    Pancreatitis associated with the helminth Serpinema microcephalus was found in three of 19 free-ranging red-eared slider turtles (Trachemys scripta elegans) captured between March 2003 and September 2004 in southern Spain. Microscopic changes were associated with parasite migrations and were characterized by central areas of necrosis surrounded by leukocytes and resulted in destruction of exocrine tissue. The blood profile of one of the three female turtles revealed eosinophilia and hyperglycemia, common in helminth infections and pancreatic disorders respectively. These are the first reported cases of pancreatitis caused by the nematode S. microcephalus in the exotic and newly colonized host T. s. elegans.

  15. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans

    NARCIS (Netherlands)

    Green, J.W.M.; Snoek, L.B.; Kammenga, J.E.; Harvey, S.C.

    2013-01-01

    In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly

  16. Effects of gravity on meiosis, fertilization and early embryogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Sasagawa, Y.; Saito, Y.; Shimizu, M.; Ishioka, N.; Yamashita, M.; Takahashi, H.; Higashitani, A.

    The embryonic development of the nematode Caenorhabditis elegans was examined under different gravitational conditions. The first cleavage plane in the 1-cell embryo was slid to some extent by re-orientation of liquid culture vessel, but the pattern and timing of cleavages were not affected. Under 100G of hypergravity condition with swing-centrifuge, the number of eggs laid from an adult hermaphrodite decreased and their hatching rate was drastically reduced. On the other hand, the embryonic development after fertilization normally occurred and grew to adulthood at more than 100G of hypergravity. When the adult hermaphrodites cultured under 100G of hypergravity transferred to a ground condition (1G), the newly fertilized embryos normally developed and their hatching rate was fully recovered. These results indicated that the reproductive process except spermatogenesis, oogenesis and embryogenesis after fertilization is impaired under 100G of hypergravity condition, and the effect is transient. Namely, the fertilization process including meiotic divisions I and II is sensitive to hypergravity in the nematode C. elegans.

  17. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-09-23

    Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  18. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans

    Directory of Open Access Journals (Sweden)

    Amel eAlqadah

    2013-09-01

    Full Text Available Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  19. Google matrix analysis of C.elegans neural network

    Energy Technology Data Exchange (ETDEWEB)

    Kandiah, V., E-mail: kandiah@irsamc.ups-tlse.fr; Shepelyansky, D.L., E-mail: dima@irsamc.ups-tlse.fr

    2014-05-01

    We study the structural properties of the neural network of the C.elegans (worm) from a directed graph point of view. The Google matrix analysis is used to characterize the neuron connectivity structure and node classifications are discussed and compared with physiological properties of the cells. Our results are obtained by a proper definition of neural directed network and subsequent eigenvector analysis which recovers some results of previous studies. Our analysis highlights particular sets of important neurons constituting the core of the neural system. The applications of PageRank, CheiRank and ImpactRank to characterization of interdependency of neurons are discussed.

  20. Google matrix analysis of C.elegans neural network

    International Nuclear Information System (INIS)

    Kandiah, V.; Shepelyansky, D.L.

    2014-01-01

    We study the structural properties of the neural network of the C.elegans (worm) from a directed graph point of view. The Google matrix analysis is used to characterize the neuron connectivity structure and node classifications are discussed and compared with physiological properties of the cells. Our results are obtained by a proper definition of neural directed network and subsequent eigenvector analysis which recovers some results of previous studies. Our analysis highlights particular sets of important neurons constituting the core of the neural system. The applications of PageRank, CheiRank and ImpactRank to characterization of interdependency of neurons are discussed.

  1. Big Data in Caenorhabditis elegans: quo vadis?

    Science.gov (United States)

    Hutter, Harald; Moerman, Donald

    2015-11-05

    A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. © 2015 Hutter and Moerman. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Embryonic Methamphetamine Exposure Inhibits Methamphetamine Cue Conditioning and Reduces Dopamine Concentrations in Adult N2 Caenorhabditis elegans.

    Science.gov (United States)

    Katner, Simon N; Neal-Beliveau, Bethany S; Engleman, Eric A

    2016-01-01

    Methamphetamine (MAP) addiction is substantially prevalent in today's society, resulting in thousands of deaths and costing billions of dollars annually. Despite the potential deleterious consequences, few studies have examined the long-term effects of embryonic MAP exposure. Using the invertebrate nematode Caenorhabditis elegans allows for a controlled analysis of behavioral and neurochemical changes due to early developmental drug exposure. The objective of the current study was to determine the long-term behavioral and neurochemical effects of embryonic exposure to MAP in C. elegans. In addition, we sought to improve our conditioning and testing procedures by utilizing liquid filtration, as opposed to agar, and smaller, 6-well testing plates to increase throughput. Wild-type N2 C. elegans were embryonically exposed to 50 μM MAP. Using classical conditioning, adult-stage C. elegans were conditioned to MAP (17 and 500 μM) in the presence of either sodium ions (Na+) or chloride ions (Cl-) as conditioned stimuli (CS+/CS-). Following conditioning, a preference test was performed by placing worms in 6-well test plates spotted with the CS+ and CS- at opposite ends of each well. A preference index was determined by counting the number of worms in the CS+ target zone divided by the total number of worms in the CS+ and CS- target zones. A food conditioning experiment was also performed in order to determine whether embryonic MAP exposure affected food conditioning behavior. For the neurochemical experiments, adult worms that were embryonically exposed to MAP were analyzed for dopamine (DA) content using high-performance liquid chromatography. The liquid filtration conditioning procedure employed here in combination with the use of 6-well test plates significantly decreased the time required to perform these experiments and ultimately increased throughput. The MAP conditioning data found that pairing an ion with MAP at 17 or 500 μM significantly increased the preference

  3. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen.

    Directory of Open Access Journals (Sweden)

    Mengzhou Zhou

    Full Text Available BACKGROUND: The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88(+ enterotoxigenic Escherichia coli (ETEC, a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. METHODOLOGY/PRINCIPAL FINDINGS: Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB. Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%. The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88(+ but lacking enterotoxin genes of estA, estB, and elt did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. CONCLUSIONS/SIGNIFICANCE: The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies. Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the

  4. nfi-1 affects behavior and life-span in C. elegans but is not essential for DNA replication or survival

    Directory of Open Access Journals (Sweden)

    Hirono Keiko

    2005-10-01

    Full Text Available Abstract Background The Nuclear Factor I (one (NFI family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. Results C. elegans NFI protein (CeNFI binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. Conclusion NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C

  5. Natural plant hormones cytokinins increase stress resistance and longevity of Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Kadlecová, Alena; Jirsa, Tomáš; Novák, Ondřej; Kammenga, J.; Strnad, Miroslav; Voller, J.

    2018-01-01

    Roč. 19, č. 2 (2018), s. 109-120 ISSN 1389-5729 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : Aging * Caenorhabditis elegans * Cytokinin * Kinetin * Phytohormones * Topolin * Zeatin Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.231, year: 2016

  6. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sarah A. Winter

    2016-10-01

    Full Text Available The present study employed mass spectrometry (ICP-MS to measure the internal cadmium concentrations (Cdint in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC transporters (e.g., HMT-1 and MRP-1 and phytochelatin synthase (PCS, we compared wild-type (WT and different mutant strains of C. elegans. As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1Δ, pcs-1Δ, and hmt-1Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1Δ and WT than in hmt-1Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1Δ. Cd release (detoxification was found to be maximal in mrp-1Δ, minimal in hmt-1Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals, which keeps internal Cd (or metal

  7. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Winter, Sarah A; Dölling, Ramona; Knopf, Burkhard; Mendelski, Martha N; Schäfers, Christoph; Paul, Rüdiger J

    2016-10-01

    The present study employed mass spectrometry (ICP-MS) to measure the internal cadmium concentrations (Cd int ) in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC) transporters (e.g., HMT-1 and MRP-1) and phytochelatin synthase (PCS), we compared wild-type (WT) and different mutant strains of C. elegans . As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1 Δ, pcs-1 Δ, and hmt-1 Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1 Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1 Δ and WT than in hmt-1 Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1 Δ. Cd release (detoxification) was found to be maximal in mrp-1 Δ, minimal in hmt-1 Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1 Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1 Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress) primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals), which keeps internal Cd (or

  8. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media.

    Science.gov (United States)

    Tee, Ling Fei; Neoh, Hui-Min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity

  9. Effect of an alkaloidal fraction of Tabernaemontana elegans (Stapf.) on selected micro-organisms.

    Science.gov (United States)

    Pallant, C A; Cromarty, A D; Steenkamp, V

    2012-03-27

    Bacterial infections remain a significant threat to human health. Due to the emergence of widespread antibiotic resistance, development of novel antibiotics is required in order to ensure that effective treatment remains available. There are several reports on the ethnomedical use of Tabernaemontana elegans pertaining to antibacterial activity. The aim of this study was to isolate and identify the fraction responsible for the antimicrobial activity in Tabernaemontana elegans (Stapf.) root extracts. The active fraction was characterized by thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). Antibacterial activity was determined using the broth micro-dilution assay and antimycobacterial activity using the BACTEC radiometric assay. Cytotoxicity of the crude extract and fractions was assessed against primary cell cultures; lymphocytes and fibroblasts; as well as a hepatocarcinoma (HepG2) and macrophage (THP-1) cell line using the Neutral Red uptake and MTT assays. The crude root extracts were found to contain a high concentration of alkaloids (1.2%, w/w). GC-MS analysis identified the indole alkaloids, voacangine and dregamine, as major components. Antibacterial activity was limited to the Gram-positive bacteria and Mycobacterium species, with MIC values in the range of 64-256μg/ml. When combined with antibiotics, additive antibacterial effects were observed. Marked cytotoxicity to all cell lines tested was evident in the MTT and Neutral Red uptake assays, with IC(50) values <9.81μg/ml. This study confirms the antibacterial activity of Tabernaemontana elegans and supports its potential for being investigated further for the development of a novel antibacterial compound. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Pedro Reis Rodrigues

    2016-06-01

    Full Text Available Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.

  11. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    2008-08-01

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  12. Toxicity of simple mixtures to the nematode Caenhorhabditis elegans in relation to soil sorption

    NARCIS (Netherlands)

    Jonker, M.J.; Sweijen, R.A.J.C.; Kammenga, J.E.

    2004-01-01

    Single and combined toxicity of copper-zinc, copper-cadmium, cadmium-lead, copper-carbendazim, and copper-carbendazimiprodione to the nematode Caenorhabditis elegans in soil was studied. The one-week population increase was estimated as the toxicity endpoint. The aim was to study the relationship

  13. NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mykola Mylenko

    Full Text Available The free-living soil nematode Caenorhabditis elegans adapts its development to the availability of food. When food is scarce and population density is high, worms enter a developmentally arrested non-feeding diapause stage specialized for long-term survival called the dauer larva. When food becomes available, they exit from the dauer stage, resume growth and reproduction. It has been postulated that compound(s present in food, referred to as the "food signal", promote exit from the dauer stage. In this study, we have identified NAD+ as a component of bacterial extract that promotes dauer exit. NAD+, when dissolved in alkaline medium, causes opening of the mouth and ingestion of food. We also show that to initiate exit from the dauer stage in response to NAD+ worms require production of serotonin. Thus, C. elegans can use redox cofactors produced by dietary organisms to sense food.

  14. C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael TeKippe

    2010-07-01

    Full Text Available Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.

  15. Optogenetic mutagenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Noma, Kentaro; Jin, Yishi

    2015-12-03

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.

  16. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-06

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

  17. Malate and fumarate extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Clare B Edwards

    Full Text Available Malate, the tricarboxylic acid (TCA cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1, glyoxylate shunt (gei-7, succinate dehydrogenase flavoprotein (sdha-2, or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.

  18. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson’s disease (PD. However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA, a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.

  19. A distributed chemosensory circuit for oxygen preference in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andy J Chang

    2006-09-01

    Full Text Available The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf and naturally isolated npr-1(215F animals avoid high oxygen and aggregate in the presence of food; npr-1(215V animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-beta homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.

  20. Analysis of C. elegans NR2E nuclear receptors defines three conserved clades and ligand-independent functions

    Directory of Open Access Journals (Sweden)

    Weber Katherine P

    2012-06-01

    Full Text Available Abstract Background The nuclear receptors (NRs are an important class of transcription factors that are conserved across animal phyla. Canonical NRs consist of a DNA-binding domain (DBD and ligand-binding domain (LBD. While most animals have 20–40 NRs, nematodes of the genus Caenorhabditis have experienced a spectacular proliferation and divergence of NR genes. The LBDs of evolutionarily-conserved Caenorhabditis NRs have diverged sharply from their Drosophila and vertebrate orthologs, while the DBDs have been strongly conserved. The NR2E family of NRs play critical roles in development, especially in the nervous system. In this study, we explore the phylogenetics and function of the NR2E family of Caenorhabditis elegans, using an in vivo assay to test LBD function. Results Phylogenetic analysis reveals that the NR2E family of NRs consists of three broadly-conserved clades of orthologous NRs. In C. elegans, these clades are defined by nhr-67, fax-1 and nhr-239. The vertebrate orthologs of nhr-67 and fax-1 are Tlx and PNR, respectively. While the nhr-239 clade includes orthologs in insects (Hr83, an echinoderm, and a hemichordate, the gene appears to have been lost from vertebrate lineages. The C. elegans and C. briggsae nhr-239 genes have an apparently-truncated and highly-diverged LBD region. An additional C. elegans NR2E gene, nhr-111, appears to be a recently-evolved paralog of fax-1; it is present in C. elegans, but not C. briggsae or other animals with completely-sequenced genomes. Analysis of the relatively unstudied nhr-111 and nhr-239 genes demonstrates that they are both expressed—nhr-111 very broadly and nhr-239 in a small subset of neurons. Analysis of the FAX-1 LBD in an in vivo assay revealed that it is not required for at least some developmental functions. Conclusions Our analysis supports three conserved clades of NR2E receptors, only two of which are represented in vertebrates, indicating three ancestral NR2E genes in the