WorldWideScience

Sample records for pseudo-random number generator

  1. Chaos-based Pseudo-random Number Generation

    KAUST Repository

    Barakat, Mohamed L.

    2014-04-10

    Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.

  2. Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation

    KAUST Repository

    Mansingka, Abhinav S.

    2012-05-01

    adapted for pseudo random number generation by truncating statistically defective bits. Finally, a novel post-processing technique using the Fibonacci series is proposed and implemented with a non-autonomous driven hyperchaotic system to provide pseudo random number generators with high nonlinear complexity and controllable period length that enables full utilization of all branches of the chaotic output as statistically secure pseudo random output.

  3. Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    DEFF Research Database (Denmark)

    Fog, Agner

    2015-01-01

    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways ...

  4. Pseudo-random number generator based on asymptotic deterministic randomness

    Energy Technology Data Exchange (ETDEWEB)

    Wang Kai [Department of Radio Engineering, Southeast University, Nanjing (China)], E-mail: kaiwang@seu.edu.cn; Pei Wenjiang; Xia Haishan [Department of Radio Engineering, Southeast University, Nanjing (China); Cheung Yiuming [Department of Computer Science, Hong Kong Baptist University, Hong Kong (China)

    2008-06-09

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  5. Concurrent Generation of Pseudo Random Numbers with LFSR of Fibonacci and Galois Type

    OpenAIRE

    Emina I. Milovanović; Stojčev, Mile K.; Igor Ž. Milovanović; Tatjana R. Nikolić; Zoran Stamenković

    2016-01-01

    We have considered implementation of parallel test pattern generator based on a linear feedback shift register (LFSR) with multiple outputs used as a building block in built-in-self-test (BIST) design within SoC. The proposed design can drive several circuits under test (CUT) simultaneously. The mathematical procedure for concurrent pseudo random number (PRN) generation is described. We have implemented LFSRs that generate two and three PRNs in FPGA and ASIC technology. The design was tested ...

  6. Complexity and properties of a multidimensional Cat-Hadamard map for pseudo random number generation

    Science.gov (United States)

    Kim Hue, Ta Thi; Hoang, Thang Manh

    2017-07-01

    This paper presents a novel method to extend the Cat map from 2-dimension to higher dimension using the fast pseudo Hadamard Transform, and the resulted maps are called Cat-Hadamard maps. The complexity and properties of Cat-Hadamard maps are investigated under the point of view for cryptographic applications. In addition, we propose a method for constructing a pseudo random number generator using a novel design concept of the high dimensional Cat map. The simulation results show that the proposed generator fulfilled all the statistic tests of the NIST SP 800-90 A.

  7. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    Directory of Open Access Journals (Sweden)

    Han Shuangshuang

    2013-07-01

    Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.

  8. Research of the method of pseudo-random number generation based on asynchronous cellular automata with several active cells

    Directory of Open Access Journals (Sweden)

    Bilan Stepan

    2017-01-01

    Full Text Available To date, there are many tasks that are aimed at studying the dynamic changes in physical processes. These tasks do not give advance known result. The solution of such problems is based on the construction of a dynamic model of the object. Successful structural and functional implementation of the object model can give a positive result in time. This approach uses the task of constructing artificial biological objects. To solve such problems, pseudo-random number generators are used, which also find wide application for information protection tasks. Such generators should have good statistical properties and give a long repetition period of the generated pseudo-random bit sequence. This work is aimed at improving these characteristics. The paper considers the method of forming pseudo-random sequences of numbers on the basis of aperiodic cellular automata with two active cells. A pseudo-random number generator is proposed that generates three bit sequences. The first two bit sequences are formed by the corresponding two active cells in the cellular automaton. The third bit sequence is the result of executing the XOR function over the bits of the first two sequences and it has better characteristics compared to them. The use of cellular automata with two active cells allowed to improve the statistical properties of the formed bit sequence, as well as its repetition period. This is proved by using graphical tests for generators built based on cellular automata using the neighborhoods of von Neumann and Moore. The tests showed high efficiency of the generator based on an asynchronous cellular automaton with the neighborhood of Moore. The proposed pseudo-random number generators have good statistical properties, which makes it possible to use them in information security systems, as well as for simulation tasks of various dynamic processes.

  9. New Design of Crypto-Based Pseudo random number generator (CBPRNG) using BLOW FISH cipher

    OpenAIRE

    T.Chalama Reddy; Dr.R.Seshadri

    2013-01-01

    Random Number Generators (RNGs) are an important building block for algorithms and protocols in cryptography. Random number generation is used in a wide variety of cryptographic operations, such as key generation and challenge/response protocols. A random number generator outputs a sequence of 0s and 1s such that at any position, the next bit cannot be expected on the previous bits. However, true random number produces non- deterministic output since if the same random generator is run twice,...

  10. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator

    OpenAIRE

    Matsumoto, Makoto; Nishimura, Takuji

    1998-01-01

    A new algorithm called Mersenne Twister (MT) is proposed for generating uniform pseudorandom numbers. For a particular choice of parameters, the algorithm provides a super astronomical period of 219937 - 1 and 623-dimensional equidistribution up to 32-bit accuracy, while using a working area of only 624 words. This is a new variant of the previously proposed generators, TGFSR, modified so as to admit a Mersenne-prime period. The characteristic polynomial has many terms. The distribution up to...

  11. An empirical test of pseudo random number generators by means of an exponential decaying process; Una prueba empirica de generadores de numeros pseudoaleatorios mediante un proceso de decaimiento exponencial

    Energy Technology Data Exchange (ETDEWEB)

    Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, A.P. 475, Xalapa, Veracruz (Mexico); Mora F, L.E. [CIMAT, A.P. 402, 36000 Guanajuato (Mexico)]. e-mail: hcoronel@uv.mx

    2007-07-01

    Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)

  12. Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77Gbits/s

    KAUST Repository

    Mansingka, Abhinav S.

    2014-06-18

    This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.

  13. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-18

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  14. Non-periodic pseudo-random numbers used in Monte Carlo calculations

    Science.gov (United States)

    Barberis, Gaston E.

    2007-09-01

    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 1013 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 1013 numbers and that they are not correlated.

  15. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.

    2012-10-07

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  16. PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS

    Directory of Open Access Journals (Sweden)

    A. Beletsky

    2014-04-01

    Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.

  17. Algorithm for generation pseudo-random series with arbitrarily assigned distribution law

    Directory of Open Access Journals (Sweden)

    В.С. Єременко

    2005-04-01

    Full Text Available  Method for generation pseudo-random series with arbitrarily assigned distribution law has been proposed. The praxis of using proposed method for generation pseudo-random series with anti-modal and approximate to Gaussian distribution law has been investigated.

  18. 1.2 GBit/s Pseudo Random Pulse Generator Using Multiplexing with GaAs Mesfet Gates

    DEFF Research Database (Denmark)

    Hede, Carsten

    1978-01-01

    A l.2 Gbit/s RZ pseudo random bit generator using multiplexing of six 200 Mbit/s channels, and a GaAs-MESFET gate circuit which exhibits both high speed and simplicity are presented. As a new contribution to the treatment of pseudo random sequences it is shown how the autocorrelation function and...

  19. Goal-independent mechanisms for free response generation: creative and pseudo-random performance share neural substrates.

    Science.gov (United States)

    de Manzano, Örjan; Ullén, Fredrik

    2012-01-02

    To what extent free response generation in different tasks uses common and task-specific neurocognitive processes has remained unclear. Here, we investigated overlap and differences in neural activity during musical improvisation and pseudo-random response generation. Brain activity was measured using fMRI in a group of professional classical pianists, who performed musical improvisation of melodies, pseudo-random key-presses and a baseline condition (sight-reading), on either two, six or twelve keys on a piano keyboard. The results revealed an extensive overlap in neural activity between the two generative conditions. Active regions included the dorsolateral and dorsomedial prefrontal cortices, inferior frontal gyrus, anterior cingulate cortex and pre-SMA. No regions showed higher activity in improvisation than in pseudo-random generation. These findings suggest that the activated regions fulfill generic functions that are utilized in different types of free generation tasks, independent of overall goal. In contrast, pseudo-random generation was accompanied by higher activity than improvisation in several regions. This presumably reflects the participants' musical expertise as well as the pseudo-random generation task's high load on attention, working memory, and executive control. The results highlight the significance of using naturalistic tasks to study human behavior and cognition. No brain activity was related to the size of the response set. We discuss that this may reflect that the musicians were able to use specific strategies for improvisation, by which there was no simple relationship between response set size and neural activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    Science.gov (United States)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  1. Cryptography, statistics and pseudo-randomness (Part 1)

    NARCIS (Netherlands)

    Brands, S.; Gill, R.D.

    1995-01-01

    In the classical approach to pseudo-random number generators, a generator is considered to perform well if its output sequences pass a battery of statistical tests that has become standard. In recent years, it has turned out that this approach is not satisfactory. Many generators have turned out to

  2. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  3. Cryptographic pseudo-random sequences from the chaotic Hénon ...

    Indian Academy of Sciences (India)

    Pseudo-random number sequences are useful in many applications including Monte-Carlo simulation, spread spectrum ... a pseudo-random binary sequence from the two-dimensional chaotic Hénon map is explored. ... is the Hénon map, a two-dimensional discrete-time nonlinear dynamical system represented by the state ...

  4. Protocols for data hiding in pseudo-random state

    Science.gov (United States)

    Craver, Scott; Li, Enping; Yu, Jun

    2009-02-01

    An emerging form of steganographic communication uses ciphertext to replace the output of a random or strong pseudo-random number generator. PRNG-driven media, for example computer animated backdrops in video-conferencing channels, can then be used as a covert channel, if the PRNG bits that generated a piece of content can be estimated by the recipient. However, all bits sent over such a channel must be computationally indistinguishable from i.i.d. coin flips. Ciphertext messages and even key exchange datagrams are easily shaped to match this distribution; however, when placing these messages into a continous stream of PRNG bits, the sender is unable to provide synchronization markers, metadata, or error correction to ensure the message's location and proper decoding. In this paper we explore methods for message transmission and steganographic key exchange in such a "coin flip" channel. We establish that key exchange is generally not possible in this channel if an adversary possesses even a modest noise budget. If the warden is not vigilant in adding noise, however, communication is very simple.

  5. Improving the pseudo-randomness properties of chaotic maps using deep-zoom.

    Science.gov (United States)

    Machicao, Jeaneth; Bruno, Odemir M

    2017-05-01

    A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a "deep-zoom" manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.

  6. Quantum random number generators

    Science.gov (United States)

    Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos

    2017-01-01

    Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. This review discusses the different technologies in quantum random number generation from the early devices based on radioactive decay to the multiple ways to use the quantum states of light to gather entropy from a quantum origin. Randomness extraction and amplification and the notable possibility of generating trusted random numbers even with untrusted hardware using device-independent generation protocols are also discussed.

  7. Random Number Generation for Petascale Quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ashok Srinivasan

    2010-03-16

    The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.

  8. EPCGen2 pseudorandom number generators: analysis of J3Gen.

    Science.gov (United States)

    Peinado, Alberto; Munilla, Jorge; Fúster-Sabater, Amparo

    2014-04-09

    This paper analyzes the cryptographic security of J3Gen, a promising pseudo random number generator for low-cost passive Radio Frequency Identification (RFID) tags. Although J3Gen has been shown to fulfill the randomness criteria set by the EPCglobal Gen2 standard and is intended for security applications, we describe here two cryptanalytic attacks that question its security claims: (i) a probabilistic attack based on solving linear equation systems; and (ii) a deterministic attack based on the decimation of the output sequence. Numerical results, supported by simulations, show that for the specific recommended values of the configurable parameters, a low number of intercepted output bits are enough to break J3Gen. We then make some recommendations that address these issues.

  9. EPCGen2 Pseudorandom Number Generators: Analysis of J3Gen

    Directory of Open Access Journals (Sweden)

    Alberto Peinado

    2014-04-01

    Full Text Available This paper analyzes the cryptographic security of J3Gen, a promising pseudo random number generator for low-cost passive Radio Frequency Identification (RFID tags. Although J3Gen has been shown to fulfill the randomness criteria set by the EPCglobal Gen2 standard and is intended for security applications, we describe here two cryptanalytic attacks that question its security claims: (i a probabilistic attack based on solving linear equation systems; and (ii a deterministic attack based on the decimation of the output sequence. Numerical results, supported by simulations, show that for the specific recommended values of the configurable parameters, a low number of intercepted output bits are enough to break J3Gen. We then make some recommendations that address these issues.

  10. Characterization of Electron Microscopes with Binary Pseudo-random Multilayer Test Samples

    Energy Technology Data Exchange (ETDEWEB)

    V Yashchuk; R Conley; E Anderson; S Barber; N Bouet; W McKinney; P Takacs; D Voronov

    2011-12-31

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  11. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V., E-mail: VVYashchuk@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Conley, Raymond [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Anderson, Erik H. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Barber, Samuel K. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bouet, Nathalie [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States); McKinney, Wayne R. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Takacs, Peter Z. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Voronov, Dmitriy L. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  12. Pseudo-Random Mating Populations. in Celebration of the 80th Anniversary of the Hardy-Weinberg Law

    OpenAIRE

    Li, C. C.

    1988-01-01

    That random mating leads to Hardy-Weinberg distribution of genotypes is well known. This report is to show that, if the deviations from random mating are of a certain pattern, the offspring generation will also be in Hardy-Weinberg proportions. This brings out the fact that random mating is a sufficient condition, not a necessary one, for the attainment of the Hardy-Weinberg proportions. Such nonrandom-mating populations are tentatively said to be pseudo-random mating. Pseudo-random-mating po...

  13. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.

    Science.gov (United States)

    Dunn, Christina R; Walker, David D

    2008-11-10

    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  14. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  15. Cellular Automata-Based Parallel Random Number Generators Using FPGAs

    Directory of Open Access Journals (Sweden)

    David H. K. Hoe

    2012-01-01

    Full Text Available Cellular computing represents a new paradigm for implementing high-speed massively parallel machines. Cellular automata (CA, which consist of an array of locally connected processing elements, are a basic form of a cellular-based architecture. The use of field programmable gate arrays (FPGAs for implementing CA accelerators has shown promising results. This paper investigates the design of CA-based pseudo-random number generators (PRNGs using an FPGA platform. To improve the quality of the random numbers that are generated, the basic CA structure is enhanced in two ways. First, the addition of a superrule to each CA cell is considered. The resulting self-programmable CA (SPCA uses the superrule to determine when to make a dynamic rule change in each CA cell. The superrule takes its inputs from neighboring cells and can be considered itself a second CA working in parallel with the main CA. When implemented on an FPGA, the use of lookup tables in each logic cell removes any restrictions on how the super-rules should be defined. Second, a hybrid configuration is formed by combining a CA with a linear feedback shift register (LFSR. This is advantageous for FPGA designs due to the compactness of the LFSR implementations. A standard software package for statistically evaluating the quality of random number sequences known as Diehard is used to validate the results. Both the SPCA and the hybrid CA/LFSR were found to pass all the Diehard tests.

  16. Pseudo-random mating populations. In celebration of the 80th anniversary of the Hardy-Weinberg law.

    Science.gov (United States)

    Li, C C

    1988-07-01

    That random mating leads to Hardy-Weinberg distribution of genotypes is well known. This report is to show that, if the deviations from random mating are of a certain pattern, the offspring generation will also be in Hardy-Weinberg proportions. This brings out the fact that random mating is a sufficient condition, not a necessary one, for the attainment of the Hardy-Weinberg proportions. Such nonrandom-mating populations are tentatively said to be pseudo-random mating. Pseudo-random-mating populations exist for both autosomal and sex-linked systems with two or multiple alleles. This report covers the basic case of a two-allele autosomal locus in detail, but the possible extension to two loci and cytonuclear systems have also been mentioned in discussion.

  17. Covert Communication in MIMO-OFDM System Using Pseudo Random Location of Fake Subcarriers

    Directory of Open Access Journals (Sweden)

    Rizky Pratama Hudhajanto

    2016-08-01

    Full Text Available Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER than the legal receiver compared to the conventional MIMO-OFDM system.

  18. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Tsuburaya, Y. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  19. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  20. Calibration of correlation radiometers using pseudo-random noise signals.

    Science.gov (United States)

    Pérez, Isaac Ramos; Bosch-Lluis, Xavi; Camps, Adriano; Alvarez, Nereida Rodriguez; Hernandez, Juan Fernando Marchán; Domènech, Enric Valencia; Vernich, Carlos; de la Rosa, Sonia; Pantoja, Sebastián

    2009-01-01

    The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers' outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called "baseline errors" associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN) signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver's output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  1. Thermodynamics of random number generation

    Science.gov (United States)

    Aghamohammadi, Cina; Crutchfield, James P.

    2017-06-01

    We analyze the thermodynamic costs of the three main approaches to generating random numbers via the recently introduced Information Processing Second Law. Given access to a specified source of randomness, a random number generator (RNG) produces samples from a desired target probability distribution. This differs from pseudorandom number generators (PRNGs) that use wholly deterministic algorithms and from true random number generators (TRNGs) in which the randomness source is a physical system. For each class, we analyze the thermodynamics of generators based on algorithms implemented as finite-state machines, as these allow for direct bounds on the required physical resources. This establishes bounds on heat dissipation and work consumption during the operation of three main classes of RNG algorithms—including those of von Neumann, Knuth, and Yao and Roche and Hoshi—and for PRNG methods. We introduce a general TRNG and determine its thermodynamic costs exactly for arbitrary target distributions. The results highlight the significant differences between the three main approaches to random number generation: One is work producing, one is work consuming, and the other is potentially dissipation neutral. Notably, TRNGs can both generate random numbers and convert thermal energy to stored work. These thermodynamic costs on information creation complement Landauer's limit on the irreducible costs of information destruction.

  2. An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.

    Science.gov (United States)

    Stipčević, Mario; Ursin, Rupert

    2015-06-09

    Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.

  3. Recommendations and illustrations for the evaluation of photonic random number generators

    Science.gov (United States)

    Hart, Joseph D.; Terashima, Yuta; Uchida, Atsushi; Baumgartner, Gerald B.; Murphy, Thomas E.; Roy, Rajarshi

    2017-09-01

    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h (𝜖 ,τ ) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.

  4. Pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks

    Science.gov (United States)

    Wu, Shaochuan; Tan, Xuezhi

    2007-11-01

    By analyzing all kinds of address configuration algorithms, this paper provides a new pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks. Based on PRDAC, the first node that initials this network randomly chooses a nonlinear shift register that can generates an m-sequence. When another node joins this network, the initial node will act as an IP address configuration sever to compute an IP address according to this nonlinear shift register, and then allocates this address and tell the generator polynomial of this shift register to this new node. By this means, when other node joins this network, any node that has obtained an IP address can act as a server to allocate address to this new node. PRDAC can also efficiently avoid IP conflicts and deal with network partition and merge as same as prophet address (PA) allocation and dynamic configuration and distribution protocol (DCDP). Furthermore, PRDAC has less algorithm complexity, less computational complexity and more sufficient assumption than PA. In addition, PRDAC radically avoids address conflicts and maximizes the utilization rate of IP addresses. Analysis and simulation results show that PRDAC has rapid convergence, low overhead and immune from topological structures.

  5. Least squares deconvolution for leak detection with a pseudo random binary sequence excitation

    Science.gov (United States)

    Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.

    2018-01-01

    Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.

  6. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan

    2015-10-01

    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  7. Interference Suppression Performance of Automotive UWB Radars Using Pseudo Random Sequences

    Directory of Open Access Journals (Sweden)

    I. Pasya

    2015-12-01

    Full Text Available Ultra wideband (UWB automotive radars have attracted attention from the viewpoint of reducing traffic accidents. The performance of automotive radars may be degraded by interference from nearby radars using the same frequency. In this study, a scenario where two cars pass each other on a road was considered. Considering the utilization of cross-polarization, the desired-to-undesired signal power ratio (DUR was found to vary approximately from -10 to 30 dB. Different pseudo random sequences were employed for spectrum spreading the different radar signals to mitigate the interference effects. This paper evaluates the interference suppression provided by maximum length sequence (MLS and Gold sequence (GS through numerical simulations of the radar’s performance in terms of probability of false alarm and probability of detection. It was found that MLS and GS yielded nearly the same performance when the DUR is -10 dB (worst case; for example when fixing the probability of false alarm to 0.0001, the probabilities of detection were 0.964 and 0.946 respectively. The GS are more advantageous than MLS due to larger number of different sequences having the same length in GS than in MLS.

  8. Binary Pseudo-Random Gratings and Arrays for Calibration of Modulation Transfer Functions of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.

    2009-09-11

    A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.

  9. Synchronizing microelectrode and electronic goniometer data using a pseudo-random binary signal.

    Science.gov (United States)

    Moore, Tyler Robert; Jacobs, Rennie Underwood; Yang, Alexander Cheung; Richter, Erich Oscar

    2013-04-01

    Intra-operative investigation of the subthalamic nucleus (STN) requires concurrent measurement of microelectrode voltage, electrode depth and joint movement during deep brain stimulation (DBS) surgery. Commercial solutions to this problem exist but are more expensive. Multiple instruments from different manufacturers can collect the same data, but data from incompatible instruments are collected on disparate clocks, precluding quantitative analysis. A pseudo-random binary signal recorded simultaneously by each set of instruments allows for chronological reconciliation. A custom program collects microelectrode data while simultaneously sending a pseudo-random binary signal to instruments measuring joint movement. The record of this signal is later used to express microelectrode voltage and joint position in a single chronological frame of reference. ClockSynch was used in 15 DBS procedures. After each surgery, records of microelectrode and joint movement were successfully chronologically reconciled. In conclusion, a pseudo-random binary signal integrates disparate systems of instrumentation at a significantly decreased cost.

  10. Information Encoding on a Pseudo Random Noise Radar Waveform

    Science.gov (United States)

    2013-03-01

    antenna under test AWG arbitrary waveform generator AWGN additive white Gaussian noise BPSK binary phase shift keying CDMA code division multiple...focused on the orthogonal frequency-division multiplexing (OFDM) and code division multiple access ( CDMA ) waveforms. The Ohio State University has...components into a single unit allows for a more mobile compact platform. The plan is diagrammed in Figure 3.5. Figure 3.5: Planned modifications to

  11. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo Diaz, N.; Vergara Gil, A. [Centre for Radiological Protection and Higiene, P.O. Box 6195, Habana (Cuba); Jurado Vargas, M. [Physics Department, University of Extremadura, 06071 Badajoz (Spain)], E-mail: mjv@unex.es

    2010-03-15

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

  12. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    Science.gov (United States)

    Miszczak, Jarosław Adam

    2013-01-01

    numbers generated by quantum real number generator. Reasons for new version: Added support for the high-speed on-line quantum random number generator and improved methods for retrieving lists of random numbers. Summary of revisions: The presented version provides two signicant improvements. The first one is the ability to use the on-line Quantum Random Number Generation service developed by PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt University. The on-line service supported in the version 2.0 of the TRQS package provides faster access to true randomness sources constructed using the laws of quantum physics. The service is freely available at https://qrng.physik.hu-berlin.de/. The use of this service allows using the presented package with the need of a physical quantum random number generator. The second improvement introduced in this version is the ability to retrieve arrays of random data directly for the used source. This increases the speed of the random number generation, especially in the case of an on-line service, where it reduces the time necessary to establish the connection. Thanks to the speed improvement of the presented version, the package can now be used in simulations requiring larger amounts of random data. Moreover, the functions for generating random numbers provided by the current version of the package more closely follow the pattern of functions for generating pseudo- random numbers provided in Mathematica. Additional comments: Speed comparison: The implementation of the support for the QRNG on-line service provides a noticeable improvement in the speed of random number generation. For the samples of real numbers of size 101; 102,…,107 the times required to generate these samples using Quantis USB device and QRNG service are compared in Fig. 1. The presented results show that the use of the on-line service provides faster access to random numbers. One should note, however, that the speed gain can increase or

  13. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-05-19

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  14. Self-correcting random number generator

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  15. Analysis of android random number generator

    OpenAIRE

    Sarıtaş, Serkan

    2013-01-01

    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 61-65. Randomness is a crucial resource for cryptography, and random number generators are critical building blocks of almost all cryptographic systems. Therefore, random number generation is one of the key parts of secure communication. Random number generatio...

  16. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    Science.gov (United States)

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O2) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O2 kinetics were estimated from heart rate and pulmonary V̇O2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O2 during walking, the assessment of muscular V̇O2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Pseudo-random Aloha for inter-frame soft combining in RFID systems

    DEFF Research Database (Denmark)

    Castiglione, Paolo; Ricciato, Fabio; Popovski, Petar

    2013-01-01

    In this work we consider a recently proposed variant of the classical Framed Slotted-ALOHA where slot selection is based on a pseudo-random function of the message to be transmitted and of the frame index. We couple this feature with convolutional encoding, that allows to perform Inter-frame Soft...... cancellation (instead of combining). Numerical simulation results show that the ISoC scheme brings a noticeable throughput gain over traditional schemes in a dense RFID scenario with multiple concurrent Tag transmissions....

  18. A Hybrid Random Number Generator(HRNG

    Directory of Open Access Journals (Sweden)

    Osvaldo Skliar

    2011-07-01

    Full Text Available The purpose of this paper is to present a novel Hybrid Random Number Generator (HRNG. Here “hybrid” refers to the fact that to construct this generator it is necessary to use 1physical components – texts – and a physical process, and 2 a mathematical procedure. This HRNG makes it possible to generate genuine random numbers which may be used both for computer simulation of probabilistic systems and in the field of cryptography. The results of a comparative study of the binary strings generated by this HRNG and of those generated by two highly used implementations of a congruential algorithm designed to generate pseudorandom numbers are given here. One of the latter is the implementation incorporated into the Java 2 platform (version 1.6, and the other is the implementation incorporated into the runtime library of Microsoft’s Visual C++ 2008 compiler.

  19. Autocorrelation peaks in congruential pseudorandom number generators

    Science.gov (United States)

    Neuman, F.; Merrick, R. B.

    1976-01-01

    The complete correlation structure of several congruential pseudorandom number generators (PRNG) of the same type and small cycle length was studied to deal with the problem of congruential PRNG almost repeating themselves at intervals smaller than their cycle lengths, during simulation of bandpass filtered normal random noise. Maximum period multiplicative and mixed congruential generators were studied, with inferences drawn from examination of several tractable members of a class of random number generators, and moduli from 2 to the 5th power to 2 to the 9th power. High correlation is shown to exist in mixed and multiplicative congruential random number generators and prime moduli Lehmer generators for shifts a fraction of their cycle length. The random noise sequences in question are required when simulating electrical noise, air turbulence, or time variation of wind parameters.

  20. Random number generators and the Metropolis algorithm: application to various problems in physics and mechanics as an introduction to computational physics

    Energy Technology Data Exchange (ETDEWEB)

    Calvayrac, Florent [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087 and FR 2575, Universite du Maine, 72085 Le Mans Cedex 9 (France)

    2005-09-01

    We present known and new applications of pseudo random numbers and of the Metropolis algorithm to phenomena of physical and mechanical interest, such as the search of simple clusters isomers with interactive visualization, or vehicle motion planning. The progression towards complicated problems was used with first-year graduate students who wrote most of the programs presented here. We argue that the use of pseudo random numbers in simulation and extrema research programs in teaching numerical methods in physics allows one to get quick programs and physically meaningful and demonstrative results without recurring to the advanced numerical analysis methods.

  1. Random Number Generators in Secure Disk Drives

    Directory of Open Access Journals (Sweden)

    Hars Laszlo

    2009-01-01

    Full Text Available Abstract Cryptographic random number generators seeded by physical entropy sources are employed in many embedded security systems, including self-encrypting disk drives, being manufactured by the millions every year. Random numbers are used for generating encryption keys and for facilitating secure communication, and they are also provided to users for their applications. We discuss common randomness requirements, techniques for estimating the entropy of physical sources, investigate specific nonrandom physical properties, estimate the autocorrelation, then mix reduce the data until all common randomness tests pass. This method is applied to a randomness source in disk drives: the always changing coefficients of an adaptive filter for the read channel equalization. These coefficients, affected by many kinds of physical noise, are used in the reseeding process of a cryptographic pseudorandom number generator in a family of self encrypting disk drives currently in the market.

  2. Pseudo-random-bit-sequence phase modulation for reduced errors in a fiber optic gyroscope.

    Science.gov (United States)

    Chamoun, Jacob; Digonnet, Michel J F

    2016-12-15

    Low noise and drift in a laser-driven fiber optic gyroscope (FOG) are demonstrated by interrogating the sensor with a low-coherence laser. The laser coherence was reduced by broadening its optical spectrum using an external electro-optic phase modulator driven by either a sinusoidal or a pseudo-random bit sequence (PRBS) waveform. The noise reduction measured in a FOG driven by a modulated laser agrees with the calculations based on the broadened laser spectrum. Using PRBS modulation, the linewidth of a laser was broadened from 10 MHz to more than 10 GHz, leading to a measured FOG noise of only 0.00073  deg/√h and a drift of 0.023  deg/h. To the best of our knowledge, these are the lowest noise and drift reported in a laser-driven FOG, and this noise is below the requirement for the inertial navigation of aircraft.

  3. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  4. Number generation bias after action observation.

    Science.gov (United States)

    Badets, Arnaud; Bouquet, Cédric A; Ric, François; Pesenti, Mauro

    2012-08-01

    Recent studies have demonstrated that conceptual and abstract knowledge could rely on and could be influenced by sensory-motor processing of usual goal-directed actions. In line with this, interactions have been reported between number magnitude and finger grip with, for example, small-magnitude numbers priming grip closure and large-magnitude numbers priming grip aperture. Here, we assessed whether observing a closing or opening grip was able to influence the magnitude of the numbers produced in a random number generation task, and we tested whether this effect was specific to biological hand actions by using non-biological fake hands with the same closure or aperture amplitude. The participants were asked to produce as randomly as possible numbers between 1 and 10 after they observed a change in posture (i.e. grip closing or grip opening) or in colour (i.e. red or blue hand). The results revealed that the participants produced more often small numbers than large ones after observing a grip closing, whereas they produced equally often small and large numbers after observing a grip opening or colour changes. Importantly, this effect was only present for the biological hands but not for the non-biological fake hands. This finding demonstrates that observing a biological grip closing conveys small-magnitude information, which, in turn, influences the mental selection of a numerical response. We discuss our results in the light of the internal random generator process proposed in the domain of numerical cognition and argue that number semantics is stored with a code governed by sensory-motor mechanisms.

  5. Information hiding technology and application analysis based on decimal expansion of irrational numbers

    Science.gov (United States)

    Liu, Xiaoyong; Lu, Pei; Shao, Jianxin; Cao, Haibin; Zhu, Zhenmin

    2017-10-01

    In this paper, an information hiding method using decimal expansion of irrational numbers to generate random phase mask is proposed. Firstly, the decimal expansion parts of irrational numbers generate pseudo-random sequences using a new coding schemed, the irrational number and start and end bit numbers were used as keys in image information hiding. Secondly, we apply the coding schemed to the double phase encoding system, the pseudo-random sequences are taken to generate random phase masks. The mean square error is used to calculate the quality of the recovered image information. Finally, two tests had been carried out to verify the security of our method; the experimental results demonstrate that the cipher image has such features, strong robustness, key sensitivity, and resistance to brute force attack.

  6. Pseudo-random Spray Release to Measure World-wide Transfer Functions of Cloud Albedo Control.

    Science.gov (United States)

    Salter, Stephen

    2010-05-01

    Institute for Energy Systems, School of Engineering, University of Edinburgh. S.Salter@ed.ac.uk Previous climate models of Latham's proposal to reverse global warming by using sub-micron sea spray to increase cloud albedo have used a variety of spray patterns. Kettles forced CCN concentration to be 375/cm3 everywhere. Rasch et al used the 20% and 70% most susceptible regions. Bala and Caldeira used an even spread. Jones et al. concentrated spray in the 3.3% oceans with the highest susceptibility All used the same rate through the year. We want to choose a scheme for a climate-modelling experiment designed to identify simultaneously the effects of cloud albedo control at various seasons of the year from spray at all regions of the world on climates of all other regions the world. In particular we want to know seasons and spray places which might have an undesirable effect on precipitation. The spray systems in various regions of a numerical climate model will be modulated on an off with different but known pseudo-random sequences and a selection of seasons. The mean value of the resulting weather records of the parameters of interest, mainly temperature and water run-off, at each region will be subtracted from each value of the record so as to give just the alternating component with an average value of zero. This will be correlated with each of the chosen pseudo-random sequences to give the magnitude and polarity of the effect of a treatment at each input area and selected seasons of the year with the resulting effects on all regions. By doing a time-shifted correlation we can account for phase-shift and time delay. The signal-to-noise ratio should improve with the square root of the analysis time and so we may be able to measure the transfer function with quite a small stimulus. The results of a Mathcad simulation of the process with statistical distributions approximating to natural variations temperature and precipitation show that a single run of a climate

  7. Design of Long Period Pseudo-Random Sequences from the Addition of m -Sequences over 𝔽 p

    Directory of Open Access Journals (Sweden)

    Ren Jian

    2004-01-01

    Full Text Available Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of m -sequences with pairwise-prime linear spans (AMPLS. Using m -sequences as building blocks, the proposed method proved to be an efficient and flexible approach to construct long period pseudo-random sequences with desirable properties from short period sequences. Applying the proposed method to 𝔽 2 , a signal set ( ( 2 n − 1 ( 2 m − 1 , ( 2 n + 1 ( 2 m + 1 , ( 2 ( n + 1 / 2 + 1 ( 2 ( m + 1 / 2 + 1 is constructed.

  8. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  9. SPRNG Scalable Parallel Random Number Generator LIbrary

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-16

    This revision corrects some errors in SPRNG 1. Users of newer SPRNG versions can obtain the corrected files and build their version with it. This version also improves the scalability of some of the application-based tests in the SPRNG test suite. It also includes an interface to a parallel Mersenne Twister, so that if users install the Mersenne Twister, then they can test this generator with the SPRNG test suite and also use some SPRNG features with that generator.

  10. Random Numbers Generated from Audio and Video Sources

    Directory of Open Access Journals (Sweden)

    I-Te Chen

    2013-01-01

    Full Text Available Random numbers are very useful in simulation, chaos theory, game theory, information theory, pattern recognition, probability theory, quantum mechanics, statistics, and statistical mechanics. The random numbers are especially helpful in cryptography. In this work, the proposed random number generators come from white noise of audio and video (A/V sources which are extracted from high-resolution IPCAM, WEBCAM, and MPEG-1 video files. The proposed generator applied on video sources from IPCAM and WEBCAM with microphone would be the true random number generator and the pseudorandom number generator when applied on video sources from MPEG-1 video file. In addition, when applying NIST SP 800-22 Rev.1a 15 statistics tests on the random numbers generated from the proposed generator, around 98% random numbers can pass 15 statistical tests. Furthermore, the audio and video sources can be found easily; hence, the proposed generator is a qualified, convenient, and efficient random number generator.

  11. Comparison of a quantum random number generator with pseudorandom number generators for their use in molecular Monte Carlo simulations.

    Science.gov (United States)

    Ghersi, Dario; Parakh, Abhishek; Mezei, Mihaly

    2017-12-05

    Four pseudorandom number generators were compared with a physical, quantum-based random number generator using the NIST suite of statistical tests, which only the quantum-based random number generator could successfully pass. We then measured the effect of the five random number generators on various calculated properties in different Markov-chain Monte Carlo simulations. Two types of systems were tested: conformational sampling of a small molecule in aqueous solution and liquid methanol under constant temperature and pressure. The results show that poor quality pseudorandom number generators produce results that deviate significantly from those obtained with the quantum-based random number generator, particularly in the case of the small molecule in aqueous solution setup. In contrast, the widely used Mersenne Twister pseudorandom generator and a 64-bit Linear Congruential Generator with a scrambler produce results that are statistically indistinguishable from those obtained with the quantum-based random number generator. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. A novel effect of Noscapine on patients with massive ischemic stroke: A pseudo-randomized clinical trial.

    Science.gov (United States)

    Mahmoudian, Massoud; Rezvani, Mohammad; Rohani, Mohammad; Benaissa, Foozya; Jalili, Mehdi; Ghourchian, Shadi

    2015-01-05

    Massive ischemic stroke causes significant mortality and morbidity in stroke patients. The main treatments for massive ischemic stroke are recombinant tissue plasminogen activator (rtPA), craniotomy, and endovascular interventions. Due to destructive effects of bradykinin on the nervous system in ischemic stroke, it seems reasonable that using Noscapine as a Bradykinin antagonist may improve patients' outcome after ischemic stroke. The effect of Noscapine on massive ischemic stroke was shown by the previous pilot study by our group. This pseudo-randomized clinical trial study was designed to assess the result of the pilot study. Patients who had clinical symptoms or computed tomography scan indicative of massive stroke (in full middle cerebral artery territory) were entered to the study. The cases received the drugs according to their turns in emergency ward (pseudo-randomized). The patient group received Noscapine, and the control group received common supportive treatments. The patients and data analyzer were blinded about the data. At the end of the study, to adjust confounding variables we used logistic regression. After 1-month follow-up, 16 patients in the control group and 11 patients in the case group expired (P = 0.193). Analyzing the data extracted from Rankin scale and Barthel index check lists, revealed no significant differences in the two groups. Despite the absence of significant statistical results in our study, the reduction rate of 16% for mortality rate in Noscapine recipients is clinically remarkable and motivates future studies with larger sample sizes.

  13. A Multi-Threaded Cryptographic Pseudorandom Number Generator Test Suite

    Science.gov (United States)

    2016-09-01

    Cloud GSL GNU scientific library KSTEST Kolmogorov-Smirnov test NIST National Institute for Standards and Technology OpenMP Open Multi-Processing OTP...one-time pad POSIX Portable Operating System Interface PRNG pseudorandom number generator RA resolve ambiguity RNG random number generator SSH secure...chats of Cryptocat due to a programming flaw [1]. A bug in the BigInt library caused the random number generator to have a slight bias when generating

  14. Unbiased All-Optical Random-Number Generator

    OpenAIRE

    Tobias Steinle; Greiner, Johannes N.; Jörg Wrachtrup; Harald Giessen; Ilja Gerhardt

    2017-01-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random number generators. These exhibit often a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be post-processed to "ir...

  15. Inequalities involving the generating function for the number of ...

    African Journals Online (AJOL)

    Fibonacci numbers can be expressed in terms of multinomial coefficients as sums over integer partitions into odd parts. We use this fact to introduce a family of double inequalities involving the generating function for the number of partitions into odd parts and the generating function for the number of odd divisors. Keywords: ...

  16. Generation of Random Numbers and Parallel Random Number Streams for Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    L. Yu. Barash

    2012-01-01

    Full Text Available Modern methods and libraries for high quality pseudorandom number generation and for generation of parallel random number streams for Monte Carlo simulations are considered. The probability equidistribution property and the parameters when the property holds at dimensions up to logarithm of mesh size are considered for Multiple Recursive Generators.

  17. Binary pseudo-random grating as a standard test surface formeasurement of modulation transfer function of interferometricmicroscopes

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2007-07-25

    The task of designing high performance X-ray optical systemsrequires the development of sophisticated X-ray scattering calculationsbased on rigorous information about the optics. One of the mostinsightful approaches to these calculations is based on the powerspectral density (PSD) distribution of the surface height. The majorproblem of measurement of a PSD distribution with an interferometricand/or atomic force microscope arises due to the unknown ModulationTransfer Function (MTF) of the instruments. The MTF characterizes theperturbation of the PSD distribution at higher spatial frequencies. Here,we describe a new method and dedicated test surfaces for calibration ofthe MTF of a microscope. The method is based on use of a speciallydesigned Binary Pseudo-random (BPR) grating. Comparison of atheoretically calculated PSD spectrum of a BPR grating with a spectrummeasured with the grating provides the desired calibration of theinstrumental MTF. The theoretical background of the method, as well asresults of experimental investigations are presented.

  18. Quantum Random Number Generation on a Mobile Phone

    Directory of Open Access Journals (Sweden)

    Bruno Sanguinetti

    2014-09-01

    Full Text Available Quantum random number generators (QRNGs can significantly improve the security of cryptographic protocols by ensuring that generated keys cannot be predicted. However, the cost, size, and power requirements of current Quantum random number generators have prevented them from becoming widespread. In the meantime, the quality of the cameras integrated in mobile telephones has improved significantly so that now they are sensitive to light at the few-photon level. We demonstrate how these can be used to generate random numbers of a quantum origin.

  19. Ternary jitter-based true random number generator

    Science.gov (United States)

    Latypov, Rustam; Stolov, Evgeni

    2017-01-01

    In this paper a novel family of generators producing true uniform random numbers in ternary logic is presented. The generator consists of a number of identical ternary logic combinational units connected into a ring. All the units are provided to have a random delay time, and this time is supposed to be distributed in accordance with an exponential distribution. All delays are supposed to be independent events. The theory of the generator is based on Erlang equations. The generator can be used for test production in various systems. Features of multidimensional random vectors, produced by the generator, are discussed.

  20. Humans cannot consciously generate random numbers sequences: Polemic study.

    Science.gov (United States)

    Figurska, Małgorzata; Stańczyk, Maciej; Kulesza, Kamil

    2008-01-01

    It is widely believed, that randomness exists in Nature. In fact such an assumption underlies many scientific theories and is embedded in the foundations of quantum mechanics. Assuming that this hypothesis is valid one can use natural phenomena, like radioactive decay, to generate random numbers. Today, computers are capable of generating the so-called pseudorandom numbers. Such series of numbers are only seemingly random (bias in the randomness quality can be observed). Question whether people can produce random numbers, has been investigated by many scientists in the recent years. The paper "Humans can consciously generate random numbers sequences..." published recently in Medical Hypotheses made claims that were in many ways contrary to state of art; it also stated far-reaching hypotheses. So, we decided to repeat the experiments reported, with special care being taken of proper laboratory procedures. Here, we present the results and discuss possible implications in computer and other sciences.

  1. Cooperative multi-user detection and ranging based on pseudo-random codes

    Directory of Open Access Journals (Sweden)

    C. Morhart

    2009-05-01

    Full Text Available We present an improved approach for a Round Trip Time of Flight distance measurement system. The system is intended for the usage in a cooperative localisation system for automotive applications. Therefore, it is designed to address a large number of communication partners per measurement cycle. By using coded signals in a time divison multiple access order, we can detect a large number of pedestrian sensors with just one car sensor. We achieve this by using very short transmit bursts in combination with a real time correlation algorithm. Futhermore, the correlation approach offers real time data, concerning the time of arrival, that can serve as a trigger impulse for other comunication systems. The distance accuracy of the correlation result was further increased by adding a fourier interpolation filter. The system performance was checked with a prototype at 2.4 GHz. We reached a distance measurement accuracy of 12 cm at a range up to 450 m.

  2. Cooperative multi-user detection and ranging based on pseudo-random codes

    Science.gov (United States)

    Morhart, C.; Biebl, E. M.

    2009-05-01

    We present an improved approach for a Round Trip Time of Flight distance measurement system. The system is intended for the usage in a cooperative localisation system for automotive applications. Therefore, it is designed to address a large number of communication partners per measurement cycle. By using coded signals in a time divison multiple access order, we can detect a large number of pedestrian sensors with just one car sensor. We achieve this by using very short transmit bursts in combination with a real time correlation algorithm. Futhermore, the correlation approach offers real time data, concerning the time of arrival, that can serve as a trigger impulse for other comunication systems. The distance accuracy of the correlation result was further increased by adding a fourier interpolation filter. The system performance was checked with a prototype at 2.4 GHz. We reached a distance measurement accuracy of 12 cm at a range up to 450 m.

  3. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    Science.gov (United States)

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O2pulm) and predicted muscular (V˙O2musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O2pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O2musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O2musc kinetics seem to be independent of WR intensity (p>0.05). V˙O2pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; pkinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. BINERY PSEUDO-RANDOM GRATING AS A STANDARD TEST SURFACE FOR MEASUREMENT OF MODULATION TRANSFER FUNCTION OF INTERFEROMETRIC MICROSCOPES.

    Energy Technology Data Exchange (ETDEWEB)

    YASHCHUK,V.V.; MCKINNEY, W.R.; TAKACS, P.Z.

    2007-08-01

    The task of designing high performance X-ray optical systems requires the development of sophisticated X-ray scattering calculations based on rigorous information about the optics. One of the most insightful approaches to these calculations is based on the power spectral density (PSD) distribution of the surface height. The major problem of measurement of a PSD distribution with an interferometric and/or atomic force microscope arises due to the unknown Modulation Transfer Function (MTF) of the instruments. The MTF characterizes the perturbation of the PSD distribution at higher spatial frequencies. Here, we describe a new method and dedicated test surfaces for calibration of the MTF of a microscope. The method is based on use of a specially designed Binary Pseudo-random (BPR) grating. Comparison of a theoretically calculated PSD spectrum of a BPR grating with a spectrum measured with the grating provides the desired calibration of the instrumental MTF. The theoretical background of the method, as well as results of experimental investigations are presented.

  5. Nonquadratic Variation of the Blum Blum Shub Pseudorandom Number Generator

    Science.gov (United States)

    2016-09-01

    the use of random numbers. For this rea- son, cryptographers design pseudorandom number generators (PRNG) as a method of generating random numbers...fails the block frequency test, as it is clearly not random . 3.3.3 Runs Test A run is defined as a series of either 1’s or 0’s in a row. The purpose of...that would be expected of a random sequence. The NIST standard uses three common block sizes for this test, M = 8, 128, and 10, 000. The test divides

  6. The autocorrelation structure of Tausworthe pseudorandom number generators

    Science.gov (United States)

    Neuman, F.; Martin, C. F.

    1976-01-01

    An algorithm for determining the autocorrelation structure of a new sequence generated from an original sequence by proper decimation (a shift with each q-th term of the original sequence used) is presented, once autocorrelations for any repeating number sequence are known. The autocorrelation structure of the Tausworthe random number generator (RNG), based on proper decimation by q, is accepted as a RNG structure in which a proper decimation generates a long interval over which autocorrelations are small for all shifts. It is shown that if L bits of an N-bit Tausworthe RNG are L-bit binary numbers, L + 1 levels of correlation will exist, and L levels of correlation will each occur twice per RNG cycle length.

  7. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  8. Unbiased All-Optical Random-Number Generator

    Directory of Open Access Journals (Sweden)

    Tobias Steinle

    2017-11-01

    Full Text Available The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to “iron out” such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  9. Random number generation based on digital differential chaos

    KAUST Repository

    Zidan, Mohammed A.

    2012-07-29

    In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing technique to improve the distribution and statistical properties of the generated data. The post-processed output passes the NIST Sp. 800-22 statistical tests. The system is written in Verilog VHDL and realized on Xilinx Virtex® FPGA. The generator can fit into a very small area and have a maximum throughput of 2.1 Gb/s.

  10. Stability of modulation transfer function calibration of surface profilometers using binary pseudo-random gratings and arrays with nonideal groove shapes

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik H.; Cambie, Rossana; Marchesini, Stefano; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitry L.; Yashchuk, Valeriy V.

    2010-03-31

    The major problem of measurement of a power spectral density (PSD) distribution of surface heights with surface profilometers arises due to the unknown Modulation Transfer Function (MTF) of the instruments, which tends to distort the PSD at higher spatial frequencies. The special mathematical properties of binary pseudo-random patterns make them an ideal basis for developing MTF calibration test surfaces. Two-dimensional binary pseudo-random arrays (BPRAs) have been fabricated and used for the MTF calibration of the MicroMap{trademark}-570 interferometric microscope with all available objectives. An investigation into the effects of fabrication imperfections on the quality of the MTF calibration and a procedure for accounting for such imperfections are presented.

  11. Cost-effectiveness of multidisciplinary wound care in nursing homes: a pseudo-randomized pragmatic cluster trial.

    Science.gov (United States)

    Vu, Trang; Harris, Anthony; Duncan, Gregg; Sussman, Geoff

    2007-09-01

    To evaluate the cost-effectiveness of a multidisciplinary wound care team in the nursing home setting from a health system perspective. Pseudo-randomized pragmatic cluster trial with 20-week follow-up involving 342 uncomplicated leg and pressure ulcers in 176 residents located in 44 high-care nursing homes in Melbourne, Australia in 1999-2000. Twenty-one nursing homes (180 wounds in 94 residents) were assigned to the intervention arm and 23 to the control arm (162 wounds in 82 residents). Residents in the intervention arm received standardized treatment from a wound care team comprising of trained community pharmacists and nurses. Residents in the control arm received usual care. More wounds healed during the trial in the intervention arm than in the control arm (61.7% versus 52.5%, P = 0.07). A Cox regression with shared frailty predicted that the chances of healing increased 73% for intervention wounds [95% confidence interval (CI) 20-150%, P = 0.003]. The mean treatment cost was $A616.4 for intervention and $A977.9 for control patients (P = 0.006). Most cost reduction was obtained from decreases in nursing time and waste disposal. The mean cost saving per wound, adjusted for baseline wound severity and random censoring, was $A277.9 (95% CI $A21.6-$A534.1). Standardized treatment provided by a multidisciplinary wound care team saved costs and improved chronic wound healing in nursing homes. The main source of saving was in the cost of nursing time in applying traditional dressings and in the cost of their disposal.

  12. GASPRNG: GPU accelerated scalable parallel random number generator library

    Science.gov (United States)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or

  13. The Evolution of Random Number Generation in MUVES

    Science.gov (United States)

    2017-01-01

    3 2. Collins JC . Testing, selection, and implementation of random number genera- tors. Aberdeen Proving Ground (MD): Army Research Laboratory (US...261–269. 13, 16 5. L‘Ecuyer P. Tables of linear congruential generators of different sizes and good lattice structure. Mathematics of Computation

  14. Brain potentials index executive functions during random number generation.

    Science.gov (United States)

    Joppich, Gregor; Däuper, Jan; Dengler, Reinhard; Johannes, Sönke; Rodriguez-Fornells, Antoni; Münte, Thomas F

    2004-06-01

    The generation of random sequences is considered to tax different executive functions. To explore the involvement of these functions further, brain potentials were recorded in 16 healthy young adults while either engaging in random number generation (RNG) by pressing the number keys on a computer keyboard in a random sequence or in ordered number generation (ONG) necessitating key presses in the canonical order. Key presses were paced by an external auditory stimulus to yield either fast (1 press/800 ms) or slow (1 press/1300 ms) sequences in separate runs. Attentional demands of random and ordered tasks were assessed by the introduction of a secondary task (key-press to a target tone). The P3 amplitude to the target tone of this secondary task was reduced during RNG, reflecting the greater consumption of attentional resources during RNG. Moreover, RNG led to a left frontal negativity peaking 140 ms after the onset of the pacing stimulus, whenever the subjects produced a true random response. This negativity could be attributed to the left dorsolateral prefrontal cortex and was absent when numbers were repeated. This negativity was interpreted as an index for the inhibition of habitual responses. Finally, in response locked ERPs a negative component was apparent peaking about 50 ms after the key-press that was more prominent during RNG. Source localization suggested a medial frontal source. This effect was tentatively interpreted as a reflection of the greater monitoring demands during random sequence generation.

  15. Source-Device-Independent Ultrafast Quantum Random Number Generation

    Science.gov (United States)

    Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo

    2017-02-01

    Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit /s .

  16. Solution-Processed Carbon Nanotube True Random Number Generator.

    Science.gov (United States)

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  17. A Quickly Tested Pascal Random Number Generator for Microcomputers.

    Science.gov (United States)

    1985-05-01

    in any way at equal intervals spaced h units apart, the serial correlation of the series can be obtained for various lags and tested against...pass handily. The unit range between zero and unity was divided into 100 equally spaced frequencies, and the generated random numbers were...NSDTEST; (*MEAN AND SDEV TESTS*) FREQKOLTEST; (*CHISQ FREQ DISTR AND KOLMOGOROFF -SMIRNOV TESTS*) PAIRTEST; (*TEST DISTR OF RANDOM PAIRS*) TRIOTEST; (*TEST

  18. Number of generations in free fermionic string models

    CERN Document Server

    Giannakis, I; Yuan, K; Giannakis, Ioannis; Nanopoulos, D V; Yuan, Kajia

    1995-01-01

    In string theory there seems to be an intimate connection between spacetime and world-sheet physics. Following this line of thought we investigate the family problem in a particular class of string solutions, namely the free fermionic string models. We find that the number of generations N_g is related to the index of the supersymmetry generator of the underlying N=2 internal superconformal field theory which is always present in any N=1 spacetime supersymmetric string vacuum. We also derive a formula for the index and thus for the number of generations which is sensitive to the boundary condition assignments of the internal fermions and to certain coefficients which determine the weight with which each spin-structure of the model contributes to the one-loop partition function. Finally we apply our formula to several realistic string models in order to derive N_g and we verify our results by constructing explicitly the massless spectrum of these string models.

  19. Analysis of entropy extraction efficiencies in random number generation systems

    Science.gov (United States)

    Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-05-01

    Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.

  20. Experimental measurement-device-independent quantum random-number generation

    Science.gov (United States)

    Nie, You-Qi; Guan, Jian-Yu; Zhou, Hongyi; Zhang, Qiang; Ma, Xiongfeng; Zhang, Jun; Pan, Jian-Wei

    2016-12-01

    The randomness from a quantum random-number generator (QRNG) relies on the accurate characterization of its devices. However, device imperfections and inaccurate characterizations can result in wrong entropy estimation and bias in practice, which highly affects the genuine randomness generation and may even induce the disappearance of quantum randomness in an extreme case. Here we experimentally demonstrate a measurement-device-independent (MDI) QRNG based on time-bin encoding to achieve certified quantum randomness even when the measurement devices are uncharacterized and untrusted. The MDI-QRNG is randomly switched between the regular randomness generation mode and a test mode, in which four quantum states are randomly prepared to perform measurement tomography in real time. With a clock rate of 25 MHz, the MDI-QRNG generates a final random bit rate of 5.7 kbps. Such implementation with an all-fiber setup provides an approach to construct a fully integrated MDI-QRNG with trusted but error-prone devices in practice.

  1. A Family of Controllable Cellular Automata for Pseudorandom Number Generation

    OpenAIRE

    Guan, SU; Zhang, S.

    2002-01-01

    In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 (asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. Moreover, their randomness can be compara...

  2. Quantum Statistical Testing of a Quantum Random Number Generator

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  3. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths.

    Science.gov (United States)

    Takizawa, Ken; Beaucamp, Anthony

    2017-09-18

    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  4. Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

    Energy Technology Data Exchange (ETDEWEB)

    England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J., E-mail: ben.sussman@nrc.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)

    2014-02-03

    The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

  5. Generative Learning Objects Instantiated with Random Numbers Based Expressions

    Directory of Open Access Journals (Sweden)

    Ciprian Bogdan Chirila

    2015-12-01

    Full Text Available The development of interactive e-learning content requires special skills like programming techniques, web integration, graphic design etc. Generally, online educators do not possess such skills and their e-learning products tend to be static like presentation slides and textbooks. In this paper we propose a new interactive model of generative learning objects as a compromise betweenstatic, dull materials and dynamic, complex software e-learning materials developed by specialized teams. We find that random numbers based automatic initialization learning objects increases content diversity, interactivity thus enabling learners’ engagement. The resulted learning object model is at a limited level of complexity related to special e-learning software, intuitive and capable of increasing learners’ interactivity, engagement and motivation through dynamic content. The approach was applied successfully on several computer programing disciplines.

  6. Problem of uniqueness in the renewal process generated by the uniform distribution

    Directory of Open Access Journals (Sweden)

    D. Ugrin-Šparac

    1992-01-01

    Full Text Available The renewal process generated by the uniform distribution, when interpreted as a transformation of the uniform distribution into a discrete distribution, gives rise to the question of uniqueness of the inverse image. The paper deals with a particular problem from the described domain, that arose in the construction of a complex stochastic test intended to evaluate pseudo-random number generators. The connection of the treated problem with the question of a unique integral representation of Gamma-function is also mentioned.

  7. Generation of sub-Poissonian photon number distribution

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Ramanujam, P. S.

    1990-01-01

    An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon number distribution is proposed. We treat the system quantum mechanically and estimate the mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to obtain minimal...... output uncertainty in the photon number. The power efficiency of the system is shown to be high....

  8. Lightweight PUF-based Key and Random Number Generation

    OpenAIRE

    Van Herrewege, Anthony

    2015-01-01

    As embedded electronics continue to be integrated into our daily lives at such a pace that there are nowadays more cellphones than people on the planet, security is becoming ever more crucial. Unfortunately, this is all too often realized as an afterthought and thus the security implementations in many embedded devices offer little to no practical protection. Security does not require only cryptographic algorithms; two other critical modules in a secure system are a key generation module and ...

  9. Multiprime Blum-Blum-Shub Pseudorandom Number Generator

    Science.gov (United States)

    2016-09-01

    time pad). For example, suppose our message is M = 1100110. In order to encrypt it, we add a string of random bits, B = 1011010 and Exclusive-Or ( XOR ...GHz Intel Core i5 • Memory: 4 GB 1600 MHz DDR3 • Graphics : Intel HD Graphics 6000 1536 MB We record the time taken to generate 200 sequences for the...Here, the tests are designed to test a null hypothesis H0, which is the hypothesis that the sequences are random. Along with the null hypothesis, the

  10. An Empirical Analysis of the Cascade Secret Key Reconciliation Protocol for Quantum Key Distribution

    Science.gov (United States)

    2011-09-01

    sifted key generation, the simulation utilizes the pseudo-random number generator Mersenne Twister developed by Matsumoto and Nishimura (Matsumoto...Mersenne Twister pseudo-random number generator. A cryptographically secure pseudo-random number generator may be a better choice for future... twister : a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. , 8 (1), 3-30. Maurer, U. M

  11. Trifork, a New Pseudorandom Number Generator Based on Lagged Fibonacci Maps

    OpenAIRE

    Orue, A.B.; Montoya, F.; Hernández Encinas, Luis

    2010-01-01

    A new family of cryptographically secure pseudorandom number generators, is described. It is based on the combination of the sequences generated by three coupled Lagged Fibonacci generators, mutually perturbed. The mutual perturbation method consists of the bitwise XOR cross-addition of the output of each generator with the right-shifted output of the nearby generator. The proposed generator has better entropy and much longer repetition period than the conventional Lagged Fibonacci Generator....

  12. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V. V., E-mail: VVYashchuk@lbl.gov; Chan, E. R.; Lacey, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fischer, P. J. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California Santa Cruz, Santa Cruz, California 94056 (United States); Conley, R. [Advance Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); McKinney, W. R. [Diablo Valley College, 321 Golf Club Road, Pleasant Hill, California 94523 (United States); Artemiev, N. A. [KLA-Tencor Corp., 1 Technology Drive, Milpitas, California 95035 (United States); Bouet, N. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Cabrini, S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Calafiore, G.; Peroz, C.; Babin, S. [aBeam Technologies, Inc., Hayward, California 94541 (United States)

    2015-12-15

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  13. Turbulent hydraulic jumps: Effect of Weber number and Reynolds number on air entrainment and micro-bubble generation

    Science.gov (United States)

    Mortazavi, Milad; Mani, Ali

    2015-11-01

    Air entrainment in breaking waves is a ubiquitous and complex phenomenon. It is the main source of air transfer from atmosphere to the oceans. Furthermore, air entrainment due to ship-induced waves contributes to bubbly flows in ship wakes and also affect their performance. In this study, we consider a turbulent hydraulic jump as a canonical setting to investigate air entrainment due to turbulence-wave interactions. The flow has an inlet Froude number of 2.0, while three different Weber numbers (We = 1820, 729, 292), and two different Reynolds numbers (Re = 11000, 5500) based on the inlet height and inlet velocity are investigated. Air entrainment is shown to be very sensitive to the We number, while Re number has a minor effect. Wave breaking and interface collisions are significantly reduced in the low Weber number cases. As a result, micro-bubble generation is significantly reduced with decreasing Weber number. Vortex shedding events are observed to emerge at the toe of the jump in all of the cases. For high Weber number regimes, shedding of vortices is accompanied by engulfment of air pockets into the jump in a periodic manner, while for lower Webber number regimes such events are significantly suppressed. Reynolds number is shown to have a negligible effect on the air entrainment, wave breaking and micro-bubble generation, contrary to the previous assumptions in other studies. Supported by ONR.

  14. High-Quality Random Number Generation Software for High-Performance Computing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Random number (RN) generation is the key software component that permits random sampling. Software for parallel RN generation (RNG) should be based on RNGs that are...

  15. The number needed to treat for second-generation biologics when treating established rheumatoid arthritis

    DEFF Research Database (Denmark)

    Kristensen, L. E.; Jakobsen, A. K.; Bartels, E. M.

    2011-01-01

    To evaluate the number needed to treat (NNT) and the number needed to harm (NNH) of the second-generation biologics abatacept, certolizumab, golimumab, rituximab, and tocilizumab in patients with established rheumatoid arthritis (RA) taking concomitant methotrexate (MTX).......To evaluate the number needed to treat (NNT) and the number needed to harm (NNH) of the second-generation biologics abatacept, certolizumab, golimumab, rituximab, and tocilizumab in patients with established rheumatoid arthritis (RA) taking concomitant methotrexate (MTX)....

  16. Planet map generation by tetrahedral subdivision

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2010-01-01

    We present a method for generating pseudo-random, zoomable planet maps for games and art.  The method is based on spatial subdivision using tetrahedrons.  This ensures planet maps without discontinuities caused by mapping a flat map onto a sphere. We compare the method to other map...

  17. Pseudorandom number generation using chaotic true orbits of the Bernoulli map

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Asaki, E-mail: saito@fun.ac.jp [Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655 (Japan); Yamaguchi, Akihiro [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan)

    2016-06-15

    We devise a pseudorandom number generator that exactly computes chaotic true orbits of the Bernoulli map on quadratic algebraic integers. Moreover, we describe a way to select the initial points (seeds) for generating multiple pseudorandom binary sequences. This selection method distributes the initial points almost uniformly (equidistantly) in the unit interval, and latter parts of the generated sequences are guaranteed not to coincide. We also demonstrate through statistical testing that the generated sequences possess good randomness properties.

  18. Computer-generated holograms using multiview images captured by a small number of sparsely arranged cameras.

    Science.gov (United States)

    Ohsawa, Yusuke; Yamaguchi, Kazuhiro; Ichikawa, Tsubasa; Sakamoto, Yuji

    2013-01-01

    Computer-generated holograms (CGHs) using multiview images (MVIs) are holograms generated with multiple ordinary cameras. This process typically requires a huge number of cameras arranged at high density. In this paper, we propose a method to improve CGH using MVIs that obtains the MVIs by using voxel models rather than cameras. In the proposed method the voxel model is generated using the shape-from-silhouette (SFS) technique. We perform SFS using a small number of cameras arranged sparsely to create voxel models of objects and then generate the required number of images from these models by volume rendering. This enables us to generate CGHs using MVIs with just a small number of sparsely arranged cameras. Moreover, the proposed method arrange CGHs using MVIs at arbitrary positions.

  19. Role of surfactants in the number of secondary droplet generation during drop coalescence

    Science.gov (United States)

    Haldar, Krishnayan; Chakraborty, Sudipto

    The current study focuses on the variation in secondary droplet generation number with surfactant types and concentrations while surfactant laden drop impinges on a water pool. Cationic, anionic and non-ionic surfactant solutions of different concentrations are used as liquid drop. We observe from high speed imaging technique that secondary droplet generation number increases with increasing concentration for cationic and nonionic whereas it decreases for anionic surfactants. The variation of dimensionless viscosity to surface tension ratio of each surfactant determines the droplet generation number. Also the empirical relations between dimensionless coalescence time and Reynolds, Ohnesorge Number for the impinging drops reveal the dominance of viscous force over inertial and surface forces during the cascade. High viscous force, low inertial force and low surface force reduces the coalescence time. Hence, partial coalescence is faster for drops which high viscosity, low surface tension and low impact velocity and consequently the number of secondary droplet generation in the cascade will also increase.

  20. Distribution of periodic trajectories of C-K systems MIXMAX pseudorandom number generator

    Science.gov (United States)

    Görlich, Andrzej; Kalomenopoulos, Marios; Savvidy, Konstantin; Savvidy, George

    We are considering the hyperbolic C-K systems of Anosov-Kolmogorov which are defined on high dimensional tori and are used to generate pseudorandom numbers for Monte-Carlo simulations. All trajectories of the C-K systems are exponentially unstable and pseudorandom numbers are represented in terms of coordinates of very long chaotic trajectories. The C-K systems on a torus have countable set of everywhere dense periodic trajectories and their distribution play a crucial role in coding and implementation of the pseudorandom number generator. The asymptotic distribution of chaotic trajectories of C-K systems with periods less than a given number is well known in mathematical literature, but a deviation from its asymptotic behavior is unknown. Using analytical and computer calculations, we are studying a distribution function of periodic trajectories and their deviation from asymptotic behavior. The corresponding MIXMAX generator has the best combination of speed, size of the state and is currently available generator.

  1. Multi-bit quantum random number generation by measuring positions of arrival photons.

    Science.gov (United States)

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-01

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  2. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  3. Generalized Hardware Post‐processing Technique for Chaos‐Based Pseudorandom Number Generators

    National Research Council Canada - National Science Library

    Barakat, Mohamed L; Mansingka, Abhinav S; Radwan, Ahmed G; Salama, Khaled N

    2013-01-01

    ...‐based operation with rotation and feedback. The technique allows full utilization of the chaotic output as pseudorandom number generators and improves throughput without a significant area penalty...

  4. Note: A 10 Gbps real-time post-processing free physical random number generator chip

    Science.gov (United States)

    Qian, Yi; Liang, Futian; Wang, Xinzhe; Li, Feng; Chen, Lian; Jin, Ge

    2017-09-01

    A random number generator with high data rate, small size, and low power consumption is essential for a certain quantum key distribution (QKD) system. We designed a 10 Gbps random number generator ASIC, TRNG2016, for the QKD system. With a 6 mm × 6 mm QFN48 package, TRNG2016 has 10 independent physical random number generation channels, and each channel can work at a fixed frequency up to 1 Gbps. The random number generated by TRNG2016 can pass the NIST statistical tests without any post-processing. With 3.3 V IO power supply and 1.2 V core power supply, the typical power consumption of TRNG2016 is 773 mW with 10 channels on and running at 1 Gbps data rate.

  5. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    Science.gov (United States)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  6. Doing Better by Getting Worse: Posthypnotic Amnesia Improves Random Number Generation

    Science.gov (United States)

    Terhune, Devin Blair; Brugger, Peter

    2011-01-01

    Although forgetting is often regarded as a deficit that we need to control to optimize cognitive functioning, it can have beneficial effects in a number of contexts. We examined whether disrupting memory for previous numerical responses would attenuate repetition avoidance (the tendency to avoid repeating the same number) during random number generation and thereby improve the randomness of responses. Low suggestible and low dissociative and high dissociative highly suggestible individuals completed a random number generation task in a control condition, following a posthypnotic amnesia suggestion to forget previous numerical responses, and in a second control condition following the cancellation of the suggestion. High dissociative highly suggestible participants displayed a selective increase in repetitions during posthypnotic amnesia, with equivalent repetition frequency to a random system, whereas the other two groups exhibited repetition avoidance across conditions. Our results demonstrate that temporarily disrupting memory for previous numerical responses improves random number generation. PMID:22195022

  7. Doing better by getting worse: posthypnotic amnesia improves random number generation.

    Directory of Open Access Journals (Sweden)

    Devin Blair Terhune

    Full Text Available Although forgetting is often regarded as a deficit that we need to control to optimize cognitive functioning, it can have beneficial effects in a number of contexts. We examined whether disrupting memory for previous numerical responses would attenuate repetition avoidance (the tendency to avoid repeating the same number during random number generation and thereby improve the randomness of responses. Low suggestible and low dissociative and high dissociative highly suggestible individuals completed a random number generation task in a control condition, following a posthypnotic amnesia suggestion to forget previous numerical responses, and in a second control condition following the cancellation of the suggestion. High dissociative highly suggestible participants displayed a selective increase in repetitions during posthypnotic amnesia, with equivalent repetition frequency to a random system, whereas the other two groups exhibited repetition avoidance across conditions. Our results demonstrate that temporarily disrupting memory for previous numerical responses improves random number generation.

  8. Individualized cattle copy number and segmental duplication maps using next generation sequencing

    Science.gov (United States)

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  9. Copy number variation of individual cattle genomes using next-generation sequencing

    Science.gov (United States)

    Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  10. Random number datasets generated from statistical analysis of randomly sampled GSM recharge cards.

    Science.gov (United States)

    Okagbue, Hilary I; Opanuga, Abiodun A; Oguntunde, Pelumi E; Ugwoke, Paulinus O

    2017-02-01

    In this article, a random number of datasets was generated from random samples of used GSM (Global Systems for Mobile Communications) recharge cards. Statistical analyses were performed to refine the raw data to random number datasets arranged in table. A detailed description of the method and relevant tests of randomness were also discussed.

  11. The influence of age and generation number of the Dohne Merino ...

    African Journals Online (AJOL)

    Table 1 The influence of age on different wool production traits of Dohne merino ewes. Wool production traits. Clean. Number. Greasy" wool. Clean". Stapleb. Fibreb. Crimp fre-. Fibreb. Body-b. Age of. Generation. Lamging fleece yield fleece mass length diameter quency. S:P density mass. (years) animals number.

  12. Performance of university students on random number generation at different rates to evaluate executive functions

    Directory of Open Access Journals (Sweden)

    Hamdan Amer C.

    2004-01-01

    Full Text Available OBJECTIVE: To evaluate the performance of adult young subjects in a Random Number Generation (RNG task by controlling the response speed (RS. METHOD: Sixty-nine university students of both sexes took part in the experiment (25.05 ± 6.71 year-old. Participants were alloted into 3 groups which differed in RS rates to generate numbers: 1, 2 and 4 seconds to generate each number. A digital metronomer was used to control RS. Participants were asked to generate 100 numbers. The responses were mensured through Evans's RNG Index. RESULTS: There were statistically significant differences among the groups [F (3, 68 = 7.120; p < .05]. Differences were localized between 1 and 2 seconds (p = 0.004 and between 1 and 4 seconds (p = 0.006. No differences were observed between 2 and 4 seconds (p = 0.985. CONCLUSION: The present results suggest that the response speed in production of random numbers influences the performance of the Random Numbers Generation task.

  13. A revision of the subtract-with-borrow random number generators

    Science.gov (United States)

    Sibidanov, Alexei

    2017-12-01

    The most popular and widely used subtract-with-borrow generator, also known as RANLUX, is reimplemented as a linear congruential generator using large integer arithmetic with the modulus size of 576 bits. Modern computers, as well as the specific structure of the modulus inferred from RANLUX, allow for the development of a fast modular multiplication - the core of the procedure. This was previously believed to be slow and have too high cost in terms of computing resources. Our tests show a significant gain in generation speed which is comparable with other fast, high quality random number generators. An additional feature is the fast skipping of generator states leading to a seeding scheme which guarantees the uniqueness of random number sequences. Licensing provisions: GPLv3 Programming language: C++, C, Assembler

  14. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography.

    Science.gov (United States)

    Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang

    2010-08-16

    Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.

  15. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  16. An Architecturally Constrained Model of Random Number Generation and its Application to Modelling the Effect of Generation Rate

    Directory of Open Access Journals (Sweden)

    Nicholas J. Sexton

    2014-07-01

    Full Text Available Random number generation (RNG is a complex cognitive task for human subjects, requiring deliberative control to avoid production of habitual, stereotyped sequences. Under various manipulations (e.g., speeded responding, transcranial magnetic stimulation, or neurological damage the performance of human subjects deteriorates, as reflected in a number of qualitatively distinct, dissociable biases. For example, the intrusion of stereotyped behaviour (e.g., counting increases at faster rates of generation. Theoretical accounts of the task postulate that it requires the integrated operation of multiple, computationally heterogeneous cognitive control ('executive' processes. We present a computational model of RNG, within the framework of a novel, neuropsychologically-inspired cognitive architecture, ESPro. Manipulating the rate of sequence generation in the model reproduced a number of key effects observed in empirical studies, including increasing sequence stereotypy at faster rates. Within the model, this was due to time limitations on the interaction of supervisory control processes, namely, task setting, proposal of responses, monitoring, and response inhibition. The model thus supports the fractionation of executive function into multiple, computationally heterogeneous processes.

  17. Random Number Generation and Executive Functions in Parkinson's Disease: An Event-Related Brain Potential Study.

    Science.gov (United States)

    Münte, Thomas F; Joppich, Gregor; Däuper, Jan; Schrader, Christoph; Dengler, Reinhard; Heldmann, Marcus

    2015-01-01

    The generation of random sequences is considered to tax executive functions and has been reported to be impaired in Parkinson's disease (PD) previously. To assess the neurophysiological markers of random number generation in PD. Event-related potentials (ERP) were recorded in 12 PD patients and 12 age-matched normal controls (NC) while either engaging in random number generation (RNG) by pressing the number keys on a computer keyboard in a random sequence or in ordered number generation (ONG) necessitating key presses in the canonical order. Key presses were paced by an external auditory stimulus at a rate of 1 tone every 1800 ms. As a secondary task subjects had to monitor the tone-sequence for a particular target tone to which the number "0" key had to be pressed. This target tone occurred randomly and infrequently, thus creating a secondary oddball task. Behaviorally, PD patients showed an increased tendency to count in steps of one as well as a tendency towards repetition avoidance. Electrophysiologically, the amplitude of the P3 component of the ERP to the target tone of the secondary task was reduced during RNG in PD but not in NC. The behavioral findings indicate less random behavior in PD while the ERP findings suggest that this impairment comes about, because attentional resources are depleted in PD.

  18. High-speed true random number generation based on paired memristors for security electronics

    Science.gov (United States)

    Zhang, Teng; Yin, Minghui; Xu, Changmin; Lu, Xiayan; Sun, Xinhao; Yang, Yuchao; Huang, Ru

    2017-11-01

    True random number generator (TRNG) is a critical component in hardware security that is increasingly important in the era of mobile computing and internet of things. Here we demonstrate a TRNG using intrinsic variation of memristors as a natural source of entropy that is otherwise undesirable in most applications. The random bits were produced by cyclically switching a pair of tantalum oxide based memristors and comparing their resistance values in the off state, taking advantage of the more pronounced resistance variation compared with that in the on state. Using an alternating read scheme in the designed TRNG circuit, the unbiasedness of the random numbers was significantly improved, and the bitstream passed standard randomness tests. The Pt/TaO x /Ta memristors fabricated in this work have fast programming/erasing speeds of ∼30 ns, suggesting a high random number throughput. The approach proposed here thus holds great promise for physically-implemented random number generation.

  19. Examining Psychokinesis: The Interaction of Human Intention with Random Number Generators--A Meta-Analysis

    Science.gov (United States)

    Bosch, Holger; Steinkamp, Fiona; Boller, Emil

    2006-01-01

    Seance-room and other large-scale psychokinetic phenomena have fascinated humankind for decades. Experimental research has reduced these phenomena to attempts to influence (a) the fall of dice and, later, (b) the output of random number generators (RNGs). The meta-analysis combined 380 studies that assessed whether RNG output correlated with human…

  20. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling

    Science.gov (United States)

    Chlumecký, Martin; Buchtele, Josef; Richta, Karel

    2017-10-01

    The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.

  1. A time series approach to random number generation: Using recurrence quantification analysis to capture executive behavior

    NARCIS (Netherlands)

    Oomens, W.; Maes, J.H.R.; Hasselman, F.W.; Egger, J.I.M.

    2015-01-01

    The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG) task, the execution of which demands aspects of executive functioning, specifically inhibition and

  2. High Throughput Pseudorandom Number Generator Based on Variable Argument Unified Hyperchaos

    Directory of Open Access Journals (Sweden)

    Kaiyu Wang

    2014-01-01

    Full Text Available This paper presents a new multioutput and high throughput pseudorandom number generator. The scheme is to make the homogenized Logistic chaotic sequence as unified hyperchaotic system parameter. So the unified hyperchaos can transfer in different chaotic systems and the output can be more complex with the changing of homogenized Logistic chaotic output. Through processing the unified hyperchaotic 4-way outputs, the output will be extended to 26 channels. In addition, the generated pseudorandom sequences have all passed NIST SP800-22 standard test and DIEHARD test. The system is designed in Verilog HDL and experimentally verified on a Xilinx Spartan 6 FPGA for a maximum throughput of 16.91 Gbits/s for the native chaotic output and 13.49 Gbits/s for the resulting pseudorandom number generators.

  3. Generating log-normally distributed random numbers by using the Ziggurat algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Soo [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method.

  4. High-speed quantum-random number generation by continuous measurement of arrival time of photons.

    Science.gov (United States)

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-01

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  5. Delay line length selection in generating fast random numbers with a chaotic laser.

    Science.gov (United States)

    Zhang, Jianzhong; Wang, Yuncai; Xue, Lugang; Hou, Jiayin; Zhang, Beibei; Wang, Anbang; Zhang, Mingjiang

    2012-04-10

    The chaotic light signals generated by an external cavity semiconductor laser have been experimentally demonstrated to extract fast random numbers. However, the photon round-trip time in the external cavity can cause the occurrence of the periodicity in random sequences. To overcome it, the exclusive-or operation on corresponding random bits in samples of the chaotic signal and its time-delay signal from a chaotic laser is required. In this scheme, the proper selection of delay length is a key issue. By doing a large number of experiments and theoretically analyzing the interplay between the Runs test and the threshold value of the autocorrelation function, we find when the corresponding delay time of autocorrelation trace with the correlation coefficient of less than 0.007 is considered as the delay time between the chaotic signal and its time-delay signal, streams of random numbers can be generated with verified randomness.

  6. A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps

    Energy Technology Data Exchange (ETDEWEB)

    Cecen, Songul [Department of Computer Science, University of Arkansas at Little Rock, 2801 South University Ave., Little Rock, AR 72204 (United States)], E-mail: sxcecen@ualr.edu; Demirer, R. Murat [Department of Computer Science, University of Arkansas at Little Rock, 2801 South University Ave., Little Rock, AR 72204 (United States); Istanbul Kultur University, Mathematics-Computer Department, Atakoy, Campus Bakirkoy 34156 Istanbul (Turkey)], E-mail: mxdemirer@ualr.edu; Bayrak, Coskun [Department of Computer Science, University of Arkansas at Little Rock, 2801 South University Ave., Little Rock, AR 72204 (United States)], E-mail: cxbayrak@ualr.edu

    2009-10-30

    We propose a nonlinear congruential pseudorandom number generator consisting of summation of higher order composition of random logistic maps under certain congruential mappings. We change both bifurcation parameters of logistic maps in the interval of U=[3.5599,4) and coefficients of the polynomials in each higher order composition of terms up to degree d. This helped us to obtain a perfect random decorrelated generator which is infinite and aperiodic. It is observed from the simulation results that our new PRNG has good uniformity and power spectrum properties with very flat white noise characteristics. The results are interesting, new and may have applications in cryptography and in Monte Carlo simulations.

  7. Quantum random number generator based on quantum nature of vacuum fluctuations

    Science.gov (United States)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  8. A Hardware Efficient Random Number Generator for Nonuniform Distributions with Arbitrary Precision

    Directory of Open Access Journals (Sweden)

    Christian de Schryver

    2012-01-01

    number generators is a very active research field. However, most state-of-the-art architectures are either tailored to specific distributions or use up a lot of hardware resources. At ReConFig 2010, we have presented a new design that saves up to 48% of area compared to state-of-the-art inversion-based implementation, usable for arbitrary distributions and precision. In this paper, we introduce a more flexible version together with a refined segmentation scheme that allows to further reduce the approximation error significantly. We provide a free software tool allowing users to implement their own distributions easily, and we have tested our random number generator thoroughly by statistic analysis and two application tests.

  9. Quantum random number generation enhanced by weak-coherent states interference.

    Science.gov (United States)

    Ferreira da Silva, T; Xavier, G B; Amaral, G C; Temporão, G P; von der Weid, J P

    2016-08-22

    We propose and demonstrate a technique for quantum random number generation based on the random population of the output spatial modes of a beam splitter when both inputs are simultaneously fed with indistinguishable weak coherent states. We simulate and experimentally validate the probability of generation of random bits as a function of the average photon number per input, and compare it to the traditional approach of a single weak coherent state transmitted through a beam-splitter, showing an improvement of up to 32%. The ensuing interference phenomenon reduces the probability of coincident counts between the detectors associated with bits 0 and 1, thus increasing the probability of occurrence of a valid output. A long bit string is assessed by a standard randomness test suite with good confidence. Our proposal can be easily implemented and opens attractive performance gains without a significant trade-off.

  10. On the design of henon and logistic map-based random number generator

    Science.gov (United States)

    Magfirawaty; Suryadi, M. T.; Ramli, Kalamullah

    2017-10-01

    The key sequence is one of the main elements in the cryptosystem. True Random Number Generators (TRNG) method is one of the approaches to generating the key sequence. The randomness source of the TRNG divided into three main groups, i.e. electrical noise based, jitter based and chaos based. The chaos based utilizes a non-linear dynamic system (continuous time or discrete time) as an entropy source. In this study, a new design of TRNG based on discrete time chaotic system is proposed, which is then simulated in LabVIEW. The principle of the design consists of combining 2D and 1D chaotic systems. A mathematical model is implemented for numerical simulations. We used comparator process as a harvester method to obtain the series of random bits. Without any post processing, the proposed design generated random bit sequence with high entropy value and passed all NIST 800.22 statistical tests.

  11. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  12. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser

    Science.gov (United States)

    Zhang, Limeng; Pan, Biwei; Chen, Guangcan; Guo, Lu; Lu, Dan; Zhao, Lingjuan; Wang, Wei

    2017-04-01

    An ultra-fast physical random number generator is demonstrated utilizing a photonic integrated device based broadband chaotic source with a simple post data processing method. The compact chaotic source is implemented by using a monolithic integrated dual-mode amplified feedback laser (AFL) with self-injection, where a robust chaotic signal with RF frequency coverage of above 50 GHz and flatness of ±3.6 dB is generated. By using 4-least significant bits (LSBs) retaining from the 8-bit digitization of the chaotic waveform, random sequences with a bit-rate up to 640 Gbit/s (160 GS/s × 4 bits) are realized. The generated random bits have passed each of the fifteen NIST statistics tests (NIST SP800-22), indicating its randomness for practical applications.

  13. Application of remote sensing and geographical information system for generation of runoff curve number

    Science.gov (United States)

    Meshram, S. Gajbhiye; Sharma, S. K.; Tignath, S.

    2017-07-01

    Watershed is an ideal unit for planning and management of land and water resources (Gajbhiye et al., IEEE international conference on advances in technology and engineering (ICATE), Bombay, vol 1, issue 9, pp 23-25, 2013a; Gajbhiye et al., Appl Water Sci 4(1):51-61, 2014a; Gajbhiye et al., J Geol Soc India (SCI-IF 0.596) 84(2):192-196, 2014b). This study aims to generate the curve number, using remote sensing and geographical information system (GIS) and the effect of slope on curve number values. The study was carried out in Kanhaiya Nala watershed located in Satna district of Madhya Pradesh. Soil map, Land Use/Land cover and slope map were generated in GIS Environment. The CN parameter values corresponding to various soil, land cover, and land management conditions were selected from Natural Resource Conservation Service (NRCS) standard table. Curve number (CN) is an index developed by the NRCS, to represent the potential for storm water runoff within a drainage area. The CN for a drainage basin is estimated using a combination of land use, soil, and antecedent soil moisture condition (AMC). In present study effect of slope on CN values were determined. The result showed that the CN unadjusted value are higher in comparison to CN adjusted with slope. Remote sensing and GIS is very reliable technique for the preparation of most of the input data required by the SCS curve number model.

  14. Generation of random numbers on graphics processors: forced indentation in silico of the bacteriophage HK97.

    Science.gov (United States)

    Zhmurov, A; Rybnikov, K; Kholodov, Y; Barsegov, V

    2011-05-12

    The use of graphics processing units (GPUs) in simulation applications offers a significant speed gain as compared to computations on central processing units (CPUs). Many simulation methods require a large number of independent random variables generated at each step. We present two approaches for implementation of random number generators (RNGs) on a GPU. In the one-RNG-per-thread approach, one RNG produces a stream of random numbers in each thread of execution, whereas the one-RNG-for-all-threads method builds on the ability of different threads to communicate, thus, sharing random seeds across an entire GPU device. We used these approaches to implement Ran2, Hybrid Taus, and Lagged Fibonacci algorithms on a GPU. We profiled the performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU time/GPU time). These generators have been incorporated into the program for Langevin simulations of biomolecules fully implemented on the GPU. The ∼250-fold computational speedup on the GPU allowed us to carry out single-molecule dynamic force measurements in silico to explore the mechanical properties of the bacteriophage HK97 in the experimental subsecond time scale. We found that the nanomechanical response of HK97 depends on the conditions of force application, including the rate of change and geometry of the mechanical perturbation. Hence, using the GPU-based implementation of RNGs, presented here, in conjunction with Langevin simulations, makes it possible to directly compare the results of dynamic force measurements in vitro and in silico.

  15. Leveraging Random Number Generation for Mastery of Learning in Teaching Quantitative Research Courses via an E-Learning Method

    Science.gov (United States)

    Boonsathorn, Wasita; Charoen, Danuvasin; Dryver, Arthur L.

    2014-01-01

    E-Learning brings access to a powerful but often overlooked teaching tool: random number generation. Using random number generation, a practically infinite number of quantitative problem-solution sets can be created. In addition, within the e-learning context, in the spirit of the mastery of learning, it is possible to assign online quantitative…

  16. Implementing and Testing Self-Timed Rings on a FPGA as Entropy Sources

    OpenAIRE

    Einar, Marcus

    2015-01-01

    Random number generators are basic building blocks of modern cryptographic systems. Usually pseudo random number generators, carefully constructed deter- ministic algorithms that generate seemingly random numbers, are used. These are built upon foundations of thorough mathematical analysis and have been subjected to stringent testing to make sure that they can produce pseudo random sequences at a high bit-rate with good statistical properties. A pseudo random number generator must be initiate...

  17. Compact quantum random number generator based on superluminescent light-emitting diodes

    Science.gov (United States)

    Wei, Shihai; Yang, Jie; Fan, Fan; Huang, Wei; Li, Dashuang; Xu, Bingjie

    2017-12-01

    By measuring the amplified spontaneous emission (ASE) noise of the superluminescent light emitting diodes, we propose and realize a quantum random number generator (QRNG) featured with practicability. In the QRNG, after the detection and amplification of the ASE noise, the data acquisition and randomness extraction which is integrated in a field programmable gate array (FPGA) are both implemented in real-time, and the final random bit sequences are delivered to a host computer with a real-time generation rate of 1.2 Gbps. Further, to achieve compactness, all the components of the QRNG are integrated on three independent printed circuit boards with a compact design, and the QRNG is packed in a small enclosure sized 140 mm × 120 mm × 25 mm. The final random bit sequences can pass all the NIST-STS and DIEHARD tests.

  18. Phase transition and computational complexity in a stochastic prime number generator

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, L; Luque, B [Departamento de Matematica Aplicada y EstadIstica, ETSI Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Miramontes, O [Departamento de Sistemas Complejos, Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Mexico 01415 DF (Mexico)], E-mail: lucas@dmae.upm.es

    2008-02-15

    We introduce a prime number generator in the form of a stochastic algorithm. The character of this algorithm gives rise to a continuous phase transition which distinguishes a phase where the algorithm is able to reduce the whole system of numbers into primes and a phase where the system reaches a frozen state with low prime density. In this paper, we firstly present a broader characterization of this phase transition, both in analytical and numerical terms. Critical exponents are calculated, and data collapse is provided. Further on, we redefine the model as a search problem, fitting it in the hallmark of computational complexity theory. We suggest that the system belongs to the class NP. The computational cost is maximal around the threshold, as is common in many algorithmic phase transitions, revealing the presence of an easy-hard-easy pattern. We finally relate the nature of the phase transition to an average-case classification of the problem.

  19. Generating continuous variable entangled states for quantum teleportation using a superposition of number-conserving operations

    Science.gov (United States)

    Shekhar Dhar, Himadri; Chatterjee, Arpita; Ghosh, Rupamanjari

    2015-09-01

    We investigate the states generated in continuous variable (CV) optical fields by operating them with a number-conserving operator of the type s\\hat{a}{\\hat{a}}\\dagger +t{\\hat{a}}\\dagger \\hat{a}, formed by the generalized superposition of products of field annihilation (\\hat{a}) and creation ({\\hat{a}}\\dagger ) operators, with {s}2+{t}2=1. Such an operator is experimentally realizable and can be suitably manipulated to generate nonclassical optical states when applied on single- and two-mode coherent, thermal and squeezed input states. At low intensities, these nonclassical states can interact with a secondary mode via a linear optical device to generate two-mode discrete entangled states, which can serve as a resource in quantum information protocols. The advantage of these operations are tested by applying the generated entangled states as quantum channels in CV quantum teleportation, under the Braunstein and Kimble protocol. We observe that, under these operations, while the average fidelity of CV teleportation is enhanced for the nonclassical channel formed using input squeezed states, it remains at the classical threshold for input coherent and thermal states. This is due to the fact that though these operations can introduce discrete entanglement in all input states, it enhances the Einstein-Podolosky-Rosen correlations only in the nonclassical squeezed state inputs, leading to an advantage in CV teleportation. This shows that nonclassical optical states generated using the above operations on classical coherent and thermal state inputs are not useful for CV teleportation. This investigation could prove useful for the efficient implementation of noisy non-Gaussian channels, formed by linear operations, in future teleportation protocols.

  20. Efficient generation of large number-path entanglement using only linear optics and feed-forward.

    Science.gov (United States)

    Cable, Hugo; Dowling, Jonathan P

    2007-10-19

    We show how an idealized measurement procedure can condense photons from two modes into one and how, by feeding forward the results of the measurement, it is possible to generate efficiently superposition states commonly called N00N states. For the basic procedure sources of number states leak onto a beam splitter, and the output ports are monitored by photodetectors. We find that detecting a fixed fraction of the input at one output port suffices to direct the remainder to the same port, with high probability, however large the initial state. When instead photons are detected at both ports, macroscopic quantum superposition states are produced. We describe a linear-optical circuit for making the components of such a state orthogonal, and another to convert the output to a N00N state. Our approach scales exponentially better than existing proposals. Important applications include quantum imaging and metrology.

  1. CRISPR transcript processing: a mechanism for generating a large number of small interfering RNAs

    Directory of Open Access Journals (Sweden)

    Djordjevic Marko

    2012-07-01

    Full Text Available Abstract Background CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated sequences is a recently discovered prokaryotic defense system against foreign DNA, including viruses and plasmids. CRISPR cassette is transcribed as a continuous transcript (pre-crRNA, which is processed by Cas proteins into small RNA molecules (crRNAs that are responsible for defense against invading viruses. Experiments in E. coli report that overexpression of cas genes generates a large number of crRNAs, from only few pre-crRNAs. Results We here develop a minimal model of CRISPR processing, which we parameterize based on available experimental data. From the model, we show that the system can generate a large amount of crRNAs, based on only a small decrease in the amount of pre-crRNAs. The relationship between the decrease of pre-crRNAs and the increase of crRNAs corresponds to strong linear amplification. Interestingly, this strong amplification crucially depends on fast non-specific degradation of pre-crRNA by an unidentified nuclease. We show that overexpression of cas genes above a certain level does not result in further increase of crRNA, but that this saturation can be relieved if the rate of CRISPR transcription is increased. We furthermore show that a small increase of CRISPR transcription rate can substantially decrease the extent of cas gene activation necessary to achieve a desired amount of crRNA. Conclusions The simple mathematical model developed here is able to explain existing experimental observations on CRISPR transcript processing in Escherichia coli. The model shows that a competition between specific pre-crRNA processing and non-specific degradation determines the steady-state levels of crRNA and is responsible for strong linear amplification of crRNAs when cas genes are overexpressed. The model further shows how disappearance of only a few pre-crRNA molecules normally present in the cell can lead to a large (two

  2. Aging effect on Executive Control in the Random Number Generation Test

    Directory of Open Access Journals (Sweden)

    Amer Cavalheiro Hamdan

    2006-12-01

    Full Text Available The decline of abilities related to Executive Control –EC with aging has been related with the Pre-Frontal System neurobiological aging. This study compared the score obtained in the Random Number Generation Test (RNG by two groups: 30 college students (older than 18 and 36 elderly (older than 60. This last group was divided according to the criteria of schooling in up to 8 years of schooling and over 8 years of schooling. The results show that the younger participants scored 0,344 ± 0,04 in the RNG test; the elderly with up to 8 years of schooling punctuated 0,432 ± 0,10 and that those who studied for 9 years or more reached a mean of 0,393 ± 0,05. The statistical analysis of these data suggest that the elderly performance in the RNG test (0,420 ± 0,09 was significantly worse when compared to the performance of the younger participants (t (64 = -3,9927; p = 0,0001, which confirms that the manipulation and inhibitory control abilities of information are decreased in older people, probably due to the natural aging process of the Frontal Cortex. Keywords: neuropsychology; aging; executive functions.

  3. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  4. Generalized hardware post-processing technique for chaos-based pseudorandom number generators

    KAUST Repository

    Barakat, Mohamed L.

    2013-06-01

    This paper presents a generalized post-processing technique for enhancing the pseudorandomness of digital chaotic oscillators through a nonlinear XOR-based operation with rotation and feedback. The technique allows full utilization of the chaotic output as pseudorandom number generators and improves throughput without a significant area penalty. Digital design of a third-order chaotic system with maximum function nonlinearity is presented with verified chaotic dynamics. The proposed post-processing technique eliminates statistical degradation in all output bits, thus maximizing throughput compared to other processing techniques. Furthermore, the technique is applied to several fully digital chaotic oscillators with performance surpassing previously reported systems in the literature. The enhancement in the randomness is further examined in a simple image encryption application resulting in a better security performance. The system is verified through experiment on a Xilinx Virtex 4 FPGA with throughput up to 15.44 Gbit/s and logic utilization less than 0.84% for 32-bit implementations. © 2013 ETRI.

  5. DNA based random key generation and management for OTP encryption.

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  6. A new sentence generator providing material for maximum reading speed measurement.

    Science.gov (United States)

    Perrin, Jean-Luc; Paillé, Damien; Baccino, Thierry

    2015-12-01

    A new method is proposed to generate text material for assessing maximum reading speed of adult readers. The described procedure allows one to generate a vast number of equivalent short sentences. These sentences can be displayed for different durations in order to determine the reader's maximum speed using a psychophysical threshold algorithm. Each sentence is built so that it is either true or false according to common knowledge. The actual reading is verified by asking the reader to determine the truth value of each sentence. We based our design on the generator described by Crossland et al. and upgraded it. The new generator handles concepts distributed in an ontology, which allows an easy determination of the sentences' truth value and control of lexical and psycholinguistic parameters. In this way many equivalent sentence can be generated and displayed to perform the measurement. Maximum reading speed scores obtained with pseudo-randomly chosen sentences from the generator were strongly correlated with maximum reading speed scores obtained with traditional MNREAD sentences (r = .836). Furthermore, the large number of sentences that can be generated makes it possible to perform repeated measurements, since the possibility of a reader learning individual sentences is eliminated. Researchers interested in within-reader performance variability could use the proposed method for this purpose.

  7. The Effects of Two Generative Activities on Learner Comprehension of Part-Whole Meaning of Rational Numbers Using Virtual Manipulatives

    Science.gov (United States)

    Trespalacios, Jesus

    2010-01-01

    This study investigated the effects of two generative learning activities on students' academic achievement of the part-whole meaning of rational numbers while using virtual manipulatives. Third-grade students were divided randomly in two groups to evaluate the effects of two generative learning activities: answering-questions and…

  8. Embedded Platform for Automatic Testing and Optimizing of FPGA Based Cryptographic True Random Number Generators

    Directory of Open Access Journals (Sweden)

    M. Varchola

    2009-12-01

    Full Text Available This paper deals with an evaluation platform for cryptographic True Random Number Generators (TRNGs based on the hardware implementation of statistical tests for FPGAs. It was developed in order to provide an automatic tool that helps to speed up the TRNG design process and can provide new insights on the TRNG behavior as it will be shown on a particular example in the paper. It enables to test sufficient statistical properties of various TRNG designs under various working conditions on the fly. Moreover, the tests are suitable to be embedded into cryptographic hardware products in order to recognize TRNG output of weak quality and thus increase its robustness and reliability. Tests are fully compatible with the FIPS 140 standard and are implemented by the VHDL language as an IP-Core for vendor independent FPGAs. A recent Flash based Actel Fusion FPGA was chosen for preliminary experiments. The Actel version of the tests possesses an interface to the Actel’s CoreMP7 softcore processor that is fully compatible with the industry standard ARM7TDMI. Moreover, identical tests suite was implemented to the Xilinx Virtex 2 and 5 in order to compare the performance of the proposed solution with the performance of already published one based on the same FPGAs. It was achieved 25% and 65% greater clock frequency respectively while consuming almost equal resources of the Xilinx FPGAs. On the top of it, the proposed FIPS 140 architecture is capable of processing one random bit per one clock cycle which results in 311.5 Mbps throughput for Virtex 5 FPGA.

  9. Design of Long Period Pseudo-Random Sequences from the Addition of m -Sequences over 𝔽 p

    OpenAIRE

    Ren Jian

    2004-01-01

    Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA) communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of m -sequences with pairwise-prime linear spans (AMPLS). Using m -sequences as building blocks, the proposed method proved to...

  10. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    Science.gov (United States)

    Rao, Mathukumalli Srinivasa; Swathi, Pettem; Rao, Chitiprolu Anantha Rama; Rao, K V; Raju, B M K; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  11. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    Directory of Open Access Journals (Sweden)

    Mathukumalli Srinivasa Rao

    Full Text Available The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM of future data on daily maximum (T.max, minimum (T.min air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1. This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF -2020, Distant future (DF-2050 and Very Distant future (VDF-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%, model (1.74% and scenario (0.74%. The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  12. Mesh Generation and Adaption for High Reynolds Number RANS Computations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of our Phase II STTR program is to develop and provide to NASA automatic mesh generation software for the simulation of fluid flows using...

  13. Mesh Generation and Adaption for High Reynolds Number RANS Computations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....

  14. A generator for unique quantum random numbers based on vacuum states

    DEFF Research Database (Denmark)

    Gabriel, C.; Wittmann, C.; Sych, D.

    2010-01-01

    Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpre...

  15. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  16. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    Science.gov (United States)

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  17. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-01-01

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357

  18. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  19. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Directory of Open Access Journals (Sweden)

    Marcin Piotr Pawlowski

    2015-10-01

    Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  20. Random number generator based on an integrated laser with on-chip optical feedback

    Science.gov (United States)

    Verschaffelt, Guy; Khoder, Mulham; Van der Sande, Guy

    2017-11-01

    We discuss the design and testing of a laser integrated with a long on-chip optical feedback section. The device and feedback section have been fabricated on a generic photonic integration platform using only standard building blocks. We have been able to integrate a 10 cm feedback length on a footprint of 5.5 mm2. By controlling the amount of feedback, we achieve chaotic dynamics in the long-cavity regime and show that the resulting dynamics is sufficiently complex in order to generate random bits based on the chaotic intensity fluctuation at a rate of 500 Mbits/s.

  1. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling

    Czech Academy of Sciences Publication Activity Database

    Chlumecký, M.; Buchtele, Josef; Richta, K.

    2017-01-01

    Roč. 553, October (2017), s. 350-355 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : genetic algorithm * optimisation * rainfall-runoff modeling * random generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.483, year: 2016 https://ac.els-cdn.com/S0022169417305516/1-s2.0-S0022169417305516-main.pdf?_tid=fa1bad8a-bd6a-11e7-8567-00000aab0f27&acdnat=1509365462_a1335d3d997e9eab19e23b1eee977705

  2. Low Mach number prediction of the acoustic signature of fractal-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Laizet, Sylvain, E-mail: s.laizet@imperial.ac.uk [Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fortune, Veronique, E-mail: veronique.fortune@lea.univ-poitiers.fr [Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Lamballais, Eric, E-mail: lamballais@univ-poitiers.fr [Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Vassilicos, John Christos, E-mail: j.c.vassilicos@imperial.ac.uk [Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Acoustic properties of a fractal square grid and regular grid. Black-Right-Pointing-Pointer Hybrid approach based on Lighthill's analogy and Direct Numerical Simulation. Black-Right-Pointing-Pointer Noise reduction for the fractal square grid. Black-Right-Pointing-Pointer Well-defined peak at a Strouhal number between 0.2 and 0.3 for the fractal square grid, absent for the regular grid. - Abstract: In this work, we compare the acoustic properties of a fractal square grid with those of a regular grid by means of a hybrid approach based on Lighthill's analogy and Direct Numerical Simulation (DNS). Our results show that the sound levels corresponding to our fractal square grid of three fractal iterations are significantly reduced by comparison to a regular grid of same porosity and mesh-based Reynolds number. We also find a well-defined peak at a Strouhal number between 0.2 and 0.3 in the acoustic spectrum of our fractal square grid which is absent in the case of our regular grid. We explain this effect in terms of a new criterion for quasi-periodic vortex shedding from a regular or fractal grid.

  3. A Method for Generating New Datasets Based on Copy Number for Cancer Analysis

    Directory of Open Access Journals (Sweden)

    Shinuk Kim

    2015-01-01

    Full Text Available New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.

  4. Meaningful Share Generation for Increased Number of Secrets in Visual Secret-Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Mustafa Ulutas

    2010-01-01

    Full Text Available This paper presents a new scheme for hiding two halftone secret images into two meaningful shares created from halftone cover images. Meaningful shares are more desirable than noise-like (meaningless shares in Visual Secret Sharing because they look natural and do not attract eavesdroppers' attention. Previous works in the field focus on either increasing number of secrets or creating meaningful shares for one secret image. The method outlined in this paper both increases the number of secrets and creates meaningful shares at the same time. While the contrast ratio of shares is equal to that of Extended Visual Cryptography, two secrets are encoded into two shares as opposed to one secret in the Extended Visual Cryptography. Any two natural-looking images can be used as cover unlike the Halftone Visual Cryptography method where one cover should be the negative of the other cover image and can only encode one secret. Effectiveness of the proposed method is verified by an experiment.

  5. Thermal requirements and estimated number of generations of Neopamera bilobata (Say in strawberry-producing regions of Brazil

    Directory of Open Access Journals (Sweden)

    Taciana Melissa de Azevedo Kuhn

    2017-12-01

    Full Text Available ABSTRACT: The thermal threshold and thermal requirements of Neopamera bilobata were determined, and the number of generations that this species may produce in the main strawberry-producing regions of Brazil was estimated. In a climate chamber (70±10% RH and 12h photophase at 16, 19, 22, 25, 28, or 30±1°C, the development of 120 eggs was monitored until the adult stage, at each temperature. Nymphs were maintained in individual cages and fed on strawberry fruits of the cultivar Aromas. The mean duration and viability of the egg and nymph stages were calculated by estimating the lower and upper developmental thresholds and the thermal constant, and this information was used to estimate the number of generations per year in different strawberry-producing regions of Brazil. The egg-to-adult duration decreased as temperatures increased, up to 28°C (93.4, 83.2, 43.9, and 31.4 days at 19, 22, 25, and 28°C, respectively. Viability of nymphs was highest between 22 and 28°C. At 30°C, the egg-to-adult duration increased (36 days, while the viability decreased (11.11%. The lower egg-to-adult developmental threshold was 15.2°C and the thermal constant was 418.4 degree-days. Calculating the number of generations indicated that the largest number (5.1 generations yr-1 was obtained for the municipality of Jaboti, Paraná, and the smallest for Caxias do Sul, Rio Grande do Sul (1.9 generations yr-1. Our findings demonstrated that important strawberry-producing regions in Brazil are suitable for the development of N. bilobata.

  6. The minimum number belts of DOE for Bessel-Gauss beams to generate a strong longitudinally polarized beam

    Science.gov (United States)

    Fu, Jian; Wang, Ying; Chen, Peifeng

    2017-12-01

    In this paper, we minimize the number of belts on the diffractive binary optical element (DOE) to generate a strong longitudinally polarized beam by focusing a radially polarized Bessel-Gaussian beam. Based on a combination of the three-belt DOE and a high-numerical aperture parabolic mirror focusing system, a needle of strong longitudinally polarized beam can be achieved. The transverse full width at half maximum of this longitudinally polarized beam is 0.40 λ and the longitudinal field power fraction reaches 85%. In alternative focusing elements, three belts are the minimum number of the DOE for Bessel-Gauss beams.

  7. Generation and Evolution of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    CERN Document Server

    Schaeffer, Derek; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2016-01-01

    Shocks act to convert incoming supersonic flows to heat, and in collisionless plasmas the shock layer forms on kinetic plasma scales through collective electromagnetic effects. These collisionless shocks have been observed in many space and astrophysical systems [Smith 1975, Smith 1980, Burlaga 2008, Sulaiman 2015], and are believed to accelerate particles, including cosmic rays, to extremely high energies [Kazanas 1986, Loeb 2000, Bamba 2003, Masters 2013, Ackermann 2013]. Of particular importance are the class of high-Mach number, supercritical shocks [Balogh 2013] ($M_A\\gtrsim4$), which must reflect significant numbers of particles back into the upstream to accommodate entropy production, and in doing so seed proposed particle acceleration mechanisms [Blandford 1978, McClements 2001, Caprioli 2014, Matsumoto 2015]. Here we present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient ...

  8. The Performance Evaluation of Horizontal Axis Wind Turbine Torque and Mechanical Power Generation Affected by the Number of Blade

    Directory of Open Access Journals (Sweden)

    Tan Rodney H. G.

    2016-01-01

    Full Text Available This paper presents the evaluation of horizontal axis wind turbine torque and mechanical power generation and its relation to the number of blades at a given wind speed. The relationship of wind turbine rotational frequency, tip speed, minimum wind speed, mechanical power and torque related to the number of blades are derived. The purpose of this study is to determine the wind energy extraction efficiency achieved for every increment of blade number. Effective factor is introduced to interpret the effectiveness of the wind turbine extracting wind energy below and above the minimum wind speed for a given number of blades. Improve factor is introduced to indicate the improvement achieved for every increment of blades. The evaluation was performance with wind turbine from 1 to 6 blades. The evaluation results shows that the higher the number of blades the lower the minimum wind speed to achieve unity effective factor. High improve factors are achieved between 1 to 2 and 2 to 3 blades increment. It contributes to better understanding and determination for the choice of the number of blades for wind turbine design.

  9. Random number generation in bilingual Balinese and German students: preliminary findings from an exploratory cross-cultural study.

    Science.gov (United States)

    Strenge, Hans; Lesmana, Cokorda Bagus Jaya; Suryani, Luh Ketut

    2009-08-01

    Verbal random number generation is a procedurally simple task to assess executive function and appears ideally suited for the use under diverse settings in cross-cultural research. The objective of this study was to examine ethnic group differences between young adults in Bali (Indonesia) and Kiel (Germany): 50 bilingual healthy students, 30 Balinese and 20 Germans, attempted to generate a random sequence of the digits 1 to 9. In Balinese participants, randomization was done in Balinese (native language L1) and Indonesian (first foreign language L2), in German subjects in the German (L1) and English (L2) languages. 10 of 30 Balinese (33%), but no Germans, were unable to inhibit habitual counting in more than half of the responses. The Balinese produced significantly more nonrandom responses than the Germans with higher rates of counting and significantly less occurrence of the digits 2 and 3 in L1 compared with L2. Repetition and cycling behavior did not differ between the four languages. The findings highlight the importance of taking into account culture-bound psychosocial factors for Balinese individuals when administering and interpreting a random number generation test.

  10. Algoritma The Sieve Of Eratosthenes Dan Linear Congruential Generator (LCG) Dalam Perancangan Aplikasi Kriptografi RSA

    OpenAIRE

    Fakhriza, M

    2013-01-01

    Kriptografi adalah ilmu untuk menyamarkan pesan agar hanya dikenal baik oleh penyedia dan penerima pesan. Algoritma kunci publik RSA adalah salah satu metode dalam ilmu kriptografi. Dalam algoritma kunci publik RSA, ada kunci privat dan publik, di mana masing-masing kunci menggunakan bilangan acak yang merupakan bilangan prima untuk melakukan enkripsi dan dekripsi.Bilangan acak yang dihasilkan sebenarnya adalah bilangan pseudo-random ('hampir' acak). Linear Congruential Generator (LCG) algor...

  11. Quantum random flip-flop and its applications in random frequency synthesis and true random number generation

    Energy Technology Data Exchange (ETDEWEB)

    Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2016-03-15

    In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.

  12. Thermal requirements and estimate number of generations of Palmistichus elaeisis (Hymenoptera: Eulophidae in different Eucalyptus plantations regions

    Directory of Open Access Journals (Sweden)

    FF Pereira

    Full Text Available To use Palmistichus elaeisis Delvare and LaSalle, 1993 (Hymenoptera: Eulophidae in a biological control programme of Thyrinteina arnobia (Stoll, 1782 (Lepidoptera: Geometridae, it is necessary to study thermal requirements, because temperature can affect the metabolism and bioecological aspects. The objective was to determine the thermal requirements and estimate the number of generations of P. elaeisis in different Eucalyptus plantations regions. After 24 hours in contact with the parasitoid, the pupae was placed in 16, 19, 22, 25, 28 and 31 °C, 70 ± 10% of relative humidity and 14 hours of photophase. The duration of the life cycle of P. elaeisis was reduced with the increase in the temperature. At 31 °C the parasitoid could not finish the cycle in T. arnobia pupae. The emergence of P. elaeisis was not affected by the temperature, except at 31 °C. The number of individuals was between six and 1238 per pupae, being higher at 16 °C. The thermal threshold of development (Tb and the thermal constant (K of this parasitoid were 3.92 °C and 478.85 degree-days (GD, respectively, allowing for the completion of 14.98 generations per year in Linhares, Espírito Santo State, 13.87 in Pompéu and 11.75 in Viçosa, Minas Gerais State and 14.10 in Dourados, Mato Grosso do Sul State.

  13. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available BACKGROUND: The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs, which are abundant in solid tumors, can be utilized for identification of rearranged ends. METHOD: As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP microarray method entailing CNB-region refinement by competitor DNA. RESULT: Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9% were identified, and two polymerase chain reaction (PCR-amplifiable rearrangements were obtained in six cases (66.7%. And significantly, TNGS-CNB, with its high positive identification rate (82.6% of PCR-amplifiable rearrangements at candidate sites (19/23, just from filtering of aligned sequences, requires little effort for validation. CONCLUSION: Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  14. Theory and implementation of a very high throughput true random number generator in field programmable gate array.

    Science.gov (United States)

    Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao

    2016-04-01

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  15. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiuping, E-mail: yangxiuping-1990@163.com; Min, Lequan, E-mail: minlequan@sina.com; Wang, Xue, E-mail: wangxue-20130818@163.com [Schools of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-05-15

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2{sup 1345}. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  16. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application.

    Science.gov (United States)

    Thurner, B; Röder, C; Dieckmann, D; Heuer, M; Kruse, M; Glaser, A; Keikavoussi, P; Kämpgen, E; Bender, A; Schuler, G

    1999-02-01

    Dendritic Cell (DC)-based vaccination approaches in man require a reproducible DC generation method that can be performed in conformity with GMP (Good Manufacturing Practice) guidelines and that circumvents the need for multiple blood drawings to generate DC. To this end we modified our previously described method to generate mature DC from CD14 + monocytes by a two step method (priming in GM-SF + IL-4 followed by maturation in monocyte conditioned medium) for use with leukapheresis products as a starting population. Several adaptations were necessary. We established, for example, a modified adherence step to reliably enrich CD14 + DC precursors from apheresis mononuclear cells. The addition of GM-CSF + IL-4 at the onset of culture proved disadvantageous and was, therefore, delayed for 24 h. DC development from apheresis cells occurred faster than from fresh blood or buffy coat, and was complete after 7 days. Monocyte conditioned medium when added on day 6 resulted in fully mature and stable DC (veiled, highly migratory and T cell sensitizing cells with a characteristic phenotype such as 85% CD83 + , p55/fascin + , CD115/M-CSF-R - , CD86 + ) already after 24 h. The mature DC progeny were shown to remain stable and viable if cultured for another 1-2 days in the absence of cytokines, and to be resistant to inhibitory effects of IL-10. Freezing conditions were established to generate DC from frozen aliquots of PBMC or to freeze mature DC themselves for later use. The approach yields large numbers of standardized DC (5-10 x 10(8) mature CD83 + DC/leukapheresis) that are suitable for performing sound DC-based vaccination trials that can be compared with each other.

  17. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges

    Science.gov (United States)

    Liu, Biao; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.; Qin, Maochun; Conroy, Jeffrey C.; Wang, Jianmin; Liu, Song

    2013-01-01

    Accurate detection of somatic copy number variations (CNVs) is an essential part of cancer genome analysis, and plays an important role in oncotarget identifications. Next generation sequencing (NGS) holds the promise to revolutionize somatic CNV detection. In this review, we provide an overview of current analytic tools used for CNV detection in NGS-based cancer studies. We summarize the NGS data types used for CNV detection, decipher the principles for data preprocessing, segmentation, and interpretation, and discuss the challenges in somatic CNV detection. This review aims to provide a guide to the analytic tools used in NGS-based cancer CNV studies, and to discuss the important factors that researchers need to consider when analyzing NGS data for somatic CNV detections. PMID:24240121

  18. Next-Generation Sequencing-Based Detection of Germline Copy Number Variations in BRCA1/BRCA2

    DEFF Research Database (Denmark)

    Schmidt, Ane Y; Hansen, Thomas V O; Ahlborn, Lise B

    2017-01-01

    identified by MLPA in 48 Danish breast and/or ovarian cancer families were analyzed. Moreover, 120 patient samples previously determined as negative for BRCA1/BRCA2 CNVs by MLPA were included in the analysis. Comparison of the NGS data with the data from MLPA revealed that the sensitivity was 100%, whereas......Genetic testing of BRCA1/2 includes screening for single nucleotide variants and small insertions/deletions and for larger copy number variations (CNVs), primarily by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). With the advent of next-generation sequencing (NGS...... the specificity was 95%. Taken together, this study validates a one-step bioinformatics work-flow to call germline BRCA1/2 CNVs using data obtained by NGS of a breast cancer gene panel. The work-flow represents a robust and easy-to-use method for full BRCA1/2 screening, which can be easily implemented in routine...

  19. Benefits of Reiki therapy for a severely neutropenic patient with associated influences on a true random number generator.

    Science.gov (United States)

    Morse, Melvin L; Beem, Lance W

    2011-12-01

    Reiki therapy is documented for relief of pain and stress. Energetic healing has been documented to alter biologic markers of illness such as hematocrit. True random number generators are reported to be affected by energy healers and spiritually oriented conscious awareness. The patient was a then 54-year-old severely ill man who had hepatitis C types 1 and 2 and who did not improve with conventional therapy. He also suffered from obesity, the metabolic syndrome, asthma, and hypertension. He was treated with experimental high-dose interferon/riboviron therapy with resultant profound anemia and neutropenia. Energetic healing and Reiki therapy was administered initially to enhance the patient's sense of well-being and to relieve anxiety. Possible effects on the patient's absolute neutrophil count and hematocrit were incidentally noted. Reiki therapy was then initiated at times of profound neutropenia to assess its possible effect on the patient's absolute neutrophil count (ANC). Reiki and other energetic healing sessions were monitored with a true random number generator (RNG). Statistically significant relationships were documented between Reiki therapy, a quieting of the electronically created white noise of the RNG during healing sessions, and improvement in the patient's ANC. The immediate clinical result was that the patient could tolerate the high-dose interferon regimen without missing doses because of absolute neutropenia. The patient was initially a late responder to interferon and had been given a 5% chance of clearing the virus. He remains clear of the virus 1 year after treatment. The association between changes in the RNG, Reiki therapy, and a patient's ANC is the first to the authors' knowledge in the medical literature. Future studies assessing the effects of energetic healing on specific biologic markers of disease are anticipated. Concurrent use of a true RNG may prove to correlate with the effectiveness of energetic therapy.

  20. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    Directory of Open Access Journals (Sweden)

    Kei-ichi Morita

    Full Text Available Gorlin syndrome (GS is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs. In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals, whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  1. Simulating the Spread of an Outbreak of Foot and Mouth Disease in California

    Science.gov (United States)

    2012-06-01

    capability.  Seed: Randomly chosen using a Mersenne Twister generator (Matsumoto & Nishimura, 1998). 31  Random Generator Name...Mersenne twister : A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation

  2. A TURBO-GENERATOR DESIGN SYNTHESIS BASED ON THE NUMERICAL-FIELD CALCULATIONS AT VARYING THE NUMBER OF STATOR SLOTS

    Directory of Open Access Journals (Sweden)

    V. I. Milykh

    2016-12-01

    Full Text Available Purpose. The work is dedicated to the presentation of the principle of construction and implementation of an automated synthesis system of the turbo-generator (TG electromagnetic system in the case of its modernization. This is done on the example of changing the number of the stator core slots. Methodology. The basis of the synthesis is a TG basic construction. Its structure includes the mathematical and physical-geometrical models, as well as the calculation model for the FEMM software environment, providing the numerical calculations of the magnetic fields and electromagnetic parameters of TG. The mathematical model links the changing and basic dimensions and parameters of the electromagnetic system, provided that the TG power parameters are ensured. The physical-geometrical model is the geometric mapping of the electromagnetic system with the specified physical properties of its elements. This model converts the TG electromagnetic system in a calculation model for the FEMM program. Results. Testing of the created synthesis system is carried out on the example of the 340 MW TG. The geometric, electromagnetic and power parameters of its basic construction and its new variants at the different numbers of the stator slots are compared. The harmonic analysis of the temporal function of the stator winding EMF is also made for the variants being compared. Originality. The mathematical model, relating the new and base parameters of TG at the changing of the number of the stator slots is created. A Lua script, providing the numerical-field calculations of the TG electromagnetic parameters in the FEMM software environment is worked out. Construction of the constructive and calculation models, the numerical-field calculations and delivery of results are performed by a computer automatically, that ensures high efficiency of the TG design process. Practical value. The considered version of the TG modernization on the example of changing the number of the

  3. A time-series approach to random number generation: Using recurrence quantification analysis to capture executive behavior

    Directory of Open Access Journals (Sweden)

    Wouter eOomens

    2015-06-01

    Full Text Available The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA, a nonlinear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation.

  4. Evaluation of Key Dependent S-Box Based Data Security Algorithm using Hamming Distance and Balanced Output

    Directory of Open Access Journals (Sweden)

    Balajee Maram K.

    2016-02-01

    Full Text Available Data security is a major issue because of rapid evolution of data communication over unsecured internetwork. Here the proposed system is concerned with the problem of randomly generated S-box. The generation of S-box depends on Pseudo-Random-Number-Generators and shared-secret-key. The process of Pseudo-Random-Number-Generator depends on large prime numbers. All Pseudo-Random-Numbers are scrambled according to shared-secret-key. After scrambling, the S-box is generated. In this research, large prime numbers are the inputs to the Pseudo-Random-Number-Generator. The proposed S-box will reduce the complexity of S-box generation. Based on S-box parameters, it experimentally investigates the quality and robustness of the proposed algorithm which was tested. It yields better results with the S-box parameters like Hamming Distance, Balanced Output and Avalanche Effect and can be embedded to popular cryptography algorithms

  5. Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor

    Directory of Open Access Journals (Sweden)

    Matsunuma Takayuki

    2005-01-01

    Full Text Available The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord length Re out,RT , was varied from 3.2× 10 4 to 12.8× 10 4 at intervals of 1.0× 10 4 by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds number Re out,RT =3.2× 10 4 was 1.5 times larger than that at the high Reynolds number Re out,RT =12.8× 10 4 . The curve of the −0.2 power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the −0.4 power law fitted more closely than the curve of the −0.2 power law at lower Reynolds numbers below 6.4× 10 4 .

  6. Evaluating the effect of the number of generations in IBUN 91.2.98 Leuconostoc mesenteroides cultures on enzyme extract production

    Directory of Open Access Journals (Sweden)

    Gustavo Buitrago Hurtado

    2013-04-01

    Full Text Available This work studied the effect of the number of generations of the IBUN 91.2.98 Leuconostoc mesenteroides strain on enzyme complex production. The subculturing technique was used on a medium which had been designed specifically for this organism for producing an enzyme complex. The effect was indirectly determined by monitoring microorganism growth and measuring the glucosyltransferase and hydrolytic activity of an enzyme extract obtained from such culture. There were 40 subcultures, representing 196 generations of IBUN 91.2.98 Leuconostoc mesenteroides. The results led to establishing that the extract’s higher enzymatic activity (from 4 to 6 U/mL was reached at the end of the culture’s exponential phase and that this activity was stable during subculturing, confirming that there was no variation in strain regarding enzyme extract production until such number of generations had occurred, thereby not being limited to scaling-up to 8,000 litres.

  7. Genetics of autism spectrum disorder: an update on copy number variations leading to autism in the next generation sequencing era.

    Science.gov (United States)

    AlSagob, Maysoon; Colak, Dilek; Kaya, Namik

    2015-05-01

    Autism spectrum disorder (ASD) is a large group of neurodevelopmental conditions that share common characteristics such as social and language impairment and repetitive and stereotypic behaviors. It is reported that ASD is on increase in recent years reaching ratios up to 1 in 68 children. The disease is seen four times more frequently in males than females. ASD is heritable with complex inheritance and genetic heterogeneity, and frequently coexists with other diseases such as intellectual disability, seizure disorders, and fragile-x. Recent advances in genomic technologies have led to a greater understanding of genetic mechanisms in ASD, discovery of novel genetic loci and risk factors, as well as submicroscopic chromosomal changes also known as copy number variations (CNVs). Here we review recent developments in the genetics field and hereditary and sporadic CNVs leading to ASD.

  8. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-11-01

    Full Text Available The spleen is a highly compartmentalized lymphoid organ that allows for efficient antigen presentation and activation of immune responses. Additionally, the spleen itself functions to remove senescent red blood cells, filter bacteria, and sequester platelets. Splenectomy, commonly performed after blunt force trauma or splenomegaly, has been shown to increase risk of certain bacterial and parasitic infections years after removal of the spleen. Although previous studies report defects in memory B cells and IgM titers in splenectomized patients, the effect of splenectomy on CD8 T cell responses and memory CD8 T cell function remains ill defined. Using TCR-transgenic P14 cells, we demonstrate that homeostatic proliferation and representation of pathogen-specific memory CD8 T cells in the blood are enhanced in splenectomized compared to sham surgery mice. Surprisingly, despite the enhanced turnover, splenectomized mice displayed no changes in total memory CD8 T cell numbers nor impaired protection against lethal dose challenge with Listeria monocytogenes. Thus, our data suggest that memory CD8 T cell maintenance and function remain intact in the absence of the spleen.

  9. Next generation sequencing with copy number variant detection expands the phenotypic spectrum of HSD17B4-deficiency.

    Science.gov (United States)

    Lieber, Daniel S; Hershman, Steven G; Slate, Nancy G; Calvo, Sarah E; Sims, Katherine B; Schmahmann, Jeremy D; Mootha, Vamsi K

    2014-03-06

    D-bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe, infantile-onset disorder of peroxisomal fatty acid oxidation. Few affected patients survive past two years of age. Compound heterozygous mutations in HSD17B4 have also been reported in two sisters diagnosed with Perrault syndrome (MIM # 233400), who presented in adolescence with ovarian dysgenesis, hearing loss, and ataxia. An adult male presented with cerebellar ataxia, peripheral neuropathy, hearing loss, and azoospermia. The clinical presentation, in combination with biochemical findings in serum, urine, and muscle biopsy, suggested a mitochondrial disorder. Commercial genetic testing of 18 ataxia and mitochondrial disease genes was negative. Targeted exome sequencing followed by analysis of single nucleotide variants and small insertions/deletions failed to reveal a genetic basis of disease. Application of a computational algorithm to infer copy number variants (CNVs) from exome data revealed a heterozygous 12 kb deletion of exons 10-13 of HSD17B4 that was compounded with a rare missense variant (p.A196V) at a highly conserved residue. Retrospective review of patient records revealed mildly elevated ratios of pristanic:phytanic acid and arachidonic:docosahexaenoic acid, consistent with dysfunctional peroxisomal fatty acid oxidation. Our case expands the phenotypic spectrum of HSD17B4-deficiency, representing the first male case reported with infertility. Furthermore, it points to crosstalk between mitochondria and peroxisomes in HSD17B4-deficiency and Perrault syndrome.

  10. The Methods of Implementation of the Three-dimensional Pseudorandom Number Generator DOZEN for Heterogeneous CPU/GPU /FPGA High-performance Systems

    Directory of Open Access Journals (Sweden)

    Nikolay Petrovich Vasilyev

    2015-03-01

    Full Text Available The paper describes the scope of information security protocols based on PRN G in industrial systems. A method for implementing three-dimensional pseudorandom number generator D O Z E N in hybrid systems is provided. The description and results of studies parallel CUDA-version of the algorithm for use in hybrid data centers and high-performance FPGA-version for use in hardware solutions in controlled facilities of SCADA-systems are given.

  11. Quantum random number generator based on ‘Fermi–Dirac’ statistics of photocounts of faint laser pulses with a 75 Mbit s‑1 rate

    Science.gov (United States)

    Balygin, K. A.; Zaitsev, V. I.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.; Popova, E.; Vinogradov, S.

    2017-12-01

    We implemented experimentally a quantum random number generator, based on the registration of quasi-single-photon light by a silicon photo-multiplier, which allows one to reliably achieve the Poisson statistics of photocounts. The use of the optimal grouping of photocounts and a polynomial-length sequence of the method for extracting the random sequence 0 and 1 made it possible to achieve the output rate of a provably random sequence up to 75 Mbit s-1 .

  12. Priming psychic and conjuring abilities of a magic demonstration influences event interpretation and random number generation biases

    Directory of Open Access Journals (Sweden)

    Christine eMohr

    2015-01-01

    Full Text Available Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn sceptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgements of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious and non-traditional (e.g. paranormal beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g. repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group or a psychic (psychic group. The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.

  13. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    Science.gov (United States)

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  14. A Stream Encryption Scheme with Both Key and Plaintext Avalanche Effects for Designing Chaos-Based Pseudorandom Number Generator with Application to Image Encryption

    Science.gov (United States)

    Han, Dandan; Min, Lequan; Chen, Guanrong

    Based on a stream encryption scheme with avalanche effect (SESAE), a stream encryption scheme with both key avalanche effect and plaintext avalanche effect (SESKPAE) is introduced. Using this scheme and an ideal 2d-word (d-segment) pseudorandom number generator (PRNG), a plaintext can be encrypted such that each bit of the ciphertext block has a change with the probable probability of (2d - 1)/2d when any word of the key is changed or any bit of the plaintext is changed. To that end, a novel four-dimensional discrete chaotic system (4DDCS) is proposed. Combining the 4DDCS with a generalized synchronization (GS) theorem, a novel eight-dimensional discrete GS chaotic system (8DDGSCS) is constructed. Using the 8DDGSCS, a 216-word chaotic pseudorandom number generator (CPRNG) is designed. The keyspace of the 216-word CPRNG is larger than 21195. Then, the FIPS 140-2 test suit/generalized FIPS 140-2 test suit is used to test the randomness of the 1000-key streams consisting of 20000 bits generated by the 216-word CPRNG, the RC4 algorithm PRNG and the ZUC algorithm PRNG, respectively. The test results show that for the three PRNGs, there are 100%/98.9%, 99.9%/98.8%, 100%/97.9% key streams passing the tests, respectively. Furthermore, the SP800-22 test suite is used to test the randomness of four 100-key streams consisting of 1000000 bits generated by four PRNGs, respectively. The numerical results show that the randomness performances of the 216-word CPRNG is promising, showing that there are no significant correlations between the key streams and the perturbed key streams generated via the 216-word CPRNG. Finally, using the 216-word CPRNG and the SESKPAE to encrypt two gray-scale images, test results demonstrate that the 216-word CPRNG is able to generate both key avalanche effect and plaintext avalanche effect, which are similar to those generated via an ideal CPRNG, and performs better than other comparable schemes.

  15. A Chaos Robustness Criterion for 2D Piecewise Smooth Map with Applications in Pseudorandom Number Generator and Image Encryption with Avalanche Effect

    Directory of Open Access Journals (Sweden)

    Dandan Han

    2016-01-01

    Full Text Available This study proposes a chaos robustness criterion for a kind of 2D piecewise smooth maps (2DPSMs. Using the chaos robustness criterion, one can easily determine the robust chaos parameter regions for some 2DPSMs. Combining 2DPSM with a generalized synchronization (GS theorem, this study introduces a novel 6-dimensional discrete GS chaotic system. Based on the system, a 216-word chaotic pseudorandom number generator (CPRNG is designed. The key space of the CPRNG is larger than 2996. Using the FIPS 140-2 test suit/generalized FIPS 140-2 test suit tests the randomness of the 1000 key streams consists of 20,000 bits generated by the CPRNG, the RC4 algorithm, and the ZUC algorithm, respectively. The numerical results show that the three algorithms do not have significant differences. The CPRNG and a stream encryption scheme with avalanche effect (SESAE are used to encrypt an image. The results demonstrate that the CPRNG is able to generate the avalanche effects which are similar to those generated via ideal CPRNGs. The SESAE with one-time-pad scheme makes any attackers have to use brute attacks to break our cryptographic system.

  16. Space-time-wave number-frequency Z(x, t, k, f) analysis of SAW generation on fluid filled cylindrical shells.

    Science.gov (United States)

    Martinez, Loïc; Morvan, Bruno; Izbicki, Jean Louis

    2004-04-01

    A new 4D space-time-wave number-frequency representation Z(x,t,k,f) is introduced. The Z(x,t,k,f) representation is used for processing 2D space-time signal collection issued from wave propagation along a 1D medium. This representation is an extension along the time dimension of the space-wave number-frequency representation. The Z(x,t,k,f) representation is obtained by short time-space 2D Fourier transforming the space-time collection. The Z(x,t,k,f) representation allows the characterization transient aspects of wave generation and propagation in both space and time dimensions. The Z(x,t,k,f) representation is used to experimentally investigate Lamb wave generation and propagation around a cylindrical shell (relative thickness is equal to 0.03) surrounded by water and excited by a pulse (0.1 micros duration with 1-5 MHz transducers). Three kinds of fluids have been used inside the shell: air, water, propanol. In all the cases, the Z(x,t,k,f) analysis clearly identify the reflected field on the insonified side of the shell and it allows the measurement of the local reflection coefficients R(x,t,k,f). The generation and the propagation of Lamb waves are also quantified. For the liquid filled shells, the multiple internal reflections are revealed by Z(x,t,k,f) analysis: the local transmission coefficients T(x,t,k,f) are also measured. When local matching conditions allows Lamb wave generation, the multiple regeneration of Lamb wave is observed. Based on these results, a link is establish toward the theoretical results obtained by steady state approach and Sommerfeld-Watson transform.

  17. Occurrence of Legionella in technological water and studies of the total number of bacteria and fungi in indoor air at workplaces where water aerosol is generated

    Directory of Open Access Journals (Sweden)

    Bożena Krogulska

    2014-06-01

    Full Text Available Background: The aim of the study was to confirm the fact that technological water is a significant carrier of Legionella, a potential serious threat to the health of operators of mechanical devices generating contaminated water aerosol. Material and Methods: Microbiological analyses of water and indoor air were conducted in 8 different production facilities involved in mechanical processing of glass. The study covered 81 samples of water collected from technical water systems. Isolation of Legionella and the determination of total number of microorganisms were processed according to PN-EN ISO 11731-2:2008E and PN-EN ISO 6222:2004P, respectively. Air samples were collected using air samplers and total numbers of bacteria and fungi were determined. Results: The studies of process water, indicated the presence of Legionella in 27.2% of collected samples. These bacteria were present in both closed and open process water reservoirs at 10 cfu/100 ml to 2.9×104 cfu/100 ml. The count of other associated bacteria exceeded 103 cfu/ml. All strains isolated from Legionella-positive samples were identified as L. pneumophila SG 2-14. In 5 of 8 studied production facilities an increased total number of aerial bacteria and fungi was observed in samples collected in close vicinity of aerosol source. Conclusions: To reduce the number of microorganisms in water it is required to introduce technological water quality monitoring and procedures for the cleaning and disinfecting of mechanical devices generating water aerosol. Med Pr 2014;65(3:325–334

  18. Start-to-end simulation of x-ray radiation of a next generation light source using the real number of electrons

    Directory of Open Access Journals (Sweden)

    J. Qiang

    2014-03-01

    Full Text Available In this paper we report on start-to-end simulation of a next generation light source based on a high repetition rate free electron laser (FEL driven by a CW superconducting linac. The simulation integrated the entire system in a seamless start-to-end model, including birth of photoelectrons, transport of electron beam through 600 m of the accelerator beam delivery system, and generation of coherent x-ray radiation in a two-stage self-seeding undulator beam line. The entire simulation used the real number of electrons (∼2 billion electrons/bunch to capture the details of the physical shot noise without resorting to artificial filtering to suppress numerical noise. The simulation results shed light on several issues including the importance of space-charge effects near the laser heater and the reliability of x-ray radiation power predictions when using a smaller number of simulation particles. The results show that the microbunching instability in the linac can be controlled with 15 keV uncorrelated energy spread induced by a laser heater and demonstrate that high brightness and flux 1 nm x-ray radiation (∼10^{12}  photons/pulse with fully spatial and temporal coherence is achievable.

  19. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Zita Garate

    2015-12-01

    Full Text Available Pyruvate kinase deficiency (PKD is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs from peripheral blood mononuclear cells (PB-MNCs of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR. Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.

  20. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Hochul Lee

    2017-05-01

    Full Text Available A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA. This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps by implementing a 64×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit due to the high energy efficiency of the voltage-controlled MTJ switching.

  1. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    Science.gov (United States)

    Lee, Hochul; Ebrahimi, Farbod; Amiri, Pedram Khalili; Wang, Kang L.

    2017-05-01

    A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 ×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching.

  2. Increase in the number of distributed power generation installations in electricity distribution grids - Project findings; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Erkenntnisse aus dem Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, G.; Mauchle, P.

    2003-07-01

    This is the eighth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This seventh appendix to the main report summarises and discusses the knowledge gained during the project and attempts to provide answers to various questions posed by the use of distributed power generation in medium and low-voltage grids. These include questions on how many distributed generation units the grids can support, how the short-circuit power is increased, how the grid structure and management is affected, what effects on reliability and reserves are to be expected, islanding, power storage and partial D.C. mains operation. Also, allocation of grid costs and the situation with respect to legislation, standards and guidelines are examined.

  3. Transient reduction in IgA+ and IgG+ memory B cell numbers in young EBV-seropositive children: the Generation R Study.

    Science.gov (United States)

    van den Heuvel, Diana; Jansen, Michelle A E; Bell, Andrew I; Rickinson, Alan B; Jaddoe, Vincent W V; van Dongen, Jacques J M; Moll, Henriette A; van Zelm, Menno C

    2017-04-01

    The EBV is known to persist in memory B cells, but it remains unclear how this affects cell numbers and humoral immunity. We here studied EBV persistence in memory B cell subsets and consequences on B cell memory in young children. EBV genome loads were quantified in 6 memory B cell subsets in EBV+ adults. The effects of EBV infection on memory B cell numbers and vaccination responses were studied longitudinally in children within the Generation R population cohort between 14 mo and 6 yr of age. EBV genomes were more numerous in CD27+IgG+, CD27+IgA+, and CD27-IgA+ memory B cells than in IgM-only, natural effector, and CD27-IgG+ B cells. The blood counts of IgM-only, CD27+IgA+, CD27-IgG+, and CD27+IgG+ memory B cells were significantly lower in EBV+ children than in uninfected controls at 14 mo of age-the age when these cells peak in numbers. At 6 yr, all of these memory B cell counts had normalized, as had plasma IgG levels to previous primary measles and booster tetanus vaccinations. In conclusion, EBV persists predominantly in Ig class-switched memory B cells, even when derived from T cell-independent responses (CD27-IgA+), and EBV infection results in a transient depletion of these cells in young children. © Society for Leukocyte Biology.

  4. Increase in the number of distributed power generation installations in electricity distribution grids - Literature; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Literatur

    Energy Technology Data Exchange (ETDEWEB)

    Gottsponer, O.; Mauchle, P.

    2003-07-01

    This is the tenth and last part of a final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This ninth appendix to the main report presents an overview and details of the literature and internet sources used in the project. Also, similar projects that discuss the problem area dealt with are briefly described. These include the Dispower, EDIson, DEMS, AMOEVES and ELSAD projects.

  5. AER synthetic generation in hardware for bio-inspired spiking systems

    Science.gov (United States)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses

  6. Generation of multi-channel high-speed physical random numbers originated from two chaotic signals of mutually coupled semiconductor lasers

    Science.gov (United States)

    Tang, X.; Wu, Z. M.; Wu, J. G.; Deng, T.; Fan, L.; Zhong, Z. Q.; Chen, J. J.; Xia, G. Q.

    2015-01-01

    We propose and experimentally demonstrate a novel technique to generate multi-channel high-speed physical random numbers (PRNs) by taking two chaotic signal outputs from mutually coupled semiconductor lasers (MC-SLs) as entropy sources. First, through controlling the operation parameters of the MC-SL system, two time-delay signature (TDS) suppressed chaotic signals can be obtained. Next, each of these two chaotic signals is sampled by an 8 bit analog-to-digital converter (ADC) with a sampling rate of 10 GHz, and then a bitwise exclusive-OR (XOR) operation on the corresponding bits in samples of the chaotic signal and its time delayed signal is implemented to obtain 8 bit XOR data. Furthermore, through selecting the five least significant bits (LSBs) of 8 bit XOR data to form 5 bit Boolean sequences, two sets of PRN streams with a rate up to 50 Gbits s-1 are generated and successfully pass the NIST statistical tests. Finally, merging these two sets of 50 Gbits s-1 PRN streams by an interleaving operation, another set of the 100 Gbits s-1 PRN stream, which meets all the quality criteria of NIST statistical tests, is also acquired.

  7. Increase in the number of distributed power generation installations in electricity distribution grids - Main report; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, G.; Mauchle, P. [Schnyder Ingenieure AG, Huenenberg (Switzerland); Hoeckel, M.; Luschinger, P. [Berner Fachhochschule (HTI Biel), Biel (Switzerland); Firtz, O.; Haederli, C.; Jaggy, E. [ABB Schweiz AG, Corporate Research, Baden-Daettwil (Switzerland)

    2003-07-01

    This first part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) presents the main findings of a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. The analyses, based on simulation calculations on specific medium and low voltage grids, are discussed. The results of simulations are discussed that involved grids partly fed by already existing distributed power plants and, additionally, by a varying number of further distributed production units. In addition to an intensive evaluation of the normal grid status, considerations and analyses were carried out concerning isolated operation ('islanding') and transitions from one grid status to another. The findings obtained from these studies are discussed, including effects such as voltage-fluctuation caused by power flow, harmonics caused by inverters and grid resonance effects.

  8. Exact Ramsey Theory: Green-Tao numbers and SAT

    CERN Document Server

    Kullmann, Oliver

    2010-01-01

    We consider the links between Ramsey theory in the integers, based on van der Waerden's theorem, and (boolean, CNF) SAT solving. We aim at using the problems from exact Ramsey theory, concerned with computing Ramsey-type numbers, as a rich source of test problems, where especially methods for solving hard problems can be developed. In order to control the growth of the problem instances, we introduce "transversal extensions" as a natural way of constructing mixed parameter tuples (k_1, ..., k_m) for van-der-Waerden-like numbers N(k_1, ..., k_m), such that the growth of these numbers is guaranteed to be linear. Based on Green-Tao's theorem we introduce the "Green-Tao numbers" grt(k_1, ..., k_m), which in a sense combine the strict structure of van der Waerden problems with the (pseudo-)randomness of the distribution of prime numbers. Using standard SAT solvers (look-ahead, conflict-driven, and local search) we determine the basic values. It turns out that already for this single form of Ramsey-type problems, w...

  9. Increase in the number of distributed power generation installations in electricity distribution grids - Parallel connection of distributed generation facilities; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Parallelschaltung von DEA

    Energy Technology Data Exchange (ETDEWEB)

    Haederli, C.

    2003-07-01

    This is the ninth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This eighth appendix to the main report discusses problems that can be encountered when switching decentralised power generation plant for parallel operation. The simulation of resonance problems that can occur is described and possible solutions are proposed, including active attenuation and the use of 'virtual resistances'. The control of part-networks in island operation using distributed control systems is examined and the switch-over between normal grid operation and island operation is discussed.

  10. Challenges in detecting genomic copy number aberrations using next-generation sequencing data and the eXome Hidden Markov Model: a clinical exome-first diagnostic approach.

    Science.gov (United States)

    Yamamoto, Toshiyuki; Shimojima, Keiko; Ondo, Yumiko; Imai, Katsumi; Chong, Pin Fee; Kira, Ryutaro; Amemiya, Mitsuhiro; Saito, Akira; Okamoto, Nobuhiko

    2016-01-01

    Next-generation sequencing (NGS) is widely used for the detection of disease-causing nucleotide variants. The challenges associated with detecting copy number variants (CNVs) using NGS analysis have been reported previously. Disease-related exome panels such as Illumina TruSight One are more cost-effective than whole-exome sequencing (WES) because of their selective target regions (~21% of the WES). In this study, CNVs were analyzed using data extracted through a disease-related exome panel analysis and the eXome Hidden Markov Model (XHMM). Samples from 61 patients with undiagnosed developmental delays and 52 healthy parents were included in this study. In the preliminary study to validate the constructed XHMM system (microarray-first approach), 34 patients who had previously been analyzed by chromosomal microarray testing were used. Among the five CNVs larger than 200 kb that were considered as non-pathogenic CNVs and were used as positive controls, four CNVs was successfully detected. The system was subsequently used to analyze different samples from 27 patients (NGS-first approach); 2 of these patients were successfully diagnosed as having pathogenic CNVs (an unbalanced translocation der(5)t(5;14) and a 16p11.2 duplication). These diagnoses were re-confirmed by chromosomal microarray testing and/or fluorescence in situ hybridization. The NGS-first approach generated no false-negative or false-positive results for pathogenic CNVs, indicating its high sensitivity and specificity in detecting pathogenic CNVs. The results of this study show the possible clinical utility of pathogenic CNV screening using disease-related exome panel analysis and XHMM.

  11. Increase in the number of distributed power generation installations in electricity distribution grids - Storage technologies; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Grundlagen der Speicher

    Energy Technology Data Exchange (ETDEWEB)

    Luechinger, P.

    2003-07-01

    This is the fifth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This fourth appendix to the main report describes six ways of storing electricity, including accumulators, super caps, super-conducting magnetic and flywheel energy storage units. The accumulator technologies discussed include lead-acid, nickel-cadmium and sodium-sulphur batteries. Each of these types of power storage technologies is briefly described. The characteristics of these various types of storage are compared.

  12. Increase in the number of distributed power generation installations in electricity distribution grids - General requirements; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, G.; Mauchle, P.

    2003-07-01

    This is the third part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. The first part of this second appendix to the main report examines the electrical conditions and requirements that have to be met by distributed production facilities. These include limits for voltage and frequency, synchronisation aspects, protection, reactive power questions and islanding. Also, recommendations are made on the assessment of grid reactions and on the avoidance of non-permissible effects on the grid's audio-frequency remote control apparatus. A second part examines the situation concerning the connection of distributed power units to the grid and grid topologies. The last chapter lists relevant standards and guidelines.

  13. Typing and copy number determination for HLA-DRB3, -DRB4 and -DRB5 from next-generation sequencing data.

    Science.gov (United States)

    Zhang, Y; Song, Y; Cao, H; Mo, X; Yang, H; Wang, J; Lu, Z; Zhang, T

    2017-03-01

    HLA-DRB3, DRB4 and DRB5 (DRB3/4/5) are paralogues of HLA-DRB1. They have important roles in transplantation and have been reported to be related to many diseases. HLA typing methods for DRB3/4/5 based on NGS data have many limitations now, such as need of polymerase chain reaction (PCR) or low accuracy. We present a HLA typing method for DRB3/4/5 based on read mapping and haplotype assembly from NGS data. Also, copy number of DRB3/4/5 is determined by a k-means clustering method according to ratio of sequencing depth between DRB3/4/5 and DRB1. We achieved 100%, 100%, 100% accuracy on simulated data and 95.88%, 98.89%, 99.34% accuracy on MHC capture Illumina sequencing data at 4-digit resolution with 30-fold coverage for DRB3/4/5 separately. We also explored the DRB3/4/5 profiles in five continental populations through low coverage WGS data generated by the 1000 Genome Project. We found that frequency of DRB4 in African were significantly lower than that in all other populations. Our method for DRB3/4/5 typing has high accuracy. It is a good supplement to regular HLA typing and could help in disease studies, medical applications and human population diversity studies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Generator. Generator

    Energy Technology Data Exchange (ETDEWEB)

    Knoedler, R.; Bossmann, H.P.

    1992-03-12

    The invention refers to a thermo-electric generator, whose main part is a sodium concentration cell. In conventional thermo-electric generators of this kind, the sodium moving from a hot space to a colder space must be transported back to the hot space via a circulation pipe and a pump. The purpose of the invention is to avoid the disadvantages of this return transport. According to the invention, the thermo-electric generator is supported so that it can rotate, so that the position of each space relative to its propinquity to the heat source can be changed at any time.

  15. Generator. Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossmann, H.P.; Knoedler, R.

    1992-03-12

    The invention refers to a thermo-electric generator, which contains sodium as the means of heat transport. The sodium moves from the space of higher temperature through a space into the space of lower temperature. One can do without a pump for transporting the sodium back from the space of lower temperature to the space of higher temperature, as the thermo-electric generator can rotate around an axis. It is therefore possible to interchange the position of the two spaces relative to the heat source.

  16. Localization of human coagulation factor VIII (hFVIII) in transgenic rabbit by FISH-TSA: identification of transgene copy number and transmission to the next generation.

    Science.gov (United States)

    Krylov, V; Tlapáková, T; Mácha, J; Curlej, J; Ryban, L; Chrenek, P

    2008-01-01

    For chromosomal localization of the hFVIII human transgene in F2 and F3 generation of transgenic rabbits, FISH-TSA was applied. A short cDNA probe (1250 bp) targeted chromosomes 3, 7, 8, 9 and 18 of an F2 male (animal 1-3-8). Two transgenic offspring (F3) revealed signal positions in chromosome 3 and chromosomes 3 and 7, respectively. Sequencing and structure analysis of the rabbit orthologous gene revealed high similarity to its human counterpart. Part of the sequenced cDNA (1310 bp) served as a probe for FISH-TSA analysis. The rabbit gene was localized in the q arm terminus of the X chromosome. This result is in agreement with reciprocal chromosome painting between the rabbit and the human. The presented FISH-TSA method provides strong signals without any interspecies reactivity.

  17. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    Science.gov (United States)

    Zhang, Zhongyang; Hao, Ke

    2015-11-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  18. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Zhongyang Zhang

    2015-11-01

    Full Text Available Cancer genomes exhibit profound somatic copy number alterations (SCNAs. Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1 extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2 performing joint segmentation on the two signal dimensions; 3 correcting the copy number baseline from which the SCNA state is determined; 4 calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  19. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    through using mathematical names for the numbers such as one-ten-one for 11 and five-ten-six for 56. The project combines the renaming of numbers with supporting the teaching with the new number names. Our hypothesis is that Danish children have more difficulties learning and working with numbers, because...

  20. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  1. Fibonacci numbers

    CERN Document Server

    Vorob'ev, Nikolai Nikolaevich

    2011-01-01

    Fibonacci numbers date back to an 800-year-old problem concerning the number of offspring born in a single year to a pair of rabbits. This book offers the solution and explores the occurrence of Fibonacci numbers in number theory, continued fractions, and geometry. A discussion of the ""golden section"" rectangle, in which the lengths of the sides can be expressed as a ration of two successive Fibonacci numbers, draws upon attempts by ancient and medieval thinkers to base aesthetic and philosophical principles on the beauty of these figures. Recreational readers as well as students and teacher

  2. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  3. Algebraic Numbers

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2016-12-01

    Full Text Available This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial ring of ℚ[x] turns to be a field.

  4. The Conceptual Design of a Magnetic Tape Seal System.

    Science.gov (United States)

    1981-01-22

    for fuel trmns- channel, pipe, *et. smitors; port; flow indics- portal mni- tors for on-load tors reactors, repro- cesing plants Integral Observe...A group of n succesive random digits forms what is known as an n-digit random number( 38 ) . Pseudo-random numbers (PRN) are random numbers generated

  5. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  6. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  7. File Carving and Malware Identification Algorithms Applied to Firmware Reverse Engineering

    Science.gov (United States)

    2013-03-21

    implementations of simple statistics functions and efficient bit arrays. The system uses Python’s Mersenne Twister pseudo-random number generator to...generate all random values [50]. While the Mersenne Twister is not cryptographically secure, its long period makes it suitable for this project. The

  8. Random Number Generation: A Practitioner's Overview

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    About the speaker Dr. Mascagni is full professor at Florida State University, where he runs a research group consisting of post-doctoral associates, graduate students, and undergraduate workers. The areas they work on are p...

  9. Analysis of Additive Random Number Generators.

    Science.gov (United States)

    1977-03-01

    CLASSIFICATION OF THIS PAGE (When Data Entered; I .,.,•• n .„^iMl~^.-». H .,il~l.*...,...-•..,.,.., • 1 ——’"- •"•’ ANALYSIS OF ADDITIVE RANDOM...among my teachers two of the best: my parents, Bil and Marleen Reiser. - , i — - •- - J I " ii. .1 I l. Kl U...the period, we know that r(pa*z) * pr(pa) and k - • - ----• •--- - -— — ...., . H ..J 1-..11.111 ’ Introduction that r(pa *’) divides

  10. Random Number Generation for High Performance Computing

    Science.gov (United States)

    2015-01-01

    issued patent and patent application are included as appendices in the pdf file accompanying this final report. Received Book TOTAL: Received Book Chapter...plan, the product of research undertaken by Silicon Informatics, KEYW Corporation and the UTSA Center for Innovation and Technology Entrepreneurship

  11. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  12. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  13. Pragmatic Numbers

    DEFF Research Database (Denmark)

    Seabrooke, Leonard

    2012-01-01

    Sector Assessment Programme (FSAP). While the IMF is typically viewed as an institution that enforces global standards for economic governance through the imposition of quantitative targets (‘numbers’ for this special issue), I suggest that its use of benchmarking in the generation of financial data can...... market actors. This article suggests that we cannot simply view the IMF staff as hostage to their commanders. Rather, the IMF's use of ‘pragmatic numbers’ within FSAPs demonstrates one method by which an institution seeks to foster learning under constraint.......Do international organisations generate benchmarks as tools for policy enforcement or policy learning? This article suggests that the latter is possible even in unlikely scenarios. It does this through a case study on the ‘power of numbers’ in the International Monetary Fund's (IMF) Financial...

  14. Transfinite Numbers

    Indian Academy of Sciences (India)

    How many points are there on a line? Which is more in number- points on a line or lines in a plane? These are some natural questions that have occurred to us sometime or the other. It is interesting to note the difference between the two questions. Do we have to know how many points and lines there are to answer.

  15. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory. Besides mathematics, she is interested in (singing) indian classical music and yoga. Right: Shailesh Shirali is. Director of Sahyadri School.

  16. Applied number theory

    CERN Document Server

    Niederreiter, Harald

    2015-01-01

    This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.  Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc.  Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...

  17. Increase in the number of distributed power generation installations in electricity distribution grids - Basic technologies for decentralised production; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Grundlagen der dezentralen Energieerzeugungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Haldi, R.

    2003-07-01

    This is the fourth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This third appendix to the main report describes five types of distributed production facilities - photovoltaics (PV), wind power, hydropower, combined heat and power units and fuel-cell-based power generation. Each of these types of power generation equipment is briefly described and its particular characteristics are discussed. In particular, the effects of PV inverters on the mains is examined, as are the active and reactive power aspects of hydropower installations. Also the state-of-the-art of wind technologies are looked at and the various types of combined heat and power units and fuel cells are described.

  18. Increase in the number of distributed power generation installations in electricity distribution grids - Simulation in a 16 kV medium-voltage network; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Simulationen im 16 kV Mittelspannungsnetz des AEW

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Luechinger, P.

    2003-07-01

    This is the seventh part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This sixth appendix to the main report presents and discusses the results of simulations made on the basis of the real-life 16 kV medium-voltage distribution network operated by the Aargovian electricity utility AEW. This appendix describes the simulation methods used and the basic characteristics of medium-voltage networks and distributed generation facilities. Different types of load profiles, including domestic and industrial loads, are discussed. The results of the simulations are presented in graphical form and provide profiles of voltage and current, active and reactive power and further mains characteristics for varying load conditions. Also, daily profiles for situations with and without distributed generation are presented and short-circuit simulations and grid dynamics are discussed.

  19. Generation and implementation of IRNSS Standard Positioning Signal

    Directory of Open Access Journals (Sweden)

    A.R. Yashaswini

    2016-09-01

    Full Text Available The two sorts of services given by the Indian Regional Navigational Satellite System (IRNSS satellites are Standard Positioning Service (SPS and Restricted Service (RS. Both services will be given at two frequencies of L5 (1164.5 MHz and S (2472.5 MHz band. The code sequences utilized as a part of SPS are Pseudo Ranging Noise (PRN codes. They utilize gold codes for navigational data transmission in SPS downlink. PRN sequence code is the secondary code and the gold code is the primary code. The greater part of the global positioning system works on Code Division Multiple Access (CDMA, in which Pseudo Random Code (PRN sequences are required for the systems. In this paper a study is made on the generation and properties of the PRN codes from the navigational system viewpoint. This paper additionally shows the design and implementation of PRN code on Spartan-II FPGA hardware. The generated SPS PRN code results are approved from hardware with the simulation results and examination of the properties of the PRN codes positively acquired. This paper likewise exhibits the execution analysis and simulation of Auto-Correlation Function (ACF and Cross-Correlation Function (CCF properties for PRN sequence. The simulations of SPS PRN codes were completed utilizing the Xilinx ISE test system and MATLAB apparatus. The simulated test outcomes are within the theoretical limits.

  20. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...

  1. Supersymmetric Displaced Number States

    Directory of Open Access Journals (Sweden)

    Fredy R. Zypman

    2015-06-01

    Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.

  2. Mathematical modelling of dropwise condensation on textured ...

    Indian Academy of Sciences (India)

    locations with local minima of the free surface energy. In macroscopic modelling of ..... the substrate area by a random seed generator function in C++ that returns a matrix containing pseudo random numbers ... 2.2b Drop growth by direct condensation: The rate of condensation on the free surface of a drop depends on its ...

  3. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    Science.gov (United States)

    2016-06-01

    3–30. Morton D, Pan F, Saeger K (2007) Models for nuclear smuggling interdiction. IIE Transactions . 39(1): 3–14. Nehme M (2009) Two-person games...Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8(1

  4. Thermal requirements and estimate of the annual number of generations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on strawberry crop; Exigencias termicas e estimativa do numero de geracoes anuais de Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) em morangueiro

    Energy Technology Data Exchange (ETDEWEB)

    Nondillo, Aline; Redaelli, Luiza R.; Pinent, Silvia M.J.; Gitz, Rogerio [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Fitotecnica. Dept. de Fitossanidade]. E-mails: RS; alinondillo@yahoo.com.br, luredael@ufrgs.br; silviapi@portoweb.com.br; rogitz29@yahoo.com.br; Botton, Marcos [Embrapa Uva e Vinho, Bento Goncalves, RS (Brazil)]. E-mail: marcos@cnpuv.embrapa.br

    2008-11-15

    Frankliniella occidentalis (Pergande) is one of the major strawberry pests in southern Brazil. The insect causes russeting and wither in flowers and fruits reducing commercial value. In this work, the thermal requirements of the eggs, larvae and pupae of F. occidentalis were estimated. Thrips development was studied in folioles of strawberry plants at six constant temperatures (16, 19, 22, 25, 28 and 31 deg C) in controlled conditions (70 +- 10% R.H. and 12:12 L:D). The number of annual generations of F. occidentalis was estimated for six strawberry production regions of Rio Grande do Sul State based on its thermal requirements. Developmental time of each F. occidentalis stages was proportional to the temperature increase. The best development rate was obtained when insects were reared at 25 deg C and 28 deg C. The lower threshold and the thermal requirements for the egg to adult stage were 9.9 deg C and 211.9 degree-days, respectively. Considering the thermal requirements of F. occidentalis, 10.7, 12.6, 13.1, 13.6, 16.5 and 17.9 generations/year were estimated, respectively, for Vacaria, Caxias do Sul, Farroupilha, Pelotas, Porto Alegre and Taquari producing regions located in Rio Grande do Sul State, Brazil. (author)

  5. Increase in the number of distributed power generation installations in electricity distribution grids - Simulation in a 400 V low-voltage network; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Simulationen im 400 V Niederspannungsnetz des ewz

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Luechinger, P.

    2003-07-01

    This is the sixth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This fifth appendix to the main report presents and discusses the results of simulations made on the basis of the real-life 400 V low-voltage distribution network operated by the public utilities of the City of Zurich, Switzerland. This comprehensive appendix describes the simulation methods used and the basic characteristics of low-voltage networks and distributed generation facilities. The 6 simulation variants used are also described. The results of the simulations are presented in graphical form and provide profiles of voltage and current, active and reactive power and further mains characteristics for varying load conditions. Also, short-circuit simulations and harmonics analysis are discussed.

  6. The Brothel Phone Number

    DEFF Research Database (Denmark)

    Korsby, Trine Mygind

    2017-01-01

    -infrastructure in its own right, providing an entry point into the wider infrastructure of transnational pimping. The pimps’ embodied certainty of how to operate successfully in their neighbourhood in Romania is produced in resonance with the local, urban materiality. This interplay generates body techniques, which...... in turn cultivate and maximize uncertainty about themselves in others. When making the move to go abroad into unknown terrains, accessing the infrastructure generated by the phone number can provide certainty and consolidate one’s position within criminal networks abroad. However, at the same time...

  7. Cheek swabs, SNP chips, and CNVs: Assessing the quality of copy number variant calls generated with subject-collected mail-in buccal brush DNA samples on a high-density genotyping microarray

    Directory of Open Access Journals (Sweden)

    Erickson Stephen W

    2012-06-01

    Full Text Available Abstract Background Multiple investigators have established the feasibility of using buccal brush samples to genotype single nucleotide polymorphisms (SNPs with high-density genome-wide microarrays, but there is currently no consensus on the accuracy of copy number variants (CNVs inferred from these data. Regardless of the source of DNA, it is more difficult to detect CNVs than to genotype SNPs using these microarrays, and it therefore remains an open question whether buccal brush samples provide enough high-quality DNA for this purpose. Methods To demonstrate the quality of CNV calls generated from DNA extracted from buccal samples, compared to calls generated from blood samples, we evaluated the concordance of calls from individuals who provided both sample types. The Illumina Human660W-Quad BeadChip was used to determine SNPs and CNVs of 39 Arkansas participants in the National Birth Defects Prevention Study (NBDPS, including 16 mother-infant dyads, who provided both whole blood and buccal brush DNA samples. Results We observed a 99.9% concordance rate of SNP calls in the 39 blood–buccal pairs. From the same dataset, we performed a similar analysis of CNVs. Each of the 78 samples was independently segmented into regions of like copy number using the Optimal Segmentation algorithm of Golden Helix SNP & Variation Suite 7. Across 640,663 loci on 22 autosomal chromosomes, segment-mean log R ratios had an average correlation of 0.899 between blood-buccal pairs of samples from the same individual, while the average correlation between all possible blood-buccal pairs of samples from unrelated individuals was 0.318. An independent analysis using the QuantiSNP algorithm produced average correlations of 0.943 between blood-buccal pairs from the same individual versus 0.332 between samples from unrelated individuals. Segment-mean log R ratios had an average correlation of 0.539 between mother-offspring dyads of buccal samples, which was not

  8. Cryptographic pseudo-random sequences from the chaotic Hénon ...

    Indian Academy of Sciences (India)

    dimensional discrete-time Hénon map is proposed. Properties of the proposed sequences pertaining to linear complexity, linear complexity profile, correlation and auto-correlation are investigated. All these properties of the sequences suggest a ...

  9. Exigências térmicas e estimativa do número de gerações da broca-do-fruto Annona (Cerconota anonella Thermal requirements and estimate of the Annona fruit borer (Cerconota anonella generations number

    Directory of Open Access Journals (Sweden)

    Mônica Josene Barbosa Pereira

    2009-11-01

    Full Text Available Cerconota anonella é a principal praga das Annonaceae em toda região Neotropical. Os prejuízos causados pela lagarta, podem reduzir de 60 a 100% da produção de frutos. Os objetivos deste trabalho foram estudar a biologia da broca-do-fruto Cerconota anonella em diferentes temperaturas, determinar suas exigências térmicas e estimar o número de gerações para os municípios produtores do estado de São Paulo. Para determinar a duração, viabilidade e exigências térmicas criaram-se insetos em frutos de pinha, em diferentes temperaturas (18, 21, 25, 28, 30 e 32°C, umidade relativa 90,0±5,0 % e fotoperíodo de 14 horas. A duração das fases de desenvolvimento e do ciclo biológico (ovo-adulto foi afetada pela temperatura, tendo sido maior nas temperaturas mais baixas; a viabilidade foi maior na faixa térmica de 21 a 30°C. O limiar térmico inferior de desenvolvimento (Tb e a constante térmica (K para as fases de ovo, lagarta, pupa e ciclo de vida foram de 10,20°C e 83,33GD; 11,72°C e de 249,71GD; 8,69°C e 161,33GD; 11,05°C e 478,14GD, respectivamente. Com base nas normais climáticas, o número de gerações anuais de C. anonella variou de 9 a 10 e de 7 a 8 se considerar apenas a época de frutificação. Esses resultados demonstram o alto potencial de infestação desta praga no campo.Cerconota anonella is the most important pest of the Annonaceae in the Neotropical region. Larval damage can result in 60 to 100% losses in fruit production. The objectives of this research were to study the biology of the Annona fruit borer C. anonella in different temperatures, to determine their thermal requirements and estimate the number of generations to the cities producers of Sao Paulo state. To determine the duration, viability and thermal requirements insects were reared in sugar apple, at different temperatures (18, 21, 25, 28, 30 and 32°C, relative humidity and 90.0±5.0 photoperiod of 14 hours. The duration of the stages development

  10. Dynamic Virtual Credit Card Numbers

    Science.gov (United States)

    Molloy, Ian; Li, Jiangtao; Li, Ninghui

    Theft of stored credit card information is an increasing threat to e-commerce. We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate multiple virtual credit card numbers that are either usable for a single transaction or are tied with a particular merchant. We call the scheme dynamic because the virtual credit card numbers can be generated without online contact with the credit card issuers. These numbers can be processed without changing any of the infrastructure currently in place; the only changes will be at the end points, namely, the card users and the card issuers. We analyze the security requirements for dynamic virtual credit card numbers, discuss the design space, propose a scheme using HMAC, and prove its security under the assumption the underlying function is a PRF.

  11. Empirical Analysis of Optical Attenuator Performance in Quantum Key Distribution Systems Using a Particle Model

    Science.gov (United States)

    2012-03-01

    number generation, version 2.1 of the double precision Fast Mersenne Twister developed by Mutsuo Saito and Makoto Matsumoto was used [17]. 25...34dSFMT.h" //Mersenne Twister pseudo random number generator. #include <stdio.h> #include <stdlib.h> #include <time.h> // The...Matsumoto, "SIMD-Oriented Fast Mersenne Twister ," 18 April 2009. [Online]. Available: http://www.math.sci.hiroshima-u.ac.jp/~m- mat/MT/SFMT

  12. Random Numbers from Astronomical Imaging

    OpenAIRE

    Pimbblet, Kevin A.; Bulmer, Michael

    2004-01-01

    This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.

  13. Trip generation studies for special generators.

    Science.gov (United States)

    2010-02-01

    This research examines the effects of town centers and senior housing developments on : surrounding roadways and nearby transit. The Institute of Transportation Engineers (ITE) : Trip Generation Manual, which determines number of trips produced or at...

  14. An Ultra-light PRNG Passing Strict Randomness Tests and Suitable for Low Cost Tags

    Directory of Open Access Journals (Sweden)

    OZCANHAN, M. H.

    2016-08-01

    Full Text Available A pseudo-random number generator for low-cost RFID tags is presented. The scheme is simple, sequential and secure, yet has a high performance. Despite its lowest hardware complexity, our proposal represents a better alternative than previous proposals for low-cost tags. The scheme is based on the well-founded pseudo random number generator, Mersenne Twister. The proposed generator takes low-entropy seeds extracted from a physical characteristic of the tag and produces outputs that pass popular randomness tests. Contrarily, previous proposal tests are based on random number inputs from a popular online source, which are simply unavailable to tags. The high performance and satisfactory randomness of present work are supported by extensive test results and compared with similar previous works. Comparison using proven estimation formulae indicates that our proposal has the best hardware complexity, power consumption, and the least cost.

  15. Children, everyday numbers and school numbers

    Directory of Open Access Journals (Sweden)

    Clélia Maria Ignatius Nogueira

    2008-08-01

    Full Text Available Relationship made by school children between “daily” numbers, or rather, numbers deployed outside the school, and numbers worked out in school under various circumstances, or rather, orally and in writing, is investigated. Analysis has been undertaken with ten six-year-old children by means of a clinical and critical method. Research results show that children interact with the environment and recognized the figures, name them, conjecture on their written mode and give coherent meaning to the figures. Analysis also demonstrates that children use numbers outside the school. They understand and exemplify the number’s different meanings in an out-class context. Since the children do not give a weighty meaning to “school” numbers, pedagogical activity with numbers fails to put into practice the recommendations of the official policy.

  16. Numbers Defy the Law of Large Numbers

    Science.gov (United States)

    Falk, Ruma; Lann, Avital Lavie

    2015-01-01

    As the number of independent tosses of a fair coin grows, the rates of heads and tails tend to equality. This is misinterpreted by many students as being true also for the absolute numbers of the two outcomes, which, conversely, depart unboundedly from each other in the process. Eradicating that misconception, as by coin-tossing experiments,…

  17. A fast image encryption system based on chaotic maps with finite precision representation

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, H.S. [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)]. E-mail: hskwok@ee.cityu.edu.hk; Tang, Wallace K.S. [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)]. E-mail: kstang@ee.cityu.edu.hk

    2007-05-15

    In this paper, a fast chaos-based image encryption system with stream cipher structure is proposed. In order to achieve a fast throughput and facilitate hardware realization, 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption system is a pseudo-random keystream generator based on a cascade of chaotic maps, serving the purpose of sequence generation and random mixing. Unlike the other existing chaos-based pseudo-random number generators, the proposed keystream generator not only achieves a very fast throughput, but also passes the statistical tests of up-to-date test suite even under quantization. The overall design of the image encryption system is to be explained while detail cryptanalysis is given and compared with some existing schemes.

  18. Number words and number symbols a cultural history of numbers

    CERN Document Server

    Menninger, Karl

    1992-01-01

    Classic study discusses number sequence and language and explores written numerals and computations in many cultures. "The historian of mathematics will find much to interest him here both in the contents and viewpoint, while the casual reader is likely to be intrigued by the author's superior narrative ability.

  19. Vowel Generation for Children with Cerebral Palsy using Myocontrol of a Speech Synthesizer

    Directory of Open Access Journals (Sweden)

    Chuanxin M Niu

    2015-01-01

    Full Text Available For children with severe cerebral palsy (CP, social and emotional interactions can be significantly limited due to impaired speech motor function. However, if it is possible to extract continuous voluntary control signals from the electromyograph (EMG of limb muscles, then EMG may be used to drive the synthesis of intelligible speech with controllable speed, intonation and articulation. We report an important first step: the feasibility of controlling a vowel synthesizer using non-speech muscles. A classic formant-based speech synthesizer is adapted to allow the lowest two formants to be controlled by surface EMG from skeletal muscles. EMG signals are filtered using a non-linear Bayesian filtering algorithm that provides the high bandwidth and accuracy required for speech tasks. The frequencies of the first two formants determine points in a 2D plane, and vowels are targets on this plane. We focus on testing the overall feasibility of producing intelligible English vowels with myocontrol using two straightforward EMG-formant mappings. More mappings can be tested in the future to optimize the intelligibility. Vowel generation was tested on 10 healthy adults and 4 patients with dyskinetic CP. Five English vowels were generated by subjects in pseudo-random order, after only 10 minutes of device familiarization. The fraction of vowels correctly identified by 4 naive listeners exceeded 80% for the vowels generated by healthy adults and 57% for vowels generated by patients with CP. Our goal is a continuous virtual voice with personalized intonation and articulation that will restore not only the intellectual content but also the social and emotional content of speech for children and adults with severe movement disorders.

  20. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  1. Introduction to number theory

    CERN Document Server

    Vazzana, Anthony; Garth, David

    2007-01-01

    One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.

  2. Tropical Real Hurwitz numbers

    OpenAIRE

    Markwig, Hannah; Rau, Johannes

    2014-01-01

    In this paper, we define tropical analogues of real Hurwitz numbers, i.e. numbers of covers of surfaces with compatible involutions satisfying prescribed ramification properties. We prove a correspondence theorem stating the equality of the tropical numbers with their real counterparts. We apply this theorem to the case of double Hurwitz numbers (which generalizes our result from arXiv:1409.8095).

  3. How to Differentiate a Number

    Science.gov (United States)

    Ufnarovski, Victor; Ahlander, Bo

    2003-09-01

    We define the derivative of an integer to be the map sending every prime to 1 and satisfying the Leibnitz rule. The aim of the article is to consider the basic properties of this map and to show how to generalize the notion to the case of rational and arbitrary real numbers. We make some conjectures and find some connections with Goldbach's Conjecture and the Twin Prime Conjecture. Finally, we solve the easiest associated differential equations and calculate the generating function.

  4. Cryptosystems based on chaotic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McNees, R.A.; Protopopescu, V.; Santoro, R.T.; Tolliver, J.S.

    1993-08-01

    An encryption scheme based on chaotic dynamics is presented. This scheme makes use of the efficient and reproducible generation of cryptographically secure pseudo random numbers from chaotic maps. The result is a system which encrypts quickly and possesses a large keyspace, even in small precision implementations. This system offers an excellent solution to several problems including the dissemination of key material, over the air rekeying, and other situations requiring the secure management of information.

  5. Generational diversity.

    Science.gov (United States)

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions.

  6. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  7. p-adic numbers

    OpenAIRE

    Grešak, Rozalija

    2015-01-01

    The field of real numbers is usually constructed using Dedekind cuts. In these thesis we focus on the construction of the field of real numbers using metric completion of rational numbers using Cauchy sequences. In a similar manner we construct the field of p-adic numbers, describe some of their basic and topological properties. We follow by a construction of complex p-adic numbers and we compare them with the ordinary complex numbers. We conclude the thesis by giving a motivation for the int...

  8. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known.......Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  9. RANDOMNESS of Numbers DEFINITION(QUERY:WHAT? V HOW?) ONLY Via MAXWELL-BOLTZMANN CLASSICAL-Statistics(MBCS) Hot-Plasma VS. Digits-Clumping Log-Law NON-Randomness Inversion ONLY BOSE-EINSTEIN QUANTUM-Statistics(BEQS) .

    Science.gov (United States)

    Siegel, Z.; Siegel, Edward Carl-Ludwig

    2011-03-01

    RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!

  10. On the number of special numbers

    Indian Academy of Sciences (India)

    We now apply the theory of the Thue equation to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are cubefree and all their prime factors are less than e63727. Now we have a finite number of. Thue equations:.

  11. Heuristic attacks against graphical password generators

    CSIR Research Space (South Africa)

    Peach, S

    2010-05-01

    Full Text Available .38 = 235.63 , so that any given average password, if selected from random blocks will have a 36 bit strength. This is not significant, easily cracked using even modest equipment such as PCs. However, this study was not into the direct strength...: Kitten - showing blocks that were not used Figure 12: Kitten – showing hotspots Figure 13: Kitten - showing blocks that was not used for any passwords – Pseudo- random and Hotspot patterns only Statistical analysis show that for most...

  12. A new definition of Bejan number

    Directory of Open Access Journals (Sweden)

    Awad Mohamed M.

    2012-01-01

    Full Text Available A new definition of Bejan number will be generated by replacing the thermal diffusivity with the mass diffusivity. For example, the Schmidt number is the mass transfer analog of the Prandtl number. For the case of Reynolds analogy (Sc = Pr = = 1, both current and new definitions of Bejan number are the same. This new definition is useful and needed for diffusion of mass (mass diffusion.

  13. Making decisions from numbers

    Energy Technology Data Exchange (ETDEWEB)

    Somers, E.

    1987-03-01

    Regulatory agencies require numbers to provide health protection. The manner in which these numbers are derived from animal experiments and human epidemiology is considered together with the limitations and inadequacies of these numbers. Some recent examples of risk assessment in Canada are given including asbestos, drinking water, and indoor air quality. The value of these numbers in providing a measure of the hazard in a wider perspective is stressed, although they can never be the sole determinant of public policy.

  14. Survey on fusible numbers

    OpenAIRE

    Xu, Junyan

    2012-01-01

    We point out that the recursive formula that appears in Erickson's presentation "Fusible Numbers" is incorrect, and pose an alternate conjecture about the structure of fusible numbers. Although we are unable to solve the conjecture, we succeed in establishing some basic properties of fusible numbers. We suggest some possible approaches to the conjecture, and list further problems in the final chapter.

  15. Discovery: Prime Numbers

    Science.gov (United States)

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  16. Analytic number theory

    CERN Document Server

    Matsumoto, Kohji

    2002-01-01

    The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory

  17. Copy number variation and mutation

    Science.gov (United States)

    Clark, Brian; Weidner, Jacob; Wabick, Kevin

    2009-11-01

    Until very recently, the standard model of DNA included two genes for each trait. This dated model has given way to a model that includes copies of some genes well in excess of the canonical two. Copy number variations in the human genome play critical roles in causing or aggravating a number of syndromes and diseases while providing increased resistance to others. We explore the role of mutation, crossover, inversion, and reproduction in determining copy number variations in a numerical simulation of a population. The numerical model consists of a population of individuals, where each individual is represented by a single strand of DNA with the same number of genes. Each gene is initially assigned to one of two traits. Fitness of the individual is determined by the two most fit genes for trait one, and trait two genetic material is treated as a reservoir of junk DNA. After a sufficient number of generations, during which the genetic distribution is allowed to reach a steady-state, the mean numberof genes per trait and the copy number variation are recorded. Here, we focus on the role of mutation and compare simulation results to theory.

  18. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  19. Testing, Selection, and Implementation of Random Number Generators

    Science.gov (United States)

    2008-07-01

    according to the Cayley -Hamilton theorem (any linear transformation is a zero of its own CP). Therefore Bk can be expressed as a combination of lower...Canada, February 2007. To appear with minor revisions in Advancing the Frontiers of Simulation: A Festschrift in Honor of George S. Fishman. 16

  20. A Bill of Rights for Future Generations. Proceedings Number 34.

    Science.gov (United States)

    Cousteau, Jacques-Yves

    This monograph stresses the need for environmental protection and identifies principles for a global policy to preserve the world's oceans. It is hypothesized that unbridled technological development pollutes the environment, and particularly oceans, to such a degree that it threatens the future of mankind. Factors identified as being largely…

  1. Generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    use of swapping, data values need not be available in array for reordering and thus can be used in online data acquisition and FFT calculation. This program does not make use of any special bit manipulating functions and thus it can be implemented... TRANSFORM T. SURESH National Institute of Oceanography, Dona Paula, Goa- 004, India e-mail: suresh@bcgoa.ernet.in (Received II March 1994; accepted 4 May 1994) INTRODUCTION Fast Fourier Transform (FFT) is a well-known tool used for spectrum analysis...

  2. On the number of generators of a projective module

    Indian Academy of Sciences (India)

    Author Affiliations. Sumit Kumar Upadhyay1 Shiv Datt Kumar1 Raja Sridharan2. Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad 211 004, India; sraja@tifr.math.res.in ...

  3. Analisis SIM Card Cloning Terhadap Algoritma Random Number Generator

    OpenAIRE

    Anwar, Nuril; Riadi, Imam; Luthfi, Ahmad

    2016-01-01

    . Crime in telecommunication sector has increased prevalently, especially with the use of mobile phone which is detrimental both for customers and the providers. In the GSM security system, several weaknesses are found concerning data security outside the network. SIM card clone is part of the security problem in which the data can be transferred to SIM card cloning media. SIM card cloning research can be presented in the form of SRES analysis algorithms A3 and A8 RAND to get Ki Auc for furth...

  4. On the number of generators of a projective module

    Indian Academy of Sciences (India)

    module of constant rank. Then P is free. Lemma 2.4 [1]. Let R be a Noetherian ring of finite dimension and s is a non-zero divisor in R. Then dim(Rs〈1+sR〉) < dim(R). Proof. We claim that for any maximal ideal m of R either m ∩ 〈s〉 = φ or m ∩ 〈1 +.

  5. Instant Generation

    Science.gov (United States)

    Loveland, Elaina

    2017-01-01

    Generation Z students (born between 1995-2010) have replaced millennials on college campuses. Generation Z students are entrepreneurial, desire practical skills with their education, and are concerned about the cost of college. This article presents what need to be known about this new generation of students.

  6. Number theoretical foundations in cryptography

    Science.gov (United States)

    Atan, Kamel Ariffin Mohd

    2017-08-01

    In recent times the hazards in relationships among entities in different establishments worldwide have generated exciting developments in cryptography. Central to this is the theory of numbers. This area of mathematics provides very rich source of fundamental materials for constructing secret codes. Some number theoretical concepts that have been very actively used in designing crypto systems will be highlighted in this presentation. This paper will begin with introduction to basic number theoretical concepts which for many years have been thought to have no practical applications. This will include several theoretical assertions that were discovered much earlier in the historical development of number theory. This will be followed by discussion on the "hidden" properties of these assertions that were later exploited by designers of cryptosystems in their quest for developing secret codes. This paper also highlights some earlier and existing cryptosystems and the role played by number theoretical concepts in their constructions. The role played by cryptanalysts in detecting weaknesses in the systems developed by cryptographers concludes this presentation.

  7. REVIEW OF IRRATIONAL NUMBERS

    Directory of Open Access Journals (Sweden)

    Hafnani Hafnani

    2015-04-01

    Full Text Available Study of the set properties is simple and rarely investigated at the Department of Mathematics. This paper examines some set properties on the irrational numbers. The study is about the properties applying to the real numbers which are a complete ordered field. However, the results of this study show that those properties do not imply to the irrational numbers, but the ordered property. The prove of the irrational numberby some examples is demonstrated in this study.

  8. The simple complex numbers

    OpenAIRE

    Zalesny, Jaroslaw

    2008-01-01

    A new simple geometrical interpretation of complex numbers is presented. It differs from their usual interpretation as points in the complex plane. From the new point of view the complex numbers are rather operations on vectors than points. Moreover, in this approach the real, imaginary and complex numbers have similar interpretation. They are simply some operations on vectors. The presented interpretation is simpler, more natural, and better adjusted to possible applications in geometry and ...

  9. Numbers, sequences and series

    CERN Document Server

    Hirst, Keith

    1994-01-01

    Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite proc

  10. Predicting Lotto Numbers

    OpenAIRE

    Jorgensen, C.B.; Suetens, S.; Tyran, J.R.

    2011-01-01

    We investigate the "law of small numbers" using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in th...

  11. The adventure of numbers

    CERN Document Server

    Godefroy, Gilles

    2004-01-01

    Numbers are fascinating. The fascination begins in childhood, when we first learn to count. It continues as we learn arithmetic, algebra, geometry, and so on. Eventually, we learn that numbers not only help us to measure the world, but also to understand it and, to some extent, to control it. In The Adventure of Numbers, Gilles Godefroy follows the thread of our expanding understanding of numbers to lead us through the history of mathematics. His goal is to share the joy of discovering and understanding this great adventure of the mind. The development of mathematics has been punctuated by a n

  12. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Jørgensen, Claus Bjørn; Suetens, Sigrid; Tyran, Jean-Robert

    We investigate the “law of small numbers” using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto...... numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in the way predicted by the law of small numbers as formalized in recent behavioral theory. In particular...

  13. Beurling generalized numbers

    CERN Document Server

    Diamond, Harold G; Cheung, Man Ping

    2016-01-01

    "Generalized numbers" is a multiplicative structure introduced by A. Beurling to study how independent prime number theory is from the additivity of the natural numbers. The results and techniques of this theory apply to other systems having the character of prime numbers and integers; for example, it is used in the study of the prime number theorem (PNT) for ideals of algebraic number fields. Using both analytic and elementary methods, this book presents many old and new theorems, including several of the authors' results, and many examples of extremal behavior of g-number systems. Also, the authors give detailed accounts of the L^2 PNT theorem of J. P. Kahane and of the example created with H. L. Montgomery, showing that additive structure is needed for proving the Riemann hypothesis. Other interesting topics discussed are propositions "equivalent" to the PNT, the role of multiplicative convolution and Chebyshev's prime number formula for g-numbers, and how Beurling theory provides an interpretation of the ...

  14. Intuitive numbers guide decisions

    Directory of Open Access Journals (Sweden)

    Ellen Peters

    2008-12-01

    Full Text Available Measuring reaction times to number comparisons is thought to reveal a processing stage in elementary numerical cognition linked to internal, imprecise representations of number magnitudes. These intuitive representations of the mental number line have been demonstrated across species and human development but have been little explored in decision making. This paper develops and tests hypotheses about the influence of such evolutionarily ancient, intuitive numbers on human decisions. We demonstrate that individuals with more precise mental-number-line representations are higher in numeracy (number skills consistent with previous research with children. Individuals with more precise representations (compared to those with less precise representations also were more likely to choose larger, later amounts over smaller, immediate amounts, particularly with a larger proportional difference between the two monetary outcomes. In addition, they were more likely to choose an option with a larger proportional but smaller absolute difference compared to those with less precise representations. These results are consistent with intuitive number representations underlying: a perceived differences between numbers, b the extent to which proportional differences are weighed in decisions, and, ultimately, c the valuation of decision options. Human decision processes involving numbers important to health and financial matters may be rooted in elementary, biological processes shared with other species.

  15. Littlewood and Number Theory

    Indian Academy of Sciences (India)

    IAS Admin

    doctoral thesis, R Balasubramanian [8] improved this further and showed that one can take θ = 1/3. 4. Littlewood's Problem on Diophantine Ap- proximation. For any real number x, let ||x|| denote the distance of x to the nearest integer. For any pair of real numbers α, β, Littlewood conjectured that lim inf n→∞ n||nα||||nβ|| = 0.

  16. The Class Number Problem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 7. The Class Number Problem - An Introduction to Algebraic Number Theory. Rajat Tandon. General Article Volume 3 Issue 7 July 1998 pp 28-37. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Suetens, Sigrid; Galbo-Jørgensen, Claus B.; Tyran, Jean-Robert Karl

    2016-01-01

    We investigate the ‘law of small numbers’ using a data set on lotto gambling that allows us to measure players’ reactions to draws. While most players pick the same set of numbers week after week, we find that those who do change react on average as predicted by the law of small numbers...

  18. The Congruent Number Problem

    Indian Academy of Sciences (India)

    In Mathematics, especially number theory, one of- .... pear on the list. Continuing in this way ·would exhaust one's computing resources, not to mention one's patience! Also, this procedure is of no avail if n is not a congruent number. ..... If p and q are odd primes, then the Legendre symbol (p/q) is 1 if P is a quadratic residue.

  19. Avogadro's Number Ferromagnetically

    Science.gov (United States)

    Houari, Ahmed

    2010-01-01

    Avogadro's number, usually denoted by N[subscript A], plays a fundamental role in both physics and chemistry. It defines the extremely useful concept of the mole, which is the base unit of the amount of matter in the international system of units. The fundamental character of this number can also be illustrated by its appearance in the definitions…

  20. Numbers in the blind's "eye".

    Science.gov (United States)

    Salillas, Elena; Graná, Alessia; El-Yagoubi, Radouane; Semenza, Carlo

    2009-07-23

    Although lacking visual experience with numerosities, recent evidence shows that the blind perform similarly to sighted persons on numerical comparison or parity judgement tasks. In particular, on tasks presented in the auditory modality, the blind surprisingly show the same effect that appears in sighted persons, demonstrating that numbers are represented through a spatial code, i.e. the Spatial-Numerical Association of Response Codes (SNARC) effect. But, if this is the case, how is this numerical spatial representation processed in the brain of the blind? Here we report that, although blind and sighted people have similarly organized numerical representations, the attentional shifts generated by numbers have different electrophysiological correlates (sensorial N100 in the sighted and cognitive P300 in the blind). These results highlight possible differences in the use of spatial representations acquired through modalities other than vision in the blind population.

  1. Numbers in the blind's "eye".

    Directory of Open Access Journals (Sweden)

    Elena Salillas

    Full Text Available BACKGROUND: Although lacking visual experience with numerosities, recent evidence shows that the blind perform similarly to sighted persons on numerical comparison or parity judgement tasks. In particular, on tasks presented in the auditory modality, the blind surprisingly show the same effect that appears in sighted persons, demonstrating that numbers are represented through a spatial code, i.e. the Spatial-Numerical Association of Response Codes (SNARC effect. But, if this is the case, how is this numerical spatial representation processed in the brain of the blind? PRINCIPAL FINDINGS: Here we report that, although blind and sighted people have similarly organized numerical representations, the attentional shifts generated by numbers have different electrophysiological correlates (sensorial N100 in the sighted and cognitive P300 in the blind. CONCLUSIONS: These results highlight possible differences in the use of spatial representations acquired through modalities other than vision in the blind population.

  2. Advanced number theory

    CERN Document Server

    Cohn, Harvey

    1980-01-01

    ""A very stimulating book ... in a class by itself."" - American Mathematical MonthlyAdvanced students, mathematicians and number theorists will welcome this stimulating treatment of advanced number theory, which approaches the complex topic of algebraic number theory from a historical standpoint, taking pains to show the reader how concepts, definitions and theories have evolved during the last two centuries. Moreover, the book abounds with numerical examples and more concrete, specific theorems than are found in most contemporary treatments of the subject.The book is divided into three parts

  3. Elementary theory of numbers

    CERN Document Server

    Sierpinski, Waclaw

    1988-01-01

    Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian

  4. Elementary number theory

    CERN Document Server

    Dudley, Underwood

    2008-01-01

    Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta

  5. The emergence of number

    CERN Document Server

    Crossley, John N

    1987-01-01

    This book presents detailed studies of the development of three kinds of number. In the first part the development of the natural numbers from Stone-Age times right up to the present day is examined not only from the point of view of pure history but also taking into account archaeological, anthropological and linguistic evidence. The dramatic change caused by the introduction of logical theories of number in the 19th century is also treated and this part ends with a non-technical account of the very latest developments in the area of Gödel's theorem. The second part is concerned with the deve

  6. Numbers and computers

    CERN Document Server

    Kneusel, Ronald T

    2015-01-01

    This is a book about numbers and how those numbers are represented in and operated on by computers. It is crucial that developers understand this area because the numerical operations allowed by computers, and the limitations of those operations, especially in the area of floating point math, affect virtually everything people try to do with computers. This book aims to fill this gap by exploring, in sufficient but not overwhelming detail, just what it is that computers do with numbers. Divided into two parts, the first deals with standard representations of integers and floating point numb

  7. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  8. Fundamentals of number theory

    CERN Document Server

    LeVeque, William J

    1996-01-01

    This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given - making the book self-contained in this respect.The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diopha

  9. Brief history of numbers

    CERN Document Server

    Corry, Leo

    2015-01-01

    The world around us is saturated with numbers. They are a fundamental pillar of our modern society, and accepted and used with hardly a second thought. But how did this state of affairs come to be? In this book, Leo Corry tells the story behind the idea of number from the early days of the Pythagoreans, up until the turn of the twentieth century. He presents an overview of how numbers were handled and conceived in classical Greek mathematics, in the mathematics of Islam, in European mathematics of the middle ages and the Renaissance, during the scientific revolution, all the way through to the

  10. Graph pegging numbers

    OpenAIRE

    Helleloid, Geir; Khalid, Madeeha; Moulton, David Petrie; Wood, Philip Matchett

    2008-01-01

    In graph pegging, we view each vertex of a graph as a hole into which a peg can be placed, with checker-like ``pegging moves'' allowed. Motivated by well-studied questions in graph pebbling, we introduce two pegging quantities. The pegging number (respectively, the optimal pegging number) of a graph is the minimum number of pegs such that for every (respectively, some) distribution of that many pegs on the graph, any vertex can be reached by a sequence of pegging moves. We prove several basic...

  11. Professor Stewart's incredible numbers

    CERN Document Server

    Stewart, Ian

    2015-01-01

    Ian Stewart explores the astonishing properties of numbers from 1 to10 to zero and infinity, including one figure that, if you wrote it out, would span the universe. He looks at every kind of number you can think of - real, imaginary, rational, irrational, positive and negative - along with several you might have thought you couldn't think of. He explains the insights of the ancient mathematicians, shows how numbers have evolved through the ages, and reveals the way numerical theory enables everyday life. Under Professor Stewart's guidance you will discover the mathematics of codes,

  12. Distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Ness, E.

    1999-09-02

    Distributed generation, locating electricity generators close to the point of consumption, provides some unique benefits to power companies and customers that are not available from centralized electricity generation. Photovoltaic (PV) technology is well suited to distributed applications and can, especially in concert with other distributed resources, provide a very close match to the customer demand for electricity, at a significantly lower cost than the alternatives. In addition to augmenting power from central-station generating plants, incorporating PV systems enables electric utilities to optimize the utilization of existing transmission and distribution.

  13. Really big numbers

    CERN Document Server

    Schwartz, Richard Evan

    2014-01-01

    In the American Mathematical Society's first-ever book for kids (and kids at heart), mathematician and author Richard Evan Schwartz leads math lovers of all ages on an innovative and strikingly illustrated journey through the infinite number system. By means of engaging, imaginative visuals and endearing narration, Schwartz manages the monumental task of presenting the complex concept of Big Numbers in fresh and relatable ways. The book begins with small, easily observable numbers before building up to truly gigantic ones, like a nonillion, a tredecillion, a googol, and even ones too huge for names! Any person, regardless of age, can benefit from reading this book. Readers will find themselves returning to its pages for a very long time, perpetually learning from and growing with the narrative as their knowledge deepens. Really Big Numbers is a wonderful enrichment for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual i...

  14. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  15. Drawing a random number

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik

    2006-01-01

    highly uniform multidimensional draws, which are highly relevant for todays traffic models. This paper shows among others combined shuffling and scrambling seems needless, that scrambling gives the lowest correlation and that there are detectable differences between random numbers, dependent...

  16. Volume 9 Number 1

    African Journals Online (AJOL)

    OLUWOLE

    for analysis were generated through random sampling of 90 farmers and 270 regular middlemen. The results showed that the mean marketing margin was 18.2%, marketing costs 12.8%, net profit. 8.3% and farmer's share 78.9% of the retail price. These values indicated efficient and competitive trends under the prevailing ...

  17. Generating ethnographic research questions

    DEFF Research Database (Denmark)

    Friberg, Torbjörn

    2015-01-01

    ? By drawing on the conceptual history of anthropology, the aim of this article is to generate ethnographic-oriented research questions concerned with higher education. The first part of the article provides an ethnographic background, while the second part focuses on Paul Willis's reasoning on ethnographic...... imagination, as a prerequisite for generating alternative research questions. The third part makes explicit anthropologist Maurice Godelier's theoretical imagination, carving out some specific theoretical parts which may be used in the generating process. The conclusion then suggests a number of questions...

  18. Boid Based Timetable Generation

    Science.gov (United States)

    Fulmański, Piotr

    2008-09-01

    The general timetabling problem consists of scheduling a number of events into a finite number of periods so that no individual entity is required to attend two or more events simultaneously. In most cases there will also be restrictions on the amount of resources, time etc. In this document we try to investigate a new method of timetable generation based not on popular evolutionary approach but on boids concept.

  19. Report number codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.N. (ed.)

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  20. The LHC in numbers

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    What makes the LHC the biggest particle accelerator in the world? Here are some of the numbers that characterise the LHC, and their equivalents in terms that are easier for us to imagine.   Feature Number Equivalent Circumference ~ 27 km   Distance covered by beam in 10 hours ~ 10 billion km a round trip to Neptune Number of times a single proton travels around the ring each second 11 245   Speed of protons first entering the LHC 299 732 500 m/s 99.9998 % of the speed of light Speed of protons when they collide 299 789 760 m/s 99.9999991 % of the speed of light Collision temperature ~ 1016 °C ove...

  1. New magic numbers

    CERN Document Server

    Kruecken, R

    2010-01-01

    The nuclear shell model is a benchmark for the description of the structure of atomic nuclei. The magic numbers associated with closed shells have long been assumed to be valid across the whole nuclear chart. Investigations in recent years of nuclei far away from nuclear stability at facilities for radioactive ion beams have revealed that the magic numbers may change locally in those exotic nuclei leading to the disappearance of classic shell gaps and the appearance of new magic numbers. These changes in shell structure also have important implications for the synthesis of heavy elements in stars and stellar explosions. In this review a brief overview of the basics of the nuclear shell model will be given together with a summary of recent theoretical and experimental activities investigating these changes in the nuclear shell structure.

  2. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  3. Geometry of numbers

    CERN Document Server

    Gruber, Peter M

    1987-01-01

    This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit

  4. CONFUSION WITH TELEPHONE NUMBERS

    CERN Multimedia

    Telecom Service

    2002-01-01

    The area code is now required for all telephone calls within Switzerland. Unfortunately this is causing some confusion. CERN has received complaints that incoming calls intended for CERN mobile phones are being directed to private subscribers. This is caused by mistakenly dialing the WRONG code (e.g. 022) in front of the mobile number. In order to avoid these problems, please inform your correspondents that the correct numbers are: 079 201 XXXX from Switzerland; 0041 79 201 XXXX from other countries. Telecom Service  

  5. CONFUSION WITH TELEPHONE NUMBERS

    CERN Multimedia

    Telecom Service

    2002-01-01

    he area code is now required for all telephone calls within Switzerland. Unfortunately this is causing some confusion. CERN has received complaints that incoming calls intended for CERN mobile phones are being directed to private subscribers. This is caused by mistakenly dialing the WRONG code (e.g. 022) in front of the mobile number. In order to avoid these problems, please inform your correspondents that the correct numbers are: 079 201 XXXX from Switzerland; 0041 79 201 XXXX from other countries. Telecom Service

  6. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  7. Analytic number theory

    CERN Document Server

    Iwaniec, Henryk

    2004-01-01

    Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results, many of which belong to the mainstream of arithmetic. One of the main attractions of analytic number theory is the vast diversity of concepts and methods it includes. The main goal of the book is to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, its beautiful theorems and powerful techniques. The book is written with graduate students in mind, and the authors tried to balance between clarity, completeness, and generality. The exercis

  8. Safety in glomerular numbers.

    NARCIS (Netherlands)

    Schreuder, M.F.

    2012-01-01

    A low nephron number is, according to Brenner's hyperfiltration hypothesis, associated with hypertension, glomerular damage and proteinuria, and starts a vicious cycle that ends in renal failure over the long term. Nephron endowment is set during foetal life, and there is no formation of nephrons

  9. Predicting Lotto Numbers

    NARCIS (Netherlands)

    Jorgensen, C.B.; Suetens, S.; Tyran, J.R.

    2011-01-01

    We investigate the "law of small numbers" using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto

  10. The magic of numbers

    CERN Document Server

    Bell, Eric Temple

    1991-01-01

    From one of the foremost interpreters for lay readers of the history and meaning of mathematics: a stimulating account of the origins of mathematical thought and the development of numerical theory. It probes the work of Pythagoras, Galileo, Berkeley, Einstein, and others, exploring how ""number magic"" has influenced religion, philosophy, science, and mathematics

  11. Paint by Numbers Revived!

    Science.gov (United States)

    Hahn, Nic

    2012-01-01

    Remember paint by numbers? This revived trend was a perfect solution to teaching geometric shapes to the author's first-grade students. Geometric shapes are identified and used in early elementary art classrooms, but this lesson gives students a deeper understanding of shape, encourages problem-solving, and makes a strong correlation between math…

  12. Dirac's Large Numbers Hypothesis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 8. Dirac's Large Numbers Hypothesis. Biman Nath. Article-in-a-Box Volume 8 Issue 8 August 2003 pp 7-7. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/08/0007-0007. Author Affiliations.

  13. Littlewood and Number Theory

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 9. Littlewood and Number Theory. M Ram Murty. General Article Volume 18 Issue 9 September 2013 pp 789-798. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/09/0789-0798. Keywords.

  14. Context and Number Conservation.

    Science.gov (United States)

    Silverman, Irwin W.

    1979-01-01

    A replication study was conducted to determine whether conservation-of-number performance would be improved by questioning the subject only after the transformation is performed, rather than before and after the transformation, as is done in the standard conservation test. Subjects were preschoolers, aged 0-4 to 5-7. (Author/MP)

  15. Surveys in Number Theory

    CERN Document Server

    Alladi, Krishnaswami

    2008-01-01

    Contains chapters on number theory and related topics. This title covers topics that focus on multipartitions, congruences and identities, the formulas of Koshliakov and Guinand in Ramanujan's "Lost Notebook", alternating sign matrices and the Weyl character formulas, theta functions in complex analysis, and elliptic functions

  16. Volume 9 Number 2

    African Journals Online (AJOL)

    OLUWOLE

    Volume 9 Number 2 May 2010 PP. 131 – 136 ... The study assessed the effectiveness of Songhai-Delta fish culture training programme. A structured ..... The high adoption of these technologies might be due to the fact that these farmers are fish farmers and would like to adopt improved technologies that would meet their ...

  17. Introducing Complex Numbers

    Science.gov (United States)

    Trudgian, Timothy

    2009-01-01

    One of the difficulties in any teaching of mathematics is to bridge the divide between the abstract and the intuitive. Throughout school one encounters increasingly abstract notions, which are more and more difficult to relate to everyday experiences. This article examines a familiar approach to thinking about negative numbers, that is an…

  18. The Class Number Problem

    Indian Academy of Sciences (India)

    JX) over Q, and Q is a subfield of Q( .JX). This process can easily be generalised. For in- stance, let p be a prime and ( = e27ri/p. Let Q(() be the set of complex numbers of the form XO+Xl( +X2(2+ .. '+Xp_2(p-2 with Xi rational. Note that 1 + ( + (2 ...

  19. Volume 9 Number 1

    African Journals Online (AJOL)

    OLUWOLE

    for egg-laying industry in Akwa Ibom State, Nigeria utilizing Cobb-Douglas production function based on .... machinery, equipment, implements, cost of machine hire, transportation, interest, charges on loan. X2 = Farm size measured by total number of birds housed. л1*, л2* ... using the computer software frontier version.

  20. Physical Constraints of Numbers

    OpenAIRE

    Mueckenheim, W.

    2005-01-01

    All sciences need and many arts apply mathematics whereas mathematics seems to be independent of all of them, but only based upon logic. This conservative concept, however, needs to be revised because, contrary to Platonic idealism (frequently called "realism" by mathematicians), mathematical ideas, notions, and, in particular, numbers are not at all independent of physical laws and prerequisites.

  1. Hydrogen Generator

    Science.gov (United States)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  2. Exigências térmicas e estimativa do número de gerações dos biótipos "milho" e "arroz" de Spodoptera frugiperda Thermal requirements and estimate of the number of generations of biotypes "corn" and "rice" of Spodoptera frugiperda

    Directory of Open Access Journals (Sweden)

    Gustavo Rossato Busato

    2005-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da temperatura sobre a biologia dos biótipos "milho" e "arroz" de Spodoptera frugiperda (J.E. Smith, 1797 (Lepidoptera: Noctuidae e estimar o número de gerações por ano em laboratório e campo. Foram coletadas lagartas de quatro populações de S. frugiperda no Estado do Rio Grande do Sul, identificadas eletroforeticamente como os biótipos "milho" e "arroz", em áreas isoladas, distanciadas entre si em mais de 300 km, produtoras de milho e arroz irrigado e em áreas adjacentes, que produzem milho e arroz irrigado lado a lado. A temperatura mais adequada para o desenvolvimento dos dois biótipos foi 25ºC. Em laboratório, podem ser obtidas 11,0 e 11,3 gerações ano-1 do biótipo "milho" proveniente de áreas isoladas e adjacentes, respectivamente. Foram estimadas 12,1 gerações ano-1 do biótipo "arroz" quando proveniente de áreas isoladas e 12,2 gerações ano-1 quando proveniente de áreas adjacentes. Em campo, estimou-se a ocorrência de 8,3 e 6,1 gerações ano-1 do biótipo "milho", respectivamente, em áreas isoladas e áreas adjacentes e 8,4 e 7,0 gerações ano-1 do biótipo "arroz", respectivamente, em áreas isoladas e áreas adjacentes. Em áreas adjacentes, o biótipo "arroz" apresenta uma geração a mais ao longo de um ano em relação ao biótipo "milho".The objective of this work was to evaluate the effect of the temperature on the biology of the biotypes "corn" and "rice" of Spodoptera frugiperda (J.E. Smith, 1797 (Lepidoptera: Noctuidae and to estimate the number of generations per year in laboratory and field. Caterpillars of four populations of S. frugiperda were collected in Rio Grande do Sul State, Brazil, identified by electrophoresis as the biotypes "corn" and "rice" in isolated areas (spaced for more than 300 km, areas of corn and irrigated rice production, as well as in adjacent areas that produces corn and rice irrigated side by side. The most appropriate

  3. (Oryza sativa L.) generations

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... During three rice generations in Asominori (Japonica) and IR24 (Indica), the yield and its components — namely grain yield per plant, fertile tillers, 1000-grain weight, grain number per panicle — were greater under Free Air CO2 Enrichment (FACE, 200 µmol CO2 · mol-1 above current levels) than those ...

  4. OMG: Open Molecule Generator

    Directory of Open Access Journals (Sweden)

    Peironcely Julio E

    2012-09-01

    Full Text Available Abstract Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG, which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  5. Next generation workforce.

    Science.gov (United States)

    Swenson, Cathy

    2008-01-01

    The health care industry has become a very complex business. CQsts are rising and resources such as funding and human capital are diminishing. Human capital resources are about to reach true crisis proportions. The vital workforce we have counted on is expected to begin thinning as large numbers of Boomers retire. Not only does this deplete the workforce from a pure numbers perspective, but it also affects intellectual capital and institutional memory. Generational trends and characteristics have affected the workforce environment and will continue to do so as another generation continues to enter the workforce. Generation Y, also tagged Nexter, offers core values that can bring positive changes to the health care workforce. Technology continues to change at lightning speed. Embracing new technology and using it to refine the way we do business will help deliver success. Meaningful strategic plans are needed to change the model of business delivery and employee care in our future workforce.

  6. Generating Customized Verifiers for Automatically Generated Code

    Science.gov (United States)

    Denney, Ewen; Fischer, Bernd

    2008-01-01

    Program verification using Hoare-style techniques requires many logical annotations. We have previously developed a generic annotation inference algorithm that weaves in all annotations required to certify safety properties for automatically generated code. It uses patterns to capture generator- and property-specific code idioms and property-specific meta-program fragments to construct the annotations. The algorithm is customized by specifying the code patterns and integrating them with the meta-program fragments for annotation construction. However, this is difficult since it involves tedious and error-prone low-level term manipulations. Here, we describe an annotation schema compiler that largely automates this customization task using generative techniques. It takes a collection of high-level declarative annotation schemas tailored towards a specific code generator and safety property, and generates all customized analysis functions and glue code required for interfacing with the generic algorithm core, thus effectively creating a customized annotation inference algorithm. The compiler raises the level of abstraction and simplifies schema development and maintenance. It also takes care of some more routine aspects of formulating patterns and schemas, in particular handling of irrelevant program fragments and irrelevant variance in the program structure, which reduces the size, complexity, and number of different patterns and annotation schemas that are required. The improvements described here make it easier and faster to customize the system to a new safety property or a new generator, and we demonstrate this by customizing it to certify frame safety of space flight navigation code that was automatically generated from Simulink models by MathWorks' Real-Time Workshop.

  7. Numbers and sets

    Directory of Open Access Journals (Sweden)

    Marco Ruffino

    2001-12-01

    Full Text Available In this paper I discuss the intuition behind Frege's and Russell's definitions of numbers as sets, as well as Benacerraf's criticism of it. I argue that Benacerraf's argument is not as strong as some philosophers tend to think. Moreover, I examine an alternative to the Fregean-Russellian definition of numbers proposed by Maddy, and point out some problems faced by it.Neste artigo discuto a intuição subjacente à definição de n∨meros como conjuntos proposta por Frege e Russell, assim como a crítica de Benacerraf a esta definição. Eu tento mostrar que o argumento de Benacerraf não é tão forte como alguns filósofos o tomaram. Adicionalmente, examino uma alternativa à definição de Frege e Russell proposta por Maddy, e indico algumas dificuldades encontrada pela mesma.

  8. From Natural Numbers to Numbers and Curves in Nature - I

    Indian Academy of Sciences (India)

    According to Kronecker, a famous European mathematician, only natural numbers, i.e., positive integers like 1, 2, 3, ... are given by God or belong to the nature. All other numbers like negative numbers, fractional numbers, irrational numbers, tran- scendental numbers, complex numbers, etc., are a creation of the.

  9. Averaged number of visits.

    Science.gov (United States)

    Haydn, N; Lunedei, E; Vaienti, S

    2007-09-01

    We introduce a new indicator for dynamical systems, namely the averaged number of visits, to estimate the frequency of visits in small regions when a map is iterated up to the inverse of the measure of this region. We compute this quantity analytically and numerically for various systems and we show that it depends on the ergodic properties of the systems and on their topological properties, such as the presence of periodic points.

  10. Low Reynolds Number Vehicles

    Science.gov (United States)

    1985-02-01

    of the blade . The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as... Wind turbine blades also require high aerodynamic efficiency and all-weather capabilities. The need for efficient low Reynolds number airfoils which...application. The design of this type of propeller is similar to the design of low solidity wind turbine blades and will be discussed in the next

  11. Number Needed To… $ave?

    Science.gov (United States)

    Rocker, Graeme M; Verma, Jennifer Y; Demmons, Jillian; Mittmann, Nicole

    2015-02-06

    The 'Number Needed to Treat' (NNT) is a useful measure for estimating the number of patients that would need to receive a therapeutic intervention to avoid one of the adverse events that the treatment is designed to prevent. We explored the possibility of an adaption of NNT to estimate the 'Number Needed to $ave' (NN$) as a new, conceptual systems metric to estimate potential cost-savings to the health system from implementation of a treatment, or in this case, a program. We used the outcomes of the INSPIRED COPD Outreach ProgramTM to calculate that 26 patients would need to complete the program to avoid healthcare expenditures of $100,000, based on hospital bed days avoided. The NN$ does not translate into 'cost savings' per se, but redirection of resource expenditures for other purposes. We propose that the NN$ metric, if further developed, could help to inform system-level resource allocation decisions in a manner similar to the way that the NNT metric helps to inform individual-level treatment decisions.

  12. Random numbers certified by Bell's theorem.

    Science.gov (United States)

    Pironio, S; Acín, A; Massar, S; de la Giroday, A Boyer; Matsukevich, D N; Maunz, P; Olmschenk, S; Hayes, D; Luo, L; Manning, T A; Monroe, C

    2010-04-15

    Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on non-locality-based and device-independent quantum information processing, we show that the non-local correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design a cryptographically secure random number generator that does not require any assumption about the internal working of the device. Such a strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately one metre. The observed Bell inequality violation, featuring near perfect detection efficiency, guarantees that 42 new random numbers are generated with 99 per cent confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.

  13. Idea generation

    DEFF Research Database (Denmark)

    Tollestrup, Christian H. T.; Laursen, Linda Nhu

    2015-01-01

    as having new sociocultural meaning in line with Vergantis definition of radical innovation. This paper discusses the results of an experiment with 32 students on idea generation and product concept development. The experiment was setup as and A-B comparison between two set of students with the same...... of an idea generation whether the outset is ill defined and questioned as opposed to straightforward ideation on a proposal for a solution? The hypothesis is that an approach to ideation where ambiguity and discrepancy deliberately is sought creates more radical innovation that an approach without this...

  14. Solar Generator

    Science.gov (United States)

    1985-01-01

    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  15. Random numbers spring from alpha decay

    Energy Technology Data Exchange (ETDEWEB)

    Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Clark, N.A.; Tyler, S.A.

    1980-05-01

    Congruential random number generators, which are widely used in Monte Carlo simulations, are deficient in that the number they generate are concentrated in a relatively small number of hyperplanes. While this deficiency may not be a limitation in small Monte Carlo studies involving a few variables, it introduces a significant bias in large simulations requiring high resolution. This bias was recognized and assessed during preparations for an accident analysis study of nuclear power plants. This report describes a random number device based on the radioactive decay of alpha particles from a /sup 235/U source in a high-resolution gas proportional counter. The signals were fed to a 4096-channel analyzer and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts (0 for an even count and 1 for an odd count) were then assembled in sequence to form 31-bit binary random numbers and transcribed to a magnetic tape. This cycle was repeated as many times as were necessary to create 3 million random numbers. The frequency distribution of counts from the present device conforms to the Brockwell-Moyal distribution, which takes into account the dead time of the counter (both the dead time and decay constant of the underlying Poisson process were estimated). Analysis of the count data and tests of randomness on a sample set of the 31-bit binary numbers indicate that this random number device is a highly reliable source of truly random numbers. Its use is, therefore, recommended in Monte Carlo simulations for which the congruential pseudorandom number generators are found to be inadequate. 6 figures, 5 tables.

  16. The number system

    CERN Document Server

    Thurston, H A

    2007-01-01

    The teaching of mathematics has undergone extensive changes in approach, with a shift in emphasis from rote memorization to acquiring an understanding of the logical foundations and methodology of problem solving. This book offers guidance in that direction, exploring arithmetic's underlying concepts and their logical development.This volume's great merit lies in its wealth of explanatory material, designed to promote an informal and intuitive understanding of the rigorous logical approach to the number system. The first part explains and comments on axioms and definitions, making their subseq

  17. Topics in number theory

    CERN Document Server

    LeVeque, William J

    2002-01-01

    Classic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary quadratic forms to the Thue-Siegel-Roth Theorem and the Prime Number Theorem. Includes numerous problems and hints for their solutions. 1956 edition. Supplementary Reading. List of Symb

  18. Generative Contexts

    Science.gov (United States)

    Lyles, Dan Allen

    Educational research has identified how science, technology, engineering, and mathematics (STEM) practice and education have underperforming metrics in racial and gender diversity, despite decades of intervention. These disparities are part of the construction of a culture of science that is alienating to these populations. Recent studies in a social science framework described as "Generative Justice" have suggested that the context of social and scientific practice might be modified to bring about more just and equitable relations among the disenfranchised by circulating the value they and their non-human allies create back to them in unalienated forms. What is not known are the underlying principles of social and material space that makes a system more or less generative. I employ an autoethnographic method at four sites: a high school science class; a farm committed to "Black and Brown liberation"; a summer program geared towards youth environmental mapping; and a summer workshop for Harlem middle school students. My findings suggest that by identifying instances where material affinity, participatory voice, and creative solidarity are mutually reinforcing, it is possible to create educational contexts that generate unalienated value, and circulate it back to the producers themselves. This cycle of generation may help explain how to create systems of justice that strengthen and grow themselves through successive iterations. The problem of lack of diversity in STEM may be addressed not merely by recruiting the best and the brightest from underrepresented populations, but by changing the context of STEM education to provide tools for its own systematic restructuring.

  19. Banner prints social security numbers

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-02-01

    Full Text Available No abstract available. Article truncated at 150 words. The Monday edition of the Arizona Republic contained a story with potential interest to our readers. On the most recent address labels of Banner Health's magazine, Smart & Healthy, the addressee's Social Security or Medicare identification numbers, which are often identical to their Social Security numbers (1. The magazine was mailed to more than 50,000 recipients in Arizona late last week. The recipients are members of the Medicare Pioneer Accountable Care Organization, a government health-care plan that Banner serves. Banner generated its mailing list from information it received from the U.S. Centers for Medicare & Medicaid Services, which is an agency within the U.S. Department of Health & Human Services (HHS responsible for administration of several federal health-care programs. Although medical information has been protected by the Health Insurance Portability and Accountability Act (HIPAA since 1996, penalties were recently increased. Civil monetary penalties were increased from a maximum of $100 ...

  20. Signals of lepton number violation

    CERN Document Server

    Panella, O; Srivastava, Y N

    1999-01-01

    The production of like-sign-dileptons (LSD), in the high energy lepton number violating ( Delta L=+2) reaction, pp to 2jets+l/sup +/l /sup +/, (l=e, mu , tau ), of interest for the experiments to be performed at the forthcoming Large Hadron Collider (LHC), is reported, taking up a composite model scenario in which the exchanged virtual composite neutrino is assumed to be a Majorana particle. Numerical estimates of the corresponding signal cross-section that implement kinematical cuts needed to suppress the standard model background, are presented which show that in some regions of the parameter space the total number of LSD events is well above the background. Assuming non-observation of the LSD signal it is found that LHC would exclude a composite Majorana neutrino up to 700 GeV (if one requires 10 events for discovery). The sensitivity of LHC experiments to the parameter space is then compared to that of the next generation of neutrinoless double beta decay ( beta beta /sub 0 nu /) experiment, GENIUS, and i...

  1. Trip generation studies for special generators : final report, December 2009.

    Science.gov (United States)

    2009-09-01

    This research examines the effects of town centers and senior housing developments on surrounding roadways and nearby transit. The Institute of Transportation Engineers (ITE) Trip Generation Manual, which determines number of trips produced or attrac...

  2. Número de gerações de um percevejo e seu parasitoide e da severidade da ferrugem asiática em soja, simulados em cenários de clima e manejo no norte do RS Number of generations of a stink bug and its parasitoid and severity of soybean rust, simulated under climate and crop management scenarios in northern RS State, Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa Vitória Chevarria

    2013-04-01

    Full Text Available Objetivou-se simular o número de gerações do percevejo Euschistus heros e seu parasitoide Telenomus podisi e da severidade da ferrugem causada por Phakopsora pachyrhizi na cultura da soja em função da data de semeadura, cultivar e momento de ocorrência desses organismos. A simulação foi feita em dois locais representativos de duas importantes regiões produtoras de soja no Estado do Rio Grande do Sul. Modelos bioclimáticos dos insetos e da doença foram integrados a um modelo de simulação da cultura da soja (DSSAT e rodados para uma série temporal de dados meteorológicos diários para Passo Fundo (52 anos e Santa Rosa (34 anos. Independente do grupo de maturação, quanto mais antecipada foi a data da semeadura e o estádio de ocorrência de E. heros na cultura, maior o número de gerações (de 2 a 3 até a maturação fisiológica da soja. Para T. podisi, um maior número de gerações (5 a 6 foi simulado para semeadura antecipada e cultivares de ciclo tardio. Para a ferrugem asiática não foram observadas tendências de redução nos níveis médios de severidade com o uso de práticas preconizadas, como plantio antecipado e cultivares de grupos mais precoces de maturação.The objective of this study was to simulate the number of generations of a soybean insect pest (Euschistus heros and its parasitoid (Telenomus podisi and a fungal disease (soybean rust caused by Phakopsora pachyrhizi as influenced by sowing date, cultivar and time of occurrence of the pest and the disease. Bioclimatic models that predict development of the organisms and severity of the disease were integrated into a crop simulation model of soybean (DSSAT that predicted phenological stages of the crop for scenarios of sowing data and cultivar maturity group in a long time series of daily meteorological data to Passo Fundo and Santa Rosa, Rio Grande do Sul State, Brazil. The results showed that regardless of the maturity group, the earlier the sowing date and

  3. Next-generation phylogenomics

    Directory of Open Access Journals (Sweden)

    Chan Cheong Xin

    2013-01-01

    Full Text Available Abstract Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments and depth (thousands of closely related strains, individuals or samples unimaginable only a few years ago. Phylogenomics – the study of evolutionary relationships based on comparative analysis of genome-scale data – has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees. However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches. Reviewers Reviewed by Mr Alexander Panchin (nominated by Dr Mikhail Gelfand, Dr Eugene Koonin and Prof Peter Gogarten. For the full reviews, please go to the Reviewers’ comments section.

  4. Plurality and number

    DEFF Research Database (Denmark)

    Kristoffersen, Jette Hedegaard; Lackner, Andrea

    2017-01-01

    Singularis is the marking of the noun if it refers to an entity only. Often languages distinguish between singularis and non-singularis. The term used for these two forms are singular and plural. While singular is generally the unmarked form, plural is usually marked. Depending on the morphosynta......Singularis is the marking of the noun if it refers to an entity only. Often languages distinguish between singularis and non-singularis. The term used for these two forms are singular and plural. While singular is generally the unmarked form, plural is usually marked. Depending...... on the morphosyntactic properties of the language under investigation, plural can be expressed on various lexical items such as nouns [Lexicon – Section 3.1], verbs [Lexicon – Section 3.2], adjectives [Lexicon – Section 3.4], number words [Lexicon – Section 3.10.1], quantifiers [Lexicon – Section 3.10.2] or classifier...

  5. Hypergeometric Euler numbers

    OpenAIRE

    Komatsu, Takao; Zhu, Huilin

    2016-01-01

    For a nonnegative integer $N$, define hypergeometric Euler numbers $E_{N,n}$ by $$ \\frac{1}{{}_1 F_2(1;N+1,(2 N+1)/2;t^2/4)}=\\sum_{n=0}^\\infty E_{N,n}\\frac{t^n}{n!}\\,, $$ where ${}_1 F_2(a;b,c;z)$ is the hypergeometric function defined by $$ {}_1 F_2(a;b,c;z)=\\sum_{n=0}^\\infty\\frac{(a)^{(n)}}{(b)^{(n)}(c)^{(n)}}\\frac{z^n}{n!}\\,. $$ Here, $(x)^{(n)}$ is the rising factorial, defined by $(x)^{(n)}=x(x+1)\\cdots(x+n-1)$ ($n\\ge 1$) with $(x)^{(0)}=1$. When $N=0$, then $E_n=E_{0,n}$ are classical E...

  6. Uma heurística baseada em geração sequencial de padrões para o problema de corte de estoque unidimensional com um número reduzido de padrões A heuristic based on sequential pattern generation for the one-dimensional cutting stock problem with a reduced number of patterns

    Directory of Open Access Journals (Sweden)

    Horacio Hideki Yanasse

    2009-06-01

    Full Text Available Apresentamos neste trabalho uma heurística que procura determinar uma solução para o problema de corte de estoques unidimensional com um número reduzido de padrões. A heurística é composta de 3 fases. Na primeira geram-se padrões sucessivamente que são aceitos caso tenham desperdício limitado. Cada padrão aceito é repetido o máximo possível, sem que itens sejam cortados além da demanda. Neste processo de geração de padrões priorizam-se itens grandes e itens com demandas grandes. Na segunda fase, o problema residual é resolvido e, na terceira fase, uma técnica de redução de padrões da literatura é utilizada. Os testes computacionais realizados mostram que o método proposto não é dominado pelos algoritmos existentes na literatura.In this work we present a heuristic that tries to determine a solution for the one-dimensional cutting stock problem with a reduced number of patterns. The heuristic is composed of 3 phases. In the first, patterns are generated successively, and they will be accepted if they have limited waste. Each accepted pattern is repeated as many times as possible avoiding cutting items in order to keep the demand. In this pattern, the generation process priority is given to large items and items with large demands. In the second phase, the residual problem is solved and, in the third phase, a pattern reduction technique reported in the literature is used. The computational tests performed show that the proposed method is not dominated by the existing algorithms in the literature.

  7. Fast generation of computer-generated holograms using wavelet shrinkage.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  8. On Generalizations of the Stirling Number Triangles

    Science.gov (United States)

    Lang, Wolfdieter

    2000-09-01

    Sequences of generalized Stirling numbers of both kinds are introduced. These sequences of triangles (i.e. infinite-dimensional lower triangular matrices) of numbers will be denoted by S2(k;n,m) and S1(k;n,m) with k in Z. The original Stirling number triangles of the second and first kind arise when k = 1. S2(2;n,m) is identical with the unsigned S1(2;n,m) triangle, called S1p(2;n,m), which also represents the triangle of signless Lah numbers. Certain associated number triangles, denoted by s2(k;n,m) and s1(k;n,m), are also defined. Both s2(2;n,m) and s1(2;n + 1, m + 1) form Pascal's triangle, and s2(-1,n,m) turns out to be Catalan's triangle. Generating functions are given for the columns of these triangles. Each S2(k) and S1(k) matrix is an example of a Jabotinsky matrix. Therefore the generating functions for the rows of these triangular arrays constitute exponential convolution polynomials. The sequences of the row sums of these triangles are also considered. These triangles are related to the problem of obtaining finite transformations from infinitesimal ones generated by x^k d/dx, for k in Z.

  9. Charge quantization from a number operator

    Science.gov (United States)

    Furey, C.

    2015-03-01

    We explain how an unexpected algebraic structure, the division algebras, can be seen to underlie a generation of quarks and leptons. From this new vantage point, electrons and quarks are simply excitations from the neutrino, which formally plays the role of a vacuum state. Using the ladder operators which exist within the system, we build a number operator in the usual way. It turns out that this number operator, divided by 3, mirrors the behaviour of electric charge. As a result, we see that electric charge is quantized because number operators can only take on integer values. Finally, we show that a simple hermitian form, built from these ladder operators, results uniquely in the nine generators of SUc (3) and Uem (1). This gives a direct route to the two unbroken gauge symmetries of the standard model.

  10. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Henriksen, Matthew Lee

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comp....... A comparison of the rare earth usage in different topologies of permanent magnet generators and superconducting generators is also presented....

  11. Lepton family number violation

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, P.

    1999-03-01

    At present there is evidence from neutrino oscillation searches that the neutrinos are in fact massive particles and that they mix. If confirmed, this would imply that the conservation of LFN is not exact. Lepton family number violation (LFNV) has been searched for with impressive sensitivities in many processes involving charged leptons. The present experimental limits on some of them (those which the author shall consider here) are shown in Table 1. These stringent limits are not inconsistent with the neutrino oscillation results since, given the experimental bounds on the masses of the known neutrinos and the neutrino mass squared differences required by the oscillation results, the effects of LFNV from neutrino mixing would be too small to be seen elsewhere (see Section 2). The purpose of experiments searching for LFNV involving the charged leptons is to probe the existence of other sources of LFNV. Such sources are present in many extensions of the SM. In this lecture the author shall discuss some of the possibilities, focusing on processes that require muon beams. Other LFNV processes, such as the decays of the kaons and of the {tau}, provide complementary information. In the next Section he shall consider some sources of LFNV that do not require an extension of the gauge group of the SM (the added leptons or Higgs bosons may of course originate from models with extended gauge groups). In Section 3 he discusses LFNV in left-right symmetric models. In Section 4 he considers LFNV in supersymmetric models, first in R-parity conserving supersymmetric grand unified models, and then in the minimal supersymmetric standard model with R-parity violation. The last section is a brief summary of the author`s conclusions.

  12. Why three generations?

    Directory of Open Access Journals (Sweden)

    Masahiro Ibe

    2016-07-01

    Full Text Available We discuss an anthropic explanation of why there exist three generations of fermions. If one assumes that the right-handed neutrino sector is responsible for both the matter–antimatter asymmetry and the dark matter, then anthropic selection favors three or more families of fermions. For successful leptogenesis, at least two right-handed neutrinos are needed, while the third right-handed neutrino is invoked to play the role of dark matter. The number of the right-handed neutrinos is tied to the number of generations by the anomaly constraints of the U(1B−L gauge symmetry. Combining anthropic arguments with observational constraints, we obtain predictions for the X-ray observations, as well as for neutrinoless double-beta decay.

  13. Solar generator

    Energy Technology Data Exchange (ETDEWEB)

    Barkats, G.; Chenin, C.; Foucras, J.; Marnay, L.

    1978-07-18

    The present invention relates to a solar generator for producing electrical energy from solar energy, mounted in particular on board an artificial satellite and constituted by a plurality of pivoted panels, stacked but unfoldable, each of which comprises a thick frame inside which is disposed a thin flexible support carrying solar cells, said frame comprising intermediate stiffeners connecting two opposite sides of the frame, wherein each panel comprises, between two intermediate stiffeners and between the end intermediate stiffeners and the sides of the frame there-opposite, a plurality of wide, flat auxiliary stiffeners, transverse with respect to the intermediate stiffeners and on which said flexible support is fixed at least partially.

  14. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  15. Generation Planning including Distributed Generator under Uncertainty of Demand Growth

    Science.gov (United States)

    Muraoka, Yukari; Oyama, Tsutomu

    This paper addresses the problem of generation planning in the competitive power market with uncertainty of demand growth. The distributed generator (DG) is paid attention against a large-scale generator to correspond uncertain demand growth. Optimization consists in minimizing the average cost and hedging risk over the scenario trees of demand growth. At first, based on the idea of Real Option, Dynamic Programming using the utility function is applied to generation planning. Utility functions can model investor's risk-return profile. The decisions in the first stage indicate that they are influenced by the type of utility functions and demand growth scenarios, and data of generators. Next, Monte Carlo Simulation is applied to Brown motion model of demand growth. This model can increase the possible number of demand level. With this simulation, the case that the distributed generator has advantage against the large-scale generator is quantitatively discussed.

  16. Epigenetics and Future Generations.

    Science.gov (United States)

    Del Savio, Lorenzo; Loi, Michele; Stupka, Elia

    2015-10-01

    Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. © 2015 John Wiley & Sons Ltd.

  17. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  18. Cordial Languages and Cordial Numbers

    Directory of Open Access Journals (Sweden)

    J. Baskar BABUJEE

    2012-01-01

    Full Text Available The concept of cordial labeling in graphs motivated us to introduce cordial words, cordial languages and cordial numbers. We interpret the notion of cordial labeling in Automata and thereby study the corresponding languages. In this paper we develop a new sequence of numbers called the cordial numbers in number theory using the labeling techniques in graph theory on automata theory.

  19. THE RELATIONSHIP BETWEEN NUMBER NAMES AND NUMBER CONCEPTS

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2016-01-01

    the regularity or irregularity of number naming affects children’s formation of number concepts and arithmetic performance. We investigate this issue by reviewing relevant literature and undertaking a design research project addressing the specific irregularities of the Danish number names. In this project......, a second, regular set of number names is introduced in primary school. The study’s findings suggest that the regularity of number names influences the development of number concepts and creates a positive impact on the understanding of the base-10 system....

  20. Cosmic numbers the numbers that define our universe

    CERN Document Server

    Stein, James D

    2011-01-01

    Our fascination with numbers begins when we are children and continues throughout our lives. We start counting our fingers and toes and end up balancing checkbooks and calculating risk. So powerful is the appeal of numbers that many people ascribe to them a mystical significance. Other numbers go beyond the supernatural, working to explain our universe and how it behaves. In Cosmic Numbers , mathematics professor James D. Stein traces the discovery, evolution, and interrelationships of the numbers that define our world. Everyone knows about the speed of light and absolute zero, but numbers lik

  1. Group-ID based RFID Mutual Authentication

    Directory of Open Access Journals (Sweden)

    LEE, Y.

    2013-11-01

    Full Text Available For passive type RFID tags, EPCglobal Class 1 Generation-2 Revision is used widely as a de facto standard. As it was designed for low cost, it is quite vulnerable to security issues, such as privacy concerns. This paper presents a new RFID mutual authentication protocol, which is designed to be configured on EPC Gen2 platform and to meet various security requirements while providing efficiency using PRNG (Pseudo Random Number Generator. Group-ID is used to minimize the authentication time. Security analysis of the proposed protocol is discussed.

  2. How Spencer Made Number: First Uses of the Number Words

    Science.gov (United States)

    Mix, Kelly S.

    2009-01-01

    This article describes the development of number concepts between infancy and early childhood. It is based on a diary study that tracked number word use in a child from 12 to 38 months of age. Number words appeared early in the child's vocabulary, but accurate reference to specific numerosities evolved gradually over the entire 27-month period.…

  3. The Mental Number Line in Dyscalculia: Impaired Number Sense or Access from Symbolic Numbers?

    Science.gov (United States)

    Lafay, Anne; St-Pierre, Marie-Catherine; Macoir, Joël

    2017-01-01

    Numbers may be manipulated and represented mentally over a compressible number line oriented from left to right. According to numerous studies, one of the primary reasons for dyscalculia is related to improper understanding of the mental number line. Children with dyscalculia usually show difficulty when they have to place Arabic numbers on a…

  4. Relating the annihilation number and the 2-domination number of a tree

    DEFF Research Database (Denmark)

    Desormeaux, Wyatt J.; Henning, Michael A.; Rall, Douglas F.

    2014-01-01

    terms of the nondecreasing degree sequence of G is at most the number of edges in G. The conjecture-generating computer program, Graffiti.pc, conjectured that γ2(G)≤a(G)+1 holds for every connected graph G. It is known that this conjecture is true when the minimum degree is at least 3. The conjecture...

  5. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  6. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  7. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1975-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  8. Elementary number theory with programming

    CERN Document Server

    Lewinter, Marty

    2015-01-01

    A successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and con

  9. Trip generation characteristics of special generators

    Science.gov (United States)

    2010-03-01

    Special generators are introduced in the sequential four-step modeling procedure to represent certain types of facilities whose trip generation characteristics are not fully captured by the standard trip generation module. They are also used in the t...

  10. The Mental Number Line in Dyscalculia: Impaired Number Sense or Access From Symbolic Numbers?

    Science.gov (United States)

    Lafay, Anne; St-Pierre, Marie-Catherine; Macoir, Joël

    Numbers may be manipulated and represented mentally over a compressible number line oriented from left to right. According to numerous studies, one of the primary reasons for dyscalculia is related to improper understanding of the mental number line. Children with dyscalculia usually show difficulty when they have to place Arabic numbers on a physical number line. However, it remains unclear whether they have a deficit with the mental number line per se or a deficit with accessing it from nonsymbolic and/or symbolic numbers. Quebec French-speaking 8- to 9-year-old children with (24) and without (37) dyscalculia were assessed with transcoding tasks ( number-to-position and position-to-number) designed to assess the acuity of the mental number line with Arabic and spoken numbers as well as with analogic numerosities. Results showed that children with dyscalculia produced a larger percentage absolute error than children without mathematics difficulties in every task except the number-to-position transcoding task with analogic numerosities. Hence, these results suggested that children with dyscalculia do not have a general deficit of the mental number line but rather a deficit with accessing it from symbolic numbers.

  11. Numbers and Math. Beginnings Workshop.

    Science.gov (United States)

    Gross, Fred E.; Elkind, CavidEpstein, Ann S.; Copley, Juanita V.; Haugen, Ginny; Haugen, Kirsten

    2003-01-01

    Presents five articles addressing numbers and math instruction for young children: "Math Talk with Young Children: One Parent's Experience" (Fred E. Gross); "How Children Build Their Understanding of Numbers" (David Elkind); "Early Math: It's More than Numbers" (Ann S. Epstein); "Assessing Mathematical Learning: Observing and Listening to…

  12. Generalized r-Lah numbers

    Indian Academy of Sciences (India)

    Abstract. In this paper, we consider a two-parameter polynomial generalization, denoted by Ga,b(n, k; r), of the r-Lah numbers which reduces to these recently intro- duced numbers when a = b = 1. We present several identities for Ga,b(n, k; r) that generalize earlier identities given for the r-Lah and r-Stirling numbers.

  13. The Perceived Work Ethic of K-12 Teachers by Generational Status: Generation X vs. Baby Boom Generation

    Science.gov (United States)

    Petty, Gregory C.

    2013-01-01

    This was an investigation of the work ethic of K-12 educators from Generation X and Baby Boomer generations. Teachers of the baby boom generation were born between 1946 and 1964, and many are beginning to retire. There is an impending teacher shortage due to the large numbers of this group retiring or leaving the profession. School administrators…

  14. 2016 Gainesville Number Theory Conference

    CERN Document Server

    Garvan, Frank

    2017-01-01

    Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory.  Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find th...

  15. Quantum algorithms for number fields

    Energy Technology Data Exchange (ETDEWEB)

    Haase, D.; Maier, H. [Universitaet Ulm, Fakultaet fuer Mathematik und Wirtschaftswissenschaften, Helmholtzstrasse 18, 89069 Ulm (Germany)

    2006-08-23

    This is a survey of recent results on quantum algorithms for the computation of invariants of number fields, namely the class number and the regulator. Most known classical algorithms for the computation of these values are of subexponential complexity and depend on the truth of a still unproven hypothesis of analytic number theory. We use an important number theoretic concept, Minkowski's Geometry of Numbers, to visualize these invariants, and describe the quantum algorithms developed by Hallgren, Schmidt and Vollmer which compute these invariants using a polynomial number of steps. Computational techniques in number fields, which are necessary to justify the classical part of these quantum algorithms, are the focus of the research of our project group, and are explained in detail. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. HD-CNV: hotspot detector for copy number variants

    National Research Council Canada - National Science Library

    Butler, Jenna L; Osborne Locke, Marjorie Elizabeth; Hill, Kathleen A; Daley, Mark

    2013-01-01

    ... (hotspot detector for copy number variants) is a tool for downstream analysis of previously identified CNV regions from multiple samples, and it detects recurrent regions by finding cliques in an interval graph generated from the input...

  17. On Fibonacci Numbers Which Are Elliptic Korselt Numbers

    Science.gov (United States)

    2014-11-17

    On Fibonacci numbers which are elliptic Korselt numbers Florian Luca School of Mathematics University of the Witwatersrand P. O. Box Wits 2050, South...is a CM elliptic curve with CM field Q( √ −d), then the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for Q...Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that

  18. Bernoulli numbers and zeta functions

    CERN Document Server

    Arakawa, Tsuneo; Kaneko, Masanobu

    2014-01-01

    Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of ...

  19. Compendium of Experimental Cetane Numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, Janet [Ecoengineering, Sharonville, OH (United States); Ratcliff, Matthew A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Taylor, J. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Murphy, M. J. [Battelle, Columbus, OH (United States)

    2017-02-22

    This report is an updated version of the 2014 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single-compound cetane number data found in the scientific literature up until December 2016 as well as a number of previously unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This version of the compendium contains cetane values for 496 pure compounds, including 204 hydrocarbons and 292 oxygenates. 176 individual measurements are new to this version of the compendium, all of them collected using ASTM Method D6890, which utilizes an Ignition Quality Tester (IQT) a type of constant-volume combustion chamber. For many compounds, numerous measurements are included, often collected by different researchers using different methods. The text of this document is unchanged from the 2014 version, except for the numbers of compounds in Section 3.1, the Appendices, Table 1. Primary Cetane Number Data Sources and Table 2. Number of Measurements Included in Compendium. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines. It is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant-volume combustion chamber. Values in the previous compendium derived from octane numbers have been removed and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane number has been expanded, and the data have been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  20. Designing Distributed Generation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Linvill, Carl [Regulatory Assistance Project, Montepelier, VT (United States); Brutkoski, Donna [Regulatory Assistance Project, Montepelier, VT (United States)

    2017-05-15

    Mexico's energy reform will have far-reaching effects on how people produce and consume electricity in the country. Market liberalization will open the door to an increasing number of options for Mexican residential, commercial, and industrial consumers, and distributed generation (DG), which for Mexico includes generators of less than 500 kilowatts (kW) of capacity connected to the distribution network. Distributed generation is an option for consumers who want to produce their own electricity and provide electricity services to others. This report seeks to provide guidance to Mexican officials on designing DG economic and regulatory policies.

  1. The effect of Prandtl number on mixing in low Reynolds number Kelvin-Helmholtz billows

    CERN Document Server

    Rahmani, Mona; Seymour, Brian

    2014-01-01

    The effect of Prandtl number on the evolution of Kelvin-Helmholtz (KH) billows and the amount of mixing they generate is studied through direct numerical simulation (DNS). The results indicate that the time evolution of the rate of mixing through different stages of the life-cycle of KH flow is significantly influenced by the Prandtl number. As the Prandtl number increases, the final amount of mixing increases for Reynolds that are too low to support active three-dimensional motions. This trend is the opposite in sufficiently high Reynolds number KH flows that can overcome viscous effects, and develop significant three-dimensional instabilities. While the mixing generated in the two-dimensional flows, uniform in the span-wise direction, is not significantly dependent on the Prandtl number, the turbulent mixing induced by three-dimensional motions is a function of the Prandtl number. The turbulent mixing efficiency near the end of the turbulence decay phase approaches 0.2, the commonly observed value in the oc...

  2. Spot Accession Protein Protein Unique Secuence Number number ...

    Indian Academy of Sciences (India)

    Classification of the proteins identified as altered in the cardiac left ventricles from TPCN1 KO vs. WT mice by 2-DE-MADI-MS. The spot number, SwissProt accession number, protein name, relative fold-change and P-value. (given by the software SameSpots), experimental and theoretical pI and Mw values, Mascot score, ...

  3. Number-unconstrained quantum sensing

    Science.gov (United States)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  4. Covering Numbers for Semicontinuous Functions

    Science.gov (United States)

    2016-04-29

    Considering the metric space of extended real-valued lower semicontinuous functions under the epi-distance, the paper gives an upper bound on the...the latter class of functions as well, but now under the hypo-distance metric . Keywords: covering numbers, metric entropy numbers, semicontinuous...functions, epi-distance, Attouch-Wets topology , epi-convergence, epi-spline, approximation theory. Date: April 29, 2016 1 Introduction Covering numbers of

  5. Delannoy numbers and Legendre polytopes

    OpenAIRE

    Hetyei, Gábor

    2008-01-01

    International audience; We construct an $n$-dimensional polytope whose boundary complex is compressed and whose face numbers for any pulling triangulation are the coefficients of the powers of $(x-1)/2$ in the $n$-th Legendre polynomial. We show that the non-central Delannoy numbers count all faces in the lexicographic pulling triangulation that contain a point in a given open quadrant. We thus provide a geometric interpretation of a relation between the central Delannoy numbers and Legendre ...

  6. Orion Script Generator

    Science.gov (United States)

    Dooling, Robert J.

    2012-01-01

    NASA Engineering's Orion Script Generator (OSG) is a program designed to run on Exploration Flight Test One Software. The script generator creates a SuperScript file that, when run, accepts the filename for a listing of Compact Unique Identifiers (CUIs). These CUIs will correspond to different variables on the Orion spacecraft, such as the temperature of a component X, the active or inactive status of another component Y, and so on. OSG will use a linked database to retrieve the value for each CUI, such as "100 05," "True," and so on. Finally, OSG writes SuperScript code to display each of these variables before outputting the ssi file that allows recipients to view a graphical representation of Orion Flight Test One's status through these variables. This project's main challenge was creating flexible software that accepts and transfers many types of data, from Boolean (true or false) values to "Unsigned Long Long'' values (any number from 0 to 18,446,744,073,709,551,615). We also needed to allow bit manipulation for each variable, requiring us to program functions that could convert any of the multiple types of data into binary code. Throughout the project, we explored different methods to optimize the speed of working with the CUI database and long binary numbers. For example, the program handled extended binary numbers much more efficiently when we stored them as collections of Boolean values (true or false representing 1 or 0) instead of as collections of character strings or numbers. We also strove to make OSG as user-friendly and accommodating of different needs as possible its default behavior is to display a current CUI's maximum value and minimum value with three to five intermediate values in between, all in descending order. Fortunately, users can also add other input on the same lines as each CUI name to request different high values, low values, display options (ascending, sine, and so on), and interval sizes for generating intermediate values

  7. Compendium of Experimental Cetane Numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  8. Leading Generation Y

    National Research Council Canada - National Science Library

    Newman, Jill M

    2008-01-01

    .... Whether referred to as the Millennial Generation, Generation Y or the Next Generation, the Army needs to consider the gap between Boomers, Generation X and the Soldiers that fill our junior ranks...

  9. The Potential of Modern Russian Generations

    OpenAIRE

    Valentina Grigor’evna Dobrokhleb; Nataliya Viktorovna Zvereva

    2016-01-01

    The paper considers the necessity of socio-demographic approach to assessing the potential of modern generations. The demographic potential of generations is determined by their number, their share in total population, and their life expectancy. Their economic potential is determined by the proportion of representatives of different generations in total employment. Their social potential is determined by the system of values of generations. The rapid growth of differences in these characteris...

  10. Number theory and its history

    CERN Document Server

    Ore, Oystein

    1988-01-01

    A prominent mathematician presents the principal ideas and methods of number theory within a historical and cultural framework. Oystein Ore's fascinating, accessible treatment requires only a basic knowledge of algebra. Topics include prime numbers, the Aliquot parts, linear indeterminate problems, congruences, Euler's theorem, classical construction problems, and many other subjects.

  11. Core Knowledge, Language, and Number

    Science.gov (United States)

    Spelke, Elizabeth S.

    2017-01-01

    The natural numbers may be our simplest, most useful, and best-studied abstract concepts, but their origins are debated. I consider this debate in the context of the proposal, by Gallistel and Gelman, that natural number system is a product of cognitive evolution and the proposal, by Carey, that it is a product of human cultural history. I offer a…

  12. Fractions, Number Lines, Third Graders

    Science.gov (United States)

    Cramer, Kathleen; Ahrendt, Sue; Monson, Debra; Wyberg, Terry; Colum, Karen

    2017-01-01

    The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) outlines ambitious goals for fraction learning, starting in third grade, that include the use of the number line model. Understanding and constructing fractions on a number line are particularly complex tasks. The current work of the authors centers on ways to successfully…

  13. Investigating the Randomness of Numbers

    Science.gov (United States)

    Pendleton, Kenn L.

    2009-01-01

    The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…

  14. Counting copy number and calories.

    Science.gov (United States)

    White, Stefan

    2015-08-01

    Copy number variation (CNV) at several genomic loci has been associated with different human traits and diseases, but in many cases the findings could not be replicated. A new study provides insights into the degree of variation present at the amylase locus and calls into question a previous association between amylase copy number and body mass index.

  15. From natural numbers to quaternions

    CERN Document Server

    Kramer, Jürg

    2017-01-01

    This textbook offers an invitation to modern algebra through number systems of increasing complexity, beginning with the natural numbers and culminating with Hamilton's quaternions. Along the way, the authors carefully develop the necessary concepts and methods from abstract algebra: monoids, groups, rings, fields, and skew fields. Each chapter ends with an appendix discussing related topics from algebra and number theory, including recent developments reflecting the relevance of the material to current research. The present volume is intended for undergraduate courses in abstract algebra or elementary number theory. The inclusion of exercises with solutions also makes it suitable for self-study and accessible to anyone with an interest in modern algebra and number theory.

  16. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  17. Regularities of Twin, Triplet and Multiplet Prime Numbers

    OpenAIRE

    Weber, H. J.

    2011-01-01

    Classifications of twin primes are established and then applied to triplets that generalize to all higher multiplets. Mersenne and Fermat twins and triplets are treated in this framework. Regular prime number multiplets are related to quadratic and cubic prime number generating polynomials.

  18. John Knopfmacher, [Abstract] Analytic Number Theory, and the ...

    African Journals Online (AJOL)

    In this paper some important contributions of John Knopfmacher to ' Analytic Number Theory' are described. This theory investigates semigroups with countably many generators (generalized 'primes'), with a norm map (or a 'degree map'), and satisfying certain conditions on the number of elements with norm less

  19. Improved Methods For Generating Quasi-Gray Codes

    CERN Document Server

    Jansens, Dana; Carmi, Paz; Maheshwari, Anil; Morin, Pat; Smid, Michiel

    2010-01-01

    Consider a sequence of bit strings of length d, such that each string differs from the next in a constant number of bits. We call this sequence a quasi-Gray code. We examine the problem of efficiently generating such codes, by considering the number of bits read and written at each generating step, the average number of bits read while generating the entire code, and the number of strings generated in the code. Our results give a trade-off between these constraints, and present algorithms that do less work on average than previous results, and that increase the number of bit strings generated.

  20. Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Contestabile, Pasquale

    2009-01-01

    This paper discusses a new type of Wave Energy Converter (WEC) named Seawave Slot-Cone Generator (SSG). The SSG is a WEC of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level in which the water of incoming waves is store...

  1. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-06-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.

  2. RFID authentication protocol to enhance patient medication safety.

    Science.gov (United States)

    Kaul, Sonam Devgan; Awasthi, Amit K

    2013-12-01

    Medication errors can cause substantial harm to patients. Automated patient medication system with RFID technology is purposely used to reduce the medication error, to improve the patient safety, to provide personalized patient medication and identification and also to provide counterfeit protection to the patients. In order to enhance medication safety for patients we propose a new dynamic ID based lightweight RFID authentication protocol. Due to low storage capacity and limited computational and communicational capacity of tags, only pseudo random number generator function, one way hash function and bitwise Xor operation are used in our authentication protocol. The proposed protocol is practical, secure and efficient for health care domain.

  3. Finite-particle-number approach to physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1982-10-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.

  4. Graspable objects shape number processing

    Directory of Open Access Journals (Sweden)

    Mariagrazia eRanzini

    2011-12-01

    Full Text Available The field of numerical cognition represents an interesting case for action-based theories of cognition, since number is a special kind of abstract concept. Several studies have shown that within the parietal lobes adjacent neural regions code numerical magnitude and grasping-related information. This anatomical proximity between brain areas involved in number and sensorimotor processes may account for interactions between numerical magnitude and action. In particular, recent studies has demonstrated a causal role of action perception on numerical magnitude processing. If objects are represented in terms of actions (affordances, the causal role of action on number processing should extend to the case of objects affordances. This study investigates the relationship between numbers and objects affordances in two experiments, without (Experiment 1 or with (Experiment 2 a motor action execution (i.e., participants were asked to hold an object in their hands during the task. The task consisted in repeating aloud the odd or even digit within a pair depending on the type of the preceding or following object. Order of presentation (object-number vs. number-object, object type (graspable vs. ungraspable, object size (small vs. large, and Numerical magnitude (small vs. large were manipulated for each experiment. Experiment 1 showed a facilitation – in terms of quicker responses - for graspable over ungraspable objects preceded by numbers, and an effect of numerical magnitude after the presentation of graspable objects. Experiment 2 demonstrated that the action execution enhanced overall the sensitivity to numerical magnitude, however interfering with the effects of objects affordances on number processing. Overall, these findings demonstrate that numbers and graspable objects communicate with each other, supporting the view that abstract concepts may be grounded in motor experience.

  5. Magnetoelastic Generator Type Transducer

    Directory of Open Access Journals (Sweden)

    A. K. Efremov

    2014-01-01

    Full Text Available Some issues relating to usage of magnetoelectric generator type transducers as the means of measuring intense dynamic loads and as a sensitive element of fuse contact target sensor (CTS are considered. Particular attention is paid to the magnetoanisotropic transducer (MAT, the principle of operation of which is based on the change of the magnetic field form caused by the applied mechanical load leading to the appearance of EMF in the output winding. The MAT, especially monolithic, has such advantages as high strength, reliability, endurance and design simplicity.The functional transducer schemes have been analyzed and for the first time it was shown that there is a possibility of using a version with only one output winding arranged in the magnetic conductor made of magnetically soft material such as structural steel. A mathematical model of transducer is proposed showing that the input signal formed by the external load is proportional to its derivative. With a sufficiently large time constant of the electric circuit and the implementation of a number of additional conditions the transducer may function as an integrator. By that it becomes possible to measure the parameters of dynamic processes having the duration of a few to tens of microseconds. Unlike the traditional transducers such as piezoelectric the output signal is not “masked” by the natural oscillations.The mechanism of the generator effect was considered leading to the “piezomagnetodynamic” model, which includes a number of phenomenological parameters. Some corresponding experimentally derived hysteresis curves are presented. Their vertical shift quantifies the generator effect and does not depend on the intensity of the magnetic field.As an example of practical application of the MAT some results of evaluation of the dynamic force characteristic of the heading part of a piezoelectric fuse are presented. The MAT was also used for the evaluation of back effects of the bullet

  6. q-Bernoulli numbers and q-Bernoulli polynomials revisited

    Directory of Open Access Journals (Sweden)

    Kim Taekyun

    2011-01-01

    Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80

  7. Number-Phase Uncertainty Relations for Optical Fields

    Science.gov (United States)

    Tanas, Ryszard

    1996-01-01

    The Hermitian phase formalism of Pegg and Barnett allows for direct calculations of the phase variance and, consequently, the number-phase uncertainty product. This gives us a unique opportunity, inaccessible before, to study the number-phase uncertainty relations for optical fields in a direct way within a consistent quantum formalism. A few examples of fields generated in nonlinear optical processes are studied from the point of view of their number-phase uncertainty relations.

  8. Reproduction numbers of infectious disease models

    Directory of Open Access Journals (Sweden)

    Pauline van den Driessche

    2017-08-01

    Full Text Available This primer article focuses on the basic reproduction number, ℛ0, for infectious diseases, and other reproduction numbers related to ℛ0 that are useful in guiding control strategies. Beginning with a simple population model, the concept is developed for a threshold value of ℛ0 determining whether or not the disease dies out. The next generation matrix method of calculating ℛ0 in a compartmental model is described and illustrated. To address control strategies, type and target reproduction numbers are defined, as well as sensitivity and elasticity indices. These theoretical ideas are then applied to models that are formulated for West Nile virus in birds (a vector-borne disease, cholera in humans (a disease with two transmission pathways, anthrax in animals (a disease that can be spread by dead carcasses and spores, and Zika in humans (spread by mosquitoes and sexual contacts. Some parameter values from literature data are used to illustrate the results. Finally, references for other ways to calculate ℛ0 are given. These are useful for more complicated models that, for example, take account of variations in environmental fluctuation or stochasticity. Keywords: Basic reproduction number, Disease control, West Nile virus, Cholera, Anthrax, Zika virus

  9. Compilation of Reprints Number 64.

    Science.gov (United States)

    1987-11-01

    fluctuations of 5 0 -B4 density and velocity in the region of generation [ Baires , 19821 60, . .. ,. , 0. Once generated, the high-energy beams ma. be...application of Stokes’ circulation period of STREX. theorem We propose to estimate surface Ekman transport by J h )-z x (3.5) ff z. curl(ro/f)dS= f (rof) dc...standard error less than I Sv. P Here t3’, .z, t1.Nz are the constant depths of the hot- The Mean Value Theorem states that the second term toms of layers

  10. Numbers their history and meaning

    CERN Document Server

    Flegg, Graham

    2003-01-01

    Readable, jargon-free book examines the earliest endeavors to count and record numbers, initial attempts to solve problems by using equations, and origins of infinite cardinal arithmetic. "Surprisingly exciting." - Choice.

  11. Baryon number of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, S.; Susskind, L.

    1978-12-15

    We consider the possibility that the observed particle-antiparticle imbalance in the universe is due to baryon-numbers, C, and CP nonconservation. We make general observations and describe a framework for making quantitative estimates.

  12. Advanced number theory with applications

    CERN Document Server

    Mollin, Richard A

    2009-01-01

    Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...

  13. Number theory via Representation theory

    Indian Academy of Sciences (India)

    2014-11-09

    Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.

  14. SEVIS By the Numbers 2016

    Data.gov (United States)

    Department of Homeland Security — SEVIS by the Numbers is a quarterly report that highlights nonimmigrant student and exchange visitor trends, values and information using data from the Student and...

  15. Subject-verb number (disagreement

    Directory of Open Access Journals (Sweden)

    Daniela Isac

    2010-01-01

    Full Text Available This paper discusses cases of number mismatches between subjects and verbs. The main proposal is that subject-verb agreement is not in number but in a different feature, that we call Cardinality. Cardinality is a feature of DPs that is computed on the basis of number features and collectivity features carried by various heads in the DP. The “computation” of the Cardinality feature proceeds internal to the feature matrix of one lexical item - the D. The values of the number and collectivity features carried by various heads in the DP are transferred to the D by means of a feature checking mechanism and the value of the Cardinality feature is then derived from these.

  16. SEVIS By the Numbers 2014

    Data.gov (United States)

    Department of Homeland Security — SEVIS by the Numbers is a quarterly report that highlights nonimmigrant student and exchange visitor trends, values and information using data from the Student and...

  17. Some Remarkable Identities Involving Numbers

    Directory of Open Access Journals (Sweden)

    Ziobro Rafał

    2014-09-01

    Full Text Available The article focuses on simple identities found for binomials, their divisibility, and basic inequalities. A general formula allowing factorization of the sum of like powers is introduced and used to prove elementary theorems for natural numbers.

  18. Social Security Number (SSN) Verification

    Data.gov (United States)

    U.S. Department of Health & Human Services — This report presents the results of a validation study of Social Security numbers (SSNs) in Medicaid Statistical Information System (MSIS) records for the fourth...

  19. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  20. Pinning of fermionic occupation numbers.

    Science.gov (United States)

    Schilling, Christian; Gross, David; Christandl, Matthias

    2013-01-25

    The Pauli exclusion principle is a constraint on the natural occupation numbers of fermionic states. It has been suspected since at least the 1970s, and only proved very recently, that there is a multitude of further constraints on these numbers, generalizing the Pauli principle. Here, we provide the first analytic analysis of the physical relevance of these constraints. We compute the natural occupation numbers for the ground states of a family of interacting fermions in a harmonic potential. Intriguingly, we find that the occupation numbers are almost, but not exactly, pinned to the boundary of the allowed region (quasipinned). The result suggests that the physics behind the phenomenon is richer than previously appreciated. In particular, it shows that for some models, the generalized Pauli constraints play a role for the ground state, even though they do not limit the ground-state energy. Our findings suggest a generalization of the Hartree-Fock approximation.

  1. Women In Numbers - Europe workshop

    CERN Document Server

    Bucur, Alina; Feigon, Brooke; Schneps, Leila

    2015-01-01

    Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.

  2. SOME IDIOSYNCRATIC NUMBERS OF RAMANUJAN

    Indian Academy of Sciences (India)

    362+ y2+ 10 22, (1) and stated that the odd numbers: 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, ...... cannot be expressed in the above form. It was believed that Ramanujan's list was complete, though the dots after 391 indicated otherwise. I now find that 679 and 2719 are the only other odd numbers ...

  3. Numbers for reducible cubic scrolls

    Directory of Open Access Journals (Sweden)

    Israel Vainsencher

    2004-12-01

    Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.

  4. Hypergraphs with large transversal number

    DEFF Research Database (Denmark)

    Henning, Michael A.; Yeo, Anders

    2013-01-01

    For κ ≥ 2, let H be a k-uniform hypergraph on n vertices and m edges. The transversal number τ (H) of H is the minimum number of vertices that intersect every edge. We consider the following question: Is τ (H) ≤ n/k + m/6? For κ ≥ 4, we show that the inequality in the question does not always hol...

  5. Graded sets, points and numbers

    OpenAIRE

    Herencia González, José Antonio

    1998-01-01

    The basic tool considered in this paper is the so-called "graded set", defined on the analogy of the family of α-cuts of a fuzzy set. It is also considered the corresponding extensions of the concepts of a point and of a real number (again on the analogy of the fuzzy case). These new "graded concepts" avoid the disadvantages pointed out by Gerla (for the fuzzy points) and by Kaleva and Seikkala (for the convergence of sequences of fuzzy numbers).

  6. Dimensionless numbers in additive manufacturing

    Science.gov (United States)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  7. Cryptographic applications of analytic number theory complexity lower bounds and pseudorandomness

    CERN Document Server

    2003-01-01

    The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Key topics and features: - various lower bounds on the complexity of some number theoretic and cryptographic problems, associated with classical schemes such as RSA, Diffie-Hellman, DSA as well as with relatively new schemes like XTR and NTRU - a series of very recent results about certain important characteristics (period, distribution, linear complexity) of several commonly used pseudorandom number generators, such as the RSA generator, Blum-Blum-Shub generator, Naor-Reingold generator, inversive generator, and others - one of the principal tools is bounds of exponential sums, which are combined with other number theoretic methods such as lattice reduction and sieving - a number of open problems of different level of difficulty and proposals for further research - an extensive and up-to-date bibliography Cryptographers and number theorists will find th...

  8. Fourth-generation storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, J. N.

    1999-11-16

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number.

  9. Distributed generation induction and permanent magnet generators

    CERN Document Server

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  10. Quasiperpendicular high Mach number Shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B

    2015-01-01

    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\\tau}c, where {\\tau}c is the ion gyroperio...

  11. Unification and local baryon number

    Science.gov (United States)

    Fileviez Pérez, Pavel; Ohmer, Sebastian

    2017-05-01

    We investigate the possibility to find an ultraviolet completion of the simple extensions of the Standard Model where baryon number is a local symmetry. In the context of such theories one can understand the spontaneous breaking of baryon number at the low scale and the proton stability. We find a simple theory based on SU(4)C ⊗ SU(3)L ⊗ SU(3)R where baryon number is embedded in a non-Abelian gauge symmetry. We discuss the main features of the theory and the possible implications for experiments. This theory predicts stable colored and/or fractional electric charged fields which can give rise to very exotic signatures at the Large Hadron Collider experiments such as CMS and ATLAS. We further discuss the embedding in a gauge theory based on SU(4)C ⊗ SU(4)L ⊗ SU(4)R which could define the way to achieve the unification of the gauge interactions at the low scale.

  12. Hazardous Waste Generators

    Data.gov (United States)

    Vermont Center for Geographic Information — The HazWaste database contains generator (companies and/or individuals) site and mailing address information, waste generation, the amount of waste generated etc. of...

  13. MHD Power Generation

    Science.gov (United States)

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  14. Vacuum Fluctuations, Cosmogenesis and Prime Number Gaps

    Science.gov (United States)

    Berezin, Alexander A.

    2002-10-01

    Starting from E.Tryon (1973), idea of cosmogenesis through quantum tunnelling "from nothing" became popular. Both complimentary streams of it, inflationary models (Guth, Linde) and quantum parallelism (Everett, Deutsch), require some starting point as, e.g., concretisation of Leibnitz Principle (Omnibus ex nihil decendis sufficit unum). This leads to propositional conjecture (axiom?) that (meta)physical "Platonic Pressure" of infinitude of numbers and Cantor "alephs" becomes an engine for self-generation of physical universe directly out of mathematics: inexhaustibility of Number Theory (NT) drives cosmogenesis. While physics in other quantum branches of inflating universe (Megaverse) can be (arbitrary) different from ours, NT is not (it is unique, absolute, immutable and infinitely resourceful). Energy-time uncertainty principle (UP) allows indefinite lifetime provided we start from total zero energy. Analogue of UP in NT is theorem by H.Maier (1981) stating the existence of arbitrary long trails of isolated primes such that each next gap is arbitrary greater than average gap (logN). On physical level these arbitrary large deviations from Prime Number Theorem translate into permissiveness of (arbitrary) large quantum fluctuations.

  15. A third generation personality test

    OpenAIRE

    Sjöberg, Lennart

    2010-01-01

    The development of personality testing in the workplace has undergone three phases. The first generation of tests, such as Cattell’s 16 PF and the British test OPQ, was characterized by complex systems for the description of the personality. These systems were simplified in part by the following generation of the test, which was based on the five factor model but that model was simple only at the horizontal level. Beneath the five main factors were a large number of ancillary factors, usually...

  16. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    To realize large (>10 MW) direct-driven off-shore wind turbines, a number of steps are needed to reduce weight and cost compared to on-shore technologies. One of the major challenges is to provide drive trains which can comply with the large torque as the turbine rotor diameter is scaled up...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  17. Inductive Pulse Generation

    OpenAIRE

    Lindblom, Adam

    2006-01-01

    Pulsed power generators are a key component in compact systems for generation of high-power microwaves (HPM). HPM generation by virtual cathode devices such as Vircators put high demands on the source. The rise time and the pulse length of the source voltage are two key issues in the generation of HPM radiation. This thesis describes the construction and tests of several inductive high power pulse generators. The pulse generators were designed with the intent to deliver a pulse with fast rise...

  18. Learning Potentials in Number Blocks

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob

    2012-01-01

    This paper describes an initial exploration of how an interactive cubic user-configurable modular robotic system can be used to support learning about numbers and how they are pronounced. The development is done in collaboration with a class of 7-8 year old children and their mathematics teacher...

  19. A generalized sense of number.

    Science.gov (United States)

    Arrighi, Roberto; Togoli, Irene; Burr, David C

    2014-12-22

    Much evidence has accumulated to suggest that many animals, including young human infants, possess an abstract sense of approximate quantity, a number sense. Most research has concentrated on apparent numerosity of spatial arrays of dots or other objects, but a truly abstract sense of number should be capable of encoding the numerosity of any set of discrete elements, however displayed and in whatever sensory modality. Here, we use the psychophysical technique of adaptation to study the sense of number for serially presented items. We show that numerosity of both auditory and visual sequences is greatly affected by prior adaptation to slow or rapid sequences of events. The adaptation to visual stimuli was spatially selective (in external, not retinal coordinates), pointing to a sensory rather than cognitive process. However, adaptation generalized across modalities, from auditory to visual and vice versa. Adaptation also generalized across formats: adapting to sequential streams of flashes affected the perceived numerosity of spatial arrays. All these results point to a perceptual system that transcends vision and audition to encode an abstract sense of number in space and in time.

  20. The elephant brain in numbers

    Science.gov (United States)

    Herculano-Houzel, Suzana; Avelino-de-Souza, Kamilla; Neves, Kleber; Porfírio, Jairo; Messeder, Débora; Mattos Feijó, Larissa; Maldonado, José; Manger, Paul R.

    2014-01-01

    What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (109) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals. PMID:24971054

  1. monachus numbers in Kampala, Uganda

    African Journals Online (AJOL)

    2005-09-02

    Sep 2, 2005 ... few horns and more hooves are also dumped at other nearby localities. Both areas provide abundant food for Hooded Vultures and the site is known to be the largest roost site of the species in Kampala (see: Pomeroy. 1975, Chemonges 1991, Amuno 2001). Numbers of Hooded Vultures roosting here.

  2. Triangle Geometry and Jacobsthal Numbers

    OpenAIRE

    Barry, Paul

    2003-01-01

    The convergence properties of certain triangle centres on the Euler line of an arbitrary triangle are studied. Properties of the Jacobsthal numbers, which appear in this process, are examined, and a new formula is given. A Jacobsthal decomposition of Pascal’s triangle is presented.

  3. Materiales. Numbers 17-20.

    Science.gov (United States)

    Materiales, 1995

    1995-01-01

    Four booklets present articles on Spanish language and culture aimed at teachers of Spanish in the United States for student use in their classes. Number 17, "Los Jovenes Espanoles" (Spanish Youth), includes articles on Spanish youth sports, music, gangs, thoughts, and t-shirt slogans: (1) "Young Spanish Athletes"; (2)…

  4. Materiales. Numbers 21-23.

    Science.gov (United States)

    Materiales, 1997

    1997-01-01

    These three journals of contemporary cultural, historical, and social interest contain activities designed to enhance the awareness of students of Spanish as a foreign language regarding the entire panorama of daily life in Spain. Number 21 focuses on the role of modern Spanish women; their career status; female authors; and the changing place of…

  5. Magic Numbers and Pascal's Triangle

    Science.gov (United States)

    López-Cruz, Elías

    2002-03-01

    Papers concerning the so called "magic numbers"^1-3 span different areas of Solid State Physics. Treatment of the growth of metal clusters and its stability conditions from the theoretical point of view in Ref. 1 leads to the conclusion that the clusters can take place in two or three dimensions. The clusters are triangular or tetrahedral and are obtained only for certain "magic numbers". Experimental work concerning the growth of metal clusters in two dimensions^2 have confirmed the growth only for certain magic numbers and these are the same as the calculated ones in Ref. 1. The present work shows that these "magic numbers" can be deduced from the numeric arrangement called Pascal's Triangle as two of the many numeric sequences contained in the triangle. Some other sequences will be discussed. 1. S.M. Reimann, M. Kuskinen, H. Häkkinen, P.E. Lindelof, and M. Manninen, Phys. Rev. B 56, 12147 (1997-I) 2. M.Y. Lai and Y.L. Wang, Phys. Rev. Lett. 81, 164 (1998) 3. T.E.M. Staab, M. Haugk, Th. Frauenheim, and H.S. Leipner, Phys. REv. Lett. 83, 5519 (1999)

  6. Residual number processing in dyscalculia

    OpenAIRE

    CAPPELLETTI, MARINELLA; Price, Cathy J.

    2014-01-01

    Developmental dyscalculia ? a congenital learning disability in understanding numerical concepts ? is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and ca...

  7. From Calculus to Number Theory

    Indian Academy of Sciences (India)

    A. Raghuram

    2016-11-04

    Nov 4, 2016 ... diverges to infinity. This means given any number M, however large, we can add sufficiently many terms in the above series to make the sum larger than M. This was first proved by Nicole Oresme (1323-1382), a brilliant. French philosopher of his times.

  8. An introduction to Catalan numbers

    CERN Document Server

    Roman, Steven

    2015-01-01

    This textbook provides an introduction to the Catalan numbers and their remarkable properties, along with their various applications in combinatorics.  Intended to be accessible to students new to the subject, the book begins with more elementary topics before progressing to more mathematically sophisticated topics.  Each chapter focuses on a specific combinatorial object counted by these numbers, including paths, trees, tilings of a staircase, null sums in Zn+1, interval structures, partitions, permutations, semiorders, and more.  Exercises are included at the end of book, along with hints and solutions, to help students obtain a better grasp of the material.  The text is ideal for undergraduate students studying combinatorics, but will also appeal to anyone with a mathematical background who has an interest in learning about the Catalan numbers. “Roman does an admirable job of providing an introduction to Catalan numbers of a different nature from the previous ones.  He has made an excellent choice o...

  9. Calculating the Number of Tunnels

    NARCIS (Netherlands)

    Li, Fajie; Klette, Reinhard; RuizShulcloper, J; Kropatsch, WG

    2008-01-01

    This paper considers 2-regions of grid cubes and proposes an algorithm for calculating the number of tunnels of such a. region. The graph-theoretical algorithm proceeds layer by layer; a proof of its correctness is provided, and its time complexity is also given.

  10. Residual number processing in dyscalculia

    Directory of Open Access Journals (Sweden)

    Marinella Cappelletti

    2014-01-01

    Full Text Available Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  11. Residual number processing in dyscalculia☆

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008

  12. Residual number processing in dyscalculia.

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J

    2014-01-01

    Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  13. RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...

    African Journals Online (AJOL)

    A critical examination of the two plots reveals that a relationship might exist between the two concepts. Also, the analysis of the filtration results obtained using both the old and the new concepts, confirms that both Sludge Dewaterability Number values and the Specific resistance values decrease with an increase in the ...

  14. Bell numbers, determinants and series

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Bell numbers, determinants and series. P K SAIKIA1 and DEEPAK SUBEDI1,2. 1Department of Mathematics, North Eastern Hill University, Shillong 793 022, India. 2Present Address: The Institute of Chartered Financial Analysts of India University,. Sikkim, Ranka Road, Gangtok 737 101, India.

  15. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  16. Some Relationships between the Analogs of Euler Numbers and Polynomials

    Directory of Open Access Journals (Sweden)

    Kim T

    2007-01-01

    Full Text Available We construct new twisted Euler polynomials and numbers. We also study the generating functions of the twisted Euler numbers and polynomials associated with their interpolation functions. Next we construct twisted Euler zeta function, twisted Hurwitz zeta function, twisted Dirichlet -Euler numbers and twisted Euler polynomials at non-positive integers, respectively. Furthermore, we find distribution relations of generalized twisted Euler numbers and polynomials. By numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the twisted -Euler polynomials. Finally, we give a table for the solutions of the twisted -Euler polynomials.

  17. Some Relationships between the Analogs of Euler Numbers and Polynomials

    Directory of Open Access Journals (Sweden)

    C. S. Ryoo

    2007-10-01

    Full Text Available We construct new twisted Euler polynomials and numbers. We also study the generating functions of the twisted Euler numbers and polynomials associated with their interpolation functions. Next we construct twisted Euler zeta function, twisted Hurwitz zeta function, twisted Dirichlet l-Euler numbers and twisted Euler polynomials at non-positive integers, respectively. Furthermore, we find distribution relations of generalized twisted Euler numbers and polynomials. By numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the twisted q-Euler polynomials. Finally, we give a table for the solutions of the twisted q-Euler polynomials.

  18. Put numbers on the sustainability

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2014-01-01

    Sustainability is about meeting the needs of the present without compromising the possibilities for our future generations to meet their needs and is commonly perceived as comprising three dimensions – a social, an economic and an environmental dimension, e.g. in the triple bottom line thinking...... life cycle Environmental sustainability encompasses multiple types of environmental impact ranging from the global scale like climate change and stratospheric ozone depletion over regional impacts associated with air pollution impacts causing acidification, photochemical ozone formation and particle...

  19. Gaussian distribution of LMOV numbers

    Directory of Open Access Journals (Sweden)

    A. Mironov

    2017-11-01

    Full Text Available Recent advances in knot polynomial calculus allowed us to obtain a huge variety of LMOV integers counting degeneracy of the BPS spectrum of topological theories on the resolved conifold and appearing in the genus expansion of the plethystic logarithm of the Ooguri–Vafa partition functions. Already the very first look at this data reveals that the LMOV numbers are randomly distributed in genus (! and are very well parameterized by just three parameters depending on the representation, an integer and the knot. We present an accurate formulation and evidence in support of this new puzzling observation about the old puzzling quantities. It probably implies that the BPS states, counted by the LMOV numbers can actually be composites made from some still more elementary objects.

  20. Condition number estimation of preconditioned matrices.

    Science.gov (United States)

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.