WorldWideScience

Sample records for pseudo spin valve

  1. Pseudo spin-valve behavior in oxide ferromagnet/superconductor/ferromagnet trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pang, B.S.H. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)]. E-mail: brianpang@cantab.net; Bell, C. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Tomov, R.I. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Durrell, J.H. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Blamire, M.G. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2005-06-20

    La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} heterostructural devices with double coercivity have been fabricated. The superconducting critical current (I{sub c}) and critical temperature in both parallel (P) and antiparallel (AP) magnetic configurations remained unchanged within our measurement limits. This observation is contrary to results obtained elsewhere using similar metallic systems. A pseudo spin-valve magnetoresistive (MR) characteristic was observed at bias current (I{sub bias}){approx}I{sub c} at temperatures below the onset of superconductivity. The effect increased with decreasing temperature and I{sub bias} and can be explained using the assumption of the electron spin-charge separation.

  2. The spin-valve transistor

    NARCIS (Netherlands)

    Anil Kumar, P.S.; Lodder, J.C.

    2000-01-01

    The spin-valve transistor is a magnetoelectronic device that can be used as a magnetic field sensor. It has a ferromagnet-semiconductor hybrid structure. Using a vacuum metal bonding technique, the spin-valve transistor structure Si/Pt/NiFe/Au/Co/Au/Si is obtained. It employs hot electron transport

  3. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    -beam lithography and measured by ferromagnetic resonance. The damping remains in the low 10{sup -3} range as determined directly by extracting the Gilbert damping from the line width. Additionally magnetostatic modes are observed in arrays of elements, which is further evidence of high material quality of the samples. By sputtering various metals on top of the NiMnSb, spin pumping from the ferromagnet into the non-magnetic layer is investigated. After these material investigations, pseudo-spin-valves using NiMnSb as one of the ferromagnet, in combination with Permalloy were fabricating using a self-aligned lithography process. These samples show a GMR ratio of 3.4% at room temperature and almost double at low temperature, comparing favourably to the best single stack GMR structures reported to date. Moreover, current induced switching measurements show promisingly low current densities are necessary to change the magnetic orientation of the free layer. These current densities compete with state-of-the-art GMR devices for metal based structures and almost with tunnel junction devices. The true potential of these devices however comes to light when they are operated as spin torque oscillators to emit high frequency, tunable, narrow spectrum electromagnetic waves. These Heusler based STOs show an outstanding q-factor of 4180, even when operating in the absence of an external field, a value which bests the highest value in the literature by more than an order of magnitude. While these devices currently still suffer from the same limited output power as all STO reported to date, their sub-micron lateral dimensions make the fabrication of an on-chip array of coupled oscillators, which is a promising path forward towards industrially relevant output power.

  4. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  5. Magneto-Seebeck effect in spin valves

    Science.gov (United States)

    Zhang, X. M.; Wan, C. H.; Wu, H.; Tang, P.; Yuan, Z. H.; Zhang, Q. T.; Zhang, X.; Tao, B. S.; Fang, C.; Han, X. F.

    2017-10-01

    The magneto-Seebeck (MS) effect, which is also called magneto-thermo-power, was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in the parallel state were larger than those in the antiparallel state, and the MS ratio defined as (SAP -SP)/SP could reach -9% in our case. The MS effect originated not only from trivial giant magnetoresistance but also from spin current generated due to spin-polarized thermoelectric conductivity of ferromagnetic materials and subsequent modulation of the spin current by different spin configurations in spin valves. A simple Mott two-channel model reproduced a -11% MS effect for the Co/Cu/Co spin valves, qualitatively consistent with our observations. The MS effect could be applied for simultaneously sensing the temperature gradient and the magnetic field and also be possibly applied to determine spin polarization of thermoelectric conductivity and the Seebeck coefficient of ferromagnetic thin films.

  6. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  7. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  8. Interlayer reliant magnetotransport in graphene spin valve

    Science.gov (United States)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas

    2017-11-01

    Here the magnetotransport properties of vertical spin valve structures incorporating graphene (Gr), Gr/Au and Gr/Al2O3 intervening layers are elucidated. An in-plane magnetic field is obliquely applied to the device with the purpose to vary the relative magnetizations of ferromagnetic electrodes (Co and Ni). The relative magnetoresistance (MR) of Co/Gr/Ni is enhanced from ∼0.16% to 0.57% by simply passivating the bottom Ni electrode with thin Au film. On the other hand, depositing Al2O3 on the bottom ferromagnetic layer in such a spin valve junction not only increases the magnitude of MR (∼-0.52%) but also reverses its polarity. Furthermore, the linear current-voltage characteristics for graphene and graphene/Au spin valve devices specifies ohmic contact, while non-linear curves indicate tunneling behavior for graphene/Al2O3 device.

  9. Mechanisms of Spin-Dependent Heat Generation in Spin Valves

    Science.gov (United States)

    Zhang, Xiao-Xue; Zhu, Yao-Hui; He, Pei-Song; Li, Bao-He

    2017-06-01

    The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. By reformulating the heat generation rate, we found alternative current-force pairs without cross effects, which enable us to interpret the product of each pair as a distinct mechanism of heat generation. The results show that the spin-dependent part of the heat generation includes two terms. One of them is proportional to the square of the spin accumulation and arises from the spin relaxation. However, the other is proportional to the square of the spin-accumulation gradient and should be attributed to another mechanism, the spin diffusion. We illustrated the characteristics of the two mechanisms in a typical spin valve with a finite nonmagnetic spacer layer.

  10. Spin independent magnetoresistance effects in vertical graphene spin valves

    Science.gov (United States)

    Bodepudi, Srikrishna; Pratap Singh, Abhay; Pramanik, Sandipan

    2017-12-01

    Vertical spin valve device configuration with multilayer graphene (MLG) as spacer has drawn significant attention in recent years because of its potential to produce large magnetoresistance (MR) effect due to perfect spin filtering. However, demonstration of this effect has remained elusive so far. Here we consider MLG vertical spin valve structures and show that they exhibit spin independent MR effects, which are orders of magnitude stronger than the spin dependent effects reported to date. These effects manifest within a moderate field range of 10 kG and depend on various factors such as hybridization near the top graphene surface, doping, defects and interlayer coupling. These effects highlight the rich spectrum of physical phenomena that manifest in such systems, which could be exploited in low to moderate magnetic field sensing applications.

  11. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  12. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  13. A new spin-functional MOSFET based on magnetic tunnel junction technology: pseudo-spin-MOSFET

    OpenAIRE

    Shuto, Yusuke; Nakane, Ryosho; Wang, Wenhong; Sukegawa, Hiroaki; Yamamoto, Shuu'ichirou; Tanaka, Masaaki; Inomata, Koichiro; Sugahara, Satoshi

    2009-01-01

    We fabricated and characterized a new spin-functional MOSFET referred to as a pseudo-spin-MOSFET (PS-MOSFET). The PS-MOSFET is a circuit using an ordinary MOSFET and magnetic tunnel junction (MTJ) for reproducing functions of spin-transistors. Device integration techniques for a bottom gate MOSFET using a silicon-on-insulator (SOI) substrate and for an MTJ with a full-Heusler alloy electrode and MgO tunnel barrier were developed. The fabricated PS-MOSFET exhibited high and low transconductanc...

  14. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La2/3Sr1/3MnO3 (LSMO)/P3HT/AlOx/Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlOx/Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  15. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  16. Toward wafer scale fabrication of graphene based spin valve devices.

    Science.gov (United States)

    Avsar, Ahmet; Yang, Tsung-Yeh; Bae, Sukang; Balakrishnan, Jayakumar; Volmer, Frank; Jaiswal, Manu; Yi, Zheng; Ali, Syed Rizwan; Güntherodt, Gernot; Hong, Byung Hee; Beschoten, Bernd; Özyilmaz, Barbaros

    2011-06-08

    We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.

  17. Magnetization dynamics under heat current in metallic spin valves and in insulators

    Science.gov (United States)

    Yu, Haiming

    Spin caloritronics, an emerging branch of spintronics, studying the addition of thermal effects to the electrical and magnetic properties of nanostructures, has recently seen a rapid development. It has been predicted by Hatami et al. that a heat current can exert a spin torque on the magnetization in a nanostructure, analogous to the well-known spin-transfer torque induced by an electrical current. We provided the experimental evidence for the thermal spin-transfer torque effect in spin valves, showing the switching field change with heat current. I will present measurements of the second harmonic voltage response of Co-Cu-Co pseudo-spinvalves deposited in the middle of Cu nanowires. Both the magnitude of the second harmonic response of the spin valve and the field value of the maximum response are found to be dependent on the heat current. Both effects show that the magnetization dynamics of the pseudo-spinvalves is influenced by the heat current. Thus, the data provide a quantitative estimate of the thermal spin torque exerted on the magnetization of the Co layers. In addition, I will present recent study on the magnetization dynamics in a magnetic insulator YIG film under in-plane heat current. The ferromagnetic resonance linewidth is found to be tuned by the applied temperature gradient, i.e. narrowing and broadening. This suggests that the Gilbert damping parameter is compensated or reinforced by the applied temperature gradient in respective direction. These observations can be understood as a heat-driven spin torque in magnetic insulators.

  18. The spin-valve transistor: a preview and outlook

    NARCIS (Netherlands)

    Jansen, R.

    2003-01-01

    Combining ferromagnetic and semiconductor materials is a challenging route to create new options for electronic devices in which the spin of the electron is employed. The spin-valve transistor (SVT) is the first of such hybrid devices shown to work successfully. This review describes the basic

  19. Pseudo-spin Winding Number in Hydrogenated Graphene

    Science.gov (United States)

    Bennaceur, Keyan; Guillemette, Jonathan; Lévesque, Pierre L.; Mahvash, Farzaneh; Proust, Cyril; Siaj, Mohamed; Martel, Richard; Gervais, Guillaume; Szkopek, Thomas

    2014-03-01

    The quantum Hall effect (QHE) has been previously observed in highly resistive hydrogenated graphene, with an estimated hydrogen coverage up to 0.1% that is sufficient to impart strongly insulating behaviour in zero magnetic field. The opening of an impurity induced gap in graphene upon hydrogenation is anticipated to break local sub-lattice symmetry, and it may thus alter the Berry phase of Shubnikov-de Haas (SdH) oscillations and lead to a different Landau level (LL) sequence. Here we report the observation of SdH oscillations in a magnetic field up to 55 Tesla in graphene samples hydrogenated to different degree. The low temperature electron mobility ranges from ~1 cm2 / V . s to ~1000 cm2 / V . s . Analysis of SdH oscillation frequency in 1/B indicates that the LL sequence remains four-fold degenerate. We also observe the ν = 2 Hall plateau in all samples. We therefore conclude that the topological part of the Berry phase, meaning the pseudo-spin winding number that determines the LL sequence, is preserved in hydrogenated graphene.

  20. Superselective pseudo-continuous arterial spin labeling angiography

    Energy Technology Data Exchange (ETDEWEB)

    Jensen-Kondering, Ulf [Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel (Germany); Lindner, Thomas, E-mail: thomas.lindner@uksh.de [Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel (Germany); Osch, Matthias J.P. van [C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden (Netherlands); Rohr, Axel; Jansen, Olav [Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel (Germany); Helle, Michael [Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel (Germany); Now with Philips GmbH Innovative Technologies, Research Laboratories, Hamburg (Germany)

    2015-09-15

    Highlights: • Superselective arterial spin labeling was capable of acquiring angiograms of individually selected arteries. • Image quality was similar compared with a routinely used time-of-flight angiography. • Superselective arterial spin labeling was utilized in patients with arterio-venous malformations and made it possible to visualize individual feeding vessels in a complete non-invasive way - Abstract: Purpose: To evaluate the utility of a novel non-contrast enhanced, vessel-selective magnetic resonance angiography (MRA) approach based on superselective pseudo-continuous arterial spin labeling (ASL) for the morphologic assessment of intracranial arteries when compared to a clinically used time-of-flight (TOF) MRA. Materials and methods: Three sets of selective ASL angiographies (right and left internal carotid artery, basilar artery) as well as one TOF data set were obtained from each of the five volunteers included in this study on a clinical 1.5T system. The depiction of arterial segments as well as their delineation was evaluated and independently analyzed by two radiologists. Additionally, the ASL angiography approach was performed in two patients suffering from arterio-venous malformations (AVM) in order to illustrate potential applications in a clinical setting. Results: In both angiography techniques, intracranial arteries and their segments (distal branches up to A5 segments of the anterior cerebral arteries, M8 segments of the middle cerebral arteries, and P5 segments of the posterior cerebral arteries) were continuously depicted with excellent inter-reader agreement (κ > 0.81). In AVM patients, reconstructed images of the TOF angiography presented similar information about the size and shape of the AVM as did superselective ASL angiography. In addition, the acquired ASL angiograms of selected vessels allowed assessing the blood supply of individually labeled arteries to the AVM which could also be confirmed by digital subtraction angiography

  1. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  2. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Science.gov (United States)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  3. Development of the spin valve transistor (invited paper)

    NARCIS (Netherlands)

    Monsma, D.J.; Vlutters, R.; Shimatsu, T.; Shimatsu, T.; Keim, Enrico G.; Mollema, R.H.; Lodder, J.C.

    1997-01-01

    As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic

  4. The spin-valve transistor: Fabrication, characterization and physics

    NARCIS (Netherlands)

    Jansen, R.; van 't Erve, O.M.J.; Kim, S.D.; Vlutters, R.; Anil Kumar, P.S.; Lodder, J.C.

    2001-01-01

    An overview is given of the fabrication, basic properties, and physics of the spin-valve transistor. We describe the layout of this three-terminal ferromagnet/semiconductor hybrid device, as well as the operating principle. Fabrication technologies are discussed, including vacuum metal bonding. We

  5. Control of spin injection by direct current in lateral spin valves

    OpenAIRE

    Casanova, Fèlix; Sharoni, Amos; Erekhinsky, Mikhail; Schuller, Ivan K.

    2008-01-01

    The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the sam...

  6. Pseudo-spin band in the odd-odd nucleus {sup 172}Lu

    Energy Technology Data Exchange (ETDEWEB)

    Venkova, T. [Institut fuer Kernphysik, Forschungszentrum Juelich, D-52425, Juelich (Germany); Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784, Sofia (Bulgaria); Lieder, R.M.; Gast, W.; Podsvirova, E.; Jaeger, H.M.; Mihailescu, L. [Institut fuer Kernphysik, Forschungszentrum Juelich, D-52425, Juelich (Germany); Bazzacco, D.; Menegazzo, R.; Lunardi, S.; Alvarez, C. Rossi; Ur, C.; Martinez, T. [Dipartimento di Fisica dell' Universita and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131, Padova (Italy); Angelis, G. de; Axiotis, M.; Napoli, D. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, I-35020, Legnaro (Italy); Urban, W.; Rzaca-Urban, T. [Institute of Experimental Physics, University of Warsaw, PL-00-681, Warszawa (Poland); Frauendorf, S. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States)

    2003-09-01

    High-spin states in the odd-odd nucleus {sup 172}Lu have been populated in a {sup 170}Er({sup 7}Li,5n) reaction and the emitted {gamma}-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within {approx}3 keV at low spins and {approx}1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of {pi}1/2{sup -} [541] x {nu}1/2{sup -} [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now. (orig.)

  7. Interaction effects in spin-valve structures

    NARCIS (Netherlands)

    Wetzels, W.

    2007-01-01

    Most applications in electronics are based on manipulation of the electron charge. Currently, there is also a lot of research into the possibility to make use of the electron spin, for example in magnetoelectronics. This field of research studies hybrid systems consisting of ferromagnetic metals,

  8. Dry-transferred CVD graphene for inverted spin valve devices

    OpenAIRE

    Drögeler, Marc; Banszerus, Luca; Volmer, Frank; Taniguchi, Takashi; Watanabe, Kenji; Beschoten, Bernd; Stampfer, Christoph

    2017-01-01

    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pickup technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second l...

  9. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  10. Dry-transferred CVD graphene for inverted spin valve devices

    Science.gov (United States)

    Drögeler, Marc; Banszerus, Luca; Volmer, Frank; Taniguchi, Takashi; Watanabe, Kenji; Beschoten, Bernd; Stampfer, Christoph

    2017-10-01

    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pick-up technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second larger hBN crystal onto spin valve electrodes and (ii) a direct transfer of a CVD-graphene/hBN stack. We report record high spin lifetimes in CVD graphene of up to 1.75 ns at room temperature. Overall, the performances of our devices are comparable to devices fabricated from exfoliated graphene also revealing nanosecond spin lifetimes. We expect that our dry transfer methods pave the way towards more advanced device geometries not only for spintronic applications but also for CVD-graphene-based nanoelectronic devices in general where patterning of the CVD graphene is required prior to the assembly of final van der Waals heterostructures.

  11. Bias-independent spin signals in a tunnel-junction-based non-local spin valve

    Science.gov (United States)

    Wang, Xiaojun; Zou, Han; Ocola, L. E.; Divan, R.; Ji, Yi

    2009-03-01

    A pure spin current can be generated in the non-magnetic component of a non-local spin valve (NLSV). It has been demonstrated recently that the pure spin current can be used for spin transfer torque and spin-Hall effects. A high spin current density is desirable for realizing these effects, and therefore a large d.c. bias current will be applied. It is essential to maintain high degree of spin polarization at a high bias current. It has been previously reported that the spin polarization decreases drastically in a tunnel-junction-based CoFe/Al/NiFe NLSV. The goal of this study is to investigate the dependence of spin signals upon a d.c. bias current in tunnel-junction-based Co/Cu/Co NLSV's. Submicron Co/Cu/Co NLSV's are fabricated by e-beam lithography combined with angle deposition. A layer of 2 nm Al2O3 is deposited at the Co/Cu interface to form a tunnel barrier. A spin signal > 1mφ is observed at room temperature (RT). A d.c. current up to 1.0mA is applied at both 4.2 K and RT. No change of spin signal is observed for an injection current density > 10^6 A/cm^2.

  12. Acoustic noise reduction in pseudo-continuous arterial spin labeling (pCASL)

    NARCIS (Netherlands)

    van der Meer, Johan N.; Heijtel, Dennis F. R.; van Hest, Guus; Plattèl, Geert-Jan; van Osch, Matthijs J. P.; van Someren, Eus J. W.; Vanbavel, Ed T.; Nederveen, Aart J.

    2014-01-01

    While pseudo-continuous arterial spin labeling (pCASL) is a promising imaging technique to visualize cerebral blood flow, it is also (acoustically) very loud during labeling. In this paper, we reduced the labeling loudness on our scanner by increasing the interval between the RF pulses from the

  13. Acoustic noise reduction in pseudo-continuous arterial spin labeling (pCASL)

    NARCIS (Netherlands)

    van der Meer, Johan N; Heijtel, Dennis F R; van Hest, Guus; Plattèl, Geert-Jan; van Osch, Matthijs J P; van Someren, Eus J W; vanBavel, Ed T; Nederveen, Aart J

    OBJECT: While pseudo-continuous arterial spin labeling (pCASL) is a promising imaging technique to visualize cerebral blood flow, it is also (acoustically) very loud during labeling. In this paper, we reduced the labeling loudness on our scanner by increasing the interval between the RF pulses from

  14. Acoustic noise reduction in pseudo-continuous arterial spin labeling (pCASL)

    NARCIS (Netherlands)

    van der Meer, J.N.; Heijtel, D.F.R.; van Hest, G.; Plattel, G.J.; van Osch, M.J.P.; van Someren, E.J.W.; Vanbavel, E.T.; Nederveen, A.J.

    2014-01-01

    Object: While pseudo-continuous arterial spin labeling (pCASL) is a promising imaging technique to visualize cerebral blood flow, it is also (acoustically) very loud during labeling. In this paper, we reduced the labeling loudness on our scanner by increasing the interval between the RF pulses from

  15. Spin-Crossover in a Pseudo-tetrahedral Bis(formazanate) Iron Complex

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Broekman, J.O.P.; Chang, Mu-Chieh; Demeshko, Serhiy; Meyer, Franc; Otten, Edwin

    2016-01-01

    Spin-crossover in a pseudo-tetrahedral bis(formazanate) iron(II) complex (1) is described. Structural, magnetic, and spectroscopic analyses indicate that this compound undergoes thermal switching between an S=0 and an S=2 state, which is very rare in four-coordinate complexes. The transition to the

  16. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  17. Femtosecond Spin Current Pulses Generated by the Nonthermal Spin-Dependent Seebeck Effect and Interacting with Ferromagnets in Spin Valves.

    Science.gov (United States)

    Alekhin, Alexandr; Razdolski, Ilya; Ilin, Nikita; Meyburg, Jan P; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe; Melnikov, Alexey

    2017-07-07

    Using the sensitivity of optical second harmonic generation to currents, we demonstrate the generation of 250-fs long spin current pulses in Fe/Au/Fe/MgO(001) spin valves. The temporal profile of these pulses indicates ballistic transport of hot electrons across a sub-100 nm Au layer. The pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Considering the calculated spin-dependent Fe/Au interface transmittance we conclude that a nonthermal spin-dependent Seebeck effect is responsible for the generation of ultrashort spin current pulses. The demonstrated rotation of spin polarization of hot electrons upon interaction with noncollinear magnetization at Au/Fe interfaces holds high potential for future spintronic devices.

  18. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  19. High spin injection polarization at an elevated dc bias in tunnel-junction-based lateral spin valves

    Science.gov (United States)

    Wang, X. J.; Zou, H.; Ocola, L. E.; Ji, Y.

    2009-07-01

    Submicron metallic lateral spin valves are fabricated with AlOx tunnel junctions as spin injection and detection barriers. The spin polarization is estimated to be ˜20%, determined by both Hanle effect and variations of device dimensions. The polarization is maintained at a large dc injection current density >2×106 A/cm2. Both the spin polarization and spin diffusion length are weakly temperature dependent.

  20. Light-driven strong spin valve effects in an azobenzene-based spin optoelectronic device

    Science.gov (United States)

    Zeng, Jing; Chen, Ke-Qiu; Deng, Xiaohui; Long, Mengqiu

    2016-10-01

    A photoswitched single-molecule junction, a stable and reversible single-molecule electrical switch, has been successfully prepared by means of molecular engineering (2016 Science 352 1443). In this work we use a first-principles computational approach to investigate the spin valve effect of an azobenzene-based spin optoelectronic device. Our results demonstrate that the magnetoresistive ratio of the spin optoelectronic device is only about 65% when the azobenzene is in cis configuration, which is a low performance for practical applications. However, the magnetoresistive ratio of the device can be enhanced to about 2775% when the cis configuration of the azobenzene is changed into the trans configuration by applying a pulse of light. As a consequence, photoexcitation provides an effective way to obtain a high-performance spin optoelectronic device.

  1. Low-field magnetocurrent above 200% in a spin-valve transistor at room temperature

    NARCIS (Netherlands)

    Anil Kumar, P.S.; Jansen, R.; van 't Erve, O.M.J.; Vlutters, R.; de Haan, P.; Lodder, J.C.

    2000-01-01

    A spin-valve transistor (SVT) that employs hot electrons is shown to exhibit a huge magnetotransport effect at room temperature in small magnetic fields. The SVT is a ferromagnet-semiconductor hybrid structure in which hot electrons are injected into a NiFe/Au/Co spin valve, and collected on the

  2. Giant Magnetoresistance of Cobalt-Copper Spin Valves

    Science.gov (United States)

    Butler, W. H.; Zhang, X.-G.; Speriosu, V. S.; Gurney, B. A.

    1996-03-01

    We report theoretical and experimental studies of the conductance and magnetoconductance of Co-Cu spin valves. Model results for structures consisting of 10 atomic 111 planes of Cu with 10 to 30 Co atomic planes on either side of the Cu layer are compared with results from magnetron sputtered Co|Cu|Co|FeMn spin valves. The theoretical calculations were performed using a fully quantum mechanical first principles technique and predict a contribution to the giant magnetoconductance (GMC) from channeling of majority electrons in the Cu layer if the Co-Cu interfaces are sufficiently smooth. This contribution to the GMC is essentially independent of the thickness of the Co layers. The other major contribution to the GMC arises from electrons which are accelerated by the electric field in one Co layer, propagate through the Cu and contribute to the current in the other Co layer. This contribution to the GMC, like the experimental result, increases approximately linearly with the thickness of the Co layers for Co thickness below 60Å Work at ORNL sponsored by USDOE Assistant Secretary of Defense Programs, Technology Management Group, Technology Transfer Initiative under contract DEAC05-84OR21400 with Lockheed Martin Energy Systems.

  3. (Pseudo)spin symmetry in the single-neutron spectrum of Λ hypernuclei

    Science.gov (United States)

    Lu, W.-L.; Liu, Z.-X.; Ren, S.-H.; Zhang, W.; Sun, T.-T.

    2017-12-01

    Pseudospin and spin symmetries in the single-neutron spectra of Λ hypernuclei, and the effects of Λ impurity on these symmetries, are studied in the relativistic mean field model. It is found that the spin symmetry is violated while the pseudospin symmetry is approximately conserved, which is similar to the case in ordinary nuclei. As an impurity, the Λ hyperon makes the spin symmetry worse while making the pseudospin symmetry better, which arises from the decrease in the centrifugal barrier and the increase in the pseudo-centrifugal barrier in their competitions with the spin–orbit and pseudospin–orbit potentials, respectively. Further, our investigation extended to the Sn isotopes with 0{{Λ }}, 1{{Λ }}, and 2{{Λ }} , and indicated that the effects of Λ impurity on pseudospin and spin symmetries are universal.

  4. Anti-Lenz supercurrents in superconducting spin valves

    Science.gov (United States)

    Hernández, U. D. Chacón; Fontes, M. B.; Baggio-Saitovitch, E.; Sousa, M. A.; Enderlein, C.

    2017-05-01

    Here, we present a study on Si (111 )/Ta (150 Å )/IrMn (150 Å )/NiFe (50 Å )/Nb (x )/NiFe (50 Å )/Ta (50 Å ) spin valves with x =100 -500 Å . Samples with a Nb layer thickness of 300 Å or higher exhibit an unusual magnetization behavior below Tc. The superconducting Nb layer contributes strongly to the magnetization, and manifests itself in an anomalous hysteresis loop. While the hysteresis loop is seemingly similar to what is generally expected from hard superconductors and many superconductor/ferromagnet hybrid systems, its direction is inverted when compared to what is generally observed. Thus, the samples show paramagnetic behavior for upsweeping fields and diamagnetic behavior for downsweeping fields. This means that the respective samples exhibit a magnetization, which is contrary to what Lenz's rule dictates.

  5. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    Science.gov (United States)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  6. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    CERN Document Server

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  7. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    National Research Council Canada - National Science Library

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo...

  8. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    OpenAIRE

    S. Jain; D. D. Lam; A. Bose; H. Sharma; V. R. Palkar; C. V. Tomy; Y. Suzuki; A. A. Tulapurkar

    2014-01-01

    We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  9. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    Directory of Open Access Journals (Sweden)

    S. Jain

    2014-12-01

    Full Text Available We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  10. Large magnetoresistance of MnBi/Bi/MnBi spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Tarawneh, Khaldoun, E-mail: Khaldoun@psut.edu.jo [Princess Sumaya University for Technology, Amman 11941 (Jordan); Al-Aqtash, Nabil; Sabirianov, Renat [University of Nebraska at Omaha, Omaha, NE 68182 (United States)

    2014-08-01

    A transport magetoresistance (MR) of MnBi/Bi/MnBi spin valve device was calculated using density functional theory coupled with nonequilibrium Green's function method. The calculated transmission MR of the MnBi/Bi/MnBi spin valve device is around 750%, Obtained MR is very large compared with MR observed experimentally in MnBi junctions at room temperature (MR∼70%). Large MR is consistent with a large transport spin polarization was demonstrated in MnBi films by the point contact Andreev reflection spectroscopy. MR of experimental point contacts is observed to be low is probably due to the rough interfaces that increased scattering and contact resistance. Consequently, a spin-valve MnBi/Bi/MnBi device could potentially have large MR that could be controlled by varying the thickness of the Bi spacer. Thus, MnBi is a promising candidate for high MR devices with tunable spacer properties. - Highlights: • We calculate the transport magetoresistance (MR) of MnBi/Bi/MnBi spin valve device. • The calculated transmission MR of the MnBi/Bi/MnBi spin valve device is around 750%. • MR depend on the thickness of Bi layer. • MnBi is a promising candidate for high MR devices using spin polarizing current.

  11. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  12. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2014-10-01

    We propose a hole-doped molybdenum disulfide (MoS2) superconducting spin valve (F/S/F) hybrid structure in which the Andreev reflection process is suppressed for all incoming waves with a determined range of the chemical potential in ferromagnetic (F) region and the cross-conductance in the right F region depends crucially on the configuration of magnetizations in the two F regions. Using the scattering formalism, we find that the transport is mediated purely by elastic electron cotunneling (CT) process in a parallel configuration and changes to the pure crossed Andreev reflection (CAR) process in the low-energy regime, without fixing of a unique parameter, by reversing the direction of magnetization in the right F region. This suggests both valley- and spin-switch effects between the perfect elastic CT and perfect CAR processes and makes the nonlocal charge current to be fully valley- and spin-polarized inside the right F region where the type of the polarizations can be changed by reversing the magnetization direction in the right F region. We further demonstrate that the presence of the strong spin-orbit interaction λ and an additional topological term (β ) in the Hamiltonian of MoS2 result in an enhancement of the charge conductance of the CT and CAR processes and make them to be present for long lengths of the superconducting region. Besides, we find that the thermal conductance of the structure with a small length of the highly doped superconducting region exhibits linear dependence on the temperature at low temperatures, whereas it enhances exponentially at higher temperatures. In particular, we demonstrate that the thermal conductance versus the strength of the exchange field (h ) in F region displays a maximum value at h <λ , which moves towards larger exchange fields by increasing the temperature.

  13. Influence of dc bias currents on Co/Cu/Co nonlocal spin valves

    Science.gov (United States)

    Wang, X. J.; Zou, H.; Ocola, L. E.; Divan, R.; Ji, Y.

    2009-05-01

    The spin signals of three Co/Cu/Co nonlocal spin valves have been measured as a function of a dc bias current. Both increases and decreases of spin signals have been observed. The increase in spin signal is attributed to the redistribution of the injection current at a high current density. A shift in effective injection point up to ˜100 nm is estimated. The decrease in spin signals is attributed to structural change of the materials and interfaces due to the prolonged exposure to a high-density current.

  14. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  15. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes

    Science.gov (United States)

    Luping, Liu; Qingfeng, Zhan; Xin, Rong; Huali, Yang; Yali, Xie; Xiaohua, Tan; Run-wei, Li

    2016-07-01

    We fabricated flexible spin valves on polyvinylidene fluoride (PVDF) membranes and investigated the influence of thermal deformation of substrates on the giant magnetoresistance (GMR) behaviors. The large magnetostrictive Fe81Ga19 (FeGa) alloy and the low magnetostrictive Fe19Ni81 (FeNi) alloy were selected as the free and pinned ferromagnetic layers. In addition, the exchange bias (EB) of the pinned layer was set along the different thermal deformation axes α 31 or α 32 of PVDF. The GMR ratio of the reference spin valves grown on Si intrinsically increases with lowering temperature due to an enhancement of spontaneous magnetization. For flexible spin valves, when decreasing temperature, the anisotropic thermal deformation of PVDF produces a uniaxial anisotropy along the α 32 direction, which changes the distribution of magnetic domains. As a result, the GMR ratio at low temperature for spin valves with EB∥ α 32 becomes close to that on Si, but for spin valves with EB∥ α 31 is far away from that on Si. This thermal effect on GMR behaviors is more significant when using magnetostrictive FeGa as the free layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374312, 51401230, 51522105, and 51471101) and the Ningbo Science and Technology Innovation Team, China (Grant No. 2015B11001).

  16. Conversion of equilibrium spin current into charge current through a quantum-dot spin valve subject to circularly polarized field

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Feng, E-mail: bd10583@163.com [Department of Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Gao, Ben-Ling; Hu, Guang [Department of Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Gu, Yu [Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou 510632 (China); Xu, Ning [The School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051 (China)

    2015-12-18

    We theoretically investigate the electron transport through a quantum-dot spin valve subject to a circularly polarized field. It is shown that the original equilibrium spin current arising from the spin Josephson effect can be converted to a charge current by the circularly polarized field. Numerical calculations demonstrate that the sign and the magnitude of the equilibrium spin current can both be deduced from the induced charge current. Moreover, the dependence of the induced charge current on the system parameters is also studied and the most important finding is that for most choices of the system parameters the induced charge current is large enough to be measured by present technology. Therefore, our findings offer a promising way to detect the equilibrium spin current in spin valve systems. - Highlights: • Equilibrium spin current can be converted to charge current with polarized light. • The equilibrium spin current can be deduced from the induced charge current. • The induced charge current is measurable in experiments.

  17. Interpulse phase corrections for unbalanced pseudo-continuous arterial spin labeling at high magnetic field.

    Science.gov (United States)

    Hirschler, Lydiane; Debacker, Clément S; Voiron, Jérôme; Köhler, Sascha; Warnking, Jan M; Barbier, Emmanuel L

    2017-06-06

    To evaluate a prescan-based radiofrequency phase-correction strategy for unbalanced pseudo-continuous arterial spin labeling (pCASL) at 9.4 T in vivo and to test its robustness toward suboptimal shim conditions. Label and control interpulse phases were optimized separately by means of two prescans in rats. The mean perfusion as well as the interhemispherical symmetry were measured for several phase combinations (optimized versus theoretical phases) to evaluate the correction quality. Interpulse phases were also optimized under degraded shim conditions (i.e., up to four times the study shim values) to test the strategy's robustness. For all tested shim conditions, the full arterial spin labeling (ASL) signal could be restored. Without any correction, the relative ASL signal was 1.4 ± 1.7%. It increased to 3.6 ± 1.4% with an optimized label phase and to 5.3 ± 1.2% with optimized label and control phases. Moreover, asymmetry between brain hemispheres, which could be as high as 100% without phase optimization, was dramatically reduced to 1 ± 3% when applying optimized label and control phases. Pseudo-continuous ASL at high magnetic field is very sensitive to shim conditions. Label and control radiofrequency phase optimization based on prescans robustly maximizes the ASL signal obtained with unbalanced pCASL and minimizes the asymmetry between hemispheres. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  19. Boosting the superconducting spin valve effect in a metallic superconductor/ferromagnet heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Kamashev, Andrey; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Schumann, Joachim; Kataev, Vladislav; Thomas, Juergen [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Technical University Dresden (Germany)

    2016-07-01

    We demonstrate a crucial role of the morphology of the superconducting layer for the operation of the multilayer S/F1/F2 spin valve. For that, we studied two types of superconducting spin valve heterostructures, with a rough and with a smooth superconducting layer, respectively, with transmission electron microscopy in combination with transport and magnetic characterization. We have found that the quality of the S/F interface is not critical for the S/F proximity effect as regards the suppression of the critical temperature of the S layer. However, it appears to be of a paramount importance for the performance of the S/F1/F2 spin valve. The magnitude of the conventional superconducting spin valve effect significantly increases, when the morphology of the S layer is changed from the type of overlapping islands to a smooth one. We attribute this drastic effect to a homogenization of the Green function of the superconducting condensate over the S/F interface in the S/F1/F2 valve with a smooth S layer surface.

  20. Evidence for triplet superconductivity in a superconductor-ferromagnet spin valve.

    Science.gov (United States)

    Leksin, P V; Garif'yanov, N N; Garifullin, I A; Fominov, Ya V; Schumann, J; Krupskaya, Y; Kataev, V; Schmidt, O G; Büchner, B

    2012-08-03

    We have studied the dependence of the superconducting (SC) transition temperature on the mutual orientation of magnetizations of Fe1 and Fe2 layers in the spin valve system CoO(x)/Fe1/Cu/Fe2/Pb. We find that this dependence is nonmonotonic when passing from the parallel to the antiparallel case and reveals a distinct minimum near the orthogonal configuration. The analysis of the data in the framework of the SC triplet spin valve theory gives direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the two magnetizations.

  1. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  2. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Directory of Open Access Journals (Sweden)

    Luping Liu

    2016-03-01

    Full Text Available We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR ratio. This kind of spin valve (SV-FeGa/FeCo displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  3. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  4. Detection of spin pumping from YIG by spin-charge conversion in a Au /Ni80Fe20 spin-valve structure

    Science.gov (United States)

    Vlietstra, N.; van Wees, B. J.; Dejene, F. K.

    2016-07-01

    Many experiments have shown the detection of spin currents driven by radio-frequency spin pumping from yttrium iron garnet (YIG), by making use of the inverse spin-Hall effect, which is present in materials with strong spin-orbit coupling, such as Pt. Here we show that it is also possible to directly detect the resonance-driven spin current using Au|permalloy (Py, Ni80Fe20 ) devices, where Py is used as a detector for the spins pumped across a YIG|Au interface. This detection mechanism is equivalent to the spin-current detection in metallic nonlocal spin-valve devices. By finite element modeling we compare the pumped spin current from a reference Pt strip with the detected signals from the Au|Py devices. We find that for one series of Au|Py devices the calculated spin pumping signals mostly match the measurements, within 20%, whereas for a second series of devices additional signals are present which are up to a factor 10 higher than the calculated signals from spin pumping. We also identify contributions from thermoelectric effects caused by the resonant (spin-related) and nonresonant heating of the YIG. Thermocouples are used to investigate the presence of these thermal effects and to quantify the magnitude of the spin-(dependent-)Seebeck effect. Several additional features are observed, which are also discussed.

  5. Spin current valve effect in normal metal/magnetic insulator/normal metal sandwiches

    Science.gov (United States)

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing; Shines Collaboration

    Pure spin current is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM), the other utilizes spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet (YIG), a magnetic insulator (MI). Here we demonstrate in NM/MI/NM sandwiches that these two types of spin current are interconvertible, which allows transmitting an electrical signal across the MI, predicted as the magnon-mediated current drag phenomenon. We show experimentally that the spin current can be switched ``on'' or ``off'' by controlling the magnetization orientation of MI, analogous to conventional spin valves for spin-polarized charge current. The transmitted current drag signal scales linearly with the driving current without any threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM sandwich structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. As part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  6. Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves

    NARCIS (Netherlands)

    Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.

    2010-01-01

    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third

  7. Evaluation of vacuum bonded GaAs/Si spin-valve transistors

    NARCIS (Netherlands)

    Dessein, K.; Boeve, H.; Anil Kumar, P.S.; de Boeck, J.; Lodder, J.C.; Delaey, L.; Borghs, G.

    2000-01-01

    In this article a new type of spin-valve transistor, a hybrid GaAs/Si device, is presented. In this device the Si emitter is replaced by a GaAs emitter launcher structure. The integration of the GaAs with the Si was done by means of a room temperature vacuum bonding technique. By using a soft

  8. Efficient spin filter and spin valve in a single-molecule magnet Fe{sub 4} between two graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Feng-Xia [School of Science, Wuhan Institute of Technology, Wuhan 430205 (China); School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Gao, Guo-Ying; Fu, Hua-Hua; Peng, Li; Yao, Kai-Lun, E-mail: klyao@hust.edu.cn [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiong, Lun; Zhu, Si-Cong [School of Science, Wuhan Institute of Technology, Wuhan 430205 (China)

    2015-12-21

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe{sub 4} connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The idea of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.

  9. Spin-dependent transport behavior in C{sub 60} and Alq{sub 3} based spin valves with a magnetite electrode (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianmin, E-mail: xmzhang@wpi-aimr.tohoku.ac.jp; Mizukami, Shigemi; Ma, Qinli; Kubota, Takahide; Miyazaki, Terunobu [World Premier International Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo [Department of Applied Physics, Tohoku University, 6-6-05 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2014-05-07

    The spin-dependent transport behavior in organic semiconductors (OSs) is generally observed at low temperatures, which likely results from poor spin injection efficiency at room temperature from the ferromagnetic metal electrodes to the OS layer. Possible reasons for this are the low Curie temperature and/or the small spin polarization efficiency for the ferromagnetic electrodes used in these devices. Magnetite has potential as an advanced candidate for use as the electrode in spintronic devices, because it can achieve 100% spin polarization efficiency in theory, and has a high Curie temperature (850 K). Here, we fabricated two types of organic spin valves using magnetite as a high efficiency electrode. C{sub 60} and 8-hydroxyquinoline aluminum (Alq{sub 3}) were employed as the OS layers. Magnetoresistance ratios of around 8% and over 6% were obtained in C{sub 60} and Alq{sub 3}-based spin valves at room temperature, respectively, which are two of the highest magnetoresistance ratios in organic spin valves reported thus far. The magnetoresistance effect was systemically investigated by varying the thickness of the Alq{sub 3} layer. Moreover, the temperature dependence of the magnetoresistance ratios for C{sub 60} and Alq{sub 3}-based spin valves were evaluated to gain insight into the spin-dependent transport behavior. This study provides a useful method in designing organic spin devices operated at room temperature.

  10. Optimisation of pulsed and pseudo-continuous arterial spin labeling MRI techniques: A phantom study

    Science.gov (United States)

    Yusoff, Norain; Zukhi, Jihan; Rusli, Awatif; Zainon, Rafidah

    2017-05-01

    Arterial Spin Labeling (ASL) MRI is a non-invasive technique using a freely diffusible intrinsic tracer. The main objective of this study is to evaluate two different techniques of ASL MRI; pulsed ASL (PASL) and pseudo-continuous ASL (PCASL) in obtaining the best signal by manipulating the different imaging parameters. We used a fabricated Perspex flow phantom that is magnetically susceptible. The phantom has a straight tube that mimics carotid artery in adult patients and a U-shaped tube with 75% stenosis. We used a mixture of 60:40 distilled water and glycerol respectively as a substitute to blood. The fabricated phantom was scanned with 1.5T and 3T MRI Scanner using PCASL technique and PASL respectively. Two main imaging parameters were studied which were the field of view (FOV) and slice thickness (ST) to obtain the signal-to-noise ratio (SNR) of the region of interests. The 1.5 T PCASL technique gave SNR values of (13, 22, 30.1) for ST (5, 7, 9 mm) and FOV 240. When higher FOV = 320 was selected, the SNR values were (26.8, 15, 37) for different ST (5, 7, 9 mm). The 3.0 T PASL technique gave the SNR values of (9, 9.3, 11) for ST (5, 7, 9mm) and FOV 240mm. In the higher FOV = 320 mm, we obtained SNR values of (15.2, 17.5, 37.2) for ST (5, 7, 9 mm). As a conclusion, the images quality which can be measured by SNR value is affected by types of ASL and also different parameters.

  11. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  12. Stretchable Spin Valve with Stable Magnetic Field Sensitivity by Ribbon-Patterned Periodic Wrinkles.

    Science.gov (United States)

    Li, Huihui; Zhan, Qingfeng; Liu, Yiwei; Liu, Luping; Yang, Huali; Zuo, Zhenghu; Shang, Tian; Wang, Baomin; Li, Run-Wei

    2016-04-26

    A strain-relief structure by combining the strain-engineered periodic wrinkles and the parallel ribbons was employed to fabricate flexible dual spin valves onto PDMS substrates in a direct sputtering method. The strain-relief structure can accommodate the biaxial strain accompanying with stretching operation (the uniaxial applied tensile strain and the induced transverse compressive strain due to the Poisson effect), thus significantly reducing the influence of the residual strain on the giant magnetoresistance (GMR) performance. The fabricated GMR dual spin-valve sensor exhibits the nearly unchanged MR ratio of 9.9%, magnetic field sensitivity up to 0.69%/Oe, and zero-field resistance in a wide range of stretching strain, making it promising for applications on a conformal shape or a movement part.

  13. Proximity Effects in Bilayer Graphene on Monolayer WSe2 : Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor

    Science.gov (United States)

    Gmitra, Martin; Fabian, Jaroslav

    2017-10-01

    Proximity orbital and spin-orbit effects of bilayer graphene on monolayer WSe2 are investigated from first principles. We find that the built-in electric field induces an orbital band gap of about 10 meV in bilayer graphene. Remarkably, the proximity spin-orbit splitting for holes is 2 orders of magnitude—the spin-orbit splitting of the valence band at K is about 2 meV—more than for electrons. Effectively, holes experience spin valley locking due to the strong proximity of the lower graphene layer to WSe2 . However, applying an external transverse electric field of some 1 V /nm , countering the built-in field of the heterostructure, completely reverses this effect and allows, instead of holes, electrons to be spin valley locked with 2 meV spin-orbit splitting. Such a behavior constitutes a highly efficient field-effect spin-orbit valve, making bilayer graphene on WSe2 a potential platform for a field-effect spin transistor.

  14. Creation of Localized Skyrmion Bubbles in Co/Pt Bilayers using a Spin Valve Nanopillar

    OpenAIRE

    Grab, Jennifer L.; Rugar, Alison E.; Ralph, Daniel C.

    2017-01-01

    We fabricate devices in which a magnetic nanopillar spin valve makes contact to a Co/Pt bilayer thin film with perpendicular magnetic anisotropy, in order to achieve local control of domains in the Co/Pt bilayer underneath the nanopillar. The goal is to develop the ability to nucleate, detect, and annihilate magnetic skyrmions in the Co/Pt using spin-polarized currents from the nanopillar. We demonstrate the ability to distinguish the local behavior of the Co/Pt film beneath the nanopillar fr...

  15. Spin-transfer torque effect in nanopillar superconducting-magnetic hybrid Josephson junctions

    Science.gov (United States)

    Baek, Burm; Rippard, William; Pufall, Matthew; Benz, Samuel; Russek, Stephen; Rogalla, Horst; Dresselhaus, Paul; National Institute of Standards; Technology Team

    2015-03-01

    We have developed single nanopillar Josephson junctions with pseudo-spin-valve barriers with a feature size 50 nm or larger. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. The magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents which is consistent with the spin-transfer torque effect in room-temperature spin valve devices. Our results demonstrate devices that combine superconducting and spintronic functions promising for a nanoscale cryogenic memory technology.

  16. Spin-Valve Effect at Organic-Ferromagnetic Interfaces

    Science.gov (United States)

    Atodiresei, Nicolae; Caciuc, Vasile; Blügel, Stefan

    The ability to reliably describe the electronic properties of carbon-based materials adsorbed on magnetic surfaces is essential to understand and assist the engineering of functionalities in hybrid organic spintronic devices. Based on the density functional theory, we performed theoretical studies to understand how to tailor the magnetic properties of hybrid organic-ferromagnetic interfaces by adsorbing organic materials containing π-electrons onto several magnetic substrates. For such hybrid systems, the magnetic properties like molecular magnetic moments and their spatial orientation, spin-polarization and the magnetic exchange coupling can be specifically tuned by an appropriate choice of the organic material. Email: n.atodiresei@fz-juelich.de.

  17. High frequency magnetic eigen excitations in a spin valve submitted to CPP DC current

    Energy Technology Data Exchange (ETDEWEB)

    Mistral, Q. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France)]. E-mail: mistral@ief.u-psud.fr; Deac, A. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Grollier, J. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France); Redon, O. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Liu, Y. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Li, M. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Wang, P. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Dieny, B. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Devolder, T. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France)

    2006-01-25

    We study the magnetization dynamics induced at low field by spin-transfer in a pillar-shaped spin valve. The spin valve is a square of 150 nmx 150 nm patterned from a film of IrMn 7 nm/CoFe, 2.4 nm/Ru, 0.8 nm/CoFe, 4.4 nm/Cu, 2.6 nm/CoFe, and 3.6 nm. The spin valve is studied in its anti-parallel state at 50 K. The high frequency voltage noise generated by the DC current flowing through the magneto-resistive device is used to identify the excitations induced by spin-transfer. Between an instability current of 1.72 mA and the switching current of 1.89 mA, we demonstrate the existence of pre-switch steady-state excitations, i.e. low amplitude precession. We study the frequency (10 GHz, red shift -1.46 GHz/mA) of this excitation, its line width (78-246 MHz), the power it carries (113 nW), and the current dependance thereof. We discuss those experimental findings using the formalism of Sun et al. and Valet et al., and show that the experimental behavior can be described by a macrospin approximation only at the very onset of the pre-switch excitations. The early saturation of the excitation power and the non-monotonic switching probability with the current are experimental indications that the pre-switch excitations are strongly non-uniform when approaching the switching current.

  18. Feedback control of noise in spin valves by the spin-transfer torque

    NARCIS (Netherlands)

    Bandopadyay, S.; Brataas, A.; Bauer, G.E.W.

    2011-01-01

    The miniaturization of magnetic read heads and random access memory elements makes them vulnerable to thermal fluctuations. We demonstrate how current-induced spin-transfer torques can be used to suppress the effects of thermal fluctuations. This enhances the fidelity of perpendicular magnetic spin

  19. Electrical detection of spin precession in a metallic mesoscopic spin valve

    NARCIS (Netherlands)

    Jedema, F.J.; Heersche, H.B.; Filip, A.T.; Baselmans, J.J.A.; Wees, B.J.van

    2002-01-01

    To study and control the behaviour of the spins of electrons that are moving through a metal or semiconductor is an outstanding challenge in the field of 'spintronics', where possibilities for new electronic applications based on the spin degree of freedom are currently being explored(1-5).

  20. Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet-ferromagnet heterostructures.

    Science.gov (United States)

    Lenk, Daniel; Zdravkov, Vladimir I; Kehrle, Jan-Michael; Obermeier, Günter; Ullrich, Aladin; Morari, Roman; Krug von Nidda, Hans-Albrecht; Müller, Claus; Kupriyanov, Mikhail Yu; Sidorenko, Anatolie S; Horn, Siegfried; Deminov, Rafael G; Tagirov, Lenar R; Tidecks, Reinhard

    2016-01-01

    In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoO x an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoO x and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, d F1, of F1 and was found to decay with increasing d F1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance d F1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for d F1 smaller

  1. Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

    Directory of Open Access Journals (Sweden)

    Daniel Lenk

    2016-07-01

    Full Text Available Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment.Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory.Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated breakdown of the

  2. Photoemission microscopy study of picosecond magnetodynamics in spin-valve-type thin film elements

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, C.M., E-mail: c.m.schneider@fz-juelich.d [Institut fuer Festkoerperforschung IFF-9, Forschungszentrum Juelich, D-52425 Juelich (Germany); Kaiser, A.; Wiemann, C. [Institut fuer Festkoerperforschung IFF-9, Forschungszentrum Juelich, D-52425 Juelich (Germany); Tieg, C. [European Synchrotron Radiation Facility, F-38000 Grenoble (France); Cramm, S. [Institut fuer Festkoerperforschung IFF-9, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2010-08-15

    Exploring ultimate time scales of magnetic switching processes is an important issue in spin electronics. In spin valves or magnetic tunnelling junctions magnetic anisotropies and coupling phenomena alter the magnetodynamic response of the entire system. Understanding the role of these interactions is a key to the design of optimized devices. We have employed time-resolved X-ray photoemission microscopy to address the magnetodynamics in spin-valve-type model systems in the ns- and ps-regime. In Co/Cr/Fe(0 0 1) single crystal elements we find a strong influence of the magnetocrystalline anisotropy, which tends to suppress rotation processes. In addition, we observe a dynamic 'decoupling' of the layers. In low-anisotropy FeNi/Cr/FeCo trilayers, the interlayer coupling character determines the dynamic response. Particularly, rotational processes in the FeNi and FeCo layers are temporarily shifted to each other, which can be related to different coercivities of the individual layers. By contrast, the domain wall motion in both layers closely agrees, caused by an enhanced coupling due to the domain wall stray fields. Our examples demonstrate that the detailed magnetodynamics in coupled magnetic layers is quite complex and depends strongly on the timescale under consideration.

  3. Molecular Quantum Spintronics: Supramolecular Spin Valves Based on Single-Molecule Magnets and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Wolfgang Wernsdorfer

    2011-10-01

    Full Text Available We built new hybrid devices consisting of chemical vapor deposition (CVD grown carbon nanotube (CNT transistors, decorated with TbPc2 (Pc = phthalocyanine rare-earth based single-molecule magnets (SMMs. The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (TB ~ 1 K of isolated TbPc2 SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs.

  4. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  5. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  6. Enhanced nonlocal Andreev reflection in F|S|F graphene spin-valve

    Science.gov (United States)

    Mohammadpour, Hakimeh; Asgari, Asghar

    2015-12-01

    In this paper crossed Andreev reflection (CAR) conductance is calculated in graphene-based Ferromagnetic-Superconductor-Ferromagnetic heterostructure. In this spin-valve system, the ferromagnetic semi-infinite layers act as leads. The leads are assumed to be half-metallic, i.e. the respective shift of the two spin sub-bands at each lead is such that the electronic states of just one spin sub-band are present near the Fermi level. In this graphene-based system, as in the corresponding metallic structures, if the leads are in anti-parallel configuration, direct Andreev reflection (AR) and electron cotunneling(CT) are weak while crossed Andreev reflection is considerable. The CAR reaches the maximum probability amplitude for thickness of the superconducting layer that is comparable to the superconducting coherence length. The behavior of the system at parallel configuration of the leads, contradicts with metallic FSF structures, so that an appreciable amount of CAR probability is obtained. This is provided in graphene by the combination of CAR and spin-dependent Klein tunneling through p-n barrier between different spin sub-bands of the two leads. In the case that the Fermi energy of the first lead is in Dirac point the result is the enhanced CAR due to blocking CT channels in both parallel and anti parallel configurations. The resulting nonlocal conductance oscillates with L exhibiting a π-phase shift between the two configurations.

  7. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    Science.gov (United States)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Servet, Bernard; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-02-01

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al2O3 or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al2O3/Alq3/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working "organic" and short-circuited junctions fabricated on the same wafer.

  8. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre, E-mail: pierre.seneor@thalesgroup.com; Mattana, Richard, E-mail: richard.mattana@thalesgroup.com; Petroff, Frédéric [Unité Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay (France); Servet, Bernard [Thales Research and Technology, 1 Av. A. Fresnel, 91767 Palaiseau (France)

    2015-02-23

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al{sub 2}O{sub 3} or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al{sub 2}O{sub 3}/Alq{sub 3}/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working “organic” and short-circuited junctions fabricated on the same wafer.

  9. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  10. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers

    Science.gov (United States)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E.; Hankiewicz, Ewelina M.; Žutić, Igor

    2016-10-01

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  11. Hysteretic rotational magnetization of pinned layer in NiO spin-valve

    CERN Document Server

    Kim, C G; Hwang, D G; Lee, S S; Kim, C O

    2002-01-01

    The magnetoresistance (MR) curves during the rotation of magnetic field in NiO spin-valve are well described by taking into account the involved magnetization process of free and pinned layers according to rotating field strength. In particular, hysteretic MR characteristics pronounced in a field strength of 1.5 times the exchange field are ascribed for by the viscosity effect on magnetization rotation of pinned layer. These analyses of MR curves provide a basis decomposing the MR components from each magnetization process of free and pinned layers.

  12. Microstructure for ferroelastic transitions from strain pseudo-spin clock models in two and three dimensions: a mean field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lookman, Turab [Los Alamos National Laboratory; Vasseur, Romain [ECOLE NORMALE SUPERIEURE

    2009-01-01

    We obtain the microstructure of ferroelastic transitions in two and three dimensions from the solution of their corresponding discrete pseudo-spin models. In two dimensions we consider two transitions each from the high symmetry square and triangle symmetries: square-to-rectangle (SR), square-to-oblique (SO), triangle-to-centered rectangle (TR) and triangle-to-oblique (TO). In three dimensions we study the corresponding spin model for the cubic to tetragonal transition. The Landau free energies for these transitions result in N+ I states clock models (Z{sub N}) with long range interactions and we derive mean-field self-consistency equations for the clock model Hamiltonians. The microstructures from the mean-field solutions of the models are very similar to those obtained from the original continuum models or Monte Carlo simulations on the spin models (in the SR case), illustrating that these discrete models capture the salient physics. The models, in the presence of disorder, provide the basis for the study of the strain glass phase observed in martensitic alloys.

  13. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    Energy Technology Data Exchange (ETDEWEB)

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei, E-mail: lwliu2007@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Liu, Guangtong [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  14. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  15. Voltage-controlled oxide barriers in organic/hybrid spin valves based on tunneling anisotropic magnetoresistance

    Science.gov (United States)

    Grünewald, M.; Homonnay, N.; Kleinlein, J.; Schmidt, G.

    2014-11-01

    Resistive switching, i.e., the remanent (reversible) change of a device's resistance, is a widely investigated phenomenon as it holds the prospect for realizing high density memory devices. Resistive switching has also been observed in organic semiconductors; however, a clear understanding of the underlying physics could not yet be obtained. Possible options are for example interface effects at the electrodes or the formation and destruction of filaments. Here we present resistive switching in an organic spin valve based on tunneling anisotropic magnetoresistance. Similar to experiments in conventional spin-valve devices with two ferromagnetic electrodes we observe a modulation of the magnetoresistance by the electrical switching. However, as the magnetoresistance effect's origin is unambiguously clear, which is not always the case for effects in conventional structures, it can be exploited to prove that a tunnel barrier exists at the interface between the ferromagnetic oxide electrode and the organic semiconductor. Furthermore our experiments reveal that this barrier is reversibly modified during the switching, which causes both the change in magnetoresistance and total device resistance. Quantitative analysis indicates that the barrier is situated in the oxide layer. A phenomenological model provides a full description of the microscopic processes involved in the resistive switching.

  16. Nonlocal, local, and extraction spin valves based on ferromagnet/semiconductor hybrid structures consisting of the Heusler alloy Co2FeSi on GaAs

    Science.gov (United States)

    Ramsteiner, Manfred; Manzke, Yori; Bruski, Pawel; Farshchi, Rouin; Herfort, Jens

    2013-09-01

    We demonstrate electrical injection, extraction and detection of spin polarization in a lateral transport structure consisting of ferromagnetic Co2FeSi stripes on a nonmagnetic n-GaAs transport channel. For the lateral transport based on electrical spin injection, the characteristic spin-valve signatures are observed both in the nonlocal and local configurations. The comparatively large magnitude of the local spin valve signal and the high signal-to-noise ratio are attributed to the large spin polarization at the Fermi energy of Co2FeSi in the well-ordered L21 phase. Furthermore, we elucidate a device concept in which the basic building block consists of a local spin valve utilizing spin extraction instead of injection at the ferromagnetic stripes for its fundamental operation principle. An extended device comprises an array of such extraction-spin valves in which the spin polarization in the transport channel results from a cascade of spin extraction events. Such a multiple-extraction spin valve acts as a nonvolatile reconfigurable current divider in which a single electrical output corresponds to a particular magnetization configuration of the entire stripe array (2m-1 electrical output levels for m ferromagnetic contacts). We discuss potential implementations of this concept for spintronic memory circuits and for sources of highly spin-polarized drift currents.

  17. Molecular Spintronic Devices: from Molecular Spin Valves to Spin-OLEDs

    OpenAIRE

    Gómez Miralles, Sara

    2017-01-01

    La investigación llevada a cabo durante el periodo de tesis doctoral y que se describe en este manuscrito pertenece al campo de la espintrónica molecular. Ha sido motivada por el deseo de incorporar nuevos materiales moleculares a dispositivos espintrónicos y ahondar en la comprensión de la inyección y el transporte de espín en este tipo de capas, a través del estudio de dispositivos como la válvula de espín molecular y el spin-OLED. En 1988 Albert Fert y Peter Grünberg descubrieron que la...

  18. Theory of box-model hyperfine couplings and transport signatures of long-range nuclear-spin coherence in a quantum-dot spin valve

    Science.gov (United States)

    Chesi, Stefano; Coish, W. A.

    2015-06-01

    We have theoretically analyzed coherent nuclear-spin dynamics induced by electron transport through a quantum-dot spin valve. The hyperfine interaction between electron and nuclear spins in a quantum dot allows for the transfer of angular momentum from spin-polarized electrons injected from ferromagnetic or half-metal leads to the nuclear spin system under a finite voltage bias. Accounting for a local nuclear-spin dephasing process prevents the system from becoming stuck in collective dark states, allowing a large nuclear polarization to be built up in the long-time limit. After reaching a steady state, reversing the voltage bias induces a transient current response as the nuclear polarization is reversed. Long-range nuclear-spin coherence leads to a strong enhancement of spin-flip transition rates (by an amount proportional to the number of nuclear spins) and is revealed by an intense current burst, analogous to superradiant light emission. The crossover to a regime with incoherent spin flips occurs on a relatively long-time scale, on the order of the single-nuclear-spin dephasing time, which can be much longer than the time scale for the superradiant current burst. This conclusion is confirmed through a general master equation. For the two limiting regimes (coherent/incoherent spin flips), the general master equation recovers our simpler treatment based on rate equations, but is also applicable at intermediate dephasing. Throughout this work, we assume uniform hyperfine couplings, which yield the strongest coherent enhancement. We propose realistic strategies, based on isotopic modulation and wave-function engineering in core-shell nanowires, to realize this analytically solvable "box-model" of hyperfine couplings.

  19. Spin dependent transport and magnetic properties in Fe{sub 4}N/tris(8-hydroxyquinoline) aluminum/Co organic spin valves fabricated by facing-target sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zirun [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Wang, Xiaocha [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Dai, Haitao [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Mi, Wenbo, E-mail: miwenbo@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Bai, Haili [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2015-08-03

    Spin-dependent electronic transport and magnetic properties of Fe{sub 4}N/tris(8-hydroxyquinoline) aluminum (Alq{sub 3})/Co organic spin valves (OSVs) are investigated. Fe{sub 4}N/Alq{sub 3}/Co OSVs with different Alq{sub 3} thicknesses t exhibit an inverse magnetoresistance (MR), which comes from the opposite effective spin polarization at the two ferromagnetic electrode/Alq{sub 3} interfaces. For the antiparallel configurations, MR at 3 K presents the obvious asymmetry, corresponding to the asymmetric hysteresis loop. The asymmetric loops of magnetization and MR can be attributed to the magnetic coupling at the Alq{sub 3}/Co interface. The interfacial diffusion between Co and Alq{sub 3} is weak due to the advantages of facing-target sputtering. Below 120 nm, MR increases with the increased t owing to the decreased effect of the ill-defined layer. The reduced MR at 260 nm is ascribed to the decline of spin polarization. - Highlights: • Fe{sub 4}N/Alq{sub 3}/Co organic spin valves exhibit an inverse magnetoresistance. • Asymmetric magnetoresistance is attributed to interfacial magnetic coupling. • The advantages of facing-target sputtering make interfacial diffusion weak.

  20. Simultaneous measurement of brain perfusion and labeling efficiency in a single pseudo-continuous arterial spin labeling scan.

    Science.gov (United States)

    Chen, Zhensen; Zhao, Xihai; Zhang, Xingxing; Guo, Rui; Teeuwisse, Wouter M; Zhang, Bida; Koken, Peter; Smink, Jouke; Yuan, Chun; van Osch, Matthias J P

    2017-07-24

    The aim of this study was to propose, optimize, and validate a pseudo-continuous arterial spin labeling (pCASL) sequence for simultaneous measurement of brain perfusion and labeling efficiency. The proposed sequence incorporates the labeling efficiency measurement into the postlabeling delay period of a conventional perfusion pCASL sequence by using the time-encoding approach. In vivo validation experiments were performed on nine young subjects by comparing it to separate perfusion and labeling efficiency sequences. Sensitivity of the proposed combined sequence for measuring labeling efficiency changes was further addressed by varying the flip angles of the pCASL labeling radiofrequency pulses. The proposed combined sequence decreased the perfusion signal by ∼4% and a lower labeling efficiency (by ∼10%) was found as compared to the separate sequences. However, the temporal signal-noise-ratio of the perfusion signal remained unchanged. When the pCASL flip angle was decreased to a suboptimal setting, a strong correlation was found between the combined and the separate sequences for the relative change in pCASL perfusion signal as well as for the relative change in labeling efficiency. High correlation was also observed between relative changes in perfusion signal and the measured labeling efficiencies. The proposed sequence allows simultaneous measurement of brain perfusion and labeling efficiency with high time-efficiency at the price of only a small compromise in measurement accuracy. The additional labeling efficiency measurement can be used to facilitate qualitative interpretation of pCASL perfusion images. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Huong Giang, D.T., E-mail: giangdth@vnu.edu.vn [Nano Magnetic Materials and Devices Department, Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam National University, Hanoi E3 Building, 144 Xuan Thuy Road, Cau Giay, Hanoi (Viet Nam); Thuc, V.N.; Duc, N.H. [Nano Magnetic Materials and Devices Department, Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam National University, Hanoi E3 Building, 144 Xuan Thuy Road, Cau Giay, Hanoi (Viet Nam)

    2012-07-15

    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {l_brace}Ni{sub 80}Fe{sub 20}/Cu/Fe{sub 50}Co{sub 50}/IrMn{r_brace}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: Black-Right-Pointing-Pointer Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. Black-Right-Pointing-Pointer Magnetization, magnetoresistance changes under electric field across piezoelectric. Black-Right-Pointing-Pointer Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. Black-Right-Pointing-Pointer This advance shows great implications for low-power electronics and spintronics.

  2. Investigations of the polymer/magnetic interface of organic spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.A., E-mail: n.a.morley@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Dost, R.; Lingam, A.S.V. [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Barlow, A.J. [National EPSRC XPS Users’ Service, School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-12-30

    Graphical abstract: - Highlights: • Metal carbide and sulphide species are detected at a polymer–magnetic interface. • Top magnetic electrodes on P3HT have uniaxial anisotropy. • Top magnetic electrodes on PBTTT are isotropic. - Abstract: This work investigates the top interface of an organic spin-valve, to determine the interactions between the polymer and top magnetic electrode. The polymers studied are regio-regular poly(3-hexylthiophene) (RR-P3HT) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and the magnetic top electrodes are NiFe and Fe. X-ray photoelectron spectroscopy (XPS) is used to determine the bonding at the interface, along with the extent of how oxidised the magnetic layers are, while atomic force microscopy (AFM) is used to determine the surface roughness. A magneto-optic Kerr effect (MOKE) magnetometer is used to study the magnetic properties of the top electrode. It is shown that at the organic–magnetic interface the magnetic atoms interact with the polymer, as metallic–sulphide and metallic-carbide species are present at the interface. It is also shown that the structure of the polymer influences the anisotropy of the magnetic electrode, such that the magnetic electrodes grown on RR-P3HT have uniaxial anisotropy, while those grown on PBTTT are isotropic.

  3. Investigations of the polymer/magnetic interface of organic spin-valves

    Science.gov (United States)

    Morley, N. A.; Dost, R.; Lingam, A. S. V.; Barlow, A. J.

    2015-12-01

    This work investigates the top interface of an organic spin-valve, to determine the interactions between the polymer and top magnetic electrode. The polymers studied are regio-regular poly(3-hexylthiophene) (RR-P3HT) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and the magnetic top electrodes are NiFe and Fe. X-ray photoelectron spectroscopy (XPS) is used to determine the bonding at the interface, along with the extent of how oxidised the magnetic layers are, while atomic force microscopy (AFM) is used to determine the surface roughness. A magneto-optic Kerr effect (MOKE) magnetometer is used to study the magnetic properties of the top electrode. It is shown that at the organic-magnetic interface the magnetic atoms interact with the polymer, as metallic-sulphide and metallic-carbide species are present at the interface. It is also shown that the structure of the polymer influences the anisotropy of the magnetic electrode, such that the magnetic electrodes grown on RR-P3HT have uniaxial anisotropy, while those grown on PBTTT are isotropic.

  4. Magnetization in a epitaxial [Fe/Cr/Co/Cr]{sub 20x} spin valve system

    Energy Technology Data Exchange (ETDEWEB)

    Bruessing, Frank; Toperverg, Boris; Zhernenkov, Kirill; Wolff, Maximilian; Zabel, Hartmut [Department of Physics, Ruhr-University Bochum (Germany); Theis-Broehl, Katharina [University of Applied Sciences Bremerhaven (Germany); Wiemann, Carsten; Kaiser, Alexander; Schneider, Claus M. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    Magnetic heterostructures containing different magnetic layers, such as Co and Fe, are essential elements for modern spintronic devices. As a model system we have chosen [Co/Cr/Fe/Cr(100)]{sub 20x} epitaxial superlattices with spin valve properties. The thicknesses of the Fe and Co layers were adjusted such that their magnetization magnitudes are roughly equal. The quality of the layering and the epitaxial relationship were verified via x-ray methods. Via PEEM and PNR the ground state and the magnetization reversal were studied. In this work we mainly focused on the magnetic correlation between Co and Fe mediated by Cr spacer layer and its dependence on the Co bcc-hcp martensitic transition. The alignment between neighboring Co and Fe layers can be recognized via intensity variations of the superlattice Bragg peaks, which are different for odd and even orders. For a certain thickness of the Co and Fe layers in the as grown state additional half-order peaks can be recognized, which indicate a spiral like magnetic ordering in the sample. A combination of the magnetic anisotropy of the different layers and interlayer exchange coupling is most likely the reason for the spiral state.

  5. Magnetic proximity effect at the interface between a cuprate superconductor and an oxide spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, G. A., E-mail: gena@hitech.cplire.ru; Demidov, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation); Khaydukov, Yu. N.; Mustafa, L. [Max Planck Institute for Solid State Research (Germany); Constantinian, K. Y. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation); Kalabukhov, A. V.; Winkler, D. [Chalmers University of Technology (Sweden)

    2016-04-15

    A heterostructure that consists of the YBa{sub 2}Cu{sub 3}O{sub 7–δ} cuprate superconductor and the SrRuO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} ruthenate/manganite spin valve is investigated using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that a magnetic moment is induced due to the magnetic proximity effect in the superconducting part of the heterostructure, while the magnetic moment in the composite ferromagnetic interlayer is suppressed. The magnetization emerging in the superconductor coincides in order of magnitude with the results of calculations taking into account the induced magnetic moment of Cu atoms because of orbital reconstruction at the interface between the superconductor and the ferromagnet, as well as with the results of the model taking into account the variations in the density of states at a distance on the order of the coherence length in the superconductor. The experimentally obtained characteristic penetration depth of the magnetic moment in the superconductor considerably exceeds the coherence length of the cuprate superconductor, which indicates the predominance of the mechanism of induced magnetic moment of Cu atoms.

  6. Feasibility of Using Pseudo-Continuous Arterial Spin Labeling Perfusion in a Geriatric Population at 1.5 Tesla.

    Directory of Open Access Journals (Sweden)

    Sigurdur Sigurdsson

    Full Text Available To evaluate the feasibility of using pseudo-continuous arterial spin labeling (pCASL perfusion in a geriatric population at 1.5-Tesla.In 17 participants (mean age 78.8±1.63 years we assessed; 1 inter-session repeatability and reliability of resting state perfusion in 27 brain regions; 2 brain activation using finger-tapping as a means to evaluate the ability to detect flow differences; 3 reliability by comparing cerebral blood flow (CBF with pCASL to CBF with phase contrast (PC-MR.The CBF (mean±standard deviation (SD for the whole brain grey matter (GM was 40.6±8.4 and 41.4±8.7 ml/100g/min for the first and second scan respectively. The within-subject standard deviation (SDw, the repeatability index (RI and intra-class correlation coefficient (ICC across the 27 regions ranged from 1.1 to 7.9, 2.2 to 15.5 and 0.35 to 0.98 respectively. For whole brain GM the SDw, RI and ICC were 1.6, 3.2 and 0.96 respectively. The between-subject standard deviation (SDB was larger than the SDw for all regions. Comparison of CBF at rest and activation on a voxel level showed significantly higher perfusion during finger tapping in the motor- and somatosensory regions. The mean CBF for whole brain GM was 40.6±8.4 ml/100g/min at rest and 42.6±8.6 ml/100g/min during activation. Finally the reliability of pCASL against the reference standard of PC-MR was high (ICC = 0.80. The mean CBF for whole brain measured with PC-MRI was 54.3±10.1 ml/100g/min and 38.3±7.8 ml/100g/min with pCASL.The results demonstrate moderate to high levels of repeatability and reliability for most brain regions, comparable to what has been reported for younger populations. The performance of pCASL at 1.5-Tesla shows that region-specific perfusion measurements with this technique are feasible in studies of a geriatric population.

  7. Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system.

    Science.gov (United States)

    Aksoy, Murat; Maclaren, Julian; Bammer, Roland

    2017-06-01

    Head motion is an unsolved problem in magnetic resonance imaging (MRI) studies of the brain. Real-time tracking using a camera has recently been proposed as a way to prevent head motion artifacts. As compared to navigator-based approaches that use MRI data to detect and correct motion, optical motion correction works independently of the MRI scanner, thus providing low-latency real-time motion updates without requiring any modifications to the pulse sequence. The purpose of this study was two-fold: 1) to demonstrate that prospective optical motion correction using an optical camera mitigates artifacts from head motion in three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) acquisitions and 2) to assess the effect of latency differences between real-time optical motion tracking and navigator-style approaches (such as PROMO). An optical motion correction system comprising a single camera and a marker attached to the patient's forehead was used to track motion at a rate of 60fps. In the presence of motion, continuous tracking data from the optical system was used to update the scan plane in real-time during the 3D-PCASL acquisition. Navigator-style correction was simulated by using the tracking data from the optical system and performing updates only once per repetition time. Three normal volunteers and a patient were instructed to perform continuous and discrete head motion throughout the scan. Optical motion correction yielded superior image quality compared to uncorrected images or images using navigator-style correction. The standard deviations of pixel-wise CBF differences between reference and non-corrected, navigator-style-corrected and optical-corrected data were 14.28, 14.35 and 11.09mL/100g/min for continuous motion, and 12.42, 12.04 and 9.60mL/100g/min for discrete motion. Data obtained from the patient revealed that motion can obscure pathology and that application of optical prospective correction can successfully reveal the underlying

  8. Efficiency of Spin-Transfer-Torque Switching and Thermal-Stability Factor in a Spin-Valve Nanopillar with First- and Second-Order Uniaxial Magnetic Anisotropies

    Science.gov (United States)

    Matsumoto, Rie; Arai, Hiroko; Yuasa, Shinji; Imamura, Hiroshi

    2017-04-01

    The efficiency of spin-transfer-torque (STT) switching and the thermal-stability factor are important figures of merit in STT-based magnetoresistive random-access memory. We derive analytical expressions of the STT-switching efficiency and the thermal-stability factor for a perpendicularly magnetized spin-valve nanopillar with the first- and the second-order uniaxial magnetic anisotropy. It is shown that the STT-switching efficiency is maximized when the effective first-order anisotropy constant (Ku 1 ,eff ) is equal to the second-order anisotropy constant (Ku 2). It is also shown that the thermal-stability factor is most (least) sensitive to a variation of the applied current when Ku 2=-0.41 (0.70) Ku 1 ,eff.

  9. ''Isolation'' of the proximity-induced triplet pairing channel in the superconductor/ferromagnet spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Garifyanov, Nadir; Kamashev, Andrey; Validov, Aidar; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Fominov, Yakov [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Schumann, Joachim; Kataev, Vladislav; Thomas, Juergen [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, Technical University Dresden (Germany)

    2016-07-01

    We have studied the proximity induced superconducting triplet pairing in CoO{sub x}/Py1/Cu/Py2/Cu/Pb spin-valve structure. By optimizing the parameters of structures we found a full switching between the normal and superconducting states. To observe an ''isolated'' triplet spin-valve effect we exploited the oscillatory feature of the magnitude of the ordinary spin-valve effect ΔT{sub c} in the dependence of the Py2-layer thickness d{sub Py2}. We determined the value of d{sub Py2} at which ΔT{sub c} caused by the ordinary spin-valve effect (the difference in T{sub c} between antiparallel and parallel mutual orientation of magnetizations of the Py1 and Py2 layers) is suppressed. For such a sample a ''pure'' triplet spin-valve effect which causes the minimum in T{sub c} at the orthogonal configuration of magnetizations has been observed.

  10. Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

    Directory of Open Access Journals (Sweden)

    Mohammad Koleini

    2012-08-01

    Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.

  11. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  12. Device properties of the spin-valve transistor and the magnetic tunnel transistor

    NARCIS (Netherlands)

    van 't Erve, O.M.J.

    Spin electronics is a new research area, which not only uses the electron’s charge but also its spin. By using the electron spin dependent properties of magnetic materials one can make devices with a new functionality. This has lead to magnetoresistive devices that can change their resistance by 10

  13. Noncollinear ferromagnetic easy axes in Py/Ru/FeCo/IrMn spin valves induced by oblique deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, T. E. P.; Parreiras, D. E.; Gomes, G. F. M.; Krambrock, K.; Paniago, R. [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil); Michea, S.; Rodríguez-Suárez, R. L. [Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC,” Pontifícia Universidad Católica de Chile, Casilla 306, Santiago (Chile); Filho, M. S. Araújo; Macedo, W. A. A. [Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear, 30123-970 Belo Horizonte, MG (Brazil)

    2014-06-16

    We present an investigation on the magnetic properties of Py/Ru/FeCo/IrMn spin valves grown by dc magnetron sputtering. The sample fabrication setup has two important features, (i) the five magnetron sputtering sources are placed in a cluster flange 72° from each other, and (ii) each source is tilted with respect to the sample normal. In-plane angular dependence of the ferromagnetic resonance (FMR) was used to obtain the relevant magnetic anisotropies, such as uniaxial and exchange bias fields. The oblique deposition geometry employed has induced non-collinear easy axes of the two ferromagnetic (FM) layers, with high uniaxial field strengths. The symmetry shift of the angular dependence of the FMR resonances of the two FM layers gives us directly the angle between the easy axes of FM{sub 1} (Py) and FM{sub 2} (FeCo), which turned out to be the angle between two adjacent sputtering sources. The observations of the present study suggest that, by combining oblique deposition and appropriate angles of incidence of the deposition flux, the uniaxial (and unidirectional) axes of individual FM layers can be precisely engineered in spin valve fabrication.

  14. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  15. Dynamics of spin valves investigated using Magneto-Optical Kerr Effect Spectroscopy

    Science.gov (United States)

    Stevens, Christopher; Paul, Jagannath; Dey, Prasenjit; Miller, Casey; McGill, Stephen; Karaiskaj, Denis

    Through an all-optical approach, we are investigating the spin dynamics in different spin torque based structures. Using pump-probe Time-Resolved Magneto-Optical Kerr Effect (TR-MOKE) spectroscopy, we are able to monitor the ultrafast magnon propagation on a sub-picosecond timescale as well as the longer lived oscillations and demagnetization. This represents a recent efforts to realize magnon induced spin torque using an all optical method. This research at USF is supported by the National Science Foundation, Division of Electrical, Communications and Cyber Systems under Grant Number: 1231929. The work was done in part at the NHMFL, Tallahassee, FSU under Grants: DMR-1229217, DMR-1157490.

  16. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    Science.gov (United States)

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  17. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Peixeiro de Freitas

    2011-02-01

    Full Text Available A compensation method for the sensitivity drift of a magnetoresistive (MR Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC. No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.

  18. Ultra-Compact 100 × 100 μm² Footprint Hybrid Device with Spin-Valve Nanosensors.

    Science.gov (United States)

    Leitao, Diana C; Coelho, Paulo; Borme, Jerome; Knudde, Simon; Cardoso, Susana; Freitas, Paulo P

    2015-12-04

    Magnetic field mapping with micrometric spatial resolution and high sensitivity is a challenging application, and the technological solutions are usually based on large area devices integrating discrete magnetic flux guide elements. In this work we demonstrate a high performance hybrid device with improved field sensitivity levels and small footprint, consisting of a ultra-compact 2D design where nanometric spin valve sensors are inserted within the gap of thin-film magnetic flux concentrators. Pole-sensor distances down to 400 nm are demonstrated using nanofabrication techniques combined with an optimized liftoff process. These 100 × 100 μm2 pixel sensors can be integrated in modular devices for surface mapping without moving parts.

  19. Ultra-Compact 100 × 100 μm2 Footprint Hybrid Device with Spin-Valve Nanosensors

    Directory of Open Access Journals (Sweden)

    Diana C. Leitao

    2015-12-01

    Full Text Available Magnetic field mapping with micrometric spatial resolution and high sensitivity is a challenging application, and the technological solutions are usually based on large area devices integrating discrete magnetic flux guide elements. In this work we demonstrate a high performance hybrid device with improved field sensitivity levels and small footprint, consisting of a ultra-compact 2D design where nanometric spin valve sensors are inserted within the gap of thin-film magnetic flux concentrators. Pole-sensor distances down to 400 nm are demonstrated using nanofabrication techniques combined with an optimized liftoff process. These 100 × 100 μm 2 pixel sensors can be integrated in modular devices for surface mapping without moving parts.

  20. Magnetoresistance effect in Fe{sub 20}Ni{sub 80}/graphene/Fe{sub 20}Ni{sub 80} vertical spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Entani, Shiro, E-mail: entani.shiro@qst.go.jp; Naramoto, Hiroshi; Sakai, Seiji [Quantum Beam Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Seki, Takeshi; Yamamoto, Tatsuya; Takahashi, Saburo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Sakuraba, Yuya [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-004 (Japan); Takanashi, Koki [Quantum Beam Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-08-22

    Vertical spin valve devices with junctions of single- and bi-layer graphene interlayers sandwiched with Fe{sub 20}Ni{sub 80} (Permalloy) electrodes were fabricated by exploiting the direct growth of graphene on the Permalloy. The linear current-voltage characteristics indicated that ohmic contacts were realized at the interfaces. The systematic characterization revealed the significant modification of the electronic state of the interfacial graphene layer on the Permalloy surface, which indicates the strong interactions at the interface. The ohmic transport was attributable to the strong interface-interaction. The vertical resistivity of the graphene interlayer and the spin asymmetry coefficient at the graphene/Permalloy interface were obtained to be 0.13 Ω cm and 0.06, respectively. It was found that the strong interface interaction modifies the electronic structure and metallic properties in the vertical spin valve devices with bi-layer graphene as well as single-layer graphene.

  1. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Directory of Open Access Journals (Sweden)

    Ma Jing-Min

    2011-01-01

    Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:

  2. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  3. Magnetotransport of hot electrons and holes in the spin-valve transistor

    NARCIS (Netherlands)

    Gökcan, H.

    The conventional electronics uses the charge property of the electrons and holes. The building blocks are semiconductors which can be tuned to change the properties of the devices. In the field of spintronics, the spin property of the charge carriers is added to the functionality of the devices. The

  4. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers; Magnetotransport in Spinventil-Systemen mit amorphen magnetischen und supraleitenden Teilschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Roland Johannes

    2006-04-27

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T{sub c}(H)- and the R(H)-curve. (orig.)

  5. Analisa Pergeseran Magnetic Domain Wall Pada Lapisan Tipis Free Layer CoFeB Untuk Sistem Spin-Valve Tunneling Magneto-Resistance (TMR) Sensor

    OpenAIRE

    Setyawan, Galih; Suharyadi, Edi

    2013-01-01

    Telah dilakukan analisa pergeseran magnetic domain wall pada lapisan tipis free layer CoFeB untuk sistem spin-valve Tunneling Magneto-Resistance (TMR). Analisa telah dilakukan dengan menggunakan software Object Oriented Micromagnetic Framework (OOMMF) berdasarkan persamaan Landau-Lifshitz Gilbert (LLG). Analisa pergeseran magnetic domain wall pada CoFeB yang mempunyai ukuran luas 120x100 nm2 dengan variasi ketebalan 1 dan 4 nm. Dari simulasi didapatkan hasil analisa pergeseran magnetic domain...

  6. Analisa Pergeseran Magnetic Domain Wall Pada Lapisan Tipis Free Layer CoFeB Untuk Sistem Spin-Valve Tunneling Magneto-Resistance (TMR) Sensor

    OpenAIRE

    Setyawan, Galih; Suharyadi, Edi

    2014-01-01

    Telah dilakukan analisa pergeseran magnetic domain wall pada lapisan tipis free layer CoFeB untuk sistem spin-valve Tunneling Magneto-Resistance (TMR). Analisa telah dilakukan dengan menggunakan software Object Oriented Micromagnetic Framework (OOMMF) berdasarkan persamaan Landau-Lifshitz Gilbert (LLG). Analisa pergeseran magnetic domain wall pada CoFeB yang mempunyai ukuran luas 120x100 nm2 dengan variasi ketebalan 1 dan 4 nm. Dari simulasi didapatkan hasil analisa pergeseran magnetic domain...

  7. Evaluation of the degree of arteriovenous shunting in intracranial arteriovenous malformations using pseudo-continuous arterial spin labeling magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sunwoo, Leonard; Park, Sun-Won [Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Sohn, Chul-Ho; Yun, Tae Jin; Choi, Seung Hong; Cho, Young Dae; Kim, Ji-hoon; Han, Moon Hee [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Lee, Jong Young [Kangdong Sacred Heart Hospital, Department of Neurosurgery, Seoul (Korea, Republic of); Yi, Kyung Sik [Chungbuk National University Hospital, Department of Radiology, Cheongju (Korea, Republic of); Paek, Sun Ha; Kim, Yong Hwy; Kim, Jin Wook; Chung, Hyun-Tai; Kim, Dong Gyu [Seoul National University Hospital, Department of Neurosurgery, Seoul (Korea, Republic of)

    2015-08-15

    Intracranial arteriovenous malformations (AVMs) display venous signals on arterial spin labeling (ASL) magnetic resonance (MR) imaging due to the presence of arteriovenous shunting. Our aim was to quantitatively correlate AVM signal intensity on ASL with the degree of arteriovenous shunting estimated on digital subtraction angiography (DSA) in AVMs. MR imaging including pseudo-continuous ASL at 3 T and DSA were obtained on the same day in 40 patients with intracranial AVMs. Two reviewers assessed the nidus and venous signal intensities on ASL images to determine the presence of arteriovenous shunting. Interobserver agreement on ASL between the reviewers was determined. ASL signal intensity of the AVM lesion was correlated with AVM size and the time difference between normal and AVM venous transit times measured from the DSA images. Interobserver agreement between two reviewers for nidus and venous signal intensities was excellent (κ = 0.80 and 1.0, respectively). Interobserver agreement regarding the presence of arteriovenous shunting was perfect (κ = 1.0). AVM signal intensity showed a positive relationship with the time difference between normal and AVM venous transit times (r = 0.638, P < 0.001). AVM signal intensity also demonstrated a positive relationship with AVM size (r = 0.561, P < 0.001). AVM signal intensity on ASL in patients with AVM correlates well with the degree of early vein opacification on DSA, which corresponds to the degree of arteriovenous shunting. (orig.)

  8. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  9. Characteristic distributions of regional cerebral blood flow changes in major depressive disorder patients: a pseudo-continuous arterial spin labeling (pCASL) study.

    Science.gov (United States)

    Ota, Miho; Noda, Takamasa; Sato, Noriko; Hattori, Kotaro; Teraishi, Toshiya; Hori, Hiroaki; Nagashima, Anna; Shimoji, Keigo; Higuchi, Teruhiko; Kunugi, Hiroshi

    2014-08-01

    Most previous studies that examined regional cerebral blood flow (rCBF) abnormalities in major depressive disorder (MDD) required the injection of radioisotopes into subjects. Here by using magnetic resonance imaging (MRI) with the pseudo-continuous arterial spin labeling (pCASL) method which does not require radioisotopes, we examined rCBF in patients with MDD in comparison with that in patients with schizophrenia and healthy subjects, taking the regional cerebral gray matter volume into account. Subjects were 27 patients with MDD, 42 with schizophrenia and 43 healthy volunteers who underwent 3-T MRI with pCASL. Obtained pCASL imaging data were subject to the voxel-by-voxel statistical analysis. There were significant reductions of rCBF in the right inferior prefrontal cortex and anterior cingulate cortices (ACCs) in the MDD patients compared with the healthy controls. When compared with the schizophrenic patients, the MDD patients showed lower rCBF in the subgenual ACC and higher rCBF in left occipital region. The abnormalities of rCBF in MDD were known to reverse during symptom remission. Further study with follow-up period would bring the perception about the treatment response. The rCBF reduction in the subgenual region may be a specific functional abnormality to MDD patients, which may provide a biological marker for MDD. The MRI with pCASL method is a promising tool to detect rCBF abnormalities controlling for gray matter volume in psychiatric disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Assessment of tumor blood flow and its correlation with histopathologic features in skull base meningiomas and schwannomas by using pseudo-continuous arterial spin labeling images

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tatsuya, E-mail: yamatatu_01eik@yahoo.co.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Takeuchi, Hiroaki, E-mail: takeu@u-fukui.ac.jp [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Kinoshita, Kazuyuki, E-mail: kkino@u-fukui.ac.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Kosaka, Nobuyuki, E-mail: nkosaka@u-fukui.ac.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Kimura, Hirohiko, E-mail: kimura@u-fukui.ac.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-05-15

    Objective: We aimed to investigate whether pseudo-continuous arterial spin labeling (pcASL)-MRI can adequately evaluate tumor perfusion even if the tumors are located in the skull base region and evaluate the correlation between tumor blood flow (TBF) and the histopathologic features of skull base meningiomas and schwannomas. Materials and methods: We enrolled 31 patients with skull base meningioma (n = 14) and schwannoma (n = 17) who underwent surgical resection. TBF was calculated from pcASL. Tissue sections were stained with CD34 to evaluate microvessel area (MVA). TBF and MVA ratio were compared between meningiomas and schwannomas using Mann–Whitney U-test. The correlations between MVA ratio and TBF were evaluated in each tumor by using single linear regression analysis and Spearman's rank correlation coefficients (r{sub s}). Results: MVA ratio and TBF were significantly higher in meningioma than in schwannoma (both p < 0.01). Correlation analyses revealed significant positive correlations between MVA ratio and both mean and max TBF for meningiomas (r{sub s} = 0.89, 0.81, both p < 0.01). There was a weak positive correlation between MVA ratio and mean TBF for schwannomas (r{sub s} = 0.43, p = 0.04). However, no significant correlation was found between MVA ratio and max TBF for schwannoma. Conclusions: pcASL-MRI is useful for evaluating tumor perfusion even if the tumors are located in the skull base region. Moreover, pcASL-TBF was significantly higher in most meningiomas compared to schwannomas, which can help in the differential diagnosis of the 2 tumor types even without the use of contrast material.

  11. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  12. Studies of magnetization reversals about two kinds of MR curves observed in the spin valve using the (110) magnetite pinning layer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, H., E-mail: matsuda.hiroshi01@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101 (Japan); Sakakima, H. [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101 (Japan)

    2012-05-15

    In the spin valves composed of Co/Cu/Co on the epitaxial (110) Fe{sub 3}O{sub 4} as the pinning layer, we found out that shapes of magnetoresistance (MR) curves depended on thickness of the cobalt pinned layer (PL) with the field applied in the Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket direction of Fe{sub 3}O{sub 4}: (1) the flat-shaped MR curve showed low MR ratio under 2 nm thickness of cobalt pinned layer (PL): (2) the unusually shaped MR curve showed high MR ratio over 5 nm thickness of PL in spite of the hard direction of Co layers. We assumed that the synchronous magnetization reversal (SR) of PL and Fe{sub 3}O{sub 4} would occur at the MR switching field due to 90 Degree-Sign coupling between PL and Fe{sub 3}O{sub 4} layers. Then, only occurrence of SR of PL cause the drastic change of the magnetization relative angle between FL and PL, indicating the observation of the unusually shaped MR curve having high MR ratio. On the other hand, the SR of cobalt free layer (FL) together with the PL flip also occur due to the large contribution of Neel-type ferromagnetic coupling between FL and PL, which lead to less changing the relative angle of FL and PL during magnetization processes, indicating the observation of a flat-shaped MR curve having low MR ratio. This dependence of PL thickness on MR curves might come from the balance of Neel (ferromagnetic) and stray field (antiferromagnetic) coupling due to magnetic free pole at edge of PL. - Highlights: Black-Right-Pointing-Pointer 90 Degree-Sign Coupling between two magnetic layers giving rise to interested magnetization reversals in magnetic multi-layers. Black-Right-Pointing-Pointer Synchronous magnetization reversals during magnetization processes of spin valves. Black-Right-Pointing-Pointer Competing effects of Neel (orange peel), stray field coupling between ferromagnetic pinned and free layers in Fe{sub 3}O{sub 4} spin valves. Black-Right-Pointing-Pointer Interested magnetoresistance (MR

  13. Large enhancement of bulk spin polarization by suppressing Co{sub Mn} anti-sites in Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) Heusler alloy thin film

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.; Takahashi, Y. K.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Furubayashi, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuji, N.; Tajiri, H. [Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo 679-5198 (Japan); Miura, Y. [Kyoto Institute of Technology, Kyoto 605-8585 (Japan); Chen, J.; Hono, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-03-21

    We have investigated the structure and magneto-transport properties of Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) (CMGG) Heusler alloy thin films with near-stoichiometric and Mn-rich compositions in order to understand the effect of Co-Mn anti-sites on bulk spin polarization. Anomalous x-ray diffraction measurements using synchrotron radiated x-rays confirmed that Co{sub Mn} anti-sites easily form in the near-stoichiometric CMGG compound at annealing temperature higher than 400 °C, while it can be suppressed in Mn-rich CMGG films. Accordingly, large enhancement in negative anisotropic magnetoresistance of CMGG films and giant magnetoresistance (GMR) in current-perpendicular-to-plane (CPP) pseudo spin valves were observed in the Mn-rich composition. A large resistance-area product change (ΔRA) of 12.8 mΩ μm{sup 2} was demonstrated in the CPP-GMR pseudo spin valves using the Mn-rich CMGG layers after annealing at 600 °C. It is almost twice of the maximum output observed in the CPP-GMR pseudo spin valves using the near-stoichiometric CMGG. These indicate that the spin polarization of CMGG is enhanced in the Mn-rich composition through suppressing the formation of Co{sub Mn}-antisites in CMGG films, being consistent with first-principle calculation results.

  14. Orange peel coupling in multilayers with perpendicular magnetic anisotropy: Application to (Co/Pt)-based exchange-biased spin-valves

    Science.gov (United States)

    Moritz, J.; Garcia, F.; Toussaint, J. C.; Dieny, B.; Nozières, J. P.

    2004-01-01

    Néel's theory of magnetostatic coupling between two magnetic layers with in-plane magnetization separated by a non-magnetic spacer has been extended to the case of multilayers with perpendicular anisotropy. It is shown that the presence of a correlated roughness between the successive interfaces induces an interlayer coupling through the spacer analogous to the well-known orange peel coupling. However, depending on the parameters describing the interfacial roughness, the magnetic anisotropy and the exchange stiffness constant, this coupling can favor either parallel or an antiparallel alignment of the magnetization in the two ferromagnetic layers. This model was used to quantitatively interpret the variation of interlayer coupling vs. thickness of Pt spacer layer in out-of-plane magnetized exchange-biased spin-valves comprising (Pt/Co) multilayers as free and pinned layers. It is shown that the net coupling can be interpreted by the coexistence of perpendicular orange peel and oscillatory RKKY couplings. Interestingly, since these two couplings have different thickness dependence, in certain range of Pt thickness, the coupling changes sign during growth, being antiferromagnetic at the early stage of the growth of the top (Co/Pt) multilayer but ferromagnetic once the growth is completed.

  15. Spin valve-like magnetic tunnel diode exhibiting giant positive junction magnetoresistance at low temperature in Co2MnSi/SiO2/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Kar, Uddipta; Nath, T. K.

    2018-02-01

    The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).

  16. Molecular dynamics simulations of the formation of 1D spin-valves from stretched Au-Co and Pt-Co nanowires.

    Science.gov (United States)

    Cortes-Huerto, R; Sondon, T; Saúl, A

    2014-11-26

    We have performed molecular dynamics (MD) simulations of stretched Aux-Co1 - x and Ptx-Co1 - x nanowires to investigate the formation of bimetallic monoatomic wires between two electrodes. We have considered nanowires with two concentrations x = 0.2 and 0.8, aspect ratio of 13, a cross section of 1 nm(2) and a wide range of temperatures (from 10 to 400 K). For the MD simulations we have used a semi-empirical interatomic potential based on the second moment approximation (SMA) of the density of states to the tight-binding Hamiltonian.For Au-Co alloys, Au atoms tends to migrate towards the narrowed region to form almost pure Au wires. In the PtCo case the formed chains usually consist of Pt enriched alternating structures. The most striking result is probably the Au(0.2)-Co(0.8) alloy where pure monoatomic Au chains form between two Co electrodes constituting a potential 1D spin valve. Despite the known ease with which the 5d metals (Pt, Ir, and Au) form monoatomic chains (MACS), our results show that in the presence of Co (x = 0.2), the percentage of chain formation is higher than in the Pt and Au rich cases (x = 0.8).

  17. Nanoscale memory elements based on the superconductor-ferromagnet proximity effect and spin-transfer torque magnetization switching

    Science.gov (United States)

    Baek, Burm

    Superconducting-ferromagnetic hybrid devices have potential for a practical memory technology compatible with superconducting logic circuits and may help realize energy-efficient, high-performance superconducting computers. We have developed Josephson junction devices with pseudo-spin-valve barriers. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. This effect persists to nanoscale devices in contrast to the remanent field effect. In nanopillar devices, the magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents at 4 K, which is consistent with the spin-transfer torque effect in analogous room-temperature spin valve devices. These results demonstrate devices that combine major superconducting and spintronic effects for scalable read and write of memory states, respectively. Further challenges and proposals towards practical devices will also be discussed.In collaboration with: William Rippard, NIST - Boulder, Matthew Pufall, NIST - Boulder, Stephen Russek, NIST-Boulder, Michael Schneider, NIST - Boulder, Samuel Benz, NIST - Boulder, Horst Rogalla, NIST-Boulder, Paul Dresselhaus, NIST - Boulder

  18. Validation of planning-free vessel-encoded pseudo-continuous arterial spin labeling MR imaging as territorial-ASL strategy by comparison to super-selective p-CASL MRI.

    Science.gov (United States)

    Hartkamp, Nolan S; Helle, Michael; Chappell, Michael A; Okell, Thomas W; Hendrikse, Jeroen; Bokkers, Reinoud P H; van Osch, Matthias J P

    2014-06-01

    Vessel-encoded (VE) pseudo-continuous arterial spin labeling (p-CASL) is a territorial ASL (T-ASL) technique to identify the perfusion territories of cerebral arteries. The aim of this study was to validate the output of three Vessel-encoded p-CASL image processing methods, k-means clustering with and without subsequent linear analysis and a Bayesian framework, by comparison with the perfusion maps acquired with super-selective p-CASL. The comparison was done quantitatively using the Hausdorff distance and Dice similarity coefficient in the territories of the right and left internal carotid arteries, the basilar artery, and the right and left vertebral arteries. A qualitative comparison was done in the areas of the anterior and posterior circulation, and the deep gray matter. The overall agreement between the Vessel-encoded p-CASL image processing methods and super-selective p-CASL was good; with the difference that the linear analysis and the Bayesian framework were able to detect mixed perfusion. Planning-free Vessel-encoded p-CASL with k-means clustering appears suitable as a general purpose T-ASL strategy, but to determine mixed perfusion a combination with linear analysis, or the Bayesian framework is preferable, which are superior in this regard. To accurately determine the perfusion territory of a single vessel, super-selective p-CASL is still recommended. Copyright © 2013 Wiley Periodicals, Inc.

  19. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases.

    Science.gov (United States)

    Tancredi, Felipe B; Lajoie, Isabelle; Hoge, Richard D

    2015-10-01

    To assess the reproducibility of blood oxygenation level-dependent / cerebral blood flow (BOLD/CBF) responses to hypercapnia/hyperoxia using dual-echo pseudo-continuous arterial spin labeling (pCASL) and step changes in inspired doses. Eight subjects were scanned twice, within 24 hours, using the same respiratory manipulation and imaging protocol. Imaging comprised a 5-minute anatomical acquisition, allowing segmentation of the gray matter (GM) tissue for further analysis, and an 18-minute pCASL functional scan. Hypercapnia/hyperoxia were induced by increasing the fraction of inspired CO2 to 5% and inspired O2 to 60%, alternately. Reproducibility of BOLD and CBF pCASL measures was assessed by computing the inter-session coefficient of variation (CV) of the respective signals in GM. BOLD and CBF measures in GM were robust and consistent, yielding CV values below 10% for BOLD hypercapnic/hyperoxic responses (which averaged 1.9 ± 0.1% and 1.14 ± 0.02%) and below 20% for the CBF hypercapnic response (which averaged 35 ± 2 mL/min/100g). The CV for resting CBF was 3.5%. It is possible to attain reproducible measures of the simultaneous BOLD and CBF responses to blood gases, within a reasonable scan time and with whole brain coverage, using a simple respiratory manipulation and dual-echo pCASL. © 2015 Wiley Periodicals, Inc.

  20. Studies of magnetization reversals about two kinds of MR curves observed in the spin valve using the (110) magnetite pinning layer

    Science.gov (United States)

    Matsuda, H.; Sakakima, H.

    2012-05-01

    In the spin valves composed of Co/Cu/Co on the epitaxial (110) Fe3O4 as the pinning layer, we found out that shapes of magnetoresistance (MR) curves depended on thickness of the cobalt pinned layer (PL) with the field applied in the direction of Fe3O4: (1) the flat-shaped MR curve showed low MR ratio under 2 nm thickness of cobalt pinned layer (PL): (2) the unusually shaped MR curve showed high MR ratio over 5 nm thickness of PL in spite of the hard direction of Co layers. We assumed that the synchronous magnetization reversal (SR) of PL and Fe3O4 would occur at the MR switching field due to 90° coupling between PL and Fe3O4 layers. Then, only occurrence of SR of PL cause the drastic change of the magnetization relative angle between FL and PL, indicating the observation of the unusually shaped MR curve having high MR ratio. On the other hand, the SR of cobalt free layer (FL) together with the PL flip also occur due to the large contribution of Néel-type ferromagnetic coupling between FL and PL, which lead to less changing the relative angle of FL and PL during magnetization processes, indicating the observation of a flat-shaped MR curve having low MR ratio. This dependence of PL thickness on MR curves might come from the balance of Néel (ferromagnetic) and stray field (antiferromagnetic) coupling due to magnetic free pole at edge of PL.

  1. Valve Disease

    Science.gov (United States)

    ... See also on this site: Diseases of the Mitral Valve Diseases of the Aortic Valve Diseases of the Tricuspid ... most invasive option for the treatment of valve disease. During surgery, ... defects of the mitral valve. Replacement is used to treat any diseased ...

  2. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  3. Discrete pseudo-integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko; Li, J.; Pap, E.

    2013-01-01

    Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo- multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals. pdf

  4. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I., E-mail: aifigueg@gmail.com [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Baker, A.A. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Collins-McIntyre, L.J.; Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom)

    2016-02-15

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  5. Temperature-dependence of current-perpendicular-to-the-plane giant magnetoresistance spin-valves using Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Page, M. R.; Nakatani, T. M., E-mail: nakatani.tomoya@nims.go.jp; Stewart, D. A.; York, B. R.; Read, J. C.; Choi, Y.-S.; Childress, J. R. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Road, San Jose, California 95135 (United States)

    2016-04-21

    The properties of Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge (CMFG) (x = 0–0.4) Heusler alloy magnetic layers within polycrystalline current-perpendicular-to-the plane giant magnetoresistance (CPP-GMR) spin-valves are investigated. CMFG films annealed at 220–320 °C exhibit partly ordered B2 structure with an order parameter S{sub B2} = 0.3–0.4, and a lower S{sub B2} was found for a higher Fe content. Nevertheless, CPP-GMR spin-valve devices exhibit a relatively high magnetoresistance ratio of ∼13% and a magnetoresistance-area product (ΔRA) of ∼6 mΩ μm{sup 2} at room temperature, which is almost independent of the Fe content in the CMFG films. By contrast, at low temperatures, ΔRA clearly increases with higher Fe content, despite the lower B2 ordering for increasing the Fe content. Indeed, first-principles calculations reveal that the CMFG alloy with a partially disordered B2 structure has a greater density of d-state at the Fermi level in the minority band compared to the Fe-free (Co{sub 2}MnGe) alloy. This could explain the larger ΔRA measured on CMFG at low temperatures by assuming that s-d scattering mainly determines the spin asymmetry of resistivity as described in Mott's theory.

  6. Heart valve surgery

    Science.gov (United States)

    Valve replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... can relieve your symptoms and prolong your life. Mechanical heart valves do not often fail. However, blood clots can ...

  7. Pseudo Class III malocclusion

    National Research Council Canada - National Science Library

    Al-Hummayani, Fadia M

    2016-01-01

    .... This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors...

  8. Highly Enhanced TMR Ratio and Δ for Double MgO-based p-MTJ Spin-Valves with Top Co2Fe6B2 Free Layer by Nanoscale-thick Iron Diffusion-barrier.

    Science.gov (United States)

    Lee, Seung-Eun; Baek, Jong-Ung; Park, Jea-Gun

    2017-09-19

    For double MgO-based p-MTJ spin-valves with a top Co2Fe6B2 free layer ex-situ annealed at 400 °C, the insertion of a nanoscale-thickness Fe diffusion barrier between the tungsten (W) capping layer and MgO capping layer improved the face-centered-cubic (f.c.c.) crystallinity of both the MgO capping layer and tunneling barrier by dramatically reducing diffusion of W atoms from the W capping layer into the MgO capping layer and tunneling barrier, thereby enhancing the TMR ratio and thermal stability (Δ). In particular, the TMR ratio was extremely sensitive to the thickness of the Fe barrier; it peaked (154%) at about 0.3 nm (the thickness of only two atomic Fe layers). The effect of the diffusion barrier originated from interface strain.

  9. Spin Hanle effect in mesoscopic superconductors

    Science.gov (United States)

    Silaev, M.; Virtanen, P.; Heikkilä, T. T.; Bergeret, F. S.

    2015-01-01

    We present a theoretical study of spin transport in a superconducting mesoscopic spin valve under the action of a magnetic field misaligned with respect to the injected spin. We demonstrate that superconductivity can either strongly enhance or suppress the coherent spin rotation, depending on the type of spin relaxation mechanism being dominated either by spin-orbit coupling or spin-flip scattering at impurities. We also predict a subgap contribution to the nonlocal conductance in multiterminal superconducting hybrid structures which completely eliminates the effect of spin rotation at sufficiently low temperatures.

  10. Quantum Pseudo-Telepathy

    Science.gov (United States)

    Brassard, Gilles; Broadbent, Anne; Tapp, Alain

    2005-11-01

    Quantum information processing is at the crossroads of physics, mathematics and computer science. It is concerned with that we can and cannot do with quantum information that goes beyond the abilities of classical information processing devices. Communication complexity is an area of classical computer science that aims at quantifying the amount of communication necessary to solve distributed computational problems. Quantum communication complexity uses quantum mechanics to reduce the amount of communication that would be classically required. Pseudo-telepathy is a surprising application of quantum information processing to communication complexity. Thanks to entanglement, perhaps the most nonclassical manifestation of quantum mechanics, two or more quantum players can accomplish a distributed task with no need for communication whatsoever, which would be an impossible feat for classical players. After a detailed overview of the principle and purpose of pseudo-telepathy, we present a survey of recent and no-so-recent work on the subject. In particular, we describe and analyse all the pseudo-telepathy games currently known to the authors.

  11. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  12. Spin-Transfer Torque Switching in Nanopillar Superconducting-Magnetic Hybrid Josephson Junctions

    Science.gov (United States)

    Baek, Burm; Rippard, William H.; Pufall, Matthew R.; Benz, Samuel P.; Russek, Stephen E.; Rogalla, Horst; Dresselhaus, Paul D.

    2015-01-01

    The combination of superconducting and magnetic materials to create superconducting devices has been motivated by the discovery of Josephson critical current (Ic s ) oscillations as a function of magnetic layer thickness and the demonstration of devices with switchable critical currents. However, none of the hybrid devices has shown any spintronic effects, such as spin-transfer torque, which are currently used in room-temperature magnetic devices, including spin-transfer torque random-access memory and spin-torque nano-oscillators. We develop nanopillar Josephson junctions with a minimum feature size of 50 nm and magnetic barriers exhibiting magnetic pseudo-spin-valve behavior at 4 K. With a bias current higher than Ic s , these devices allow current-induced magnetization switching that results in tenfold changes in Ic s . The current-induced magnetic switching is consistent with spin-transfer torque models for room-temperature magnetic devices. Our work demonstrates that devices that combine superconducting and spintronic functions show promise for the development of a nanoscale, nonvolatile, cryogenic memory technology.

  13. Experimental Verification of Comparability between Spin-Orbit and Spin-Diffusion Lengths

    OpenAIRE

    Niimi, Yasuhiro; Wei, Dahai; Idzuchi, Hiroshi; Wakamura, Taro; Kato, Takeo; Otani, YoshiChika

    2012-01-01

    We experimentally confirmed that the spin-orbit lengths of noble metals obtained from weak anti-localization measurements are comparable to the spin diffusion lengths determined from lateral spin valve ones. Even for metals with strong spin-orbit interactions such as Pt, we verified that the two methods gave comparable values which were much larger than those obtained from recent spin torque ferromagnetic resonance measurements. To give a further evidence for the comparability between the two...

  14. PSEUDO-CODEWORD LANDSCAPE

    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory

    2007-01-10

    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes and their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.

  15. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  16. Valve's Way

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Dobrajska, Magdalena

    2015-01-01

    to what extent it represents a new blueprint for organization design, despite it being consistent with an “egalitarian Zeitgeist” (Puranam, 2014). In fact, managerial authority may be of increasing importance rather than the opposite (Guadalupe, Li, & Wulf, 2015). Thus, Valve is, and will remain...

  17. Vacuum Valve

    CERN Multimedia

    1974-01-01

    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  18. Butterfly valve. Spjeldventil

    Energy Technology Data Exchange (ETDEWEB)

    Cupedo, D.J.

    1984-02-06

    Butterfly valve comprising a body and a valve seat arranged therein, on which a valve member is supported. The valve member comprises an operating rod and the assembly of valve member and operating rod has a fixed pivot point at the bottom of the body. The operating rod can be moved by means of pins movable in grooves and slots in such a manner that when the valve is opened the valve member first pivots about the pivot point to lift the valve member from the seat and subsequently rotates about the pivot point to fully open the valve. 12 drawings.

  19. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI...

  20. Aortic Valve Stenosis

    Science.gov (United States)

    ... rapid, fluttering heartbeat Not eating enough (mainly in children with aortic valve stenosis) Not gaining enough weight (mainly in children with aortic valve stenosis) The heart-weakening effects of aortic valve stenosis ...

  1. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Science.gov (United States)

    Luo, Linqiang; Kabir, Mehdi; Dao, Nam; Kittiwatanakul, Salinporn; Cyberey, Michael; Wolf, Stuart A.; Stan, Mircea; Lu, Jiwei

    2017-06-01

    DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co90Fe10/Cu/Ni80Fe20 pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co90Fe10) and free layer (Ni80Fe20) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  2. What Is Heart Valve Disease?

    Science.gov (United States)

    ... Heart Valves Sometimes heart valves can’t be repaired and must be replaced. This surgery involves removing the faulty valve and replacing it with a man-made or biological valve. Biological valves are made ...

  3. Automated control of the laser welding process of heart valve scaffolds

    OpenAIRE

    Weber Moritz; Hoheisel Anna L.; Glasmacher Birgit

    2016-01-01

    Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS). The mecha...

  4. Pseudo-Marginal Slice Sampling

    OpenAIRE

    Murray, Iain; Graham, Matthew

    2015-01-01

    Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limited. We describe a general way to clamp and update the random numbers used in a pseudo-marginal meth...

  5. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  6. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  7. Remote actuated valve implant

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  8. Mitral valve regurgitation

    Science.gov (United States)

    ... around the valve. You are at risk for mitral valve regurgitation if you have: Coronary heart disease and high blood pressure Infection of the heart valves Mitral valve prolapse (MVP) Rare conditions, such as untreated syphilis or Marfan ... heart disease. This is a complication of untreated strep throat ...

  9. Tissue engineered aortic valve

    OpenAIRE

    Dohmen, P M

    2012-01-01

    Several prostheses are available to replace degenerative diseased aortic valves with unique advantages and disadvantages. Bioprotheses show excellent hemodynamic behavior and low risk of thromboembolic complications, but are limited by tissue deterioration. Mechanical heart valves have extended durability, but permanent anticoagulation is mandatory. Tissue engineering created a new generation heart valve, which overcome limitations of biological and mechanical heart valves due to remodelling,...

  10. Estados de pseudo-Cushing

    OpenAIRE

    Romanholi, Daniella J.P.C.; SALGADO, Luiz Roberto

    2007-01-01

    Síndromes de pseudo-Cushing são um grupo heterogêneo de doenças, incluindo alcoolismo, anorexia nervosa, obesidade visceral e depressão, que compartilham muitas das características clínicas e bioquímicas da síndrome de Cushing. Os mecanismos responsáveis para a gênese da síndrome de pseudo-Cushing são fracamente compreendidos. Tem sido sugerido que o hipercortisolismo da síndrome de pseudo-Cushing pode ser resultante do aumento da secreção do hormônio liberador de corticotrofina (CRH) hipotal...

  11. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laczkowski, P.; Rojas-Sánchez, J.-C. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France); INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Savero-Torres, W.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L. [INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Jaffrès, H.; Reyren, N.; Deranlot, C.; George, J.-M.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France)

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  12. Geometric spin echo under zero field

    Science.gov (United States)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-05-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors.

  13. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu

    2014-01-01

    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  14. Exending pseudo-arcs in odd characteristic

    OpenAIRE

    Penttila, Tim; Van de Voorde, Geertrui

    2015-01-01

    A {\\em pseudo-arc} in $\\mathrm{PG}(3n-1,q)$ is a set of $(n-1)$-spaces such that any three of them span the whole space. A pseudo-arc of size $q^n+1$ is a {\\em pseudo-oval}. If a pseudo-oval $\\mathcal{O}$ is obtained by applying field reduction to a conic in $\\mathrm{PG}(2,q^n)$, then $\\mathcal{O}$ is called a {\\em pseudo-conic}. We first explain the connection of (pseudo-)arcs with Laguerre planes, orthogonal arrays and generalised quadrangles. In particular, we prove that the Ahrens-Szekere...

  15. Risks for Heart Valve Problems

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More Risks for Heart Valve Problems Updated:Jan 18,2017 Who is at risk ... content was last reviewed May 2016. Heart Valve Problems and Disease • Home • About Heart Valves • Heart Valve ...

  16. Living with Heart Valve Disease

    Science.gov (United States)

    ... as well as surgery for adults who have aortic valve stenosis. Doctors often use balloon valvuloplasty to repair valve stenosis in infants and children. Replacing Heart Valves Sometimes heart valves can’t ...

  17. What Causes Heart Valve Disease?

    Science.gov (United States)

    ... as well as surgery for adults who have aortic valve stenosis. Doctors often use balloon valvuloplasty to repair valve stenosis in infants and children. Replacing Heart Valves Sometimes heart valves can’t ...

  18. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  19. Strontium Oxide Tunnel Barriers for High Quality Spin Transport and Large Spin Accumulation in Graphene.

    Science.gov (United States)

    Singh, Simranjeet; Katoch, Jyoti; Zhu, Tiancong; Wu, Ryan J; Ahmed, Adam S; Amamou, Walid; Wang, Dongying; Mkhoyan, K Andre; Kawakami, Roland K

    2017-11-16

    The quality of the tunnel barrier at the ferromagnet/graphene interface plays a pivotal role in graphene spin valves by circumventing the impedance mismatch problem, decreasing interfacial spin dephasing mechanisms and decreasing spin absorption back into the ferromagnet. It is thus crucial to integrate superior tunnel barriers to enhance spin transport and spin accumulation in graphene. Here, we employ a novel tunnel barrier, strontium oxide (SrO), onto graphene to realize high quality spin transport as evidenced by room-temperature spin relaxation times exceeding a nanosecond in graphene on silicon dioxide substrates. Furthermore, the smooth and pinhole-free SrO tunnel barrier grown by molecular beam epitaxy (MBE), which can withstand large charge injection current densities, allows us to experimentally realize large spin accumulation in graphene at room temperature. This work puts graphene on the path to achieve efficient manipulation of nanomagnet magnetization using spin currents in graphene for logic and memory applications.

  20. Mitral valve prolapse

    Science.gov (United States)

    ... mitral valve prolapse is called "mitral valve prolapse syndrome," and includes: Chest pain (not caused by coronary artery disease or a heart attack) Dizziness Fatigue Panic attacks Sensation of feeling the heart beat ( palpitations ) ...

  1. Mitral Valve Stenosis

    Science.gov (United States)

    ... valve stenosis include: Rheumatic fever. A complication of strep throat, rheumatic fever can damage the mitral valve. Rheumatic ... children see your doctor for sore throats. Untreated strep throat infections can develop into rheumatic fever. Fortunately, strep ...

  2. Isolated Pulmonary Valve Endocarditis

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hatamizadeh

    2009-06-01

    Full Text Available Infective endocarditis is one of the most severe complications of parenteral drug abuse. The outstanding clinical feature of infective endocarditis in intravenous drug abusers is the high incidence of right-sided valve infection, and the tricuspid valve is involved in 60% to 70% of the cases. We herein report a case of isolated pulmonic valve infective endocarditis with a native pulmonary valve.

  3. A case of SAPIEN XT valve fallen into left ventricle during valve-in-valve transcatheter aortic valve implantation.

    Science.gov (United States)

    Koizumi, Shigeki; Ehara, Natsuhiko; Nishiya, Kenta; Koyama, Tadaaki

    2017-06-24

    Late transcatheter heart valve embolization is a rare but life-threatening complication of transcatheter aortic valve implantation. Surgical intervention is performed for most cases, but some cases were treated by valve-in-valve transcatheter aortic valve implantation. We describe a patient in whom a 29-mm Edwards SAPIEN XT valve migrated into the left ventricular outflow tract 41 days after the initial implantation. We tried to perform valve-in-valve transcatheter aortic valve implantation using a transfemoral approach. As soon as the second transcatheter heart valve touched the first implanted valve, it fell into the left ventricle. Immediate surgical intervention was required. The first valve was removed, and surgical aortic valve replacement was successfully performed. In conclusion, we should choose surgical aortic valve replacement for late transcatheter heart valve embolization. Even if we need to treat by catheter intervention, transapical approach may be better.

  4. Heart Valve Diseases

    Science.gov (United States)

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  5. Main Oxidizer Valve Design

    Science.gov (United States)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  6. Graphene-WS2 heterostructures for tunable spin injection and spin transport

    Science.gov (United States)

    Omar, S.; van Wees, B. J.

    2017-02-01

    We report the first measurements of spin injection into graphene through a 20-nm-thick tungsten disulphide (WS2) layer, along with a modified spin relaxation time (τs) in graphene in the WS2 environment, via spin-valve and Hanle spin-precession measurements, respectively. First, during the spin injection into graphene through a WS2-graphene interface, we can tune the interface resistance at different current bias and modify the spin injection efficiency, in a correlation with the conductivity-mismatch theory. Temperature assisted tunneling is identified as a dominant mechanism for the charge transport across the interface. Second, we measure the spin transport in graphene, underneath the WS2 crystal, and observe a significant reduction in the τs down to 17 ps in graphene in the WS2 covered region, compared to that in its pristine state. The reduced τs indicates the WS2-proximity induced additional dephasing of the spins in graphene.

  7. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  8. Efficient thermal spin injection in metallic nanostructures

    Science.gov (United States)

    Nomura, Tatsuya; Ariki, Taisei; Hu, Shaojie; Kimura, Takashi

    2017-11-01

    Thermal spin injection is a unique and fascinating method for generating spin current. If magnetization can be controlled by thermal spin injection, various advantages will be provided in spintronic devices, through its wireless controllability. However, the generation efficiency of thermal spin injection is believed to be lower than that of electrical spin injection. Here, we explore a suitable ferromagnetic metal for an efficient thermal spin injection, via systematic experiments based on diffusive spin transport under temperature gradients. Since a ferromagnetic metal with strong spin splitting is expected to have a large spin-dependent Seebeck coefficient, a lateral spin valve based on CoFe electrodes has been fabricated. However, the superior thermal spin injection property has not been observed, because the CoFe electrode retained its crystalline signature—where s-like electrons dominate the transport property in the ferromagnet. To suppress the crystalline signature, we adopt a CoFeAl electrode, in which the Al impurity significantly reduces the contribution from s-like electrons. Highly efficient thermal spin injection has been demonstrated using this CoFeAl electrode. Further optimization for thermal spin injection has been demonstrated by adjusting the Co and Fe composition.

  9. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  10. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  11. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  12. Modeling the Mitral Valve

    Science.gov (United States)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  13. Magnetic Check Valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  14. Electronic spin drift in graphene field-effect transistors

    NARCIS (Netherlands)

    Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    We studied the drift of electron spins under an applied dc electric field in single layer graphene spin valves in a field-effect transport geometry at room temperature. In the metallic conduction regime (n similar or equal to 3.5x10(16) m(-2)), for dc fields of about +/- 70 kV/m applied between the

  15. Effects of interface geometry on spin injection

    Science.gov (United States)

    Lee, B. C.

    2017-11-01

    Spin-injection efficiency may be affected by interface geometry and it was investigated theoretically by considering a nonmagnetic (NM) sphere embedded in a ferromagnetic (FM) host. When spin-polarized current is injected into the NM sphere from the FM host, it is found that spinsplitting of the electrochemical potential is enhanced at the interface while the spin polarization of the electrical current is reduced compared with the flat interface. In the Co/Cu and the Py/Cu systems, the values are different from those of the flat interface even when the sphere radius is 3 μm. Attachment of another NM electrode to the NM sphere changes the spin-splitting of the electrochemical potential, which may be critical for the nonlocal spin signal in the lateral spin valve.

  16. Replaceable valve seat

    Science.gov (United States)

    Jordan, Raymond W.

    1992-01-01

    A valve with an O-ring, a disk seal, and a replaceable valve seat is presented. A groove in the bottom on the valve seat flange forms an inner and outer drip ledge with the inner and outer periphery of the flange. If leakage occurs at the valve seat O-ring, fluid droplets will form on the out drip ledge. If leakage occurs at the disk seal, fluid droplets will form on the inner drip ledge. A visual inspection of these drip ledges through an access port, or by a borescope placed in an inspection port, can discriminate between a leak which originates in the O-ring and a leak which originates in the disk seal. When conventional replaceable valve seats leak, fluid droplets form at the bottom on the valve seat. In the present invention, such a valve seat is modified by machining a groove on the bottom surface of the valve seat flange. This groove and the inner and outer surfaces of the flange intersect and form drip ledges. If leakage occurs at the valve seat seal, shown as an O-ring in the preferred embodiment, fluid droplets will form on the outer drip ledge. If leakage occurs at the valve disk seal, fluid droplets will form on the inner drip ledge. The drip ledges can be inspected either through an access port or by passing a borescope through a small inspection port in the valve case. Visual inspection of the bottom on the drip ledge will positively identify the required repair action.

  17. Valve reconstruction for congenital mitral valve disease.

    Science.gov (United States)

    Quinonez, Luis G; Del Nido, Pedro J

    2015-01-01

    The surgical treatment of mitral valve disease in children is a challenging problem. Mitral stenosis and regurgitation may occur in isolation or together. Mitral valve repair is almost always preferable to replacement. Mitral valve replacement is not an ideal alternative to repair due to limitations of size, growth, structural valve degeneration, anticoagulation and poor survival. Surgical repair of congenital mitral stenosis must address the multiple levels of obstruction, including resection of the supramitral ring, thinning of leaflets and mobilization of the subvalvular apparatus. Sometimes leaflet augmentation is required. Repair of mitral regurgitation in children may involve simple cleft closures, edge-to-edge repairs, triangular resections and annuloplasties. Techniques used in adults, such as annuloplasty bands or artificial chords, may not be appropriate for children. Overall, an imperfect mitral valve repair may be more acceptable than the negative consequences of a replacement in a child. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. Pseudo-complex general relativity

    CERN Document Server

    Hess, Peter O; Greiner, Walter

    2016-01-01

    This volume presents an pseudo-complex extension of General Relativity which addresses these issues and presents proposals for experimental examinations in strong fields near a large mass. General Relativity is a beautiful and well tested theory of gravitation. Nevertheless, it implies conceptual problems like the creation of singularities (Black Holes) as a result of the collapse of large masses, or the appearance of event horizons which exclude parts of the space-time from the observation of external observers. The mathematical and geometrical foundations of this extension are displayed in detail, and applications including orbits and accretion disks around large central masses, neutron stars or cosmological models are introduced. Calculations both for classical and extended applications are often executed in the form of problems with extensive solutions, which makes this volume also a valuable resource for any student of General Relativity.

  19. Acroangiodermatitis (Pseudo-Kaposi sarcoma

    Directory of Open Access Journals (Sweden)

    Satyendra Kumar Singh

    2014-01-01

    Full Text Available Acroangiodermatitis or Pseudo-Kaposi sarcoma is a rare angioproliferative entity, related to chronic venous insufficiency or certain other vascular anomalies. It is often associated with chronic venous insufficiency, arteriovenous malformation of the legs, chronic renal failure treated with dialysis, paralyzed legs and amputation stumps. We hereby describe a case of 45 year old female presenting with pitting pedal edema, multiple ulcers over bilateral lower limbs with irregular margins with erythema and hyperpigmentation of the surrounding skin. Color Doppler study of bilateral lower limbs was normal. Histopathological examination from one of the lesions showed hyperplastic epidermis, proliferation of capillaries in dermis, hemosiderin deposits and lymphocytic infiltrate. These features thus confirmed the diagnosis of Acroangiodermatitis.

  20. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  1. Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2014-01-01

    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a

  2. Problem: Mitral Valve Regurgitation

    Science.gov (United States)

    ... State SELECT YOUR LANGUAGE Español (Spanish) 简体中文 (Traditional Chinese) 繁体中文 (Simplified Chinese) Tiếng Việt (Vietnamese) Healthy Living for Heart.org ... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ...

  3. Problem: Heart Valve Regurgitation

    Science.gov (United States)

    ... State SELECT YOUR LANGUAGE Español (Spanish) 简体中文 (Traditional Chinese) 繁体中文 (Simplified Chinese) Tiếng Việt (Vietnamese) Healthy Living for Heart.org ... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ...

  4. Mitral Valve Prolapse

    Science.gov (United States)

    ... State SELECT YOUR LANGUAGE Español (Spanish) 简体中文 (Traditional Chinese) 繁体中文 (Simplified Chinese) Tiếng Việt (Vietnamese) Healthy Living for Heart.org ... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ...

  5. Mitral Valve Disease

    Science.gov (United States)

    ... clots, but they also are less durable than mechanical valves and may need to be replaced in the future. Like mitral valve repair, replacement can be done minimally invasively or with traditional open heart surgery. Your medical team will discuss the advantages ...

  6. POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...

    African Journals Online (AJOL)

    nb

    ABSTRACT. The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es ...

  7. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  8. Subadditive functions and their (pseudo-)inverses

    DEFF Research Database (Denmark)

    Østerdal, Lars Peter

    2006-01-01

    The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses......The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses...

  9. Transcatheter aortic valve implantation for bicuspid aortic valve stenosis.

    Science.gov (United States)

    Hamdan, Ashraf; Kornowski, Ran

    2015-08-01

    In Preprocedural CT, patients with BAV have larger aortic annulus perimeters, and more calcified valves compared with TAV. In patients with BAV, self-expandable valves were under-expand and balloon-expandable valves have a trend toward increased rates of postimplantation AR grade. Self-expandable valves have higher postprocedural gradient in BAV compared with TAV. © 2015 Wiley Periodicals, Inc.

  10. Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions

    Science.gov (United States)

    de Souza, S. M.; Rojas, Onofre

    2018-01-01

    There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.

  11. Systematic investigations of transient response of nuclear spins in the presence of polarized electrons

    Science.gov (United States)

    Rasly, Mohmoud; Lin, Zhichao; Uemura, Tetsuya

    2017-11-01

    We electrically probed the transient response of nuclear spins in an n -GaAs channel by performing Hanle signal and spin-valve signal measurements on an all-electrical spin-injection device having a half-metallic spin source of C o2MnSi . Furthermore, we simulated the Hanle and spin-valve signals by using the time evolution of nuclear-spin polarization under the presence of polarized electron spins by taking both T1 e and T1 into consideration, where T1e -1 is the polarization rate of nuclear spins through the transfer of angular momentum from polarized electron spins and T1-1 is the depolarization rate of nuclear spins through the interaction with the lattice. The simulation results reproduced our experimental results on all the nuclear-spin-related phenomena appearing in the Hanle and spin-valve signals at different measurement conditions, providing quantitative explanation for the transient response of nuclear spins in GaAs to a change in magnetic fields and an estimate of the time scales of T1 e and T1. These experimental and simulated results will deepen the understanding of nuclear-spin dynamics in semiconductors.

  12. Equilibrium spin current induced by spin-orbital interaction in a quantum dot system

    Energy Technology Data Exchange (ETDEWEB)

    Liang Feng [Department of Physics, Southeast University, Nanjing 211189 (China)], E-mail: lf_125s@sohu.com; Shen Yaoguo; Yang Yonghong [Department of Physics, Southeast University, Nanjing 211189 (China)

    2008-06-16

    We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current.

  13. Spin-rotor Interpretation of Identical Bands and Quantized Alignment in Superdeformed A $\\approx$ 190 Nuclei

    OpenAIRE

    Cizewski, J. A.; Bijker, R.

    1995-01-01

    The ``identical'' bands in superdeformed mercury, thallium, and lead nuclei are interpreted as examples of orbital angular momentum rotors with the weak spin-orbit coupling of pseudo-$SU(3)$ symmetries and supersymmetries.

  14. Face-Sealing Butterfly Valve

    Science.gov (United States)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  15. Introduction to spin-polarized ballistic hot electron injection and detection in silicon.

    Science.gov (United States)

    Appelbaum, Ian

    2011-09-28

    Ballistic hot electron transport overcomes the well-known problems of conductivity and spin lifetime mismatch that plague spin injection attempts in semiconductors using ferromagnetic ohmic contacts. Through the spin dependence of the mean free path in ferromagnetic thin films, it also provides a means for spin detection after transport. Experimental results using these techniques (consisting of spin precession and spin-valve measurements) with silicon-based devices reveals the exceptionally long spin lifetime and high spin coherence induced by drift-dominated transport in the semiconductor. An appropriate quantitative model that accurately simulates the device characteristics for both undoped and doped spin transport channels is described; it can be used to recover the transit-time distribution from precession measurements and determine the spin current velocity, diffusion constant and spin lifetime, constituting a spin 'Haynes-Shockley' experiment without time-of-flight techniques. A perspective on the future of these methods is offered as a summary.

  16. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  17. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  18. Pseudo-Haptic Feedback in Teleoperation.

    Science.gov (United States)

    Neupert, Carsten; Matich, Sebastian; Scherping, Nick; Kupnik, Mario; Werthschutzky, Roland; Hatzfeld, Christian

    2016-01-01

    In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.

  19. Pseudo-periodic partitions of biological sequences.

    Science.gov (United States)

    Li, Lugang; Jin, Renchao; Kok, Poh-Lin; Wan, Honghui

    2004-02-12

    Algorithm development for finding typical patterns in sequences, especially multiple pseudo-repeats (pseudo-periodic regions), is at the core of many problems arising in biological sequence and structure analysis. In fact, one of the most significant features of biological sequences is their high quasi-repetitiveness. Variation in the quasi-repetitiveness of genomic and proteomic texts demonstrates the presence and density of different biologically important information. It is very important to develop sensitive automatic computational methods for the identification of pseudo-periodic regions of sequences through which we can infer, describe and understand biological properties, and seek precise molecular details of biological structures, dynamics, interactions and evolution. We develop a novel, powerful computational tool for partitioning a sequence to pseudo-periodic regions. The pseudo-periodic partition is defined as a partition, which intuitively has the minimal bias to some perfect-periodic partition of the sequence based on the evolutionary distance. We devise a quadratic time and space algorithm for detecting a pseudo-periodic partition for a given sequence, which actually corresponds to the shortest path in the main diagonal of the directed (acyclic) weighted graph constructed by the Smith-Waterman self-alignment of the sequence. We use several typical examples to demonstrate the utilization of our algorithm and software system in detecting functional or structural domains and regions of proteins. A big advantage of our software program is that there is a parameter, the granularity factor, associated with it and we can freely choose a biological sequence family as a training set to determine the best parameter. In general, we choose all repeats (including many pseudo-repeats) in the SWISS-PROT amino acid sequence database as a typical training set. We show that the granularity factor is 0.52 and the average agreement accuracy of pseudo-periodic partitions

  20. FLUID MECHANICS OF ARTIFICIAL HEART VALVES

    OpenAIRE

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-01-01

    1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mecha...

  1. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  2. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Ave. A. Fresnel, 91767 Palaiseau (France); Grimaldi, E., E-mail: eva.grimaldi@thalesgroup.com [Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Ave. A. Fresnel, 91767 Palaiseau (France); CNES, 1 Avenue Edouard Belin, 31400 Toulouse (France); Khvalkovskiy, A. V. [Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Ave. A. Fresnel, 91767 Palaiseau (France); A.M. Prokhorov General Physics Institute of RAS, Vavilova Str. 38, 119991 Moscow (Russian Federation); Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6 μW) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  3. Teflon films for chemically-inert microfluidic valves and pumps.

    Science.gov (United States)

    Grover, William H; von Muhlen, Marcio G; Manalis, Scott R

    2008-06-01

    We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices.

  4. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  5. Spin multiplicities

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, T.L., E-mail: curtright@miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); Van Kortryk, T.S., E-mail: vankortryk@gmail.com [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States); Zachos, C.K., E-mail: zachos@anl.gov [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States)

    2017-02-05

    The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. - Highlights: • We give a self-contained derivation of the spin multiplicities that occur in n-fold tensor products of spin-j representations. • We make use of group characters, properties of special functions, and asymptotic analysis of integrals. • We emphasize patterns that arise when comparing different values of j, and asymptotic behavior for large n. • Our methods and results should be useful for various statistical and quantum information theory calculations.

  6. Mitral valve surgery - open

    Science.gov (United States)

    ... be able to store blood in the blood bank for transfusions during and after your surgery. Ask ... stroke. Valves made from human or animal tissue fail over time. They have an average lifespan of ...

  7. Valve Repair or Replacement

    Science.gov (United States)

    ... valve surgery can be done using a robot. Robotic surgery does not require a large incision in the ... The Texas Heart Institute has a robot. With robotic surgery, the surgeon has a control console, a side ...

  8. Aortic Valve Regurgitation

    Science.gov (United States)

    ... valves. Rheumatic fever. Rheumatic fever — a complication of strep throat and once a common childhood illness in the ... a severe sore throat, see a doctor. Untreated strep throat can lead to rheumatic fever. Fortunately, strep throat ...

  9. Spin Electronics

    Science.gov (United States)

    2003-08-01

    spin resonance of rare earth and transition metal impurities in chalcopyrite semiconductors. They also have worked in diluted magnetic...past, the ferromagnetic injector had been a ferromagnetic metal or alloy containing 3d transition elements with fractional spin polarization of the...polarized carriers. There have been numerous attempts to inject transition metals or their alloys into semiconductors, either directly (Johnson and

  10. Families of quasi-pseudo-metrics generated by probabilistic quasi-pseudo-metric spaces

    Directory of Open Access Journals (Sweden)

    Mariusz T. Grabiec

    2008-03-01

    Full Text Available This paper contains a study of families of quasi-pseudo-metrics (the concept of a quasi-pseudo-metric was introduced by Wilson (1931 , Albert (1941 and Kelly (1963 generated by probabilistic quasi-pseudo-metric-spaces which are generalization of probabilistic metric space (PM-space shortly [2, 3, 4, 6]. The idea of PM-spaces was introduced by Menger (1942, 1951, Schweizer and Sklar (1983 and Serstnev (1965. Families of pseudo-metrics generated by PM-spaces and those generalizing PM-spaces have been described by Stevens (1968 and Nishiure (1970.

  11. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  12. How Is Heart Valve Disease Treated?

    Science.gov (United States)

    ... as well as surgery for adults who have aortic valve stenosis. Doctors often use balloon valvuloplasty to repair valve stenosis in infants and children. Replacing Heart Valves Sometimes heart valves can’t ...

  13. How Is Heart Valve Disease Diagnosed?

    Science.gov (United States)

    ... as well as surgery for adults who have aortic valve stenosis. Doctors often use balloon valvuloplasty to repair valve stenosis in infants and children. Replacing Heart Valves Sometimes heart valves can’t ...

  14. When a Heart Murmur Signals Valve Disease

    Science.gov (United States)

    ... Order AHA Brochures Your Heart Valve Surgery Your Mitral Valve Prolapse Innocent Heart Murmurs If Your Child Has a Congenital Heart Defect See all of our brochures Valve Disease Resources Patient Guide: Understanding Your Heart Valve Problem | ...

  15. Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John; Brecker, Stephen

    2012-01-01

    Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry....

  16. Long Spin Diffusion Length in Few-Layer Graphene Flakes

    Science.gov (United States)

    Yan, W.; Phillips, L. C.; Barbone, M.; Hämäläinen, S. J.; Lombardo, A.; Ghidini, M.; Moya, X.; Maccherozzi, F.; van Dijken, S.; Dhesi, S. S.; Ferrari, A. C.; Mathur, N. D.

    2016-09-01

    We report a spin valve with a few-layer graphene flake bridging highly spin-polarized La0.67Sr0.33MnO3 electrodes, whose surfaces are kept clean during lithographic definition. Sharp magnetic switching is verified using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. A naturally occurring high interfacial resistance ˜12 M Ω facilitates spin injection, and a large resistive switching (0.8 M Ω at 10 K) implies a 70 - 130 μ m spin diffusion length that exceeds previous values obtained with sharp-switching electrodes.

  17. Safety valve for offshore borehole

    Energy Technology Data Exchange (ETDEWEB)

    McGill, H.L.; Randermann, E. Jr.; Musik, O.J.

    1977-10-06

    The invention concerns a new and improved submarine safety valve with a valve element which rotate, which can be used, in emergencies, to separate the wound-up piping which extends into the borehole and to close the production line.

  18. Diseases of the Tricuspid Valve

    Science.gov (United States)

    ... diseases of the tricuspid valve are regurgitation and stenosis. Tricuspid Regurgitation Tricuspid regurgitation is also called tricuspid ... the tricuspid valve may also be needed. Tricuspid Stenosis Tricuspid stenosis is a narrowing or blockage of ...

  19. Options for Heart Valve Replacement

    Science.gov (United States)

    ... valve: Aortic regurgitation , (sometimes referred to as aortic insufficiency) is another common valve problem that may require ... allows oxygenated blood to flow backwards into the lungs instead of continuing through the heart as it ...

  20. Variable Valve Actuation

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of

  1. Pseudo-capacitor device for aqueous electrolytes

    Science.gov (United States)

    Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.

    1998-11-24

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and Opseudo-capacitance, affords high energy/power density in the pseudo-capacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity. 8 figs.

  2. Aerodynamics of the pseudo-glottis.

    Science.gov (United States)

    Kotby, M N; Hegazi, M A; Kamal, I; Gamal El Dien, N; Nassar, J

    2009-01-01

    The aim of this work is to study the hitherto unclear aerodynamic parameters of the pseudo-glottis following total laryngectomy. These parameters include airflow rate, sub-pseudo-glottic pressure (SubPsG), efficiency and resistance, as well as sound pressure level (SPL). Eighteen male patients who have undergone total laryngectomy, with an age range from 54 to 72 years, were investigated in this study. All tested patients were fluent esophageal 'voice' speakers utilizing tracheo-esophageal prosthesis. The airflow rate, SubPsG and SPL were measured. The results showed that the mean value of the airflow rate was 53 ml/s, the SubPsG pressure was 13 cm H(2)O, while the SPL was 66 dB. The normative data obtained from the true glottis in healthy age-matched subjects are 89 ml/s, 7.9 cm H(2)O and 70 dB, respectively. Other aerodynamic indices were calculated and compared to the data obtained from the true glottis. Such a comparison of the pseudo-glottic aerodynamic data to the data of the true glottis gives an insight into the mechanism of action of the pseudo-glottis. The data obtained suggests possible clinical applications in pseudo-voice training. Copyright 2009 S. Karger AG, Basel.

  3. SEARCHING FOR LOW WEIGHT PSEUDO-CODEWORDS

    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory

    2007-01-23

    Belief Propagation (BP) and Linear Programming (LP) decodings of LDPC codes are discussed. The authors summarize results of instanton/pseudo-codeword approach developed for analysis of the error-floor domain of the codes. Instantons are special, code and decoding specific, configurations of the channel noise contributing most to the Frame-Error-Rate (FER). Instantons are decoded into pseudo-codewords. Instanton/pseudo-codeword with the lowest weight describes the largest Signal-to-Noise-Ratio (SNR) asymptotic of FER, while the whole spectra of the low weight instantons is descriptive of the FER vs. SNR profile in the extended error-floor domain. First, they describe a general optimization method that allows to find the instantons for any coding/decoding. Second, they introduce LP-specific pseudo-codeword search algorithm that allows efficient calculations of the pseudo-codeword spectra. Finally, they discuss results of combined BP/LP error-floor exploration experiments for two mode codes.

  4. Echocardiography of the mitral valve

    OpenAIRE

    Omran, A.S.; Arifi, A.A.; Mohamed, A.A.

    2010-01-01

    Mitral valve disease is the second most common valvular heart disease after the aortic valve worldwide. Mitral valve has historically been a structure of interest by pioneers in echocardiography. One of the earliest applications of echocardiography was in the diagnosis of valvular heart disease, particularly mitral stenosis. In this review we wish to take the reader through the structural and hemodynamic evaluation of the normal mitral valve.

  5. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  6. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    Science.gov (United States)

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  7. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  8. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  9. Danfos: Thermostatic Radiator Valves

    DEFF Research Database (Denmark)

    Gregersen, Niels; Oliver, James; Hjorth, Poul G.

    2000-01-01

    This problem deals with modelling the flow through a typical Danfoss thermostatic radiator valve.Danfoss is able to employ Computational Fluid Dynamics (CFD) in calculations of the capacity of valves, but an experienced engineer can often by rules of thumb "guess" the capacity, with a precision...... similar to the one achieved by the expensive and time-consuming CFD calculations. So CFD is only used in case of entirely new designs or where a very detailed knowledge of the flow is required. Even though rules of thumb are useful for those, who have developed them, Danfoss needs an objective and general...

  10. SAFETY SHUTOFF VALVE

    DEFF Research Database (Denmark)

    2010-01-01

    resulted from collision or effusion. A static tower has been applied for the main core of this part of the valve which loses balance state under the effect of collision and bounces to the neighboring part, which results in release of the catch and blockage of the gas passing channel.......It is disclosed a shut-off valve which acts automatically and has a fully mechanical performance with respect to the loosing of the tower-shape part balance under the effect of the special acceleration Which is arisen from the quakes waves or serious vibrations, while such vibrations are mainly...

  11. Edwards SAPIEN 3 valve.

    Science.gov (United States)

    Binder, Ronald K; Rodés-Cabau, Josep; Wood, David A; Webb, John G

    2012-09-01

    Building on the established success with the SAPIEN, SAPIEN XT and earlier prototypic transcatheter heart valves (THV) the newest balloon-expandable valve incorporates a number of new and enhanced features intended to reduce the risk of vascular injury, to reduce paravalvular regurgitation, and to facilitate rapid and accurate positioning and implantation. The SAPIEN 3 THV incorporates a cobalt chromium stent, bovine pericardial leaflets, and both an inner and new outer polyethylene terephthalate sealing cuff. The delivery system incorporates an active three-dimensional coaxial positioning catheter, and is compatible with a 14 Fr expandable sheath.

  12. Noncontacting valve-position indicator

    Science.gov (United States)

    Crovella, E. A.; Cummins, R. D.; Wada, J. M.

    1979-01-01

    Position of sealed valve or other movable part is indicated without penetrating housing. Flux from magnets connected to stem of hydraulic valve penetrates pressure wall and is sensed by Hall-effect transducer outside wall. When valve closes, moving stem and magnets, voltage from transducer decreases; thus, stem position is indicated without physical contact.

  13. Pseudo exchange bias due to rotational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, A., E-mail: andrea.ehrmann@fh-bielefeld.de [Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld (Germany); Komraus, S.; Blachowicz, T.; Domino, K. [Institute of Physics – Center for Science and Education, Silesian University of Technology, 44-100 Gliwice (Poland); Nees, M.K.; Jakobs, P.J.; Leiste, H. [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Mathes, M.; Schaarschmidt, M. [ACCESS e. V., 57072 Aachen (Germany)

    2016-08-15

    Ferromagnetic nanostructure arrays with particle dimensions between 160 nm and 400 nm were created by electron-beam lithography. The permalloy structures consist of rectangular-shaped walls around a square open space. While measuring their magnetic properties using the Magneto-Optical Kerr Effect (MOKE), in some angular regions an exchange bias (EB) seemed to appear. This paper gives an overview of possible reasons for this “pseudo exchange bias” and shows experimentally and by means of micromagnetic simulations that this effect can be attributed to unintentionally measuring minor loops. - Highlights: • Pseudo exchange bias can be found in square Py nanorings of different dimensions. • Pseudo exchange bias stems from unintentionally measuring minor loops. • New approach in explaining “real” exchange bias effect in coupled FM/AFM systems. • Theoretical base to explain other measurements of a rotational anisotropy.

  14. Tricuspid valve and percutaneous approach: No longer the forgotten valve!

    Science.gov (United States)

    Bouleti, Claire; Juliard, Jean-Michel; Himbert, Dominique; Iung, Bernard; Brochet, Eric; Urena, Marina; Dilly, Marie-Pierre; Ou, Phalla; Nataf, Patrick; Vahanian, Alec

    2016-01-01

    Tricuspid valve disease is mainly represented by tricuspid regurgitation (TR), which is a predictor of poor outcome. TR is usually secondary, caused by right ventricle pressure or volume overload, the leading cause being left-sided heart valve diseases. Tricuspid surgery for severe TR is recommended during left valve surgery, and consists of either a valve replacement or, most often, a tricuspid repair with or without prosthetic annuloplasty. When TR persists or worsens after left valvular surgery, redo isolated tricuspid surgery is associated with high mortality. In addition, a sizeable proportion of patients present with tricuspid surgery deterioration over time, and need a reintervention, which is associated with high morbi-mortality rates. In this context, and given the recent major breakthrough in the percutaneous treatment of aortic and mitral valve diseases, the tricuspid valve appears an appealing challenge, although it raises specific issues. The first applications of transcatheter techniques for tricuspid valve disease were valve-in-valve and valve-in-ring implantation for degenerated bioprosthesis or ring annuloplasty. Some concerns remain regarding prosthesis sizing, rapid ventricular pacing and the best approach, but these procedures appear to be safe and effective. More recently, bicuspidization using a transcatheter approach for the treatment of native tricuspid valve has been published, in two patients. Finally, other devices are in preclinical development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. The Spin Density Matrix II: Application to a system of two quantum dots

    CERN Document Server

    Kunikeev, Sharif D

    2007-01-01

    This work is a sequel to our work "The Spin Density Matrix I: General Theory and Exact Master Equations" (eprint cond-mat/0708.0644). Here we compare pure- and pseudo-spin dynamics using as an example a system of two quantum dots, a pair of localized conduction-band electrons in an n-doped GaAs semiconductor. Pure-spin dynamics is obtained by tracing out the orbital degrees of freedom, whereas pseudo-spin dynamics retains (as is conventional) an implicit coordinate dependence. We show that magnetic field inhomogeneity and spin-orbit interaction result in a non-unitary evolution in pure-spin dynamics, whereas these interactions contribute to the effective pseudo-spin Hamiltonian via terms that are asymmetric in spin permutations, in particular, the Dzyaloshinskii-Moriya (DM) spin-orbit interaction. We numerically investigate the non-unitary effects in the dynamics of the triplet states population, purity, and Lamb energy shift, as a function of interdot distance and magnetic field difference. The spin-orbit in...

  16. A pseudo-matched filter for chaos

    OpenAIRE

    Cohen, Seth D.; Gauthier, Daniel J.

    2012-01-01

    A matched filter maximizes the signal-to-noise ratio of a signal. In the recent work of Corron et al. [Chaos 20, 023123 (2010)], a matched filter is derived for the chaotic waveforms produced by a piecewise-linear system. Motivated by these results, we describe a pseudo-matched filter, which removes noise from the same chaotic signal. It consists of a notch filter followed by a first-order, low-pass filter. We compare quantitatively the matched filter's performance to that of our pseudo-match...

  17. A case of Pseudo-Bartter syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Choi, Bo Whan; Lee, Yul; Chung, Soo Young [College of Medicine, Hallym University, Seoul (Korea, Republic of)

    1994-10-15

    Pseudo-Bartter Syndrome is a rare medical disease of the kidney characterized by normal blood pressure, hypokalemic metabolic alkalosis, hyperreninemia and hyperaldosteronism with drug history of diuretics. We report US, CT and MRI findings of a patients with clinically proved Pseudo-Bartter syndrome. The patient was a 37 year old woman with a history of long term ingestion of the diuretics(furosemide) for 20 years. Renal US revealed hyperechoic renal medulla at both kidneys. The resistive index(RI), calculated from the duplex doppler waveform is 0.61. Unenhanced CT revealed faint high attenuation along the medulla. T1-weighted MRI revealed indistinct corticomedullary differentiation.

  18. Regurgitation Hemodynamics Alone Cause Mitral Valve Remodeling Characteristic of Clinical Disease States In Vitro.

    Science.gov (United States)

    Connell, Patrick S; Azimuddin, Anam F; Kim, Seulgi E; Ramirez, Fernando; Jackson, Matthew S; Little, Stephen H; Grande-Allen, K Jane

    2016-04-01

    Mitral valve regurgitation is a challenging clinical condition that is frequent, highly varied, and poorly understood. While the causes of mitral regurgitation are multifactorial, how the hemodynamics of regurgitation impact valve tissue remodeling is an understudied phenomenon. We employed a pseudo-physiological flow loop capable of long-term organ culture to investigate the early progression of remodeling in living mitral valves placed in conditions resembling mitral valve prolapse (MVP) and functional mitral regurgitation (FMR). Valve geometry was altered to mimic the hemodynamics of controls (no changes from native geometry), MVP (5 mm displacement of papillary muscles towards the annulus), and FMR (5 mm apical, 5 mm lateral papillary muscle displacement, 65% larger annular area). Flow measurements ensured moderate regurgitant fraction for regurgitation groups. After 1-week culture, valve tissues underwent mechanical and compositional analysis. MVP conditioned tissues were less stiff, weaker, and had elevated collagen III and glycosaminoglycans. FMR conditioned tissues were stiffer, more brittle, less extensible, and had more collagen synthesis, remodeling, and crosslinking related enzymes and proteoglycans, including decorin, matrix metalloproteinase-1, and lysyl oxidase. These models replicate clinical findings of MVP (myxomatous remodeling) and FMR (fibrotic remodeling), indicating that valve cells remodel extracellular matrix in response to altered mechanical homeostasis resulting from disease hemodynamics.

  19. Thermostatic Radiator Valve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  20. Aortic valve surgery - open

    Science.gov (United States)

    ... be able to store blood in the blood bank for transfusions during and after your surgery. Ask ... Mechanical heart valves do not fail often. However, blood clots can develop on them. If a blood clot forms, you may have a stroke. Bleeding can occur, ...

  1. Measurement of reed valve kinematics

    Directory of Open Access Journals (Sweden)

    Fenkl Michael

    2016-01-01

    Full Text Available The measurement of key kinematic parameters of a reed valve movement is necessary for the further development of the reed valve system. These parameters are dependent on the geometry and material properties of the valve. As they directly affect the quantity of air flowing around the valve, a simple and easy to implement measurement of various valve configuration based on the air flow has been devised and is described in this paper, along with its technical parameters and drawbacks when evaluating reed valves used in reciprocating air compressors. Results are presented for a specimen of a compressor under examination. All kinematic parameters, and timing of the opening and closing of the valve, obtained from the measurement are presented and discussed.

  2. Some Properties of Weighted Pseudo almost Periodic Functions

    Directory of Open Access Journals (Sweden)

    Zhe-Ming Zheng

    2013-01-01

    Full Text Available Several interesting and new properties of weighted pseudo almost periodic functions are established. Firstly, we obtain an equivalent definition for weighted pseudo almost periodic functions, which shows a close relationship between asymptotically almost periodic functions and weighted pseudo almost periodic functions; secondly, we prove that the space of asymptotically almost periodic functions is always a proper subspace of the space of weighted pseudo almost periodic functions; thirdly, we show that under some cases, the space of weighted pseudo almost periodic functions equals the classical space of pseudo almost periodic functions.

  3. Pseudo--Normals for Signed Distance Computation

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Bærentzen, Jakob Andreas

    2003-01-01

    undertake showing that the angle weighted pseudo--normal has an important property, namely that it allows us to discriminate between points that are inside and points that are outside the mesh. This result is used for proposing a simple and efficient algorithm for computing the signed distance field from...

  4. POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...

    African Journals Online (AJOL)

    nb

    coastal waters of the Western Indian Ocean has been reported before (Bryceson ... Ocean. There is however no study, which has analyzed the seasonal distribution of. Pseudo-nitzschia species along the. Tanzanian coastal waters as well as factors regulating such ... cleaned plastic vials and immediately kept cool on ice for ...

  5. A pseudo-matched filter for chaos.

    Science.gov (United States)

    Cohen, Seth D; Gauthier, Daniel J

    2012-09-01

    A matched filter maximizes the signal-to-noise ratio of a signal. In the recent work of Corron et al. [Chaos 20, 023123 (2010)], a matched filter is derived for the chaotic waveforms produced by a piecewise-linear system. This system produces a readily available binary symbolic dynamics that can be used to perform correlations in the presence of large amounts of noise using the matched filter. Motivated by these results, we describe a pseudo-matched filter, which operates similarly to the original matched filter. It consists of a notch filter followed by a first-order, low-pass filter. We compare quantitatively the matched filter's performance to that of our pseudo-matched filter using correlation functions. On average, the pseudo-matched filter performs with a correlation signal-to-noise ratio that is 2.0 dB below that of the matched filter. Our pseudo-matched filter, though somewhat inferior in comparison to the matched filter, is easily realizable at high speed (>1 GHz) for potential radar applications.

  6. Pseudo-Canonical Formulae are Classical

    Directory of Open Access Journals (Sweden)

    Caminati Marco B.

    2015-02-01

    Full Text Available An original result about Hilbert Positive Propositional Calculus introduced in [11] is proven. That is, it is shown that the pseudo-canonical formulae of that calculus (and hence also the canonical ones, see [17] are a subset of the classical tautologies.

  7. Pseudo-observations in survival analysis

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Perme, Maja Pohar

    2010-01-01

    -state models, e.g. the competing risks cumulative incidence function. Graphical and numerical methods for assessing goodness-of-fit for hazard regression models and for the Fine-Gray model in competing risks studies based on pseudo-observations are also reviewed. Sensitivity to covariate-dependent censoring...... is studied. The methods are illustrated using a data set from bone marrow transplantation....

  8. Micro-valve pump light valve display

    Science.gov (United States)

    Lee, Yee-Chun

    1993-01-01

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  9. Controlling the efficiency of spin injection into graphene by carrier drift

    NARCIS (Netherlands)

    Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.

    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room-temperature nonlocal spin valve measurements in

  10. Electron transport and spin phenomena in hybrid organic/inorganic systems

    NARCIS (Netherlands)

    Naber, W.J.M.

    2010-01-01

    This thesis describes several experiments in hybrid organic/inorganic systems, in which electron transport and/or spin behavior is studied. The basic concepts of organic electronics and spintronics are given, to understand the described spin-valve experiments. The problems and obstacles for

  11. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCC), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections......-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated...... to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states....

  12. Spin ejector

    Science.gov (United States)

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  13. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  14. First Reported Successful Femoral Valve-in-Valve Transcatheter Aortic Valve Replacement Using the Edwards Sapien 3 Valve.

    Science.gov (United States)

    Fournier, Stephane; Monney, Pierre; Roguelov, Christan; Zuffi, Andrea; Iglesias, Juan F; Qanadli, Salah D; Courbon, Cecile; Eeckhout, Eric; Muller, Olivier

    2015-10-01

    Management of degenerated aortic valve bioprosthesis classically requires redo surgery, but transcatheter aortic valve-in-valve implantation is becoming a valid alternative in selected cases. In the case of a degenerated Mitroflow bioprosthesis, TAVR is associated with an additional challenge due to a specific risk of coronary occlusion. We aimed to assess the safety and feasibility of transfemoral valve-in-valve implantation of the new Edwards Sapien 3 (Edwards Lifesciences) in a degenerated Mitroflow bioprosthesis (Sorin Group, Inc). We report here the safety and feasibility of transfemoral valve-in-valve implantation of a 23 mm Edwards Sapien 3 in a degenerated 25 mm Mitroflow valve and describe the specific assessment of the risk of coronary obstruction using a multi-imaging modality. The final result showed an absence of aortic regurgitation and a mean transvalvular gradient of 14 mm Hg. The patient had no major adverse cardiovascular events at 30-day follow-up. Transcatheter valve-in-valve implantation of an Edwards Sapien 3 in a degenerated Mitroflow is feasible and safe, considering a careful assessment of the risk of coronary obstruction with Mitroflow bioprosthesis due to leaflets mounted externally to the stent.

  15. Mechanical Valve Replacement: Early Results

    Directory of Open Access Journals (Sweden)

    Habib Cakir

    2012-02-01

    Full Text Available Aim: Valve diseases in developing countries like Turkey which often occur as a complication of rheumatic fever are a serious disease. Surgical treatment of valve diseases should be done before irreversible damage to the myocardium occurred. In this study, we aimed to present the early results of mechanical valve replacement operations. Method: A hundred patients with mechanical valve replacement surgery were retrospectively evaluated in Seyhan Application Center attached to our clinic between July 2007 and August 2011. Results: Fifty patients were male and 50 were women. The mean age of patients was 47.88 (18-78. Isolated aortic valve replacement (AVR was performed to 23 patients, isolated mitral valve replacement (MVR was 32, double valve replacement (AVR + MVR was 12, MVR + aortic valve valvuloplasty was 1, AVR + mitral kommissurotomi was 1, AVR + coronary artery bypass graft surgery (CABG was 17, MVR + CABG was 8, MVR + atrial septal defect closure was 2 and Bentall procedure.was 4 patients. In addition, ablation procedure was performed to 5 patients intraoperatively because of preoperative atrial fibrillation. Two patients (2 % died in early postoperative period. Conclusion: Mechanical prosthetic valves are used for surgical treatment of valve disease with low mortality and morbidity in a large group of patients like women that not to think to get pregnant, non advanced age group and patients have less risky for anticoagulation drug in our clinic. [Cukurova Med J 2012; 37(1.000: 49-54

  16. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine

    2014-01-01

    IMPORTANCE: Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  17. Performance Characteristics of an Isothermal Freeze Valve

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  18. Tricuspid Valve Replacement, Mechnical vs. Biological Valve, Which Is Better?

    Directory of Open Access Journals (Sweden)

    Haitham Akram Altaani

    2013-06-01

    Full Text Available Background: The initial trial in tricuspid surgery is repair; however, replacement is done whenever the valve is badly diseased. Tricuspid valve replacement comprises 1.7% of all tricuspid valve surgeries. Materials and Methods: The present retrospective study was performed using the medical records of 21 cases who underwent tricuspid valve replacement from January 2002 until the end of December 2010. The mean age of the participants was 52.3±8.8 years and 66.7% were females. In addition, tricuspid valve replacement was associated with mitral valve surgery, aortic valve surgery, and both in 14.3%, 4.8%, and 33.3% of the cases, respectively. Yet, isolated tricuspid valve replacement and redo surgery were performed in 10 cases (47.6% and 8 cases (38.1%, respectively. Besides, trial of repair was done in 14 cases (66.7%. Moreover, biological and mechanical valves were used in 76.2% and 23.8% of the patients, respectively. Results: According to the results, early mortality was 23.8% and one year survival was 66.7%. Moreover, early mortality was caused by right ventricular failure, multiorgan failure, medistinitis, and intracerbral bleeding in 42%, 28.6%, 14.3%, and 14.3% of the cases, respectively. In addition, 57.1% of the deaths had occurred in the cases where the biological valve was used, while 42.9% of the deaths had taken place where the mechanical one was utilized. Conclusions: The patients who require tricuspid valve replacement are usually high risk surgical candidates with early and long term mortality. The findings of the current study showed no significant hemodynamic difference between mechanical and biological valves.

  19. Primary palpebral and orbital ossification in pseudo-pseudohypoparathyroidism

    DEFF Research Database (Denmark)

    Klauber, S.; Heegaard, S.; Prause, J.U.

    2002-01-01

    ophthalmology, Albright's heriditary osteodystrophy, ossification, pseudo-pseudohypoparathyroidism, pseodohypoparathyroidism, hypothyroidism, GNAS1 gene, history, eyelid, orbit......ophthalmology, Albright's heriditary osteodystrophy, ossification, pseudo-pseudohypoparathyroidism, pseodohypoparathyroidism, hypothyroidism, GNAS1 gene, history, eyelid, orbit...

  20. Micromagnetic simulations of spin-torque driven magnetization dynamics with spatially resolved spin transport and magnetization texture

    Science.gov (United States)

    Borlenghi, Simone; Mahani, M. R.; Fangohr, Hans; Franchin, M.; Delin, Anna; Fransson, Jonas

    2017-09-01

    We present a simple and fast method to simulate spin-torque driven magnetization dynamics in nanopillar spin-valve structures. The approach is based on the coupling between a spin transport code based on random matrix theory and a micromagnetics finite-elements software. In this way the spatial dependence of both spin transport and magnetization dynamics is properly taken into account. Our results are compared with experiments. The excitation of the spin-wave modes, including the threshold current for steady-state magnetization precession and the nonlinear frequency shift of the modes are reproduced correctly. The giant magneto resistance effect and the magnetization switching also agree with experiment. The similarities with recently described spin-caloritronics devices are also discussed.

  1. Thermo-electric valve

    Science.gov (United States)

    Chamberland, R. R.; Stanland, A. J.

    1985-02-01

    A thermo-electric valve is described for scuttling floating devices comprising, a cylindrical sleeve affixed to and passing through a bulkhead separating a pressurized medium on one side from a lower pressure space on the other side, a piston moveably mounted within the sleeve bore and exposed to the pressurized medium having a portion thereof blocking the sleeve bore, an O-ring sealing the gap between the piston head and the sleeve bore, a fully compressed spring pressing against the piston, a rigid dielectric washer and a low power resistor holding the piston against the spring. In operation a low current is passed through the resistor, disintegrating it and releasing the spring's stored energy. This actuates the valve by expelling the piston which allows the pressurized fluid or gas to enter the lower pressure space.

  2. Tuning carrier mobility without spin transport degrading in copper-phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S. W.; Wang, P.; Chen, B. B.; Zhou, Y. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Ding, H. F., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn; Wu, D., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2015-07-27

    We demonstrate more than one order of magnitude of carrier mobility tuning for the copper-phthalocyanine (CuPc) without spin transport degrading in organic spin valve devices. Depending on the preparation conditions, organic spin valves with the CuPc film mobility of 5.78 × 10{sup −3} and 1.11 × 10{sup −4} cm{sup 2}/V s are obtained for polycrystalline and amorphous CuPc, respectively. Strikingly, the spin diffusion lengths are almost the same regardless of their mobilities that are ∼50 times different, which is in sharp contrast with previous prediction. These findings directly support that the spin relaxation in CuPc is dominated by the spin-orbit coupling.

  3. Effect of resistance feedback on spin torque-induced switching of nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, Samir [Department of Physics and Astronomy and USC Nanocenter, University of South Carolina, Columbia, SC 29208 (United States)], E-mail: sgarzon@physics.sc.edu; Webb, Richard A. [Department of Physics and Astronomy and USC Nanocenter, University of South Carolina, Columbia, SC 29208 (United States); Covington, Mark; Kaka, Shehzaad [Seagate Research, 1251 Waterfront Place, Pittsburgh, PA 15222 (United States); Crawford, Thomas M. [Department of Physics and Astronomy and USC Nanocenter, University of South Carolina, Columbia, SC 29208 (United States)

    2009-10-15

    In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.

  4. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  5. Patents and heart valve surgery--I: mechanical valves.

    Science.gov (United States)

    Cheema, Faisal H; Hussain, Nasir; Kossar, Alexander P; Polvani, Gianluca

    2013-04-01

    Valvular heart disease, inherited or acquired, affects more than 5 million Americans yearly. Whereas medical treatment is beneficial in the initial stages of valvular heart disease, surgical correction provides symptomatic relief and long-term survival benefits. Surgical options include either repair or replacement using mechanical or bio-prosthetic valves. Patient age and the post-operative need for anticoagulation therapy are major determinants of the choice between use of mechanical or bio-prosthetic valves. Since the first mechanical valves were made available several decades ago, the incorporation of increasingly sophisticated materials and methodologies has led to substantial improvements in the valve design, and has catalyzed a parallel increase in the amount of patents issued for these emerging technologies. In this paper, we have chronologically reviewed such patents, briefly discussed various challenges that mechanical heart valve implementation is faced with and finally reviewed some of the strategies employed to overcome such obstacles. An ideal prosthetic heart valve would comprehensively mimic the natural hemodynamics and physiology of the native heart valve. Additionally, such a valve would be easily implantable, associated with a minimal risk of thrombosis and thus need for anti-coagulation, and with a proven long-term durability. With cutting edge technological advancements in the recent times, the ongoing innovative and collaborative efforts of physicians, scientists, and engineers will not seize until an ideal mechanical heart valve becomes a reality.

  6. Aortic valve replacement

    DEFF Research Database (Denmark)

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A

    2008-01-01

    countries. METHODS: A multi-institutional, non-randomized, retrospective analysis was conducted among 2,932 patients who underwent AVR surgery at seven tertiary cardiac surgery centers throughout Europe. Demographic and perioperative variables including valve size and type, body surface area (BSA) and early...... and southern European countries. Imbalances in the prevalence of rheumatic heart disease, health resource availability and variations in surgical practice throughout Europe might be possible etiological causes....

  7. Spin transport in fully hexagonal boron nitride encapsulated graphene

    NARCIS (Netherlands)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Schoenenberger, C.; van Wees, B. J.

    2016-01-01

    We study fully hexagonal boron nitride (hBN) encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes: thick-hBN flake as a bottom gate dielectric substrate which masks the charge impurities from SiO2/Si

  8. Anterior Urethral Valves

    Directory of Open Access Journals (Sweden)

    Vidyadhar P. Mali

    2006-07-01

    Full Text Available We studied the clinical presentation and management of four patients with anterior urethral valves; a rare cause of urethral obstruction in male children. One patient presented antenatally with oligohydramnios, bilateral hydronephrosis and bladder thickening suggestive of an infravesical obstruction. Two other patients presented postnatally at 1 and 2 years of age, respectively, with poor stream of urine since birth. The fourth patient presented at 9 years with frequency and dysuria. Diagnosis was established on either micturating cystourethrogram (MCU (in 2 or on cystoscopy (in 2. All patients had cystoscopic ablation of the valves. One patient developed a postablation stricture that was resected with an end-to-end urethroplasty. He had an associated bilateral vesicoureteric junction (VUJ obstruction for which a bilateral ureteric reimplantation was done at the same time. On long-term follow-up, all patients demonstrated a good stream of urine. The renal function is normal. Patients are continent and free of urinary infections. Anterior urethral valves are rare obstructive lesions in male children. The degree of obstruction is variable, and so they may present with mild micturition difficulty or severe obstruction with hydroureteronephrosis and renal impairment. Hence, it is important to evaluate the anterior urethra in any male child with suspected infravesical obstruction. The diagnosis is established by MCU or cystoscopy and the treatment is always surgical, either a transurethral ablation or an open resection. The long-term prognosis is good.

  9. Most pseudo-bulges can be formed at later stages of major mergers

    Science.gov (United States)

    Sauvaget, T.; Hammer, F.; Puech, M.; Yang, Y. B.; Flores, H.; Rodrigues, M.

    2018-01-01

    Most giant spiral galaxies have pseudo or disc-like bulges that are considered to be the result of purely secular processes. This may challenge the hierarchical scenario predicting about one major merger per massive galaxy (>3 × 1010 M⊙) since the last ∼9 billion years. Here, we verify whether or not the association between pseudo-bulges and secular processes is irrevocable. Using GADGET2 N-body/SPH simulations, we have conducted a systematic study of remnants of major mergers for which progenitors have been selected (1) to follow the gas richness-look back time relationship, and (2) with a representative distribution of orbits and spins in a cosmological frame. Analysing the surface mass density profile of both nearby galaxies and merger remnants with two components, we find that most of them show pseudo-bulges or bar dominated centres. Even if some orbits lead to classical bulges just after the fusion, the contamination by the additional gas that gradually accumulates to the centre and forming stars later on, leads to remnants apparently dominated by pseudo-bulges. We also found that simple smoothed particle hydrodynamics (SPH) simulations should be sufficient to form realistic spiral galaxies as remnants of ancient gas-rich mergers without the need for specifically tuned feedback conditions. We then conclude that pseudo-bulges and bars in spiral galaxies are natural consequences of major mergers when they are realized in a cosmological context, i.e. with gas-rich progenitors as expected when selected in the distant Universe.

  10. Optothermally actuated capillary burst valve

    Science.gov (United States)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  11. Update of transcatheter valve treatment.

    Science.gov (United States)

    Liu, Xian-bao; Wang, Jian-an

    2013-08-01

    Transcatheter valve implantation or repair has been a very promising approach for the treatment of valvular heart diseases since transcatheter aortic valve implantation (TAVI) was successfully performed in 2002. Great achievements have been made in this field (especially TAVI and transcatheter mitral valve repair--MitraClip system) in recent years. Evidence from clinical trials or registry studies has proved that transcatheter valve treatment for valvular heart diseases is safe and effective in surgical high-risk or inoperable patients. As the evidence accumulates, transcatheter valve treatment might be an alterative surgery for younger patients with surgically low or intermediate risk valvular heart diseases in the near future. In this paper, the updates on transcatheter valve treatment are reviewed.

  12. Spin currents, spin torques, and the concept of spin superfluidity

    OpenAIRE

    Rückriegel, Andreas; Kopietz, Peter

    2017-01-01

    In magnets with non-collinear spin configuration the expectation value of the conventionally defined spin current operator contains a contribution which renormalizes an external magnetic field and hence affects only the precessional motion of the spin polarization. This term, which has been named angular spin current by Sun and Xie [Phys. Rev B 72, 245305 (2005)], does not describe the translational motion of magnetic moments. We give a prescription how to separate these two types of spin tra...

  13. Optical detection of spin Hall effect in metals

    Science.gov (United States)

    van T Erve, Olaf; Hanbicki, Aubrey; Li, Connie; Jonker, Berend

    Spin Hall effects in metals have been successfully measured using electrical methods such as nonlocal spin valve transport, ferromagnetic resonance or spin torque transfer experiments. These methods require complex processing techniques and measuring setups. Here we present room temperature measurements of the spin Hall effect in non-magnetic metals such as Pt and β-W using a standard bench top magneto-optic Kerr effect (MOKE) system. With this system, one can readily determine the angular dependence of the induced polarization on the bias current direction. When a bias current is applied, the spin Hall effect causes electrons of opposite spin to be scattered in opposite directions, resulting in a spin accumulation at the surface of the film. The MOKE signal tracks the applied square wave bias current with an amplitude and phase directly related to the spin Hall angle. Using this technique, we show that the spin-Hall angle of β-W is opposite in sign and significantly larger than that of Pt. In addition, we use this technique to detect spin diffusion from β-W into Al thin films, as well as spin diffusion from the topological surface states of Bi2Se3 into Al. We will also show direct modulation of the reflected light up to 100 kHz, using Bi doped Cu samples. This work was supported by internal programs at NRL.

  14. Dynamics of a j =3/2 quantum spin liquid

    Science.gov (United States)

    Natori, W. M. H.; Daghofer, M.; Pereira, R. G.

    2017-09-01

    We study a spin-orbital model for 4 d1 or 5 d1 Mott insulators in ordered double perovskites with strong spin-orbit coupling. This model is conveniently written in terms of pseudospin and pseudo-orbital operators representing multipoles of the effective j =3/2 angular momentum. Similarities between this model and the effective theories of Kitaev materials motivate the proposal of a chiral spin-orbital liquid with Majorana fermion excitations. The thermodynamic and spectroscopic properties of this quantum spin liquid are characterized using parton mean-field theory. The heat capacity, spin-lattice relaxation rate, and dynamic structure factor for inelastic neutron scattering are calculated and compared with the experimental data for the spin liquid candidate Ba2YMoO6 . Moreover, based on a symmetry analysis, we discuss the operators involved in resonant inelastic x-ray scattering (RIXS) amplitudes for double-perovskite compounds. In general, the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions.

  15. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  16. Mitral valve repair versus replacement

    Science.gov (United States)

    Keshavamurthy, Suresh; Gillinov, A. Marc

    2015-01-01

    Degenerative, ischemic, rheumatic and infectious (endocarditis) processes are responsible for mitral valve disease in adults. Mitral valve repair has been widely regarded as the optimal surgical procedure to treat mitral valve dysfunction of all etiologies. The supporting evidence for repair over replacement is strongest in degenerative mitral regurgitation. The aim of the present review is to summarize the data in each category of mitral insufficiency and to provide recommendations based upon this data. PMID:26309824

  17. Wavefield extrapolation in pseudo-depth domain

    KAUST Repository

    Ma, Xuxin

    2012-01-01

    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  18. Pseudo-differential operators and generalized functions

    CERN Document Server

    Toft, Joachim

    2015-01-01

    This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.

  19. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P. [Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France and Université Paris Sud, 91405 Orsay (France); Weatherup, R. S.; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Yang, H. [IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Blume, R. [Helmholtz-Zentrum Berlin fur Materialien und Energie, 12489 Berlin (Germany); Schloegl, R. [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  20. Latest design of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  1. Inflation and pseudo-Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Sannino, Francesco; Tenkanen, Tommi

    2017-01-01

    We consider inflation within a model framework where the Higgs boson arises as a pseudo-Goldstone boson associated with the breaking of a global symmetry at a scale significantly larger than the electroweak one. We show that in such a model the scalar self-couplings can be parametrically suppressed...... field. Our model therefore suggests that inflation and low energy particle phenomenology may be more entwined than assumed so far....

  2. Pseudo-Hermitian random matrix theory

    Science.gov (United States)

    Srivastava, S. C. L.; Jain, S. R.

    2013-02-01

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.

  3. Pseudo-Hermitian random matrix theory

    OpenAIRE

    Srivastava, Shashi C. L.; Jain, S. R.

    2013-01-01

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.

  4. Prosthetic valve endocarditis after transcatheter aortic valve implantation

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; De Backer, Ole; Thyregod, Hans G H

    2015-01-01

    BACKGROUND: Transcatheter aortic valve implantation (TAVI) is an advancing mode of treatment for inoperable or high-risk patients with aortic stenosis. Prosthetic valve endocarditis (PVE) after TAVI is a serious complication, but only limited data exist on its incidence, outcome, and procedural...

  5. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  6. spin coating

    African Journals Online (AJOL)

    PROJET SOJA

    Intense UV photoluminescence is observed for intrinsic ZnO film. Keywords : thin films, oxidize zinc doped aluminium (ZnO:Al), sol-gel, spin coating, structural analysis, electric and optical properties. 1. Introduction. Depuis ces vingt dernières années les couches minces d'oxyde de zinc ont connu un intérêt croissant dans ...

  7. In vitro evaluation of implantation depth in valve-in-valve using different transcatheter heart valves.

    Science.gov (United States)

    Simonato, Matheus; Azadani, Ali N; Webb, John; Leipsic, Jonathon; Kornowski, Ran; Vahanian, Alec; Wood, David; Piazza, Nicolo; Kodali, Susheel; Ye, Jian; Whisenant, Brian; Gaia, Diego; Aziz, Mina; Pasala, Tilak; Mehilli, Julinda; Wijeysundera, Harindra C; Tchetche, Didier; Moat, Neil; Teles, Rui; Petronio, Anna Sonia; Hildick-Smith, David; Landes, Uri; Windecker, Stephan; Arbel, Yaron; Mendiz, Oscar; Makkar, Raj; Tseng, Elaine; Dvir, Danny

    2016-09-18

    Transcatheter heart valve (THV) implantation in failed bioprosthetic valves (valve-in-valve [ViV]) offers an alternative therapy for high-risk patients. Elevated post-procedural gradients are a significant limitation of aortic ViV. Our objective was to assess the relationship between depth of implantation and haemodynamics. Commercially available THVs used for ViV were included in the analysis (CoreValve Evolut, SAPIEN XT and the Portico valve). THVs were implanted in small surgical valves (label size 19 mm) to simulate boundary conditions. Custom-mounted pulse duplicators registered relevant haemodynamic parameters. Twenty-eight experiments were performed (13 CVE, 5 SXT and 10 Portico). Ranges of depth of implantation were: CVE: -1.2 mm to 15.7 mm; SXT: -2.2 mm to 7.5 mm; Portico: 1.4 mm to 12.1 mm. Polynomial regression established a relationship between depth of implantation and valvular mean gradients (CVE: p<0.001; SXT: p=0.01; Portico: p=0.002), as well as with EOA (CVE: p<0.001; SXT: p=0.02; Portico valve: p=0.003). In addition, leaflet coaptation was better in the high implantation experiments for all valves. The current comprehensive bench testing assessment demonstrates the importance of high device position for the attainment of optimal haemodynamics during aortic ViV procedures.

  8. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  9. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  10. Minimally invasive aortic valve replacement

    DEFF Research Database (Denmark)

    Foghsgaard, Signe; Schmidt, Thomas Andersen; Kjaergard, Henrik K

    2009-01-01

    In this descriptive prospective study, we evaluate the outcomes of surgery in 98 patients who were scheduled to undergo minimally invasive aortic valve replacement. These patients were compared with a group of 50 patients who underwent scheduled aortic valve replacement through a full sternotomy...

  11. Butterfly valve apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Ball, L.K.; Hines, M.U.; Miller, T.L.

    1990-10-23

    This patent describes a method of controlling fluid flow in a duct, and duct having a wall bounding a flow path wherein flows the fluid. It comprises: disposing a plate-like valve member in the flow path, which valve member is pivotally movable about an axis generally transverse to the duct between a first position transverse to and closing the flow path and a second position generally parallel with the flow path to open and allow fluid flow therein: transecting the valve member with the pivot axis to define with respect to direction of the fluid flow in the duct and pivotal movement of the valve member toward the open position an upstream valve member wing and a downstream valve member wing each substantially equal in area: increasing the effective area of the valve member upon which the fluid flow exerts fluid dynamic flow forces; and pivoting the valve member toward the second open position thereof in response to the increase of effective area.

  12. Mechanical Valve Replacement: Early Results

    Directory of Open Access Journals (Sweden)

    Habib Cakir

    2012-03-01

    Conclusion: Mechanical prosthetic valves are used for surgical treatment of valve disease with low mortality and morbidity in a large group of patients like women that not to think to get pregnant, non advanced age group and patients have less risky for anticoagulation drug in our clinic. [Cukurova Med J 2012; 37(1: 49-54

  13. Induced spin polarization effect in graphene by ferromagnetic nanocontact

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-03-07

    Chemically synthesized graphene contains large number of defects which act as localized spin moments at the defect sites. Cobalt nanosheets of variable thickness are grown on graphene surface to investigate spin/magnetotransport through graphene sheets containing large number of localized spins. Negative magnetoresistance (MR) is observed over the entire temperature range (5–300 K) for thin cobalt sheets, while a cross-over from negative to positive MR with increasing temperature is noticed for thicker cobalt sheets. The observed MR results are explained on the basis of recently reported spin polarization effect in graphene due to the presence of ferromagnetic atoms on the surface considering a spin valve like Co/graphene/Co nanostructures.

  14. Spin currents, spin torques, and the concept of spin superfluidity

    Science.gov (United States)

    Rückriegel, Andreas; Kopietz, Peter

    2017-03-01

    In magnets with noncollinear spin configuration the expectation value of the conventionally defined spin current operator contains a contribution which renormalizes an external magnetic field and hence affects only the precessional motion of the spin polarization. This term, which has been named angular spin current by Sun and Xie [Phys. Rev. B 72, 245305 (2005)], 10.1103/PhysRevB.72.245305, does not describe the translational motion of magnetic moments. We give a prescription for how to separate these two types of spin transport and show that the translational movement of the spin is always polarized along the direction of the local magnetization. We also show that at vanishing temperature the classical magnetic order parameter in magnetic insulators cannot carry a translational spin current and elucidate how this affects the interpretation of spin supercurrents.

  15. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    Energy Technology Data Exchange (ETDEWEB)

    Czapla-Masztafiak, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland); Lis, G.J.; Gajda, M.; Jasek, E. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków (Poland); Czubek, U. [Department of Coronary Disease, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków (Poland); Bolechała, F. [Department of Forensic Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków (Poland); Borca, C. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kwiatek, W.M. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland)

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe{sup 3+} is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe{sup 3+} form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  16. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    -state system in which effects of (pseudo)spin-orbit coupling come to light is monolayer graphene. The graphene Hamiltonian entirely consists of pseudospin-orbit coupling, yielding the peculiar Dirac-cone band structure. In the second part of this thesis, we have calculated corrections to the electrical conductivity of graphene in the Boltzmann regime, which are due to pseudospin coherences. We have found that several generally well-established formalisms for the derivation of kinetic equations yield different results for this problem. We cannot resolve this discrepancy, but we make propose an alternative ansatz for the nonequilibrium Green function, which would resolve some contradictions. The calculated corrections could possibly explain a part of the experimentally observed residual conductivity in graphene.

  17. Pseudo-Hermitian random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.L. [RIBFG, Variable Energy Cyclotron Centre, 1/AF Bidhan nagar, Kolkata-700 064 (India); Jain, S.R. [NPD, Bhabha Atomic Research Centre, Mumbai-400 085 (India)

    2013-02-15

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Bladder rupture causing pseudo acute renal failure

    Directory of Open Access Journals (Sweden)

    Luciana Andrea Avena Smeili

    2011-09-01

    Full Text Available Bladder rupture is a rare condition associated with significant morbidityand mortality. It is classified into traumatic, nontraumatic or idiopathic andspontaneous. The nonspecific initial clinical presentation is followed bydiscomfort in the lower abdomen, oliguria, hematuria and ascitis. Laboratoryabnormalities simulate the picture of acute renal failure and occurs by amechanism called auto reverse dialysis, with absorption of excreta throughthe peritoneal membrane. The authors describe a case of bladder rupturein morphologically and functionally normal urinary bladder associated withalcohol intake in young healthy man, manifested by abdominal discomfort,pseudo renal failure and massive ascitis. The diagnosis was made by anabdominal multidetector computed tomography confirmed by the finding of7 cm laceration at laparotomy.

  19. Pseudo ventricular tachycardia: a case report.

    LENUS (Irish Health Repository)

    Riaz, A

    2012-02-01

    BACKGROUND: Dramatic artifacts of pseudo flutter have been reported in the past secondary to various factors including tremor (Handwerker and Raptopoulos in N Engl J Med 356:503, 2007) and dialysis machines (Kostis et al. in J Electrocardiol 40(4):316-318, 2007). METHODS: We present this unusual case where the artifact, produced by tremor, was so pronounced to be misdiagnosed and treated as ventricular tachycardia. CONCLUSION: This case highlights the importance of correlating ECG findings with history and clinical examination and of using 12 lead ECGs for rhythm interpretation especially to confirm consistence of arrhythmias in all leads.

  20. Pseudo-communication vs Quasi-communication

    Directory of Open Access Journals (Sweden)

    Елена Константиновна Черничкина

    2016-12-01

    Full Text Available The article is devoted to the analysis of such specific forms of human interaction as quasi- and pseudo-communication. The authors specify the terms which sometimes are used interchangeably. The aim of the conducted research is to find out and demonstrate existing differences and similarities of these communicative phenomena on the basis of theoretical and empirical analysis of the research material in the Russian and English languages. The authors describe communicative features of these phenomena and consider the reasons for such forms of communication and their increased use at present. The research material is represented fiction extracts, film scripts, jokes, print media, a collection of oral speech records both in Russian and English. The authors make use of the following research methods: definitional analysis (to define the terminology of the research, the method of linguistic observation and introspection (to select the communicative situations, the descriptive-analytical method and the method of comparative analysis (to identify similarities and differences of the target phenomena, and the conversational analysis method (to view productivity and effectiveness of a dialogue, etc. The classification of possible forms of their existence in different discourses is suggested. The authors assume that both pseudo- and quasi-communication are characterized as fictitious forms of human interaction with some noticeable violation of the basic communicative model. Pseudo-communication suffers from the discrepancy of the meaning of a coded and decoded message. The authors put forward the main parameters of scientific classification of it as follows: adequate understanding, intentionality, and the stage of communicative action where the failure takes place. At the same time they stress the necessity to distinguish the cases of pseudo talks from phatic and indirect communication. Quasi-communcation is marked by the lack of a real partner and hence

  1. spin coating

    African Journals Online (AJOL)

    PROJET SOJA

    Dans ce travail nous avons préparé des couches minces de l'oxyde de zinc ZnO dopées à l'aluminium et non dopées par la technique Sol-Gel associée au « spin coating » sur des substrats en verre « pyrex » à partir de l'acétate de zinc dissous dans une solution de l'éthanol. Nous avons ensuite effectué des analyses ...

  2. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices

    DEFF Research Database (Denmark)

    Piraux, L.; Renard, K.; Guillemet, R.

    2007-01-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The met......We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena....... The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin...

  3. A time-dependent numerical analysis of flow in a mechanical heart valve: Comparison with experimental results

    Science.gov (United States)

    Gkanis, Vasileios; Housiadas, Christos

    2010-06-01

    There is a great need to fabricate heart valves that have similar haemodynamic properties with the natural ones. Towards this goal, we examine the dynamics of fluid flow in a mechanical heart valve with one leaflet. The fluid is incompressible and Newtonian and the leaflet is a neo-Hookean material. The Arbitrary Lagrangian Eulerian method is used to model the fluid-leaflet interaction, and the system of equations is solved using the Finite Element method. The pseudo solid approach along with a set of algebraic equations are used to deform the mesh, while care is taken to avoid remeshing of the domain, at the moment of valve closure. The computational results are compared against the experimental results, and we find an excellent agreement for the time period of valve closure, the time the valve is fully opened, and the value of the maximum valve opening angle. This study indicates that the present model is capable of describing the valve dynamics in physiological geometries.

  4. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor

    NARCIS (Netherlands)

    Monsma, D.J.; Lodder, J.C.; Popma, T.J.A.; Dieny, B.

    1995-01-01

    A new magnetic field sensor is presented, based on perpendicular hot electron transport in a giant magnetoresistance (Co/Cu)4 multilayer, which serves as a base region of an n-silicon metal-base transistor structure. A 215% change in collector current is found in 500 Oe (77 K), with typical

  5. Cracking a tricuspid perimount bioprosthesis to optimize a second transcatheter sapien valve-in-valve placement.

    Science.gov (United States)

    Brown, Stephen C; Cools, Bjorn; Gewillig, Marc

    2016-09-01

    Bioprosthetic valves degenerate over time. Transcatheter valve-in-valve procedures have become an attractive alternative to surgery. However, every valve increasingly diminishes the diameter of the valvar orifice. We report a 12-year-old female who had a previous transcatheter tricuspid valve-in-valve procedure; cracking the ring of a Carpentier Edwards Perimount valve by means of an ultrahigh pressure balloon allowed implantation of a further larger percutaneous valve. The advantage of this novel approach permits enlarging the inner valve diameter and may facilitate future interventions and prolong time to surgery. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Spin zero

    CERN Multimedia

    James Gillies

    2011-01-01

    This week saw the increasingly familiar sight of hordes of journalists descending on CERN to hear the latest news from the LHC. There were 66 of them to be precise, many of whom announced to us they planned to come for the seminar long before they were invited. It’s a sign of the times that science that used to be conducted in private is now carried out in the public domain. That has the potential to be very good news for science, and for society as a whole, particularly when CERN’s scientists do such a great job of conveying the passion and excitement of their research.   A typical Higgs candidate event in the CMS detector. We live in a science-dominated age, where everyone has to make science-based decisions on a daily basis. Yet at the same time, apathy towards science has been growing while pseudo-science gains ground. For that reason, it’s incumbent upon scientists to push science further up the popular agenda. The fact that the LHC has got the ‘...

  7. Developments in mechanical heart valve prosthesis

    Indian Academy of Sciences (India)

    Artificial heart valves are engineered devices used for replacing diseased or damaged natural valves of the heart. Most commonly used for replacement are mechanical heart valves and biological valves. This paper briefly outlines the evolution, designs employed, materials being used,. and important factors that affect the ...

  8. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed

    2016-07-03

    The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using

  9. All-electrical spin injection and detection in the Co2FeSi/GaAs hybrid system in the local and non-local configuration

    Science.gov (United States)

    Bruski, P.; Manzke, Y.; Farshchi, R.; Brandt, O.; Herfort, J.; Ramsteiner, M.

    2013-07-01

    We demonstrate the electrical injection and detection of spin-polarized electrons in the Co2FeSi/GaAs hybrid system using lateral transport structures. Spin valve signatures and characteristic Hanle curves are observed both in the non-local and the local configuration. The comparatively large magnitude of the local spin valve signal and the high signal-to-noise ratio are attributed to the large spin polarization at the Fermi energy of Co2FeSi in the well-ordered L21 phase.

  10. Transcatheter, valve-in-valve transapical aortic and mitral valve implantation, in a high risk patient with aortic and mitral prosthetic valve stenoses

    Directory of Open Access Journals (Sweden)

    Harish Ramakrishna

    2015-01-01

    Full Text Available Transcatheter valve implantation continues to grow worldwide and has been used principally for the nonsurgical management of native aortic valvular disease-as a potentially less invasive method of valve replacement in high-risk and inoperable patients with severe aortic valve stenosis. Given the burden of valvular heart disease in the general population and the increasing numbers of patients who have had previous valve operations, we are now seeing a growing number of high-risk patients presenting with prosthetic valve stenosis, who are not potential surgical candidates. For this high-risk subset transcatheter valve delivery may be the only option. Here, we present an inoperable patient with severe, prosthetic valve aortic and mitral stenosis who was successfully treated with a trans catheter based approach, with a valve-in-valve implantation procedure of both aortic and mitral valves.

  11. Thermostatic Radiator Valve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States)

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  12. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  13. Management of a locked Strata valve.

    Science.gov (United States)

    Bullivant, Kelly J; Mitha, Alim P; Hamilton, Mark G

    2009-04-01

    The PS Medical Strata valve is a programmable shunt valve used in the treatment of hydrocephalus that allows for noninvasive changes in the pressure setting using a magnet. The Strata valve is sensitive to magnetic fields, and reprogramming is frequently necessary after MR imaging. A known but rare complication of the Strata valve is that the rotor can become locked, causing shunt malfunction. This complication can only occur in a first generation Strata valve.

  14. 3D Printed Multimaterial Microfluidic Valve

    OpenAIRE

    Keating, Steven J.; Gariboldi, Maria Isabella; Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deform...

  15. Scaphoid pseudo-arthrosis: Frequency, pathogenesis and course

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, K.; Teifke, A.; Benning, R.; Dahm, M.; Thelen, R.; Schild, H.

    1989-06-01

    Eighty-three scaphoid pseudo-arthroses were found amongst 1.104 scaphoid examinations. Sixtyseven were present at the first examination and 16 pseudo-arthroses developed amongst 252 scaphoid fractures. Men were affected predominantly, particularly in the 20 to 40-year old group. Fractures in the proximal third of the scaphoid and vertical oblique fractures had a particular tendency to pseudo-arthrosis formation. The operative treatment of choice is a Matti-Russe bone graft. Only one patient in seven with definite scaphoid pseudo-arthrosis showed firm fusion. (orig.).

  16. Treatment of Aortic, Mitral and Tricuspid Structural Bioprosthetic Valve Deterioration Using the Valve-in-Valve Technique.

    Science.gov (United States)

    Codner, Pablo; Assali, Abid; Vaknin-Assa, Hana; Shapira, Yaron; Orvin, Katia; Sharony, Ram; Sagie, Alexander; Kornowski, Ran

    2015-05-01

    The percutaneous approach for a failed bioprosthetic valve is an emerging alternative to redo-valve surgery in patients at high surgical risk. The study aim was to describe the treatment of patients with structural bioprosthetic valve deterioration, using the valve-in-valve technique. A total of 33 consecutive patients with symptomatic structural bioprosthetic valve deterioration was treated at the authors' institution, using the valve-in-valve technique. The valve-in-valve procedure in the aortic position was performed in 23 patients (mean age 81.4 ± 5.9 years; mean STS score 9.6 ± 5.4). The self-expandable and balloon-expandable devices were used in 21 cases (91.3%) and two cases (8.7%), respectively. Procedures were performed via the trans-femoral, trans-axillary and trans-apical routes in 18 (78.2%), three (13%) and two (8.7%) cases, respectively. After the procedure, all patients were in NYHA class I/II. Survival rates were 95.6% at the one-year follow up. The valve-in-valve procedure in the mitral position was performed in 10 patients (mean age 73.6 ± 15 years; mean STS score 7.7 ± 4.1). All procedures were performed using the balloon-expandable device via the trans-apical route. The composite end point of device success was achieved in all patients. Survival rates were 100% and 75% at one month and two years' follow up, respectively. A single valve-in-valve implantation within a failed tricuspid bioprosthetic valve was also successfully performed. In the authors' experience, the valve-in-valve technique for the treatment of a wide range of bioprosthetic valve deterioration modes of failure in different valve positions is safe and very effective.

  17. Arterial spin labeling for quantitative functional MRI.

    Science.gov (United States)

    Hernandez-Garcia, Luis

    2004-01-01

    BOLD effect imaging is very effective for detection and localization of brain activity, and is the dominant functional imaging technique in cognitive psychology. Despite its efficiency to detect and localize active site, the technique does not lend itself easily to quantifiable measurements. A growingly popular alternative is the use of arterial spin labeling (ASL) to obtain perfusion maps as the indicator of cerebral activation. In this paper, the principles and challenges of arterial spin labeling are discussed and the development of a new fast, two-coil pseudo-continuous labeling scheme is presented. The new scheme permits collection of a multi-slice subtraction pair in less than three seconds, depending on the subject's arterial transit times. The theoretical basis of the technique, as well as a model for quantification of perfusion from the ASL data, are presented. Experimental data from functional imaging experiments were collected to demonstrate the technique and its characteristics.

  18. Breakdown of the Korringa law of nuclear spin relaxation in metallic GaAs.

    Science.gov (United States)

    Kölbl, Dominikus; Zumbühl, Dominik M; Fuhrer, Andreas; Salis, Gian; Alvarado, Santos F

    2012-08-24

    We present nuclear spin relaxation measurements in GaAs epilayers using a new pump-probe technique in all-electrical, lateral spin-valve devices. The measured T(1) times agree very well with NMR data available for T>1 K. However, the nuclear spin relaxation rate clearly deviates from the well-established Korringa law expected in metallic samples and follows a sublinear temperature dependence T(1)(-1) is proportional to T(0.6) for 0.1 K≤T≤10 K. Further, we investigate nuclear spin inhomogeneities.

  19. Using heat to control the sample spinning speed in MAS NMR.

    Science.gov (United States)

    Mihaliuk, Eugene; Gullion, Terry

    2011-10-01

    A new approach using temperature to control the spinning speed of a sample rotor in magic-angle spinning NMR is presented. Instead of an electro-mechanical valve that regulates the flow of drive gas to control the spinning speed in traditional MAS NMR systems, we use a small heater wire located directly in the stator. The sample spinning speed is controlled very accurately with a surprisingly low heating power of 1 W. Results on a benchtop unit demonstrate the capability of the system. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Modeling of magnetization precession in spin-torque nano-oscillators with a tilted polarizer

    Directory of Open Access Journals (Sweden)

    Gang Lv

    2015-07-01

    Full Text Available The spin-torque induced magnetization precession dynamics are studied in a spin-valve with a tilted spin polarizer. Macrospin simulations demonstrate that the frequency of precession state depends both on the external DC current and the intrinsic parameters of devices such as the tilted angle of spin polarizer, the damping factor and saturation magnetization of the free layer. The dependence role of those parameters is characterized by phase diagrams. An analytical model is presented, which can successfully interpret the features of precession frequency.

  1. Pseudo-Observables in Higgs decays

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In view of future high-statistics data, it is useful to define a framework for precise determinations of the properties of the Higgs particle valid in generic extensions of the Standard Model. For Higgs decays, this goal can be achieved with a limited set of "Pseudo-Observables" (PO). The PO provides a systematic generalization of the "kappa-framework" so far adopted by the LHC experiments and provide a useful bridge between data and theory predictions. I discuss how the PO are defined, with particular attention to the h->4f decays, and how they can be used to test various dynamical and symmetry hypotheses about the Higgs sector. The relation between PO and EFT couplings is also discussed.

  2. Flights in a pseudo-chaotic system.

    Science.gov (United States)

    Lowenstein, J H; Vivaldi, F

    2011-09-01

    We consider the problem of transport in a one-parameter family of piecewise rotations of the torus, for rotation number approaching 1∕4. This is a zero-entropy system which in this limit exhibits a divided phase space, with island chains immersed in a "pseudo-chaotic" region. We identify a novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode islands. This process originates from the approximate translational invariance of the phase space and leads to long flights of linear motion, for a significant measure of initial conditions. We show that the asymptotic probability distribution of the flight lengths is determined by the geometric properties of a partition of the accelerator-mode island associated with the flight. We establish the existence of flights travelling distances of order O(1) in phase space. We provide evidence for the existence of a scattering process that connects flights travelling in opposite directions.

  3. Transcatheter Replacement of Failed Bioprosthetic Valves

    DEFF Research Database (Denmark)

    Simonato, Matheus; Webb, John; Kornowski, Ran

    2016-01-01

    valve mechanism of failure (stenosis/mixed baseline failure: odds ratio, 3.12; confidence interval, 1.51-6.45; P=0.002). Conclusions-High implantation inside failed bioprosthetic valves is a strong independent correlate of lower postprocedural gradients in both self-and balloon-expandable transcatheter......Background-Transcatheter valve implantation inside failed bioprosthetic surgical valves (valve-in-valve [ViV]) may offer an advantage over reoperation. Supra-annular transcatheter valve position may be advantageous in achieving better hemodynamics after ViV. Our objective was to define targets...... for implantation that would improve hemodynamics after ViV. Methods and Results-Cases from the Valve-in-Valve International Data (VIVID) registry were analyzed using centralized core laboratory assessment blinded to clinical events. Multivariate analysis was performed to identify independent predictors of elevated...

  4. Pseudo-One-Dimensional Magnonic Crystals for High-Frequency Nanoscale Devices

    Science.gov (United States)

    Banerjee, Chandrima; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2017-07-01

    The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials) form one fascinating class of emerging research field, which aims to command the process and flow of information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves. However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge. Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the waveguide effectively engineers the edge modes, which forms the basis of the interactive control in magnonic circuits. The results represent a prospective direction towards managing the internal field distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave filters and magnonic waveguides in the gigahertz frequency range.

  5. Development of an effective valve packing program

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  6. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Science.gov (United States)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  7. Solutions of selected pseudo loop equations in water distribution ...

    African Journals Online (AJOL)

    This paper demonstrated the use of Microsoft Excel Solver (a computer package) in solving selected pseudo loop equations in pipe network analysis problems. Two pipe networks with pumps and overhead tanks were used to demonstrate the use of Microsoft Excel Solver in solving pseudo loops (open loops; networks with ...

  8. RHIC SPIN FLIPPER

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  9. Pseudo-populations a basic concept in statistical surveys

    CERN Document Server

    Quatember, Andreas

    2015-01-01

    This book emphasizes that artificial or pseudo-populations play an important role in statistical surveys from finite universes in two manners: firstly, the concept of pseudo-populations may substantially improve users’ understanding of various aspects in the sampling theory and survey methodology; an example of this scenario is the Horvitz-Thompson estimator. Secondly, statistical procedures exist in which pseudo-populations actually have to be generated. An example of such a scenario can be found in simulation studies in the field of survey sampling, where close-to-reality pseudo-populations are generated from known sample and population data to form the basis for the simulation process. The chapters focus on estimation methods, sampling techniques, nonresponse, questioning designs and statistical disclosure control.This book is a valuable reference in understanding the importance of the pseudo-population concept and applying it in teaching and research.

  10. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  11. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  12. Sutureless Valves Reduce Hospital Costs Compared to Traditional Valves.

    Science.gov (United States)

    Laborde, François; Folliguet, Thierry; Ghorayeb, Gabriel; Zannis, Konstantinos

    2017-01-01

    The study aim was to assess differences in clinical outcome, safety, and associated costs between sutureless and aortic isolated aortic valve replacement (AVR) with a standard bioprosthesis. A retrospective comparative study was conducted to investigate 65 patients, each of whom had undergone isolated AVR with a traditional aortic valve (T) or a Perceval S sutureless aortic prosthesis (P) between January 2010 and December 2012. Cost data were drawn from the proprietary cost accounting system of the hospital, excluding acquisition costs of the devices. A linear regression model was used to estimate the mean total costs difference between groups. The mean cardiopulmonary bypass time and aortic cross-clamp times in the T and P groups were 80 ± 41 min and 58 ± 26 min versus 38 ± 16 min and 26 ± 10 min, respectively (p costs savings for group P compared to group T were €3,801 (p = 0.13), mainly driven by hospital stay costs. Savings between the P and T groups increased with age: €4,992 in patients aged 70-79 years and €9,326 in those aged 80+ years, and with risk (€4,296 for high-risk patients). Sutureless aortic valves present shorter procedural times and lower hospital costs compared to traditional valves, with higher cost savings at increased patient age and risk. Sutureless aortic valves seem to be cost-effective in patients undergoing AVR.

  13. Robotically assisted mitral valve replacement.

    Science.gov (United States)

    Gao, Changqing; Yang, Ming; Xiao, Cangsong; Wang, Gang; Wu, Yang; Wang, Jiali; Li, Jiachun

    2012-04-01

    In the present study, we determined the safety and efficacy of robotic mitral valve replacement using robotic technology. From January 2007 through March 2011, more than 400 patients underwent various types of robotic cardiac surgery in our department. Of these, 22 consecutive patients underwent robotically assisted mitral valve replacement. Of the 22 patients with isolated rheumatic mitral valve stenosis (9 men and 13 women), the mean age was 44.7 ± 19.8 years (range, 32-65). Preoperatively, all patients underwent a complete workup, including coronary angiography and transthoracic echocardiography. Of the 22 patients, 15 had concomitant atrial fibrillation. The surgical approach was through 4 right-side chest ports with femoral perfusion. Aortic occlusion was performed with a Chitwood crossclamp, and antegrade cardioplegia was administered directly by way of the anterior chest. Using 3 port incisions in the right side of the chest and a 2.5- to 3.0-cm working port, all the procedures were completed with the da Vinci S robot. All patients underwent successful robotic surgery. Of the 22 patients, 16 received a mechanical valve and 6 a tissue valve. The mean cardiopulmonary bypass time and aortic crossclamp time was 137.1 ± 21.9 minutes (range, 105-168) and 99.3 ± 17.9 minutes (range, 80-133), respectively. No operative deaths, stroke, or other complications occurred, and no incisional conversions were required. After surgery, all the patients were followed up echocardiographically. Robotically assisted mitral valve replacement can be performed safely in patients with isolated mitral valve stenosis, and surgical results are excellent. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  14. What Are the Signs and Symptoms of Heart Valve Disease?

    Science.gov (United States)

    ... as well as surgery for adults who have aortic valve stenosis. Doctors often use balloon valvuloplasty to repair valve stenosis in infants and children. Replacing Heart Valves Sometimes heart valves can’t ...

  15. PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots.

    Science.gov (United States)

    Taufer, Michela; Licon, Abel; Araiza, Roberto; Mireles, David; van Batenburg, F H D; Gultyaev, Alexander P; Leung, Ming-Ying

    2009-01-01

    Pseudoknots have been recognized to be an important type of RNA secondary structures responsible for many biological functions. PseudoBase, a widely used database of pseudoknot secondary structures developed at Leiden University, contains over 250 records of pseudoknots obtained in the past 25 years through crystallography, NMR, mutational experiments and sequence comparisons. To promptly address the growing analysis requests of the researchers on RNA structures and bring together information from multiple sources across the Internet to a single platform, we designed and implemented PseudoBase++, an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. PseudoBase++ (http://pseudobaseplusplus.utep.edu) maps the PseudoBase dataset into a searchable relational database including additional functionalities such as pseudoknot type. PseudoBase++ links each pseudoknot in PseudoBase to the GenBank record of the corresponding nucleotide sequence and allows scientists to automatically visualize RNA secondary structures with PseudoViewer. It also includes the capabilities of fine-grained reference searching and collecting new pseudoknot information.

  16. La tuberculose abdominale pseudo-tumorale

    Science.gov (United States)

    El Barni, Rachid; Lahkim, Mohamed; Achour, Abdessamad

    2012-01-01

    Introduction L’objectif de ce travail est de rapporter cinq cas de tuberculose abdominale pseudo-tumorale afin d’en souligner les aspects diagnostiques et thérapeutiques. Cinq observations sont colligées dans le service de chirurgie générale de l’hôpital militaire Avicenne de Marrakech au cours de l’année 2007. Les aspects cliniques sont disparates. Ainsi, les auteurs ont noté un syndrome péritonéal dans un cas, une masse épigastrique dans un cas, une lésion suspect du sigmoïde dans un cas, une masse de la fosse iliaque droite dans un cas et une altération de l’état général avec fièvre dans le dernier cas. Un seul patient avaient bénéficié d’une biopsie scano-guidée et les quatre patients restants avaient été opérés. Une masse du méso côlon était notée dans le premier cas. Dans le second cas, l’aspect de la masse épigastrique et son siège avaient orienté vers une tumeur du grand omentum. Une localisation tuberculeuse péritonéale et sigmoïdienne avait été trouvée dans le troisième cas. Le diagnostic d’une tumeur du côlon droit était hautement suspect chez le patient séropositif qui avait présenté une péritonite post-opératoire et décédé à J + 3 dans un tableau de choc septique. Le siège et l’aspect nécrotique des lésions trouvées à la tomodensitométrie chez la seule patiente de l’étude avaient fait discuter en premier un lymphome. Même en l’absence d’antécédents de tuberculose pulmonaire, le diagnostic tuberculose abdominale pseudo-tumorale doit être évoqué surtout dans un pays d’endémie comme le notre et le recours à une laparotomie est justifié chaque fois que persiste un doute diagnostique ou en cas de complication. PMID:23330023

  17. Butterfly valve of all rubber lining type

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shosaku; Nakatsuma, Sumiya (Kubota Ltd., Osaka (Japan)); Sasaki, Iwao; Aoki, Naoshi

    1982-08-01

    The valves used for the circulating water pipes for condensers in nuclear and thermal power stations have become large with the increase of power output, and their specifications have become strict. The materials for the valves change from cast iron to steel plate construction. To cope with sea water corrosion, rubber lining has been applied to the internal surfaces of valve boxes, and the build-up welding of stainless steel has been made on the edges of valves. However, recently it is desired to develop butterfly valves, of which the whole valve disks are lined with hard rubber. For the purpose of confirming the performance of large bore valves, a 2600 mm bore butterfly valve of all rubber lining type was used, and the opening and closing test of 1100 times was carried out by applying thermal cycle and pressure difference and using artifical sea water. Also the bending test of hard rubber lining was performed with test pieces. Thus, it was confirmed that the butterfly valves of all rubber lining type have the performance exceeding that of the valves with build-up welding. The course of development of the valves of all rubber lining type, the construction and the items of confirmation by tests of these valves, and the tests of the valve and the hard rubber lining described above are reported.

  18. Mitral valve aneurysm associated with aortic valve endocarditis and regurgitation.

    Science.gov (United States)

    Raval, Amish N; Menkis, Alan H; Boughner, Derek R

    2002-01-01

    Mitral valve aneurysms are rare complications occurring most commonly in association with aortic valve infective endocarditis. [Decroly 1989, Chua 1990, Northridge 1991, Karalis 1992, Roguin 1996, Mollod 1997, Vilacosta 1997, Cai 1999, Vilacosta 1999, Teskey 1999, Chan 2000, Goh 2000, Marcos- Alberca 2000] While the mechanism of the development of this lesion is unclear, complications such as perforation can occur and lead to significant mitral regurgitation. [Decroly 1989, Karalis 1992, Teskey 1999, Vilacosta 1999]; The case of a 69-year-old male with Streptococcus Sanguis aortic valve endocarditis and associated anterior mitral leaflet aneurysm is presented. Following surgery, tissue pathology of the excised lesion revealed myxomatous degeneration and no active endocarditis or inflammatory cells. This may add support to the hypothesis that physical stress due to severe aortic insufficiency and structural weakening, without infection of the anterior mitral leaflet, can lead to the development of this lesion.

  19. Valved stent for off-pump mitral valve replacement

    OpenAIRE

    Ma, L.(School of Physics, Shandong University, Shandong, China)

    2004-01-01

    Résumé Objectif : Evaluer un remplacement de valve mitrale hors-pompe avec des stents valvés Méthode: Des homografts préservés dans du glutaraldehyde ont été suturés dans une prothèse tubulaire avant d'être soudés à deux stents Z en nitinol pour créer deux couronnes auto- extensibles. A) Nous avons testé la valve in vitro en utilisant un circuit pulsatile fermé (mock loop) ayant de débuter les expériences sur les porcs. (n=8, 46 .0± 4.3 kg : B). L'oreillette gauche a été exposée p...

  20. Mechanical heart valve cavitation in patients with bileaflet valves.

    Science.gov (United States)

    Johansen, Peter; Andersen, Tina S; Hasenkam, J Michael; Nygaard, Hans; Paulsen, Peter K

    2014-01-01

    Today, the quality of mechanical heart valves is quite high, and implantation has become a routine clinical procedure with a low operative mortality (mechanism found to be a possible contributor to these adverse effects is cavitation. In vitro, cavitation has been directly demonstrated by visualization and indirectly in vivo by registering of high frequency pressure fluctuations (HFPF). Tilting disc valves are thought of having higher cavitation potential than bileaflet valves due to higher closing velocities. However, the thromboembolic potential seems to be the same. Further studies are therefore needed to investigate the cavitation potential of bileaflet valves in vivo. The post processing of HFPF have shown difficulties when applied on bileaflet vavles due to asynchronous closure of the two leaflets. The aim of this study was therefore to isolate the pressure signature from each leaflet closure and perform cavitation analyses on each component. Six patients were included in the study (St. Jude Medical (n=3) and CarboMedics (n=3); all aortic bileaflet mechanical heart valves). HFPFs were recorded intraoperatively through a hydrophone at the aortic root. The pressure signature relating to the first and second leaflet closure was isolated and cavitation parameters were calculated (RMS after 50 kHz highpass filtering and signal energy). Data were averaged over 30 heart cycles. For all patients both the RMS value and signal energy of the second leaflet closure were higher than for the first leaflet closure. This indicates that the second leaflet closure is most prone to cause cavitation. Therefore, quantifying cavitation based on the HFPF related to the second leaflet closure may suggest that the cavitation potential for bileaflet valves in vivo may be higher than previous studies have suggested.

  1. Minimally Invasive Heart Valve Surgery.

    Science.gov (United States)

    Bouhout, Ismail; Morgant, Marie-Catherine; Bouchard, Denis

    2017-09-01

    Minimally invasive valve surgery represents a recent and significant advance in modern heart surgery. Indeed, many less invasive approaches for both the aortic and mitral valves have been developed in the past 2 decades. These procedures were hypothesized to result in less operative trauma, which might translate into better patient outcomes. However, this clinical benefit remains controversial in the literature. The aim of this review is to discuss the evidence surrounding minimally invasive heart valve surgery in the current era. A systematic search of the literature from 2006-2016 was performed looking for articles reporting early or late outcomes after minimally invasive valve surgery. Less invasive valve surgery is safe and provides long-term surgical outcomes similar to those of standard sternotomy. In addition, these approaches result in a reduction in overall hospital length of stay and may mitigate the risk of early morbidity-mainly postoperative bleeding, transfusions, and ventilation duration. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Arterial spin labeling in space and time : new MRI sequences to probe cerebral hemodynamics

    NARCIS (Netherlands)

    Schmid, S.

    2017-01-01

    In this thesis I have described the introduction and validation of a new spatially non-selective arterial spin labeling (SNS-ASL) method in healthy subjects. Acceleration selective ASL (AccASL) was compared with pseudo continuous ASL (pCASL), a traditional ASL method, as well as other spatially

  3. Structural valve deterioration in the Mitroflow biological heart valve prosthesis

    DEFF Research Database (Denmark)

    Issa, Issa Farah; Poulsen, Steen Hvitfeldt; Waziri, Farhad

    2018-01-01

    OBJECTIVES: Concern has been raised regarding the long-term durability of the Mitroflow biological heart valve prosthesis. Our aim was to assess the incidence of structural valve degeneration (SVD) for the Mitroflow bioprosthesis in a nationwide study in Denmark including all patients alive...... in Denmark who had received a Mitroflow aortic bioprosthesis since 2000. METHODS: Patients alive in Denmark with a Mitroflow bioprosthesis implanted since January 2000 were invited to participate in a nationwide cross-sectional study with a predefined definition of SVD. Of 1552 patients, 861 patients had...

  4. Development of mechanical heart valves - an inspiring tale

    Directory of Open Access Journals (Sweden)

    P Rajashekar

    2015-01-01

    Full Text Available The historical evolution of the prosthetic heart valves from the first attempts with the Hufnagel′s valve in the treatment of the aortic insufficiency to the Starr-Edwards′ ball valve and later the tilting disc valves (Bjork-Shiley etc., and finally the bileaflet valves (St. Jude are discussed. The Indian contribution with Chitra valve is also described.

  5. The theory of pseudo-rigid bodies

    CERN Document Server

    Cohen, Harley

    1988-01-01

    This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else­ where, much of the work is new. Our objective in writing this mono­ graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat­ ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...

  6. Loop-Effects in Pseudo-Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Matthias

    2002-11-01

    We analyze the transmission of supersymmetry breaking in brane-world models of pseudo-supersymmetry. In these models two branes preserve different halves of the bulk supersymmetry. Thus supersymmetry is broken although each sector of the model is supersymmetric when considered separately. The world-volume theory on one brane feels the breakdown of supersymmetry only through two-loop interactions involving a coupling to fields from the other brane. In a 5D toy model with bulk vectors, we compute the diagrams that contribute to scalar masses on one brane and find that the masses are proportional to the compactification scale up to logarithmic corrections, m{sup 2} {infinity} (2{pi}R){sup -2} (ln(2{pi}R m{sub S}) - 1.1), where m{sub s} is an ultraviolet cutoff. Thus, for large compactification radii, where this result is valid, the brane scalars acquire a positive mass squared. We also compute the three-loop diagrams relevant to the Casimir energy between the two branes and find E {infinity} (2{pi}R){sup -4}((ln(2{pi}R m{sub S}) - 1.7){sup 2} + 0.2). For large radii, this yields a repulsive Casimir force.

  7. A retrospective analysis of mitral valve pathology in the setting of bicuspid aortic valves

    Science.gov (United States)

    van Rensburg, Annari; Doubell, Anton

    2017-01-01

    The therapeutic implications of bicuspid aortic valve associations have come under scrutiny in the transcatheter aortic valve implantation era. We evaluate the spectrum of mitral valve disease in patients with bicuspid aortic valves to determine the need for closer echocardiographic scrutiny/follow-up of the mitral valve. A retrospective analysis of echocardiograms done at a referral hospital over five years was conducted in patients with bicuspid aortic valves with special attention to congenital abnormalities of the mitral valve. One hundred and forty patients with a bicuspid aortic valve were included. A congenital mitral valve abnormality was present in eight (5.7%, P = 0.01) with a parachute mitral valve in four (2.8%), an accessory mitral valve leaflet in one (0.7%), mitral valve prolapse in one, a cleft in one and the novel finding of a trileaflet mitral valve in one. Minor abnormalities included an elongated anterior mitral valve leaflet (P abnormal papillary muscles (P = 0.002) and an additional chord or tendon in the left ventricle cavity (P = 0.007). Mitral valve abnormalities occur more commonly in patients with bicuspid aortic valves than matched healthy individuals. The study confirms that abnormalities in these patients extend beyond the aorta. These abnormalities did not have a significant functional effect. PMID:28515127

  8. Transcatheter valve-in-valve implantation due to severe aortic regurgitation in a degenerated aortic homograft

    DEFF Research Database (Denmark)

    Olsen, Lene Kjaer; Engstrøm, Thomas; Søndergaard, Lars

    2009-01-01

    a successful valve-in-valve implantation of a CoreValve aortic valve prosthesis through the right subclavian artery in a case of severe aortic regurgitation within a degenerated aortic homograft. The case exemplifies the possibilities of expanding the indications for TAVI, as well as other vascular access...

  9. A retrospective analysis of mitral valve pathology in the setting of bicuspid aortic valves.

    Science.gov (United States)

    van Rensburg, Annari; Herbst, Philip; Doubell, Anton

    2017-06-01

    The therapeutic implications of bicuspid aortic valve associations have come under scrutiny in the transcatheter aortic valve implantation era. We evaluate the spectrum of mitral valve disease in patients with bicuspid aortic valves to determine the need for closer echocardiographic scrutiny/follow-up of the mitral valve. A retrospective analysis of echocardiograms done at a referral hospital over five years was conducted in patients with bicuspid aortic valves with special attention to congenital abnormalities of the mitral valve. One hundred and forty patients with a bicuspid aortic valve were included. A congenital mitral valve abnormality was present in eight (5.7%, P = 0.01) with a parachute mitral valve in four (2.8%), an accessory mitral valve leaflet in one (0.7%), mitral valve prolapse in one, a cleft in one and the novel finding of a trileaflet mitral valve in one. Minor abnormalities included an elongated anterior mitral valve leaflet (P mitral regurgitation (P Mitral valve abnormalities occur more commonly in patients with bicuspid aortic valves than matched healthy individuals. The study confirms that abnormalities in these patients extend beyond the aorta. These abnormalities did not have a significant functional effect. © 2017 The authors.

  10. Should a Regurgitant Mitral Valve Be Replaced Simultaneously with a Stenotic Aortic Valve?

    OpenAIRE

    Christenson, Jan T.; Jordan, Bernard; Bloch, Antoine; Schmuziger, Martin

    2000-01-01

    Mitral valve regurgitation frequently accompanies aortic valve stenosis. It has been suggested that mitral regurgitation improves after aortic valve replacement alone and that the mitral valve need not be replaced simultaneously. Furthermore, mitral regurgitation associated with coronary artery disease, particularly in patients with poor left ventricular function, shows immediate improvement after coronary artery bypass grafting.

  11. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  12. Active combustion flow modulation valve

    Science.gov (United States)

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  13. Promising results after percutaneous mitral valve repair

    DEFF Research Database (Denmark)

    Ihlemann, Nikolaj; Franzen, Olaf; Jørgensen, Erik

    2011-01-01

    Mitral valve regurgitation (MR) is the secondmost frequent valve disease in Europe. Untreated MR causes considerable morbidity and mortality. In the elderly, as many as half of these patients are denied surgery because of an estimated high surgical risk. Percutaneous mitral valve repair...... with the MitraClip system resembles the Alfieristitch where a clip is used to connect the tip of the mitral valve leaflets....

  14. Infective endocarditis following percutaneous pulmonary valve replacement

    DEFF Research Database (Denmark)

    Cheung, Gary; Vejlstrup, Niels; Ihlemann, Nikolaj

    2013-01-01

    Infective endocarditis (IE) following percutaneous pulmonary valve replacement (PPVR) with the Melody valve is rarely reported. Furthermore, there are challenges in this diagnosis; especially echocardiographic evidence of vegetation within the prosthesis may be difficult.......Infective endocarditis (IE) following percutaneous pulmonary valve replacement (PPVR) with the Melody valve is rarely reported. Furthermore, there are challenges in this diagnosis; especially echocardiographic evidence of vegetation within the prosthesis may be difficult....

  15. Pregnancy-induced remodeling of heart valves.

    Science.gov (United States)

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. Copyright © 2015 the American Physiological Society.

  16. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  17. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Hyung Joon; Lee, Jee Keun [Chonbuk National Univ., Jeonju (Korea, Republic of); Choi, Hee Joo [Firstec Co., Ltd., Changwon (Korea, Republic of)

    2008-01-15

    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk.

  18. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  19. Hacerse y volverse como nexos pseudo-copulativos

    OpenAIRE

    Delbecque, Nicole; Van Gorp, Lise

    2013-01-01

    Cette contribution aborde les différences conceptuelles entre les pseudo-copules hacerse et volverse, partant des notions de «réalisation» et de «régression» qui caractérisent leurs emplois lexicaux. Esta contribución aborda las diferencias conceptuales entre las pseudo-cópulas hacerse y volverse, partiendo de las nociones de «realización» y de «regresión» que caracterizan sus empleos léxicos. This contribution tackles the conceptual differences between the pseudo-copulas hacerse and vo...

  20. Pseudo-Supersymmetry and the Domain-Wall/Cosmology Correspondence

    OpenAIRE

    Skenderis, K.; Townsend, P. K.

    2006-01-01

    The correspondence between domain-wall and cosmological solutions of gravity coupled to scalar fields is explained. Any domain wall solution that admits a Killing spinor is shown to correspond to a cosmology that admits a pseudo-Killing spinor: whereas the Killing spinor obeys a Dirac-type equation with hermitian `mass'-matrix, the corresponding pseudo-Killing spinor obeys a Dirac-type equation with a anti-hermitian `mass'-matrix. We comment on some implications of (pseudo)supersymmetry.

  1. 49 CFR 195.420 - Valve maintenance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve maintenance. 195.420 Section 195.420 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Operation and Maintenance § 195.420 Valve maintenance. (a) Each operator shall maintain each valve...

  2. Double orifice mitral valve; a coincidental finding

    NARCIS (Netherlands)

    Westendorp, Iris C. D.; de Bruin-Bon, H. A. C. M.; Hrudova, Jana

    2006-01-01

    A double orifice mitral valve (DOMV) represents a rare congenital malformation characterised by two valve orifices with two separate subvalvular apparatus. This case demonstrates the necessity of careful imaging of the mitral valve apparatus, not only in patients with atrioventricular septal

  3. Pregnancy in women with prosthetic heart valves

    NARCIS (Netherlands)

    Pieper, P. G.; Balci, A.; Van Dijk, A. P.

    2008-01-01

    Pregnancy in women with mechanical valve prostheses has a high maternal complication rate including valve thrombosis mid death. Coumarin derivatives are relatively safe for the mother with a lower incidence of valve thrombosis than unfractionated and low-molecular-weight heparin, but carry the risk

  4. Pregnancy in women with prosthetic heart valves.

    NARCIS (Netherlands)

    Pieper, P.G.; Balci, A.; Dijk, A.P.J. van

    2008-01-01

    Pregnancy in women with mechanical valve prostheses has a high maternal complication rate including valve thrombosis and death. Coumarin derivatives are relatively safe for the mother with a lower incidence of valve thrombosis than un-fractionated and low-molecular-weight heparin, but carry the risk

  5. Transcatheter mitral valve implantation via transapical approach

    DEFF Research Database (Denmark)

    Sondergaard, Lars; Brooks, Matthew; Ihlemann, Nikolaj

    2015-01-01

    OBJECTIVES: As many as 50% of patients with severe symptomatic mitral valve regurgitation are denied surgical valve replacement or repair due to high operative risk. We describe an early series of cases of transcatheter implantation with a CardiAQ™ mitral valve via a transapical approach. METHODS...

  6. Valve-sparing aortic root replacement†

    NARCIS (Netherlands)

    Koolbergen, David R.; Manshanden, Johan S. J.; Bouma, Berto J.; Blom, Nico A.; Mulder, Barbara J. M.; de Mol, Bas A. J. M.; Hazekamp, Mark G.

    2015-01-01

    To evaluate our results of valve-sparing aortic root replacement and associated (multiple) valve repair. From September 2003 to September 2013, 97 patients had valve-sparing aortic root replacement procedures. Patient records and preoperative, postoperative and recent echocardiograms were reviewed.

  7. Porcine Tricuspid Valve Anatomy and Human Compatibility

    DEFF Research Database (Denmark)

    Waziri, Farhad; Lyager Nielsen, Sten; Hasenkam, J. Michael

    2016-01-01

    before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. METHODS: The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin...

  8. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    Science.gov (United States)

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  9. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  10. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    Science.gov (United States)

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  11. [The Starr-Edwards heart valve: one of the oldest mechanical heart valves still functioning today].

    Science.gov (United States)

    Schoenaker, Michiel H; van Wetten, Herbert B; Morshuis, Wim J

    2015-01-01

    In the 1960s, the Starr-Edwards valve was the first artificial heart valve to be successfully implanted in humans. This valve has now been in use for decades with outstanding results: patients whose life expectancy had previously been short acquired a good prognosis with this development. Nowadays the Starr-Edwards valve is not used anymore, but patients are being described today in whom these valves are still functioning well after more than 40 years.

  12. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  13. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  14. Defect-enhanced Rashba spin-polarized currents in carbon nanotubes

    Science.gov (United States)

    Santos, Hernán; Chico, Leonor; Alvarellos, J. E.; Latgé, A.

    2017-10-01

    The production of spin-polarized currents in pristine carbon nanotubes with Rashba spin-orbit interactions has been shown to be very sensitive to the symmetry of the tubes and the geometry of the setup. Here we analyze the role of defects on the spin quantum conductances of metallic carbon nanotubes due to an external electric field. We show that localized defects, such as adsorbed hydrogen atoms or pentagon-heptagon pairs, increase the Rashba spin-polarized current. Moreover, this enhancement takes place for energies closer to the Fermi energy as compared to the response of pristine tubes. Such increments can be even larger when several equally spaced defects are introduced into the system. We explore different arrangements of defects, showing that for certain geometries there are flips of the spin-polarized current and even transport suppression. Our results indicate that spin valve devices at the nanoscale may be achieved via defect engineering in carbon nanotubes.

  15. Quasiparticle-mediated spin Hall effect in a superconductor.

    Science.gov (United States)

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  16. Higher spin black holes

    National Research Council Canada - National Science Library

    Gutperle, Michael; Kraus, Per

    2011-01-01

    .... We find solutions that generalize the BTZ black hole and carry spin-3 charge. The black hole entropy formula yields a result for the asymptotic growth of the partition function at finite spin-3 chemical potential...

  17. Summary: symmetries and spin

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.C. (Institute for Nuclear Theory, Department of Physcis, FM-15, University of Washington, Seattle, Washington 98195 (US))

    1989-05-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity non-conservation, CP/T nonconservation, and tests of charge symmetry and charge independence.

  18. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  19. Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Biplab Dey, Michael E. McCracken, David G. Ireland, Curtis A. Meyer

    2011-05-01

    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

  20. Pseudo-differential operators groups, geometry and applications

    CERN Document Server

    Zhu, Hongmei

    2017-01-01

    This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.

  1. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D. [Univ. of Washington, Seattle, WA (United States); Broniowski, W. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.

  2. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D. [Washington Univ., Seattle, WA (United States). Dept. of Physics; Broniowski, W. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-01

    We analyze the chiral limit in dense isoptin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter. (author). 20 refs.

  3. Her-entingen tegen Pseudo Vogelpest (NCD) op 'Het Spelderholt'

    NARCIS (Netherlands)

    Voorst, van A.

    1993-01-01

    Pseudo Vogelpest of NCD is een gevreesde virusziekte, waartegen een entverplichting geldt. Na het uitbreken van de ziekte in het zuiden van Nederland is al het volwassen pluimvee op Het Spelderholt opnieuw geënt.

  4. Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy.

    Science.gov (United States)

    Peaper, David R; Havill, Nancy L; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana; Boyce, John M

    2015-01-01

    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Quantum Spin Liquids

    OpenAIRE

    Savary, Lucile; Balents, Leon

    2016-01-01

    Quantum spin liquids may be considered "quantum disordered" ground states of spin systems, in which zero point fluctuations are so strong that they prevent conventional magnetic long range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local e...

  6. Spinning eggs and ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction between the egg and the surface on which it spins.

  7. Imaging of Cardiac Valves by Computed Tomography

    OpenAIRE

    Gudrun Feuchtner

    2013-01-01

    This paper describes “how to” examine cardiac valves with computed tomography, the normal, diseased valves, and prosthetic valves. A review of current scientific literature is provided. Firstly, technical basics, “how to” perform and optimize a multislice CT scan and “how to” interpret valves on CT images are outlined. Then, diagnostic imaging of the entire spectrum of specific valvular disease by CT, including prosthetic heart valves, is highlighted. The last part gives a guide “how to” use ...

  8. Field Experience with Lock Culvert Valves

    Science.gov (United States)

    2013-12-01

    interesting accounts regarding their lock culvert valves. ST. LAWRENCE SEAWAY Eisenhower and Snell Locks. The valves on the Eisenhower and Snell Locks...Tainter Valve Design Lift, ft Eisenhower St. Lawrence Seaway 80 x 860 12 x 14 21.0 DSP 43 Snell St. Lawrence Seaway 80 x 860 12 x 14 21.0 3 DSP, 1 VF 49...vertical-frame valves were furnished to the SLSDC in January 2011, and one was installed in the south filling-valve location at Snell Lock. An option

  9. Pseudo-telepathy: input cardinality and Bell-type inequalities

    OpenAIRE

    Gisin, Nicolas; Methot, André; Scarani, Valerio

    2006-01-01

    Pseudo-telepathy is the most recent form of rejection of locality. Many of its properties have already been discovered: for instance, the minimal entanglement, as well as the minimal cardinality of the output sets, have been characterized. This paper contains two main results. First, we prove that no bipartite pseudo-telepathy game exists, in which one of the partners receives only two questions; as a corollary, we show that the minimal "input cardinality", that is, the minimal number of ques...

  10. Maximally entangled states in pseudo-telepathy games

    OpenAIRE

    Mančinska, Laura

    2015-01-01

    A pseudo-telepathy game is a nonlocal game which can be won with probability one using some finite-dimensional quantum strategy but not using a classical one. Our central question is whether there exist two-party pseudo-telepathy games which cannot be won with probability one using a maximally entangled state. Towards answering this question, we develop conditions under which maximally entangled states suffice. In particular, we show that maximally entangled states suffice for weak projection...

  11. On Some (Pseudo) Involutions in the Riordan Group

    Science.gov (United States)

    Cameron, Naiomi T.; Nkwanta, Asamoah

    2005-08-01

    In this paper, we address a question posed by L. Shapiro regarding algebraic and/or combinatorial characterizations of the elements of order 2 in the Riordan group. We present two classes of combinatorial matrices having pseudo-order 2. In one class, we find generalizations of Pascal's triangle and use some special cases to discover and prove interesting identities. In the other class, we find generalizations of Nkwanta's RNA triangle and show that they are pseudo-involutions.

  12. Diagnosis and Treatment of Pseudo-Class III Malocclusion

    OpenAIRE

    Ariel Reyes; Luis Serret; Marcos Peguero; Orlando Tanaka

    2014-01-01

    Pseudo-Class III malocclusion is characterized by the presence of an anterior crossbite due to a forward functional displacement of the mandible; in most cases, the maxillary incisors present some degree of retroclination, and the mandibular incisors are proclined. Various types of appliances have been described in the literature for the early treatment of pseudo-Class III malocclusion. The objectives of this paper are to demonstrate the importance of making the differential diagnosis between...

  13. Study of gray image pseudo-color processing algorithms

    Science.gov (United States)

    Hu, Jinlong; Peng, Xianrong; Xu, Zhiyong

    In gray images which contain abundant information, if the differences between adjacent pixels' intensity are small, the required information can not be extracted by humans, since humans are more sensitive to color images than gray images. If gray images are transformed to pseudo-color images, the details of images will be more explicit, and the target will be recognized more easily. There are two methods (in frequency field and in spatial field) to realize pseudo-color enhancement of gray images. The first method is mainly the filtering in frequency field, and the second is the equal density pseudo-color coding methods which mainly include density segmentation coding, function transformation and complementary pseudo-color coding. Moreover, there are many other methods to realize pseudo-color enhancement, such as pixel's self-transformation based on RGB tri-primary, pseudo-color coding from phase-modulated image based on RGB color model, pseudo-color coding of high gray-resolution image, et al. However, above methods are tailored to a particular situation and transformations are based on RGB color space. In order to improve the visual effect, the method based on RGB color space and pixels' self-transformation is improved in this paper, which is based on HIS color space. Compared with other methods, some gray images with ordinary formats can be processed, and many gray images can be transformed to pseudo-color images with 24 bits. The experiment shows that the processed image has abundant levels, which is consistent with human's perception.

  14. Gastric pseudo-ulcers: membrana angularis and pyloric torus defects.

    Science.gov (United States)

    Peavy, P W; Clements, J L; Weens, H S

    1975-03-01

    The membrana angularis and pyloric torus defects are two physiologic bulges which can simulate ulcerations along the lesser curvature of the stomach. The muscular anatomy of the stomach and the mechanism which produces these pseudo-ulcers are discussed. Both pseudoniches can be seen transiently in normal individuals but occasionally are such prominence as to become diagnostic pitfalls. The features and significance of each pseudo-ulcer are reviewed in an attempt to facilitate recognition on the upper gastrointestinal barium examination.

  15. Pseudo-Hermitian quantum mechanics with unbounded metric operators.

    Science.gov (United States)

    Mostafazadeh, Ali

    2013-04-28

    I extend the formulation of pseudo-Hermitian quantum mechanics to η(+)-pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator η(+). In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of η(+) and consequently √η(+).

  16. Isolated tricuspid valve infective endocarditis

    African Journals Online (AJOL)

    1990-07-07

    Jul 7, 1990 ... Case 2. Initial chest radiograph showing rounded shadows with cavitation. Fig. 2. Case 2. Chest radiograph showing progression to effusion. nuc/eacum was Isolated from repeated blood cultures. Two- dimensional echocardiography revealed vegetations on the tricuspid valve (Fig. 3). The patient was now ...

  17. Optothermally actuated capillary burst valve

    DEFF Research Database (Denmark)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders

    2017-01-01

    be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett...

  18. Mitral valve surgery - minimally invasive

    Science.gov (United States)

    ... be able to store blood in the blood bank for transfusions during and after your surgery. Ask ... Mechanical heart valves do not fail often. However, blood clots can develop on them. If a blood clot forms, you may have a stroke. Bleeding can occur, ...

  19. Aortic valve surgery - minimally invasive

    Science.gov (United States)

    ... be able to store blood in the blood bank for transfusions during and after your surgery. Ask ... Mechanical heart valves do not fail often. However, blood clots can develop on them. If a blood clot forms, you may have a stroke. Bleeding can occur, ...

  20. Hemodynamics driven cardiac valve morphogenesis.

    Science.gov (United States)

    Steed, Emily; Boselli, Francesco; Vermot, Julien

    2016-07-01

    Mechanical forces are instrumental to cardiovascular development and physiology. The heart beats approximately 2.6 billion times in a human lifetime and heart valves ensure that these contractions result in an efficient, unidirectional flow of the blood. Composed of endocardial cells (EdCs) and extracellular matrix (ECM), cardiac valves are among the most mechanically challenged structures of the body both during and after their development. Understanding how hemodynamic forces modulate cardiovascular function and morphogenesis is key to unraveling the relationship between normal and pathological cardiovascular development and physiology. Most valve diseases have their origins in embryogenesis, either as signs of abnormal developmental processes or the aberrant re-expression of fetal gene programs normally quiescent in adulthood. Here we review recent discoveries in the mechanobiology of cardiac valve development and introduce the latest technologies being developed in the zebrafish, including live cell imaging and optical technologies, as well as modeling approaches that are currently transforming this field. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015. Published by Elsevier B.V.

  1. Sequential transcatheter aortic valve implantation due to valve dislodgement - a Portico valve implanted over a CoreValve bioprosthesis

    DEFF Research Database (Denmark)

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel

    2017-01-01

    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected fo...

  2. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... called stenosis). • Don’t close properly and let blood leak where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t close properly (more common in women).As pressure builds inside the left ventricle, it pushes the ...

  3. Spin-Caloritronic Batteries

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2017-01-01

    The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...

  4. Frozen spin targets

    CERN Document Server

    Parsons, A S L

    1976-01-01

    Describes six projects which use the frozen-spin principle: Helium-3 R.M.S. and longitudinally polarized frozen spin targets at Rutherford Laboratory, and the frozen spin targets at KEK, Saclay and the one used by the CERN-Helsinki collaboration. (7 refs).

  5. Concepts in spin electronics

    CERN Document Server

    2006-01-01

    A new branch of physics and nanotechnology called spin electronics has emerged, which aims at simultaneously exploiting the charge and spin of electrons in the same device. The aim of this book is to present new directions in the development of spin electronics in both the basic physics and the future electronics.

  6. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  7. "Pseudo" nomenclature in dermatology: What′s in a name?

    Directory of Open Access Journals (Sweden)

    Sangita Ghosh

    2013-01-01

    Full Text Available In the bewildering array of scientific nomenclature in the medical field, it is important to use correct terminology, know their aberrations and the reason behind a specific terminology. This paper is an attempt towards compiling all the pseudo-nomenclatures coined in dermatology, in order to make it easier to retain and recollect these pseudo names, signs, morphology, diseases, and conditions. It is also imperative to know the true entities that these pseudo names masquerade as, so as to understand the explanation for assigning the term ′pseudo′ to these conditions. A total of 52 pseudo-terms have been compiled here in reference to dermatology. Most of these pseudo-nomenclatures were coined due to some clinical or histopathological resemblance to the true conditions, while some were premature conclusions drawn from a flawed understanding of the basic nature of the condition. Clear understanding of each of these terms and the explanation behind them being pseudo will enable a dermatologist to avoid misdiagnosis and needless confusion.

  8. Manufacturable plastic microfluidic valves using thermal actuation.

    Science.gov (United States)

    Pitchaimani, Karthik; Sapp, Brian C; Winter, Adam; Gispanski, Austin; Nishida, Toshikazu; Hugh Fan, Z

    2009-11-07

    A low-cost, manufacturable, thermally actuated, plastic microfluidic valve has been developed. The valve contains an encapsulated, temperature-sensitive fluid, which expands, deflecting a thin elastomeric film into a fluidic channel to control fluid flow. The power input for thermal expansion of each microfluidic valve can be controlled using a printed circuit board (PCB)-based controller, which is suitable for mass production and large-scale integration. A plastic microfluidic device with such valves was fabricated using compression molding and thermal lamination. The operation of the valves was investigated by measuring a change in the microchannel's ionic conduction current mediated by the resistance variation corresponding to the deflection of the microvalve. Valve closing was also confirmed by the disappearance of fluorescence when a fluorescent solution was displaced in the valve region. Valve operation was characterized for heater power ranging from 36 mW to 80 mW. When the valve was actuating, the local channel temperature was 10 to 19 degrees C above the ambient temperature depending on the heater power used. Repetitive valve operations (up to 50 times) have been demonstrated with a flow resulting from a hydrostatic head. Valve operation was tested for a flow rate of 0.33-4.7 microL/min.

  9. Mitral Valve Disease: a Comprehensive Review.

    Science.gov (United States)

    Harb, Serge C; Griffin, Brian P

    2017-08-01

    This review aims to provide a comprehensive assessment of mitral valve disease, both mitral stenosis and mitral regurgitation, starting with an overview of the valve anatomy. The advent of three-dimensional imaging has allowed a better representation of the valve anatomy. Rheumatic disease is still the number one cause of mitral stenosis worldwide and percutaneous balloon mitral valvuloplasty remains the therapy of choice when indicated and in anatomically eligible patients. Mitral regurgitation (MR) is classified as primary (i.e., lesion in the mitral apparatus) or secondary (caused by left ventricular geometrical alterations). While surgery, preferably repair, is still the recommended therapy for severe primary MR, percutaneous approaches to repair and/or replace the mitral valve are being extensively investigated. Mitral valve disease is common. A careful understanding of mitral valve anatomy and the disease processes that affect the valve are crucial for providing optimal patient care.

  10. Mitral Valve Repair: The Chordae Tendineae

    Directory of Open Access Journals (Sweden)

    Carlos-A Mestres

    2015-10-01

    Full Text Available Repair of the mitral valve is the treatment of choice for mitral valve regurgitation when the anatomy is favorable. It is well known that mitral valve repair enjoys better clinical and functional results than any other type of valve substitute. This fact is beyond doubt regardless of the etiology of the valve lesion and is of particular importance in degenerative diseases.This review analyzes the most important advances in the knowledge of the anatomy, pathophysiology, and chordal function of the mitral valve as well as the different alternatives in the surgical repair and clinical results of the most prevalent diseases of the mitral valve. An attempt has been made to organize the acquired information available in a practical way.

  11. Conical Seat Shut-Off Valve

    Science.gov (United States)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in

  12. Crystalline Kitaev spin liquids

    Science.gov (United States)

    Yamada, Masahiko G.; Dwivedi, Vatsal; Hermanns, Maria

    2017-10-01

    Frustrated magnetic systems exhibit many fascinating phases. Prime among them are quantum spin liquids, where the magnetic moments do not order even at zero temperature. A subclass of quantum spin liquids called Kitaev spin liquids are particularly interesting, because they are exactly solvable, can be realized in certain materials, and show a large variety of gapless and gapped phases. Here we show that nonsymmorphic symmetries can enrich spin liquid phases, such that the low-energy spinon degrees of freedom form three-dimensional Dirac cones or nodal chains. In addition, we suggest a realization of such Kitaev spin liquids in metal-organic frameworks.

  13. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  14. Applications of the pseudo-harmonics to the multidimensional kinetics; Aplicacao do metodo dos pseudo-harmonicos a cinetica multidimensional

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Zelmo Rodrigues de; Silva, Fernando Carvalho da; Alvim, Antonio C. Marques [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: zelmo@con.ufrj.br; fernando@con.ufrj.br; alvim@con.ufrj.br

    2005-07-01

    In this work we propose the application of the pseudo-harmonics in modal methods of spatial kinetics. The pseudo-harmonics, or the pseudo-modes, are the eigenfunctions associated to the leakage+removal operator in each group of energy of the steady-state diffusion equation. This operator is self-adjoint and it is not necessary to calculate the adjoints eigenfunctions. In the present work the pseudo-harmonics will be obtained starting from the equation of diffusion discretized by the coarse-mesh finite difference (CMFD). The modal methods approximate the time-dependent flux for an expansion in functions predetermined, that include the spatial dependence, with unknown expansion coefficients, that include the whole dependent part of the time. The obtaining of the system whose solution they are the coefficients of the modal expansion is done with aid of a function weight. Using the pseudomodes obtained in the steady state calculations, in the modal expansion as been the dependent functions of the space, we will show that the function weight can be chosen as being the own adjoint pseudo-modes. This calculation leads to a linear system of ordinary differential equations with the defined dimension for the number of pseudo-harmonics employed. The solution of the equations is built through the analytical integration of the equations of the precursor of delayed neutron. The proposed method was tested and it present good results, when compared with the direct method. (author)

  15. When Is "Pseudo-Ludwig's Angina" Associated With Coagulopathy Also a "Pseudo" Hemorrhage?

    Science.gov (United States)

    Lovallo, Emily; Patterson, Sarah; Erickson, Mitchel; Chin, Cynthia; Blanc, Paul; Durrani, Timur S

    2013-01-01

    Sublingual hematoma secondary to short-acting anticoagulants such as warfarin has been labeled "pseudo-Ludwig's angina" to distinguish it from the classic syndrome of localized infection and swelling involving the upper airway. Sublingual hematoma with airway compromise secondary to brodifacoum, a common long-acting anticoagulant rodenticide, has only been reported in the veterinary literature. We report a case of massive tongue swelling and impending airway compromise in the context of an intentional long-acting anticoagulant ingestion leading to coagulopathy. The swelling was initially presumed to be due either to infection or hemorrhage, but this was not supported by computed tomography scan imaging. Instead, the patient's clinical course was consistent with corticosteroid-responsive angioedema, temporally associated with the ingested brodifacoum.

  16. Progress in pseudo-scalar meson photoproduction experiments at MAMI-C in Mainz.

    Energy Technology Data Exchange (ETDEWEB)

    Annand, John R.M; Hamilton, David J.; Howdle, David; Livingston, Ken; MacGregor, Ian James Douglas; Mancell, Joe; McNicoll, Eilidh; Robinson, Jamie; Rosner, Guenther [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom)

    2009-07-01

    Since its upgrade in 2007, the Glasgow-Mainz spectrometer has provided a state-of-the-art photon tagger for a series of photo-production experiments at electron beam energies from 200 to 1508 MeV. We report on the operational status of the tagging spectrometer, refitted with a new focal-plane detector to extend its rate capability and improve its timing resolution by a factor 2. This complements the Crystal Ball and TAPS calorimeters, which provide almost 4{pi} detection of both neutral and charged particles. These systems have very high detection efficiency for multi-photon final states. Measurement of pseudo-scalar-meson photo production on the nucleon is a major component of the experimental programme. We have data on {pi}{sup 0}, {pi}{sup +}, {eta}, {eta}{sup '}, K{sup 0}, K{sup +} (single and multiple-meson) final states for {sup 1}H and {sup 2}H targets. The eventual goal is to make complete measurements of the helicity amplitudes, which require at least 8 observables chosen properly from unpolarised, single-spin and double-spin possibilities. The possibilities in Mainz will extend when polarised targets become available in 2009. In December 2008 the maximum MAMI-C energy was raised to 1557 MeV and data taken with an open trigger at tagged-photon energies from 80 to 1447 MeV. We show some first analyses of these tests.

  17. A New Hemostasis Valve for Neuroendovascular Procedures

    Science.gov (United States)

    Namba, K.; Song, J.K.; Niimi, Y.; Heran, N.S.; Berenstein, A.

    2007-01-01

    Summary A hemostasis valve is routinely used in neuroendovascular procedures to decrease the risk of thromboembolism1,2. Recently, a new hemostasis valve that is designed to minimize blood loss has been introduced. We report our initial experience in using this new hemostasis valve. In neuroendovascular procedures, a hemostasis valve is commonly used for continuous irrigation of guide and microcatheters to decrease the risk of thromboembolism1,2,3. A conventional hemostasis valve has a rotating seal at the end, which is turned open or closed each time a wire or microcatheter/guidewire is introduced or extracted. Often this results in significant back bleeding. When a rotating seal is adjusted suboptimally during a wire or microcatheter manipulation, leakage of pressurized saline from the end of a hemostasis valve results in stagnation of blood within a guiding catheter, which becomes a potential source of emboli during a procedure. The Guardian Haemostasis Valve (Zerusa Limited, Galway, Ireland) is a new hemostasis valve that is designed to minimize blood loss during interventional procedures by minimizing the opening time of the valve during wire or microcatheter insertion. A continuous sealing mechanism during wire or microcatheter positioning minimizes blood loss and stagnation of blood within the guide catheter. We report our initial experience with the Guardian hemostasis valve. PMID:20566129

  18. Transcatheter aortic valve-in-valve implantation of a CoreValve in a JenaValve prosthesis: a case report.

    Science.gov (United States)

    Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg

    2017-09-10

    Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.

  19. Contemporary outcomes in reoperative mitral valve surgery.

    Science.gov (United States)

    Mehaffey, Hunter J; Hawkins, Robert B; Schubert, Sarah; Fonner, Clifford; Yarboro, Leora T; Quader, Mohammed; Speir, Alan; Rich, Jeff; Kron, Irving L; Ailawadi, Gorav

    2017-10-05

    Data suggest that redo mitral valve surgery is being performed in increasing numbers, possibly with superior results according to single-centre studies. The purpose of this study is to describe outcomes of redo mitral valve surgery and identify risk-adjusted predictors of poor outcomes. All (11 973) open mitral valve cases were evaluated (2002-2016) from a regional Society of Thoracic Surgery (STS) database. Patients were stratified by primary versus redo mitral valve surgery. Mixed effects logistic regression models including hospital as a random effect were used to identify risk factors for patients undergoing redo mitral valve surgery. Of all mitral valve cases, 1096 (9.7%) had a previous mitral operation. Redo patients had higher rates of valve replacement and preoperative comorbidities resulting in more complications, operative mortalities (11.1%vs6.5%, pmitral valve surgery increased 10% per year and the observed-to-expected ratios (O/E) for operative mortality in redo mitral surgery improved from 1.44 early in the study period to 0.72 in the most recent era. Redo mitral valve surgery accounts for approximately 10% of mitral valve operations and is associated with increased risk and resource utilisation. However, as the volume of redo mitral surgery increases, outcomes have dramatically improved and are now better than predicted. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Traumatic Mitral Valve and Pericardial Injury

    Directory of Open Access Journals (Sweden)

    Nissar Shaikh

    2013-01-01

    Full Text Available Cardiac injury after blunt trauma is common but underreported. Common cardiac trauma after the blunt chest injury (BCI is cardiac contusion; it is very rare to have cardiac valve injury. The mitral valve injury during chest trauma occurs when extreme pressure is applied at early systole during the isovolumic contraction between the closure of the mitral valve and the opening of the aortic valve. Traumatic mitral valve injury can involve valve leaflet, chordae tendineae, or papillary muscles. For the diagnosis of mitral valve injury, a high index of suspicion is required, as in polytrauma patients, other obvious severe injuries will divert the attention of the treating physician. Clinical picture of patients with mitral valve injury may vary from none to cardiogenic shock. The echocardiogram is the main diagnostic modality of mitral valve injuries. Patient’s clinical condition will dictate the timing and type of surgery or medical therapy. We report a case of mitral valve and pericardial injury in a polytrauma patient, successfully treated in our intensive care unit.

  1. Bioprosthetic heart valves of the future.

    Science.gov (United States)

    Manji, Rizwan A; Ekser, Burcin; Menkis, Alan H; Cooper, David K C

    2014-01-01

    Glutaraldehyde-fixed bioprosthetic heart valves (GBHVs), derived from pigs or cows, undergo structural valve deterioration (SVD) over time, with calcification and eventual failure. It is generally accepted that SVD is due to chemical processes between glutaraldehyde and free calcium ions in the blood. Valve companies have made significant progress in decreasing SVD from calcification through various valve chemical treatments. However, there are still groups of patients (e.g., children and young adults) that have accelerated SVD of GBHV. Unfortunately, these patients are not ideal patients for valve replacement with mechanical heart valve prostheses as they are at high long-term risk from complications of the mandatory anticoagulation that is required. Thus, there is no "ideal" heart valve replacement for children and young adults. GBHVs represent a form of xenotransplantation, and there is increasing evidence that SVD seen in these valves is at least in part associated with xenograft rejection. We review the evidence that suggests that xenograft rejection of GBHVs is occurring, and that calcification of the valve may be related to this rejection. Furthermore, we review recent research into the transplantation of live porcine organs in non-human primates that may be applicable to GBHVs and consider the potential use of genetically modified pigs as sources of bioprosthetic heart valves. © 2014 John Wiley & Sons A/S.

  2. Flow Characteristics of Butterfly Valve by PIV and CFD

    Science.gov (United States)

    Kim, S. W.; Kim, J. H.; Choi, Y. D.; Lee, Y. H.

    Butterfly valves are widely used as on-off and control valves for industrial process. The importance of butterfly valves as control valves has been increasing because the pressure loss is smaller than other types of valves and compactness is very desirable for installation. These features are desirable for saving energy and high efficiency of instruments.

  3. Mechanical valves in the pulmonary position : An international retrospective analysis

    NARCIS (Netherlands)

    Pragt, Hanna; van Melle, Joost P.; Javadikasgari, Hoda; Seo, Dong Man; Stulak, John M.; Knez, Igor; Hoerer, Juergen; Munoz-Guijosa, Christian; Dehaki, Mahyar G.; Shin, Hong Ju; Dearani, Joseph A.; Dehaki, Maziar G.; Pieper, Petronella G.; Eulenburg, Christine; Dos, Laura; Ebels, Tjark

    2017-01-01

    Objective: Life expectancy of patients with congenital heart disease has improved over the past decades, increasing the need for a durable pulmonary prosthetic valve. Biological valves in various forms have become the valve of choice for pulmonary valve replacement (PVR), but structural valve

  4. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Arthur J. [Professor

    2013-09-10

    Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

  5. [MINIMALLY INVASIVE AORTIC VALVE REPLACEMENT].

    Science.gov (United States)

    Tabata, Minoru

    2016-03-01

    Minimally invasive aortic valve replacement (MIAVR) is defined as aortic valve replacement avoiding full sternotomy. Common approaches include a partial sternotomy right thoracotomy, and a parasternal approach. MIAVR has been shown to have advantages over conventional AVR such as shorter length of stay and smaller amount of blood transfusion and better cosmesis. However, it is also known to have disadvantages such as longer cardiopulmonary bypass and aortic cross-clamp times and potential complications related to peripheral cannulation. Appropriate patient selection is very important. Since the procedure is more complex than conventional AVR, more intensive teamwork in the operating room is essential. Additionally, a team approach during postoperative management is critical to maximize the benefits of MIAVR.

  6. Aerococcus viridans Native Valve Endocarditis

    Directory of Open Access Journals (Sweden)

    Wenwan Zhou

    2013-01-01

    Full Text Available Aerococcus viridans is an infrequent human pathogen and few cases of infective endocarditis have been reported. A case involving a 69-year-old man with colon cancer and hemicolectomy 14 years previously, without recurrence, is reported. A diagnosis of native mitral valve endocarditis was established on the basis of clinical presentation, characteristic echocardiographic findings and pathological specimen examination after urgent valve replacement. A viridans endocarditis appears to be particularly virulent, requiring a surgical approach in four of 10 cases reported and death in one of nine. Given the aggressive nature of A viridans endocarditis and the variable time to diagnosis (a few days to seven months, prompt recognition of symptoms and echocardiography, in addition to blood cultures, should be performed when symptoms persist.

  7. Pseudo-Newtonian planar circular restricted 3-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Dubeibe, F.L., E-mail: fldubeibem@unal.edu.co [Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio (Colombia); Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Lora-Clavijo, F.D., E-mail: fadulora@uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); González, Guillermo A., E-mail: guillermo.gonzalez@saber.uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2017-02-12

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  8. Brain MR image segmentation using NAMS in pseudo-color.

    Science.gov (United States)

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  9. Least squares deconvolution for leak detection with a pseudo random binary sequence excitation

    Science.gov (United States)

    Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.

    2018-01-01

    Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.

  10. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  11. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  12. 3D Printed Multimaterial Microfluidic Valve.

    Science.gov (United States)

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  13. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  14. Two-Year Outcomes in Patients With Severe Aortic Valve Stenosis Randomized to Transcatheter Versus Surgical Aortic Valve Replacement

    DEFF Research Database (Denmark)

    Søndergaard, Lars; Steinbrüchel, Daniel Andreas; Ihlemann, Nikolaj

    2016-01-01

    BACKGROUND: The Nordic Aortic Valve Intervention (NOTION) trial was the first to randomize all-comers with severe native aortic valve stenosis to either transcatheter aortic valve replacement (TAVR) with the CoreValve self-expanding bioprosthesis or surgical aortic valve replacement (SAVR), inclu...... population. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01057173....

  15. Simplified surgical-hybrid Melody® valve implantation for paediatric mitral valve disease

    OpenAIRE

    Hofmann, Michael; Dave, Hitendu; Hübler, Michael; Kretschmar, Oliver

    2017-01-01

    Children suffering from left atrioventricular valve (LAVV) disease not amenable to repair represent a significant challenge. The results of surgical reconstruction are not optimal. Valve replacement as an alternative is associated with poor results. The surgical-hybrid approach with implantation of a stented biological valve (bovine jugular vein graft, Melody® valve) seems to represent a new therapeutic option. Here we demonstrate our case, the consideration and the approach to extreme clinic...

  16. Higher Spin Matrix Models

    Directory of Open Access Journals (Sweden)

    Mauricio Valenzuela

    2017-10-01

    Full Text Available We propose a hybrid class of theories for higher spin gravity and matrix models, i.e., which handle simultaneously higher spin gravity fields and matrix models. The construction is similar to Vasiliev’s higher spin gravity, but part of the equations of motion are provided by the action principle of a matrix model. In particular, we construct a higher spin (gravity matrix model related to type IIB matrix models/string theory that have a well defined classical limit, and which is compatible with higher spin gravity in A d S space. As it has been suggested that higher spin gravity should be related to string theory in a high energy (tensionless regime, and, therefore to M-Theory, we expect that our construction will be useful to explore concrete connections.

  17. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  18. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  19. Propellant actuated nuclear reactor steam depressurization valve

    Science.gov (United States)

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  20. A non-toxigenic but morphologically and phylogenetically distinct new species of Pseudo-nitzschia, P. sabit sp. nov. (Bacillariophyceae).

    Science.gov (United States)

    Teng, Sing Tung; Lim, Po Teen; Lim, Hong Chang; Rivera-Vilarelle, María; Quijano-Scheggia, Sonia; Takata, Yoshinobu; Quilliam, Michael A; Wolf, Matthias; Bates, Stephen S; Leaw, Chui Pin

    2015-08-01

    A new species of Pseudo-nitzschia (Bacillariophyceae) is described from plankton samples collected from Port Dickson (Malacca Strait, Malaysia) and Manzanillo Bay (Colima, Mexico). The species possesses a distinctive falcate cell valve, from which they form sickle-like colonies in both environmental samples and cultured strains. Detailed observation of frustules under TEM revealed ultrastructure that closely resembles P. decipiens, yet the new species differs by the valve shape and greater ranges of striae and poroid densities. The species is readily distinguished from the curve-shaped P. subcurvata by the presence of a central interspace. The morphological distinction is further supported by phylogenetic discrimination. We sequenced and analyzed the nuclear ribosomal RNA genes in the LSU and the second internal transcribed spacer, including its secondary structure, to infer the phylogenetic relationship of the new species with its closest relatives. The results revealed a distinct lineage of the new species, forming a sister cluster with its related species, P. decipiens and P. galaxiae, but not with P. subcurvata. We examined the domoic acid (DA) production of five cultured strains from Malaysia by Liquid chromatography-mass spectrometry (LC-MS), but they showed no detectable DA. Here, we present the taxonomic description of the vegetative cells, document the sexual reproduction, and detail the molecular phylogenetics of Pseudo-nitzschia sabit sp. nov. © 2015 Phycological Society of America.

  1. Diagnosis and Treatment of Pseudo-Class III Malocclusion

    Science.gov (United States)

    Reyes, Ariel; Serret, Luis; Peguero, Marcos; Tanaka, Orlando

    2014-01-01

    Pseudo-Class III malocclusion is characterized by the presence of an anterior crossbite due to a forward functional displacement of the mandible; in most cases, the maxillary incisors present some degree of retroclination, and the mandibular incisors are proclined. Various types of appliances have been described in the literature for the early treatment of pseudo-Class III malocclusion. The objectives of this paper are to demonstrate the importance of making the differential diagnosis between a skeletal and a pseudo-Class III malocclusion and to describe the correction of an anterior crossbite. The association of maxillary expansion and a 2 × 4 appliance can successfully be used to correct anterior crossbites. PMID:25525526

  2. Diagnosis and Treatment of Pseudo-Class III Malocclusion

    Directory of Open Access Journals (Sweden)

    Ariel Reyes

    2014-01-01

    Full Text Available Pseudo-Class III malocclusion is characterized by the presence of an anterior crossbite due to a forward functional displacement of the mandible; in most cases, the maxillary incisors present some degree of retroclination, and the mandibular incisors are proclined. Various types of appliances have been described in the literature for the early treatment of pseudo-Class III malocclusion. The objectives of this paper are to demonstrate the importance of making the differential diagnosis between a skeletal and a pseudo-Class III malocclusion and to describe the correction of an anterior crossbite. The association of maxillary expansion and a 2 × 4 appliance can successfully be used to correct anterior crossbites.

  3. Occlusal rehabilitation of pseudo-class III patient.

    Science.gov (United States)

    Cardoso, Antônio Carlos; Ferreira, Cimara Fortes; Oderich, Elisa; Pedroso, Moira Leão; Wicks, Russell

    2015-01-01

    To treat a patient with anterior crossbite, the clinician should first assess if it is a genuine class III or a pseudo-class III malocclusion. Cephalometric analysis is important; however, registering a patient's centric relation (CR) is simple, quick, and costless and can play a decisive role in a differential diagnosis for this type of patient profile. This clinical report depicts a patient clinically diagnosed as class III. After mandible manipulation in CR, it was noted that the patient in question was a pseudo-class III. The treatment was based on the pseudo-class III diagnosis. Therefore, the patient was rehabilitated by occlusal adjustments and conventional and implant-supported prostheses and without the need for invasive orthognathic surgery. © 2014 by the American College of Prosthodontists.

  4. Pseudo-Glassification Material for G-Demption

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gates, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    G-Demption, LLC has requested that PPNL provide design input for a “pseudo-glassification” process associated with their proposed technology for generating gamma irradiation stations from used nuclear fuel. The irradiation design currently consists of an aluminum enclosure designed to allow for proper encapsulation of and heat flow from a used fuel rod while minimally impacting the streaming of gamma rays from the fuel. In order to make their design more robust, G-Demption is investigating the benefits of backfilling this aluminum enclosure with a setting material once the used fuel rod is properly placed. This process has been initially referred to as “pseudo-glassification”, and strives not to impact heat transport or gamma streaming from the used fuel rod while providing increased fuel rod protection and fission gas retention. PNNL has compiled an internal material evaluation and discussion for the “pseudo-glassification” process in this report.

  5. Pseudo-periodic maps and degeneration of Riemann surfaces

    CERN Document Server

    Matsumoto, Yukio

    2011-01-01

    The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.

  6. Silicon spin communication

    OpenAIRE

    Dery, Hanan; Song, Yang; Li, Pengke; Zutic, Igor

    2011-01-01

    Recent experimental breakthroughs have demonstrated that the electron spin in silicon can be reliably injected and detected as well as transferred over distances exceeding 1 mm. We propose an on-chip communication paradigm which is based on modulating spin polarization of a constant current in silicon wires. We provide figures of merit for this scheme by studying spin relaxation and drift-diffusion models in silicon.

  7. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  8. Transapical JenaValve in a patient with mechanical mitral valve prosthesis.

    LENUS (Irish Health Repository)

    O' Sullivan, Katie E

    2014-01-29

    We report the first case of transcatheter aortic valve replacement implantation using JenaValve™ in a patient with mechanical mitral valve prosthesis. We believe that the design features of this valve may be particularly suited for use in this setting. © 2014 Wiley Periodicals, Inc.

  9. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease.

    NARCIS (Netherlands)

    Yap, S.C.; Drenthen, W.; Pieper, P.G.; Moons, P.; Mulder, B.J.M.; Klieverik, L.M.; Vliegen, H.W.; Dijk, A.P.J. van; Meijboom, F.J.; Roos-Hesselink, J.W.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  10. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease

    NARCIS (Netherlands)

    Yap, Sing-Chien; Drenthen, Willem; Pieper, Petronella G.; Moons, Philip; Mulder, Barbara J. M.; Klieverik, Loes M.; Vliegen, Hubert W.; van Dijk, Arie P. J.; Meijboom, Folkert J.; Roos-Hesselink, Jolien W.

    Background and aim of the study: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  11. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  12. Percutaneous approaches to mitral valve disease

    National Research Council Canada - National Science Library

    Fassa, A-A; Himbert, D; Brochet, E; Bouleti, C; Vahanian, A

    2015-01-01

    Percutaneous approaches to mitral valve disease consist in modifications of existing surgical techniques, aiming to replicate the favourable outcomes of surgery, with less procedure-related risk, due...

  13. Hammock mitral valve: A rare case report

    Directory of Open Access Journals (Sweden)

    Veeresh F. Manvi

    2014-01-01

    Full Text Available Congenital mitral stenosis is a relatively rare disorder comprising 0.2% of all congenital heart defects. Hammock mitral valve producing severe mitral stenosis is a rare variant of congenital mitral stenosis. We report a 2-year-old boy who had hammock mitral valve producing severe mitral stenosis with severe pulmonary artery hypertension. He underwent successful surgical repair. Post-surgery, the mitral valve opening was adequate without residual stenosis or regurgitation. Pulmonary artery pressure had normalized. Follow-up data showed he had significant clinical and echocardiography improvement. This is the first reported case of successful surgical repair done for hammock mitral valve from our institute.

  14. Stentless aortic valve replacement: an update

    Directory of Open Access Journals (Sweden)

    Kobayashi J

    2011-06-01

    Full Text Available Junjiro KobayashiDepartment of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, JapanAbstract: Although porcine aortic valves or pericardial tissue mounted on a stent have made implantation techniques easier, these valves sacrifice orifice area and increase stress at the attachment of the stent, which causes primary tissue failure. Optimizing hemodynamics to prevent patient–prosthetic mismatch and improve durability, stentless bioprostheses use was revived in the early 1990s. The purpose of this review is to provide a current overview of stentless valves in the aortic position. Retrospective and prospective randomized controlled studies showed similar operative mortality and morbidity in stented and stentless aortic valve replacement (AVR, though stentless AVR required longer cross-clamp and cardiopulmonary bypass time. Several cohort studies showed improved survival after stentless AVR, probably due to better hemodynamic performance and earlier left ventricular (LV mass regression compared with stented AVR. However, there was a bias of operation age and nonrandomization. A randomized trial supported an improved 8-year survival of patients with the Freestyle or Toronto valves compared with Carpentier–Edwards porcine valves. On the contrary, another randomized study did not show improved clinical outcomes up to 12 years. Freedom from reoperation at 12 years in Toronto stentless porcine valves ranged from 69% to 75%, which is much lower than for Carpentier–Edwards Perimount valves. Cusp tear with consequent aortic regurgitation was the most common cause of structural valve deterioration. Cryolife O'Brien valves also have shorter durability compared with stent valves. Actuarial freedom from reoperation was 44% at 10 years. Early prosthetic valve failure was also reported in patients who underwent root replacement with Shelhigh stentless composite grafts. There was no level I or IIa evidence of more effective orifice

  15. Pump arrangement Comprising a Savety Valve

    OpenAIRE

    Richter, M.; Kruckow, J.

    2009-01-01

    A pump arrangement comprises a pump (20) having a pump inlet (22) and a pump outlet (24), which are designed to pump a fluid from the pump inlet to the pump outlet, and it further comprises a safety valve (40), which is disposed between the pump outlet (24) and an outlet (48) of the pump arrangement and comprises a valve set (42) and a valve cover (44). The valve seat, the pump outlet, and the pump inlet are structured in a first surface of a first single-piece part (14) of the pump arrangeme...

  16. Fracturing a dysfunctional Edwards Perimount bioprosthetic valve to facilitate percutaneous valve-in-valve placement of SAPIEN 3 valve with modified delivery system.

    Science.gov (United States)

    Shahanavaz, Shabana; Rockefeller, Toby; Nicolas, Ramzi; Balzer, David

    2017-10-10

    Pulmonary valve replacement via surgical implantation of a bioprosthetic valve (BPV) is a well-established treatment for patients with dysfunctional RV outflow tracts. BPVs are prone to structural deterioration, and will eventually require replacement. Recently, percutaneous valve-in-valve (VIV) placement of transcatheter valves has established itself as a safe and effective alternative to surgical revision. Unfortunately, VIV therapy is inherently limited by the inner diameter of the BPV, which restricts the number of eligible patients. Other centers have reported on the feasibility of cracking certain BPVs with ultra high-pressure balloons in bench testing. We now report cracking an Edwards Perimount BPV in the pulmonary position to facilitate VIV placement of an Edwards SAPIEN 3. The ability to crack the Perimount valve allowed placement of a larger valve than previously considered and minimized the final valve gradient. In an effort to avoid the morbidity and mortality of surgical pulmonary valve replacement, this new strategy will expand the number of patients eligible for percutaneous VIV therapy. © 2017 Wiley Periodicals, Inc.

  17. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  18. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  19. Aortic Calcification: An Early Sign of Heart Valve Problems?

    Science.gov (United States)

    ... the aortic valve — a condition called aortic valve stenosis. Aortic valve calcification may be an early sign ... have any other heart disease symptoms. Calcification and stenosis generally affects people older than age 65. When ...

  20. 40 CFR 63.175 - Quality improvement program for valves.

    Science.gov (United States)

    2010-07-01

    ... (e.g., ball, gate, check); valve manufacturer; valve design (e.g., external stem or actuating... categories, or classes, of valves as needed to distinguish among operating conditions and services associated...

  1. Optimal Base Encodings for Pseudo-Boolean Constraints

    CERN Document Server

    Codish, Michael; Fuhs, Carsten; Schneider-Kamp, Peter

    2010-01-01

    This paper formalizes the "optimal base problem", presents an algorithm to solve it, and describes its application to the encoding of Pseudo-Boolean constraints to SAT. We demonstrate the impact of integrating our algorithm within the Pseudo-Boolean constraint solver MiniSAT+. Experimentation indicates that our algorithm scales to consider bases involving numbers up to 1,000,000, improving on the restriction in MiniSAT+ to prime numbers up to 17. We show that, while for many examples primes up to 17 do suffice, encoding with respect to arbitrary bases improves the subsequent SAT solving time considerably.

  2. Intestinal pseudo-obstruction: An important diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Carmen Salvador-Coloma

    2015-09-01

    Full Text Available We present the case of a 72-year-old patient admitted on various occasions with symptoms of intestinal pseudo-obstruction. Extensive diagnostic tests eventually found that the patient had small-cell lung cancer associated with high anti-HU antibody titres, which pointed to a probable paraneoplastic intestinal obstruction syndrome associated with small-cell lung cancer. A paraneoplastic syndrome causing abnormal changes in gastrointestinal motility can be the first signs of small cell lung cancer. These syndromes improve with treatment of the underlying disease, as seen in our patient, who stopped having episodes of intestinal pseudo-obstruction after administration of chemotherapy.

  3. Enhancing pseudo-telepathy in the magic square game.

    Directory of Open Access Journals (Sweden)

    Lukasz Pawela

    Full Text Available We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise. Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action of a noise channel using semidefinite programming.

  4. Enhancing pseudo-telepathy in the magic square game.

    Science.gov (United States)

    Pawela, Lukasz; Gawron, Piotr; Puchała, Zbigniew; Sładkowski, Jan

    2013-01-01

    We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise. Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action of a noise channel using semidefinite programming.

  5. Signed Distance Computation using the Angle Weighted Pseudo-normal

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Aanæs, Henrik

    2005-01-01

    , the surface is not \\$C\\^1\\$ continuous, hence, the normal is undefined at these loci. In this paper, we undertake to show that the angle weighted pseudo-normal (originally proposed by Thürmer and Wüthrich and independently by Sequin) has the important property that it allows us to discriminate between points...... of the distance computation. Moreover, it provides an additional argument in favour of the angle weighted pseudo-normals being the natural extension of the face normals. Apart from the theoretical results, we also propose a simple and efficient algorithm for computing the signed distance to a closed \\$C\\^0\\$ mesh...

  6. True versus Pseudo-Intestinal Malrotation: Case Series and Review.

    Science.gov (United States)

    Khara, Harshit S; Kothari, Shivangi T; Gruss, Claudia B; Langnas, Alan; Schafer, Daniel F; McCashland, Timothy M

    2013-10-01

    Intestinal malrotation is an anomaly of fetal intestinal rotation that can present with symptoms after birth or in early childhood, but is rarely diagnosed in adults. Patients who have symptomatic presentations require surgery. Other entities may mimic intestinal malrotation and respond to non-surgical management. We present 2 adult cases with the radiological diagnosis of intestinal malrotation: one with true malrotation presenting as a duodenal mass, and another with "pseudo-malrotation" due to altered anatomy. These cases illustrate the importance of recognizing and differentiating these rare adult presentations of true malrotation from "pseudo-malrotation" in regards to their acute management.

  7. "Divine water" in the alchemical writings of pseudo-Democritus.

    Science.gov (United States)

    Martelli, Matteo

    2009-03-01

    The name of the chemical solution (divine water) or (sulfur water) is characterised by semantic ambiguity: the term theion means both "divine" and "sulfur," and Greek alchemists frequently play on this polysemy. This article analyses the use of this and similar expressions in the writings of pseudo-Democritus from both a technical and a philological point of view. A fragment preserved by the alchemists Moses and Synesius shows that pseudo-Democritus knows two different kinds of this "water," the second of which recalls a recipe found in the chemical Leiden Papyrus, and that the composition of the substance determines the form of its name.

  8. Perturbation of sectorial projections of elliptic pseudo-differential operators

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Chen, Guoyuan; Lesch, Matthias

    2012-01-01

    Over a closed manifold, we consider the sectorial projection of an elliptic pseudo-differential operator A of positive order with two rays of minimal growth. We showthat it depends continuously on A when the space of pseudo-differential operators is equipped with a certain topology whichwe...... explicitly describe. Our main application deals with a continuous curve of arbitrary first order linear elliptic differential operators over a compact manifold with boundary. Under the additional assumption of the weak inner unique continuation property, we derive the continuity of a related curve...

  9. Study of pseudo soldering based on eddy current pulsed thermography

    Science.gov (United States)

    Zhou, Xiuyun; Xue, Yun; Chen, Yaqiu; Lu, Xiaochuan; Liu, Zhen

    2017-09-01

    Pseudo soldering defects can break the electrical and mechanical connection between components and the print circuit board and eventually cause failure of the whole electronic equipment. In this letter, the eddy current pulsed thermography (ECPT) method was used for defect inspection of small-sized solder joints. The identification of defects of solder joints is based on the heat transfer between various component structures. The experimental results indicated that the ECPT method can be effectively used for defect detection and location of the solder joints. In addition, it can distinguish different degrees of pseudo soldering.

  10. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping.

    Science.gov (United States)

    Matsuo, M; Ohnuma, Y; Kato, T; Maekawa, S

    2018-01-19

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  11. Quantum spin liquid states

    Science.gov (United States)

    Zhou, Yi; Kanoda, Kazushi; Ng, Tai-Kai

    2017-04-01

    This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of semiclassical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semiclassical approaches fail once quantum mechanics become important and then describe the alternative approaches for addressing the problem. Mainly spin-1 /2 systems are discussed, and most of the time is spent in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called S U (2 ), U (1 ), or Z2 spin liquid states. A review is given of the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin (S >1 /2 ) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular-lattice systems [κ -(ET )2Cu2(CN )3 and EtMe3Sb [Pd (dmit )2]2 ], kagome-lattice system [ZnCu3(OH )6Cl2 ], and hyperkagome lattice system (Na4 Ir3 O8 ), is reviewed and compared against the corresponding theories.

  12. Resurgery for recurrent heart valve diseases

    Directory of Open Access Journals (Sweden)

    Chong-lei REN

    2017-02-01

    Full Text Available Objective To summarize the experience with resurgery for recurrent valvular heart diseases. Methods From June 2004 to June 2015, 28 patients (15 males and 13 females with ages ranging from 44 to 67 years (55.6±6.5 years with recurrent heart valve disease underwent resurgery. The reasons for resurgery included perivalvular leakage (7 cases, bioprosthetic valve decline (6 cases in mitral valve and 3 in tricuspid valve, mechanical prostheses dysfunction (2cases, infective endocarditis after valve replacement (2 cases, restenosis of repaired native valve (1 case, and severe tricuspid insufficiency after left-side valve surgery (7 cases. Resurgery included mitral valve replacement in 18 patients and tricuspid valve replacement in 10. All the patients underwent third or fourth or even fifth cardiac surgery for valve replacement. Results There were 2 hospital deaths with a mortality of 7.1% (2/28. The main causes of early-stage deaths were low cardiac output syndrome. The main postoperative complications were respiratory failure in 3, low cardiac output syndrome in 2, reexploration for bleeding in 2 and serious infectious shock in 1. All the patients were found with the great improvement in heart function and the re-implanted prostheses worked well during follow-up. Conclusions Although resurgery for recurrent heart valve disease poses a continuing challenge to cardiac surgeon, it could be performed with the satisfactory results. The keys to a successful cardiac resurgery include appropriate operational timing, refined surgical technique and reasonable perioperative managements. DOI: 10.11855/j.issn.0577-7402.2017.01.11

  13. Spin-spin correlations in ferromagnetic nanosystems

    Science.gov (United States)

    Vedmedenko, E. Y.; Mikuszeit, N.; Stapelfeldt, T.; Wieser, R.; Potthoff, M.; Lichtenstein, A. I.; Wiesendanger, R.

    2011-04-01

    Using exact diagonalization, Monte-Carlo, and mean-field techniques, characteristic temperature scales for ferromagnetic order are discussed for the Ising and the classical anisotropic Heisenberg model on finite lattices in one and two dimensions. The interplay between nearest-neighbor exchange, anisotropy and the presence of surfaces leads, as a function of temperature, to a complex behavior of the distance-dependent spin-spin correlation function, which is very different from what is commonly expected. A finite experimental observation time is considered in addition, which is simulated within the Monte-Carlo approach by an incomplete statistical average. We find strong surface effects for small nanoparticles, which cannot be explained within a simple Landau or mean-field concept and which give rise to characteristic trends of the spin-correlation function in different temperature regimes. Unambiguous definitions of crossover temperatures for finite systems and an effective method to estimate the critical temperature of corresponding infinite systems are given.

  14. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  15. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  16. Spin coating of electrolytes

    Science.gov (United States)

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  17. Antiferromagnetic Spin Seebeck Effect.

    Science.gov (United States)

    Wu, Stephen M; Zhang, Wei; Kc, Amit; Borisov, Pavel; Pearson, John E; Jiang, J Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-04

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30  nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9  T) are applied parallel to the easy axis of the MnF_{2} thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  18. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  19. Fermionic coherent states for pseudo-Hermitian two-level systems

    Energy Technology Data Exchange (ETDEWEB)

    Cherbal, O [Physical Faculty, Theoretical Physics Lab, USTHB, BP 32 El-Alia, Bab Ezzouar, 16111 Algiers (Algeria); Drir, M [Physical Faculty, Theoretical Physics Lab, USTHB, BP 32 El-Alia, Bab Ezzouar, 16111 Algiers (Algeria); Maamache, M [Laboratoire de Physique Quantique et Systemes Dynamiques, Department of Physics, Setif University, Setif 19000 (Algeria); Trifonov, D A [Institute of Nuclear Research, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2007-02-23

    We introduce creation and annihilation operators of pseudo-Hermitian fermions for two-level systems described by a pseudo-Hermitian Hamiltonian with real eigenvalues. This allows the generalization of the fermionic coherent states approach to such systems. Pseudo-fermionic coherent states are constructed as eigenstates of two pseudo-fermion annihilation operators. These coherent states form a bi-normal and bi-overcomplete system, and their evolution governed by the pseudo-Hermitian Hamiltonian is temporally stable. In terms of the introduced pseudo-fermion operators, the two-level system Hamiltonian takes a factorized form similar to that of a harmonic oscillator.

  20. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    -annular mechanical prostheses (CarboMedics, Inc., Arvada, CO, USA) at two institutions. Size frequency distribution was compared to published series, and to the manufacturer's US registry. The ventriculoaortic junction (VAJ) size was available in 234 patients, and compared to the size of the Top Hat valve implanted......BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area...... is less than that of a normal valve. It is suggested that the ability to implant Top Hat valves having greater size, relative to standard intra-annular valves, may currently be under-utilized. Further, there has been some concern that Top Hat implantation can cause obstruction of the coronary ostia...