Sample records for pseudo 2d random

  1. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.


    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  2. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.


    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  3. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen


    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  4. Pseudo-Hermitian random matrix theory (United States)

    Srivastava, S. C. L.; Jain, S. R.


    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.

  5. Pseudo-Hermitian random matrix theory


    Srivastava, Shashi C. L.; Jain, S. R.


    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.

  6. Pseudo 2D elastic waveform inversion for attenuation in the near surface (United States)

    Wang, Yue; Zhang, Jie


    Seismic waveform propagation could be significantly affected by heterogeneities in the near surface zone (0 m-500 m depth). As a result, it is important to obtain as much near surface information as possible. Seismic attenuation, characterized by QP and QS factors, may affect seismic waveform in both phase and amplitude; however, it is rarely estimated and applied to the near surface zone for seismic data processing. Applying a 1D elastic full waveform modelling program, we demonstrate that such effects cannot be overlooked in the waveform computation if the value of the Q factor is lower than approximately 100. Further, we develop a pseudo 2D elastic waveform inversion method in the common midpoint (CMP) domain that jointly inverts early arrivals for QP and surface waves for QS. In this method, although the forward problem is in 1D, by applying 2D model regularization, we obtain 2D QP and QS models through simultaneous inversion. A cross-gradient constraint between the QP and Qs models is applied to ensure structural consistency of the 2D inversion results. We present synthetic examples and a real case study from an oil field in China.

  7. Pseudo-Hermitian random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.L. [RIBFG, Variable Energy Cyclotron Centre, 1/AF Bidhan nagar, Kolkata-700 064 (India); Jain, S.R. [NPD, Bhabha Atomic Research Centre, Mumbai-400 085 (India)


    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Zhang, Yongmin


    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  9. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data. (United States)

    van der Bom, M J; Pluim, J P W; Gounis, M J; van de Kraats, E B; Sprinkhuizen, S M; Timmer, J; Homan, R; Bartels, L W


    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  10. Random matrix theory for pseudo-Hermitian systems: Cyclic blocks

    Indian Academy of Sciences (India)

    We discuss the relevance of random matrix theory for pseudo-Hermitian systems, and, for Hamiltonians that break parity and time-reversal invariance . In an attempt to understand the random Ising model, we present the treatment of cyclic asymmetric matrices with blocks and show that the nearest-neighbour spacing ...

  11. Random matrix theory for pseudo-Hermitian systems: Cyclic blocks

    Indian Academy of Sciences (India)

    tems, and, for Hamiltonians that break parity P and time-reversal invariance T. In an attempt to understand the ... Keywords. Random matrices; circulants; quantum chaos; PT symmetry; pseudo-. Hermiticity. ... local fluctuation properties of complex quantum systems have universal properties, independent of the details of the ...

  12. Cryptography, statistics and pseudo-randomness (Part 1)

    NARCIS (Netherlands)

    Brands, S.; Gill, R.D.


    In the classical approach to pseudo-random number generators, a generator is considered to perform well if its output sequences pass a battery of statistical tests that has become standard. In recent years, it has turned out that this approach is not satisfactory. Many generators have turned out to

  13. Chaos-based Pseudo-random Number Generation

    KAUST Repository

    Barakat, Mohamed L.


    Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.

  14. Pseudo-random number generator based on asymptotic deterministic randomness

    Energy Technology Data Exchange (ETDEWEB)

    Wang Kai [Department of Radio Engineering, Southeast University, Nanjing (China)], E-mail:; Pei Wenjiang; Xia Haishan [Department of Radio Engineering, Southeast University, Nanjing (China); Cheung Yiuming [Department of Computer Science, Hong Kong Baptist University, Hong Kong (China)


    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  15. Experimental study on solids mixing and bubble behavior in a pseudo-2D, freely bubbling, gas-solid fluidized bed using PIV and DIA

    NARCIS (Netherlands)

    Laverman, J.A.; Roghair, Ivo; van Sint Annaland, M.; Kuipers, J.A.M.


    The hydrodynamics of a freely bubbling, gas-solid fluidized bed has been investigated experimentally with non-invasive measuring techniques in a pseudo-2D column filled with glass beads of 400-600 μm fluidized with air. Particle Image Velocimetry (PIV) combined with Digital Image Analysis (DIA) has


    Directory of Open Access Journals (Sweden)

    A. Beletsky


    Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.

  17. Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation

    KAUST Repository

    Mansingka, Abhinav S.


    adapted for pseudo random number generation by truncating statistically defective bits. Finally, a novel post-processing technique using the Fibonacci series is proposed and implemented with a non-autonomous driven hyperchaotic system to provide pseudo random number generators with high nonlinear complexity and controllable period length that enables full utilization of all branches of the chaotic output as statistically secure pseudo random output.

  18. Protocols for data hiding in pseudo-random state (United States)

    Craver, Scott; Li, Enping; Yu, Jun


    An emerging form of steganographic communication uses ciphertext to replace the output of a random or strong pseudo-random number generator. PRNG-driven media, for example computer animated backdrops in video-conferencing channels, can then be used as a covert channel, if the PRNG bits that generated a piece of content can be estimated by the recipient. However, all bits sent over such a channel must be computationally indistinguishable from i.i.d. coin flips. Ciphertext messages and even key exchange datagrams are easily shaped to match this distribution; however, when placing these messages into a continous stream of PRNG bits, the sender is unable to provide synchronization markers, metadata, or error correction to ensure the message's location and proper decoding. In this paper we explore methods for message transmission and steganographic key exchange in such a "coin flip" channel. We establish that key exchange is generally not possible in this channel if an adversary possesses even a modest noise budget. If the warden is not vigilant in adding noise, however, communication is very simple.

  19. Algorithm for generation pseudo-random series with arbitrarily assigned distribution law

    Directory of Open Access Journals (Sweden)

    В.С. Єременко


    Full Text Available  Method for generation pseudo-random series with arbitrarily assigned distribution law has been proposed. The praxis of using proposed method for generation pseudo-random series with anti-modal and approximate to Gaussian distribution law has been investigated.

  20. Cryptographic pseudo-random sequences from the chaotic Hénon ...

    Indian Academy of Sciences (India)

    Pseudo-random number sequences are useful in many applications including Monte-Carlo simulation, spread spectrum ... a pseudo-random binary sequence from the two-dimensional chaotic Hénon map is explored. ... is the Hénon map, a two-dimensional discrete-time nonlinear dynamical system represented by the state ...

  1. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja


    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  2. Calibration of correlation radiometers using pseudo-random noise signals. (United States)

    Pérez, Isaac Ramos; Bosch-Lluis, Xavi; Camps, Adriano; Alvarez, Nereida Rodriguez; Hernandez, Juan Fernando Marchán; Domènech, Enric Valencia; Vernich, Carlos; de la Rosa, Sonia; Pantoja, Sebastián


    The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers' outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called "baseline errors" associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN) signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver's output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  3. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves (United States)

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.


    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  4. A numerical model of 2-D sloshing of pseudo-viscous liquids in horizontally accelerated rectangular containers

    Energy Technology Data Exchange (ETDEWEB)

    Romero, V.J. [Sandia National Labs., Albuquerque, NM (United States); Ingber, M.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering


    A numerical model for simulating the transient nonlinear behavior of 2-D viscous sloshing flows in rectangular containers subjected to arbitrary horizontal accelerations is presented. The potential-flow formulation uses Rayleigh damping to approximate the effects of viscosity, and Lagrangian node movement is used to accommodate violent sloshing motions. A boundary element approach is used to efficiently handle the time-changing fluid geometry. Additionally, a corrected equation is presented for the constraint condition relating normal and tangential derivatives of the velocity potential where the fluid free surface meets the rigid container wall. The numerical model appears to be more accurate than previous sloshing models, as determined by comparison against exact analytic solutions and results of previously published models.

  5. Synchronizing microelectrode and electronic goniometer data using a pseudo-random binary signal. (United States)

    Moore, Tyler Robert; Jacobs, Rennie Underwood; Yang, Alexander Cheung; Richter, Erich Oscar


    Intra-operative investigation of the subthalamic nucleus (STN) requires concurrent measurement of microelectrode voltage, electrode depth and joint movement during deep brain stimulation (DBS) surgery. Commercial solutions to this problem exist but are more expensive. Multiple instruments from different manufacturers can collect the same data, but data from incompatible instruments are collected on disparate clocks, precluding quantitative analysis. A pseudo-random binary signal recorded simultaneously by each set of instruments allows for chronological reconciliation. A custom program collects microelectrode data while simultaneously sending a pseudo-random binary signal to instruments measuring joint movement. The record of this signal is later used to express microelectrode voltage and joint position in a single chronological frame of reference. ClockSynch was used in 15 DBS procedures. After each surgery, records of microelectrode and joint movement were successfully chronologically reconciled. In conclusion, a pseudo-random binary signal integrates disparate systems of instrumentation at a significantly decreased cost.

  6. Non-periodic pseudo-random numbers used in Monte Carlo calculations (United States)

    Barberis, Gaston E.


    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 1013 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 1013 numbers and that they are not correlated.

  7. Pseudo-random tool paths for CNC sub-aperture polishing and other applications. (United States)

    Dunn, Christina R; Walker, David D


    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  8. Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    DEFF Research Database (Denmark)

    Fog, Agner


    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways ...

  9. 1.2 GBit/s Pseudo Random Pulse Generator Using Multiplexing with GaAs Mesfet Gates

    DEFF Research Database (Denmark)

    Hede, Carsten


    A l.2 Gbit/s RZ pseudo random bit generator using multiplexing of six 200 Mbit/s channels, and a GaAs-MESFET gate circuit which exhibits both high speed and simplicity are presented. As a new contribution to the treatment of pseudo random sequences it is shown how the autocorrelation function and...

  10. Complexity and properties of a multidimensional Cat-Hadamard map for pseudo random number generation (United States)

    Kim Hue, Ta Thi; Hoang, Thang Manh


    This paper presents a novel method to extend the Cat map from 2-dimension to higher dimension using the fast pseudo Hadamard Transform, and the resulted maps are called Cat-Hadamard maps. The complexity and properties of Cat-Hadamard maps are investigated under the point of view for cryptographic applications. In addition, we propose a method for constructing a pseudo random number generator using a novel design concept of the high dimensional Cat map. The simulation results show that the proposed generator fulfilled all the statistic tests of the NIST SP 800-90 A.

  11. 2D vs. 3D imaging in laparoscopic surgery-results of a prospective randomized trial. (United States)

    Buia, Alexander; Stockhausen, Florian; Filmann, Natalie; Hanisch, Ernst


    3D imaging is an upcoming technology in laparoscopic surgery, and recent studies have shown that the modern 3D technique is superior in an experimental setting. However, the first randomized controlled clinical trial in this context dates back to 1998 and showed no significant difference between 2D and 3D visualization using the first 3D generation technique, which is now more than 15 years old. Positive results measured in an experimental setting considering 3D imaging on surgical performance led us to initiate a randomized controlled pragmatic clinical trial to validate our findings in daily clinical routine. Standard laparoscopic operations (cholecystectomy, appendectomy) were preoperatively randomized to a 2D or 3D imaging system. We used a surgical comfort scale (Likert scale) and the Raw NASA Workload TLX for the subjective assessment of 2D and 3D imaging; the duration of surgery was also measured. The results of 3D imaging were statistically significant better than 2D imaging concerning the parameters "own felt safety" and "task efficiency"; the difficulty level of the procedures in the 2D and 3D groups did not differ. Overall, the Raw NASA Workload TLX showed no significance between the groups. 3D imaging could be a possible advantage in laparoscopic surgery. The results of our clinical trial show increased personal felt safety and efficiency of the surgeon using a 3D imaging system. Overall of the procedures, the findings assessed using Likert scales in terms of own felt safety and task efficiency were statistically significant for 3D imaging. The individually perceived workload assessed with the Raw NASA TLX shows no difference. Although these findings are subjective impressions of the performing surgeons without a clear benefit for 3D technology in clinical outcome, we think that these results show the capability that 3D laparoscopy can have a positive impact while performing laparoscopic procedures.

  12. Concurrent Generation of Pseudo Random Numbers with LFSR of Fibonacci and Galois Type


    Emina I. Milovanović; Stojčev, Mile K.; Igor Ž. Milovanović; Tatjana R. Nikolić; Zoran Stamenković


    We have considered implementation of parallel test pattern generator based on a linear feedback shift register (LFSR) with multiple outputs used as a building block in built-in-self-test (BIST) design within SoC. The proposed design can drive several circuits under test (CUT) simultaneously. The mathematical procedure for concurrent pseudo random number (PRN) generation is described. We have implemented LFSRs that generate two and three PRNs in FPGA and ASIC technology. The design was tested ...

  13. Characterization of Electron Microscopes with Binary Pseudo-random Multilayer Test Samples

    Energy Technology Data Exchange (ETDEWEB)

    V Yashchuk; R Conley; E Anderson; S Barber; N Bouet; W McKinney; P Takacs; D Voronov


    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  14. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V., E-mail: [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Conley, Raymond [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Anderson, Erik H. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Barber, Samuel K. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bouet, Nathalie [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States); McKinney, Wayne R. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Takacs, Peter Z. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Voronov, Dmitriy L. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)


    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  15. Effects of randomness on the critical temperature in quasi-1D and quasi-2D superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmedov, Enver [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Institute of Physics, Azerbaijan National Academy of Sciences, H. Cavid str. 33, AZ1143 Baku (Azerbaijan); Alekperov, Oktay [Institute of Physics, Azerbaijan National Academy of Sciences, H. Cavid str. 33, AZ1143 Baku (Azerbaijan); Oppermann, Reinhold [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)


    Effects of non-magnetic disorder on the critical temperature T{sub c} and on diamagnetism of quasi-1D and quasi-2D superconductors (SCs) are reported. The organic SCs are modeled as superconducting wires or layers connecting each others through the Josephson coupling. The Josephson energy is considered to be random parameter with Gaussian distribution. The phase of the order parameter is averaged over thermodynamic fluctuations as well as over disorder by employing the replica method. We show that the randomness destroys phase coherence between wires in quasi-1D SCs and that T{sub c} vanishes discontinuously at a critical disorder-strength. Nevertheless the disorder of arbitrary high strength in quasi-2D organic SCs can not destroy completely the superconducting phase. The interplay between disorder and quantum phase fluctuations is shown to result in quantum critical behavior at T=0 in quasi-1D SCs, which manifests itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength. The parallel and transverse components of the penetration-depth are evaluated. They diverge at different critical temperatures, which correspond to pair-breaking and phase-coherence breaking respectively. Our theory agrees well with the experimental measurements.

  16. Pseudo-Random Mating Populations. in Celebration of the 80th Anniversary of the Hardy-Weinberg Law


    Li, C. C.


    That random mating leads to Hardy-Weinberg distribution of genotypes is well known. This report is to show that, if the deviations from random mating are of a certain pattern, the offspring generation will also be in Hardy-Weinberg proportions. This brings out the fact that random mating is a sufficient condition, not a necessary one, for the attainment of the Hardy-Weinberg proportions. Such nonrandom-mating populations are tentatively said to be pseudo-random mating. Pseudo-random-mating po...

  17. Improving the pseudo-randomness properties of chaotic maps using deep-zoom. (United States)

    Machicao, Jeaneth; Bruno, Odemir M


    A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a "deep-zoom" manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.

  18. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling. (United States)

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U


    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O2) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O2 kinetics were estimated from heart rate and pulmonary V̇O2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O2 during walking, the assessment of muscular V̇O2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  19. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    Directory of Open Access Journals (Sweden)

    Han Shuangshuang


    Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.

  20. Pseudo-random Aloha for inter-frame soft combining in RFID systems

    DEFF Research Database (Denmark)

    Castiglione, Paolo; Ricciato, Fabio; Popovski, Petar


    In this work we consider a recently proposed variant of the classical Framed Slotted-ALOHA where slot selection is based on a pseudo-random function of the message to be transmitted and of the frame index. We couple this feature with convolutional encoding, that allows to perform Inter-frame Soft...... cancellation (instead of combining). Numerical simulation results show that the ISoC scheme brings a noticeable throughput gain over traditional schemes in a dense RFID scenario with multiple concurrent Tag transmissions....

  1. Fourier based methodology for simulating 2D-random shapes in heterogeneous materials (United States)

    Mattrand, C.; Béakou, A.; Charlet, K.


    Gaining insights into the effects of microstructural details on materials behavior may be achieved by incorporating their attributes into numerical modeling. This requires us to make considerable efforts to feature heterogeneity morphology distributions and their spatial arrangement. This paper focuses on modeling the scatter observed in materials heterogeneity geometry. The proposed strategy is based on the development of a 1D-shape signature function representing the 2D-section of a given shape, on Fourier basis functions. The Fourier coefficients are then considered as random variables. This methodology has been applied to flax fibers which are gradually introduced into composite materials as a potential alternative to synthetic reinforcements. In this contribution, the influence of some underlying assumptions regarding the choice of one 1D-shape signature function, its discretization scheme and truncation level, and the best way of modeling the associated random variables is also investigated. Some configurations coming from the combination of these tuning parameters are found to be sufficiently relevant to render efficiently the morphometric factors of the observed fibers statistically speaking.

  2. Pseudo cluster randomization: balancing the disadvantages of cluster and individual randomization

    NARCIS (Netherlands)

    Melis, R.J.F.; Teerenstra, S.; Olde Rikkert, M.G.M.; Borm, G.F.


    While designing a trial to evaluate a complex intervention, one may be confronted with the dilemma that randomization at the level of the individual patient risks contamination bias, whereas cluster randomization risks incomparability of study arms and recruitment problems. Literature provides only

  3. Pseudo-random-bit-sequence phase modulation for reduced errors in a fiber optic gyroscope. (United States)

    Chamoun, Jacob; Digonnet, Michel J F


    Low noise and drift in a laser-driven fiber optic gyroscope (FOG) are demonstrated by interrogating the sensor with a low-coherence laser. The laser coherence was reduced by broadening its optical spectrum using an external electro-optic phase modulator driven by either a sinusoidal or a pseudo-random bit sequence (PRBS) waveform. The noise reduction measured in a FOG driven by a modulated laser agrees with the calculations based on the broadened laser spectrum. Using PRBS modulation, the linewidth of a laser was broadened from 10 MHz to more than 10 GHz, leading to a measured FOG noise of only 0.00073  deg/√h and a drift of 0.023  deg/h. To the best of our knowledge, these are the lowest noise and drift reported in a laser-driven FOG, and this noise is below the requirement for the inertial navigation of aircraft.

  4. Covert Communication in MIMO-OFDM System Using Pseudo Random Location of Fake Subcarriers

    Directory of Open Access Journals (Sweden)

    Rizky Pratama Hudhajanto


    Full Text Available Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER than the legal receiver compared to the conventional MIMO-OFDM system.

  5. Pseudo-random mating populations. In celebration of the 80th anniversary of the Hardy-Weinberg law. (United States)

    Li, C C


    That random mating leads to Hardy-Weinberg distribution of genotypes is well known. This report is to show that, if the deviations from random mating are of a certain pattern, the offspring generation will also be in Hardy-Weinberg proportions. This brings out the fact that random mating is a sufficient condition, not a necessary one, for the attainment of the Hardy-Weinberg proportions. Such nonrandom-mating populations are tentatively said to be pseudo-random mating. Pseudo-random-mating populations exist for both autosomal and sex-linked systems with two or multiple alleles. This report covers the basic case of a two-allele autosomal locus in detail, but the possible extension to two loci and cytonuclear systems have also been mentioned in discussion.

  6. Pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks (United States)

    Wu, Shaochuan; Tan, Xuezhi


    By analyzing all kinds of address configuration algorithms, this paper provides a new pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks. Based on PRDAC, the first node that initials this network randomly chooses a nonlinear shift register that can generates an m-sequence. When another node joins this network, the initial node will act as an IP address configuration sever to compute an IP address according to this nonlinear shift register, and then allocates this address and tell the generator polynomial of this shift register to this new node. By this means, when other node joins this network, any node that has obtained an IP address can act as a server to allocate address to this new node. PRDAC can also efficiently avoid IP conflicts and deal with network partition and merge as same as prophet address (PA) allocation and dynamic configuration and distribution protocol (DCDP). Furthermore, PRDAC has less algorithm complexity, less computational complexity and more sufficient assumption than PA. In addition, PRDAC radically avoids address conflicts and maximizes the utilization rate of IP addresses. Analysis and simulation results show that PRDAC has rapid convergence, low overhead and immune from topological structures.

  7. Research of the method of pseudo-random number generation based on asynchronous cellular automata with several active cells

    Directory of Open Access Journals (Sweden)

    Bilan Stepan


    Full Text Available To date, there are many tasks that are aimed at studying the dynamic changes in physical processes. These tasks do not give advance known result. The solution of such problems is based on the construction of a dynamic model of the object. Successful structural and functional implementation of the object model can give a positive result in time. This approach uses the task of constructing artificial biological objects. To solve such problems, pseudo-random number generators are used, which also find wide application for information protection tasks. Such generators should have good statistical properties and give a long repetition period of the generated pseudo-random bit sequence. This work is aimed at improving these characteristics. The paper considers the method of forming pseudo-random sequences of numbers on the basis of aperiodic cellular automata with two active cells. A pseudo-random number generator is proposed that generates three bit sequences. The first two bit sequences are formed by the corresponding two active cells in the cellular automaton. The third bit sequence is the result of executing the XOR function over the bits of the first two sequences and it has better characteristics compared to them. The use of cellular automata with two active cells allowed to improve the statistical properties of the formed bit sequence, as well as its repetition period. This is proved by using graphical tests for generators built based on cellular automata using the neighborhoods of von Neumann and Moore. The tests showed high efficiency of the generator based on an asynchronous cellular automaton with the neighborhood of Moore. The proposed pseudo-random number generators have good statistical properties, which makes it possible to use them in information security systems, as well as for simulation tasks of various dynamic processes.

  8. Goal-independent mechanisms for free response generation: creative and pseudo-random performance share neural substrates. (United States)

    de Manzano, Örjan; Ullén, Fredrik


    To what extent free response generation in different tasks uses common and task-specific neurocognitive processes has remained unclear. Here, we investigated overlap and differences in neural activity during musical improvisation and pseudo-random response generation. Brain activity was measured using fMRI in a group of professional classical pianists, who performed musical improvisation of melodies, pseudo-random key-presses and a baseline condition (sight-reading), on either two, six or twelve keys on a piano keyboard. The results revealed an extensive overlap in neural activity between the two generative conditions. Active regions included the dorsolateral and dorsomedial prefrontal cortices, inferior frontal gyrus, anterior cingulate cortex and pre-SMA. No regions showed higher activity in improvisation than in pseudo-random generation. These findings suggest that the activated regions fulfill generic functions that are utilized in different types of free generation tasks, independent of overall goal. In contrast, pseudo-random generation was accompanied by higher activity than improvisation in several regions. This presumably reflects the participants' musical expertise as well as the pseudo-random generation task's high load on attention, working memory, and executive control. The results highlight the significance of using naturalistic tasks to study human behavior and cognition. No brain activity was related to the size of the response set. We discuss that this may reflect that the musicians were able to use specific strategies for improvisation, by which there was no simple relationship between response set size and neural activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Tsuburaya, Y. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  10. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Sidler, Rolf, E-mail: [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland); Carcione, José M. [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste (Italy); Holliger, Klaus [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland)


    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  11. Pseudo-random Spray Release to Measure World-wide Transfer Functions of Cloud Albedo Control. (United States)

    Salter, Stephen


    Institute for Energy Systems, School of Engineering, University of Edinburgh. Previous climate models of Latham's proposal to reverse global warming by using sub-micron sea spray to increase cloud albedo have used a variety of spray patterns. Kettles forced CCN concentration to be 375/cm3 everywhere. Rasch et al used the 20% and 70% most susceptible regions. Bala and Caldeira used an even spread. Jones et al. concentrated spray in the 3.3% oceans with the highest susceptibility All used the same rate through the year. We want to choose a scheme for a climate-modelling experiment designed to identify simultaneously the effects of cloud albedo control at various seasons of the year from spray at all regions of the world on climates of all other regions the world. In particular we want to know seasons and spray places which might have an undesirable effect on precipitation. The spray systems in various regions of a numerical climate model will be modulated on an off with different but known pseudo-random sequences and a selection of seasons. The mean value of the resulting weather records of the parameters of interest, mainly temperature and water run-off, at each region will be subtracted from each value of the record so as to give just the alternating component with an average value of zero. This will be correlated with each of the chosen pseudo-random sequences to give the magnitude and polarity of the effect of a treatment at each input area and selected seasons of the year with the resulting effects on all regions. By doing a time-shifted correlation we can account for phase-shift and time delay. The signal-to-noise ratio should improve with the square root of the analysis time and so we may be able to measure the transfer function with quite a small stimulus. The results of a Mathcad simulation of the process with statistical distributions approximating to natural variations temperature and precipitation show that a single run of a climate

  12. Least squares deconvolution for leak detection with a pseudo random binary sequence excitation (United States)

    Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.


    Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.

  13. Interference Suppression Performance of Automotive UWB Radars Using Pseudo Random Sequences

    Directory of Open Access Journals (Sweden)

    I. Pasya


    Full Text Available Ultra wideband (UWB automotive radars have attracted attention from the viewpoint of reducing traffic accidents. The performance of automotive radars may be degraded by interference from nearby radars using the same frequency. In this study, a scenario where two cars pass each other on a road was considered. Considering the utilization of cross-polarization, the desired-to-undesired signal power ratio (DUR was found to vary approximately from -10 to 30 dB. Different pseudo random sequences were employed for spectrum spreading the different radar signals to mitigate the interference effects. This paper evaluates the interference suppression provided by maximum length sequence (MLS and Gold sequence (GS through numerical simulations of the radar’s performance in terms of probability of false alarm and probability of detection. It was found that MLS and GS yielded nearly the same performance when the DUR is -10 dB (worst case; for example when fixing the probability of false alarm to 0.0001, the probabilities of detection were 0.964 and 0.946 respectively. The GS are more advantageous than MLS due to larger number of different sequences having the same length in GS than in MLS.

  14. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan


    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  15. Binary Pseudo-Random Gratings and Arrays for Calibration of Modulation Transfer Functions of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.


    A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.

  16. Design of Long Period Pseudo-Random Sequences from the Addition of m -Sequences over 𝔽 p

    Directory of Open Access Journals (Sweden)

    Ren Jian


    Full Text Available Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of m -sequences with pairwise-prime linear spans (AMPLS. Using m -sequences as building blocks, the proposed method proved to be an efficient and flexible approach to construct long period pseudo-random sequences with desirable properties from short period sequences. Applying the proposed method to 𝔽 2 , a signal set ( ( 2 n − 1 ( 2 m − 1 , ( 2 n + 1 ( 2 m + 1 , ( 2 ( n + 1 / 2 + 1 ( 2 ( m + 1 / 2 + 1 is constructed.

  17. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai


    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  18. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method. (United States)

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke


    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  19. Metal-insulator transition of 2d electron gas in a random magnetic field

    CERN Document Server

    Wang, X R; Liu, D Z


    We study the metal-insulator transition of a two-dimensional electron gas in the presence of a random magnetic field from the localization property. The localization length is directly calculated using a transfer matrix technique and finite size scaling analysis. We argue that there is a metal-insulator transition in such a system and show strong numerical evidence that the system undergoes a disorder driven Kosterlitz-Thouless type metal-insulator transition. We will also discuss a mean field theory which maps the random field system into a two-dimensional XY-model. The vortex and antivortex excitations in the XY-model correspond to two different kinds of magnetic domains in the random field system.

  20. 2D stochastic-integral models for characterizing random grain noise in titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H. [Victor Technologies, LLC, PO Box 7706, Bloomington, IN 47407-7706 (United States); Cherry, Matthew [University of Dayton Research Institute, 300 College Park Dr., Dayton, OH 45410 (United States); Pilchak, Adam; Knopp, Jeremy S.; Blodgett, Mark P. [Air Force Research Laboratory (AFRL/RXC), Wright Patterson AFB OH 45433-7817 (United States)


    We extend our previous work, in which we applied high-dimensional model representation (HDMR) and analysis of variance (ANOVA) concepts to the characterization of a metallic surface that has undergone a shot-peening treatment to reduce residual stresses, and has, therefore, become a random conductivity field. That example was treated as a onedimensional problem, because those were the only data available. In this study, we develop a more rigorous two-dimensional model for characterizing random, anisotropic grain noise in titanium alloys. Such a model is necessary if we are to accurately capture the 'clumping' of crystallites into long chains that appear during the processing of the metal into a finished product. The mathematical model starts with an application of the Karhunen-Loève (K-L) expansion for the random Euler angles, θ and φ, that characterize the orientation of each crystallite in the sample. The random orientation of each crystallite then defines the stochastic nature of the electrical conductivity tensor of the metal. We study two possible covariances, Gaussian and double-exponential, which are the kernel of the K-L integral equation, and find that the double-exponential appears to satisfy measurements more closely of the two. Results based on data from a Ti-7Al sample will be given, and further applications of HDMR and ANOVA will be discussed.

  1. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths. (United States)

    Takizawa, Ken; Beaucamp, Anthony


    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  2. A large-area ultra-precision 2D geometrical measurement technique based on statistical random phase detection (United States)

    Ekberg, Peter; Stiblert, Lars; Mattsson, Lars


    The manufacturing of high-quality chrome masks used in the display industry for the manufacturing of liquid crystals, organic light emission diodes and other display devices would not be possible without high-precision large-area metrology. In contrast to the semiconductor industry where 6‧ masks are most common, the quartz glass masks for the manufacturing of large area TVs can have sizes of up to 1.6 × 1.8 m2. Besides the large area, there are demands of sub-micrometer accuracy in ‘registration’, i.e. absolute dimensional measurements and nanometer requirements for ‘overlay’, i.e. repeatability. The technique for making such precise measurements on large masks is one of the most challenging tasks in dimensional metrology today. This paper presents a new approach to two-dimensional (2D) ultra-precision measurements based on random sampling. The technique was recently presented for ultra-precise one-dimensional (1D) measurement. The 1D method relies on timing the scanning of a focused laser beam 200 µm in the Y-direction from an interferometrically determined reference position. This microsweep is controlled by an acousto-optical deflector. By letting the microsweep scan from random X-positions, we can build XY-recordings through a time-to-space conversion that gives very precise maps of the feature edges of the masks. The method differs a lot from ordinary image processing methods using CCD or CMOS sensors for capturing images in the spatial domain. We use events grabbed by a single detector in the time domain in both the X- and Y-directions. After a simple scaling, we get precise and repeatable spatial information. Thanks to the extremely linear microsweep and its precise power control, spatial and intensity distortions, common in ordinary image processing systems using 2D optics and 2D sensors, can be practically eliminated. Our 2D method has proved to give a standard deviation in repeatability of less than 4 nm (1σ) in both the X- and Y

  3. Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Debesh Jha


    Full Text Available Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT for feature extraction, probabilistic principal component analysis (PPCA for dimensionality reduction, and a random subspace ensemble (RSE classifier along with the K-nearest neighbors (KNN algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV, the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.

  4. An empirical test of pseudo random number generators by means of an exponential decaying process; Una prueba empirica de generadores de numeros pseudoaleatorios mediante un proceso de decaimiento exponencial

    Energy Technology Data Exchange (ETDEWEB)

    Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, A.P. 475, Xalapa, Veracruz (Mexico); Mora F, L.E. [CIMAT, A.P. 402, 36000 Guanajuato (Mexico)]. e-mail:


    Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)

  5. A novel effect of Noscapine on patients with massive ischemic stroke: A pseudo-randomized clinical trial. (United States)

    Mahmoudian, Massoud; Rezvani, Mohammad; Rohani, Mohammad; Benaissa, Foozya; Jalili, Mehdi; Ghourchian, Shadi


    Massive ischemic stroke causes significant mortality and morbidity in stroke patients. The main treatments for massive ischemic stroke are recombinant tissue plasminogen activator (rtPA), craniotomy, and endovascular interventions. Due to destructive effects of bradykinin on the nervous system in ischemic stroke, it seems reasonable that using Noscapine as a Bradykinin antagonist may improve patients' outcome after ischemic stroke. The effect of Noscapine on massive ischemic stroke was shown by the previous pilot study by our group. This pseudo-randomized clinical trial study was designed to assess the result of the pilot study. Patients who had clinical symptoms or computed tomography scan indicative of massive stroke (in full middle cerebral artery territory) were entered to the study. The cases received the drugs according to their turns in emergency ward (pseudo-randomized). The patient group received Noscapine, and the control group received common supportive treatments. The patients and data analyzer were blinded about the data. At the end of the study, to adjust confounding variables we used logistic regression. After 1-month follow-up, 16 patients in the control group and 11 patients in the case group expired (P = 0.193). Analyzing the data extracted from Rankin scale and Barthel index check lists, revealed no significant differences in the two groups. Despite the absence of significant statistical results in our study, the reduction rate of 16% for mortality rate in Noscapine recipients is clinically remarkable and motivates future studies with larger sample sizes.

  6. New Design of Crypto-Based Pseudo random number generator (CBPRNG) using BLOW FISH cipher


    T.Chalama Reddy; Dr.R.Seshadri


    Random Number Generators (RNGs) are an important building block for algorithms and protocols in cryptography. Random number generation is used in a wide variety of cryptographic operations, such as key generation and challenge/response protocols. A random number generator outputs a sequence of 0s and 1s such that at any position, the next bit cannot be expected on the previous bits. However, true random number produces non- deterministic output since if the same random generator is run twice,...

  7. Pseudo cluster randomization dealt with selection bias and contamination in clinical trials

    NARCIS (Netherlands)

    Teerenstra, S.; Melis, R.J.F.; Peer, P.G.M.; Borm, G.F.


    BACKGROUND AND OBJECTIVES: When contamination is present, randomization on a patient level leads to dilution of the treatment effect. The usual solution is to randomize on a cluster level, but at the cost of efficiency and more importantly, this may introduce selection bias. Furthermore, it may slow

  8. Binary pseudo-random grating as a standard test surface formeasurement of modulation transfer function of interferometricmicroscopes

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.


    The task of designing high performance X-ray optical systemsrequires the development of sophisticated X-ray scattering calculationsbased on rigorous information about the optics. One of the mostinsightful approaches to these calculations is based on the powerspectral density (PSD) distribution of the surface height. The majorproblem of measurement of a PSD distribution with an interferometricand/or atomic force microscope arises due to the unknown ModulationTransfer Function (MTF) of the instruments. The MTF characterizes theperturbation of the PSD distribution at higher spatial frequencies. Here,we describe a new method and dedicated test surfaces for calibration ofthe MTF of a microscope. The method is based on use of a speciallydesigned Binary Pseudo-random (BPR) grating. Comparison of atheoretically calculated PSD spectrum of a BPR grating with a spectrummeasured with the grating provides the desired calibration of theinstrumental MTF. The theoretical background of the method, as well asresults of experimental investigations are presented.

  9. Pseudo cluster randomization: a treatment allocation method to minimize contamination and selection bias.

    NARCIS (Netherlands)

    Borm, G.F.; Melis, R.J.F.; Teerenstra, S.; Peer, P.G.M.


    In some clinical trials, treatment allocation on a patient level is not feasible, and whole groups or clusters of patients are allocated to the same treatment. If, for example, a clinical trial is investigating the efficacy of various patient coaching methods and randomization is done on a patient

  10. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes. (United States)

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U


    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O2pulm) and predicted muscular (V˙O2musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O2pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O2musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O2musc kinetics seem to be independent of WR intensity (p>0.05). V˙O2pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; pkinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.


    Energy Technology Data Exchange (ETDEWEB)



    The task of designing high performance X-ray optical systems requires the development of sophisticated X-ray scattering calculations based on rigorous information about the optics. One of the most insightful approaches to these calculations is based on the power spectral density (PSD) distribution of the surface height. The major problem of measurement of a PSD distribution with an interferometric and/or atomic force microscope arises due to the unknown Modulation Transfer Function (MTF) of the instruments. The MTF characterizes the perturbation of the PSD distribution at higher spatial frequencies. Here, we describe a new method and dedicated test surfaces for calibration of the MTF of a microscope. The method is based on use of a specially designed Binary Pseudo-random (BPR) grating. Comparison of a theoretically calculated PSD spectrum of a BPR grating with a spectrum measured with the grating provides the desired calibration of the instrumental MTF. The theoretical background of the method, as well as results of experimental investigations are presented.

  12. Cost-effectiveness of multidisciplinary wound care in nursing homes: a pseudo-randomized pragmatic cluster trial. (United States)

    Vu, Trang; Harris, Anthony; Duncan, Gregg; Sussman, Geoff


    To evaluate the cost-effectiveness of a multidisciplinary wound care team in the nursing home setting from a health system perspective. Pseudo-randomized pragmatic cluster trial with 20-week follow-up involving 342 uncomplicated leg and pressure ulcers in 176 residents located in 44 high-care nursing homes in Melbourne, Australia in 1999-2000. Twenty-one nursing homes (180 wounds in 94 residents) were assigned to the intervention arm and 23 to the control arm (162 wounds in 82 residents). Residents in the intervention arm received standardized treatment from a wound care team comprising of trained community pharmacists and nurses. Residents in the control arm received usual care. More wounds healed during the trial in the intervention arm than in the control arm (61.7% versus 52.5%, P = 0.07). A Cox regression with shared frailty predicted that the chances of healing increased 73% for intervention wounds [95% confidence interval (CI) 20-150%, P = 0.003]. The mean treatment cost was $A616.4 for intervention and $A977.9 for control patients (P = 0.006). Most cost reduction was obtained from decreases in nursing time and waste disposal. The mean cost saving per wound, adjusted for baseline wound severity and random censoring, was $A277.9 (95% CI $A21.6-$A534.1). Standardized treatment provided by a multidisciplinary wound care team saved costs and improved chronic wound healing in nursing homes. The main source of saving was in the cost of nursing time in applying traditional dressings and in the cost of their disposal.

  13. Stability of modulation transfer function calibration of surface profilometers using binary pseudo-random gratings and arrays with nonideal groove shapes

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik H.; Cambie, Rossana; Marchesini, Stefano; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitry L.; Yashchuk, Valeriy V.


    The major problem of measurement of a power spectral density (PSD) distribution of surface heights with surface profilometers arises due to the unknown Modulation Transfer Function (MTF) of the instruments, which tends to distort the PSD at higher spatial frequencies. The special mathematical properties of binary pseudo-random patterns make them an ideal basis for developing MTF calibration test surfaces. Two-dimensional binary pseudo-random arrays (BPRAs) have been fabricated and used for the MTF calibration of the MicroMap{trademark}-570 interferometric microscope with all available objectives. An investigation into the effects of fabrication imperfections on the quality of the MTF calibration and a procedure for accounting for such imperfections are presented.

  14. Effect of random structure on permeability and heat transfer characteristics for flow in 2D porous medium based on MRT lattice Boltzmann method (United States)

    Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang


    Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.

  15. 2D Versus 3D in Laparoscopic Surgery by Beginners and Experts: A Randomized Controlled Trial on a Pelvitrainer in Objectively Graded Surgical Steps. (United States)

    Spille, Johannes; Wenners, Antonia; von Hehn, Ulrike; Maass, Nicolai; Pecks, Ulrich; Mettler, Liselotte; Alkatout, Ibrahim

    Progress in endoscopic surgery in the past few decades has led to the application of 3-dimensional (3D) procedures in operating rooms. This permits patient- and surgeon-friendly operations and also maximizes the superiority of laparoscopy over laparotomy. In this study, we compare 2-dimensional (2D) and 3D endoscopy techniques with regard to time, efficiency, optics, and handling by users with different degrees of experience at 4 difficulty levels. A randomized controlled trial on a pelvitrainer in objectively graded surgical steps for students and postgraduates. The trials took place at the Kiel School of Gynaecological Endoscopy, a training unit of the Kiel University Department of Obstetrics and Gynecology, a tertiary academic medical center. The 277 study participants, divided into students, residents, and specialists, worked on pelvitrainers with 2 different optical systems, the 2D full HD and the 3D mode. The following 4 exercises were performed with each optical system: (1) grasping and transferring of pins, (2) cutting predetermined marks, (3) vaginal closure with prevention of prolapse, and (4) sacrocolpopexy. The duration and success of the tasks were measured and compared. A self-assessment questionnaire was completed by the participants. Overall, the 3D-system permitted a greater improvement in working speed, superior optical visualization, and better endoscopic handling in all groups, independent of surgical experience. All students improved in speed (exercises: 1-3) and made significantly fewer mistakes (exercise 2) on 3D compared with 2D. Residents made progress in time (exercises: 1-4) and task performance (exercise 3). Specialists improved significantly in the more challenging tasks 3 and 4. Subjectively, 68.8% of participants preferred 3D for performing laparoscopy. Systematic training programs on pelvitrainers can improve endoscopic skills not only in beginners but also in experienced surgeons. The 3D system offered distinct advantages over 2D

  16. Pseudo-Marginal Slice Sampling


    Murray, Iain; Graham, Matthew


    Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limited. We describe a general way to clamp and update the random numbers used in a pseudo-marginal meth...

  17. Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77Gbits/s

    KAUST Repository

    Mansingka, Abhinav S.


    This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.

  18. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat (United States)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  19. Pseudo-Gaussian and rank-based optimal tests for random individual effects in large n small T panels

    NARCIS (Netherlands)

    Bennala, N.; Hallin, M.; Paindaveine, D.


    We consider the problem of detecting unobserved heterogeneity, that is, the problem of testing the absence of random individual effects in an n × T panel. We establish a local asymptotic normality property–with respect to intercept, regression coefficient, the scale parameter σ of the error, and the

  20. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V. V., E-mail:; Chan, E. R.; Lacey, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fischer, P. J. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California Santa Cruz, Santa Cruz, California 94056 (United States); Conley, R. [Advance Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); McKinney, W. R. [Diablo Valley College, 321 Golf Club Road, Pleasant Hill, California 94523 (United States); Artemiev, N. A. [KLA-Tencor Corp., 1 Technology Drive, Milpitas, California 95035 (United States); Bouet, N. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Cabrini, S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Calafiore, G.; Peroz, C.; Babin, S. [aBeam Technologies, Inc., Hayward, California 94541 (United States)


    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  1. Genetic analysis of the cumulative pseudo-survival rate during lactation of Holstein cattle in Japan by using random regression models. (United States)

    Sasaki, O; Aihara, M; Nishiura, A; Takeda, H; Satoh, M


    Longevity is a crucial economic trait in the dairy farming industry. In this study, our objective was to develop a random regression model for genetic evaluation of survival. For the analysis, we used test-day records obtained for the first 5 lactations of 380,252 cows from 1,296 herds in Japan between 2001 and 2010; this data set was randomly divided into 7 subsets. The cumulative pseudo-survival rate (PSR) was determined according to whether a cow was alive (1) or absent (0) in her herd on the test day within each lactation group. Each lactation number was treated as an independent trait in a random regression multiple-trait model (MTM) or as a repeated measure in a random regression single-trait repeatability model (STRM). A proportional hazard model (PHM) was also developed as a piecewise-hazards model. The average (± standard deviation) heritability estimates of the PSR at 365 d in milk (DIM) among the 7 data sets in the first (LG1), second (LG2), and third to fifth lactations (LG3) of the MTM were 0.042±0.007, 0.070±0.012, and 0.084±0.007, respectively. The heritability estimate of the STRM was 0.038±0.004. The genetic correlations of PSR between distinct DIM within or between lactation groups were high when the interval between DIM was short. These results indicated that whereas the genetic factors contributing to the PSR between closely associated DIM would be similar even for different lactation numbers, the genetic factors contributing to PSR would differ between distinct lactation periods. The average (± standard deviation) effective heritability estimate based on the relative risk of the PHM among the 7 data sets was 0.068±0.009. The estimated breeding values (EBV) in LG1, LG2, LG3, the STRM, and the PHM were unbiased estimates of the genetic trend. The absolute values of the Spearman's rank correlation coefficients between the EBV of the relative risk of the PHM and the EBV of PSR at 365 DIM for LG1, LG2, LG3, and the STRM were 0.75, 0.87, 0

  2. 2D Prony-Huang Transform: A New Tool for 2D Spectral Analysis (United States)

    Schmitt, Jeremy; Pustelnik, Nelly; Borgnat, Pierre; Flandrin, Patrick; Condat, Laurent


    This work proposes an extension of the 1-D Hilbert Huang transform for the analysis of images. The proposed method consists in (i) adaptively decomposing an image into oscillating parts called intrinsic mode functions (IMFs) using a mode decomposition procedure, and (ii) providing a local spectral analysis of the obtained IMFs in order to get the local amplitudes, frequencies, and orientations. For the decomposition step, we propose two robust 2-D mode decompositions based on non-smooth convex optimization: a "Genuine 2-D" approach, that constrains the local extrema of the IMFs, and a "Pseudo 2-D" approach, which constrains separately the extrema of lines, columns, and diagonals. The spectral analysis step is based on Prony annihilation property that is applied on small square patches of the IMFs. The resulting 2-D Prony-Huang transform is validated on simulated and real data.

  3. Genetic correlations between the cumulative pseudo-survival rate, milk yield, and somatic cell score during lactation in Holstein cattle in Japan using a random regression model. (United States)

    Sasaki, O; Aihara, M; Nishiura, A; Takeda, H


    Trends in genetic correlations between longevity, milk yield, and somatic cell score (SCS) during lactation in cows are difficult to trace. In this study, changes in the genetic correlations between milk yield, SCS, and cumulative pseudo-survival rate (PSR) during lactation were examined, and the effect of milk yield and SCS information on the reliability of estimated breeding value (EBV) of PSR were determined. Test day milk yield, SCS, and PSR records were obtained for Holstein cows in Japan from 2004 to 2013. A random subset of the data was used for the analysis (825 herds, 205,383 cows). This data set was randomly divided into 5 subsets (162-168 herds, 83,389-95,854 cows), and genetic parameters were estimated in each subset independently. Data were analyzed using multiple-trait random regression animal models including either the residual effect for the whole lactation period (H0), the residual effects for 5 lactation stages (H5), or both of these residual effects (HD). Milk yield heritability increased until 310 to 351 d in milk (DIM) and SCS heritability increased until 330 to 344 DIM. Heritability estimates for PSR increased with DIM from 0.00 to 0.05. The genetic correlation between milk yield and SCS increased negatively to under -0.60 at 455 DIM. The genetic correlation between milk yield and PSR increased until 342 to 355 DIM (0.53-0.57). The genetic correlation between the SCS and PSR was -0.82 to -0.83 at around 180 DIM, and decreased to -0.65 to -0.71 at 455 DIM. The reliability of EBV of PSR for sires with 30 or more recorded daughters was 0.17 to 0.45 when the effects of correlated traits were ignored. The maximum reliability of EBV was observed at 257 (H0) or 322 (HD) DIM. When the correlations of PSR with milk yield and SCS were considered, the reliabilities of PSR estimates increased to 0.31-0.76. The genetic parameter estimates of H5 were the same as those for HD. The rank correlation coefficients of the EBV of PSR between H0 and H5 or HD were

  4. Discrete pseudo-integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko; Li, J.; Pap, E.


    Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo- multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 pseudo-integrals. pdf

  5. The effects of d-amphetamine on extrastriatal dopamine D{sub 2}/D{sub 3} receptors: a randomized, double-blind, placebo-controlled PET study with [{sup 11}C]FLB 457 in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Sargo [University of Turku, Turku PET Centre, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Hirvonen, Jussi; Kajander, Jaana; Naagren, Kjell; Rinne, Juha O. [University of Turku, Turku PET Centre, Turku (Finland); Kaasinen, Valtteri [University of Turku, Department of Neurology, P.O. Box 52, Turku (Finland); Hagelberg, Nora [University of Turku, Turku PET Centre, Turku (Finland); Turku University Central Hospital, Department of Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku (Finland); Seppaelae, Timo [Drug Research Unit, National Public Health Institute, Helsinki (Finland); Scheinin, Harry [University of Turku, Turku PET Centre, Turku (Finland); University of Turku, Department of Pharmacology, Drug Development and Therapeutics, Turku (Finland); Hietala, Jarmo [University of Turku, Turku PET Centre, Turku (Finland); University of Turku, Department of Psychiatry, Turku (Finland)


    The dopamine D{sub 2}/D{sub 3} receptor ligand [{sup 11}C]FLB 457 and PET enable quantification of low-density extrastriatal D{sub 2}/D{sub 3} receptors, but it is uncertain whether [{sup 11}C]FLB 457 can be used for measuring extrastriatal dopamine release. We studied the effects of d-amphetamine (0.3 mg/kg i.v.) on extrastriatal [{sup 11}C]FLB 457 binding potential (BP{sub ND}) in a randomized, double-blind, placebo-controlled study including 24 healthy volunteers. The effects of d-amphetamine on [{sup 11}C]FLB 457 BP{sub ND} and distribution volume (V{sub T}) in the frontal cortex were not different from those of placebo. Small decreases in [{sup 11}C]FLB 457 BP{sub ND} were observed only in the posterior cingulate and hippocampus. The regional changes in [{sup 11}C]FLB 457 BP{sub ND} did not correlate with d-amphetamine-induced changes in subjective ratings of euphoria. This placebo-controlled study showed that d-amphetamine does not induce marked changes in measures of extrastriatal dopamine D{sub 2}/D{sub 3} receptor binding. Our results indicate that [{sup 11}C]FLB 457 PET is not a useful method for measuring extrastriatal dopamine release in humans. (orig.)

  6. Pseudo Class III malocclusion

    National Research Council Canada - National Science Library

    Al-Hummayani, Fadia M


    .... This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors...

  7. Safety, tolerability and pharmacokinetics and pharmacodynamics of inhaled once-daily umeclidinium in healthy adults deficient in CYP2D6 activity: a double-blind, randomized clinical trial. (United States)

    Cahn, Anthony; Mehta, Rashmi; Preece, Andrew; Blowers, James; Donald, Alison


    Umeclidinium is a new, long-acting, muscarinic receptor antagonist currently in development for the treatment of chronic obstructive pulmonary disease (COPD). In vitro cell culture data suggest that up to 99 % of umeclidinium is potentially metabolized by cytochrome P450 2D6 (CYP2D6), but without a definitive human metabolism radiolabel study, the extrapolation of in vitro to in vivo is only an estimate. The objective of this study was to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of umeclidinium in patients with normal and deficient CYP2D6 metabolism. This was a randomized, placebo-controlled study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled single and repeat doses (for 7 days) of umeclidinium. The study took place at a single clinical site, at which subjects remained throughout the study. Healthy volunteers (HVTs) who were normal CYP2D6 metabolizers (HVT-NMs) [n = 20] and poor CYP2D6 metabolizers (HVT-PMs) [n = 16] participated in the study. The subjects received umeclidinium (100-1,000 μg) and placebo as single and repeat doses. The primary outcome measurements were protocol-defined safety and tolerability endpoints. Thirteen subjects in each population reported adverse events (AEs); none were considered serious. No clinically significant abnormalities in vital signs, lung function, haematology, biochemistry, 12-lead electrocardiograms (ECGs) or 24-h Holter ECGs were attributable to the study drug. There were no differences in plasma and urine pharmacokinetics between populations: the plasma area under the concentration-time curve over the dosing interval (from 0 to 24 h for the once-daily drug) [AUC(τ) (ng·h/mL)] and the maximum plasma concentration [C(max) (ng/mL)] ratios (with 90 % confidence intervals [CIs]) following repeat dosing with 500 μg umeclidinium for HVT-PMs (as compared with HVT-NMs) were 1.03 (0.79-1.34) and 0.80 (0.59-1.08), respectively; the cumulative amount of the

  8. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach. (United States)

    Wang, Wenhui; Nunez-Iglesias, Juan; Luan, Yihui; Sun, Fengzhu


    Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  9. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    Directory of Open Access Journals (Sweden)

    Luan Yihui


    Full Text Available Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Conclusion Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  10. Change in Job Strain as a Predictor of Change in Insomnia Symptoms: Analyzing Observational Data as a Non-randomized Pseudo-Trial. (United States)

    Halonen, Jaana I; Lallukka, Tea; Pentti, Jaana; Stenholm, Sari; Rod, Naja H; Virtanen, Marianna; Salo, Paula; Kivimäki, Mika; Vahtera, Jussi


    To examine whether change in job strain leads to change in insomnia symptoms. Among 24873 adults (82% women, mean age 44 years) who participated in a minimum of three consecutive study waves (2000-2012), job strain was assessed at the first and second wave and insomnia symptoms at all three waves. We analyzed observational data as a "pseudo-trial" including participants with no job strain in the first wave and no insomnia symptoms in the first and second wave (n = 7354) to examine whether the onset of job strain between the first and second waves predicted the onset of insomnia symptoms in the third wave. We used a corresponding approach, including those with job strain in the first wave and insomnia symptoms in the first and second wave (n = 2332), to examine whether the disappearance of job strain between the first two waves predicted remission of insomnia symptoms in the third wave. The onset of job strain predicted the onset of subsequent insomnia symptoms after adjustment for sex, age, marital status, education, smoking, physical activity, alcohol consumption, body mass index, and comorbidities (odds ratio compared to no onset of job strain 1.32, 95% CI 1.16-1.51). The disappearance of job strain was associated with lower odds of repeated insomnia symptoms (odds ratio compared to no disappearance of job strain 0.78, 95% CI 0.65-0.94). Further adjustment for shift work or sleep apnea did not change these associations. These results suggest that job strain is a modifiable risk factor for insomnia symptoms.

  11. Change in organizational justice as a predictor of insomnia symptoms: longitudinal study analysing observational data as a non-randomized pseudo-trial. (United States)

    Lallukka, Tea; Halonen, Jaana I; Sivertsen, Børge; Pentti, Jaana; Stenholm, Sari; Virtanen, Marianna; Salo, Paula; Oksanen, Tuula; Elovainio, Marko; Vahtera, Jussi; Kivimäki, Mika


    Despite injustice at the workplace being a potential source of sleep problems, longitudinal evidence remains scarce. We examined whether changes in perceived organizational justice predicted changes in insomnia symptoms. Data on 24 287 Finnish public sector employees (82% women), from three consecutive survey waves between 2000 and 2012, were treated as 'pseudo-trials'. Thus, the analysis of unfavourable changes in organizational justice included participants without insomnia symptoms in Waves 1 and 2, with high organizational justice in Wave 1 and high or low justice in Wave 2 (N = 6307). In the analyses of favourable changes in justice, participants had insomnia symptoms in Waves 1 and 2, low justice in Wave 1 and high or low justice in Wave 2 (N = 2903). In both analyses, the outcome was insomnia symptoms in Wave 3. We used generalized estimating equation models to analyse the data. After adjusting for social and health-related covariates in Wave 1, unfavourable changes in relational organizational justice (i.e. fairness of managerial behaviours) were associated with increased odds of developing insomnia symptoms [odds ratio = 1.15; 95% confidence interval (CI) 1.02-1.30]. A favourable change in relational organizational justice was associated with lower odds of persistent insomnia symptoms (odds ratio = 0.83; 95% CI 0.71-0.96). Changes in procedural justice (i.e. the fairness of decision-making procedures) were not associated with insomnia symptoms. These data suggest that changes in perceived relational justice may affect employees' sleep quality. Decreases in the fairness of managerial behaviours were linked to increases in insomnia symptoms, whereas rises in fairness were associated with reduced insomnia symptoms.

  12. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.


    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  13. Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D

    Directory of Open Access Journals (Sweden)

    . Makhrani


    Full Text Available Penelitian yang berjudul Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D dilakukan dengan tujuan memprediksi model geologi dan mengestimasi parameter-parameter geofisika, menentukan sensitivitas dari konfigurasi Wenner-Schlumberger dan Wenner dalam mendeteksi anomali, membuat Pseudo 3D dari profil 2D serta meningkatkan kemampuan dalam memilih parameter survei  yang optimal  berdasarkan perbandingan kekuatan signal yang diharapkan dan kharakteristik dari bising (noise. Proses pengambilan data dilakukan dengan menggunakan metode geolistrik konfigurasi Wenner-Schlumberger dan konfigurasi Wenner. Pengolahan data geolistrik resistivitas dalam penelitian ini diawali dengan pengolahan data sintetik hasil forward modeling. Data ini dapat dijadikan sebagai data masukan pada perangkat lunak Surfer 9 untuk menggambarkan profil 2D. Seluruh hasil inversi dalam bentuk profil 2D akan digabungkan sehingga menjadi profil pseudo 3D, proses ini akan dilakukan dengan menggunakan perangkat lunak Matlab R2008a. Kedua konfigurasi yang digunakan dalam penelitian ini masing-masing memiliki keunggulan dan kelemahan dalam hal sensitivitas, baik konfigurasi Wenner-Schlumberger maupun konfigurasi Wenner. Meskipun kedua konfigurasi mendeteksi anomali yang dibuat, namun konfigurasi Wenner-Schlumberger lebih menonjolkan anomali, baik pada data sintetik maupun pada hasil pengukuran. Selain itu, pembuatan pseudo 3D dari profil 2D dapat membantu dalam menginterpretasi data pada lintasan yang saling berpotongan.

  14. Quantum Pseudo-Telepathy (United States)

    Brassard, Gilles; Broadbent, Anne; Tapp, Alain


    Quantum information processing is at the crossroads of physics, mathematics and computer science. It is concerned with that we can and cannot do with quantum information that goes beyond the abilities of classical information processing devices. Communication complexity is an area of classical computer science that aims at quantifying the amount of communication necessary to solve distributed computational problems. Quantum communication complexity uses quantum mechanics to reduce the amount of communication that would be classically required. Pseudo-telepathy is a surprising application of quantum information processing to communication complexity. Thanks to entanglement, perhaps the most nonclassical manifestation of quantum mechanics, two or more quantum players can accomplish a distributed task with no need for communication whatsoever, which would be an impossible feat for classical players. After a detailed overview of the principle and purpose of pseudo-telepathy, we present a survey of recent and no-so-recent work on the subject. In particular, we describe and analyse all the pseudo-telepathy games currently known to the authors.

  15. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography (United States)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.


    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.


    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory


    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes and their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.

  17. Photonics of 2D materials (United States)

    Zhang, Han; Wang, Junzhuan; Hasan, Tawfique; Bao, Qiaoliang


    The emergence of graphene and graphene-like two dimensional (2D) materials has attracted a strong interest from the photonics community in recent decade. Apart from zero-gap graphene, insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides and phosphorene/black phosphorus are being intensively investigated because of their fascinating photonic and optoelectronic properties. Compared to traditional bulk photonic materials such as Gallium Arsenide (GaAs) and Silicon (Si), 2D materials exhibit many unique properties important for device applications in nanophotonics. Firstly, quantum confinement in the direction perpendicular to 2D plane leads to novel electronic and optical features that are distinctively different from their bulk counterparts. Secondly, their surfaces are naturally passivated without any dangling bonds making them readily compatible for integration with photonic structures such as waveguides and cavities. It is also possible to construct vertical hetero-structures by using different 2D materials, without considering lattice mismatch issues that are common in bulk semiconductors. This is because the 2D layers with different lattice constants in heterostructures are only weakly bounded by van der Waals force. Thirdly, despite being atomically thin, many 2D materials interact very strongly with light.

  18. Workshop on 2-D transport

    Energy Technology Data Exchange (ETDEWEB)


    A workshop on 1-D and 2-D transport in tokamaks was held at Ithaca, New York on August 2-4, 1978. The purpose of the Workshop was to assess the status of physical models used in transport calculations and to evaluate the maturity of 2-D transport codes in predicting operating parameters of such confinement devices as Alcator, PLT, Doublet III, and TFTR. The Workshop consisted of in-depth discussions of the following topics: status of 1-D codes, problems where 2-D treatment is necessary or useful, status of the treatment of fundamental processes, successful models, boundary and wall effects, 3-D and velocity space effects, and numerical algorithms used in transport codes.

  19. Design of Long Period Pseudo-Random Sequences from the Addition of m -Sequences over 𝔽 p


    Ren Jian


    Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA) communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of m -sequences with pairwise-prime linear spans (AMPLS). Using m -sequences as building blocks, the proposed method proved to...

  20. 2D-Oide effect

    CERN Document Server

    Blanco, O.R.; Bambade, P.


    The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn

  1. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou


    ). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92...... of the method of placing and packing the blocks on the hydraulic stability. The Dolosse were more carefully put on the slope and the hydraulic stability of such slope was compared with that of the more randomly packed slope. The whole experiment was carried out in the period of August - November 1993...

  2. 2d frustrated Ising model with four phases


    Pasquini, M.; Serva, M.


    In this paper we consider a 2d random Ising system on a square lattice with nearest neighbour interactions. The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is admitted. More precisely, the vertical bonds are supposed to be non random while the horizontal bonds alternate: one row of all non random horizontal bonds is followed by one row where they are independent dichotomic random variables. We solve the model using an approximate approach...

  3. Aero Fighter - 2D Gaming


    Ahmed, Zeeshan


    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  4. Comparison of a GPS needle-tracking system, multiplanar imaging and 2D imaging for real-time ultrasound-guided epidural anaesthesia: A randomized, comparative, observer-blinded study on phantoms. (United States)

    Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier


    The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  5. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray


    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  6. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas


    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  7. Estados de pseudo-Cushing


    Romanholi, Daniella J.P.C.; SALGADO, Luiz Roberto


    Síndromes de pseudo-Cushing são um grupo heterogêneo de doenças, incluindo alcoolismo, anorexia nervosa, obesidade visceral e depressão, que compartilham muitas das características clínicas e bioquímicas da síndrome de Cushing. Os mecanismos responsáveis para a gênese da síndrome de pseudo-Cushing são fracamente compreendidos. Tem sido sugerido que o hipercortisolismo da síndrome de pseudo-Cushing pode ser resultante do aumento da secreção do hormônio liberador de corticotrofina (CRH) hipotal...

  8. Introduction to fractional and pseudo-differential equations with singular symbols

    CERN Document Server

    Umarov, Sabir


    The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.

  9. 2D transition metal dichalcogenides (United States)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras


    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  10. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu


    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  11. Exending pseudo-arcs in odd characteristic


    Penttila, Tim; Van de Voorde, Geertrui


    A {\\em pseudo-arc} in $\\mathrm{PG}(3n-1,q)$ is a set of $(n-1)$-spaces such that any three of them span the whole space. A pseudo-arc of size $q^n+1$ is a {\\em pseudo-oval}. If a pseudo-oval $\\mathcal{O}$ is obtained by applying field reduction to a conic in $\\mathrm{PG}(2,q^n)$, then $\\mathcal{O}$ is called a {\\em pseudo-conic}. We first explain the connection of (pseudo-)arcs with Laguerre planes, orthogonal arrays and generalised quadrangles. In particular, we prove that the Ahrens-Szekere...

  12. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    Energy Technology Data Exchange (ETDEWEB)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min [Research Institute of Natural Science and Dept. of Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Moon, Suk Hee [Dept. of Food and Nutrition, Kyungnam College of Information and Technology, Busan (Korea, Republic of)


    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported.

  13. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino


    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  14. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan


    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  15. Towards a 2d QFT analog of the SYK model (United States)

    Turiaci, Gustavo J.; Verlinde, Herman


    We propose a 2D QFT generalization of the Sachdev-Ye-Kitaev model, which we argue preserves most of its features. The UV limit of the model is described by N copies of a topological Ising CFT. The full interacting model exhibits conformal symmetry in the IR and an emergent pseudo-Goldstone mode that arises from broken reparametrization symmetry. We find that the effective action of the Goldstone mode matches with the 3D AdS gravity action, viewed as a functional of the boundary metric. We compute the spectral density and show that the leading deviation from conformal invariance looks like a T\\overline{T} deformation. We comment on the relation between the IR effective action and Liouville CFT.

  16. 2D Organic Materials for Optoelectronic Applications. (United States)

    Yang, Fangxu; Cheng, Shanshan; Zhang, Xiaotao; Ren, Xiaochen; Li, Rongjin; Dong, Huanli; Hu, Wenping


    The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D-materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self-assembly monolayers, and covalent organic frameworks. The protocols for 2D-organic-crystal-fabrication and -patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han


    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  18. 2D Barcode for DNA Encoding

    CERN Document Server

    Purcaru, Elena


    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  19. Hidden chromosome symmetry: in silico transformation reveals symmetry in 2D DNA walk trajectories of 671 chromosomes.

    Directory of Open Access Journals (Sweden)

    Maria S Poptsova

    Full Text Available Maps of 2D DNA walk of 671 examined chromosomes show composition complexity change from symmetrical half-turn in bacteria to pseudo-random trajectories in archaea, fungi and humans. In silico transformation of gene order and strand position returns most of the analyzed chromosomes to a symmetrical bacterial-like state with one transition point. The transformed chromosomal sequences also reveal remarkable segmental compositional symmetry between regions from different strands located equidistantly from the transition point. Despite extensive chromosome rearrangement the relation of gene numbers on opposite strands for chromosomes of different taxa varies in narrow limits around unity with Pearson coefficient r = 0.98. Similar relation is observed for total genes' length (r = 0.86 and cumulative GC (r = 0.95 and AT (r = 0.97 skews. This is also true for human coding sequences (CDS, which comprise only several percent of the entire chromosome length. We found that frequency distributions of the length of gene clusters, continuously located on the same strand, have close values for both strands. Eukaryotic gene distribution is believed to be non-random. Contribution of different subsystems to the noted symmetries and distributions, and evolutionary aspects of symmetry are discussed.

  20. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M


    Full Text Available This chapter briefly outlines a few mathematical techniques to track targets in 3D using a 2D radar. 2D radars are relatively cheap and efficient sensors that often form the first line of defence in airspace control. In military applications...

  1. Resistivity inversion in 2-D anisotropic media: numerical experiments (United States)

    Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent


    Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.

  2. Progress in 2D semiconductor optoelectronics (United States)

    Majumdar, Arka; Fryett, Taylor; Liu, Chang-Hua; Zheng, Jiajiu; Wu, Sanfeng; Rivera, Pasqual; Syler, Kyle; Clark, Genevieve; Xu, Xiaodong


    2D semiconductors have recently emerged as promising optoelectronic materials, with high quantum efficiency of photoemission, absorption and nonlinear optical properties. With significant progress in understanding the material science of these atomically thin materials, and building devices with stand-alone monolayer materials, it is an opportune time to integrate these materials with existing optoelectronic platform to realize the full potential of the 2D materials. Here, we highlight our recent progress in 2D semiconductor integrated with nanophotonic resonators. Specifically, we report the operation of an optically pumped laser, cavity enhanced electroluminescence and cavity enhanced second harmonic generation.

  3. Pseudo-complex general relativity

    CERN Document Server

    Hess, Peter O; Greiner, Walter


    This volume presents an pseudo-complex extension of General Relativity which addresses these issues and presents proposals for experimental examinations in strong fields near a large mass. General Relativity is a beautiful and well tested theory of gravitation. Nevertheless, it implies conceptual problems like the creation of singularities (Black Holes) as a result of the collapse of large masses, or the appearance of event horizons which exclude parts of the space-time from the observation of external observers. The mathematical and geometrical foundations of this extension are displayed in detail, and applications including orbits and accretion disks around large central masses, neutron stars or cosmological models are introduced. Calculations both for classical and extended applications are often executed in the form of problems with extensive solutions, which makes this volume also a valuable resource for any student of General Relativity.

  4. Acroangiodermatitis (Pseudo-Kaposi sarcoma

    Directory of Open Access Journals (Sweden)

    Satyendra Kumar Singh


    Full Text Available Acroangiodermatitis or Pseudo-Kaposi sarcoma is a rare angioproliferative entity, related to chronic venous insufficiency or certain other vascular anomalies. It is often associated with chronic venous insufficiency, arteriovenous malformation of the legs, chronic renal failure treated with dialysis, paralyzed legs and amputation stumps. We hereby describe a case of 45 year old female presenting with pitting pedal edema, multiple ulcers over bilateral lower limbs with irregular margins with erythema and hyperpigmentation of the surrounding skin. Color Doppler study of bilateral lower limbs was normal. Histopathological examination from one of the lesions showed hyperplastic epidermis, proliferation of capillaries in dermis, hemosiderin deposits and lymphocytic infiltrate. These features thus confirmed the diagnosis of Acroangiodermatitis.

  5. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær


    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  6. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward


    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.


    African Journals Online (AJOL)


    ABSTRACT. The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es ...

  8. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  9. Subadditive functions and their (pseudo-)inverses

    DEFF Research Database (Denmark)

    Østerdal, Lars Peter


    The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses......The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses...

  10. Pseudo-Haptic Feedback in Teleoperation. (United States)

    Neupert, Carsten; Matich, Sebastian; Scherping, Nick; Kupnik, Mario; Werthschutzky, Roland; Hatzfeld, Christian


    In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.

  11. Recovering 3D Particle Size Distributions from 2D Sections (United States)

    Cuzzi, Jeffrey N.; Olson, Daniel A.


    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible and practical method to do this, show which of these techniques gives the most faithful conversions, and provide (online) short computer codes to calculate both 2D- 3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter. Proper determination of particle size distributions in chondrites - for chondrules, CAIs, and metalgrains - is of basic importance for assessing the processes of formation and/or of accretion of theseparticles into their parent bodies. To date, most information of this sort is gathered from 2D samplescut from a rock such as in microscopic analysis of thin sections, or SEM maps of planar surfaces(Dodd 1976, Hughes 1978a,b; Rubin and Keil 1984, Rubin and Grossman 1987, Grossman et al1988, Rubin 1989, Metzler et al 1992, Kuebler et al 1999, Nelson and Rubin 2002, Schneider et al 2003, Hezel et al 2008; Fisher et al 2014; for an exhaustive review with numerous references seeFriedrich et al 2014). While qualitative discrimination between chondrite types can readily be doneusing data of this sort, any deeper exploration of the processes by which chondrite constituents werecreated or emplaced into their parent requires a more quantitative approach.

  12. Preliminary 2D numerical modeling of common granular problems (United States)

    Wyser, Emmanuel; Jaboyedoff, Michel


    Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical

  13. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS


    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  14. Pseudo-periodic partitions of biological sequences. (United States)

    Li, Lugang; Jin, Renchao; Kok, Poh-Lin; Wan, Honghui


    Algorithm development for finding typical patterns in sequences, especially multiple pseudo-repeats (pseudo-periodic regions), is at the core of many problems arising in biological sequence and structure analysis. In fact, one of the most significant features of biological sequences is their high quasi-repetitiveness. Variation in the quasi-repetitiveness of genomic and proteomic texts demonstrates the presence and density of different biologically important information. It is very important to develop sensitive automatic computational methods for the identification of pseudo-periodic regions of sequences through which we can infer, describe and understand biological properties, and seek precise molecular details of biological structures, dynamics, interactions and evolution. We develop a novel, powerful computational tool for partitioning a sequence to pseudo-periodic regions. The pseudo-periodic partition is defined as a partition, which intuitively has the minimal bias to some perfect-periodic partition of the sequence based on the evolutionary distance. We devise a quadratic time and space algorithm for detecting a pseudo-periodic partition for a given sequence, which actually corresponds to the shortest path in the main diagonal of the directed (acyclic) weighted graph constructed by the Smith-Waterman self-alignment of the sequence. We use several typical examples to demonstrate the utilization of our algorithm and software system in detecting functional or structural domains and regions of proteins. A big advantage of our software program is that there is a parameter, the granularity factor, associated with it and we can freely choose a biological sequence family as a training set to determine the best parameter. In general, we choose all repeats (including many pseudo-repeats) in the SWISS-PROT amino acid sequence database as a typical training set. We show that the granularity factor is 0.52 and the average agreement accuracy of pseudo-periodic partitions

  15. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele


    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  16. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu


    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular waveguide...

  17. Synthesis and Characterization of 2-D Materials (United States)

    Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.

    Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.

  18. The 2D κ-Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiano M., E-mail: [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, Edilberto O., E-mail: [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil)


    In this Letter, 2D Dirac oscillator in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra is considered. The problem is formulated using the κ-deformed Dirac equation. The resulting theory reveals that the energies and wave functions of the oscillator are modified by the deformation parameter.


    African Journals Online (AJOL)


    1 D. E. Manolakis. Efficient solution and performance analysis of 3-d position estimation by trilateration. IEEE Transactions on Aerospace and Electronic Systems, volume 32(4), pages 1239–1248, October 1996. 2 D. E. Manolakis. Aircraft vertical profile prediction based on surveillance data only. IEE Proceedings on Radar, ...

  20. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H


    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  1. Hybridized Plasmons in 2D Nano-slits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Dias Gonçalves, Paulo André; Xiao, Sanshui; Peres, N. M. R.


    plasmonic resonances arising from symmetric and antisymmetric hybridizations of the edge plasmons of the constituent half-sheets. These give rise to an antibonding and a bonding mode, lying above and below the energy of the bare edge plasmon. Our treatment is notably generic, being able to account for slits...... of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions....... We also discuss the plasmonic spectrum of a 2D slit together with the one from its complementarity structure, that is, a ribbon. Finally, the case of a nanoslit made from an anisotropic 2D material is considered. Focusing on black phosphorus (which is highly anisotropic), we investigate the features...

  2. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Dias Gonçalves, Paulo André; Xiao, Sanshui; Peres, N. M. R.


    plasmonic resonances arising from symmetric and antisymmetric hybridizations of the edge plasmons of the constituent half-sheets. These give rise to an antibonding and a bonding mode, lying above and below the energy of the bare edge plasmon. Our treatment is notably generic, being able to account for slits...... of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions....... We also discuss the plasmonic spectrum of a 2D slit together with the one from its complementarity structure, that is, a ribbon. Finally, the case of a nanoslit made from an anisotropic 2D material is considered. Focusing on black phosphorus (which is highly anisotropic), we investigate the features...

  3. Families of quasi-pseudo-metrics generated by probabilistic quasi-pseudo-metric spaces

    Directory of Open Access Journals (Sweden)

    Mariusz T. Grabiec


    Full Text Available This paper contains a study of families of quasi-pseudo-metrics (the concept of a quasi-pseudo-metric was introduced by Wilson (1931 , Albert (1941 and Kelly (1963 generated by probabilistic quasi-pseudo-metric-spaces which are generalization of probabilistic metric space (PM-space shortly [2, 3, 4, 6]. The idea of PM-spaces was introduced by Menger (1942, 1951, Schweizer and Sklar (1983 and Serstnev (1965. Families of pseudo-metrics generated by PM-spaces and those generalizing PM-spaces have been described by Stevens (1968 and Nishiure (1970.

  4. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova


    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  5. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr


    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  6. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology. (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr


    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  7. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)


    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  8. Bedform characterization through 2D spectral analysis

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian


    energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...... morphological regions. The most energetic peak and the slope and yintercept of the power-law showed high values above the crest of the primary bedforms and scour holes, low values in areas without bedforms, and intermediate values in areas with secondary bedforms. The secondary bedform dimensions...... for morphological classification of the seabed and for bedform characterization, being most efficient in areas characterized by bedforms with regular dimensions and directions....

  9. Quasiparticle interference in unconventional 2D systems (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui


    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  10. 2D Metals by Repeated Size Reduction. (United States)

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui


    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Numerical Evaluation of 2D Ground States

    Directory of Open Access Journals (Sweden)

    Kolkovska Natalia


    The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10–11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  12. Gluon Amplitudes as 2d Conformal Correlators


    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew


    Recently, spin-one wavefunctions in four dimensions that are conformal primaries of the Lorentz group SL(2,C) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wavefunctions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2d CFT. The BCFW recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  13. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien


    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  14. Pseudo-capacitor device for aqueous electrolytes (United States)

    Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.


    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and Opseudo-capacitance, affords high energy/power density in the pseudo-capacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity. 8 figs.

  15. Aerodynamics of the pseudo-glottis. (United States)

    Kotby, M N; Hegazi, M A; Kamal, I; Gamal El Dien, N; Nassar, J


    The aim of this work is to study the hitherto unclear aerodynamic parameters of the pseudo-glottis following total laryngectomy. These parameters include airflow rate, sub-pseudo-glottic pressure (SubPsG), efficiency and resistance, as well as sound pressure level (SPL). Eighteen male patients who have undergone total laryngectomy, with an age range from 54 to 72 years, were investigated in this study. All tested patients were fluent esophageal 'voice' speakers utilizing tracheo-esophageal prosthesis. The airflow rate, SubPsG and SPL were measured. The results showed that the mean value of the airflow rate was 53 ml/s, the SubPsG pressure was 13 cm H(2)O, while the SPL was 66 dB. The normative data obtained from the true glottis in healthy age-matched subjects are 89 ml/s, 7.9 cm H(2)O and 70 dB, respectively. Other aerodynamic indices were calculated and compared to the data obtained from the true glottis. Such a comparison of the pseudo-glottic aerodynamic data to the data of the true glottis gives an insight into the mechanism of action of the pseudo-glottis. The data obtained suggests possible clinical applications in pseudo-voice training. Copyright 2009 S. Karger AG, Basel.


    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory


    Belief Propagation (BP) and Linear Programming (LP) decodings of LDPC codes are discussed. The authors summarize results of instanton/pseudo-codeword approach developed for analysis of the error-floor domain of the codes. Instantons are special, code and decoding specific, configurations of the channel noise contributing most to the Frame-Error-Rate (FER). Instantons are decoded into pseudo-codewords. Instanton/pseudo-codeword with the lowest weight describes the largest Signal-to-Noise-Ratio (SNR) asymptotic of FER, while the whole spectra of the low weight instantons is descriptive of the FER vs. SNR profile in the extended error-floor domain. First, they describe a general optimization method that allows to find the instantons for any coding/decoding. Second, they introduce LP-specific pseudo-codeword search algorithm that allows efficient calculations of the pseudo-codeword spectra. Finally, they discuss results of combined BP/LP error-floor exploration experiments for two mode codes.

  17. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.


    Plasmon coupling and hybridization in complex nanostructures constitutes a fertile playground for controlling light at the nanoscale. Here, we present a semi-analytical model to describe the emergence of hybrid plasmon modes guided along 2D nanoslits. In particular, we find two new coupled...... plasmonic resonances arising from symmetric and antisymmetric hybridizations of the edge plasmons of the constituent half-sheets. These give rise to an antibonding and a bonding mode, lying above and below the energy of the bare edge plasmon. Our treatment is notably generic, being able to account for slits...... of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  18. GBL-2D Version 1.0: a 2D geometry boolean library.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)


    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  19. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions (United States)

    Piquemal-Banci, Maëlis; Galceran, Regina; Martin, Marie-Blandine; Godel, Florian; Anane, Abdelmadjid; Petroff, Frederic; Dlubak, Bruno; Seneor, Pierre


    This review focuses on the recent experimental integration of 2D materials, mostly graphene but also h-BN and dichalochogenides, such as MoS2 and WS2, in magnetic tunnel junctions. The main remarkable characteristic of 2D materials is the ability to gain high homogeneous atomic control over their thickness, as this is barely achievable with the usual 3D materials deposited through conventional physical vapour deposition (PVD) growth techniques. This could become a critical asset for spintronics with regard to the fabrication of spin valves, where ultra-thin layers with extreme control are targeted, especially for spin-polarized electron tunnelling. A complete overview of the state of the art is presented, and the different integrative pathways of 2D materials with ferromagnets are addressed, including the exfoliation of 2D flakes from crystals, the wet transfer steps of large scale layers, and direct chemical vapour deposition (CVD) growths catalysed on ferromagnetic electrodes. Interestingly, these recent experiments have already highlighted some novel properties that emanate from 2D-based heterostructures, such as passivation against oxidation diffusion and augmented spin filtering at the interface. Many perspectives are thus being opened up in the exploration of the vast amount of 2D material families and their association in heterostructures, targeting specific spin device properties.

  20. 10Gbps 2D MGC OCDMA Code over FSO Communication System (United States)

    Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student


    Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.

  1. Potential for Increasing Soil Nutrient Availability via Soil Organic Matter Improvement Using Pseudo Panel Data

    NARCIS (Netherlands)

    Chavez Clemente, M.D.; Berentsen, P.B.M.; Oenema, O.; Oude Lansink, A.G.J.M.


    Fixed and random effect models were applied to a pseudo-panel data built of soil analysis reports from tobacco farms to analyze relationships between soil characteristics like soil organic matter (SOM) and soil nitrogen (N), phosphorous (P) and potassium (K) and to explore the potential for

  2. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan


    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  3. SDLgolf: videojuego de golf en 2D


    Francisco Aparicio, Andrés


    El objetivo principal del proyecto es el desarrollo de un videojuego de código fuente abierto usando herramientas y recursos exclusivamente libres. Dado que actualmente no existe ningún juego de golf en 2D para sistemas Linux, decidí llevar a cabo SDLgolf, un juego de género deportivo, subgénero arcade6 , de tipo multi-jugador, diseño bidimensional y destinado a jugadores casuales. El juego ha sido desarrollado en el lenguaje de programación orientado a objetos C++, empleándose principa...

  4. Discovery of 2D Anisotropic Dirac Cones. (United States)

    Feng, Baojie; Zhang, Jin; Ito, Suguru; Arita, Masashi; Cheng, Cai; Chen, Lan; Wu, Kehui; Komori, Fumio; Sugino, Osamu; Miyamoto, Koji; Okuda, Taichi; Meng, Sheng; Matsuda, Iwao


    2D anisotropic Dirac cones are observed in χ3 borophene, a monolayer boron sheet, using high-resolution angle-resolved photoemission spectroscopy. The Dirac cones are centered at the X and X' points. The data also reveal that the hybridization between borophene and Ag(111) is very weak, which explains the preservation of the Dirac cones. As χ3 borophene has been predicated to be a superconductor, the results may stimulate further research interest in the novel physics of borophene, such as the interplay between Cooper pairs and the massless Dirac fermions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Periodically sheared 2D Yukawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Anikó Zsuzsa [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Hartmann, Peter [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798 (United States); Donkó, Zoltán [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Physics Department, Boston College, Chestnut Hill, Massachusetts 20467 (United States)


    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  6. ESR in 2D triangular chromium lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hemmida, M; Nidda, H-A Krug von; Loidl, A, E-mail: mhemmida@yahoo.d [Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg (Germany)


    The spin dynamics in some two-dimensional (2D) triangular Cr-antiferromagnetic frustrated lattices, i.e. HCrO{sub 2}, LiCrO{sub 2}, and NaCrO{sub 2} with ordered rock-salt structure as well as the delafossite compounds CuCrO{sub 2} and AgCrO{sub 2}, has been investigated by Electron Spin Resonance (ESR). On approaching the Neel temperature T{sub N} from above, the divergence of the temperature dependent linewidth is well described in terms of a Berezinskii-Kosterlitz-Thouless (BKT) like scenario due to magnetic vortex-antivortex pairing.

  7. Pseudo exchange bias due to rotational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, A., E-mail: [Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld (Germany); Komraus, S.; Blachowicz, T.; Domino, K. [Institute of Physics – Center for Science and Education, Silesian University of Technology, 44-100 Gliwice (Poland); Nees, M.K.; Jakobs, P.J.; Leiste, H. [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Mathes, M.; Schaarschmidt, M. [ACCESS e. V., 57072 Aachen (Germany)


    Ferromagnetic nanostructure arrays with particle dimensions between 160 nm and 400 nm were created by electron-beam lithography. The permalloy structures consist of rectangular-shaped walls around a square open space. While measuring their magnetic properties using the Magneto-Optical Kerr Effect (MOKE), in some angular regions an exchange bias (EB) seemed to appear. This paper gives an overview of possible reasons for this “pseudo exchange bias” and shows experimentally and by means of micromagnetic simulations that this effect can be attributed to unintentionally measuring minor loops. - Highlights: • Pseudo exchange bias can be found in square Py nanorings of different dimensions. • Pseudo exchange bias stems from unintentionally measuring minor loops. • New approach in explaining “real” exchange bias effect in coupled FM/AFM systems. • Theoretical base to explain other measurements of a rotational anisotropy.

  8. A pseudo-matched filter for chaos


    Cohen, Seth D.; Gauthier, Daniel J.


    A matched filter maximizes the signal-to-noise ratio of a signal. In the recent work of Corron et al. [Chaos 20, 023123 (2010)], a matched filter is derived for the chaotic waveforms produced by a piecewise-linear system. Motivated by these results, we describe a pseudo-matched filter, which removes noise from the same chaotic signal. It consists of a notch filter followed by a first-order, low-pass filter. We compare quantitatively the matched filter's performance to that of our pseudo-match...

  9. A case of Pseudo-Bartter syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Choi, Bo Whan; Lee, Yul; Chung, Soo Young [College of Medicine, Hallym University, Seoul (Korea, Republic of)


    Pseudo-Bartter Syndrome is a rare medical disease of the kidney characterized by normal blood pressure, hypokalemic metabolic alkalosis, hyperreninemia and hyperaldosteronism with drug history of diuretics. We report US, CT and MRI findings of a patients with clinically proved Pseudo-Bartter syndrome. The patient was a 37 year old woman with a history of long term ingestion of the diuretics(furosemide) for 20 years. Renal US revealed hyperechoic renal medulla at both kidneys. The resistive index(RI), calculated from the duplex doppler waveform is 0.61. Unenhanced CT revealed faint high attenuation along the medulla. T1-weighted MRI revealed indistinct corticomedullary differentiation.

  10. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng


    Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.

  11. Is 'bosonic matter' unstable in 2D?

    CERN Document Server

    Manoukian, E B


    An upper bound is derived for the exact ground-state energy in 2D, E sub N <= -(me sup 4 /2 h-bar sup 2)(N sup 3 sup / sup 2 /50 pi sup 2), of 'bosonic matter' consisting of N positive and N negative charges with Coulombic interactions. This is to be compared with the classic N sup 7 sup / sup 5 3D-law of Dyson and gives rise to a more 'violent' collapse of such matter in 2D for large N. The derivation is based on a rigorous analysis which, in the process, controls the negative part of the Hamiltonian over its positive kinetic energy part and detailed estimates needed for counting trial wavefunctions of arbitrary states. A formal dimensional analysis in the style of Dyson alone shows, in arbitrary dimensions of space d = 1, 2, ..., that E sub N approx = -(me sup 4 /2 h-bar sup 2)C sub d N suprho, rho = (d + 4)/(d + 2), where C sub d is a positive constant depending on d, consistent with our rigorous bound, and we are led to conjecture that 'bosonic matter' is unstable in all dimensions.

  12. Gas sensing in 2D materials (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai


    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  13. 3D/2D Registration of medical images

    NARCIS (Netherlands)

    Tomaževič, D.


    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D

  14. Some Properties of Weighted Pseudo almost Periodic Functions

    Directory of Open Access Journals (Sweden)

    Zhe-Ming Zheng


    Full Text Available Several interesting and new properties of weighted pseudo almost periodic functions are established. Firstly, we obtain an equivalent definition for weighted pseudo almost periodic functions, which shows a close relationship between asymptotically almost periodic functions and weighted pseudo almost periodic functions; secondly, we prove that the space of asymptotically almost periodic functions is always a proper subspace of the space of weighted pseudo almost periodic functions; thirdly, we show that under some cases, the space of weighted pseudo almost periodic functions equals the classical space of pseudo almost periodic functions.

  15. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm


    using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...

  16. Pseudo--Normals for Signed Distance Computation

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Bærentzen, Jakob Andreas


    undertake showing that the angle weighted pseudo--normal has an important property, namely that it allows us to discriminate between points that are inside and points that are outside the mesh. This result is used for proposing a simple and efficient algorithm for computing the signed distance field from...


    African Journals Online (AJOL)


    coastal waters of the Western Indian Ocean has been reported before (Bryceson ... Ocean. There is however no study, which has analyzed the seasonal distribution of. Pseudo-nitzschia species along the. Tanzanian coastal waters as well as factors regulating such ... cleaned plastic vials and immediately kept cool on ice for ...

  18. A pseudo-matched filter for chaos. (United States)

    Cohen, Seth D; Gauthier, Daniel J


    A matched filter maximizes the signal-to-noise ratio of a signal. In the recent work of Corron et al. [Chaos 20, 023123 (2010)], a matched filter is derived for the chaotic waveforms produced by a piecewise-linear system. This system produces a readily available binary symbolic dynamics that can be used to perform correlations in the presence of large amounts of noise using the matched filter. Motivated by these results, we describe a pseudo-matched filter, which operates similarly to the original matched filter. It consists of a notch filter followed by a first-order, low-pass filter. We compare quantitatively the matched filter's performance to that of our pseudo-matched filter using correlation functions. On average, the pseudo-matched filter performs with a correlation signal-to-noise ratio that is 2.0 dB below that of the matched filter. Our pseudo-matched filter, though somewhat inferior in comparison to the matched filter, is easily realizable at high speed (>1 GHz) for potential radar applications.

  19. Pseudo-Canonical Formulae are Classical

    Directory of Open Access Journals (Sweden)

    Caminati Marco B.


    Full Text Available An original result about Hilbert Positive Propositional Calculus introduced in [11] is proven. That is, it is shown that the pseudo-canonical formulae of that calculus (and hence also the canonical ones, see [17] are a subset of the classical tautologies.

  20. Pseudo-observations in survival analysis

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Perme, Maja Pohar


    -state models, e.g. the competing risks cumulative incidence function. Graphical and numerical methods for assessing goodness-of-fit for hazard regression models and for the Fine-Gray model in competing risks studies based on pseudo-observations are also reviewed. Sensitivity to covariate-dependent censoring...... is studied. The methods are illustrated using a data set from bone marrow transplantation....

  1. Metrology for graphene and 2D materials (United States)

    Pollard, Andrew J.


    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  2. 2D CFT partition functions at late times (United States)

    Dyer, Ethan; Gur-Ari, Guy


    We consider the late time behavior of the analytically continued partition function Z( β + it) Z( β - it) in holographic 2 d CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic 2 d CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss gravitationally-motivated integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-perturbative saddles.

  3. 3D surface configuration modulates 2D symmetry detection. (United States)

    Chen, Chien-Chung; Sio, Lok-Teng


    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Connectivity, formation factor and permeability of 2D fracture network (United States)

    Tang, Y. B.; Li, M.; Li, X. F.


    The purpose of this paper is to investigate the effects of fracture connectivity and length distributions on the electrical formation factor, F, of random fracture network using percolation theory. We assumed that the matrix was homogeneous and low-permeable, but the connectivity and length distributions of fracture system were randomly variable. F of fracture network is analyzed via finite element method. The main result is that: different from the classical percolation ;universal; power law for porous-type rocks, F of fracture network obeys a normalized ;universal; scaling relation using the length-scale / L ( is fracture mean length, and L is the domain size). Our proposed formation factor model, derived from the normalized ;universal; scaling relationship, is valid in fracture network with constant fracture length and length distributions, showing that the normalized ;universal; scaling law is independent of fracture patterns. The normalized scaling relation is also successfully used to derive the permeability model of 2D random fracture network using the previously published dataset, which obtained better fitting results than before.

  5. Information Encoding on a Pseudo Random Noise Radar Waveform (United States)


    antenna under test AWG arbitrary waveform generator AWGN additive white Gaussian noise BPSK binary phase shift keying CDMA code division multiple...focused on the orthogonal frequency-division multiplexing (OFDM) and code division multiple access ( CDMA ) waveforms. The Ohio State University has...components into a single unit allows for a more mobile compact platform. The plan is diagrammed in Figure 3.5. Figure 3.5: Planned modifications to

  6. A new inversion method for (T2, D) 2D NMR logging and fluid typing (United States)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan


    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  7. Primary palpebral and orbital ossification in pseudo-pseudohypoparathyroidism

    DEFF Research Database (Denmark)

    Klauber, S.; Heegaard, S.; Prause, J.U.


    ophthalmology, Albright's heriditary osteodystrophy, ossification, pseudo-pseudohypoparathyroidism, pseodohypoparathyroidism, hypothyroidism, GNAS1 gene, history, eyelid, orbit......ophthalmology, Albright's heriditary osteodystrophy, ossification, pseudo-pseudohypoparathyroidism, pseodohypoparathyroidism, hypothyroidism, GNAS1 gene, history, eyelid, orbit...

  8. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    National Research Council Canada - National Science Library

    Hu, Yan; Chua, Daniel H C


    ...) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers...

  9. Combined Numerical-Statistical Analyses of Damage and Failure of 2D and 3D Mesoscale Heterogeneous Concrete

    National Research Council Canada - National Science Library

    Wang, Xiaofeng; Jivkov, Andrey P


      Generation and packing algorithms are developed to create models of mesoscale heterogeneous concrete with randomly distributed elliptical/polygonal aggregates and circular/elliptical voids in two dimensions (2D...


    Directory of Open Access Journals (Sweden)

    Tri Hidayatul Ahmad Ismail


    Full Text Available Multimedia Animation is an attempt to make a live presentation of static or moving, the animation may consist of images and music to blend together and become alive. In this case Multimedia Animation designed by using multimedia-based information technology. From year to year Multimedia Animation Film Animation shaped more advanced, both in coloring, and in concep movement. With the community Animation Film spoiled by progress dazzling animation creation. Later in the era of globalization in Indonesia's population penetration rate can be calculated very rapidly. So the authors designed an Animated Film to Family Planning Counseling to promote family planning in the community.Data collection methods used to make this application is the method of interview and literature study. For the development of the system in this paper by using development techniques Luther systems development models - Sutopo which consists of six stages: concept, design, collecting materials, assembly, testing and distribution. The results of this study are 2D Animation Film as a medium of socialization to Family Planning Department with extension. Avi and will be distributed via CD media and aired on Social Media such as Facebook, Twitter and YouTube. This animation movie aims to be one choice as the media reduces the increase in the number of residents is too drastic. Keywords: movies, animation, family planning, Luther-Sutopo

  11. Intense Terahertz Sources for 2D Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov

    /cm. In agreement with the MD II simulations, a bleaching of the 1.4 THz is observed for the highest field strengths in a 1D spectroscopy configuration. Phonon coupling in sucrose is investigated with a 2D spectroscopy experiment based on a DSTMS and a DAST source, for which a new chopper scheme is presented...... in a molecular dynamics (MD) simulation. With this THz induced nonlinear responses and mode couplings in CsI and sucrose are investigated for increasing field strengths, and it is found that these occur for sucrose when the field strength is in the MV/cm range. THz sources based on LiNbO3, DAST, DSTMS and 2...... radiation emitted from a 2-color air plasma has a conical beam profile. With the beam profiles measured through a focal plane, this has been reconstructed in 3D showing that the beam collapses to a single spot in focus. Besides the off-axis THz radiation, a weak on-axis forward propagating mode has been...

  12. Analysis list: Kmt2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9,

  13. Analysis list: KMT2D [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available KMT2D Blood,Digestive tract + hg19,

  14. Wavefield extrapolation in pseudo-depth domain

    KAUST Repository

    Ma, Xuxin


    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  15. Pseudo-differential operators and generalized functions

    CERN Document Server

    Toft, Joachim


    This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.

  16. Inflation and pseudo-Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Sannino, Francesco; Tenkanen, Tommi


    We consider inflation within a model framework where the Higgs boson arises as a pseudo-Goldstone boson associated with the breaking of a global symmetry at a scale significantly larger than the electroweak one. We show that in such a model the scalar self-couplings can be parametrically suppressed...... field. Our model therefore suggests that inflation and low energy particle phenomenology may be more entwined than assumed so far....

  17. A 2-D model of wheelchair propulsion. (United States)

    Morrow, D A; Guo, L Y; Zhao, K D; Su, F C; An, K N

    To illustrate the potential benefits of kinetic and kinematic models in the exploration of biomechanical studies as illustrated using a simple 2-D static optimization model of wheelchair propulsion. A four-bar linkage analysis was used to determine sagittal plane motion through the range of wheelchair propulsion. Using anthropometric measures of wheelchair users, this analysis determined the angles of shoulder and elbow flexion/extension at a given point in the propulsion cycle. Maximal strength inputs for the model were collected from isokinetic measurements of shoulder and elbow moments. The torque inputs were given as functions of sagittal plane joint angles. Through selection of appropriate model performance criteria, optimization techniques determined shoulder and elbow torque contributions throughout the propulsion cycle. Variations in the model parameters of anterior-posterior (AP) seat position and handrim size went used to show potential of model to evaluate wheelchair configuration using the performance criteria of propulsive moment (Mo) and efficiency as defined by fractional effective force (FEF). The model was able to predict the magnitude and direction of force applied to the handrim from shoulder and elbow moments. These joint moments may be examined along with the generated wheelchair axle propulsion moment. While the model showed no significant changes in either Mo or FEF for AP seat changes, an increase in handrim size was shown to increase FEF. This model was able to simulate wheelchair propulsion and allow for performance analyses. The open nature of the model allowed for tweaking of the kinematic inputs to examine the sensitivity of such factors as seat position and handrim size in wheelchair propulsion. Strength inputs to the model may also be altered to study the potential effects of strength training or muscle weakness.

  18. Efficient Boundary Extraction from Orthogonal Pseudo-Polytopes: An Approach Based on the D-EVM

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila


    Full Text Available This work is devoted to contribute with two algorithms for performing, in an efficient way, connected components labeling and boundary extraction from orthogonal pseudo-polytopes. The proposals are specified in terms of the extreme vertices model in the -dimensional space (D-EVM. An overview of the model is presented, considering aspects such as its fundamentals and basic algorithms. The temporal efficiency of the two proposed algorithms is sustained in empirical way and by taking into account both lower dimensional cases (2D and 3D and higher-dimensional cases (4D and 5D.

  19. 2D discrete Fourier transform on sliding windows. (United States)

    Park, Chun-Su


    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  20. Random Numbers and Quantum Computers (United States)

    McCartney, Mark; Glass, David


    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  1. Finite state models of constrained 2d data

    DEFF Research Database (Denmark)

    Justesen, Jørn


    This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....

  2. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.


    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  3. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin


    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  4. Extended families of 2D arrays with near optimal auto and low cross-correlation (United States)

    Svalbe, I. D.; Tirkel, A. Z.


    Families of 2D arrays can be constructed where each array has perfect autocorrelation, and the cross-correlation between any pair of family members is optimally low. We exploit equivalent Hadamard matrices to construct many families of p p × p arrays, where p is any 4k-1 prime. From these families, we assemble extended families of arrays with members that exhibit perfect autocorrelation and next-to-optimally low cross-correlation. Pseudo-Hadamard matrices are used to construct extended families using p = 4k + 1 primes. An optimal family of 31 31 × 31 perfect arrays can provide copyright protection to uniquely stamp a robust, low-visibility watermark within every frame of each second of high-definition, 30 fps video. The extended families permit the embedding of many more perfect watermarks that have next-to-minimal cross-correlations.

  5. 3D/2D Registration of medical images


    Tomaževič, D.


    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  6. A Note on a Tree-Based 2D Indexing (United States)

    Žd'Árek, Jan; Melichar, Bořivoj

    A new approach to the 2D pattern matching and specifically to 2D text indexing is proposed. We present the transformation of 2D structures into the form of a tree, preserving the context of each element of the structure. The tree can be linearised using the prefix notation into the form of a text (a string) and we do the pattern matching in this text. Over this representation pushdown automata indexing the 2D text are constructed. They allow to search for 2D prefixes, suffixes, or factors of the 2D text in time proportional to the size of the representation of a 2D pattern. This result achieves the properties analogous to the results obtained in tree pattern matching and string indexing.

  7. Piezoelectricity of 2D nanomaterials: characterization, properties, and applications (United States)

    Zhang, Jin; Meguid, S. A.


    The discovery of piezoelectricity in 2D nanomaterials represents a milestone towards embedding low-dimensional materials into future technologies. This article reviews recent progress in the characterization, properties evaluation, and applications of piezoelectricity of 2D piezoelectric nanomaterials (PNs). To begin, an introduction to the existing 2D PNs, which exhibit a wide range of atomic structures and configurations, is presented. The nanoscale measurements and associated experimental techniques as well as the atomic simulations of the piezoelectric properties of 2D PNs are then summarized. Some of the pertinent parameters, which govern the piezoelectric properties of 2D PNs, are discussed. Furthermore, our article concludes with some potential applications including piezotronics, piezophototronics, and energy harvesting of 2D PNs, which can open the doors to the innovative design of next-generation nanoelectronics and nanodevices. Finally, we highlight perspectives and challenges for the future development of 2D PNs.

  8. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel


    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  9. Bladder rupture causing pseudo acute renal failure

    Directory of Open Access Journals (Sweden)

    Luciana Andrea Avena Smeili


    Full Text Available Bladder rupture is a rare condition associated with significant morbidityand mortality. It is classified into traumatic, nontraumatic or idiopathic andspontaneous. The nonspecific initial clinical presentation is followed bydiscomfort in the lower abdomen, oliguria, hematuria and ascitis. Laboratoryabnormalities simulate the picture of acute renal failure and occurs by amechanism called auto reverse dialysis, with absorption of excreta throughthe peritoneal membrane. The authors describe a case of bladder rupturein morphologically and functionally normal urinary bladder associated withalcohol intake in young healthy man, manifested by abdominal discomfort,pseudo renal failure and massive ascitis. The diagnosis was made by anabdominal multidetector computed tomography confirmed by the finding of7 cm laceration at laparotomy.

  10. Pseudo ventricular tachycardia: a case report.

    LENUS (Irish Health Repository)

    Riaz, A


    BACKGROUND: Dramatic artifacts of pseudo flutter have been reported in the past secondary to various factors including tremor (Handwerker and Raptopoulos in N Engl J Med 356:503, 2007) and dialysis machines (Kostis et al. in J Electrocardiol 40(4):316-318, 2007). METHODS: We present this unusual case where the artifact, produced by tremor, was so pronounced to be misdiagnosed and treated as ventricular tachycardia. CONCLUSION: This case highlights the importance of correlating ECG findings with history and clinical examination and of using 12 lead ECGs for rhythm interpretation especially to confirm consistence of arrhythmias in all leads.

  11. Pseudo-communication vs Quasi-communication

    Directory of Open Access Journals (Sweden)

    Елена Константиновна Черничкина


    Full Text Available The article is devoted to the analysis of such specific forms of human interaction as quasi- and pseudo-communication. The authors specify the terms which sometimes are used interchangeably. The aim of the conducted research is to find out and demonstrate existing differences and similarities of these communicative phenomena on the basis of theoretical and empirical analysis of the research material in the Russian and English languages. The authors describe communicative features of these phenomena and consider the reasons for such forms of communication and their increased use at present. The research material is represented fiction extracts, film scripts, jokes, print media, a collection of oral speech records both in Russian and English. The authors make use of the following research methods: definitional analysis (to define the terminology of the research, the method of linguistic observation and introspection (to select the communicative situations, the descriptive-analytical method and the method of comparative analysis (to identify similarities and differences of the target phenomena, and the conversational analysis method (to view productivity and effectiveness of a dialogue, etc. The classification of possible forms of their existence in different discourses is suggested. The authors assume that both pseudo- and quasi-communication are characterized as fictitious forms of human interaction with some noticeable violation of the basic communicative model. Pseudo-communication suffers from the discrepancy of the meaning of a coded and decoded message. The authors put forward the main parameters of scientific classification of it as follows: adequate understanding, intentionality, and the stage of communicative action where the failure takes place. At the same time they stress the necessity to distinguish the cases of pseudo talks from phatic and indirect communication. Quasi-communcation is marked by the lack of a real partner and hence

  12. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials (United States)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.


    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  13. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  14. A 2D Fourier tool for the analysis of photo-elastic effect in large granular assemblies (United States)

    Leśniewska, Danuta


    Fourier transforms are the basic tool in constructing different types of image filters, mainly those reducing optical noise. Some DIC or PIV software also uses frequency space to obtain displacement fields from a series of digital images of a deforming body. The paper presents series of 2D Fourier transforms of photo-elastic transmission images, representing large pseudo 2D granular assembly, deforming under varying boundary conditions. The images related to different scales were acquired using the same image resolution, but taken at different distance from the sample. Fourier transforms of images, representing different stages of deformation, reveal characteristic features at the three (`macro-`, `meso-` and `micro-`) scales, which can serve as a data to study internal order-disorder transition within granular materials.

  15. Extremes of 2d Coulomb gas: universal intermediate deviation regime (United States)

    Lacroix-A-Chez-Toine, Bertrand; Grabsch, Aurélien; Majumdar, Satya N.; Schehr, Grégory


    In this paper, we study the extreme statistics in the complex Ginibre ensemble of N × N random matrices with complex Gaussian entries, but with no other symmetries. All the N eigenvalues are complex random variables and their joint distribution can be interpreted as a 2d Coulomb gas with a logarithmic repulsion between any pair of particles and in presence of a confining harmonic potential v(r) \\propto r2 . We study the statistics of the eigenvalue with the largest modulus r\\max in the complex plane. The typical and large fluctuations of r\\max around its mean had been studied before, and they match smoothly to the right of the mean. However, it remained a puzzle to understand why the large and typical fluctuations to the left of the mean did not match. In this paper, we show that there is indeed an intermediate fluctuation regime that interpolates smoothly between the large and the typical fluctuations to the left of the mean. Moreover, we compute explicitly this ‘intermediate deviation function’ (IDF) and show that it is universal, i.e. independent of the confining potential v(r) as long as it is spherically symmetric and increases faster than \\ln r2 for large r with an unbounded support. If the confining potential v(r) has a finite support, i.e. becomes infinite beyond a finite radius, we show via explicit computation that the corresponding IDF is different. Interestingly, in the borderline case where the confining potential grows very slowly as v(r) ∼ \\ln r2 for r \\gg 1 with an unbounded support, the intermediate regime disappears and there is a smooth matching between the central part and the left large deviation regime.

  16. Computing 2D constrained delaunay triangulation using the GPU. (United States)

    Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng


    We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.

  17. Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics

    Directory of Open Access Journals (Sweden)

    Jiantong Li


    Full Text Available Two-dimensional (2D layered materials are anticipated to be promising for future electronics. However, their electronic applications are severely restricted by the availability of such materials with high quality and at a large scale. In this review, we introduce systematically versatile scalable synthesis techniques in the literature for high-crystallinity large-area 2D semiconducting materials, especially transition metal dichalcogenides, and 2D material-based advanced structures, such as 2D alloys, 2D heterostructures and 2D material devices engineered at the wafer scale. Systematic comparison among different techniques is conducted with respect to device performance. The present status and the perspective for future electronics are discussed.

  18. Quality of Service Based NOMA Group D2D Communications

    Directory of Open Access Journals (Sweden)

    Asim Anwar


    Full Text Available Non-orthogonal multiple access (NOMA provides superior spectral efficiency and is considered as a promising multiple access scheme for fifth generation (5G wireless systems. The spectrum efficiency can be further enhanced by enabling device-to-device (D2D communications. In this work, we propose quality of service (QoS based NOMA (Q-NOMA group D2D communications in which the D2D receivers (DRs are ordered according to their QoS requirements. We discuss two possible implementations of proposed Q-NOMA group D2D communications based on the two power allocation coefficient policies. In order to capture the key aspects of D2D communications, which are device clustering and spatial separation, we model the locations of D2D transmitters (DTs by Gauss–Poisson process (GPP. The DRs are then considered to be clustered around DTs. Multiple DTs can exist in proximity of each other. In order to characterize the performance, we derive the Laplace transform of the interference at the probe D2D receiver and obtain a closed-form expression of its outage probability using stochastic geometry tools. The performance of proposed Q-NOMA group D2D communications is then evaluated and benchmarked against conventional paired D2D communications.

  19. Sparse Non-negative Matrix Factor 2-D Deconvolution

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.


    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...

  20. Scaphoid pseudo-arthrosis: Frequency, pathogenesis and course

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, K.; Teifke, A.; Benning, R.; Dahm, M.; Thelen, R.; Schild, H.


    Eighty-three scaphoid pseudo-arthroses were found amongst 1.104 scaphoid examinations. Sixtyseven were present at the first examination and 16 pseudo-arthroses developed amongst 252 scaphoid fractures. Men were affected predominantly, particularly in the 20 to 40-year old group. Fractures in the proximal third of the scaphoid and vertical oblique fractures had a particular tendency to pseudo-arthrosis formation. The operative treatment of choice is a Matti-Russe bone graft. Only one patient in seven with definite scaphoid pseudo-arthrosis showed firm fusion. (orig.).

  1. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per


    Tamoxifen therapy for estrogen receptor-positive breast cancer reduces the risk of recurrence by approximately one-half. Cytochrome P-450 2D6, encoded by the polymorphic cytochrome P-450 2D6 gene (CYP2D6), oxidizes tamoxifen to its most active metabolites. Steady-state concentrations of endoxifen...... (4-hydroxy-N-desmethyltamoxifen), the most potent antiestrogenic metabolite, are reduced in women whose CYP2D6 genotypes confer poor enzyme function. Thirty-one studies of the association of CYP2D6 genotype with breast cancer survival have yielded heterogeneous results. Some influential studies...... genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor...

  2. Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI. (United States)

    Yang, Yang; Liu, Feng; Li, Mingyan; Jin, Jin; Weber, Ewald; Liu, Qinghuo; Crozier, Stuart


    The use of radial k-space trajectories has drawn strong interest from researchers for their potential in developing fast imaging methods in magnetic resonance imaging (MRI). Compared with conventional Cartesian trajectories, radial sampling collects more data from the central k-space region and the radially sampled data are more incoherent. These properties are very suitable for compressed sensing (CS)-based fast imaging. When reconstructing under-sampled radial data with CS, regridding and inverse-regridding are needed to transfer data between the image and frequency domains. In each CS iteration, two-dimensional interpolations are implemented twice in the regridding and inverse-regridding, introducing errors and undermining reconstruction quality. To overcome these problems, a radial-like pseudo-polar (PP) trajectory is proposed for the CS MRI applications. The PP trajectory preserves all the essential features of radial trajectory and allows an image reconstruction with PP fast Fourier transform (PPFFT) instead of interpolations. This paper attempts to investigate the performance of PP trajectory-based CS-MRI. In CS-based image reconstruction, the transformation of PP-sampled k-space data into the image domain is realized through PPFFT, which is based on the standard one-dimensional FFT and the fractional Fourier transform. To evaluate the effectiveness of the proposed methods, both numerical and experimental data are used to compare the new methods with conventional approaches. The proposed method provided high-quality reconstruction of the MR images with over 2-dB gain in peak signal-to-noise ratio while keeping structural similarity over 0.88 in different situations. Compared with the conventional radial sampling-based CS MRI methods, the proposed method achieves a more accurate reconstruction with respect to image detail/edge preservation and artifact suppression. The successful implementation of the PP subsampling-based CS scheme provides a practical and

  3. Cell counting in human endobronchial biopsies--disagreement of 2D versus 3D morphometry.

    Directory of Open Access Journals (Sweden)

    Vlad A Bratu

    Full Text Available QUESTION: Inflammatory cell numbers are important endpoints in clinical studies relying on endobronchial biopsies. Assumption-based bidimensional (2D counting methods are widely used, although theoretically design-based stereologic three-dimensional (3D methods alone offer an unbiased quantitative tool. We assessed the method agreement between 2D and 3D counting designs in practice when applied to identical samples in parallel. MATERIALS AND METHODS: Biopsies from segmental bronchi were collected from healthy non-smokers (n = 7 and smokers (n = 7, embedded and sectioned exhaustively. Systematic uniform random samples were immunohistochemically stained for macrophages (CD68 and T-lymphocytes (CD3, respectively. In identical fields of view, cell numbers per volume unit (NV were assessed using the physical disector (3D, and profiles per area unit (NA were counted (2D. For CD68+ cells, profiles with and without nucleus were separately recorded. In order to enable a direct comparison of the two methods, the zero-dimensional CD68+/CD3+-ratio was calculated for each approach. Method agreement was tested by Bland-Altmann analysis. RESULTS: In both groups, mean CD68+/CD3+ ratios for NV and NA were significantly different (non-smokers: 0.39 and 0.68, p<0.05; smokers: 0.49 and 1.68, p<0.05. When counting only nucleated CD68+ profiles, mean ratios obtained by 2D and 3D counting were similar, but the regression-based Bland-Altmann analysis indicated a bias of the 2D ratios proportional to their magnitude. This magnitude dependent deviation differed between the two groups. CONCLUSIONS: 2D counts of cell and nuclear profiles introduce a variable size-dependent bias throughout the measurement range. Because the deviation between the 3D and 2D data was different in the two groups, it precludes establishing a 'universal conversion formula'.

  4. Enhancement of MS2D Bartington point measurement of soil magnetic susceptibility (United States)

    Fabijańczyk, Piotr; Zawadzki, Jarosław


    Field magnetometry is fast method used to assess the potential soil pollution. The most popular device used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. Typically, in order to calculate the reliable average value of soil magnetic susceptibility, a series of MS2D readings is performed in the sample point. As it was analyzed previously, such methodology makes it possible to significantly reduce the nugget effect of the variograms of soil magnetic susceptibility that is related to the micro-scale variance and measurement errors. The goal of this study was to optimize the process of taking a series of MS2D readings, whose average value constitutes a single measurement, in order to take into account micro-scale variations of soil magnetic susceptibility in proper determination of this parameter. This was done using statistical and geostatistical analyses. The analyses were performed using field MS2D measurements that were carried out in the study area located in the direct vicinity of the Katowice agglomeration. At 150 sample points 10 MS2D readings of soil magnetic susceptibility were taken. Using this data set, series of experimental variograms were calculated and modeled. Firstly, using single random MS2D reading for each sample point, and next using the data set increased by adding one more MS2D reading, until their number reached 10. The parameters of variogram: nugget effect, sill and range of correlation were used to determine the most suitable number of MS2D readings at sample point. The distributions of soil magnetic susceptibility at sample point were also analyzed in order to determine adequate number of readings enabling to calculate reliable average soil magnetic susceptibility. The research leading to these results has

  5. Pseudo-Observables in Higgs decays

    CERN Multimedia

    CERN. Geneva


    In view of future high-statistics data, it is useful to define a framework for precise determinations of the properties of the Higgs particle valid in generic extensions of the Standard Model. For Higgs decays, this goal can be achieved with a limited set of "Pseudo-Observables" (PO). The PO provides a systematic generalization of the "kappa-framework" so far adopted by the LHC experiments and provide a useful bridge between data and theory predictions. I discuss how the PO are defined, with particular attention to the h->4f decays, and how they can be used to test various dynamical and symmetry hypotheses about the Higgs sector. The relation between PO and EFT couplings is also discussed.

  6. Flights in a pseudo-chaotic system. (United States)

    Lowenstein, J H; Vivaldi, F


    We consider the problem of transport in a one-parameter family of piecewise rotations of the torus, for rotation number approaching 1∕4. This is a zero-entropy system which in this limit exhibits a divided phase space, with island chains immersed in a "pseudo-chaotic" region. We identify a novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode islands. This process originates from the approximate translational invariance of the phase space and leads to long flights of linear motion, for a significant measure of initial conditions. We show that the asymptotic probability distribution of the flight lengths is determined by the geometric properties of a partition of the accelerator-mode island associated with the flight. We establish the existence of flights travelling distances of order O(1) in phase space. We provide evidence for the existence of a scattering process that connects flights travelling in opposite directions.

  7. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby


    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  8. Energy Efficiency of D2D Multi-User Cooperation. (United States)

    Zhang, Zufan; Wang, Lu; Zhang, Jie


    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  9. 2D Ruddlesden-Popper Perovskites for Optoelectronics. (United States)

    Chen, Yani; Sun, Yong; Peng, Jiajun; Tang, Junhui; Zheng, Kaibo; Liang, Ziqi


    Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Integrating Mobile Multimedia into Textbooks: 2D Barcodes (United States)

    Uluyol, Celebi; Agca, R. Kagan


    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  11. Comparison Between 2D And 3D Surface Roughness Parameters ...

    African Journals Online (AJOL)

    For many decades engineers and researchers have been using two-dimensional (2D) instruments to measure the roughness of a surface. Several 2D surface roughness parameters have been developed, and have emerged in different countries where researches in the area of surface metrology were carried out. The most ...

  12. Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis

    DEFF Research Database (Denmark)

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans


    Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. La...

  13. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.


    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  14. Plasmonics of 2D Nanomaterials: Properties and Applications (United States)

    Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng


    Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light‐matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra‐thin two‐dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications. PMID:28852608

  15. Syngeneic AAV pseudo-vectors potentiates full vector transduction (United States)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  16. Solutions of selected pseudo loop equations in water distribution ...

    African Journals Online (AJOL)

    This paper demonstrated the use of Microsoft Excel Solver (a computer package) in solving selected pseudo loop equations in pipe network analysis problems. Two pipe networks with pumps and overhead tanks were used to demonstrate the use of Microsoft Excel Solver in solving pseudo loops (open loops; networks with ...

  17. Pseudo-populations a basic concept in statistical surveys

    CERN Document Server

    Quatember, Andreas


    This book emphasizes that artificial or pseudo-populations play an important role in statistical surveys from finite universes in two manners: firstly, the concept of pseudo-populations may substantially improve users’ understanding of various aspects in the sampling theory and survey methodology; an example of this scenario is the Horvitz-Thompson estimator. Secondly, statistical procedures exist in which pseudo-populations actually have to be generated. An example of such a scenario can be found in simulation studies in the field of survey sampling, where close-to-reality pseudo-populations are generated from known sample and population data to form the basis for the simulation process. The chapters focus on estimation methods, sampling techniques, nonresponse, questioning designs and statistical disclosure control.This book is a valuable reference in understanding the importance of the pseudo-population concept and applying it in teaching and research.

  18. From 3 d duality to 2 d duality (United States)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian


    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  19. CYP2D6 Polymorphisms in Patients with Porphyrias (United States)

    Lavandera, Jimena V.; Parera, Victoria E.; Batlle, Alcira; Buzaleh, Ana María


    The cytochrome P-450 (CYP) isoenzymes, a superfamily of heme proteins which are the terminal oxidases of the mixed function oxidases system, metabolize more than 70% of all clinically approved drugs. The highly polymorphic CYP2D6 isoform metabolizes more than 25% of most common drugs, and the phenotypes of the 70-plus allelic variants range from compromised to excessive enzymatic activity. Porphyrias are a group of inherited or acquired metabolic disorders of heme biosynthesis, due to a specific decrease in the activity of one of the enzymes of the heme pathway. Clinical signs and symptoms of porphyrias are frequently associated with exposure to precipitating agents, including clinically approved drugs. CYP enzymes, including CYP2D6, participate in the metabolism of some porphyrinogenic drugs, leading to the deregulation of heme biosynthesis. Considering that some of the drugs not recommended for use in porphyric patients are metabolized by CYP2D6, the presence of CYP2D6 polymorphisms in porphyric patients would influence the triggering of the disease when these individuals receive a precipitating agent that is metabolized by CYP2D6. To investigate CYP2D6 polymorphisms in porphyric patients, healthy Argentinean volunteers, porphyric patients, and a group of individuals with high levels of iron were studied. Results indicated that the CYP2D6*3 and CYP2D6*4 alleles, in particular, would be linked to the onset of disease. Predictive genotyping for CYP2D6 in porphyric patients holds promise as a method to improve the clinical efficacy of drug therapy and to personalize drug administration for these patients. PMID:17225875

  20. Histone H3 lysine 4 methyltransferase KMT2D. (United States)

    Froimchuk, Eugene; Jang, Younghoon; Ge, Kai


    Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and MLL2 in humans and Mll4 in mice, belongs to a family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein over 5500 amino acids in size and is partially functionally redundant with KMT2C. KMT2D is widely expressed in adult tissues and is essential for early embryonic development. The C-terminal SET domain is responsible for its H3K4 methyltransferase activity and is necessary for maintaining KMT2D protein stability in cells. KMT2D associates with WRAD (WDR5, RbBP5, ASH2L, and DPY30), NCOA6, PTIP, PA1, and H3K27 demethylase UTX in one protein complex. It acts as a scaffold protein within the complex and is responsible for maintaining the stability of UTX. KMT2D is a major mammalian H3K4 mono-methyltransferase and co-localizes with lineage determining transcription factors on transcriptional enhancers. It is required for the binding of histone H3K27 acetyltransferases CBP and p300 on enhancers, enhancer activation and cell-type specific gene expression during differentiation. KMT2D plays critical roles in regulating development, differentiation, metabolism, and tumor suppression. It is frequently mutated in developmental diseases, such as Kabuki syndrome and congenital heart disease, and various forms of cancer. Further understanding of the mechanism through which KMT2D regulates gene expression will reveal why KMT2D mutations are so harmful and may help generate novel therapeutic approaches. Published by Elsevier B.V.

  1. PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. (United States)

    Taufer, Michela; Licon, Abel; Araiza, Roberto; Mireles, David; van Batenburg, F H D; Gultyaev, Alexander P; Leung, Ming-Ying


    Pseudoknots have been recognized to be an important type of RNA secondary structures responsible for many biological functions. PseudoBase, a widely used database of pseudoknot secondary structures developed at Leiden University, contains over 250 records of pseudoknots obtained in the past 25 years through crystallography, NMR, mutational experiments and sequence comparisons. To promptly address the growing analysis requests of the researchers on RNA structures and bring together information from multiple sources across the Internet to a single platform, we designed and implemented PseudoBase++, an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. PseudoBase++ ( maps the PseudoBase dataset into a searchable relational database including additional functionalities such as pseudoknot type. PseudoBase++ links each pseudoknot in PseudoBase to the GenBank record of the corresponding nucleotide sequence and allows scientists to automatically visualize RNA secondary structures with PseudoViewer. It also includes the capabilities of fine-grained reference searching and collecting new pseudoknot information.

  2. Comparison of 2D and 3D gamma analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)


    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  3. Theory of 2D crystals: graphene and beyond. (United States)

    Roldán, Rafael; Chirolli, Luca; Prada, Elsa; Silva-Guillén, Jose Angel; San-Jose, Pablo; Guinea, Francisco


    This tutorial review presents an overview of the basic theoretical aspects of two-dimensional (2D) crystals. We revise essential aspects of graphene and the new families of semiconducting 2D materials, like transition metal dichalcogenides or black phosphorus. Minimal theoretical models for various materials are presented. Some of the exciting new possibilities offered by 2D crystals are discussed, such as manipulation and control of quantum degrees of freedom (spin and pseudospin), confinement of excitons, control of the electronic and optical properties with strain engineering, or unconventional superconducting phases.

  4. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation


    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  5. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian


    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  6. Prospective examination of anxiety and depression before and during confirmed and pseudo-exacerbations in patients with Multiple Sclerosis (United States)

    Burns, Michelle Nicole; Nawacki, Ewa; Siddique, Juned; Pelletier, Daniel; Mohr, David C.


    Objective Although some studies have suggested a relationship between MS exacerbations and psychological distress, methodological weaknesses limit their conclusions. This study was aimed to determine whether pseudo- and confirmed MS exacerbations are preceded by or concurrent with increased anxiety or depressive symptoms. Methods This was a secondary analysis of 121 patients with MS who were followed for 48 weeks during a randomized controlled trial. Participants completed monthly self-reports on depressive and anxiety symptoms. Patient-reported exacerbations were assessed through a phone-administered symptom checklist and neurological exam. Results Both pseudo-exacerbations and confirmed exacerbations were associated with concurrent somatic depressive, β = .16 and β = .33, respectively, ps anxiety symptoms, β = .24 and β = .20, ps anxiety symptoms relative to baseline predicted subsequent onset of pseudo-exacerbations, odds ratio [OR] = 1.54, p = .02, while increased somatic depressive symptoms predicted confirmed exacerbations, OR = 1.59, p = .01. Conclusion Patients with MS experiencing pseudo- or confirmed exacerbations should be assessed and monitored for depressive and anxiety symptoms, and confirmed exacerbations are particularly concerning in patients with a history of depression. The psychological or psychiatric antecedents of MS exacerbations generate new hypotheses on etiologies of confirmed and pseudo-exacerbations. Trial Registration (NCT00147446). PMID:23197840

  7. La tuberculose abdominale pseudo-tumorale (United States)

    El Barni, Rachid; Lahkim, Mohamed; Achour, Abdessamad


    Introduction L’objectif de ce travail est de rapporter cinq cas de tuberculose abdominale pseudo-tumorale afin d’en souligner les aspects diagnostiques et thérapeutiques. Cinq observations sont colligées dans le service de chirurgie générale de l’hôpital militaire Avicenne de Marrakech au cours de l’année 2007. Les aspects cliniques sont disparates. Ainsi, les auteurs ont noté un syndrome péritonéal dans un cas, une masse épigastrique dans un cas, une lésion suspect du sigmoïde dans un cas, une masse de la fosse iliaque droite dans un cas et une altération de l’état général avec fièvre dans le dernier cas. Un seul patient avaient bénéficié d’une biopsie scano-guidée et les quatre patients restants avaient été opérés. Une masse du méso côlon était notée dans le premier cas. Dans le second cas, l’aspect de la masse épigastrique et son siège avaient orienté vers une tumeur du grand omentum. Une localisation tuberculeuse péritonéale et sigmoïdienne avait été trouvée dans le troisième cas. Le diagnostic d’une tumeur du côlon droit était hautement suspect chez le patient séropositif qui avait présenté une péritonite post-opératoire et décédé à J + 3 dans un tableau de choc septique. Le siège et l’aspect nécrotique des lésions trouvées à la tomodensitométrie chez la seule patiente de l’étude avaient fait discuter en premier un lymphome. Même en l’absence d’antécédents de tuberculose pulmonaire, le diagnostic tuberculose abdominale pseudo-tumorale doit être évoqué surtout dans un pays d’endémie comme le notre et le recours à une laparotomie est justifié chaque fois que persiste un doute diagnostique ou en cas de complication. PMID:23330023

  8. Effect of increasing disorder on domains of the 2d Coulomb glass (United States)

    Bhandari, Preeti; Malik, Vikas


    We have studied a two dimensional lattice model of Coulomb glass for a wide range of disorders at T∼ 0 . The system was first annealed using Monte Carlo simulation. Further minimization of the total energy of the system was done using an algorithm developed by Baranovskii et al, followed by cluster flipping to obtain the pseudo-ground states. We have shown that the energy required to create a domain of linear size L in d dimensions is proportional to Ld-1 . Using Imry–Ma arguments given for random field Ising model, one gets critical dimension d_c≥slant 2 for Coulomb glass. The investigation of domains in the transition region shows a discontinuity in staggered magnetization which is an indication of a first-order type transition from charge-ordered phase to disordered phase. The structure and nature of random field fluctuations of the second largest domain in Coulomb glass are inconsistent with the assumptions of Imry and Ma, as was also reported for random field Ising model. The study of domains showed that in the transition region there were mostly two large domains, and that as disorder was increased the two large domains remained, but a large number of small domains also opened up. We have also studied the properties of the second largest domain as a function of disorder. We furthermore analysed the effect of disorder on the density of states, and showed a transition from hard gap at low disorders to a soft gap at higher disorders. At W=2 , we have analysed the soft gap in detail, and found that the density of states deviates slightly (δ≈ 1.293 +/- 0.027 ) from the linear behaviour in two dimensions. Analysis of local minima show that the pseudo-ground states have similar structure.

  9. Optical identification using imperfections in 2D materials (United States)

    Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'ko, Vladimir I.; Young, Robert J.


    The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.

  10. Excitons in atomically thin 2D semiconductors and their applications

    Directory of Open Access Journals (Sweden)

    Xiao Jun


    Full Text Available The research on emerging layered two-dimensional (2D semiconductors, such as molybdenum disulfide (MoS2, reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  11. Dominant 2D magnetic turbulence in the solar wind (United States)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.


    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  12. MERRA DAS 2D Constants V5.2.0 (United States)

    National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...

  13. Orbifold reduction and 2d (0,2) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Sebastián [Physics Department, The City College of the CUNY,160 Convent Avenue, New York, NY 10031 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York NY 10016 (United States); Lee, Sangmin [Center for Theoretical Physics, Seoul National University,Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University,Seoul 08826 (Korea, Republic of); College of Liberal Studies, Seoul National University,Seoul 08826 (Korea, Republic of); Seong, Rak-Kyeong [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)


    We introduce Orbifold Reduction, a new method for generating 2d(0,2) gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from 4dN=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating 2d(0,2) theories with a brane realization. We present three practical applications of the new algorithm: the connection between 4d Seiberg duality and 2d triality, a combinatorial method for generating theories related by triality and a 2d(0,2) generalization of the Klebanov-Witten mass deformation.

  14. Negative terahertz photoconductivity in 2D layered materials (United States)

    Lu, Junpeng; Liu, Hongwei; Sun, Jing


    The remarkable qualities of 2D layered materials such as wide spectral coverage, high strength and great flexibility mean that ultrathin 2D layered materials have the potential to meet the criteria of next-generation optoelectronic devices. Photoconductivity is one of the critical parameters of materials applied to optoelectronics. In contrast to traditional semiconductors, specific ultrathin 2D layers present anomalous negative photoconductivity. This opens a new avenue for designing novel optoelectronic devices. It is important to have a deep understanding of the fundamentals of this anomalous response, in order to design and optimize such devices. In this review, we provide an overview of the observation of negative photoconductivity in 2D layered materials including graphene, topological insulators and transitional metal dichalcogenides. We also summarize recent reports on investigations into the fundamental mechanism using ultrafast terahertz (THz) spectroscopies. Finally, we conclude the review by discussing the existing challenges and proposing the possible prospects of this direction of research.

  15. Double resonance rotational spectroscopy of CH2D+ (United States)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar


    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  16. Low-complexity 2D to 3D video conversion (United States)

    Chen, Ying; Zhang, Rong; Karczewicz, Marta


    3D film and 3D TV are becoming reality. More facilities and devices are now 3D capable. Compared to capture 3D video content directly, 2D to 3D video conversion is a low-cost, backward compatible alternate. There also exists a tremendous amount of monoscopic 2D video content that are of high interest to be displayed on 3D devices with noticeable immersiveness. 2D to 3D video conversion, therefore, has drawn lots of attention recently. In this paper, a low complexity 2D to 3D conversion algorithm is presented. The conversion generates stereo video pairs by 3D warping based on estimated per-pixel depth maps. The depth maps are estimated jointly by motion and color cues. Subjective tests show that the proposed algorithm achieves 3D perception with acceptable artifact.

  17. 2D gels still have a niche in proteomics

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten


    of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2......With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim......) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show...

  18. The theory of pseudo-rigid bodies

    CERN Document Server

    Cohen, Harley


    This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else­ where, much of the work is new. Our objective in writing this mono­ graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat­ ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...

  19. Loop-Effects in Pseudo-Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Matthias


    We analyze the transmission of supersymmetry breaking in brane-world models of pseudo-supersymmetry. In these models two branes preserve different halves of the bulk supersymmetry. Thus supersymmetry is broken although each sector of the model is supersymmetric when considered separately. The world-volume theory on one brane feels the breakdown of supersymmetry only through two-loop interactions involving a coupling to fields from the other brane. In a 5D toy model with bulk vectors, we compute the diagrams that contribute to scalar masses on one brane and find that the masses are proportional to the compactification scale up to logarithmic corrections, m{sup 2} {infinity} (2{pi}R){sup -2} (ln(2{pi}R m{sub S}) - 1.1), where m{sub s} is an ultraviolet cutoff. Thus, for large compactification radii, where this result is valid, the brane scalars acquire a positive mass squared. We also compute the three-loop diagrams relevant to the Casimir energy between the two branes and find E {infinity} (2{pi}R){sup -4}((ln(2{pi}R m{sub S}) - 1.7){sup 2} + 0.2). For large radii, this yields a repulsive Casimir force.

  20. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng


    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  1. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter


    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model ....... Application to GEOTEM data over the Harmony nickel sulphide deposit recovered the three dipping conductors in the 2D section despite their complex structure and high conductivity contrast....

  2. Tailored Assembly of 2D Heterostructures beyond Graphene (United States)


    porous structure using N2 isotherm, BET surface area, TEM , SEM, and adjust reaction parameter to obtain desired porous architecture. 4. Crosslinking...morphology, structure , and functionalities. The resultant 3D composite materials are expected to possess unique set of synergistic functionalities that...dimensional materials as well as the use of such functionalized 2D materials to create 2D stacked structures . 15. SUBJECT TERMS Nanotechnology 16. SECURITY

  3. RNA folding pathways and kinetics using 2D energy landscapes. (United States)

    Senter, Evan; Dotu, Ivan; Clote, Peter


    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  4. Multichannel 2-D power spectral estimation and applications.


    El-Shaer, Hamdy Taha M.


    Approved for public release; distribution is unlimited Spectral estimation for multiple 2-D signals by model-based methods is developed. The procedures compute the entire spectral matrix of autospectra and cross spectra for the set of 2-D signals. Spectral analysis by autoregressive (AR) modeling is studied extensively. Specific differences between AR models for this problem and those for lower dimensional problems are highlighted. An extension of the Jackson-Chien method for combining...

  5. Generating a 2D Representation of a Complex Data Structure (United States)

    James, Mark


    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  6. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets. (United States)

    Owerre, S A


    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  < J L and possess chiral magnon edge modes.

  7. CYP2D6 variability in populations from Venezuela. (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin


    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  8. Evaluation of fast 2D NMR for metabolomics. (United States)

    Guennec, Adrien Le; Giraudeau, Patrick; Caldarelli, Stefano


    Two-dimensional nuclear magnetic resonance (2D NMR) is increasingly explored as a tool for metabolomics because of its superior resolution compared to one-dimensional NMR (1D NMR). However, 2D NMR is characterized by longer acquisition times, which makes it less suitable for high-throughput studies. In this Article, we evaluated two methods for the acceleration of nD NMR, ultrafast (UF) and nonuniform sampling (NUS), in the context of metabolomics. To this end, model samples mimicking the metabolic profile variations in serum from subjects affected by colorectal cancer and controls were analyzed by 1D (1)H NMR along with conventional and accelerated DQF-COSY and HSQC. A statistical analysis (OPLS-DA) yielded similar results for the group separation with all techniques, but biomarker identification from 2D spectra was substantially enhanced, both in terms of number of molecules and easiness of assignment. Most interestingly, fast 2D NMR techniques lead to similar results as conventional 2D NMR, opening the way for high-throughput metabolomics studies using 2D NMR.

  9. Rapid 2D-to-3D conversion (United States)

    Harman, Philip V.; Flack, Julien; Fox, Simon; Dowley, Mark


    The conversion of existing 2D images to 3D is proving commercially viable and fulfills the growing need for high quality stereoscopic images. This approach is particularly effective when creating content for the new generation of autostereoscopic displays that require multiple stereo images. The dominant technique for such content conversion is to develop a depth map for each frame of 2D material. The use of a depth map as part of the 2D to 3D conversion process has a number of desirable characteristics: 1. The resolution of the depth may be lower than that of the associated 2D image. 2. It can be highly compressed. 3. 2D compatibility is maintained. 4. Real time generation of stereo, or multiple stereo pairs, is possible. The main disadvantage has been the laborious nature of the manual conversion techniques used to create depth maps from existing 2D images, which results in a slow and costly process. An alternative, highly productive technique has been developed based upon the use of Machine Leaning Algorithm (MLAs). This paper describes the application of MLAs to the generation of depth maps and presents the results of the commercial application of this approach.

  10. Exploration of complex metal 2D design rules using inverse lithography (United States)

    Chang, Simon; Blatchford, James; Prins, Steve; Jessen, Scott; Dam, Thuc; Xiao, Guangming; Pang, Linyong; Gleason, Bob


    As design rule (DR) scaling continues to push lithographic imaging to higher numerical aperture (NA) and smaller k1 factor, extensive use of resolution enhancement techniques becomes a general practice. Use of these techniques not only adds considerable complexity to the design rules themselves, but also can lead to undesired and/or unanticipated problematic imaging effects known as "hotspots." This is particularly common for metal layers in interconnect patterning due to the many complex random and bidirectional (2D) patterns present in typical layout. In such situations, the validation of DR becomes challenging, and the ability to analyze large numbers of 2D layouts is paramount in generating a DR set that encodes all lithographic constraints to avoid hotspot formation. Process window (PW) and mask error enhancement factor (MEEF) are the two most important lithographic constraints in defining design rules. Traditionally, characterization of PW and MEEF by simulation has been carried out using discrete cut planes. For a complex 2D pattern or a large 2D layout, this approach is intractable, as the most likely location of the PW or MEEF hotspots often cannot be predicted empirically, and the use of large numbers of cut planes to ensure all hotspots are detected leads to excessive simulation time. In this paper, we present a novel approach to analyzing fullfield PW and MEEF using the inverse lithography technology (ILT) technique, [1] in the context of restrictive design rule development for the 32nm node. Using this technique, PW and MEEF are evaluated on every pixel within a design, thereby addressing the limitations of cut-plane approach while providing a complete view of lithographic performance. In addition, we have developed an analysis technique using color bitmaps that greatly facilitates visualization of PW and MEEF hotspots anywhere in the design and at an arbitrary level of resolution. We have employed the ILT technique to explore metal patterning options

  11. Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation (United States)

    Liscio, Andrea; Kouroupis-Agalou, Konstantinos; Diez Betriu, Xavier; Kovtun, Alessandro; Treossi, Emanuele; Pugno, Nicola Maria; De Luca, Giovanna; Giorgini, Loris; Palermo, Vincenzo


    2-dimensional (2D) nanosheets such as graphene, graphene oxide, boron nitride or transition metal dichalcogenides can be produced on a large scale by exfoliation techniques. The lateral shape of these 2D materials is typically considered random and irregular, and their average size is often estimated using techniques characterized by strong approximations or poor statistical significance. Here we measure in a quantitative, objective way the size and shape of 2D monoatomic nanosheets using a combination of optical, electronic and scanning probe techniques. We measure, one by one, the size and shape of thousands of sheets of graphene oxide as they undergo a standard ultrasonication treatment. Using automatic image processing and statistical modelling we identify two different fragmentation processes in 2D at the nanoscale, related to two populations of nanosheets described by gamma and exponential size distributions respectively. The two populations of sheets coexist during the fragmentation process, each one retaining its average size and shape. Our results explain the size reduction commonly observed in nanosheets upon sonication as an effect of changes in the respective weights of the two populations of nanosheets present in the material.

  12. Hacerse y volverse como nexos pseudo-copulativos


    Delbecque, Nicole; Van Gorp, Lise


    Cette contribution aborde les différences conceptuelles entre les pseudo-copules hacerse et volverse, partant des notions de «réalisation» et de «régression» qui caractérisent leurs emplois lexicaux. Esta contribución aborda las diferencias conceptuales entre las pseudo-cópulas hacerse y volverse, partiendo de las nociones de «realización» y de «regresión» que caracterizan sus empleos léxicos. This contribution tackles the conceptual differences between the pseudo-copulas hacerse and vo...

  13. Pseudo-Supersymmetry and the Domain-Wall/Cosmology Correspondence


    Skenderis, K.; Townsend, P. K.


    The correspondence between domain-wall and cosmological solutions of gravity coupled to scalar fields is explained. Any domain wall solution that admits a Killing spinor is shown to correspond to a cosmology that admits a pseudo-Killing spinor: whereas the Killing spinor obeys a Dirac-type equation with hermitian `mass'-matrix, the corresponding pseudo-Killing spinor obeys a Dirac-type equation with a anti-hermitian `mass'-matrix. We comment on some implications of (pseudo)supersymmetry.

  14. Optimization of FIBMOS Through 2D Silvaco ATLAS and 2D Monte Carlo Particle-based Device Simulations


    Kang, J.; He, X.; Vasileska, D.; Schroder, D. K.


    Focused Ion Beam MOSFETs (FIBMOS) demonstrate large enhancements in core device performance areas such as output resistance, hot electron reliability and voltage stability upon channel length or drain voltage variation. In this work, we describe an optimization technique for FIBMOS threshold voltage characterization using the 2D Silvaco ATLAS simulator. Both ATLAS and 2D Monte Carlo particle-based simulations were used to show that FIBMOS devices exhibit enhanced current drive ...

  15. Computing the Discrete Compactness of Orthogonal Pseudo-Polytopes via Their D-EVM Representation

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila


    Full Text Available This work is devoted to present a methodology for the computation of Discrete Compactness in -dimensional orthogonal pseudo-polytopes. The proposed procedures take in account compactness' definitions originally presented for the 2D and 3D cases and extend them directly for considering the D case. There are introduced efficient algorithms for computing discrete compactness which are based on an orthogonal polytopes representation scheme known as the Extreme Vertices Model in the -Dimensional Space (D-EVM. It will be shown the potential of the application of Discrete Compactness in higher-dimensional contexts by applying it, through EVM-based algorithms, in the classification of video sequences, associated to the monitoring of a volcano's activity, which are expressed as 4D orthogonal polytopes in the space-color-time geometry.

  16. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study. (United States)

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony


    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  17. On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism. (United States)

    Fan, Qitang; Wang, Tao; Dai, Jingya; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa


    Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP)6 formation is the stepwise desilverization of an organometallic (MTP-Ag)6 macrocycle, which forms via cyclization of (MTP-Ag)6 chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.

  18. Pseudo-differential operators groups, geometry and applications

    CERN Document Server

    Zhu, Hongmei


    This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.

  19. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D. [Univ. of Washington, Seattle, WA (United States); Broniowski, W. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)


    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.

  20. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D. [Washington Univ., Seattle, WA (United States). Dept. of Physics; Broniowski, W. [Institute of Nuclear Physics, Cracow (Poland)


    We analyze the chiral limit in dense isoptin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter. (author). 20 refs.

  1. Her-entingen tegen Pseudo Vogelpest (NCD) op 'Het Spelderholt'

    NARCIS (Netherlands)

    Voorst, van A.


    Pseudo Vogelpest of NCD is een gevreesde virusziekte, waartegen een entverplichting geldt. Na het uitbreken van de ziekte in het zuiden van Nederland is al het volwassen pluimvee op Het Spelderholt opnieuw geënt.

  2. Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy. (United States)

    Peaper, David R; Havill, Nancy L; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana; Boyce, John M


    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. 2D Materials for Optical Modulation: Challenges and Opportunities. (United States)

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin


    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Vertical Transistors Based on 2D Materials: Status and Prospects

    Directory of Open Access Journals (Sweden)

    Filippo Giannazzo


    Full Text Available Two-dimensional (2D materials, such as graphene (Gr, transition metal dichalcogenides (TMDs and hexagonal boron nitride (h-BN, offer interesting opportunities for the implementation of vertical transistors for digital and high-frequency electronics. This paper reviews recent developments in this field, presenting the main vertical device architectures based on 2D/2D or 2D/3D material heterostructures proposed so far. For each of them, the working principles and the targeted application field are discussed. In particular, tunneling field effect transistors (TFETs for beyond-CMOS low power digital applications are presented, including resonant tunneling transistors based on Gr/h-BN/Gr stacks and band-to-band tunneling transistors based on heterojunctions of different semiconductor layered materials. Furthermore, recent experimental work on the implementation of the hot electron transistor (HET with the Gr base is reviewed, due to the predicted potential of this device for ultra-high frequency operation in the THz range. Finally, the material sciences issues and the open challenges for the realization of 2D material-based vertical transistors at a large scale for future industrial applications are discussed.

  5. Unsupervised 2D Dimensionality Reduction with Adaptive Structure Learning. (United States)

    Zhao, Xiaowei; Nie, Feiping; Wang, Sen; Guo, Jun; Xu, Pengfei; Chen, Xiaojiang


    In recent years, unsupervised two-dimensional (2D) dimensionality reduction methods for unlabeled large-scale data have made progress. However, performance of these degrades when the learning of similarity matrix is at the beginning of the dimensionality reduction process. A similarity matrix is used to reveal the underlying geometry structure of data in unsupervised dimensionality reduction methods. Because of noise data, it is difficult to learn the optimal similarity matrix. In this letter, we propose a new dimensionality reduction model for 2D image matrices: unsupervised 2D dimensionality reduction with adaptive structure learning (DRASL). Instead of using a predetermined similarity matrix to characterize the underlying geometry structure of the original 2D image space, our proposed approach involves the learning of a similarity matrix in the procedure of dimensionality reduction. To realize a desirable neighbors assignment after dimensionality reduction, we add a constraint to our model such that there are exact [Formula: see text] connected components in the final subspace. To accomplish these goals, we propose a unified objective function to integrate dimensionality reduction, the learning of the similarity matrix, and the adaptive learning of neighbors assignment into it. An iterative optimization algorithm is proposed to solve the objective function. We compare the proposed method with several 2D unsupervised dimensionality methods. K-means is used to evaluate the clustering performance. We conduct extensive experiments on Coil20, AT&T, FERET, USPS, and Yale data sets to verify the effectiveness of our proposed method.

  6. Pseudo-telepathy: input cardinality and Bell-type inequalities


    Gisin, Nicolas; Methot, André; Scarani, Valerio


    Pseudo-telepathy is the most recent form of rejection of locality. Many of its properties have already been discovered: for instance, the minimal entanglement, as well as the minimal cardinality of the output sets, have been characterized. This paper contains two main results. First, we prove that no bipartite pseudo-telepathy game exists, in which one of the partners receives only two questions; as a corollary, we show that the minimal "input cardinality", that is, the minimal number of ques...

  7. Maximally entangled states in pseudo-telepathy games


    Mančinska, Laura


    A pseudo-telepathy game is a nonlocal game which can be won with probability one using some finite-dimensional quantum strategy but not using a classical one. Our central question is whether there exist two-party pseudo-telepathy games which cannot be won with probability one using a maximally entangled state. Towards answering this question, we develop conditions under which maximally entangled states suffice. In particular, we show that maximally entangled states suffice for weak projection...

  8. On Some (Pseudo) Involutions in the Riordan Group (United States)

    Cameron, Naiomi T.; Nkwanta, Asamoah


    In this paper, we address a question posed by L. Shapiro regarding algebraic and/or combinatorial characterizations of the elements of order 2 in the Riordan group. We present two classes of combinatorial matrices having pseudo-order 2. In one class, we find generalizations of Pascal's triangle and use some special cases to discover and prove interesting identities. In the other class, we find generalizations of Nkwanta's RNA triangle and show that they are pseudo-involutions.

  9. Diagnosis and Treatment of Pseudo-Class III Malocclusion


    Ariel Reyes; Luis Serret; Marcos Peguero; Orlando Tanaka


    Pseudo-Class III malocclusion is characterized by the presence of an anterior crossbite due to a forward functional displacement of the mandible; in most cases, the maxillary incisors present some degree of retroclination, and the mandibular incisors are proclined. Various types of appliances have been described in the literature for the early treatment of pseudo-Class III malocclusion. The objectives of this paper are to demonstrate the importance of making the differential diagnosis between...

  10. Study of gray image pseudo-color processing algorithms (United States)

    Hu, Jinlong; Peng, Xianrong; Xu, Zhiyong

    In gray images which contain abundant information, if the differences between adjacent pixels' intensity are small, the required information can not be extracted by humans, since humans are more sensitive to color images than gray images. If gray images are transformed to pseudo-color images, the details of images will be more explicit, and the target will be recognized more easily. There are two methods (in frequency field and in spatial field) to realize pseudo-color enhancement of gray images. The first method is mainly the filtering in frequency field, and the second is the equal density pseudo-color coding methods which mainly include density segmentation coding, function transformation and complementary pseudo-color coding. Moreover, there are many other methods to realize pseudo-color enhancement, such as pixel's self-transformation based on RGB tri-primary, pseudo-color coding from phase-modulated image based on RGB color model, pseudo-color coding of high gray-resolution image, et al. However, above methods are tailored to a particular situation and transformations are based on RGB color space. In order to improve the visual effect, the method based on RGB color space and pixels' self-transformation is improved in this paper, which is based on HIS color space. Compared with other methods, some gray images with ordinary formats can be processed, and many gray images can be transformed to pseudo-color images with 24 bits. The experiment shows that the processed image has abundant levels, which is consistent with human's perception.

  11. Gastric pseudo-ulcers: membrana angularis and pyloric torus defects. (United States)

    Peavy, P W; Clements, J L; Weens, H S


    The membrana angularis and pyloric torus defects are two physiologic bulges which can simulate ulcerations along the lesser curvature of the stomach. The muscular anatomy of the stomach and the mechanism which produces these pseudo-ulcers are discussed. Both pseudoniches can be seen transiently in normal individuals but occasionally are such prominence as to become diagnostic pitfalls. The features and significance of each pseudo-ulcer are reviewed in an attempt to facilitate recognition on the upper gastrointestinal barium examination.

  12. Pseudo-Hermitian quantum mechanics with unbounded metric operators. (United States)

    Mostafazadeh, Ali


    I extend the formulation of pseudo-Hermitian quantum mechanics to η(+)-pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator η(+). In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of η(+) and consequently √η(+).

  13. The start-to-end chemometric image processing of 2D thin-layer videoscans. (United States)

    Komsta, Łukasz; Cieśla, Łukasz; Bogucka-Kocka, Anna; Józefczyk, Aleksandra; Kryszeń, Jakub; Waksmundzka-Hajnos, Monika


    The purpose of the research was to recommend a unified procedure of image preprocessing of 2D thin layer videoscans for further supervised or unsupervised chemometric analysis. All work was done with open source software. The videoscans saved as JPG files underwent the following procedures: denoising using a median filter, baseline removal with the rollerball algorithm and nonlinear warping using spline functions. The application of the proposed procedure enabled filtration of random difference between images (background intensity changes and spatial differences of the spots location). After the preprocessing only spot intensities have an influence on the performed PCA or other techniques. The proposed technique was successfully applied to recognize the differences between three Carex species from the 2D videoscans of the extracts. The proposed solution may be of value for the any chemometric task--both unsupervised and supervised. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Doubly stochastic (pseudo)gene expression in the regulation of cancer (United States)

    Petrosyan, K. G.; Hu, Chin-Kun


    We extend a model of the regulation of cancer by gene and pseudogene messenger RNAs to take into account cell-to-cell variability. This introduces an additional randomness to the intensity of the intracellular noise. The intracellular stochasticity is modelled via an additive white noise source and the intercellular stochasticity, or randomness, is modelled via a steady-state Γ -distribution for the intracellular noise intensity. The doubly stochastic process is treated numerically and displays a difference compared with the single stochastic (pseudo)gene expression process, which is the randomness-induced shift of the onset of even-odd oscillations in the number of molecules. Similarities to experimental outcomes in the related literature are pointed out.

  15. "Pseudo" nomenclature in dermatology: What′s in a name?

    Directory of Open Access Journals (Sweden)

    Sangita Ghosh


    Full Text Available In the bewildering array of scientific nomenclature in the medical field, it is important to use correct terminology, know their aberrations and the reason behind a specific terminology. This paper is an attempt towards compiling all the pseudo-nomenclatures coined in dermatology, in order to make it easier to retain and recollect these pseudo names, signs, morphology, diseases, and conditions. It is also imperative to know the true entities that these pseudo names masquerade as, so as to understand the explanation for assigning the term ′pseudo′ to these conditions. A total of 52 pseudo-terms have been compiled here in reference to dermatology. Most of these pseudo-nomenclatures were coined due to some clinical or histopathological resemblance to the true conditions, while some were premature conclusions drawn from a flawed understanding of the basic nature of the condition. Clear understanding of each of these terms and the explanation behind them being pseudo will enable a dermatologist to avoid misdiagnosis and needless confusion.

  16. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.


    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Nav...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.......This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...

  17. Joint 2-D DOA and Noncircularity Phase Estimation Method

    Directory of Open Access Journals (Sweden)

    Wang Ling


    Full Text Available Classical joint estimation methods need large calculation quantity and multidimensional search. In order to avoid these shortcoming, a novel joint two-Dimension (2-D Direction Of Arrival (DOA and noncircularity phase estimation method based on three orthogonal linear arrays is proposed. The problem of 3-D parameter estimation can be transformed to three parallel 2-D parameter estimation according to the characteristic of three orthogonal linear arrays. Further more, the problem of 2-D parameter estimation can be transformed to 1-D parameter estimation by using the rotational invariance property among signal subspace and orthogonal property of noise subspace at the same time in every subarray. Ultimately, the algorithm can realize joint estimation and pairing parameters by one eigen-decomposition of extended covariance matrix. The proposed algorithm can be applicable for low SNR and small snapshot scenarios, and can estiame 2(M −1 signals. Simulation results verify that the proposed algorithm is effective.

  18. MESH2D Grid generator design and use

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].

  19. 2D:4D Ratio and its Implications in Medicine. (United States)

    Jeevanandam, Saravanakumar; Muthu, Prathibha K


    Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios.

  20. Coherence of strongly interacting 2D quantum gases (United States)

    Sobirey, Lennart; Siegl, Jonas; Luick, Niclas; Hueck, Klaus; Lompe, Thomas; Moritz, Henning


    The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 2D systems true long-range coherence is precluded by thermal fluctuations, nevertheless they can still become superfluid as predicted by Berezinskii, Kosterlitz and Thouless. In this superfluid regime the first order coherence decays algebraically, free of any characteristic length scale. Here, we show coherence measurements in a strongly interacting 2D gas of diatomic 6Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent, which is directly linked to the superfluid density. Furthermore, we present our realization of a homogeneous ultracold 2D Fermi gas. It should enable the direct measurement of non-local quantities such as the momentum distribution, without the complication of averaging over the different densities present in a harmonic trap.

  1. Absence of TAP 2D in Yoruba Nigerians. (United States)

    Awomoyi, A A; Donn, R P; Davies, E J; Carthy, D; Thomson, W; Ollier, W E


    We have characterized TAP allele frequencies in a panel of 71 Yoruba Nigerians using ARMS-PCR. With the exception that TAP 2D was absent in Nigerians, TAP 2 allele frequencies in this population were found to be similar to those in a UK white population. HLA-DR4 also was found to be at a low frequency in Yoruba Nigerians (1.4%). This may reflect the absence of TAP 2D in Nigerians as DR4 and TAP 2D are in linkage disequilibrium in UK Caucasoids. The most frequent TAP 1 allele in Yoruba Nigerians was TAP 1A (49%). However, this value will be an underestimate as TAP1 alleles could not be unequivocally assigned in 41% of subjects using the ARMS-PCR methodology.

  2. Optoelectronics based on 2D TMDs and heterostructures (United States)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo


    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  3. Rationale and design of the vitamin D and type 2 diabetes (D2d) study: a diabetes prevention trial (United States)

    OBJECTIVE: Observational studies suggest that vitamin D may lower the risk of type 2 diabetes. However, data from long-term trials are lacking. The Vitamin D and Type 2 Diabetes (D2d) study is a randomized clinical trial designed to examine whether a causal relationship exists between vitamin D supp...

  4. Determination of slope failure using 2-D resistivity method (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson


    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  5. Real-time 2-D temperature imaging using ultrasound. (United States)

    Liu, Dalong; Ebbini, Emad S


    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  6. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand


    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  7. Applications of the pseudo-harmonics to the multidimensional kinetics; Aplicacao do metodo dos pseudo-harmonicos a cinetica multidimensional

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Zelmo Rodrigues de; Silva, Fernando Carvalho da; Alvim, Antonio C. Marques [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail:;;


    In this work we propose the application of the pseudo-harmonics in modal methods of spatial kinetics. The pseudo-harmonics, or the pseudo-modes, are the eigenfunctions associated to the leakage+removal operator in each group of energy of the steady-state diffusion equation. This operator is self-adjoint and it is not necessary to calculate the adjoints eigenfunctions. In the present work the pseudo-harmonics will be obtained starting from the equation of diffusion discretized by the coarse-mesh finite difference (CMFD). The modal methods approximate the time-dependent flux for an expansion in functions predetermined, that include the spatial dependence, with unknown expansion coefficients, that include the whole dependent part of the time. The obtaining of the system whose solution they are the coefficients of the modal expansion is done with aid of a function weight. Using the pseudomodes obtained in the steady state calculations, in the modal expansion as been the dependent functions of the space, we will show that the function weight can be chosen as being the own adjoint pseudo-modes. This calculation leads to a linear system of ordinary differential equations with the defined dimension for the number of pseudo-harmonics employed. The solution of the equations is built through the analytical integration of the equations of the precursor of delayed neutron. The proposed method was tested and it present good results, when compared with the direct method. (author)

  8. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang


    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  9. When Is "Pseudo-Ludwig's Angina" Associated With Coagulopathy Also a "Pseudo" Hemorrhage? (United States)

    Lovallo, Emily; Patterson, Sarah; Erickson, Mitchel; Chin, Cynthia; Blanc, Paul; Durrani, Timur S


    Sublingual hematoma secondary to short-acting anticoagulants such as warfarin has been labeled "pseudo-Ludwig's angina" to distinguish it from the classic syndrome of localized infection and swelling involving the upper airway. Sublingual hematoma with airway compromise secondary to brodifacoum, a common long-acting anticoagulant rodenticide, has only been reported in the veterinary literature. We report a case of massive tongue swelling and impending airway compromise in the context of an intentional long-acting anticoagulant ingestion leading to coagulopathy. The swelling was initially presumed to be due either to infection or hemorrhage, but this was not supported by computed tomography scan imaging. Instead, the patient's clinical course was consistent with corticosteroid-responsive angioedema, temporally associated with the ingested brodifacoum.

  10. Numerical modelling of unsteady 2D sheet cavitation

    NARCIS (Netherlands)

    de Lange, D.F.; de Bruin, G.J.; van Wijngaarden, L.; van Wijngaarden, L.


    Unsteady 2D sheet cavitation has been calculated by a BEM. Cubics are used to represent various quantities like the potential on the wet part of the profile, the normal velocity on the sheet, the geometry of the profile and the sheet. The growing cavity sheet, the re-entrant jet and the sheet

  11. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming


    production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...

  12. CYP2D6 genotype determination in the Danish population

    DEFF Research Database (Denmark)

    Brøsen, K; Nielsen, P N; Brusgaard, K


    CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous...

  13. Validation and testing of the VAM2D computer code

    Energy Technology Data Exchange (ETDEWEB)

    Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))


    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  14. Rheological Properties of Quasi-2D Fluids in Microgravity (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha


    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  15. The effects of aging on haptic 2D shape recognition

    NARCIS (Netherlands)

    Overvliet, K.E.; Wagemans, J.; Krampe, R.T.


    We use the image-mediation model (Klatzky & Lederman, 1987) as a framework to investigate potential sources of adult age differences in the haptic recognition of two-dimensional (2D) shapes. This model states that the low-resolution, temporally sequential, haptic input is translated into a visual

  16. Nonlinear excursions of particles in ideal 2D flows

    DEFF Research Database (Denmark)

    Aref, Hassan; Pedersen, Johan Rønby; Stremler, Mark A.


    A number of problems related to particle trajectories in ideal 2D flows are discussed. Both regular particle paths, corresponding to integrable dynamics, and irregular or chaotic paths may arise. Examples of both types are shown. Sometimes, in the same flow, certain particles will follow regular...

  17. CFD code comparison for 2D airfoil flows

    NARCIS (Netherlands)

    Sørensen, Niels N.; Méndez, B.; Muñoz, F. A.; Sieros, G; Jost, E.; Lutz, T.; Papadakis, G; Voutsinas, S.; Barakos, G. N.; Colonia, S.; Baldacchino, D.; Baptista, C.F.; Simao Ferreira, C.


    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 ×

  18. Concepts and methods of 2D infrared spectroscopy

    National Research Council Canada - National Science Library

    Hamm, Peter; Zanni, Martin T


    ... spectra and exercises to illustrate the concepts involved. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded fro...

  19. Promising Thermoelectric Bulk Materials with 2D Structures. (United States)

    Zhou, Yiming; Zhao, Li-Dong


    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei


    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.


    B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...

  2. QSAR Models for P-450 (2D6) Substrate Activity

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov


    Human Cytochrome P450 (CYP) is a large group of enzymes that possess an essential function in metabolising different exogenous and endogenous compounds. Humans have more than 50 different genes encoding CYP enzymes, among these a gene encoding for the CYP isoenzyme 2D6, a CYP able to metabolise...

  3. Etchant-free transfer of 2D nanostructures (United States)

    Zhang, Fu; Erb, Chad; Runkle, Lauren; Zhang, Xiaotian; Alem, Nasim


    The effective use of the van der Waals 2D materials relies on their successful transfer from the growth substrate onto other target substrates in the form of large films or flakes. In particular, it is important to transfer such atomically thin samples to various substrates with minimal sample damage and exposure to etchants and chemicals to realize their applications. Here we develop a universal transfer method that not only is free of reactive etchants, but also can maintain the film morphology intact with no tears and cracks. We show a variety of different 2D crystals and thin films with various sizes and thicknesses transferred from different substrates, i.e. metal-organic chemical vapor deposition-grown WSe2 coalesced thin films on sapphire and mechanically exfoliated 2D crystalline flakes on titanium nitride. Further examination by transmission electron microscopy indicates successful transfer of all the samples. This study presents a universal and etchant-free transfer method that can be used to transfer a variety of 2D crystals and other nanostructures from/to various substrates.

  4. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.


    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and

  5. 2D Orthogonal Locality Preserving Projection for Image Denoising. (United States)

    Shikkenawis, Gitam; Mitra, Suman K


    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  6. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming-Hui


    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.


    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...

  8. Multiwavelet packets and frame packets of L2( d)

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    ized to this setting. Further, we show how to construct various orthonormal bases of. L2( d) from the multiwavelet packets. Keywords. Wavelet; wavelet packets; frame packets; dilation matrix. 1. Introduction. Consider an orthonormal wavelet of L2( ). At the jth resolution level, the orthonormal basis {ψjk : j,k ∈ } generated by ...

  9. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Proteome analysis of human colorectal cancer tissue using 2-D DIGE and tandem mass spectrometry for identification of disease-related proteins. ... African Journal of Biotechnology ... The cDNA of the differential protein was transfected into colorectal cancer cells, and the biological behavior of these cells was observed.

  10. 2-D Tissue Motion Compensation of Synthetic Transmit Aperture Images

    DEFF Research Database (Denmark)

    Gammelmark, Kim Løkke; Jensen, Jørgen Arendt


    Synthetic transmit aperture (STA) imaging is susceptible to tissue motion because it uses summation of low-resolution images to create the displayed high-resolution image. A method for 2-D tissue motion correction in STA imaging is presented. It utilizes the correlation between highresolution ima...

  11. L1 Generalized Procrustes 2D Shape Alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Eiriksson, Hrafnkell


    We describe a new method for resistant and robust alignment of sets of 2D shapes wrt. position, rotation, and isotropical scaling based on minimization of absolute distances. The shapes are represented by \\$k\\$ landmarks in two dimensions. It is formulated as a linear programming (LP) problem, th...

  12. 2D-printing ink based on ultrasound exfoliated graphite (United States)

    Shul'ga, Yu. M.; Lobach, A. S.; Baskakov, S. A.; Konev, D. A.; Lyskov, N. V.; Kabachkov, E. N.


    A technique is described for producing 2D-printing ink based on ultrasound exfoliated graphite (UEG). It has been established that the conductivity of a film obtained by microfiltration of such ink is 26.4 S/cm. Data on the morphology, composition, and IR spectra of UEG films are provided and compared with analogous data for reduced graphene-oxide films.

  13. Computational study of interfaces and edges of 2D materials

    NARCIS (Netherlands)

    Farmanbar Gelepordsari, M.


    The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated

  14. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi


    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  15. Estimating 2D Upper Body Poses from Monocular Images

    NARCIS (Netherlands)

    Broekhuijsen, Jeroen; Poppe, Ronald Walter; Poel, Mannes


    Automatic estimation and recognition of poses from video allows for a whole range of applications. The research described here is an important step towards automatic extraction of 3D poses. We describe our research to extract the 2D joint locations of the people in meeting videos. The key point of

  16. Crystal structure of human cytochrome P450 2D6. (United States)

    Rowland, Paul; Blaney, Frank E; Smyth, Martin G; Jones, Jo J; Leydon, Vaughan R; Oxbrow, Amanda K; Lewis, Ceri J; Tennant, Mike G; Modi, Sandeep; Eggleston, Drake S; Chenery, Richard J; Bridges, Angela M


    Cytochrome P450 2D6 is a heme-containing enzyme that is responsible for the metabolism of at least 20% of known drugs. Substrates of 2D6 typically contain a basic nitrogen and a planar aromatic ring. The crystal structure of human 2D6 has been solved and refined to 3.0A resolution. The structure shows the characteristic P450 fold as seen in other members of the family, with the lengths and orientations of the individual secondary structural elements being very similar to those seen in 2C9. There are, however, several important differences, the most notable involving the F helix, the F-G loop, the B'helix, beta sheet 4, and part of beta sheet 1, all of which are situated on the distal face of the protein. The 2D6 structure has a well defined active site cavity above the heme group, containing many important residues that have been implicated in substrate recognition and binding, including Asp-301, Glu-216, Phe-483, and Phe-120. The crystal structure helps to explain how Asp-301, Glu-216, and Phe-483 can act as substrate binding residues and suggests that the role of Phe-120 is to control the orientation of the aromatic ring found in most substrates with respect to the heme. The structure has been compared with published homology models and has been used to explain much of the reported site-directed mutagenesis data and help understand the metabolism of several compounds.

  17. The concept of time in 2D gravity

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Anagnostopoulos, Konstantinos N.; Jurkiewicz, Jerzy


    We show that the "time" ts defined via spin clusters in the Ising model coupled to 2d gravity leads to a fractal dimension dh(s) = 6 of space-time at the critical point, as advocated by Ishibashi and Kawai. In the unmagnetized phase, however, this definition of Hausdorff dimension breaks down...

  18. Half-metallicity in 2D organometallic honeycomb frameworks. (United States)

    Sun, Hao; Li, Bin; Zhao, Jin


    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  19. Statistical analysis of 2D patterns and its application to astrometry (United States)

    Zavada, Petr; Píška, Karel


    A general statistical procedure for analysis of finite 2D patterns, inspired by analysis of heavy-ion data, is developed. The method is verified in the study of publicly available data obtained by the Gaia-ESA mission. We prove that the procedure can be sensitive to the limits of accuracy of measurement, but it can also clearly identify the real physical effects on the large background of random distributions. As an example, the method confirms presence of binary and ternary star systems in the studied data. At the same time the possibility of statistical detection of gravitational microlensing effect is discussed.

  20. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)


    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  1. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity. (United States)

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei


    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  2. Pseudo-Newtonian planar circular restricted 3-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Dubeibe, F.L., E-mail: [Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio (Colombia); Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Lora-Clavijo, F.D., E-mail: [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); González, Guillermo A., E-mail: [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)


    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  3. Brain MR image segmentation using NAMS in pseudo-color. (United States)

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong


    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  4. Gold-standard performance for 2D hydrodynamic modeling (United States)

    Pasternack, G. B.; MacVicar, B. J.


    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  5. Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles (United States)

    Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.


    In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to

  6. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca


    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  7. Calculation of wakefields in 2D rectangular structures

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodnov, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Bane, K.L.F.; Stupakov, G. [Stanford Univ., CA (United States). SLAC National Accelerator Lab.


    We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross-section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code ECHO(2D). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.

  8. Calculation of wakefields in 2D rectangular structures

    Directory of Open Access Journals (Sweden)

    I. Zagorodnov


    Full Text Available We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code echo(2d. The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.

  9. Enhanced automated platform for 2D characterization of RFID communications (United States)

    Vuza, Dan Tudor; Vlǎdescu, Marian


    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  10. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev


    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  11. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.


    Directory of Open Access Journals (Sweden)

    K. Srinivasan


    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  13. Topology in the 2d Heisenberg Model under Gradient Flow (United States)

    Sandoval, I. O.; Bietenholz, W.; de Forcrand, P.; Gerber, U.; Mejía-Díaz, H.


    The 2d Heisenberg model — or 2d O(3) model — is popular in condensed matter physics, and in particle physics as a toy model for QCD. Along with other analogies, it shares with 4d Yang-Mills theories, and with QCD, the property that the configurations are divided in topological sectors. In the lattice regularisation the topological charge Q can still be defined such that Q\\in {Z}. It has generally been observed, however, that the topological susceptibility {{χ }t}= /V does not scale properly in the continuum limit, i.e. that the quantity {{χ }t}{{ξ }2} diverges for ξ → ∞ (where ξ is the correlation length in lattice units). Here we address the question whether or not this divergence persists after the application of the Gradient Flow.

  14. Structural analysis of teicoplanin A2 by 2d NMR (United States)

    Heald, Sarah L.; Mueller, Luciano; Jeffs, Peter W.

    The analysis of the intact glycopeptide antibiotic, teicoplanin A 2, by two-dimensional proton NMR is described. Delayed-correlation spectroscopy (COSY), double-quantum coherence experiments (DACE), and nuclear Overhauser spectroscopy (NOESY) are utilized to confirm the primary structure. Distance constraints derived from NOESY data integrated with computer-assisted molecular modeling and force-field energy minimization yields a proposed three-dimensional solution-state conformation. Included are NMR methods developed for improved accuracy of distance measurements from 2D NOE experiments obtained on samples dissolved in DMSO- d6/water. The effects of different pulse sequences for water suppression on the 2D NOE spectral results are compared. Clear indication that teicoplanin exists in two unequally populated conformations which are in slow exchange is revealed by the presence of cross peaks attributable to conformational interchange in the NOESY spectra.

  15. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... mechanics methods. One of these methods, Density Functional Theory (DFT), has been very successful at determining structural properties of 2D materials. It is however well-known that it less accurate when it comes to predicting the energy levels of excited states that are important in order to determine...... electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...

  16. Determination of yield stress of 2D (Yukawa) dusty plasma (United States)

    Liu, Bin; Goree, J.


    Elastic and plastic deformations of a two-dimensional (2D) dusty plasma crystal under shear stresses are investigated using a numerical simulation. Our simulation mimics experiments that start with a crystal that is then manipulated by a pair of laser beams separated by a gap. In a pair of rectangular regions, we apply two equal but oppositely directed forces, to induce a shear deformation in the gap between. These external forces are increased incrementally to examine the elastic behavior, plasticity, and liquid flows. In the low-force elastic limit, a measurement of the shear modulus is obtained, which agrees with a theoretical value based on a sound speed. For larger forces resulting in plastic deformation, we determine the yield stress, which is found to agree with a common theoretical model for the critical yield stress, after accounting for the dimensionality for 2D.

  17. Polymer ultrapermeability from the inefficient packing of 2D chains (United States)

    Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.


    The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

  18. Power Control for D2D Underlay Cellular Networks With Channel Uncertainty

    KAUST Repository

    Memmi, Amen


    Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput, and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge, since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this paper, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Existing results on D2D underlay networks assume perfect channel state information (CSI). This assumption is usually unrealistic in practice due to the dynamic nature of wireless channels. Thus, it is of great interest to study and evaluate achievable performances under channel uncertainty. Differently from previous works, we are assuming that the CSI may be imperfect and include estimation errors. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name “centralized”. For the distributed method, the ON–OFF power control and the truncated channel inversion are proposed. Expressions of coverage probabilities are established in the function of D2D links intensity, pathloss exponent, and estimation error variance. Results show the important influence of CSI error on achievable performances and thus how crucial it is to consider it while designing networks and evaluating performances.

  19. Diagnosis and Treatment of Pseudo-Class III Malocclusion (United States)

    Reyes, Ariel; Serret, Luis; Peguero, Marcos; Tanaka, Orlando


    Pseudo-Class III malocclusion is characterized by the presence of an anterior crossbite due to a forward functional displacement of the mandible; in most cases, the maxillary incisors present some degree of retroclination, and the mandibular incisors are proclined. Various types of appliances have been described in the literature for the early treatment of pseudo-Class III malocclusion. The objectives of this paper are to demonstrate the importance of making the differential diagnosis between a skeletal and a pseudo-Class III malocclusion and to describe the correction of an anterior crossbite. The association of maxillary expansion and a 2 × 4 appliance can successfully be used to correct anterior crossbites. PMID:25525526

  20. Diagnosis and Treatment of Pseudo-Class III Malocclusion

    Directory of Open Access Journals (Sweden)

    Ariel Reyes


    Full Text Available Pseudo-Class III malocclusion is characterized by the presence of an anterior crossbite due to a forward functional displacement of the mandible; in most cases, the maxillary incisors present some degree of retroclination, and the mandibular incisors are proclined. Various types of appliances have been described in the literature for the early treatment of pseudo-Class III malocclusion. The objectives of this paper are to demonstrate the importance of making the differential diagnosis between a skeletal and a pseudo-Class III malocclusion and to describe the correction of an anterior crossbite. The association of maxillary expansion and a 2 × 4 appliance can successfully be used to correct anterior crossbites.

  1. Occlusal rehabilitation of pseudo-class III patient. (United States)

    Cardoso, Antônio Carlos; Ferreira, Cimara Fortes; Oderich, Elisa; Pedroso, Moira Leão; Wicks, Russell


    To treat a patient with anterior crossbite, the clinician should first assess if it is a genuine class III or a pseudo-class III malocclusion. Cephalometric analysis is important; however, registering a patient's centric relation (CR) is simple, quick, and costless and can play a decisive role in a differential diagnosis for this type of patient profile. This clinical report depicts a patient clinically diagnosed as class III. After mandible manipulation in CR, it was noted that the patient in question was a pseudo-class III. The treatment was based on the pseudo-class III diagnosis. Therefore, the patient was rehabilitated by occlusal adjustments and conventional and implant-supported prostheses and without the need for invasive orthognathic surgery. © 2014 by the American College of Prosthodontists.

  2. Pseudo-Glassification Material for G-Demption

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gates, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    G-Demption, LLC has requested that PPNL provide design input for a “pseudo-glassification” process associated with their proposed technology for generating gamma irradiation stations from used nuclear fuel. The irradiation design currently consists of an aluminum enclosure designed to allow for proper encapsulation of and heat flow from a used fuel rod while minimally impacting the streaming of gamma rays from the fuel. In order to make their design more robust, G-Demption is investigating the benefits of backfilling this aluminum enclosure with a setting material once the used fuel rod is properly placed. This process has been initially referred to as “pseudo-glassification”, and strives not to impact heat transport or gamma streaming from the used fuel rod while providing increased fuel rod protection and fission gas retention. PNNL has compiled an internal material evaluation and discussion for the “pseudo-glassification” process in this report.

  3. Pseudo-periodic maps and degeneration of Riemann surfaces

    CERN Document Server

    Matsumoto, Yukio


    The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.

  4. Second to fourth digit ratio (2D:4D and concentrations of circulating sex hormones in adulthood

    Directory of Open Access Journals (Sweden)

    Morris Howard A


    Full Text Available Abstract Background The second to fourth digit ratio (2D:4D is used as a marker of prenatal sex hormone exposure. The objective of this study was to examine whether circulating concentrations of sex hormones and SHBG measured in adulthood was associated with 2D:4D. Methods This analysis was based on a random sample from the Melbourne Collaborative Cohort Study. The sample consisted of of 1036 men and 620 post-menopausal women aged between 39 and 70 at the time of blood draw. Concentrations of circulating sex hormones were measured from plasma collected at baseline (1990-1994, while digit length was measured from hand photocopies taken during a recent follow-up (2003-2009. The outcome measures were circulating concentrations of testosterone, oestradiol, dehydroepiandrosterone sulphate, androstenedione, Sex Hormone Binding Globulin, androstenediol glucoronide for men only and oestrone sulphate for women only. Free testosterone and oestradiol were estimated using standard formulae derived empirically. Predicted geometric mean hormone concentrations (for tertiles of 2D:4D and conditional correlation coefficients (for continuous 2D:4D were obtained using mixed effects linear regression models. Results No strong associations were observed between 2D:4D measures and circulating concentrations of hormones for men or women. For males, right 2D:4D was weakly inversely associated with circulating testosterone (predicted geometric mean testosterone was 15.9 and 15.0 nmol/L for the lowest and highest tertiles of male right 2D:4D respectively (P-trend = 0.04. There was a similar weak association between male right 2D:4D and the ratio of testosterone to oestradiol. These associations were not evident in analyses of continuous 2D:4D. Conclusions There were no strong associations between any adult circulating concentration of sex hormone or SHGB and 2D:4D. These results contribute to the growing body of evidence indicating that 2D:4D is unrelated to adult sex

  5. Submicrometric 2D ratchet effect in magnetic domain wall motion

    Energy Technology Data Exchange (ETDEWEB)

    Castán-Guerrero, C., E-mail: [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)


    Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.

  6. Polchinski ERG equation and 2D scalar field theory


    Kubyshin, Yuri; Neves, Rui; Potting, Robertus


    We investigate a $Z_2$-symmetric scalar field theory in two dimensions using the Polchinski exact renormalization group equation expanded to second order in the derivative expansion. We find preliminary evidence that the Polchinski equation is able to describe the non-perturbative infinite set of fixed points in the theory space, corresponding to the minimal unitary series of 2D conformal field theories. We compute the anomalous scaling dimension $\\eta$ and the correlation l...

  7. Modifications to the XBR-2D Heat Conduction Code (United States)


    contract DAAA15-92-D-003 D TIC •ELEcTE7.- 94-14854 APPROVM FM PUDC REXASE DUMhUrfO 13 UNIMI= •’//l//llll~lll/|gg1/~vC% Al , tv 945 •mlm•u• Best Available...films, and an addiiona l ine was added where the barrd and chrome matea propendes must be inpu. F-oUowmg is a simple Wip fil is Sample XUR-2D input file

  8. Dislocation Field Theory in 2D: Application to Graphene


    Lazar, Markus


    A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with...

  9. 2D and 3D Traveling Salesman Problem (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt


    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  10. High resolution 2D image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter


    An optimized method for continuous wave 2-dimensional (2-D) upconversion of incoherent or thermal light is demonstrated and quantified. Using standard resolution targets a resolution of 200×1000 pixels is obtained. The suggested method is viewed in scope of modern CCD cameras operating in the near...... CCD detectors. Furthermore, we discuss the exceptionally good depth of field possible for imaging systems based on the proposed method....

  11. 2D-piirtotoimintojen toteutus Revit-mallinnusohjelmassa


    Piironen, Perttu


    Tämän insinöörityön tavoitteena oli mallintaa Revit Architecture-ohjelmalla kaksikerroksinen kivirunkoinen paritalo. Lisäksi tavoitteena oli perehtyä ohjelman 2D-piirustusominaisuuksiin, sekä pääpiirustusten viimeistelyyn ja tulostamiseen oikeassa mittakaavassa. Paritalo suunniteltiin Jyväskylässä sijaitsevalle kaupungin vuokratontille. Työssä selvitettiin paritalon mallintamisen vaiheet Revit Architecture -ohjelmalla. Lisäksi piirrettiin vaiheittain perustusleikkaus Revit Architecturen 2...

  12. 2D Vertical Heterostructures for Novel Tunneling Device Applications (United States)


    consisting of two- dimensional (2D) materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDs) have a variety of...transition metal dichalcogenides; hexagonal boron nitride; graphene. Introduction Due to their potential application in a variety of fields, such as...enhanced negative differential resistance that will be of interest for a wide range of electronic and optoelectronic devices in future DoD systems

  13. Consistency between 2D-3D Sediment Transport models (United States)

    Villaret, Catherine; Jodeau, Magali


    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  14. 2D imaging of functional structures in perfused pig heart (United States)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias


    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  15. FPGA implementation of filtered image using 2D Gaussian filter


    Leila kabbai; Anissa Sghaier; Ali Douik; Mohsen Machhout


    Image filtering is one of the very useful techniques in image processing and computer vision. It is used to eliminate useless details and noise from an image. In this paper, a hardware implementation of image filtered using 2D Gaussian Filter will be present. The Gaussian filter architecture will be described using a different way to implement convolution module. Thus, multiplication is in the heart of convolution module, for this reason, three different ways to implement multiplication opera...

  16. Design Application Translates 2-D Graphics to 3-D Surfaces (United States)


    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  17. Weber's law in 2D and 3D grasping. (United States)

    Ozana, Aviad; Ganel, Tzvi


    Visually guided grasping movements directed to real, 3D objects are characterized by a distinguishable trajectory pattern that evades the influence of Weber's law, a basic principle of perception. Conversely, grasping trajectories directed to 2D line drawings of objects adhere to Weber's law. It can be argued, therefore, that during 2D grasping, the visuomotor system fails at operating in analytic mode and is intruded by irrelevant perceptual information. Here, we explored the visual and tactile cues that enable such analytic processing during grasping. In Experiment 1, we compared grasping directed to 3D objects with grasping directed to 2D object photos. Grasping directed to photos adhered to Weber's law, suggesting that richness in visual detail does not contribute to analytic processing. In Experiment 2, we tested whether the visual presentation of 3D objects could support analytic processing even when only partial object-specific tactile information is provided. Surprisingly, grasping could be performed in an analytic fashion, violating Weber's law. In Experiment 3, participants were denied of any haptic feedback at the end of the movement and grasping trajectories again showed adherence to Weber's law. Taken together, the findings suggest that the presentation of real objects combined with indirect haptic information at the end of the movement is sufficient to allow analytic processing during grasp.

  18. 2D DOST based local phase pattern for face recognition (United States)

    Moniruzzaman, Md.; Alam, Mohammad S.


    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  19. Role of defects in frictional properties of 2-D materials (United States)

    Kavalur, Aditya; Kim, Woo Kyun

    Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.

  20. Observations of 2D Doppler backscattering on MAST

    CERN Document Server

    Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L


    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...

  1. Optimal Base Encodings for Pseudo-Boolean Constraints

    CERN Document Server

    Codish, Michael; Fuhs, Carsten; Schneider-Kamp, Peter


    This paper formalizes the "optimal base problem", presents an algorithm to solve it, and describes its application to the encoding of Pseudo-Boolean constraints to SAT. We demonstrate the impact of integrating our algorithm within the Pseudo-Boolean constraint solver MiniSAT+. Experimentation indicates that our algorithm scales to consider bases involving numbers up to 1,000,000, improving on the restriction in MiniSAT+ to prime numbers up to 17. We show that, while for many examples primes up to 17 do suffice, encoding with respect to arbitrary bases improves the subsequent SAT solving time considerably.

  2. Intestinal pseudo-obstruction: An important diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Carmen Salvador-Coloma


    Full Text Available We present the case of a 72-year-old patient admitted on various occasions with symptoms of intestinal pseudo-obstruction. Extensive diagnostic tests eventually found that the patient had small-cell lung cancer associated with high anti-HU antibody titres, which pointed to a probable paraneoplastic intestinal obstruction syndrome associated with small-cell lung cancer. A paraneoplastic syndrome causing abnormal changes in gastrointestinal motility can be the first signs of small cell lung cancer. These syndromes improve with treatment of the underlying disease, as seen in our patient, who stopped having episodes of intestinal pseudo-obstruction after administration of chemotherapy.

  3. Enhancing pseudo-telepathy in the magic square game.

    Directory of Open Access Journals (Sweden)

    Lukasz Pawela

    Full Text Available We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise. Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action of a noise channel using semidefinite programming.

  4. Enhancing pseudo-telepathy in the magic square game. (United States)

    Pawela, Lukasz; Gawron, Piotr; Puchała, Zbigniew; Sładkowski, Jan


    We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise. Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action of a noise channel using semidefinite programming.

  5. Signed Distance Computation using the Angle Weighted Pseudo-normal

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Aanæs, Henrik


    , the surface is not \\$C\\^1\\$ continuous, hence, the normal is undefined at these loci. In this paper, we undertake to show that the angle weighted pseudo-normal (originally proposed by Thürmer and Wüthrich and independently by Sequin) has the important property that it allows us to discriminate between points...... of the distance computation. Moreover, it provides an additional argument in favour of the angle weighted pseudo-normals being the natural extension of the face normals. Apart from the theoretical results, we also propose a simple and efficient algorithm for computing the signed distance to a closed \\$C\\^0\\$ mesh...

  6. True versus Pseudo-Intestinal Malrotation: Case Series and Review. (United States)

    Khara, Harshit S; Kothari, Shivangi T; Gruss, Claudia B; Langnas, Alan; Schafer, Daniel F; McCashland, Timothy M


    Intestinal malrotation is an anomaly of fetal intestinal rotation that can present with symptoms after birth or in early childhood, but is rarely diagnosed in adults. Patients who have symptomatic presentations require surgery. Other entities may mimic intestinal malrotation and respond to non-surgical management. We present 2 adult cases with the radiological diagnosis of intestinal malrotation: one with true malrotation presenting as a duodenal mass, and another with "pseudo-malrotation" due to altered anatomy. These cases illustrate the importance of recognizing and differentiating these rare adult presentations of true malrotation from "pseudo-malrotation" in regards to their acute management.

  7. "Divine water" in the alchemical writings of pseudo-Democritus. (United States)

    Martelli, Matteo


    The name of the chemical solution (divine water) or (sulfur water) is characterised by semantic ambiguity: the term theion means both "divine" and "sulfur," and Greek alchemists frequently play on this polysemy. This article analyses the use of this and similar expressions in the writings of pseudo-Democritus from both a technical and a philological point of view. A fragment preserved by the alchemists Moses and Synesius shows that pseudo-Democritus knows two different kinds of this "water," the second of which recalls a recipe found in the chemical Leiden Papyrus, and that the composition of the substance determines the form of its name.

  8. Perturbation of sectorial projections of elliptic pseudo-differential operators

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Chen, Guoyuan; Lesch, Matthias


    Over a closed manifold, we consider the sectorial projection of an elliptic pseudo-differential operator A of positive order with two rays of minimal growth. We showthat it depends continuously on A when the space of pseudo-differential operators is equipped with a certain topology whichwe...... explicitly describe. Our main application deals with a continuous curve of arbitrary first order linear elliptic differential operators over a compact manifold with boundary. Under the additional assumption of the weak inner unique continuation property, we derive the continuity of a related curve...

  9. Study of pseudo soldering based on eddy current pulsed thermography (United States)

    Zhou, Xiuyun; Xue, Yun; Chen, Yaqiu; Lu, Xiaochuan; Liu, Zhen


    Pseudo soldering defects can break the electrical and mechanical connection between components and the print circuit board and eventually cause failure of the whole electronic equipment. In this letter, the eddy current pulsed thermography (ECPT) method was used for defect inspection of small-sized solder joints. The identification of defects of solder joints is based on the heat transfer between various component structures. The experimental results indicated that the ECPT method can be effectively used for defect detection and location of the solder joints. In addition, it can distinguish different degrees of pseudo soldering.

  10. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism

    DEFF Research Database (Denmark)

    Zwisler, Stine T; Enggaard, Thomas P; Noehr-Jensen, Lene


    Oxycodone is O-demethylated by CYP2D6 to oxymorphone which is a potent micro-receptor agonist. The CYP2D6 oxidation polymorphism divides the Caucasian population in two phenotypes: approximately 8% with no enzyme activity, poor metabolizers (PM) and the remainder with preserved CYP2D6 activity......, extensive metabolizers (EM). The objective of the study was to determine if the analgesic effect of oxycodone in human experimental pain depends on its metabolism to oxymorphone. The analgesic effect of oxycodone was evaluated in a randomized, placebo-controlled, double-blinded, crossover experiment...... including 33 (16 EM and 17 PM) healthy volunteers. Pain tests were performed before and 1, 2, 3 and 4 hr after medication and included pain detection and tolerance thresholds to single electrical sural nerve stimulation, pain summation threshold to repetitive electrical sural nerve stimulation and the cold...

  11. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao-Hao [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Xue, Li-Ping, E-mail: [College of Food and Drug, Luoyang Normal University, Luoyang 471934 (China); Miao, Shao-Bin [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Zhao, Bang-Tun, E-mail: [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China)


    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 were also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.

  12. A New Method for Detecting Goaf Area of Coal Mine :2D Microtremor Profiling Technique (United States)

    Xu, P.; Ling, S.; Guo, H.; Shi, W.; Li, S.; Tian, B.


    A goaf area is referred to as a cavity where coal has been removed or mined out. These cavities will change the original geostress equilibrium of stratigraphic system and cause local geostress focusing or concentration. Consequently, the surrounding rock of a goaf may be deformed, fractured, displaced and caved resulting from the combined effect of gravity and geostress. In the cases of little or no effective mining control, widespread cracks, fractures and even subsidence of the rock mass above the goaf will not only lead to groundwater depletion, farmland destruction and deterioration of ecological environment, but also present a serious threat to the mining safety, engineering construction, and even people's lives and property. So, it is important to locate the boundary of the goaf and to evaluate its stability in order to provide the basis for comprehensive control in the latter period of mining. This article attempts to explore a new geophysical method - 2D microtremor profiling technique for goaf detection and mapping. 2D microtremor profiling technique is based on the microtremor array theory (Aki, 1957; Ling, 1994; Okada, 2003) utilizing spatial autocorrelation analysis to obtain Rayleigh-wave dispersion curves for apparent S-wave velocity (Vx) calculation (Ling & Miwa, 2006;Xu et al.,2012). A laterally continuous S-wave velocity section can then be obtained through data interpolation. The final result will be used for interpreting lateral changes in lithology and geological structures. Let's take a case study in Henan Province of China as an example. The coal seams in the survey area were about 150 ~ 250m deep. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in 20, 40 and 80m, respectively, and a sampling the interval of 50m. We observed the following characteristics of the goaf area from the microtremor Vx section: (1) obvious low pseudo velocity anomaly corresponding to limestone layer below the goaf; (2

  13. Numerical simulation of 2D airfoil stall by UPACS: CFD Workshop on 2D airfoil stall predict


    Takaki, Ryoji; Yamamoto, Kazuomi; Enomoto, Shunji; Yamazaki, Hiroyuki; Yamane, Takashi; Iwamiya, Toshiyuki; 高木 亮治; 山本 一臣; 榎本 俊治; 山崎 裕之; 山根 敬; 岩宮 敏幸


    Static stall phenomena of three kinds of 2D (two dimensional) airfoil, are numerically investigated. UPACS (Unified Platform for Aerospace Computational Simulation) is used with Spalart-Allmaras turbulence model showing good performance to predict airfoil stall characteristics for NACA633-018 and NACA631-012, comparing CFD (Computational Fluid Dynamics) results with wind tunnel testing data. As for NACA64A-006, CFD cannot simulate a laminar separation and turbulent reattachment assuming a ful...

  14. 2D and 3D visualization methods of endoscopic panoramic bladder images (United States)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til


    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.


    Energy Technology Data Exchange (ETDEWEB)

    Garaud, Pascale; Brummell, Nicholas [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz CA 95060 (United States)


    Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.

  16. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication. (United States)

    Prinz, V Ya; Seleznev, Vladimir


    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields. Copyright 2016 IOP Publishing Ltd.

  17. Comparison of the accuracy and precision of prostate localization with 2D-2D and 3D images

    DEFF Research Database (Denmark)

    Logadottir, Ashildur; Korreman, Stine; Munck af Rosenschöld, Per


    . The correlation between the two methods was better for translational shifts of the isocenter than for rotational shifts. Conclusions The study shows that the precision of the 2D–2D set-up is equivalent to the precision of the 3D images. It also shows that the soft-tissue based set-up needs 1mm larger set......Background and purpose Positional uncertainties related to the set-up of the prostate, using internal markers and either 2D–2D or 3D images, were studied. Set-up using direct prostate localization on CBCT scans is compared to set-up using internal markers. Material and methods 20 patients...... with prostate cancer were enrolled in the study. After each daily session, a set of 2D–2D and 3D images were acquired. The images isocenter was compared to reference images isocenter. For the set-up error analysis the systematic error, μ, and the set-up uncertainties, Σ and σ, were determined...


    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec


    Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy

  19. Fermionic coherent states for pseudo-Hermitian two-level systems

    Energy Technology Data Exchange (ETDEWEB)

    Cherbal, O [Physical Faculty, Theoretical Physics Lab, USTHB, BP 32 El-Alia, Bab Ezzouar, 16111 Algiers (Algeria); Drir, M [Physical Faculty, Theoretical Physics Lab, USTHB, BP 32 El-Alia, Bab Ezzouar, 16111 Algiers (Algeria); Maamache, M [Laboratoire de Physique Quantique et Systemes Dynamiques, Department of Physics, Setif University, Setif 19000 (Algeria); Trifonov, D A [Institute of Nuclear Research, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)


    We introduce creation and annihilation operators of pseudo-Hermitian fermions for two-level systems described by a pseudo-Hermitian Hamiltonian with real eigenvalues. This allows the generalization of the fermionic coherent states approach to such systems. Pseudo-fermionic coherent states are constructed as eigenstates of two pseudo-fermion annihilation operators. These coherent states form a bi-normal and bi-overcomplete system, and their evolution governed by the pseudo-Hermitian Hamiltonian is temporally stable. In terms of the introduced pseudo-fermion operators, the two-level system Hamiltonian takes a factorized form similar to that of a harmonic oscillator.

  20. 2-D linear motion system. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)



    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved

  1. Strongly Coupled High-Quality Graphene/2D Superconducting Mo2C Vertical Heterostructures with Aligned Orientation. (United States)

    Xu, Chuan; Song, Shuang; Liu, Zhibo; Chen, Long; Wang, Libin; Fan, Dingxun; Kang, Ning; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai


    Vertical heterostructures of two-dimensional (2D) crystals have led to the observations of numerous exciting physical phenomena and presented the possibilities for technological applications, which strongly depend on the quality, interface, relative alignment, and interaction of the neighboring 2D crystals. The heterostructures or hybrids of graphene and superconductors offer a very interesting platform to study mesoscopic superconductivity and the interplay of the quantum Hall effect with superconductivity. However, so far the heterostructures of graphene and 2D superconductors are fabricated by stacking, and consequently suffer from random relative alignment, weak interfacial interaction, and unavoidable interface contaminants. Here we report the direct growth of high-quality graphene/2D superconductor (nonlayered ultrathin α-Mo2C crystal) vertical heterostructures with uniformly well-aligned lattice orientation and strong interface coupling by chemical vapor deposition. In the heterostructure, both graphene and 2D α-Mo2C crystal show no defect, and the graphene is strongly compressed. Different from the previously reported graphene/superconductor heterostructures or hybrids, the strong interface coupling leads to a phase diagram of superconducting transition with multiple voltage steps being observed in the transition regime. Furthermore, we demonstrate the realization of highly transparent Josephson junction devices based on these strongly coupled high-quality heterostructures, in which a clear magnetic-field-induced Fraunhofer pattern of the critical supercurrent is observed.

  2. Pseudo-observations for competing risks with covariate dependent censoring

    DEFF Research Database (Denmark)

    Binder, Nadine; Gerds, Thomas A; Andersen, Per Kragh


    that the probability of not being lost to follow-up (un-censored) is independent of the covariates. Modified pseudo-values are proposed which rely on a correctly specified regression model for the censoring times. Bias and efficiency of these methods are compared in a simulation study. Further illustration...

  3. Probing pseudo-Dirac neutrino through detection of neutrino ...

    Indian Academy of Sciences (India)

    The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated and compared with the same in the case of mass-flavour oscillations and for no oscillation cases. The calculated muon yields indicate that to probe such small pseudo-Dirac splittings one ...

  4. Probing pseudo-Dirac neutrino through detection of neutrino ...

    Indian Academy of Sciences (India)

    ~EeV for such neutrinos invoke the likelihood to probe very small pseudo-Dirac splittings. The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated and compared with the same in the case of mass-flavour oscillations and for no oscillation cases.

  5. Production of bioethanol using agricultural waste: banana pseudo stem

    Directory of Open Access Journals (Sweden)

    Snehal Ingale


    Full Text Available India is amongst the largest banana (Musa acuminata producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g% gave maximum ethanol (17.1 g/L with yield (84% and productivity (0.024 g%/h after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  6. Over het specifieke- en pseudo cholinesterasegehalte bij enige ziekten

    NARCIS (Netherlands)

    Strater, Hans


    De monographie van Libbrecht,,De arteriele hypertoniën"was voor ons de aanleiding om een onderzoek te doen over het specifieke en pseudo-cholinesterase bij verschillende vormen van hypertensie, myasthenie en asthma bronchiale. ... Zie: Samenvatting

  7. Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. (United States)

    Nixon, Benjamin R; Liu, Bin; Scellini, Beatrice; Tesi, Chiara; Piroddi, Nicoletta; Ogut, Ozgur; Solaro, R John; Ziolo, Mark T; Janssen, Paul M L; Davis, Jonathan P; Poggesi, Corrado; Biesiadecki, Brandon J


    Tropomyosin (Tm) is a central protein in the Ca(2+) regulation of striated muscle. The αTm isoform undergoes phosphorylation at serine residue 283. While the biochemical and steady-state muscle function of muscle purified Tm phosphorylation have been explored, the effects of Tm phosphorylation on the dynamic properties of muscle contraction and relaxation are unknown. To investigate the kinetic regulatory role of αTm phosphorylation we expressed and purified native N-terminal acetylated Ser-283 wild-type, S283A phosphorylation null and S283D pseudo-phosphorylation Tm mutants in insect cells. Purified Tm's regulate thin filaments similar to that reported for muscle purified Tm. Steady-state Ca(2+) binding to troponin C (TnC) in reconstituted thin filaments did not differ between the 3 Tm's, however disassociation of Ca(2+) from filaments containing pseudo-phosphorylated Tm was slowed compared to wild-type Tm. Replacement of pseudo-phosphorylated Tm into myofibrils similarly prolonged the slow phase of relaxation and decreased the rate of the fast phase without altering activation kinetics. These data demonstrate that Tm pseudo-phosphorylation slows deactivation of the thin filament and muscle force relaxation dynamics in the absence of dynamic and steady-state effects on muscle activation. This supports a role for Tm as a key protein in the regulation of muscle relaxation dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Pseudo-Riemannian geometry, [delta]-invariants and applications

    CERN Document Server

    Chen, Bang-Yen


    The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold

  9. Production of bioethanol using agricultural waste: banana pseudo stem. (United States)

    Ingale, Snehal; Joshi, Sanket J; Gupte, Akshaya


    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  10. Pseudo-homophony in non-native listening

    NARCIS (Netherlands)

    Cutler, A.; Otake, T.


    Pseudo-homophony may result when non-native listeners cannot distinguish phonemic contrasts. Thus Dutch listeners have difficulty distinguishing the vowels of English cattle versus kettle, because this contrast is subsumed by a single Dutch vowel category; in consequence, both words may be activated

  11. Empirical pseudo-potential studies on electronic structure of ...

    Indian Academy of Sciences (India)


    and the lowest unoccupied molecular orbital (LUMO) as a function of shape and size of the quantum dots. Our studies explain the ... Keywords. Quantum dots; empirical pseudo-potential; electronic structure; HOMO–LUMO gap. 1. Introduction ...... both the finite and infinite well EMA breaks down and introduces significant ...

  12. Status asthmaticus with pseudo-dextrocardia, complicated by ...

    African Journals Online (AJOL)

    A chest x-ray revealed pseudo-dextrocardia and air trapping (A). She did not respond to inhaled bronchodilator therapy. Intravenous hydrocortisone and magnesium sulphate were administered. The patient deteriorated and was subsequently ventilated and intravenous aminophylline initiated. After intubation and ventilation ...

  13. To avoid operating on pseudo tumoral pulmonary infarctions ...

    African Journals Online (AJOL)

    Pulmonary infarction usually appears as a hump-shaped triangular opacity with its base applied to a pleural surface. In some cases, pulmonary infarctions may appear as a pseudo tumoral opacity mimicking lung cancer. Thoracotomy could be prevented by repeating CT scan in properly selected patients. Pan African ...

  14. Contextuality in multipartite pseudo-telepathy graph games


    Anshu, Anurag; Hoyer, Peter; Mhalla, Mehdi; Perdrix, Simon


    Analyzing pseudo-telepathy graph games, we propose a way to build contextuality scenarios exhibiting the quantum supremacy using graph states. We consider the combinatorial structures that generate equivalent scenarios. We introduce a new tool called multipartiteness width to investigate which scenarios are harder to decompose and show that there exist graphs generating scenarios with a linear multipartiteness width.

  15. Pseudo-nitzschia blooms and physical oceanography off ...

    African Journals Online (AJOL)

    During three surveys conducted in early summer 1996, 1997 and 1998, high concentrations of. Pseudo-nitzschia spp. (values of up to 106 cells.l-1, but generally <105 cells.l-1) were present. P. pungens was dominant in 1996, whereas P. pseudodelicatissima was most abundant in 1997 and 1998. A. catenella was rare and ...

  16. A pseudo Lindley distribution and its application | Zeghdoudi | Afrika ...

    African Journals Online (AJOL)

    In this paper, we introduce a new distribution named as the Pseudo Lindley Distribution (PsLD) as a generalization of the Lindley distribution (LD). A full and detailed description are provided in terms of moments, cumulates, characteristic function, failure, rate function, stochastic ordering, distributions of sums, and ...

  17. Mann iteration with errors for strictly pseudo-contractive mappings ...

    African Journals Online (AJOL)

    It is well known that any fixed point of a Lipschitzian strictly pseudo-contractive self mapping of a nonempty closed convex and bounded subset K of a Banach space X is unique [6] and may be norm approximated by an iterative procedure. In this paper, we show that Mann iteration with errors can be used to approximate the ...

  18. Prediction of survival with alternative modeling techniques using pseudo values

    NARCIS (Netherlands)

    T. van der Ploeg (Tjeerd); F.R. Datema (Frank); R.J. Baatenburg de Jong (Robert Jan); E.W. Steyerberg (Ewout)


    textabstractBackground: The use of alternative modeling techniques for predicting patient survival is complicated by the fact that some alternative techniques cannot readily deal with censoring, which is essential for analyzing survival data. In the current study, we aimed to demonstrate that pseudo

  19. Twisted surfaces in the Pseudo-Galilean space

    Directory of Open Access Journals (Sweden)

    Ahmet Kazan


    Full Text Available In this paper, we construct the twisted surfaces according to the supporting plane and type of rotations in pseudo-Galilean space G13. Also, we find the Gaussian curvatures and mean curvatures of the different types of these twisted surfaces and draw some figures for these twisted surfaces.

  20. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of cellulase. The results showed that homogenizing method had better performance in the release of enzyme, so that the amount of enzyme ...

  1. Empirical pseudo-potential studies on electronic structure of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots. Anjali Kshirsagar Neelesh ... Theoretical investigations of electronic structure of quantum dots is of current interest in nanophase materials. Empirical theories such ...

  2. Pseudo-Meig's Syndrome associated with huge Uterine Leiomyoma ...

    African Journals Online (AJOL)

    Background: Pseudo-Meigs syndrome consists of pleural effusion, ascites, and benign tumors of the ovary other than fibromas. These benign tumors include the tumors of fallopian tube or uterus, mature teratomas, struma ovarii, and ovarian leiomyomas. In a postmenopausal woman presence of complex pelvic mass, ...

  3. Pseudo-cryptanalysis of the Original Blue Midnight Wish

    DEFF Research Database (Denmark)

    Thomsen, Søren Steffen


    cryptanalysis on the original version of BMW, as submitted to the SHA-3 competition in October 2008. The attacks described are (near-)collision, preimage and second preimage attacks on the BMW compression function. These attacks can also be described as pseudo-attacks on the full hash function, i.e., as attacks...

  4. Computing the Visibility Graph via Pseudo-triangulations

    NARCIS (Netherlands)

    Pocchiola, Michel; Vegter, Gert


    We show that the k free bitangents of a collection of n pairwise disjoint convex plane sets can be computed in time O(k + n log n) and O(n) working space. The algorithm uses only one advanced data structure, namely a splittable queue. We introduce (weakly) greedy pseudo-triangulations, whose

  5. Neuropathie optique compressive secondaire à une pseudo-tumeur ...

    African Journals Online (AJOL)

    Neuropathie optique compressive secondaire à une pseudo-tumeur inflammatoire. Wafa Ammari, Olfa Berriche, Olfa Berriche. Abstract. La neuropathie optique regroupe l'ensemble des lésions du nerf optique. Le diagnostic est habituellement clinique: diminution de l'acuité visuelle, altération de la vision des couleurs, ...


    Directory of Open Access Journals (Sweden)

    Robeth Rahmatullah


    Full Text Available Abstract Intrauterine growth restriction (IUGR is one of many fetal abnormalities, which has high contribution on maternal mortality rate and perinatal mortality rate in Indonesia. Apparently, IUGR impact can be reduced if only the symptoms are detected earlier and the correct treatment is applied. However, fetal growth detection and monitoring process in Indonesia is obstructed because the number of physicians is very limited and ultrasonography (USG devices are expensive. Moreover, both the physicians and USG devices are only available in big cities. To answer those problems, this research proposed an intelligent system that can provide fetal growth telemonitoring in rural areas. This system consists of three components: portable USG device, mobile application which is developed using Android operating system, and server application which is developed using Django. The main feature of this system is automatic fetal head parameter detection and its ability to operate in the limited internet access environment. In this system, automatic fetal head parameter detection uses RHT method to approximate fetal head’s ellipse shape. Experiment result shows that RHT detection ability with ∆ellipse average of 79.564 and running time average of 0.373 second.

  7. Ultrafast 2D Fluorescence Spectroscopy using Spectrally Entangled Photon Pairs (United States)

    Raymer, Michael


    We propose entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS) to probe the nonlinear electronic response of molecular systems. The method, inspired by results in, uses a technique from quantum optics--a separated two-photon (Franson) interferometer, which generates time-delayed packets of time-frequency-entangled photon pairs. This interferometer is incorporated into the framework of a fluorescence-detected 2D optical spectroscopic experiment. The continuous stream of entangled photons are phase-modulated in the interferometer, and used to excite a two-photon-absorbing sample, whose excited-state population is selectively detected by simultaneously monitoring the sample fluorescence and the transmitted exciting fields. In comparison to standard `classical' 2DFS techniques using coherent laser pulses and standard pulse-scanning sequences, advantages of this scheme include the suppression of uncorrelated background signals, the suppression of diagonal 2D spectral features, the enhancement and narrowing of off -diagonal spectral cross-peaks that contain information about electronic coupling, and the possibility for enhancement of simultaneous time-and-frequency resolution, including spectral selectivity within an inhomogeneously broadened distribution. These effects arise from the properties of parametric down-conversion light source, which effectively creates a different interaction-scanning protocol than in standard laser-pulse scanning. We numerically simulate the EPP-2DFS observable for the case of an electronically coupled molecular dimer. The EPP-2DFS spectrum is greatly simplified in comparison to its standard classical 2D counterpart. Our results indicate that EPP-2DFS can provide previously unattainable resolution to extract model Hamiltonian parameters from electronically coupled molecular dimers.

  8. Digit ratio (2D:4D), salivary testosterone, and handedness. (United States)

    Beaton, Alan A; Rudling, Nick; Kissling, Christian; Taurines, Regine; Thome, Johannes


    The length of the index finger relative to that of the ring finger, the 2D:4D ratio, has been taken to be a marker of the amount of testosterone (T) that was present in the foetal environment (Manning, Scutt, Wilson, & Lewis-Jones, 1998). It has also been suggested (Geschwind & Galaburda, 1987) that elevated levels of foetal T are associated with left-handedness and that adult levels of circulating T might relate to foetal levels (Jamison, Meier, & Campbell, 1993). We used multiple regression analyses to investigate whether there is any relationship between either left or right hand 2D:4D ratio and handedness. We also examined whether adult levels of salivary T (or cortisol, used as a control hormone) predict digit ratio and/or handedness. Although the 2D:4D ratio of neither the left nor the right hand was related to handedness, the difference between the digit ratios of the right and left hands, D(R-L), was a significant predictor of handedness and of the performance difference between the hands on a peg-moving task, supporting previous findings (Manning & Peters, 2009; Manning et al., 1998; Manning, Trivers, Thornhill, & Singh, 2000; Stoyanov, Marinov, & Pashalieva, 2009). Adult circulating T levels did not predict the digit ratio of the left or right hand; nor was there a significant relationship between concentrations of salivary T (or cortisol) and either hand preference or asymmetry in manual skill. We suggest that the association between D(R-L) and hand preference arises because D(R-L) is a correlate of sensitivity to T in the developing foetus.

  9. 2D to 3D conversion implemented in different hardware (United States)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli


    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  10. Long-lived magnetoexcitons in 2D-fermion system (United States)

    Kulik, L. V.; Zhuravlev, A. S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.


    The paper addresses the experimental technique that, when applied to a 2D-electron system in the integer quantum Hall regime with filling factor ν = 2 (the Hall insulating state), allows resonant excitation of magnetoexcitons, their detection, control of an ensemble of long-lived triplet excitons and investigation of their radiationless decay related to exciton spin relaxation into the ground state. The technique proposed enables independent control of photoexcited electrons and Fermi-holes using photoinduced resonance reflection spectra as well as estimate with a reasonable degree of accuracy the resulting density of photoinduced electron-hole pairs bound into magnetoexcitons. The mere existence of triplet excitons was directly established by inelastic light scattering spectra which were analyzed to determine the value of singlet-triplet exciton splitting. It was found that the lifetimes of triplet excitons conditioned by electron spin relaxation in highly perfect GaAs/AlGaAs heterostructures with highly mobile 2D electrons are extremely long exceeding 100 μs at T spin relaxation lifetimes which are unprecedented for translation-invariant 2D systems. This enabled us to create sufficiently high concentrations of triplet magnetoexcitons, electrically neutral excitations following Bose-Einstein statistics, in a Fermi electron system and investigate their collective properties. At sufficiently high densities of triplet magnetoexcitons and low temperatures, T magnetic translation vectors). The occurrence of a condensed phase is accompanied with a significant decrease in the viscosity of the photoexcited system, which is responsible for electron spin transport at macroscopic distances, as well as with the effects of threshold enhancement of the system response to the external action of the electromagnetic field and emergence of a new intensive radiative recombination channel.

  11. Progress in 2D photonic crystal Fano resonance photonics (United States)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui


    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  12. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2. (United States)

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin


    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.

  13. Optimized designs for 2D and 3D thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard


    . In compliance minimization it may be advantageous to decrease the total volume, but for strength maximization it is argued to keep the total permissible volume. For direct strength maximization the sensitivity analysis of local von Mises stresses is demanding. A simple recursive procedure to obtain uniform...... energy density (or uniform von Mises stress) is presented and applied, and it is shown by examples that the obtained designs are close to fulfilling also strength maximization. Explicit formulas for equivalent thermoelastic loads in 2D and 3D finite element analysis are derived and applied, including...

  14. A generalized 2-D Poincaré inequality

    Directory of Open Access Journals (Sweden)

    Crisciani Fulvio


    Full Text Available Two 1-D Poincaré-like inequalities are proved under the mild assumption that the integrand function is zero at just one point. These results are used to derive a 2-D generalized Poincare inequality in which the integrand function is zero on a suitable arc contained in the domain (instead of the whole boundary. As an application, it is shown that a set of boundary conditions for the quasi geostrophic equation of order four are compatible with general physical constraints dictated by the dissipation of kinetic energy.

  15. Topology-Preserving Rigid Transformation of 2D Digital Images. (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues


    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  16. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morgener, Kai Henning


    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  17. Partial compactness for the 2-D Landau-Lifshitz flow

    Directory of Open Access Journals (Sweden)

    Paul Harpes


    Full Text Available Uniform local $C^infty$-bounds for Ginzburg-Landau type approximations for the Landau-Lifshitz flow on planar domains are proven. They hold outside an energy-concentration set of locally finite parabolic Hausdorff-dimension 2, which has finite times-slices. The approximations subconverge to a global weak solution of the Landau-Lifshitz flow, which is smooth away from the energy concentration set. The same results hold for sequences of global smooth solutions of the 2-d Landau-Lifshitz flow.

  18. 2D Multipartite Valence Bond States in Quantum Antiferromagnets

    CERN Document Server

    Rico, E


    A quantum anti-ferromagnetic spin-1 model is characterised on a 2D lattice with the following requirements: i) The Hamiltonian is made out of nearest neighbour interactions. ii) It is homogeneous, translational and rotational invariant. iii) The ground state is a real singlet state of SU(2) (non-chiral). iv) It has a local spin-1 representation. Along the way to characterise the system, connections with classical statistical mechanics and integrable models are explored. Finally, the relevance of the model in the physics of low dimensional anti-ferromagnetic Mott-Hubbard insulators is discussed.

  19. Terahertz detection using mechanical resonators based on 2D materials

    Directory of Open Access Journals (Sweden)

    Juha Hassel


    Full Text Available We have investigated a THz detection scheme based on mixing of electrical signals in a voltage-dependent capacitance made out of suspended graphene. We have analyzed both coherent and incoherent detection regimes and compared their performance with the state of the art. Using a high-amplitude local oscillator, we anticipate potential for quantum limited detection in the coherent mode. The sensitivity stems from the extraordinary mechanical and electrical properties of atomically thin graphene or graphene-related 2D materials.

  20. Reconnaissance de gestes : approches 2D & 3D


    Mkhinini, Maher; Horain, Patrick


    National audience; Dans cet article nous comparons deux approches pour la reconnaissance de gestes en 2D et en 3D. La première exploite les points d'intérêt spatio-temporels où chaque séquence est décrite par des histogrammes de flux optique locaux. La reconnaissance est effectuée par une machine à vecteur support (SVM). La deuxième approche consiste à utiliser la trajectoire 3D de la main acquise à l'aide d'un capteur Kinect et la reconnaissance est effectuée par déformation temporelle dynam...

  1. Dislocation field theory in 2D: Application to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Markus, E-mail: [Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt (Germany); Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States)


    A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with experimental data found recently for an edge dislocation in graphene.

  2. Dynamics of Quarks in a 2D Flux Tube

    Energy Technology Data Exchange (ETDEWEB)

    Koshelkin, Andrey V. [Moscow Institute for Physics and Engineering, Russia; Wong, Cheuk-Yin [ORNL


    On the basis of a compactification of the (3+1) into (1+1) dimensional space-time [1], the quark states inside the 2D flux tube are studied for the case of a linear transverse confining potential. The derived states are classified by both the projections of the orbital momentum and the spin along the tube direction. The spectrum of the fermion states is evaluated. It is found that the energy eigenvalues of the quarks appear to be approximately related to the square root of the eigenvalues of the two-dimensional harmonic oscillator.

  3. The analyzation of 2D complicated regular polygon photonic lattice (United States)

    Lv, Jing; Gao, Yuanmei


    We have numerically simulated the light intensity distribution, phase distribution, far-field diffraction of the two dimensional (2D) regular octagon and regular dodecagon lattices in detail. In addition, using the plane wave expansion (PWE) method, we numerically calculate the energy band of the two lattices. Both of the photonic lattices have the band gap. And the regular octagon lattice possesses the wide complete band gap while the regular dodecagon lattice has the incomplete gap. Moreover, we simulated the preliminary transmission image of photonic lattices. It may inspire the academic research both in light control and soliton.

  4. 2D Inversion of Transient Electromagnetic Method (TEM) (United States)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando


    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most


    Directory of Open Access Journals (Sweden)

    Mokhamad Mahfud


    Full Text Available Dakwah activities as a communication process of delivering the teachings of Islam's ideal has no power to change people for the better. There are many causal factors, one of them is because of propagandas that has been done tends to be cold, impersonal, and is only informative sheer, yet using less effective communication ethics. A visual cultural revolution is now growing rapidly, unfortunately its dominated by capitalists and worshipers of lust. For example, nearly all visual ads is using the interest of sensuality and lust to lure customers. On the billboards, media newspapers, magazines, television and other media, visual communication seemed to be a valuable garbage, and this is very dangerous, especially if in the consumption of children who are mentally and immature psyche. The Effects of visual "value-free" communication can damage the sense of children as the next generation, we are slowly showed on-aurast which makes Muslims become stupid. This study aims to provide a creative space to explore the lives of children for the purpose of providing religious materials in SDN Monggang Pendowoharjo Sewon Bantul. 2D animation design is expected to give a message to children that religious material is not complicated but enjoyable. And the use of cartoon animation techniques in the making is in fact, expecting the material to be delivered to children to be light for their minds and appropriate with their entertainment media which is television. This research Visual Communication Design using 2d Animation For Children is using descriptive study which is a qualitative research method that analyze the words or sentences and separate it by category for the conclusion. Qualitative research aims to explain the phenomenon in detail and in-depth data collection that focuses on quality rather than the quantity of data. The results of this study is that the creation of 2D animation is effective to be a dakwah media for children that will be made with a

  6. Hybrid animation integrating 2D and 3D assets

    CERN Document Server

    O'Hailey, Tina


    Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos

  7. Interacting electrons in a 2D quantum dot


    Akman, N.; Tomak, M.


    The exact numerical diagonalization of the Hamiltonian of a 2D circular quantum dot is performed for 2, 3, and 4 electrons.The results are compared with those of the perturbation theory.Our numerical results agree reasonably well for small values of the dimensionles coupling constant \\lambda=a\\over a_B where a is the dot radius and a_B is the effective Bohr radius.Exact diagonalization results are compared with the classical predictions, and they are found to be almost coincident for large \\l...

  8. Novel 2D representation of vibration for local damage detection

    Directory of Open Access Journals (Sweden)

    Grzegorz Żak


    Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.

  9. Ferry check-in with NFC or 2D barcode


    Hew, Sebastian


    The increased use of smartphones in recent years has opened up the opportunity to modernize manual operations, such as checking-in at ferry terminals and airports. Many airlines have been using 2D barcodes for a while and are planning to support NFC in the coming years. Destination Gotland wants their passengers to be able to check-in at their ferry terminals with both of these technologies. In this thesis, I propose a system where passengers are able to check-in with their smartphones, prese...

  10. Structures of quantum 2D electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V S; Levashov, P R; Fortov, V E [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 bldg 2, Moscow 125412 (Russian Federation); Bonitz, M [Christian-Albrechts-Universitaet zu Kiel, Institut fuer Theoretische Physik und Astrophysik, Leibnizstrasse 15, 24098 Kiel (Germany); Fehske, H [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Felix-Hausdorff-Str 6, D-17489 Greifswald (Germany)


    We investigate structures of 2D quantum electron-hole (e-h) plasmas by the direct path integral Monte Carlo method (PIMC) in a wide range of temperature, density and hole-to-electron mass ratio. Our simulation includes a region of appearance and decay of the bound states (excitons and biexcitons), the Mott transition from the neutral e-h plasma to metallic-like clusters, formation from clusters of the hexatic-like liquid and formation of the crystal-like lattice.

  11. Structures of quantum 2D electron-hole plasmas


    Filinov, V. S.; Bonitz, M.; Fehske, H.; Levashov, P. R.; Fortov, V. E.


    We investigate structures of 2D quantum electron-hole (e-h) plasmas by the direct path integral Monte Carlo method (PIMC) in a wide range of temperature, density and hole-to-electron mass ratio. Our simulation includes a region of appearance and decay of the bound states (excitons and biexcitons), the Mott transition from the neutral e-h plasma to metallic-like clusters, formation from clusters the hexatic-like liquid and formation of the crystal-like lattice.

  12. Pseudo-obstrucción intestinal crónica Chronic intestinal pseudo-obstruction

    Directory of Open Access Journals (Sweden)

    M. T. Muñoz


    Full Text Available El síndrome de pseudo-obstrucción intestinal crónica se caracteriza por la presencia de cuadros clínicos recidivantes que simulan una obstrucción intestinal pero en ausencia de proceso obstructivo anatómico. Es poco frecuente pero determina una alta morbilidad. Se origina como consecuencia de una alteración de la motilidad intestinal que no puede hacer progresar su contenido debido a la afectación de su componente muscular, neurológico o de ambos. Son más frecuentes los casos secundarios a un proceso sistémico pero cada vez se describen más cuadros debidos a la afectación primaria de dichos componentes. El desarrollo de técnicas manométricas e histológicas más específicas ha permitido aclarar la patogenia de algunos de estos síndromes, entre los que se incluyen las manifestaciones paraneoplásicas y las enfermedades mitocondriales. La expresión clínica es variable y depende de la causa y de la localización y extensión de la afectación. El diagnóstico de esta entidad es habitualmente difícil lo que origina que a estos pacientes se les practiquen cirugías innecesarias, se les etiquete como enfermos psiquiátricos y el diagnóstico se realice varios años después del inicio de los síntomas. El tratamiento se dirige a mejorar los síntomas y a mantener su estado nutricional mediante medidas dietético-nutricionales, fármacos y actitudes endoscópico-quirúrgicas. La complejidad de estos enfermos aconseja su seguimiento multidisciplinar.Chronic intestinal pseudo-obstruction (CIPO is a syndrome characterized by the presence of recurrent episodes of clinical intestinal obstruction in the absence of obstructive lesions. Although this syndrome is rare, it causes a high morbidity. It is caused by a disturbance of the intestinal motility, that results in a failure of the progression of the intestinal content. Basically, the failure of the intestinal motility is a consequence of muscular disorder, neurological disorder or both

  13. 2D and 3D-QSAR studies on antiproliferative thiazolidine analogs (United States)

    Liao, Si Yan; Qian, Li; Chen, Jin Can; Lu, Hai Liang; Zheng, Kang Cheng

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationships (QSARs) of 22 thiazolidine analogs with antiproliferative activity expressed as pIC50, which is defined as the negative value of the logarithm of necessary molar concentration of these compounds to cause 50% growth inhibition against melanoma cell lines WM-164, have been studied by using a combined method of the DFT, MM2 and statistics for 2D, as well as the comparative molecular field analysis (CoMFA) method for 3D. The established 2D-QSAR model in training set comprised of random 18 compounds shows not only significant statistical quality, but also predictive ability, with the square of adjusted correlation coefficient (R2A = 0.832) and the square of the cross-validation coefficient (q2 = 0.803). The same model was further applied to predict pIC50 values of the four compounds in the test set, and the resulting R2pred reaching 0.784, further confirms that this 2D-QSAR model has high predictive ability. The 3D-QSAR model also shows good correlative and predictive capabilities in terms of R2 (0.956) and q2 (0.615) obtained from CoMFA model. Further, the robustness of the CoMFA model was verified by bootstrapping analysis (100 runs) with R2bs (0.979) and SDbs (0.056). It is very interesting to find that the results from 2D- and 3D-QSAR analyses accord with each other, and they all show that the steric interaction plays a crucial role in determining the cytotoxicities of the compounds, and that selecting a moderate-size or appropriate-hydrophobicity substituent R as well as increasing the negative charges of C4 on phenyl ring at the same time are advantageous to improving the cytotoxicity. Such results can offer some useful theoretical references for directing the molecular design and understanding the action mechanism of this kind of compound with antiproliferative activity.

  14. The Usage of 2D Codes in Marketing Practices

    Directory of Open Access Journals (Sweden)

    Toni Podmanicki


    Full Text Available Barcodes, which are used for the labelling and identification of products, have been used as the foundation for the development of new symbols, two-dimensional barcodes (usually called 2D codes. These codes are capable of receiving large amounts of data in a small area, and data stored in them can be read by means of mobile devices. They usually contain information such as web addresses, text, contacts and similar data that encourage users to interact in order to obtain the desired information, entertainment, discount, reservation, and even do their shopping. The possibility of connecting the physical and digital world by means of 2D codes has led marketing professionals to face new challenges in the development of strategies in mobile marketing. Many companies recognized the potential of the above technology very early, in its initial phase, and they use it now in their activities. This paper aims to emphasize the importance of knowing this technology and its advantages by providing examples in marketing practices.

  15. 2D Implosion Simulations with a Kinetic Particle Code

    CERN Document Server

    Sagert, Irina; Strother, Terrance T


    We perform two-dimensional (2D) implosion simulations using a Monte Carlo kinetic particle code. The paper is motivated by the importance of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions. These cannot be fully captured by hydrodynamic simulations while kinetic methods, as the one presented in this study, are able to describe continuum and rarefied regimes within one approach. In the past, our code has been verified via traditional shock wave and fluid instability simulations. In the present work, we focus on setups that are closer to applications in ICF. We perform simple 2D disk implosion simulations using one particle species. The obtained results are compared to simulations using the hydrodynamics code RAGE. In a first study, the implosions are powered by energy deposition in the outer layers of the disk. We test the impact of the particle mean-free-path and find that while the width of the implosion shock broadens, its location as a function of time remains very similar. ...

  16. 2D Gridded Surface Data Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Q [Lawrence Livermore National Laboratory; Xie, S [Lawrence Livermore National Laboratory


    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  17. 2D Magnetic Texture Analysis of Co-Cu Films (United States)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan; Alper, Mursel


    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co2+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, Mp(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co2+ in the electrolyte. The coefficients of Fourier series (A0 and A2n ) were also computed for 2D films. It is seen that a systematic and small decrease in A0 and an obvious decrease in A2n (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  18. 2D vibrational properties of epitaxial silicene on Ag(111) (United States)

    Solonenko, Dmytro; Gordan, Ovidiu D.; Le Lay, Guy; Sahin, Hasan; Cahangirov, Seymur; Zahn, Dietrich R. T.; Vogt, Patrick


    The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the structural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using in situ Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. Both, energies and symmetries of theses modes are confirmed by ab initio theory calculations. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about 300 °C, whereupon a 2D-to-3D phase transition takes place. The detailed fingerprint of epitaxial silicene will allow us to identify it in different environments or to study its modifications.

  19. Punctuating Instability of a 2D Dusty Plasma Colloidal Crystal (United States)

    Gogia, Guram; Burton, Justin

    When placed in a weakly-ionized RF plasma, colloidal microparticles can be trapped in the narrow Debye sheath region above a capacitively-coupled electrode. Known as a ''dusty plasma'', the particles become negatively charged, leading to the formation of large, 2D crystalline monolayers. At low pressures the particles can experience vertical oscillations due to plasma density fluctuations in the sheath. As a result of these fluctuations, we have found that at low pressures and low bias voltage, the colloidal crystal experiences temporally reoccurring instabilities. Such ''punctuating'' instabilities are caused by the redistribution of kinetic energy from vertical vibrations to horizontal motion, essentially melting the crystal into a gas-like state. After the incipient instability, without changing any external parameters, the system loses kinetic energy to damping with the surrounding gas, then eventually recrystallizes and remains stable until next punctuating instability. The period of the instability ranges from seconds to minutes depending on the system parameters, and can vary significantly within a given system. Using simple simulations of 2D crystals driven by a vertical Langevian forcing, we are able to capture the salient features of the punctuating instability.

  20. Storm Tracking in the Southwest using 2D Lightning Fields (United States)

    Signell, J.; Smith, J. A.; Baeck, M. L.


    We explore the climatology of thunderstorms through analyses of cloud-to-ground lightning data from the National Lightning Detection Network (NLDN). We assess a 2D storm tracking algorithm that only uses cloud-to-ground lightning data. The NLDN consists of over 100 ground-based sensors that since 1991 have detected and recorded the timing and location of lightning strikes in the continental US. Writing tools in Python - an open source programming language - and wrapping a pre-existing geostatistical library in R (SpatialVx developed by NCAR), we developed a reproducible workflow to explore the structure and evolution of thunderstorms using NLDN data. We found that 2D lightning tracking compares favorably to conventional 3D radar tracking conducted using the Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) algorithms. The results point to synergistic analyses of thunderstorm properties using both radar and lightning data. Analyses are motivated by problems that center on examining the climatology of flash flood producing storm systems; results are illustrated for the Southwestern US.

  1. Magnetic gating of a 2D topological insulator. (United States)

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y


    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  2. 2D arc-PIC code description: methods and documentation

    CERN Document Server

    Timko, Helga


    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider. To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D Arc-PIC code introduced here. We present an exhaustive description of the 2D Arc-PIC code in two parts. In the first part, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second part, we provide a documentation and derivation of the key equations occurring in the code. The code is original work of the author, written in 2010, and is therefore under the copyright of the author. The development of the code h...

  3. Sigma-delta cellular neural network for 2D modulation. (United States)

    Aomori, Hisashi; Otake, Tsuyoshi; Takahashi, Nobuaki; Tanaka, Mamoru


    Although sigma-delta modulation is widely used for analog-to-digital (A/D) converters, sigma-delta concepts are only for 1D signals. Signal processing in the digital domain is extremely useful for 2D signals such as used in image processing, medical imaging, ultrasound imaging, and so on. The intricate task that provides true 2D sigma-delta modulation is feasible in the spatial domain sigma-delta modulation using the discrete-time cellular neural network (DT-CNN) with a C-template. In the proposed architecture, the A-template is used for a digital-to-analog converter (DAC), the C-template works as an integrator, and the nonlinear output function is used for the bilevel output. In addition, due to the cellular neural network (CNN) characteristics, each pixel of an image corresponds to a cell of a CNN, and each cell is connected spatially by the A-template. Therefore, the proposed system can be thought of as a very large-scale and super-parallel sigma-delta modulator. Moreover, the spatio-temporal dynamics is designed to obtain an optimal reconstruction signal. The experimental results show the excellent reconstruction performance and capabilities of the CNN as a sigma-delta modulator.


    Directory of Open Access Journals (Sweden)

    H. Karim


    Full Text Available Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS. One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats depending on application requirements (topology, semantic and function. This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.

  5. Soft tubular microfluidics for 2D and 3D applications (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee


    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  6. Soft tubular microfluidics for 2D and 3D applications. (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck


    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  7. Shearography for determination of 2D strain distributions (United States)

    Kaestle, Ralf; Hack, Erwin K.; Sennhauser, Urs J.


    We report on a novel set-up using image shearing speckle pattern interferometry for the determination of 2D strain distributions of an object surface. This system is based on simultaneous illumination of the object with three diode lasers that emit at different wavelengths between 810 nm and 850 nm. Their speckle images are separated within the shearographic set-up, consisting of a special color separation optics and 3 b/w CCD cameras, in such a way that each camera records the speckle image corresponding to one laser source only. Two methods are presented which allow to switch between the two directions of image shear. The shearographic camera in combination with the appropriate illumination geometry allowed us to determine and isolate all six displacement derivatives from phase stepped fringe patterns. The good suitability and accuracy of the system for the determination of 2D strain distributions are demonstrated on the basis of shearographic measurements during tensile testing and comparison with strain gage measurements.

  8. Pseudo-hyperelastic model of tendon hysteresis from adaptive recruitment of collagen type I fibrils. (United States)

    Ciarletta, Pasquale; Dario, Paolo; Micera, Silvestro


    Understanding the functional relationship between the viscoelasticity and the morphology of soft collagenous tissues is fundamental for many applications in bioengineering science. This work presents a pseudo-hyperelastic constitutive theory aiming at describing the time-dependant hysteretic response of tendons subjected to uniaxial tensile loads. A macroscopic tendon is modeled as a composite homogeneous tissue with the anisotropic reinforcement of collagen type I fibrils. The tissue microstructure is considered as an adaptive network of fibrillar units connected in temporary junctions. The processes of breakage and reformation of active fibrils are thermally activated, and are occurring at random times. An internal softening variable and a dissipation energy function account for the adaptive arrangement of the fibrillar network in the pseudo-hyperelastic model. Cyclic uniaxial tensile tests have been performed in vitro on porcine flexor digital tendons. The theoretical predictions fit accurately the experimental stress-strain data both for the loading and the unloading processes. The hysteresis behavior reflects the improvement in the efficiency and performance of the motion of the muscle-tendon unit at high strain rates. The results of the model demonstrate the microstructural importance of proteoglycans in determining the functional viscoelastic adaptability of the macroscopic tendon.

  9. Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni-Al nanowires. (United States)

    Sutrakar, Vijay Kumar; Mahapatra, D Roy


    Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced [Formula: see text]-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of approximately 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of approximately 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 A, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

  10. Loss of the Intellectual Disability and Autism Gene Cc2d1a and Its Homolog Cc2d1b Differentially Affect Spatial Memory, Anxiety, and Hyperactivity

    Directory of Open Access Journals (Sweden)

    Marta Zamarbide


    Full Text Available Hundreds of genes are mutated in non-syndromic intellectual disability (ID and autism spectrum disorder (ASD, with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold CC2D1A cause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures. In parallel, we recently reported that Cc2d1a-deficient mice present with cognitive and social deficits, hyperactivity and anxiety. In Drosophila, loss of the only ortholog of Cc2d1a, lgd, is embryonically lethal, while in vertebrates, Cc2d1a has a homolog Cc2d1b which appears to be compensating, indicating that Cc2d1a and Cc2d1b have a redundant function in humans and mice. Here, we generate an allelic series of Cc2d1a and Cc2d1b LOF to determine the relative role of these genes during behavioral development. We generated Cc2d1b knockout (KO, Cc2d1a/1b double heterozygous and double KO mice, then performed behavioral studies to analyze learning and memory, social interactions, anxiety, and hyperactivity. We found that Cc2d1a and Cc2d1b have partially overlapping roles. Overall, loss of Cc2d1b is less severe than loss of Cc2d1a, only leading to cognitive deficits, while Cc2d1a/1b double heterozygous animals are similar to Cc2d1a-deficient mice. These results will help us better understand the deficits in individuals with CC2D1A mutations, suggesting that recessive CC2D1B mutations and trans-heterozygous CC2D1A and CC2D1B mutations could also contribute to the genetics of ID.

  11. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro (United States)

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao


    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  12. Pseudo sidescan images from backscatter amplitude data of the Hydrosweep multibean sonar system

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; Hagen, R.; Schenke, H.W.

    Using the rms (root mean square) backscatter amplitude values, a procedure was evolved to generate pseudo sidescan images. A comparison of the pseudo sidescan image with actual Hydrosweep sidescan image, from an area covering a pear shaped seamount...

  13. Regression analysis of restricted mean survival time based on pseudo-observations

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Hansen, Mette Gerster; Klein, John P.

    censoring; hazard function; health economics; regression model; survival analysis; mean survival time; restricted mean survival time; pseudo-observations......censoring; hazard function; health economics; regression model; survival analysis; mean survival time; restricted mean survival time; pseudo-observations...

  14. Regression Analysis of Restricted Mean Survival Time Based on Pseudo-Observations

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Hansen, Mette Gerster; Klein, John P.


    censoring; hazard function; health economics; mean survival time; pseudo-observations; regression model; restricted mean survival time; survival analysis......censoring; hazard function; health economics; mean survival time; pseudo-observations; regression model; restricted mean survival time; survival analysis...


    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper, we study inextensible ows of curves in 3-dimensional pseudo- Galilean space. We give necessary and sucient conditions for inextensible ows of curves according to equiform geometry in pseudo-Galilean space.

  16. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne


    Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

  17. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Codeine Therapy in the Context of Cytochrome P450 2D6 (CYP2D6) Genotype (United States)

    Crews, KR; Gaedigk, A; Dunnenberger, HM; Klein, TE; Shen, DD; Callaghan, JT; Kharasch, ED; Skaar, TC


    Codeine is bioactivated to morphine, a strong opioid agonist, by the hepatic cytochrome P450 2D6 (CYP2D6); hence, the efficacy and safety of codeine as an analgesic are governed by CYP2D6 polymorphisms. Codeine has little therapeutic effect in patients who are CYP2D6 poor metabolizers, whereas the risk of morphine toxicity is higher in ultrarapid metabolizers. The purpose of this guideline (periodically updated at is to provide information relating to the interpretation of CYP2D6 genotype test results to guide the dosing of codeine. PMID:22205192

  18. NKG2D ligand expression in Crohn's disease and NKG2D-dependent stimulation of CD8(+) T cell migration

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Galsgaard, Elisabeth Douglas; Jensen, Helle


    a monolayer of ligand-expressing human intestinal endothelial cells was examined. Activated lymphocytes down-regulated NKG2D expression upon accumulation in inflamed CD intestine. NKG2D expression on CD56(+) T and γδ T cells from inflamed tissue seemed inversely correlated with CRP levels and cytokine release....... B cells, monocytes, mucosal epithelium, and vascular endothelium expressed NKG2D ligands in inflamed CD intestine. The expression of NKG2D ligands was correlated with cytokine release, but was highly variable between patients. Stimulation of vascular intestinal endothelial cells in vitro induced...... in both the activation and recruitment of NKG2D(+) lymphocytes into the inflamed CD intestine....

  19. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species (United States)


    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Species Codes-Non-FMP Species 2d Table 2d to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 2d Table 2d to Part 679—Species Codes—Non-FMP Species Species description Code...

  20. Interactive initialization of 2D/3D rigid registration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)


    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on

  1. Interactive initialization of 2D/3D rigid registration. (United States)

    Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv


    Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Based on the authors' evaluation, the authors conclude

  2. Application of curvelet denoising to 2D and 3D seismic data - Practical considerations (United States)

    Górszczyk, Andrzej; Adamczyk, Anna; Malinowski, Michał


    Contamination of seismic signal with noise of various origins is one of the main challenges encountered during processing and interpretation of seismic data. Several methods exist for eliminating different types of noises like coherent or incoherent noise and multiples, but optimal random noise attenuation remains difficult. Here we investigate relatively new technique based on discrete curvelet transform (DCT). Features like multi-resolution, multi-direction and locality of DCT introduce minimal overlapping between coefficients representing signal and noise in curvelet domain which is the prime advantage of this method. We present practical application of DCT describing its main features and focusing on useful details, especially more complex thresholding based on analyzing 2D Fourier spectrum and the vector of curvelet coefficients. We demonstrate that better understanding of relations between DCT properties and obtained results in pair with additional investigation of curvelet domain provides better localization and, in consequence, separation of noise and signal energy. Introduced scale and angle dependent weighting of curvelet coefficients leads to significant improvements of results with respect to noise attenuation and signal energy preservation. Effectiveness of our approach is demonstrated both on synthetic 2D sections with white and colored noise added, as well as on real 2D and 3D post-stack seismic data. Finally, we demonstrate the use of curvelet denoising as the data-preconditioning tool for frequency-domain full-waveform inversion. Curvelet denoising seems to be much more robust as compared with traditional filtering (e.g. F-X deconvolution), especially when noise and signal spectra overlap.

  3. A novel pseudo-complementary PNA G-C base pair

    DEFF Research Database (Denmark)

    Olsen, Anne G.; Dahl, Otto; Petersen, Asger Bjørn


    Pseudo-complementary oligonucleotide analogues and mimics provide novel opportunities for targeting duplex structures in RNA and DNA. Previously, a pseudo-complementary A-T base pair has been introduced. Towards sequence unrestricted targeting, a pseudo-complementary G-C base pair consisting...... of the unnatural nucleobases n6-methoxy-2,6-diaminopurine (previously described in a DNA context) and N4-benzoylcytosine is now presented for design of pseudo-complementary PNA oligomers (pcPNAs)....

  4. Verification report for TBCODE, SIM2D and SIM3D (release 2.1)[Hydrogeology; Hydraulic conductivity fields

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S


    This report is the Verification Report for the Turning Bands program 'TBCODE' for generating realizations of normally-distributed correlated multidimensional random fields. It also describes the verification of the subroutines 'SIM2D' and 'SIM3D', which form part of TBCODE, but which can be used separately with other programs to generate realizations of two- or three-dimensional correlated random fields. The report describes the suite of test cases used to verify the program. For each test case, a listing of the input data is given, and the output generated by the program is discussed. (author)

  5. Fuzzy Dynamic Analysis of a 2D Frame

    Directory of Open Access Journals (Sweden)

    P. Štemberk


    Full Text Available This paper deals with the dynamic analysis of a 2D concrete frame with uncertainties which are an integral part of any real structure. The uncertainties can be modeled by a stochastic or a fuzzy approach. The fuzzy approach is used and the influence of uncertain input data (modulus of elasticity and density on output data is studied. Fuzzy numbers are represented by ?-cuts. In order to reduce the volume of computation in the fuzzy approach, the response surface function concept is applied. In this way the natural frequencies and mode shapes described by fuzzy numbers are obtained. The results of fuzzy dynamic analysis can be used, e.g., in seismic design of structures based on the response spectrum. 

  6. Optimum design of 2D micro-angle sensor (United States)

    Liu, Qinggang; Zhao, Heng; Lou, Xiaona; Jiang, Ningchuan; Hu, Xiaotang


    To improve dynamic measurement performance and resolution, an optimum design on two-dimensional (2D) micro-angle sensor based on optical internal-reflection method via critical-angle refractive index measurement is presented in the paper. The noise signals were filtered effectively by modulating laser-driven and demodulating in signal proceeding. The system's accuracy and response speed are improved further by using 16-bit high-precision AD converter and MSP430 CPU which present with a high-speed performance during signals processes such as fitting angle-voltage curve through specific arithmetic, full range and zero point calibration, filter, scaling transformation etc. The experiment results indicated that, dynamic signal measurement range can be up to +/-600arcsec, the measurement resolution can be better than 0.1arcsec, and the repeatability could be better than +/-0.5arcsec.

  7. A reusable OSL-film for 2D radiotherapy dosimetry. (United States)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt


    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff ). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film's reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after 'beam on' or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min -1 ) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film's measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after irradiation

  8. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho


    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  9. Protein Denaturation with Guanidinium: A 2D-IR Study. (United States)

    Huerta-Viga, Adriana; Woutersen, Sander


    Guanidinium (Gdm+) is a widely used denaturant, but it is still largely unknown how it operates at the molecular level. In particular, the effect of guanidinium on the different types of secondary structure motifs of proteins is at present not clear. Here, we use two-dimensional infrared spectroscopy (2D-IR) to investigate changes in the secondary structure of two proteins with mainly α-helical or β-sheet content upon addition of Gdm-13C15N3·Cl. We find that upon denaturation, the β-sheet protein shows a complete loss of β-sheet structure, whereas the α-helical protein maintains most of its secondary structure. These results suggest that Gdm+ disrupts β-sheets much more efficiently than α-helices, possibly because in the former, hydrophobic interactions are more important and the number of dangling hydrogen bonds is larger.

  10. Hexagonal Array Structure for 2d Nde Applications (United States)

    Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.


    This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars—each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (˜23 dB).

  11. 2D-RBUC for efficient parallel compression of residuals (United States)

    Đurđević, Đorđe M.; Tartalja, Igor I.


    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  12. First investigation of a novel 2D position-sensitive

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I


    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  13. 2D Static Light Scattering for Dairy Based Applications

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke

    are evaluated and discussed. There is a major emphasis on using 2DSLS to discriminate between different protein microstructures in yogurt products. This potentially allows for process control, in relation to microstructure, during yogurt manufacture. As microstructure is critical for consumer acceptability......, this specific process control can be highly beneficial. To provide suitable reference measures on the actual microstructure, we investigate how to quantify micrographs of yogurts objectively. We provide a comparative study, that includes a broad range of different image texture descriptors.......Throughout this thesis we investigate a recently introduced optical technique denoted 2D static light scattering (2DSLS). The technique is remote sensing, non-invasive, highly flexible, and appears to be well suited for in-line process control. Moreover, the output signal contains contributions...

  14. Investigation of Cikapundung River's sedimentation using 2D resistivity method (United States)

    Arzaldi, M. Dika; M. Izzudin, P.; Emirza Faisal, D.; Wahida, Arzalia; Widodo


    High rainfall rate in Indonesia makes the outcrop located in the upstream areas easily eroded and some rocks carried by the water flow towards the downstream areas. This research is done in order to identify the silting of Cikapundung's River in Bandung. The method used is 2D resistivity method for mapping sedimentation of Cikapundung's River. The data was taken in KampungPadi Residence, Cisitu, Bandung, West Java. Geological observation's results show that top layer consists of alluvial's sedimentation, basalt tuff, and volcanic conglomerate. Basement of river's flow is volcanic conglomerate which has eroded and sedimentation. Discussion's results show that Cikapundung's river has sedimentation's thickness until 16,4m. This sedimentation consists of top soil and conglomerate rocks. Furthermore, from data processing's result there is an indication that ancient Cikapundung's river, in meander section which have low energy value and then eroded resulting in a shift of the river's flow to the south.

  15. 2D Core Turbulence Properties on DIII-D (United States)

    Shafer, M. W.; McKee, G. R.; Fonck, R. J.; Schlossberg, D. J.; Yan, Z.; Holland, C.; White, A. E.


    Quantitative measurements of the inherently 2D turbulence characteristics in magnetized plasmas are compared with nonlinear simulation. This comparison substantiates key aspects of the ExB shear model of turbulence suppression that explains enhanced confinement. The critical dynamics underlying turbulent transport occur in the plane perpendicular to the magnetic field (k| k). These localized long-wavelength (kρirectangular array of Beam Emission Spectroscopy channels. Radial and poloidal correlation lengths are found to scale with the ion gyroradius and demonstrate a poloidally elongated eddy structure. S(kr,kθ) spectra are compared with GYRO simulations: key features (wavenumber peak, correlation lengths) compare well, however the simulations indicate a sheared eddy structure at outer radii that is not observed. Measured local decorrelation and shearing rates are also compared.

  16. A reusable OSL-film for 2D radiotherapy dosimetry (United States)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt


    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0–32 Gy), a linear signal decay (0.5% min‑1) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([‑1.6%, 2.1%] versus [‑2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after


    Directory of Open Access Journals (Sweden)



    Full Text Available This article presents the definition of projection plane, its importance for the geometry constructions used in civil engineering and comparative analysis of three opportunities for creating a three dimensional basis, used in drawing such a plane. First method consists of transforming affine and orthonormal coordinates and its application in GeoGebra is presented. Second method, using combination of spherical and polar coordinates in space, is introduced. The third suggested method is an application of descriptive geometry for transforming 2D to 3D and a new method of forming a plane of projection, which will be used later in the reviewed example below. The example shows how GeoGebra software can be used in technical drawing used in civil engineering.

  18. Quantum anomalous Hall effect in 2D organic topological insulators. (United States)

    Wang, Z F; Liu, Zheng; Liu, Feng


    The quantum anomalous Hall effect (QAHE) is a fundamental transport phenomenon in the field of condensed-matter physics. Without an external magnetic field, spontaneous magnetization combined with spin-orbit coupling gives rise to a quantized Hall conductivity. So far, a number of theoretical proposals have been made to realize the QAHE, but all based on inorganic materials. Here, using first-principles calculations, we predict a family of 2D organic topological insulators for realizing the QAHE. Designed by assembling molecular building blocks of triphenyl-transition-metal compounds into a hexagonal lattice, this new class of organic materials is shown to have a nonzero Chern number and exhibits a gapless chiral edge state within the Dirac gap.

  19. Izrada 2D video igre za iOS platformu


    Kampuš, Dominik


    Tema ovog završnog rada temelji se na izradi 2D video igre za iOS mobilni uređaj te njezinoj demonstraciji na istom. Kroz rad su opisane sve bitne funkcije GameSalad Creator-a koje su potrebne kod izrade igre bazirane na 2 dimenzije. Također se prolazi kroz iOS operativni sustav, što je on i kako se razvijao. Spominje se i tema koja govori općenito o igrama na mobilnim uređajima. U završnom dijelu rada prikazan je postupak izrade, koje funkcije programa se točno koriste i kako se igra može te...

  20. Discrepant Results in a 2-D Marble Collision (United States)

    Kalajian, Peter


    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many schools. Substituting marbles on a table for air pucks introduces angular momentum and sliding friction so that simple video analysis will demonstrate that linear momentum is not conserved.1,2 Nevertheless, these labs offer students insights into the real-world application of physics. During a recent classroom trial, an unexpected result forced my students to think creatively and critically about what happened in the experiment.