WorldWideScience

Sample records for ps thin films

  1. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    The composite thin films were prepared by wet chemical approach and the samples were then subsequently spin-coated on a carbon-coated copper grid for TEM measurements. TEM measurements were performed at liquid nitrogen temperatures to reduce the electron–beam-induced radiation damage. The results showed ...

  2. High-quality crystalline rubrene thin film on electron-irradiated PS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeok Moo; Kim, Yong Nam; Kim, Jae Joon; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    From much of recent works, it was found that charge carrier transport in organic thin film transistors (OTFTs) is strongly affected by the first several semiconductor monolayers next to the semiconductor insulator interface. Among the interfacial factors, insulator surface roughness, surface energy, surface polarity and dielectric constant of dielectrics are considered as important parameters to affect performance of the OTFT. Thus, recently, a lot of efforts to optimize the conditions of surface of dielectrics using various treatment techniques have been performed. Among these techniques, surface modification using polymeric materials is very simple and qualities of polymer surface are hardly affected by preparation conditions. However, surface chain segmental motions near the glass transition temperature disrupts the growth of large-grain morphologies leading low carrier mobility. Thus, there is limitation in temperature to fabricate the organic semiconductor active layer. Here we present a strategy to fabricate high-quality crystalline rubrene thin film using combination of abrupt heating technique and electron irradiation of common homopolymer dielectrics of polystyrene (PS). Electron irradiation induces crosslinking of hydrocarbon chains of PS that restricts chain segmental motion even at the high temperature of 170 .deg. C. Through this method, high quality crystalline rubrene film can be remarkably rapidly produced on PS/SiO{sub 2} bilayer dielectrics in just 1 min

  3. Synthesis of ZnO thin films by 40 ps rate at 532 nm laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ristoscu, C.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, Lasers Department, 409 Atomistilor, P.O. Box MG-54, Magurele, Ilfov (Romania); Socol, M. [National Institute for Materials Physics, P.O. Box MG-7, Magurele, Ilfov (Romania); Jafer, R.; Al-Hadeethi, Y.; Batani, D. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' ' G. Occhialini' ' , Milano (Italy)

    2011-09-15

    The synthesis by pulsed laser deposition of ZnO thin films with a Nd:YAG laser system delivering pulses of 40 ps rate at 532 nm is reported. The laser beam irradiated the target placed inside a vacuum chamber evacuated down to 1.33 x 10{sup -1} Pa. The incident laser fluence was of 28 J/cm{sup 2} in a spot of 0.1 mm{sup 2}. The ablated material was collected onto double face polished (111) Si or quartz wafers placed parallel at a separation distance of 7 mm. The AFM, SEM, UV-Vis, FT-IR and absorption ellipsometry results indicated that we obtained pure ZnO films with a rather uniform surface, having an average roughness of 37 nm. We observed by SEM that particulates are present on ZnO film surface or embedded into bulk. Their density and dimension were intermediary between particulates observed on similar structures deposited with fs or ns laser pulses. We noticed that the density of the particulates is increasing while their average size is decreasing when passing from ns to ps and fs laser pulses. The average transmission in the UV-Vis spectral region was found to be higher than 85%. (orig.)

  4. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  5. Phase behavior of solvent vapor annealed thin films of PS-b-P4VP(PDP) supramolecules

    NARCIS (Netherlands)

    van Zoelen, Wendy; Asumaa, Terhi; Ruokolainen, Janne; Ikkala, OlliI; ten Brinke, Gerrit

    2008-01-01

    The phase behavior and terrace formation of solvent (chloroform) vapor annealed thin films of asymmetric comb-shaped supramolecules consisting of a polystyrene (PS) block and a supramolecular block of poly(4-vinylpyridine) (P4VP) hydrogen bonded with pentadecylphenol (PDP) on silicon oxide (SiO2)

  6. Local thermomechanical analysis of a microphase-separated thin lamellar PS-b-PEO film.

    Science.gov (United States)

    Rice, Reginald H; Mokarian-Tabari, Parvaneh; King, William P; Szoszkiewicz, Robert

    2012-09-18

    We use atomic force microscopy (AFM) and hot tip AFM (HT-AFM) to thermophysically characterize a 30 nm thick film of poly(styrene-block-ethylene oxide), PS-b-PEO, and to modify its lamellar patterns having spacing of 39 ± 3 nm. AFM tip scans of the polymer film induce either abrasive surface patterns or nanoscale ripples, which depend upon the tip force, temperature, and number of scans. The evolution of the lamellar patterns is explained by the polymer film molecular structure and mode I crack propagation in the polymer combined with the stick-and-slip behavior of the AFM tip. The HT-AFM measurements at various tip-sample temperatures and scanning speeds yield several thermophysical quantities: the PEO melting temperature of 54 ± 12 °C, the PS glass transition temperature of 54 ± 12 °C, the PS-b-PEO specific heat of 3.6 ± 2.7 J g(-1) K(-1), the PEO melting enthalpy of 111 ± 88 J g(-1), and the free energy of Helmholtz for PEO unfolding (and melting) of 10(-20) J nm(-2). These quantities are obtained for PS-b-PEO volumes of 30,000 nm(3), which correspond to 30 ag of the polymer.

  7. Structural and optical properties of tin (II) sulfide thin films deposited using organophosphorus precursor (Ph3PS)

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-02-01

    Tin sulfide (SnS) thin films have been deposited onto glass substrates using triphenylphosphine sulfide (Ph3PS) as a sulfur precursor in a chemical vapor deposition reactor in a temperature range of 250 °C-400 °C. The influence of the sulphidisation temperature in the crystal structure, surface morphology, chemical composition and optical properties has been investigated. X-ray diffraction, energy dispersive analysis of x-rays, and Raman spectroscopy showed that pure SnS thin films have been successfully obtained at 250 °C. All the deposited films were polycrystalline and showed orthorhombic structure, with a preferential orientation according to the direction . The optical measurements showed that the films deposited exhibited a direct allowed transition and have a relatively high absorption coefficient. The presence of mixed tin sulfide phases granted by the variation of the sulphidisation temperature has affected the optical properties of the deposited films. The refractive index (n) and extinction coefficient (k), has low values compared to conventional semiconductor materials. The grown films can be considered as a good light absorbing material and a promising candidate for application in optoelectronic devices.

  8. Luminescent microstructures in bulk and thin films of PMMA, PDMS, PVA, and PS fabricated using femtosecond direct writing technique

    Science.gov (United States)

    Deepak, K. L. N.; Kuladeep, R.; Venugopal Rao, S.; Narayana Rao, D.

    2011-02-01

    We present here the luminescent properties of microstructures obtained through femtosecond (fs) laser direct writing (LDW) in bulk, and thin films of polymers such as poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS), and poly vinyl alcohol (PVA). We report the transmission, emission, excitation, laser confocal and ESR data from the modified regions acquired with the intention of understanding the fs irradiation effects in these polymers. Formation of different optical centers in the laser irradiated regions has been identified as the reason for emission characteristics which are dependent on the excitation source. Such emitting microstructures demonstrate their utility in memory based devices. ESR studies reveal the existence of peroxide type free radicals in PMMA, PDMS and PS after fs laser irradiation.

  9. Influence of structural disorder on the optical properties of non-stoichiometric Cu6Ps5I-based thin films

    Science.gov (United States)

    Studenyak, Ihor; Izai, Vitalii; Studenyak, Viktor; Bendak, Andrij; Kranjčec, Mladen; Kúš, Peter; Mikula, Marian; Grančič, Branislav; Roch, Tomaš; Suleimenov, Batyrbek; Ławicki, Tomasz; Gurov, Egor

    2017-08-01

    Cu6PS5I-based thin films were deposited onto silicate glass substrates by magnetron sputtering. Chemical composition of the thin films was determined by energy-dispersive X-ray spectroscopy. With increasing Cu content, a red shift of the exponential absorption edge energy position as well as a decrease of the Urbach energy are observed. Optical transmission spectra of Cu8.05P0.68S3.54I0.73 thin film were investigated in the temperature interval 77-300 K; the temperature behaviour of the optical absorption spectra and the refractive index dispersion was studied. Temperature dependences of the energy position of the absorption edge, the Urbach energy, and the refractive index of the Cu8.05P0.68S3.54I0.73 thin film were analysed. The influence of structural disorder on the optical properties of the Cu6PS5Ibased thin films is discussed.

  10. Hexagonal-to-cubic phase transformation in composite thin films induced by FePt nanoparticles located at PS/PEO interfaces.

    Science.gov (United States)

    Aissou, Karim; Fleury, Guillaume; Pecastaings, Gilles; Alnasser, Thomas; Mornet, Stéphane; Goglio, Graziella; Hadziioannou, Georges

    2011-12-06

    The organization process of asymmetric poly(styrene-block-ethylene oxide) (PS-b-PEO) copolymer thin films blended with FePt nanoparticles is studied. In a first step, it is shown that FePt nanoparticles stabilized by oleic acid ligands are distributed within the PS matrix phase, whereas the same particles partially covered with short dopamine-terminated-methoxy poly(ethylene oxide) (mPEO-Dopa) are located at PS/PEO interfaces. The swelling of PS domains, induced by FePt_oleic acid nanoparticles during the solvent annealing process, results in formation of a disordered microstructure in comparison to the well-organized hexagonally close-packed (HCP) cylinder phase formed in the neat PS-b-PEO copolymer. The evolution of the microstructure of PS-b-PEO/FePt_mPEO-Dopa composite has been investigated for different solvent annealing treatments. Under high-humidity conditions during the vapor annealing process, the addition of FePt nanoparticles results in formation of spheres in the film split into terraces. The upper and lower terraces are occupied by spheres organized in an unusual square and HCP phases, respectively. Under low-humidity conditions, undulated PEO cylinders oriented parallel to substrate are formed in the presence of FePt nanoparticles. In this case, we observe that most of the nanoparticles accumulate within the core of topological defects, which induces a low nanoparticle concentration at the PS/PEO interfaces and so stabilizes an intermediate undulated cylinder phase. © 2011 American Chemical Society

  11. Polymer Thin Film Stabilization.

    Science.gov (United States)

    Costa, A. C.; Oslanec, R.; Composto, R. J.; Vlcek, P.

    1998-03-01

    We study the dewetting dynamics of thin polystyrene (PS) films deposited on silicon oxide surfaces using optical (OM) and atomic force (AFM) microscopes. Quantitative analysis of the hole diameter as a function of annealing time at 175^oC shows that blending poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) with PS acts to dramatically slow down the dewetting rate and even stops holes growth before they impinge. AFM studies show that the hole floor is smooth for a pure PS film but contains residual polymer for the blend. At 5% vol., a PS-b-PMMA with high molar mass and low PMMA is a more effective stabilizing agent than a low molar mass/high PMMA additive. The optimum copolymer concentration is 3% vol. beyond which film stability doesn't improve. Although dewetting is slowed down relative to pure PS, PS/PS-b-PMMA bilayers dewet at a faster rate than blends having the same overall additive concentration.

  12. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop

    2017-07-18

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  13. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  14. Thin Film

    African Journals Online (AJOL)

    a

    TiO2 film and also the photo generated electrons are the charge carriers. As anodic potential increased, a large amount of current carrier (photoelectrons) passed through the TiO2 film. Additionally, photogenerated holes were consumed by methyl orange in the solution, which is reflected in the decrease of absorbance. 0.

  15. thin films

    Indian Academy of Sciences (India)

    by successive ionic layer adsorption and reaction (SILAR) method at room temperature (∼300 K). The films are characterized for their ... two steps: (i) adsorption of Sn4+ ions on the substrate surface for 20 s and (ii) reaction with ... The mechanism of formation of SnO2:H2O film can be eluci- dated as follows. The SnCl2 ...

  16. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  17. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  18. Thin Film Processes

    CERN Document Server

    Vossen, John L.

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques. Key Features * Provides an all-new sequel to the 1978 classic, Thin Film Processes * Introduces new topics, and several key topics presented in the original volume are updated * Emphasizes practical applications of major thin film deposition and etching processes * Helps readers find the appropriate technology for a particular application

  19. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  20. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  1. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  2. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which...... by use of peak shape analysis of the X-ray Photoelectron Spectra via the Tougaard Method. The amount of dimethylsiloxane in the uppermost part of the films was quantified as a function of annealing time and temperature. For annealing above the PS glass transition temperature, surface segregation...... of the dimethylsiloxane chain-ends occurs for all the studied PS–PDMS diblock copolymers. At room temperature, surface segregation takes place only when the amount of dimethylsiloxane in the diblock copolymers is small....

  3. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  4. Multifunctional thin film surface

    Science.gov (United States)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  5. Sputtered Thin Film Research

    Science.gov (United States)

    1974-11-01

    and Idonllly hy block numbor) Reactive Sputtering, Heteroepitaxy, Thin Films Single Crystal Zinc Oxide, Titanium Dioxide, Aluminum Nitride, Gallium...Conditions were determined for the deposition of amorphous neodymium ultra- phosphate films. This material holds the potential for the fabrication...reaching the substrate at any time during sputtering. A 17.2 cm diameter quartz plate was covered with a thin coating of zinc sulflde and placed on

  6. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  7. Thin film photovoltaic device

    Science.gov (United States)

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  8. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  9. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  10. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  11. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  12. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  13. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  14. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  15. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  16. Dewetting of Thin Polymer Films

    Science.gov (United States)

    Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.

    2001-03-01

    DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.

  17. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  18. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  19. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  20. Center for Thin Film Studies

    Science.gov (United States)

    1988-10-31

    12 (3.22) To understand (3.22) requires a basic knowledge of differential geometry (Do Carmo , 1976). The determinant and trace of M1dj are the...A.G. Dirks and H.J. Leamy, "Columnar Microstructure in Vapour Deposited Thin Films," Thin Solid Films 47 219-233 (1977). M.P. Do Carmo , Differential

  1. Thin films: Past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  2. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  3. Thin film hydrogen sensor

    Science.gov (United States)

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  4. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  5. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  6. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  7. Sputtered Thin Film Research

    Science.gov (United States)

    1976-02-01

    influences substrate heating and uniformity of the deposition Th. ing .50 L/sec in the milxitorr range. Use of the turbomolecular pump in place...evaluation of the films eposited. Prior to film deposition the wafers were degreased, boiled in nitric acid rinsed in high resitivity deionized...the shutters were opened and film depositxon was initiated. After film deposition, heat treatments in nitrogen, hydrogen and oxygen were investigated

  8. Thin Films for Thermoelectric Applications

    Science.gov (United States)

    Silva, M. F.; Ribeiro, J. F.; Carmo, J. P.; Gonçalves, L. M.; Correia, J. H.

    The introduction of nanotechnology opened new horizons previously unattainable by thermoelectric devices. The nano-scale phenomena began to be exploited through techniques of thin-film depositions to increase the efficiency of thermoelectric films. This chapter reviews the fundamentals of the phenomenon of thermoelectricity and its evolution since it was discovered in 1822. This chapter also reviews the thermoelectric devices, the macro to nano devices, describing the most used techniques of physical vapor depositions to deposit thermoelectric thin-films. A custom made deposition chamber for depositing thermoelectric thin films by the thermal co-evaporation technique, where construction issues and specifications are discussed, is then presented. All the steps for obtaining a thermoelectric generator in flexible substrate with the custom deposition chamber (to incorporate in thermoelectric microsystems) are described. The aim of thermoelectric microsystem relays is to introduce an energy harvesting application to power wireless sensor networks (WSN) or biomedical devices. The scanning probe measuring system for characterization of the thermoelectric thin films are also described in this chapter. Finally, a few of the prototypes of thermoelectric thin films (made of bismuth and antimony tellurides, {Bi}2{Te}3, and {Sb}2{Te}3, respectively) obtained by co-evaporation (using the custom made deposition chamber) and characterized for quality assessment are dealt with. All the issues involved in the co-evaporation and characterization are objects of analysis in this chapter.

  9. Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses

    Science.gov (United States)

    Bayer, Lukas; Ye, Xinyuan; Lorenz, Pierre; Zimmer, Klaus

    2017-10-01

    Hybrid organic-inorganic perovskites attract much attention due to their exceptional optoelectronic properties, in particular for photovoltaic (PV) applications. The accurate, high-speed and reliable patterning of the PV films is required for perovskite solar modules fabrication. Laser scribing provides these characteristics needed for industrial fabrication processes. In this work, the laser ablation and scribing of perovskite layers (CH3NH3PbI3: MAPbI3) with different laser sources (ns-, ps-, fs-laser pulses with wavelengths of 248 nm to 2.5 µm) were systematically investigated. The perovskite material was irradiated from both the film side and the substrate (rear side) side to study and compare the particular processes. The patterning results of the perovskite film can be classified into (1) regular laser ablation, (2) thin-film delamination lift-off process, and (3) lift-off with thermal modifications. A particular process, the localised lift-off of single grains from the perovskite film, has been observed and is discussed in relation to the thin-film lift-off process. Ablation and ablation-related mechanisms provide good conditions for laser scribing of the perovskite layer required for module interconnection via P2.

  10. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  11. Nanocrystal thin film fabrication methods and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  12. Laser applications in thin-film photovoltaics

    OpenAIRE

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2009-01-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are descri...

  13. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    RACHANA GUPTA1,∗, MUKUL GUPTA2 and THOMAS GUTBERLET3. 1VES College of Arts, Science and Commerce, Sindhi Society, Chembur, Mumbai 400 071,. India. 2UGC-DAE Consortium for ... E-mail: dr.rachana.gupta@gmail.com. Abstract. Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture.

  14. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film deposition was ... 3.1 Reaction mechanism. CdTe thin films were grown on micro ...

  15. Physical Properties of Thin Film Semiconducting Materials

    Science.gov (United States)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  16. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  17. Fabrication of PDMS/SWCNT thin films as saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Romano, I; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); Davila-Rodriguez, J; Delfyett, P J [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816-2700 (United States); May-Arrioja, D A, E-mail: hromano@inaoep.mx [Depto. de Ingenieria Electronica, UAM Reynosa Rodhe, Universidad Autonoma de Tamaulipas, Carr. Reynosa-San Fernando S/N, Reynosa, Tamaulipas 88779 (Mexico)

    2011-01-01

    We present a novel technique to fabricate a saturable absorber thin film based on Polydimethylsiloxane doped with Single Wall Carbon Nanotubes. Using this film a passive mode-locked fiber laser in a standard ring cavity configuration was built by inserting the film between two angled connectors. Self-starting passively mode-locked laser operation was easily observed. The generated pulses have a width of 1.26 ps at a repetition rate of 22.7 MHz with an average power of 4.89 mW.

  18. The Effect of Thickness of Silver Thin Film on Structural and Optical Properties of Porous Silicon

    Science.gov (United States)

    Cetinel, A.; Ozdogan, M.; Utlu, G.; Artunc, N.; Sahin, G.; Tarhan, E.

    In this study, porous silicon (PS) samples were prepared on n-type silicon (100) wafers by electrochemical etching method, varying the current density from 20 to 100mA/cm2 and keeping constant HF concentration (10%) and etching time of 15min. Then, Ag thin films, which have 10, 50 and 100nm film thicknesses, were deposited on PS layers by using thermal evaporation to investigate the influence of Ag film thickness on structural and optical properties of PS. The structural and optical properties of PS and Ag deposited PS layers have been investigated by XRD, FE-SEM, Raman and photoluminescence (PL) spectroscopy. FE-SEM XRD and Raman analyzes indicate that average pore size and porosity of PS layers increase with the increasing current density. Further, Ag nanoparticles have embedded in pore channel. PL measurement reveals that higher porosity of PS would be better to form the Ag-PS nano-composite material leading to stronger PL band. The PL spectra of PS and Ag-PS samples indicate that PL bands show blue shift with increasing current density and film thickness. Consequently, it has been found that the structural and optical properties of PS depend on current density and Ag film thickness individually.

  19. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  20. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  1. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  2. Laser scribing integration of polycrystalline thin film solar cells

    Science.gov (United States)

    Sozzi, Michele; Manilia, Filomena; Antezza, Roberto; Catellani, Cristina; Candiani, Alessandro; Coscelli, Enrico; Cucinotta, Annamaria; Selleri, Stefano; Menossi, Daniele; Bosio, Alessio

    2013-03-01

    The growing demand for high productivity in the thin-film photovoltaic module industry, together with the request for more and more efficient devices, needs high-performance laser-scribing. The results of scribing tests on CdTe and CIGS solar cells samples are here presented. A comparison between the scribes obtained with ns regime fiber lasers, and a ps regime diode pumped solid state laser will be also reported.

  3. Thin polymeric films for building biohybrid microrobots.

    Science.gov (United States)

    Ricotti, Leonardo; Fujie, Toshinori

    2017-03-06

    This paper aims to describe the disruptive potential that polymeric thin films have in the field of biohybrid devices and to review the recent efforts in this area. Thin (thickness  3D systems, new advanced materials to be used for the fabrication of thin films, cell engineering opportunities and modelling/computational efforts.

  4. Zinc oxide thin film acoustic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  5. MCP performance improvement using alumina thin film

    Science.gov (United States)

    Yang, Yuzhen; Yan, Baojun; Liu, Shulin; Zhao, Tianchi; Yu, Yang; Wen, Kaile; Li, Yumei; Qi, Ming

    2017-10-01

    The performance improvement using alumina thin film on a dual microchannel plate (MCP) detector for single electron counting was investigated. The alumina thin film was coated on all surfaces of the MCPs by atomic layer deposition method. It was found that the gain, the single electron resolution and the peak-to-valley ratio of the dual MCP detector were significantly enhanced by coating the alumina thin film. The optimum operating conditions of the new dual MCP detector have been studied.

  6. Testing thin film adhesion strength acoustically

    Science.gov (United States)

    Madanshetty, Sameer I.; Wanklyn, Kevin M.; Ji, Hang

    2004-05-01

    A new method of measuring the adhesion strength of thin films to their substrates is reported. The method is based on an analogy with the common tensile test of materials. This is an acoustic method that uses acoustic microcavitation to bring about controlled erosion of the thin film. Based on the insonification pressure and the time to complete erosion, the adhesion strength is assessed. The measurements correctly rank order a set of thin film samples of known adhesion strengths.

  7. Growth and characterization of PNZST thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai Jiwei; Li, X.; Yao, Y.; Chen, Haydn

    2003-05-25

    We have grown and compared microstructures and dielectric properties of PNZST thin films prepared on two different substrates by sol-gel methods. To ensure a complete single-phase perovskite PNZST thin film, a capping layer of PbO must be added to the top surface of the thin film before final heat treatment. Microstructure characterization was examined with X-ray diffraction, scanning and transmission electron microscopy. Dielectric and antiferroelectric properties were investigated as a function of temperature.

  8. Numerical modeling of thin film optical filters

    Science.gov (United States)

    Topasna, Daniela M.; Topasna, Gregory A.

    2009-06-01

    Thin films are an important and sometimes essential component in many optical and electrical devices. As part of their studies in optics, students receive a basic grounding in the propagation of light through thin films of various configurations. Knowing how to calculate the transmission and reflection of light of various wavelengths through thin film layers is essential training that students should have. We present exercises where students use Mathcad to numerically model the transmission and reflection of light from various thin film configurations. By varying the number of layers and their optical parameters, students learn how to adjust the transmission curves in order to tune particular filters to suit needed applications.

  9. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  10. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  11. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  12. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  13. Nanostructured polystyrene-block-poly(4-vinyl pyridine)(pentadecylphenol) thin films as templates for polypyrrole synthesis

    NARCIS (Netherlands)

    Zoelen, Wendy van; Bondzic, Sasa; Fernández Landaluce, Tatiana; Brondijk, Johan; Loos, Katja; Schouten, Arend-Jan; Rudolf, Petra; Brinke, Gerrit ten

    2009-01-01

    Polypyrrole has been chemically synthesized on thin film nanostructures obtained from comb-shaped supramolecules of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP) hydrogen bonded with pentadecylphenol (PDP). PDP was washed from thin films of cylindrical and lamellar self-assembled

  14. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  15. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  16. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  17. Block copolymer directed nanoporous metal thin films.

    NARCIS (Netherlands)

    Arora, H.; Li, Z.H.; Sai, H.; Kamperman, M.M.G.; Warren, S.C.; Wiesner, U.

    2010-01-01

    Porous metal thin films have high potential for use in applications such as catalysis, electrical contacts, plasmonics, as well as energy storage and conversion. Structuring metal thin films on the nanoscale to generate high surface areas poses an interesting challenge as metals have high surface

  18. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  19. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  20. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  1. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with ...

  2. Intricacies of Polymer Dewetting: Nanoscaled Architectures for the Tailored Control of Polystyrene Thin Film Stability

    Science.gov (United States)

    Cheung, Justin; Sen, Mani; Chen, Zhizhao; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Satija, Sushil

    Recently, structural properties of polymer thin films have garnered attention for their relevance in the fields of organic photovoltaics and biosensors. The dewetting of polymer films poses an obstacle in the face of widespread implementation. For this study, we show that adsorbed polymer chains on a substrate surface play crucial roles in film stability. Polystyrene (PS) thin films (20 nm in thickness) with different molecular weights (Mw) on silicon (Si) substrates were used as a model. The PS films were annealed at high temperatures for several days, and Mw dependence on film stability was evidenced. At the same time, the annealed PS films were leached with a good solvent and the residue films (i.e., irreversibly adsorbed layers) were characterized by x-ray reflectivity (XR). We reveal strong correlation between film stability and two different interfacial structures of the adsorbed polymer chains: their opposing wettability against chemically identical free polymer chains results in a wetting-dewetting transition at the adsorbed polymer-free polymer interface. This is a unique aspect of polymer thin film stability and may be generalizable to other polymer systems regardless of the magnitude of solid-polymer attractive interactions. We acknowledge the financial support of NSF Grant (CMMI-1332499).

  3. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  4. Macro stress mapping on thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  5. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c...... or less; and e. repeating steps b. and c. a total of N times, such that N repeating pairs of layers (A/B) are built up, wherein N is 1 or more. The invention also provides a thin film multi-layered heterostructure as such, and the combination of a thin film multi-layered heterostructure and a substrate...

  6. Molecular tailoring of interfaces for thin film on substrate systems

    Science.gov (United States)

    Grady, Martha Elizabeth

    to use more conventional interfacial fracture testing techniques. Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface in an on-demand fashion. The SAM end-group functionality is systematically varied and the corresponding effect on interfacial adhesion between a transfer printed gold (Au) film and a fused silica substrate is measured. SAMs with four different end groups are investigated: methyl, amine, bromine and thiol. In addition to these four end groups, mixed monolayers of increasing molar ratio of thiol to methyl SAMs in solution are investigated. There is a strong dependence of interfacial chemistry on the adhesion strength of Au films. In addition to the chemical functionality of the SAM, surface roughness of the underlying substrate also has a significant impact on the interfacial strength. Thin films of mechanochemically active polymer are subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produces large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain-rates (ca. 107-108 s -1). The polymer system, spiropyran (SP)- linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP is evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions. In addition to SP-linked polymer films, the activation of spiropyran interfacial molecules with different side groups is characterized as they adsorb onto a SAM platform with preferential amine terminating chemistry. The reactivity of SP monolayers due to UV irradiation is evaluated by water contact angle goniometry and fluorescence spectroscopy. Side groups on the

  7. Mechanical Properties of Silicon Carbonitride Thin Films

    Science.gov (United States)

    Peng, Xiaofeng; Hu, Xingfang; Wang, Wei; Song, Lixin

    2003-02-01

    Silicon carbonitride thin films were synthesized by reactive rf sputtering a silicon carbide target in nitrogen and argon atmosphere, or sputtering a silicon nitride target in methane and argon atmosphere, respectively. The Nanoindentation technique (Nanoindenter XP system with a continuous stiffness measurement technique) was employed to measure the hardness and elastic modulus of thin films. The effects of sputtering power on the mechanical properties are different for the two SiCN thin films. With increasing sputtering power, the hardness and the elastic modulus decrease for the former but increase for the latter. The tendency is similar to the evolution trend of Si-C bonds in SiCN materials. This reflects that Si-C bonds provide greater hardness for SiCN thin films than Si-N and C-N bonds.

  8. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  9. Integrated Substrate and Thin Film Design Methods

    National Research Council Canada - National Science Library

    Thaler, Stephen

    1999-01-01

    .... However, since modem thin film technology allows a wide range of exotic compositions and stoichiometries via deposition, surface treatments, and nano-fabrication, it is anticipated that this newly...

  10. Thermally tunable ferroelectric thin film photonic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  11. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  12. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  13. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  14. Aging phenomena in polystyrene thin films

    OpenAIRE

    Fukao, Koji; Koizumi, Hiroki

    2008-01-01

    The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on the...

  15. Multilayer Thin Film Sensors for Damage Diagnostics

    Science.gov (United States)

    Protasov, A. G.; Gordienko, Y. G.; Zasimchuk, E. E.

    2006-03-01

    The new innovative approach to damage diagnostics within the production and maintenance/servicing procedures in industry is proposed. It is based on the real-time multiscale monitoring of the smart-designed multilayer thin film sensors of fatigue damage with the standard electrical input/output interfaces which can be connected to the embedded and on-board computers. The multilayer thin film sensors supply information about the actual unpredictable deformation damage, actual fatigue life, strain localization places, damage spreading, etc.

  16. Silver based SERS substrates fabricated from block copolymer thin film

    Science.gov (United States)

    Zhang, Xin; Lee, Wonjoo; Lee, Seung Yong; Gao, Zhenghan; Rabin, Oded; Briber, R. M.

    2013-03-01

    Poly (styrene-block-4-vinyl pyridine) (PS-b-P4VP, Mw = 47-b-10 kDa, PDI =1.10) thin films were used to form large-scale long range ordered self-assembled hexagonal patterns of vertically P4VP oriented cylinders in a PS matrix on Si substrates. The P4VP cylindrical domains were crosslinked and quaternized using 1,4-dibromobutane. Negatively charged 15nm gold nanoparticles were attached to the quaternized P4VP domains through Coulombic interactions. Silver was then grown on the gold seeds to create nanometer scale gaps between the nanoparticles. The gap between the nanoparticles was fine tuned by controlling the silver growth time. The substrates showed large enhancement factors in the Raman scattering signal for a broad range of incident wavelengths. Present address: LG Chem Ltd, Information Technology & Electronic Materials R&D, Yuseong-gu Daejeon, South Korea

  17. Laser processing for thin-film photovoltaics

    Science.gov (United States)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  18. Laser applications in thin-film photovoltaics

    Science.gov (United States)

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2010-08-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are described in detail, while other laser-based fabrication processes, such as laser-induced crystallization and pulsed laser deposition, are briefly reviewed. Lasers are also integrated into various diagnostic tools to analyze the composition of chemical vapors during deposition of Si thin films. Silane (SiH4), silane radicals (SiH3, SiH2, SiH, Si), and Si nanoparticles have all been monitored inside chemical vapor deposition systems. Finally, we review various thin-film characterization methods, in which lasers are implemented.

  19. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  20. Thin Films of Block Copolymers/Homopolymer: Effect of Non-Adsorbing Block Length on the Interfacial Properties

    Science.gov (United States)

    Costa, Ana Claudia; Composto, Russell J.; Vlcek, Petr; Geoghehan, Mark; Creton, Costantino

    2002-03-01

    We have addressed the effect of non-adsorbing block length of block copolymers on their interfacial properties. To this goal, a low volume fraction (5 vol.styrene-b-methylmethacrylate) (dPS-b-MMA) having a nearly constant adsorbing block length (NMMA 40) was added to a PS matrix, which represents a nearly neutral environment for the dPS block. Films with varying non-adsorbing block lengths (NdPS 90-940) were spin coated on silicon oxide surfaces. Neutron reflectivity and forward recoil spectrometry were used to measure the dPS-b-MMA interfacial excess (z*) and width (w). The results show that z* and w increases with NdPS. These results are interpreted using a self-consistent mean field model. Probe tack tests indicate that adhesion improves with NdPS and suggests that the entanglements across the matrix/adsorbed layer interface are partially responsible for enhanced thin film adhesion.

  1. Thin organosilicon films for integrated optics.

    Science.gov (United States)

    Tien, P K; Smolinsky, G; Martin, R J

    1972-03-01

    The continued development of integrated optics is heavily dependent upon the availability of materials that are suitable for the construction of thin-film optical circuitry and devices. We report here an investigation of new films made by an rf discharge polymerization process of organic chemical monomers. We concentrate our discussion on films prepared from vinyltrimethylsilane and hexamethyldisilbxane. These films are smooth, tough, pinhole-free, transparent from 0.4 microm to 0.75 microm, and exhibit very low loss (prism-film coupler for studying the refractive index of each material is discussed in detail.

  2. The Effect of Block Copolymer Adsorption on Thin Film Dewetting Kinetics

    Science.gov (United States)

    Costa, A. C.; Oslanec, R.; Composto, R. J.; Vlcek, P.

    1997-03-01

    Using optical microscopy, the dewetting kinetics of thin polystyrene films from a solid substrate is studied as a function of block copolymer adsorption at the polymer/solid interface. The block copolymer is poly(styrene-block-methylmethacrylate) (PS-b-PMMA) which contains short MMA and long S blocks. The MMA block adsorbs to the silicon oxide surface, whereas the S block extends into the matrix polymer. The matrix is formed by a polystyrene (PS) homopolymer. The dewetting kinetics of PS films, with and without PS-b-PMMA, is investigated by measuring the hole diameter as a function of time, at constant temperature for various molecular weights and concentrations of PS-b-PMMA in the film. We find that the presence of adsorbing block copolymer at the polymer/solid interface can significantly retards the dewetting dynamics of thin polymer films by increasing the adhesion between the polymer film and the substrate. These macroscopic results are correlated with the molecular aspects of block copolymer adsorption, such as the volume fraction profile and the coverage of the adsorbed layer.

  3. Carrier dynamics and gain spectra at room-temperature in epitaxial ZNO thin films

    DEFF Research Database (Denmark)

    Yu, Ping; Hvam, Jørn Märcher; Wong, K. S.

    1999-01-01

    Carrier dynamics of epitaxial ZnO thin film was investigated using a frequency up-conversion tehcnique. At lower carrier densities, the decay time of free exciton recombination was measured to be 24 ps. Rapid decay times of a few picoseconds were observed at higher carrier densities, which show a...

  4. Large resonant third-order optical nonlinearity of thin film containing ...

    Indian Academy of Sciences (India)

    The third-order optical nonlinearity and response of thin film containing J-like aggregates of a bis[4-(-dibutylamino)phenyl]squarylium dye were measured by degenerate four-wave mixing (DFWM) technique under resonant conditions. The temporal profile of DFWM signal was obtained with a time resolution of 0.3 ps ...

  5. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  6. Thin film absorber for a solar collector

    Science.gov (United States)

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  7. Gradient Solvent Vapor Annealing of Thin Films

    Science.gov (United States)

    Albert, Julie; Bogart, Timothy; Lewis, Ronald; Epps, Thomas

    2011-03-01

    The development of block copolymer materials for emerging nanotechnologies requires an understanding of how surface energy/chemistry and annealing conditions affect thin film self-assembly. Specifically, in solvent vapor annealing (SVA), the use of solvent mixtures and the manipulation of solvent vapor concentration are promising approaches for obtaining a desired morphology or nanostructure orientation. We designed and fabricated solvent-resistant devices to produce discrete SVA gradients in composition and/or concentration to efficiently explore SVA parameter space. We annealed copolymer films containing poly(styrene), poly(isoprene), and/or poly(methyl methacrylate) blocks, monitored film thicknesses during annealing, and characterized film morphologies with atomic force microscopy. Morphological changes across the gradients such as the transformation from parallel cylinders to spheres with increasing solvent selectivity provided insight into thin film self-assembly, and the gradient device has enabled us to determine transition compositions and/or concentrations.

  8. Magnetowetting of Ferrofluidic Thin Liquid Films

    Science.gov (United States)

    Tenneti, Srinivas; Subramanian, Sri Ganesh; Chakraborty, Monojit; Soni, Gaurav; Dasgupta, Sunando

    2017-03-01

    An extended meniscus of a ferrofluid solution on a silicon surface is subjected to axisymmetric, non-uniform magnetic field resulting in significant forward movement of the thin liquid film. Image analyzing interferometry is used for accurate measurement of the film thickness profile, which in turn, is used to determine the instantaneous slope and the curvature of the moving film. The recorded video, depicting the motion of the film in the Lagrangian frame of reference, is analyzed frame by frame, eliciting accurate information about the velocity and acceleration of the film at any instant of time. The application of the magnetic field has resulted in unique changes of the film profile in terms of significant non-uniform increase in the local film curvature. This was further analyzed by developing a model, taking into account the effect of changes in the magnetic and shape-dependent interfacial force fields.

  9. The Effect of Film Thickness and TiO2 Content on Film Formation from PS/ TiO2 Nanocomposites Prepared by Dip-Coating Method

    National Research Council Canada - National Science Library

    M. Selin Sunay; Onder Pekcan; Saziye Ugur

    2012-01-01

    ...) was used for studying film formation from TiO2 covered nanosized polystyrene (PS) latex particles (320 nm). The effects of film thickness and TiO2 content on the film formation and structure properties of PS/TiO2 composites were studied...

  10. Thin film dielectric composite materials

    Science.gov (United States)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  11. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  12. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  13. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  14. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  15. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  16. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  17. Coherent Raman measurements of polymer thin-film pressure and temperature during picosecond laser ablation

    Science.gov (United States)

    Hare, David E.; Franken, Jens; Dlott, Dana D.

    1995-06-01

    Picosecond time-resolved coherent Raman spectroscopy (ps CARS) is used to study photothermal ablation, induced by 150 ps duration near-infrared optical pulses, of poly-(methyl methacrylate) (PMMA) thin films doped with a small amount of near-infrared absorbing dye. The pressure and temperature shifts of a PMMA transition at ≊808 cm-1 were calibrated in static P and T experiments. Dynamic frequency shifting of the PMMA transition is used to determine temperature and pressure in the ablating thin film, and to investigate the dynamics of fast thin-film volume expansion. When the ablation pulse intensity is varied, ps CARS measurements of T and P are shown to be consistent with the results of conventional measurements below threshold, but near and above threshold picosecond time scale data show noticeable differences. Picosecond time scale ablation involves solid-state shock waves, which are not produced by longer duration ablation pulses. A pressure jump, often several kbar, is produced when the film is heated faster than a characteristic hydrodynamic volume relaxation time τh. Pressure release occurs by shock rarefaction wave propagation. When the rarefaction wave reaches the substrate, a tensile force is exerted on the thin film, causing it to break away from the substrate. The pressure in the thin film at ablation threshold, Pabl≊0.5 GPa, is found to be generated by roughly equal contributions from shock and thermochemical polymer decomposition processes. Therefore the picosecond time scale ablation process is termed shock-assisted photothermal ablation. The value of Pabl is interpreted to be the nanosecond time scale dynamic tensile strength of the thin film under conditions of ultrafast heating. It is found to be about one order of magnitude greater than the static strength of PMMA.

  18. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  19. Thin Film Electrodes for Rare Event Detectors

    Science.gov (United States)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  20. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  1. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Administrator

    subsequently spin-coated on a carbon-coated copper grid for TEM measurements. TEM measurements were performed at liquid nitrogen temperatures to reduce the electron–beam-induced radiation damage. The results showed a marginal increase in Au nanoparticle diameter (2⋅3 nm–3⋅6 nm) and more importantly,.

  2. Magnetic Surfaces, Thin Films, and Multilayers

    Science.gov (United States)

    1992-01-01

    Laboratory, Berkeley CA 94720. ABSTRACT A brief review of the state of the art in the field of surface, inter- face and thin-film magnetism is presented... art and maturing science [I]. In particular, growing epitaxial films of monolayer or near-monolayer thickness allows the investigation of two...understood considering steps. A such study is under progress. Aknowledgments This work was partially supported by " Acciones Integradas Hispano-Francesas

  3. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  4. Slip and flow dynamics of polydisperse thin polystyrene films.

    Science.gov (United States)

    Sabzevari, Seyed Mostafa; McGraw, Joshua D.; Jacobs, Karin; Wood-Adams, Paula M.

    2015-03-01

    We investigate the slip of binary and ternary mixtures of nearly monodisperse polystyrene samples on Teflon-coated (AF2400) silicon wafers using dewetting experiments. Binary mixtures of long and short chains along with ternary mixtures with a fixed weight-average molecular weight Mw but different number-average molecular weight Mn were prepared. Thin films of ca. 200 nm were spin coated on mica from polymer solutions and transferred to Teflon substrates. Above the glass transition temperature Tg the films break up via nucleation and growth of holes. The hole growth rate and rim morphology are monitored as a function of Mn and annealing protocol of the films before transfer to Teflon substrates. Slip properties, accessed using hydrodynamic models, and flow dynamics are then examined and compared. We found that the rim morphology and slip of polystyrene blends on Teflon depends on the molecular weight distribution. Similarly, flow dynamics is affected by the presence of short chains in mixture. Moreover, we can provoke differences in slip by choosing appropriate annealing and film transfer protocols for PS films that have first been spin cast on mica surfaces.

  5. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  6. Magnetocaloric effect of thin Terbium films

    Science.gov (United States)

    Mello, V. D.; Anselmo, D. H. A. L.; Vasconcelos, M. S.; Almeida, N. S.

    2017-12-01

    We report a theoretical study of the magnetocaloric effect of Terbium (Tb) thin films due to finite size and surface effects in the helimagnetic phase, corresponding to a temperature range from TC=219 K to TN=231 K, for external fields of the order of kOe. For a Tb thin film of 6 monolayers submitted to an applied field (ΔH =30 kOe, ΔH =50 kOe and ΔH = 70 kOe) we report a significative change in adiabatic temperature, ΔT / ΔH , near the Néel temperature, of the order ten times higher than that observed for Tb bulk. On the other hand, for small values of the magnetic field, large thickness effects are found. For external field strength around few kOe, we have found that the thermal caloric efficiency increases remarkably for ultrathin films. For an ultrathin film with 6 monolayers, we have found ΔT / ΔH = 43 K/T while for thicker films, with 20 monolayers, ΔT / ΔH = 22 K/T. Our results suggest that thin films of Tb are a promising material for magnetocaloric effect devices for applications at intermediate temperatures.

  7. Cell patterning using microstructured ferromagnetic thin films

    Science.gov (United States)

    Lai, Mei-Feng; Chen, Chia-Yi; Lee, Chiun-Peng; Huang, Hao-Ting; Ger, Tzong-Rong; Wei, Zung-Hang

    2010-05-01

    Magnetic cell patterning is demonstrated through controlling the micromagnetic states in microstructured ferromagnetic thin films. The number of magnetic nanoparticles entering the cells by endocytosis can be determined by magnetophoresis experiment and is found to be dependent of the cocultured extracellular magnetic nanoparticles concentrations. In zigzag magnetic films the effects of cell patterning differ for magnetic films at as-deposited state and at remanent states after applying fields in different directions. Remanent states of concentric rings are proposed for cell patterning. Cells can be arranged at any positions in sequence by selectively changing the magnetic field directions.

  8. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  10. (Fe3O4) thin films

    Indian Academy of Sciences (India)

    Unknown

    resistance vs temperature measurements. Implantation decreases the change in resistance at 120 K and this effect saturates beyond 3 × 1014 ions/cm2. The Verwey transition temperature, TV, shifts towards lower temperatures with increase in ion dose. Keywords. Implantation; magnetite; thin films; pulsed laser ablation; ...

  11. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...

  12. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials

  13. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP ...

  14. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and

  15. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  16. Thin-Film Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  17. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic

  18. Flexible thin-film NFC tags

    NARCIS (Netherlands)

    Myny, K.; Tripathi, A.K.; Steen, J.L. van der; Cobb, B.

    2015-01-01

    Thin-film transistor technologies have great potential to become the key technology for leafnode Internet of Things by utilizing the NFC protocol as a communication medium. The main requirements are manufacturability on flexible substrates at a low cost while maintaining good device performance

  19. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  20. Study of zinc oxide thin film characteristics

    Science.gov (United States)

    Johari, Shazlina; Yazmin Muhammad, Nazalea; Rosydi Zakaria, Mohd

    2017-11-01

    This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influenced by the film thickness, substrate used and annealed temperature and the averages are all above 80%. On surface morphology observed by AFM and FESEM, the results show that the increase of film thickness and annealed temperature will increase the mean grain size, surface-to-volume ration and RMS roughness. Besides that, higher annealing temperature cause the crystalline quality to gradually improve and the wurtzite structure of ZnO can be seen more clearly. Nonetheless, the substrate used had no effect on surface morphology, yet the uniformity of deposition on silicon wafer is better than glass and quartz.

  1. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  2. Shunts in thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Stephanie; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany); Wischnath, Uli F. [aleo solar Deutschland GmbH, 26122 Oldenburg (Germany); Rechid, Juan [CIS Solartechnik GmbH and Co. KG, 20539 Hamburg (Germany)

    2011-07-01

    Shunts can lead to severe performance reduction in thin film solar cells. This work reports on a microscopic approach to locate and characterize the details of shunts in order to reveal their origin. Localization of hot spots and film disruptions is commonly addressed by lock-in infrared thermography (LIT) through visualization of the Joule heating. The resolution of this method is restricted to the {mu}m-range. We use different methods of LIT for the fast localization of local-lateral peculiarities in order to identify positions of interest. For a more detailed analysis of these features we use high resolution microscopy like Scanning Electron Microscopy (SEM) and AFM-based methods. These small-scale investigations can for example reveal whether areas of high heat dissipation are rather related to the inner structure of the involved thin films or to accidentally incorporated imperfections.

  3. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    oriented ZnO:Ga  thin   films   deposited  on  glass  by  laser   ablation   at  different  deposition  temperatures.  The  surface  morphology,  crystalline...Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 1    Review of Zinc Oxide Thin Films   Abstract  The present review  paper  reports on the...resistivity provided by indium‐doped  tin  oxide (ITO)  ~ 0.7 x 10‐4 Ω‐cm achieved by deposition of  ITO  films  on glass at 300 oC by pulsed  Laser

  4. Preparation and evaluation of the bioinspired PS/PDMS photochromic films by the self-assembly dip-drawing method.

    Science.gov (United States)

    Shieh, Jen-Yu; Kuo, Jen-Yu; Weng, Hsueh-Ping; Yu, Hsin Her

    2013-01-15

    Emulsifier-free emulsion polymerization was employed to synthesize polystyrene (PS) microspheres, which were then self-assembled into an ordered periodic structure. A photochromic film was formed by adding polydimethylsiloxane (PDMS) around the self-assembly of PS microspheres on a PDMS substrate. During polymerization, the PS microspheres shrunk depending on the amount of the hydrophilic comonomer, sodium 4-styrenesulfonate (NaSS). Variation in structural color was strongly affected by the size of the PS microspheres. Scanning electron microscopy was used to observe the surface and cross sections of the self-assembled microspheres. Results showed that the order and stacking thickness of microspheres were dependent on the drawing rate of the substrate and suspension concentration. High-transmittance photochromic films could be prepared when the drawing rate was lower than 1 μm/s and the suspension concentration was 20 wt %. PDMS surrounding the vacant space between regularly arranged PS microspheres could not only protect them but also increase the degree of matching between the refractive indices of PS and PDMS. The stability of the reflected structural color increased, and the optical transmittance of the photochromic film approached 95% after PDMS was poured between the PS microspheres. A special pattern could be designed and embedded inside the photochromic film. The PS/PDMS photochromic films can also be applied in decorative painting as well as in security devices, color-changing false nails, and privacy filters.

  5. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  6. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  7. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  8. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  9. Energetic deposition of thin metal films

    CERN Document Server

    Al-Busaidy, M S K

    2001-01-01

    deposited films. The primary aim of this thesis was to study the physical effect of energetic deposition metal thin films. The secondary aim is to enhance the quality of the films produced to a desired quality. Grazing incidence X-ray reflectivity (GIXR) measurements from a high-energy synchrotron radiation source were carried out to study and characterise the samples. Optical Profilers Interferometery, Atomic Force Microscope (AFM), Auger electron spectroscopy (AES), Medium energy ion spectroscopy (MEIS), and the Electron microscope studies were the other main structural characterisation tools used. AI/Fe trilayers, as well as multilayers were deposited using a Nordico planar D.C. magnetron deposition system at different voltage biases and pressures. The films were calibrated and investigated. The relation between energetic deposition variation and structural properties was intensely researched. Energetic deposition refers to the method in which the deposited species possess higher kinetic energy and impact ...

  10. Exploiting Elasticity with Thin Polymer Films

    Science.gov (United States)

    Croll, Andrew

    2014-03-01

    Soft matter is often dominated by long-ranging mechanical distortion and is thus intimately linked to elastic theory. The detailed understanding provided by theory has allowed remarkable technological achievements to be made with polymers and other soft systems. However, as technology pushes lengthscales downward many challenges have arisen and even basic problems such as measuring Young's modulus become difficult. To move forward, many polymer thin-film researchers have been attracted to the simple repetitive buckling pattern known as wrinkling because the instability provides a convenient tool to measure mechanical properties. As with all technology the wrinkle system does have physical limits on its applicability, several of which may not be obvious and may have implications for extreme measurement. Here we highlight some of our recent work examining the limits of this elastic pattern and the implications for thin polymer films. We first show how the morphology of ultra-thin wrinkled polystyrene and polystyrene-block-poly(2-vinylpyridine) films show signs of localization effects - a clear deviation from linear elasticity. We go on to show how roughness, in certain cases, can induce similar morphologies, even in the limits of vanishing applied stress. As random roughness influences a film's elastic behaviour it is natural to examine periodic roughness as means to control localization and create more complex morphologies. Colloidal polystyrene is an excellent test material as it can easily be assembled in highly ordered crystalline monolayers. Remarkably, this ``discrete'' polymer film shows the same wrinkled morphology as does a continuum film. We show how a completely different type of elasticity is necessary to explain the effect, that of a granular material. More disordered ``glassy'' colloidal monolayers provide a means to push our understanding of the granular elastic theory, and suggest an interesting, albeit highly speculative limit for extreme continuum

  11. Elastic Properties of Molecular Glass Thin Films

    Science.gov (United States)

    Torres, Jessica

    2011-12-01

    This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in T g were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of

  12. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  13. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  14. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  15. Multiferroic oxide thin films and heterostructures

    Science.gov (United States)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  16. DNA Strand Patterns on Aluminium Thin Films

    Directory of Open Access Journals (Sweden)

    Fatemeh Shahhosseini

    2011-06-01

    Full Text Available A new patterning method using Deoxyribose Nucleic Acid (DNA strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS applications in general.

  17. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  18. Thin Films of Polypyrrole on Particulate Aluminum

    Science.gov (United States)

    2009-02-01

    C H R I S T O P H E R V E T T E R , X I A O N I N G Q I , S U B R A M A N Y A M V . K A S I S O M A Y A J U L A , A N D Thin Films of Polypyrrole on...1. REPORT DATE FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Thin Films of Polypyrrole on...layer 3 Why Polypyrrole /Flake? Polypyrrole  Poor mechanical properties  Poor adhesion  Solubility issues  Continuous layer needed 4 Polypyrrole Coated

  19. Thin films for gas sensors

    Science.gov (United States)

    Pires, Jose Miguel Alves Correia

    Nos ultimos anos tem-se assistido a um aumento dos investimentos na investigacao de novos materiais para aplicacao em sensores. Apesar de ja existir um bom numero de dispositivos explorados comercialmente, muitas vezes, quer devido aos elevados custos de producao, quer devido a uma crescente exigencia do ponto de vista das caracteristicas de funcionamento, continua a ser necessario procurar novos materiais ou novas formas de producao que permitam baixar os custos e melhorar o desempenho dos dispositivos. No campo dos sensores de gases tem-se verificado continuos avancos nos ultimos anos. Continua todavia a ser necessario conhecer melhor, tanto os processos de producao dos materiais, como os mecanismos que regulam a sensibilidade dos dispositivos aos gases, de modo a orientar adequadamente a investigacao dos novos materiais, nomeadamente no que se refere a optimizacao dos parâmetros que nao satisfazem ainda os requisitos do mercado. Um dos materiais que tem mostrado melhores qualidades para aplicacao em sensores de gases de tipo resistivo e o dioxido de estanho. Este material tem sido produzido sob diversas formas e usando diferentes tecnicas, como sejam: sol-gel [1], pulverizacao catodica (sputtering) por magnetrao [2-4], sinterizacao de pos [5, 6], ablacao laser [7] ou RGTO [8]. Os resultados obtidos revelam que as caracteristicas dos dispositivos sao muito dependentes das tecnicas usadas na sua producao. A deposicao usando sputtering reactivo por magnetrao e uma tecnica que permite obter filmes finos de oxido de estanho com diferentes caracteristicas, quer do ponto de vista da estrutura, quer da composicao, e por isso, tambem, com diferentes sensibilidades aos gases. No âmbito deste trabalho, foram produzidos filmes de SnO2 usando sputtering DC reactivo com diferentes condicoes de deposicao. Os substratos usados foram lâminas de vidro e o alvo foi estanho com 99.9% de pureza. Foi estudada a influencia da atmosfera de deposicao, da pressao parcial do O2, da

  20. Superconductivity of Thin Film Intermetallic Compounds.

    Science.gov (United States)

    1985-09-15

    D-RISE 2?I SUPERCONDUCTIVITY OF THIN FILM INTERMETLLIC COMPOUNDS I/i. (U) MINNESOTR UNIV MINNERPOLIS SCHOOL OF PHYSICS AND RSTRONOMY R M GOLDMRN 15...parameters to either higher temperatures of higher critical fields. Materials under study are the superconducting Chevrel phase compounds, selected Heavy...superconducting field effect. Processing of the Chevrel Phase I compounds is carried out in a multi-source deposition system. The latter has been upgraded and

  1. Thin film surface processing by ultrashort laser pulses (USLP)

    Science.gov (United States)

    Scorticati, D.; Skolski, J. Z. P.; Römer, G. R. B. E.; Huis in't Veld, A. J.; Workum, M.; Theelen, M.; Zeman, M.

    2012-06-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed laser source (230 fs-10 ps) was applied using a focused Gaussian beam profile (15-30 μm). Laser parameters such as fluence, overlap (OL) and Overscans (OS), repetition frequency (100-200 kHz), wavelength (1030 nm, 515 nm and 343 nm) and polarization were varied to study the effect on periodicity, height and especially regularity of LIPSS obtained in layers of different thicknesses (150-400 nm). The aim was to produce these structures without cracking the metal layer and with as little ablation as possible. It was found that USLP are suitable to reach high power densities at the surface of the thin layers, avoiding mechanical stresses, cracking and delamination. A possible photovoltaic (PV) application could be found in texturing of thin film cells to enhance light trapping mechanisms.

  2. PS-b-PEO/Silica Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales Prepared by Solvent Evaporation-Induced Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.; EISENBERG,ADI

    2000-11-22

    Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore, templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through

  3. pH Sensitivity of Novel PANI/PVB/PS3 Composite Films

    Science.gov (United States)

    Gill, Edric; Arshak, Arousian; Arshak, Khalil; Korostynska, Olga

    2007-01-01

    This paper reports on the results from the investigation into the pH sensitivity of novel PANI/PVB/PS3 composite films. The conductimetric sensing mode was chosen as it is one of the most promising alternatives to the mainstream pH-sensing methods and it is the least investigated due to the popularity of other approaches. The films were deposited using both screen-printing and a drop-coating method. It was found that the best response to pH was obtained from the screen-printed thick films, which demonstrated a change in conductance by as much as three orders of magnitude over the pH range pH2-pH11. The devices exhibited a stable response over 96 hours of operation. Several films were immersed in buffer solutions of different pH values for 96 hours and these were then investigated using XPS. The resulting N 1s spectra for the various films confirmed that the change in conductance was due to deprotonation of the PANI polymer backbone. SEM and Profilometry were also undertaken and showed that no considerable changes in the morphology of the films took place and that the films did not swell or contract due to exposure to test solutions. PMID:28903297

  4. pH Sensitivity of Novel PANI/PVB/PS3 Composite Films

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2007-12-01

    Full Text Available This paper reports on the results from the investigation into the pH sensitivity ofnovel PANI/PVB/PS3 composite films. The conductimetric sensing mode was chosen as itis one of the most promising alternatives to the mainstream pH-sensing methods and it is theleast investigated due to the popularity of other approaches. The films were deposited usingboth screen-printing and a drop-coating method. It was found that the best response to pHwas obtained from the screen-printed thick films, which demonstrated a change inconductance by as much as three orders of magnitude over the pH range pH2-pH11. Thedevices exhibited a stable response over 96 hours of operation. Several films were immersedin buffer solutions of different pH values for 96 hours and these were then investigated usingXPS. The resulting N 1s spectra for the various films confirmed that the change inconductance was due to deprotonation of the PANI polymer backbone. SEM andProfilometry were also undertaken and showed that no considerable changes in themorphology of the films took place and that the films did not swell or contract due toexposure to test solutions.

  5. Dynamic Characterization of Thin Film Magnetic Materials

    Science.gov (United States)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  6. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  7. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  8. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  9. Magnetoimpedance spectroscopy of epitaxial multiferroic thin films

    Science.gov (United States)

    Schmidt, Rainer; Ventura, Jofre; Langenberg, Eric; Nemes, Norbert M.; Munuera, Carmen; Varela, Manuel; Garcia-Hernandez, Mar; Leon, Carlos; Santamaria, Jacobo

    2012-07-01

    The detection of true magnetocapacitance (MC) as a manifestation of magnetoelectric coupling (MEC) in multiferroic materials is a nontrivial task, because pure magnetoresistance (MR) of an extrinsic Maxwell-Wagner-type dielectric relaxation can lead to changes in capacitance [G. Catalan, Appl. Phys. Lett.APPLAB0003-695110.1063/1.2177543 88, 102902 (2006)]. In order to clarify such difficulties involved with dielectric spectroscopy on multiferroic materials, we have simulated the dielectric permittivity ɛ' of two dielectric relaxations in terms of a series of one intrinsic film-type and one extrinsic Maxwell-Wagner-type relaxation. Such a series of two relaxations was represented in the frequency- (f-) and temperature- (T-) dependent notations ɛ' vs f and ɛ' vs T by a circuit model consisting in a series of two ideal resistor-capacitor (RC) elements. Such simulations enabled rationalizing experimental f-, T-, and magnetic field- (H-) dependent dielectric spectroscopy data from multiferroic epitaxial thin films of BiMnO3 (BMO) and BiFeO3 (BFO) grown on Nb-doped SrTiO3. Concomitantly, the deconvolution of intrinsic film and extrinsic Maxwell-Wagner relaxations in BMO and BFO films was achieved by fitting f-dependent dielectric data to an adequate equivalent circuit model. Analysis of the H-dependent data in the form of determining the H-dependent values of the equivalent circuit resistors and capacitors then yielded the deconvoluted MC and MR values for the separated intrinsic dielectric relaxations in BMO and BFO thin films. Substantial intrinsic MR effects up to 65% in BMO films below the magnetic transition (TC≈100 K) and perceptible intrinsic MEC up to -1.5% near TC were identified unambiguously.

  10. Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures

    Science.gov (United States)

    Nigon, R.; Raeder, T. M.; Muralt, P.

    2017-05-01

    The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.

  11. Thickness Dependent on Photocatalytic Activity of Hematite Thin Films

    OpenAIRE

    Chen, Yen-Hua; Tu, Kuo-Jui

    2012-01-01

    Hematite (Fe2O3) thin films with different thicknesses are fabricated by the rf magnetron sputtering deposition. The effects of film thicknesses on the photocatalytic activity of hematite films have been investigated. Hematite films possess a polycrystalline hexagonal structure, and the band gap decreases with an increase of film thickness. Moreover, all hematite films exhibit good photocatalytic ability under visible-light irradiation; the photocatalytic activity of hematite films increases ...

  12. Anisotropic magnetothermoelectric power of ferromagnetic thin films

    Science.gov (United States)

    Anwar, M. S.; Lacoste, B.; Aarts, J.

    2017-11-01

    In this article, we report the measurements of the magnetothermoelectric power (MTEP) in metallic ferromagnetic thin films of Ni80 Fe20 (Permalloy; Py), Co and CrO2 at temperatures in the range of 100 K to 400 K. In 25 nm thick Py films and 50 nm thick Co films both the anisotropic magnetoresistance (AMR) and MTEP show a relative change in resistance and thermoelectric power (TEP) of the order of 0.2% when the magnetic field is reversed, and in both cases there is no significant change in AMR or MTEP after the saturation field has been reached. Surprisingly, both Py and Co films have opposite MTEP behaviour although both have the same sign for AMR and TEP. The data on half metallic ferromagnet CrO2 films show a different picture. Films of thickness of 100 nm were grown on TiO2 and on sapphire. The MTEP behavior at low fields shows peaks similar to the AMR in these films, with variations up to 1 % . With increasing field both the MR and the MTEP variations keep growing, with MTEP showing relative changes of 1.5% with the thermal gradient along the b -axis and even 20% with the gradient along the c -axis, with an intermediate value of 3% for the film on sapphire. It appears that the low-field effects are due to the magnetic domain state, and the high-field effects are intrinsic to the electronic structure of CrO2 and intergarian tunnelling magnetoresistance that contributes to MTEP as tunnelling-MTEP. Our results will stimulate the research work in the field of spin dependent thermal transport in ferromagnetic materials to further develop spin-Caloritronics.

  13. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  14. Thin Film Evolution Over a Thin Porous Layer: Modeling a Tear Film on a Contact Lens

    Science.gov (United States)

    Anderson, Daniel; Nong, Kumnit

    2010-11-01

    We examine a mathematical model that describes the behavior of the pre-contact lens tear film of a human eye. Our work examines the effect of contact lens thickness and lens permeability and slip on the film dynamics. A mathematical model for the evolution of the tear film is derived using a lubrication approximation applied to the hydrodynamic equations of motion in the fluid film and the porous layer. The model is a nonlinear fourth order partial differential equation subject to boundary conditions and an initial condition for post-blink film evolution. We find that increasing the lens thickness, permeability and slip all contribute to an increase in the film thinning rate although for parameter values typical for contact lens wear these modifications are minor. The presence of the contact lens can, however, fundamentally change the nature of the rupture dynamics as the inclusion of the porous lens leads to rupture in finite time rather than infinite time.

  15. Complex Macrophase-Separated Nanostructure Induced by Microphase Separation in Binary Blends of Lamellar Diblock Copolymer Thin Films

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS)...

  16. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  17. Gadolinium thin films as benchmark for magneto-caloric thin films

    Science.gov (United States)

    Helmich, Lars; Bartke, Marianne; Teichert, Niclas; Schleicher, Benjamin; Fähler, Sebastian; Hütten, Andreas

    2017-05-01

    We report on the preparation of Gadolinium thin films by means of sputter deposition on Silicon Oxide wafers. A series of samples with different buffer layers and various substrate temperatures has been produced. The film on an amorphous Tantalum buffer deposited at 773 K shows the highest increase of magnetization during the phase transition at the Curie temperature. Further detailed analysis of the magnetic properties has been conducted by VSM.

  18. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  19. Collective Behavior of Amoebae in Thin Films

    Science.gov (United States)

    Bae, Albert

    2005-03-01

    We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (media with a mineral oil overlayer, and III. microfluidic chambers fabricated in PDMS (˜7um tall). We find greatly reduced, if not eliminated, cell on cell layering in the microfluidic system when compared to the wetting layer preparations. The ultrathin films reveal robust behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.

  20. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  1. Low-Cost Detection of Thin Film Stress during Fabrication

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  2. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  3. Overview and Challenges of Thin Film Solar Electric Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  4. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  5. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  6. Review of the fundamentals of thin-film growth.

    Science.gov (United States)

    Kaiser, Norbert

    2002-06-01

    The properties of a thin film of a given material depend on the film's real structure. The real structure is defined as the link between a thin film's deposition parameters and its properties. To facilitate engineering the properties of a thin film by manipulating its real structure, thin-film formation is reviewed as a process starting with nucleation followed by coalescence and subsequent thickness growth, all stages of which can be influenced by deposition parameters. The focus in this review is on dielectric and metallic films and their optical properties. In contrast to optoelectronics all these film growth possibilities for the engineering of novel optical films with extraordinary properties are just beginning to be used.

  7. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  8. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  9. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  10. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  11. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  12. Role of asphaltenes in stabilizing thin liquid emulsion films.

    Science.gov (United States)

    Tchoukov, Plamen; Yang, Fan; Xu, Zhenghe; Dabros, Tadeusz; Czarnecki, Jan; Sjöblom, Johan

    2014-03-25

    Drainage kinetics, thickness, and stability of water-in-oil thin liquid emulsion films obtained from asphaltenes, heavy oil (bitumen), and deasphalted heavy oil (maltenes) diluted in toluene are studied. The results show that asphaltenes stabilize thin organic liquid films at much lower concentrations than maltenes and bitumen. The drainage of thin organic liquid films containing asphaltenes is significantly slower than the drainage of the films containing maltenes and bitumen. The films stabilized by asphaltenes are much thicker (40-90 nm) than those stabilized by maltenes (∼10 nm). Such significant variation in the film properties points to different stabilization mechanisms of thin organic liquid films. Apparent aging effects, including gradual increase of film thickness, rigidity of oil/water interface, and formation of submicrometer size aggregates, were observed for thin organic liquid films containing asphaltenes. No aging effects were observed for films containing maltenes and bitumen in toluene. The increasing stability and lower drainage dynamics of asphaltene-containing thin liquid films are attributed to specific ability of asphaltenes to self-assemble and form 3D network in the film. The characteristic length of stable films is well beyond the size of single asphaltene molecules, nanoaggregates, or even clusters of nanoaggregates reported in the literature. Buildup of such 3D structure modifies the rheological properties of the liquid film to be non-Newtonian with yield stress (gel like). Formation of such network structure appears to be responsible for the slower drainage of thin asphaltenes in toluene liquid films. The yield stress of liquid film as small as ∼10(-2) Pa is sufficient to stop the drainage before the film reaches the critical thickness at which film rupture occurs.

  13. Levan nanostructured thin films by MAPLE assembling.

    Science.gov (United States)

    Sima, Felix; Mutlu, Esra Cansever; Eroglu, Mehmet S; Sima, Livia E; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Oner, Ebru Toksoy; Mihailescu, Ion N

    2011-06-13

    Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan.

  14. Modelling the tribology of thin film interfaces

    CERN Document Server

    Zugic, R

    2000-01-01

    substrate). Within each group of simulations, three lubricant film thicknesses are studied to examine the effect of varying lubricant thickness. Statistical data are collected from each simulation and presented in this work. Via these data, together with the evolution, of atomic and molecular configurations, a very detailed picture of the properties of this thin film interface is presented. In particular, we conclude that perfluoropolyether lubricant forms distinct molecular layers when confined between two substrates, the rate of heat generation under shearing conditions typical of those in a head-disk interface is insufficient for thermal mechanisms to result directly in lubricant degradation, and mechanical stresses attained in the head-disk interface are unlikely to result in any significant degree of lubricant degradation. This thesis examines the tribology of a head-disk interface in an operating hard disk drive via non-equilibrium molecular dynamics computer simulations. The aim of this work is to deri...

  15. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    Science.gov (United States)

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-09

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping.

  16. Tension Tests of Copper Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Jo; Kim, Chung Youb [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-08-15

    Tension tests for copper thin films with thickness of 12 μm were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

  17. Thin Polymer Films Containing Carbon Nanostructures

    Science.gov (United States)

    Paszkiewicz, S.; Piesowicz, E.; Irska, I.; Roslaniec, Z.; Szymczyk, A.; Pawelec, I.

    2016-05-01

    Within the framework of the presented paper, the research experiments were conducted on the preparation and characterization of polymer thin films containing carbon nanotubes, graphene derivatives and hybrid systems of both CNTs/graphene derivatives, in which condensation polymers constituted the matrix. The use of in situ synthesis allowed to obtain nanocomposites with a high degree of homogeneity, which is a key issue for further industrial applications, while the analysis of the physical properties of the obtained materials showed effect of the addition of carbon nanotubes and graphene derivatives on their structure, barrier properties and thermal and electrical conductivity.

  18. Birefringent thin films and polarizing elements

    CERN Document Server

    Hodgkinson, Ian J

    1997-01-01

    This book describes the propagation of light in biaxial media, the properties of biaxial thin films, and applications such as birefringent filters for tuning the wavelength of dye lasers.A novel feature of the first part is the parallel treatment of Stokes, Jones, and Berreman matrix formalisms in a chapter-by-chapter development of wave equations, basis vectors, transfer matrices, reflection and transmission equations, and guided waves. Computational tools for MATLAB are included.The second part focuses on an emerging planar technology in which anisotropic microstructures are formed by obliqu

  19. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  20. Slip effects in polymer thin films

    OpenAIRE

    Baeumchen, O.; Jacobs, K.

    2009-01-01

    Probing the fluid dynamics of thin films is an excellent tool to study the solid/liquid boundary condition. There is no need for external stimulation or pumping of the liquid due to the fact that the dewetting process, an internal mechanism, acts as a driving force for liquid flow. Viscous dissipation within the liquid and slippage balance interfacial forces. Thereby, friction at the solid/liquid interface plays a key role towards the flow dynamics of the liquid. Probing the temporal and spat...

  1. Thin-Film Photovoltaic Device Fabrication

    Science.gov (United States)

    Scofield, John H.

    2003-01-01

    This project will primarily involve the fabrication and characterization of thin films and devices for photovoltaic applications. The materials involved include Il-VI materials such as zinc oxide, cadmium sulfide, and doped analogs. The equipment ot be used will be sputtering and physical evaporations. The types of characterization includes electrical, XRD, SEM and CV and related measurements to establish the efficiency of the devices. The faculty fellow will be involved in a research team composed of NASA and University researchers as well as students and other junior researchers.

  2. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  3. Interface Effects in Perovskite Thin Films

    Science.gov (United States)

    Lepetit, Marie-Bernadette; Mercey, Bernard; Simon, Charles

    2012-02-01

    The control of matter properties (transport, magnetic, dielectric,…) using synthesis as thin films is strongly hindered by the lack of reliable theories, able to guide the design of new systems, through the understanding of the interface effects and of the way the substrate constraints are imposed on the material. The present Letter analyzes the energetic contributions at the interfaces, and proposes a model describing the microscopic mechanisms governing the interactions at an epitaxial interface between a manganite and another transition metal oxide in perovskite structure (as for instance SrTiO3). The model is checked against experimental results and literature analysis.

  4. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  5. Gas sensing applications of phthalocyanine thin films

    Science.gov (United States)

    Starke, Thomas

    This thesis reports an investigation into the NO2 sensing properties of copper phthalocyanine (CuPc) thin films at room temperature in air. The gas sensing properties of the CuPc films were investigated using electrical conductivity and surface acoustic wave (SAW) sensing devices. Conductivity and SAW sensors were employed to detect changes of the film properties upon NO2 exposure in electrical conductivity and mass loading respectively. Initially, the response of electrical conductivity and SAW sensors incorporating an untreated layer of CuPc was investigated. Laser illumination of the films during the sensing experiments was found to have a significant effect on the mass loading response but little effect on the change in electrical conductivity. From these experiments it was suggested that NO2 adsorption on CuPc may be dominated by two different mechanisms, surface adsorption and bulk diffusion. It was also suggested that a reduction of one of these components would lead to a more controllable response. In order to minimise the effect of bulk diffusion, some of the CuPc films were doped with NO2 after deposition so filling the strongly bound bulk adsorption sites. In other devices, cooling of the CuPc layer in liquid nitrogen was used after deposition to change the surface structure in order to facilitate bulk diffusion. It was shown that these post-deposition treatment significantly changed the response characteristics of the CuPc film. Response kinetics of the experiments were analysed using the Langmuir and Elovich adsorption models, a method was suggested to determine the concentration of NO2 within the first few minutes of exposure using the value for the maximum rate of current change. A good correlation between this value and the concentration was found.

  6. Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hao [Department; Dong, Xue-Hui [Department; Lin, Zhiwei [Department; Ni, Bo [Department; Lu, Pengtao [Department; Jiang, Zhang [X-ray; Tian, Ding [Department; Shi, An-Chang [Department; Thomas, Edwin L. [Department; Cheng, Stephen Z. D. [Department

    2015-12-03

    The self-assembly behaviors of specifically designed giant surfactants are systematically studied in thin films using grazing incident X-ray and transmission electron microscopy (TEM), focusing on the effects of head surface functionalities and molecular architectures on nanostructure formation. Two molecular nanoparticles (MNPs) with different affinities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as heads of the giant surfactants. By covalently tethering these functional MNPs onto the chain end or the junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants possess distinct molecular architectures are constructed. With fixed length of the PEO block, the molecular weight change of the PS block originates the phase formation and transition. Due to the distinct affinity, the AC60-based giant surfactants form two-component morphologies, while three-component morphologies are found in the FPOSS-based ones. A PS block stretching parameter is introduced to characterize the PS chain conformation in different morphologies. The highly diverse self-assembly behaviors and the tunable dimensions in thin films suggest the giant surfactants could be a promising and robust platform for nanolithography applications.

  7. Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films.

    Science.gov (United States)

    Hsu, Chih-Hao; Dong, Xue-Hui; Lin, Zhiwei; Ni, Bo; Lu, Pengtao; Jiang, Zhang; Tian, Ding; Shi, An-Chang; Thomas, Edwin L; Cheng, Stephen Z D

    2016-01-26

    The self-assembly behavior of specifically designed giant surfactants is systematically studied in thin films using grazing incidence X-ray scattering and transmission electron microscopy, focusing on the effects of molecular nanoparticle (MNP) functionalities and molecular architectures on nanostructure formation. Two MNPs with different surface functionalities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as the head portions of the giant surfactants. By covalently tethering these functional MNPs onto the end point or junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants with different molecular architectures are constructed. With fixed length of the PEO block, changing the molecular weight of the PS block leads to the formation of various ordered phases and phase transitions. Due to the distinct affinity, the AC60-based and FPOSS-based giant surfactants form two- or three-component morphologies, respectively. A stretching parameter for the PS block is introduced to characterize the PS chain conformation in the different morphologies. The highly diverse self-assembled nanostructures with high etch resistance between components in small dimensions obtained from the giant surfactant thin films suggest that these macromolecules could provide a promising and robust platform for nanolithography applications.

  8. Colossal magnetoresistance and phase separation in manganite thin films

    Science.gov (United States)

    Srivastava, M. K.; Agarwal, V.; Kaur, A.; Singh, H. K.

    2017-05-01

    In the present work, polycrystalline Sm0.55Sr0.45MnO3 thin films were prepared on LSAT (001) single crystal substrates by ultrasonic nebulized spray pyrolysis technique. The X-ray diffraction θ-2θ scan reveals that these films (i) have very good crystallinity, (ii) are oriented along out-of-plane c-direction, and (iii) are under small tensile strain. The impact of oxygen vacancy results into (i) higher value of paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition temperature, i.e., TC/TIM, (ii) sharper PMI-FMM transition, (iii) higher value of magnetization and magnetic saturation moment, and (iv) higher value of magnetoresistance (˜99%). We suggest here that oxygen vacancy favors FMM phase while oxygen vacancy annihilation leads to antiferromagnetic-charge ordered insulator (AFM-COI) phase. The observed results have been explained in context of phase separation (PS) caused by different fractions of the competing FMM and AFM-COI phases.

  9. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    component oxide films. Highly stoichiometric, nearly single crystal-like materials in the form of films can be made by PLD. Oxides which are synthesized at high oxygen pressure can be made into films at low oxygen partial pressure. Epitaxial thin films ...

  10. Methods for producing thin film charge selective transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  11. Tailored Interfaces for Biosensors and Cell-Surface Interaction Studies via Activation and Derivatization of Polystyrene-block-poly(tert-butyl acrylate) Thin Films

    NARCIS (Netherlands)

    Feng, C.L.; Embrechts, A.; Bredebusch, Ilona; Bouma, Anita; Schnekenburger, Jürgen; Garcia Parajo, M.F.; Domschke, Wolfram; Vancso, Gyula J.; Schönherr, Holger

    2007-01-01

    Thin spin-coated films of polystyrene-block-poly(tert-butyl acrylate) (PS690-b-PtBA1210) on various substrates are introduced as versatile, robust reactive platform for the immobilization of (bio)molecules for the fabrication of tailored biointerfaces. The films are characterized by high stability

  12. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  13. Thin-film Rechargeable Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  14. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  15. Bioglass thin films for biomimetic implants

    Energy Technology Data Exchange (ETDEWEB)

    Berbecaru, C. [Bucharest University, Faculty of Physics, Atomistilor nr. 405, P.O. Box MG 11, Bucharest-Magurele (Romania)], E-mail: berbecaru2ciceron@yahoo.com; Alexandru, H.V. [Bucharest University, Faculty of Physics, Atomistilor nr. 405, P.O. Box MG 11, Bucharest-Magurele (Romania)], E-mail: horia@infim.ro; Ianculescu, Adelina [Politehnica University of Bucharest, Splaiul Independentei 313, Bucharest 060042 (Romania)], E-mail: a_ianculescu@yahoo.com; Popescu, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 1, P.O. Box MG 6, Bucharest-Magurele 76900 (Romania)], E-mail: andrei.popescu@inflpr.ro; Socol, G. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 1, P.O. Box MG 6, Bucharest-Magurele 76900 (Romania)], E-mail: gabriel.socol@inflpr.ro; Sima, F. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 1, P.O. Box MG 6, Bucharest-Magurele 76900 (Romania)], E-mail: felix.sima@inflpr.ro; Mihailescu, Ion [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 1, P.O. Box MG 6, Bucharest-Magurele 76900 (Romania)], E-mail: ion.mihailescu@inflpr.ro

    2009-03-01

    Pulsed laser deposition (PLD) method was used to obtain bioglass (BG) thin film coatings on titanium substrates. An UV excimer laser KrF* ({lambda} = 248 nm, {tau} = 25 ns) was used for the multi-pulse irradiation of the BG targets with 57 or 61 wt.% SiO{sub 2} content (and Na{sub 2}O-K{sub 2}O-CaO-MgO-P{sub 2}O{sub 5} oxides). The depositions were performed in oxygen atmosphere at 13 Pa and for substrates temperature of 400 deg. C. The PLD films displayed typical BG of 2-5 {mu}m particulates nucleated on the film surface or embedded in. The PLD films stoichiometry was found to be the same as the targets. XRD spectra have shown, the glass coatings obtained, had an amorphous structure. One set of samples, deposited in the same conditions, were dipped in simulated body fluids (SBFs) and subsequently extracted one by one after several time intervals 1, 3, 7, 14 and 21 days. After washing in deionized water and drying, the surface morphology of the samples and theirs composition were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy (FTIR) and energy dispersive X-ray analysis (EDX). After 3-7 days the Si content substantially decreases in the coatings and PO{sub 4}{sup 3-} maxima start to increase in FTIR spectra. The XRD spectra also confirm this evolution. After 14-21 days the XRD peaks show a crystallized fraction of the carbonated hydroxyapatite (HAP). The SEM micrographs show also significant changes of the films surface morphology. The coalescence of the BG droplets can be seen. The dissolution and growth processes could be assigned to the ionic exchange between BG and SBFs.

  16. Bioglass thin films for biomimetic implants

    Science.gov (United States)

    Berbecaru, C.; Alexandru, H. V.; Ianculescu, Adelina; Popescu, A.; Socol, G.; Sima, F.; Mihailescu, Ion

    2009-03-01

    Pulsed laser deposition (PLD) method was used to obtain bioglass (BG) thin film coatings on titanium substrates. An UV excimer laser KrF* ( λ = 248 nm, τ = 25 ns) was used for the multi-pulse irradiation of the BG targets with 57 or 61 wt.% SiO 2 content (and Na 2O-K 2O-CaO-MgO-P 2O 5 oxides). The depositions were performed in oxygen atmosphere at 13 Pa and for substrates temperature of 400 °C. The PLD films displayed typical BG of 2-5 μm particulates nucleated on the film surface or embedded in. The PLD films stoichiometry was found to be the same as the targets. XRD spectra have shown, the glass coatings obtained, had an amorphous structure. One set of samples, deposited in the same conditions, were dipped in simulated body fluids (SBFs) and subsequently extracted one by one after several time intervals 1, 3, 7, 14 and 21 days. After washing in deionized water and drying, the surface morphology of the samples and theirs composition were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy (FTIR) and energy dispersive X-ray analysis (EDX). After 3-7 days the Si content substantially decreases in the coatings and PO 43- maxima start to increase in FTIR spectra. The XRD spectra also confirm this evolution. After 14-21 days the XRD peaks show a crystallized fraction of the carbonated hydroxyapatite (HAP). The SEM micrographs show also significant changes of the films surface morphology. The coalescence of the BG droplets can be seen. The dissolution and growth processes could be assigned to the ionic exchange between BG and SBFs.

  17. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  18. Ti-Cr-Al-O Thin Film Resistors

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, A F; Hayes, J P

    2002-03-21

    Thin films of Ti-Cr-Al-O are produced for use as an electrical resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O{sub 2}. Vertical resistivity values from 10{sup 4} to 10{sup 10} Ohm-cm are measured for Ti-Cr-Al-O films. The film resistivity can be design selected through control of the target composition and the deposition parameters. The Ti-Cr-Al-O thin film resistor is found to be thermally stable unlike other metal-oxide films.

  19. Characteristics research of pressure sensor based on nanopolysilicon thin films resistors

    Science.gov (United States)

    Zhao, Xiaofeng; Li, Dandan; Wen, Dianzhong

    2017-10-01

    To further improve the sensitivity temperature characteristics of pressure sensor, a kind of pressure sensor taking nanopolysilicon thin films as piezoresistors is proposed in this paper. On the basis of the microstructure analysis by X-ray diffraction (XRD) and scanning electron microscope (SEM) tests, the preparing process of nanopolysilicon thin films is optimized. The effects of film thickness and annealing temperature on the micro-structure of nanopolysilicon thin films were studied, respectively. In order to realize the measurement of external pressure, four nanopolysilicon thin films resistors were arranged at the edges of square silicon diaphragm connected to a Wheatstone bridge, and the chip of the sensor was designed and fabricated on a 〈100〉 orientation silicon wafer by microelectromechanical system (MEMS) technology. Experimental result shows that when I = 6.80 mA, the sensitivity of the sensor PS-1 is 0.308 mV/kPa, and the temperature coefficient of sensitivity (TCS) is about ‑1742 ppm/∘C in the range of ‑40-140∘C. It is possible to obviously improve the sensitivity temperature characteristics of pressure sensor by the proposed sensors.

  20. Laser scribing of polycrystalline thin films

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.

    2000-07-01

    We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe 2 (CIGS), ZnO, SnO 2, Mo, Al, and Au. The lasers included four different neodymium-yttrium-aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from ˜0.1 to ˜250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.

  1. Thinning and rupture of a thin liquid film on a heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G.; Davis, S.H.

    1992-08-05

    Results on the dynamics and stability of thin films are summarized on the following topics: forced dryout, film instabilities on a horizontal plane and on inclined planes, instrumentation, coating flows, and droplet spreading. (DLC)

  2. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate.

  3. Deposition of metal chalcogenide thin films by successive ionic layer ...

    Indian Academy of Sciences (India)

    In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, ...

  4. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  5. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Synthesis and characterization of zinc oxide thin films prepared by chemical the bath technique. ... The band gap energy of the samples deduced from the fundamental absorption edge gave the values of 1.60 – 2.80 eV for the direct ... Keywords: Chemical bath technique, zinc oxide thin films, x-ray, photovoltaic cells ...

  6. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  7. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  8. Fabrication and Performance Study of Uniform Thin Film Integrated ...

    African Journals Online (AJOL)

    The transmission line model of a uniform rectangular thin film R-C-KR structure consisting of a dielectric layer of constant per unit shunt capacitance C sandwiched between two resistive thin films of constant per unit length resistances R and KR has been analysed using the concept of matrix parameter functions. The above ...

  9. Tools to Synthesize the Learning of Thin Films

    Science.gov (United States)

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  10. Plasmonic versus dielectric enhancement in thin-film solar cells

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    Several studies have indicated that broadband absorption of thin-film solar cells can be enhanced by use of surface-plasmon induced resonances of metallic parts like strips or particles. The metallic parts may create localized modes or scatter incoming light to increase absorption in thin-film se...

  11. Ferroelectricity in Sodium Nitrite Thin Films | Britwum | Journal of the ...

    African Journals Online (AJOL)

    Investigations have been conducted on the ferroelectric property of thin films of NaNO2. The thin films were prepared with the dip coating technique. The phase transition was investigated by observing the change in the dielectric constant with temperature change. The presence of ferro-electricity was investigated with a ...

  12. Photoconductivity of ZnTe thin films at elevated temperatures

    Indian Academy of Sciences (India)

    Unknown

    made to assess the predominance of the Poole–Frenkel con- duction mechanism in the dark and photoconductivities of. ZnTe thin films at room temperature and higher ambient temperatures. 2. Experimental. ZnTe thin films of different thicknesses were deposited on properly cleaned glass substrates with the help of a Hind.

  13. Experimental and modeling analysis of highly oriented octithiophene thin films

    NARCIS (Netherlands)

    Videlot, C; Grayer, [No Value; Ackermann, J; El Kassmi, A; Fichou, D; Hadziioannou, G

    2003-01-01

    We present a detailed study on the structure and morphology of highly oriented thin films of octithiophene (8T), the longest non-substituted oligothiophene so far. 8T thin films are vacuum-deposited on glass substrates and oriented either vertically by adjusting deposition rate and substrate

  14. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Unknown

    possibility of developing quantum lasers, single electron transistors and various other applications.2 ... In the initial growth of thin films, three types of growth can occur, depending on the surface free energy of the ... nano devices and single electron transistors.9 In this context, initial growth stages of Ge ultra thin films on ...

  15. Alloy Design Criteria for Solid Metal Dealloying of Thin Films

    Science.gov (United States)

    McCue, Ian; Demkowicz, Michael J.

    2017-11-01

    Liquid metal dealloying is a promising route for making metal nanocomposites with a wide range of microstructure morphologies. However, it is not well suited for synthesizing nanocomposites in thin-film form. We propose a new route to fabricating fully dense nanocomposite thin films by dealloying a binary parent alloy in a unary solid metal solvent. We fabricated and tested three thin-film diffusion couples to understand the alloy design criteria for synthesizing dealloyed thin films free of cracks and voids. We find that the best-quality dealloyed thin films may be obtained from alloys that do not undergo large volume changes upon dealloying and that exhibit minimal net vacancy flux during interdiffusion.

  16. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  17. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  18. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  19. Magnetostriction of sputtered Sm-Fe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T. (Tokin Corp., Sendai (Japan). Sendai Research Lab.); Hayashi, Y.; Arai, K.I.; Ishiyama, K.; Yamaguchi, M. (Tohoku Univ., Sendai (Japan). Research Institute of Electrical Communication)

    1993-11-01

    The magnetostriction and the magnetic properties of amorphous Sm[sub x]Fe[sub 100[minus]x] thin films prepared by sputtering were investigated at room temperature. The magnetostriction, -[lambda], of these films increased rapidly in low fields (<1kOe) and reached the maximum values of 300--400[times]10[sup [minus]6] at 16kOe for x = 30--40. These results suggest that Sm-Fe thin films could be used for micro-actuators. lie magnetic properties of Sm-Fe thin films did not show clear dependence on the sputtering conditions such as input power, Ar gas pressure, and substrate temperature.

  20. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  1. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates.

    Science.gov (United States)

    Huang, Jing; Deng, Hongtao; Song, Dandan; Xu, Hui

    2015-06-09

    In the current study, we introduced a novel polystyrene/graphene (PS/G) composite nanofiber film for thin film microextraction (TFME) for the first time. The PS/G nanofiber film was fabricated on the surface of filter paper by a facile electrospinning method. The morphology and extraction performance of the resultant composite film were investigated systematically. The PS/G nanofiber film exhibited porous fibrous structure, large surface area and strong hydrophobicity. A new thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed for the determination of six aldehydes in human exhaled breath condensates. The method showed high enrichment efficiency and fast analysis speed. Under the optimal conditions, the linear ranges of the analytes were in the range of 0.02-30 μmol L(-1) with correlation coefficients above 0.9938, and the recoveries were between 79.8% and 105.6% with the relative standard deviation values lower than 16.3% (n=5). The limits of quantification of six aldehydes ranged from 13.8 to 64.6 nmol L(-1). The established method was successfully applied for the quantification of aldehyde metabolites in exhaled breath condensates of lung cancer patients and healthy people. Taken together, the TFME-HPLC method provides a simple, rapid, sensitive, cost-effective, non-invasion approach for the analysis of linear aliphatic aldehydes in human exhaled breath condensates. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Density of organic thin films in organic photovoltaics

    Science.gov (United States)

    Zhao, Cindy X.; Xiao, Steven; Xu, Gu

    2015-07-01

    A practical parameter, the volume density of organic thin films, found to affect the electronic properties and in turn the performance of organic photovoltaics (OPVs), is investigated in order to benefit the polymer synthesis and thin film preparation in OPVs. To establish the correlation between film density and device performance, the density of organic thin films with various treatments was obtained, by two-dimensional X-ray diffraction measurement using the density mapping with respect to the crystallinity of thin films. Our results suggest that the OPV of higher performance has a denser photoactive layer, which may hopefully provide a solution to the question of whether the film density matters in organic electronics, and help to benefit the OPV industry in terms of better polymer design, standardized production, and quality control with less expenditure.

  3. An overview of thin film nitinol endovascular devices.

    Science.gov (United States)

    Shayan, Mahdis; Chun, Youngjae

    2015-07-01

    Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  5. Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hao; Yue, Kan; Wang, Jing; Dong, Xue-Hui; Xia, Yanfeng; Jiang, Zhang [X-ray; Thomas, Edwin L. [Department; Cheng, Stephen Z. D.

    2017-09-07

    Controlling self-assembled nanostructures in thin films allows the bottom-up fabrication of ordered nanoscale patterns. Here we report the unique thickness-dependent phase behavior in thin films of a bolaform-like giant surfactant, which consists of butyl- and hydroxyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS and DPOSS) cages telechelically located at the chain ends of a polystyrene (PS) chain with 28 repeating monomers on average. In the bulk, BPOSS-PS28-DPOSS forms a double gyroid (DG) phase. Both grazing incidence small angle X-ray scattering and transmission electron microscopy techniques are combined to elucidate the thin film structures. Interestingly, films with thicknesses thinner than 200 nm exhibit an irreversible phase transition from hexagonal perforated layer (HPL) to compressed hexagonally packed cylinders (c-HEX) at 130 °C, while films with thickness larger than 200 nm show an irreversible transition from HPL to DG at 200 °C. The thickness-controlled transition pathway suggests possibilities to obtain diverse patterns via thin film self-assembly.

  6. Patterns and conformations in molecularly thin films

    Science.gov (United States)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  7. Evaluation of Thin-Film Photodiodes and Development of Thin-Film Phototransistor

    Science.gov (United States)

    Yamashita, Takehiko; Shima, Takehiro; Nishizaki, Yoshitaka; Kimura, Mutsumi; Hara, Hiroyuki; Inoue, Satoshi

    2008-03-01

    First, a p/i/n thin-film photodiode (TFPD) is evaluated, and it is found that the photoinduced current (Iphoto) is relatively large. Next, a p/n TFPD is evaluated, and it is found that the Iphoto is independent of the applied voltage (Vapply). However, it is difficult to simultaneously achieve a large and independent Iphoto. Therefore, a p/i/n thin-film phototransistor (TFPT) is developed, and it is found that the Iphoto can be both relatively large and independent of the Vapply by optimizing the gate voltage. These characteristics are obtained because the depletion layer is formed in the entire intrinsic region and the electric field is always high. It is expected that these characteristics are preferable for some types of photosensor application such as artificial retina.

  8. Thin film adhesion by nanoindentation-induced superlayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  9. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  10. Amperometric noise at thin film band electrodes.

    Science.gov (United States)

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements.

  11. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    ; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model......Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...... polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains...

  12. Digital thin-film color optical memory

    Science.gov (United States)

    Chi, C. J.; Steckl, A. J.

    2001-01-01

    A promising optical memory device called digital thin-film (DTF) color optical memory is presented. The DTF optical memory utilizes localized regions of varying thickness to adjust the spectral characteristic of reflected light from a broad band source. The DTF structure has been fabricated by Ga+ focused ion beam milling on thermally grown silicon dioxide on Si to prove the concept. A charge-coupled device array is used as the optical detector for the readout of the stored data. The reflected light image of the DTF memory reveals easily discriminated color levels and proves the suitability of using optical means to extract the stored data. DTF optical memory structures with 16 physical levels or 4 bits/pixel have been fabricated providing an equivalent storage density in excess of 5 Gb/in.2

  13. Thin Film Femtosecond Laser Damage Competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  14. Transparent Conductive Oxides in Thin Film Photovoltaics

    Science.gov (United States)

    Hamelmann, Frank U.

    2014-11-01

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion.

  15. Transferable and flexible thin film devices for engineering applications

    Science.gov (United States)

    Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun

    2014-05-01

    Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.

  16. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  17. Materials availability for thin film solar cells

    Science.gov (United States)

    Makita, Yunosuke

    1997-04-01

    Materials availability is one of the most important factors when we consider the mass-production of next generation photovoltaic devices. "In (indium)" is a vital element to produce high efficient thin film solar cells such as InP and CuIn(Ga)Se2 but its lifetime as a natural resource is suggested to be of order of 10˜15 years. The lifetime of a specific natural resource as an element to produce useful device substances is directly related with its abundance in the earth's crust, consumption rate and recycling rate (if recycling is economically meaningful). The chemical elements having long lifetime as a natural resource are those existing in the atmosphere such as N (nitrogen) and O (oxygen); the rich elements in the earth's crust such as Si, Ca, Sr and Ba; the mass-used metals such as Fe (iron), Al (aluminum) and Cu (copper) that reached the stage of large-scale recycling. We here propose a new paradigm of semiconductor material-science for the future generation thin film solar cells in which only abundant chemical elements are used. It is important to remark that these abundant chemical elements are normally not toxic and are fairly friendly to the environment. β-FeSi2 is composed of two most abundant and nontoxic chemical elements. This material is one of the most promising device materials for future generation energy devices (solar cells and thermoelectric device that is most efficient at temperature range of 700-900 °C). One should remind of the versatility of β-FeSi2 that this material can be used not only as energy devices but also as photodetector, light emitting diode and/or laser diode at the wavelength of 1.5 μm that can be monolithically integrated on Si substrates due to the relatively small lattice mismatch.

  18. Titanium nitride thin films for minimizing multipactoring

    Science.gov (United States)

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  19. Determination of magnetic properties of multilayer metallic thin films

    CERN Document Server

    Birlikseven, C

    2000-01-01

    and magnetization measurements were taken. In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the exper...

  20. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  1. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Lead Silver Sulphide (PbAgS) thin films on glass substrate have been deposited by chemical bath deposition technique with EDTA and TEA as complexing agents, while ammonium solution served as pH adjuster. The films were deposited at room temperature of 300K. The deposited films were characterized using UV ...

  2. OPTIMISATION OF SPRAY DEPOSITED Sno2 THIN FILM FOR ...

    African Journals Online (AJOL)

    Dr Obe

    1987-09-01

    Sep 1, 1987 ... ABSTRACT. The use of conducting tin-oxide (SnO2 ) films for fabrication of solar cell is becoming increasingly important because of reasonably high efficiency and ease in fabrication. The role of the thin-oxide film is very critical for high efficiency. Resistivity, thickness and transmittance of the film should be ...

  3. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  4. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  5. Quantum-well-induced ferromagnetism in thin films

    DEFF Research Database (Denmark)

    Niklasson, A.M.N.; Mirbt, S.; Skriver, Hans Lomholt

    1997-01-01

    We have used a first-principles Green's-function technique to investigate the magnetic properties of thin films of Rh, Pd, and Pt deposited on a fee Ag (001) substrate. We find that the magnetic moment of the film is periodically suppressed and enhanced as a function of film thickness. The phenom...

  6. Polymer Based Thin Film Screen Preparation Technique

    Science.gov (United States)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  7. Transparent conducting thin films for spacecraft applications

    Science.gov (United States)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  8. Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces

    Science.gov (United States)

    Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas

    2015-03-01

    Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.

  9. Effects of high temperature and film thicknesses on the texture evolution in Ag thin films

    Science.gov (United States)

    Eshaghi, F.; Zolanvari, A.

    2017-04-01

    In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} fiber texture.

  10. Laser nanostructuring of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N., E-mail: nned@ie.bas.bg [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Koleva, M.; Nikov, R.; Atanasov, P. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M. [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan)

    2016-06-30

    Highlights: • Nanosecond laser pulse nanostructuring of ZnO thin films on metal substrate is demonstrated. • Two regimes of the thin film modification are observed depending on the applied laser fluence. • At high fluence regime the ZnO film is homogeneously decomposed into nanosized particles. • The characteristic size of the formed nanostructures corresponds to the domain size of the thin film. - Abstract: In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  11. Suppression of copper thin film loss during graphene synthesis.

    Science.gov (United States)

    Lee, Alvin L; Tao, Li; Akinwande, Deji

    2015-01-28

    Thin metal films can be used to catalyze the growth of nanomaterials in place of the bulk metal, while greatly reducing the amount of material used. A big drawback of copper thin films (0.5-1.5 μm thick) is that, under high temperature/vacuum synthesis, the mass loss of films severely reduces the process time due to discontinuities in the metal film, thereby limiting the time scale for controlling metal grain and film growth. In this work, we have developed a facile method, namely "covered growth" to extend the time copper thin films can be exposed to high temperature/vacuum environment for graphene synthesis. The key to preventing severe mass loss of copper film during the high temperature chemical vapor deposition (CVD) process is to have a cover piece on top of the growth substrate. This new "covered growth" method enables the high-temperature annealing of the copper film upward of 4 h with minimal mass loss, while increasing copper film grain and graphene domain size. Graphene was then successfully grown on the capped copper film with subsequent transfer for device fabrication. Device characterization indicated equivalent physical, chemical, and electrical properties to conventional CVD graphene. Our "covered growth" provides a convenient and effective solution to the mass loss issue of thin films that serve as catalysts for a variety of 2D material syntheses.

  12. Multifunctional Parylene-C Microfibrous Thin Films

    Science.gov (United States)

    Chindam, Chandraprakash

    Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all

  13. Germanium Lift-Off Masks for Thin Metal Film Patterning

    Science.gov (United States)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  14. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  15. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  16. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  17. Crack Nucleation in Thin Films on Disordered Substrates

    Science.gov (United States)

    Heierli, Joachim; Zaiser, Michael

    2009-09-01

    We investigate the delamination of thin films from disordered substrates by studying the conditions for the nucleation of a supercritical crack under mixed mode I/II loading. The stress in the film is described using Euler theory, while the interface between film and substrate is modeled as a brittle interface with randomly varying fracture energy. System strength is evaluated in terms of the elastic and geometrical properties of the film, and the statistical properties of the distribution of interface fracture energies.

  18. Growth of oriented rare-earth-transition-metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, E.E.; Sowers, C.H.; Bader, S.D. [Argonne National Lab., IL (United States); Wu, X.Z. [Argonne National Lab., IL (United States)]|[Northern Illinois Univ., DeKalb, IL (United States)

    1996-04-01

    Rare-earth-transition-metal thin films are successfully grown by magnetron sputtering onto single-crystal MgO substrates with epitaxial W buffer layers. The use of epitaxial W buffer layers allows oriented single-phase films to be grown. Sm-Co films grown onto W(100), have strong in-plane anisotropy and coercivities exceeding 5 T at 5 K whereas Fe-Sm films have strong perpendicular anisotropy and are magnetically soft.

  19. Graphene-silica composite thin films as transparent conductors.

    Science.gov (United States)

    Watcharotone, Supinda; Dikin, Dmitriy A; Stankovich, Sasha; Piner, Richard; Jung, Inhwa; Dommett, Geoffrey H B; Evmenenko, Guennadi; Wu, Shang-En; Chen, Shu-Fang; Liu, Chuan-Pu; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  20. Optical properties of CeO2 thin films

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10-6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly ...

  1. Progress in thin films of giant magnetostrictive alloys

    Science.gov (United States)

    Uchida, Hirohisa; Matsumura, Yoshihito; Uchida, Haruhisa; Kaneko, Hideo

    2002-02-01

    This paper reviews recent progress in the study of thin films of giant magnetostrictive RFe 2 (R: rare earths) compounds with the C15 Laves phase. Results of magnetostrictive property of the compound films formed by vacuum flash evaporation, ion plating, electron beam evaporation, ion beam sputter, and DC-magnetron sputter are described. Magnetostrictive property of a new giant magnetostrictive Fe-Pd alloy film is compared with those of the RFe 2 films.

  2. Formation of thin graphite films upon carbon diffusion through nickel

    Science.gov (United States)

    Shustin, E. G.; Isaev, N. V.; Luzanov, V. A.; Temiryazeva, M. P.

    2017-07-01

    Experimental results on the synthesis of thin graphite films with the aid of annealing of nickel films on carbon substrate are presented. Highly oriented pyrolitic graphite is used as the substrate to provide structural quality of the deposited nickel film. It is shown that the cyclic annealing of the structure with intermediate cooling leads to crystallization of primary amorphous carbon into a film consisting of flakes of vertical graphene. The process of graphite formation is discussed.

  3. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    Science.gov (United States)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  4. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  5. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  6. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  7. Preparation and properties of the (Sr,BaNb2O6 thin films by using the sputtering method

    Directory of Open Access Journals (Sweden)

    Diao Chien-Chen

    2017-01-01

    Full Text Available Strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN thin films were deposited on silicon substrate by using the radio frequency magnetron sputtering and under different deposition power and time at room temperature. Surface morphology and thicknesses of the SBN thin films were characterized by field emission scanning electron microscopy. The crystallization films at different deposition power and time were analyzed by X-ray diffraction (XRD using CuKα radiation from a Rigaku rotating anode with an incident angle of 2°. The remnant polarization (Pr, saturation polarization (Ps, and minimum coercive field (Ec properties of the metal-ferroelectric-metal (MFM structure were measured using ferroelectric material test instrument. The SBN thin films deposited at 90 min and 125 W had the maximum Pr, Ps, and minimum Ec of 1.26 μC/cm2, 2.41 μC/cm2, and 201.6 kV/cm, respectively. From above results, it knows that the SBN thin films suit for application on ferroelectric random access memory (FeRAM.

  8. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  9. Process compilation methods for thin film devices

    Science.gov (United States)

    Zaman, Mohammed Hasanuz

    This doctoral thesis presents the development of a systematic method of automatic generation of fabrication processes (or process flows) for thin film devices starting from schematics of the device structures. This new top-down design methodology combines formal mathematical flow construction methods with a set of library-specific available resources to generate flows compatible with a particular laboratory. Because this methodology combines laboratory resource libraries with a logical description of thin film device structure and generates a set of sequential fabrication processing instructions, this procedure is referred to as process compilation, in analogy to the procedure used for compilation of computer programs. Basically, the method developed uses a partially ordered set (poset) representation of the final device structure which describes the order between its various components expressed in the form of a directed graph. Each of these components are essentially fabricated "one at a time" in a sequential fashion. If the directed graph is acyclic, the sequence in which these components are fabricated is determined from the poset linear extensions, and the component sequence is finally expanded into the corresponding process flow. This graph-theoretic process flow construction method is powerful enough to formally prove the existence and multiplicity of flows thus creating a design space {cal D} suitable for optimization. The cardinality Vert{cal D}Vert for a device with N components can be large with a worst case Vert{cal D}Vert≤(N-1)! yielding in general a combinatorial explosion of solutions. The number of solutions is hence controlled through a-priori estimates of Vert{cal D}Vert and condensation (i.e., reduction) of the device component graph. The mathematical method has been implemented in a set of algorithms that are parts of the software tool MISTIC (Michigan Synthesis Tools for Integrated Circuits). MISTIC is a planar process compiler that generates

  10. Cratering Studies in Thin Plastic Films

    Science.gov (United States)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J. K.; Horanyi, M.; Munsat, T.

    2012-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 100 nm) of aluminum nickel. The operation principle behind this type of detector is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theory uses a crater diameter scaling law which was not intended for use with PVDF. Work is being undertaken to develop a new crater diameter scaling law using iron particles in 52 μm thick PVDF. Samples were brought to the Heidelberg Dust Accelerator and exposed to a selected range of mass and velocities. Samples are being analyzed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) using 3D reconstruction photogrammetry using stereo pairs taken in a scanning electron microscope (SEM) and cross sections taken in a focused ion beam (FIB). Further work is planned at the CCLDAS dust accelerator.

  11. Profile measurements of thin liquid films using reflectometry

    Science.gov (United States)

    Hanchak, M. S.; Vangsness, M. D.; Byrd, L. W.; Ervin, J. S.; Jones, J. G.

    2013-11-01

    Microscope-based reflectometry was used to measure the thickness profile of thin films of n-octane on silicon wafer substrates. Coupled with micro-positioning motorized stages and custom software, two-dimensional profiles of the film thickness from the adsorbed film (˜10 nm) to the intrinsic meniscus (˜1000 nm) were automatically and repeatedly measured. The reflectometer aperture was modified to provide better spatial resolution in areas of high curvature, the transition region, where evaporative flux is at a maximum. This technique will provide data for the validation of both existing and future models of thin film evaporation.

  12. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  13. Selective Solvent Induced Reversible Surface Reconstruction of Diblock Copolymer Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Misner, M.J.; Kim, S.; Sievert, J.D.; Gang, O.; Ocko, B.; Russell, T.P. (UMASS, Amherst); (BNL)

    2006-03-08

    Through the use of a selective solvent a reversible surface reconstruction of diblock copolymer thin films was observed. The solvent selectivity and solubility of the minor component block were found to be crucial to generate nanoporous films with pores that penetrate through entire film thickness. The process was shown to be reversible by thermal annealing and was easily monitored using in-situ grazing incidence small angle x-ray scattering and scanning force microscopy. At temperatures of 60-90 C, only a small fraction of the nanopores relaxed to regenerate the original nanotemplate. However, by heating to 90-100 C, the original nanotemplate was completely regenerated. Even though the bulk mobility of PS and PMMA is low at these temperatures, the local mobility required to regenerate the template was sufficient.

  14. Solvent vapor induced morphology transition in thin film of cylinder forming diblock copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuhu; Huang Haiying [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); He Tianbai, E-mail: tbhe@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Gong Yumei, E-mail: ymgong@dlpu.edu.cn [School of Chemical and Material, Dalian Polytechnic University, Dalian 116034 (China)

    2011-07-01

    The morphology formation and transition of thin film of a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer annealed under 1,1,2-trichloroethane (Tri-CE), toluene (Tol), and their binary mixed solvent vapors is investigated by using optical microscopy (OM) and transmission electronic microscopy (TEM). By modulating the annealing solvent vapor pressure and the preferential affinities, a detailed morphology evolution with increasing the vapor pressure and a series of morphologies depending on the preferential affinities have been observed. A phase diagram by plotting the morphologies as a function of the annealing solvent vapor pressure and its preferential affinity is subsequently constructed.

  15. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    and intermediate degrees of supercooling, but of submicrometer size for strong supercooling. Using grazing-incidence wide-angle x-ray scattering, we could determine the grain orientation distribution function which shows that the chain stems are perpendicular to the lamellae at low supercooling, but tilted......The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low...

  16. Ultrafast defect dynamics: A new approach to all optical broadband switching employing amorphous selenium thin films

    Directory of Open Access Journals (Sweden)

    Rituraj Sharma

    2015-07-01

    Full Text Available Optical switches offer higher switching speeds than electronics, however, in most cases utilizing the interband transitions of the active medium for switching. As a result, the signal suffers heavy losses. In this article, we demonstrate a simple and yet efficient ultrafast broadband all-optical switching on ps timescale in the sub-bandgap region of the a-Se thin film, where the intrinsic absorption is very weak. The optical switching is attributed to short-lived transient defects that form localized states in the bandgap and possess a large electron-phonon coupling. We model these processes through first principles simulation that are in agreement with the experiments.

  17. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  18. Biomolecular papain thin films growth by laser techniques.

    Science.gov (United States)

    György, Enikö; Santiso, Jose; Figueras, Albert; Socol, Gabriel; Mihailescu, Ion N

    2007-08-01

    Papain thin films were synthesised by matrix assisted and conventional pulsed laser deposition (PLD) techniques. The targets submitted to laser radiation consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. For the deposition of the thin films by conventional PLD pressed biomaterial powder targets were submitted to laser irradiation. An UV KrF* excimer laser source was used in the experiments at 0.5 J/cm(2) incident fluence value, diminished one order of magnitude as compared to irradiation of inorganic materials. The surface morphology of the obtained thin films was studied by atomic force profilometry and atomic force microscopy. The investigations showed that the growth mode and surface quality of the deposited biomaterial thin films is strongly influenced by the target preparation procedure.

  19. Comparison of metallization systems for thin film hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hines, R.A.; Raut, M.K.

    1980-08-01

    Five metallization systems were evaluated for fabricating thin film hybrid microcircuits. The titanium/palladium/electroplated gold system proved superior in terms of thermocompression bondability, corrosion resistance, and solderability.

  20. Modeling surface imperfections in thin films and nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.

    2017-01-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...

  1. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  2. Electrical properties of silver selenide thin films prepared by reactive ...

    Indian Academy of Sciences (India)

    Unknown

    2001-07-29

    805 Å. Keywords. Thin film; silver selenide; reactive evaporation; electrical conductivity. 1. Introduction. Silver selenide attracts the interest of researchers because of its application in the switching devices. The binary and ternary ...

  3. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  4. Rip-Stop Reinforced Thin Film Sun Shield Structure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During a proposed Phase I and Phase II program, PSI will advance the TRL from 3 to 6 for the ripstop reinforcement of thin film membranes used for large deployable...

  5. Surface Morphology of Zinc Oxide Thin Films deposited by TCVD

    Science.gov (United States)

    Rafaie, H. A.; Noor, F. W. M.; Amizam, S.; Abdullah, S.; Rusop, M.

    2010-03-01

    Surface morphology study of Zinc Oxide (ZnO) thin films by using Thermal Chemical Vapor Deposition (Thermal-CVD) was investigated. The ZnO compound was synthesized from zinc acetate dehydrate which act as a starting material to form the ZnO thin films. It was deposited on as-prepared Nanonstructured Silicon (NSi) with deposition temperature ranging from 400-600° C without catalyst-assisted. The surface morphology of the samples before and after the deposition process was examined by using Analytical Scanning Electron Microscope (SEM). The result shows that the obtained ZnO thin films possess good crystalline structure at deposition temperature of 600° C and the surface morphologies of the ZnO thin films improved greatly with an increase in deposition temperature. XRD was employed to study the evolution of the crystalline orientation using X-Ray Diffractrometer (XRD).

  6. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  7. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  8. Role of Microstructural Phenomena in Magnetic Thin Films. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, D. E.; Lambeth, D. N.

    2001-04-30

    Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

  9. XPS analysis of nanocomposite Li{sub 2x−y}Mn{sub 1−x}PS{sub 3}(C{sub 13}H{sub 11}N{sub 2}){sub y} films

    Energy Technology Data Exchange (ETDEWEB)

    Silipigni, L., E-mail: lsilipigni@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università di Messina, V.le F.Stagno d’Alcontres 31, I-98166 Messina (Italy); Schirò, L., E-mail: lschiro@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università di Messina, V.le F.Stagno d’Alcontres 31, I-98166 Messina (Italy); Scolaro, L. Monsù, E-mail: lmonsu@unime.it [Dipartimento di Scienze Chimiche, Università di Messina, Salita Sperone 31, I-98166 Messina (Italy); De Luca, G., E-mail: delucag@unime.it [Dipartimento di Scienze del Farmaco e Prodotti per la Salute, V.le Annunziata, I-98168 Messina (Italy); Salvato, G., E-mail: salvato@me.cnr.it [CNR-IPCF Istituto per i Processi Chimico-Fisici, V.le F. Stagno d’Alcontres 37, I-98158 Messina (Italy)

    2013-09-01

    Intercalation of 9-aminoacridine (9AA: C{sub 13}H{sub 10}N{sub 2}) in thin films of exfoliated Li{sub 2x−y}Mn{sub 1−x}PS{sub 3} has been performed by means of a solution approach starting from the hydrochloride salt of the organic species (9AAHCl: C{sub 13}H{sub 10}N{sub 2}·HCl). The resulting nanocomposite Li{sub 2x−y}Mn{sub 1−x}PS{sub 3}(C{sub 13}H{sub 11}N{sub 2}){sub y} films have been investigated by X-ray photoemission spectroscopy (XPS), at room temperature, in the regions of the Mn, P, S and Cl 2p, Li, C and N 1s and Mn 3p core levels. The XPS analysis has been also carried out on the 9-aminoacridine hydrochloride films whose XPS spectra have been compared with those of the Li{sub 2x−y}Mn{sub 1−x}PS{sub 3}(C{sub 13}H{sub 11}N{sub 2}){sub y} films to obtain information about the nature of the interaction between the guest species (9AAH{sup +}) and the matrix (Li{sub 2x−y}Mn{sub 1−x}PS{sub 3}{sup −}).

  10. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  11. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  12. Product reliability and thin-film photovoltaics

    Science.gov (United States)

    Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios

    2009-08-01

    Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.

  13. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 physical vapor deposition (PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  14. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  15. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  16. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  17. Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness.

    Science.gov (United States)

    Liang, Zhi; Sasikumar, Kiran; Keblinski, Pawel

    2014-08-08

    Using molecular dynamics simulations and a model AlN-GaN interface, we demonstrate that the interfacial thermal resistance R(K) (Kapitza resistance) between a substrate and thin film depends on the thickness of the film and the film surface roughness when the phonon mean free path is larger than film thickness. In particular, when the film (external) surface is atomistically smooth, phonons transmitted from the substrate can travel ballistically in the thin film, be scattered specularly at the surface, and return to the substrate without energy transfer. If the external surface scatters phonons diffusely, which is characteristic of rough surfaces, R(K) is independent of film thickness and is the same as R(K) that characterizes smooth surfaces in the limit of large film thickness. At interfaces where phonon transmission coefficients are low, the thickness dependence is greatly diminished regardless of the nature of surface scattering. The film thickness dependence of R(K) is analogous to the well-known fact of lateral thermal conductivity thickness dependence in thin films. The difference is that phonon-boundary scattering lowers the in-plane thermal transport in thin films, but it facilitates thermal transport from the substrate to the thin film.

  18. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Abstract. For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8⋅5 mbar for 18 h. Argon and ...

  19. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  20. Scanned probe microscopy for thin film superconductor development

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, J. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  1. No fear of thin films; Frykter ikke tynnfilm

    Energy Technology Data Exchange (ETDEWEB)

    Abelsen, Atle

    2006-07-01

    New investments in crystalline silicon based solar cells are made by the Norwegian companies Elkem Solar and REC Group, despite the increased competition from polymer based thin film solar cells. A new production method named solar grade silicon will reduce the production costs. Thin films are also less effective, with 5-6 percent efficiency compared to silicon based solar cells with 15-20 percent efficiency.

  2. Health, safety and environmental issues in thin film manufacturing

    OpenAIRE

    Alsema, E.A.; Baumann, A.E.; Hill, R.; Patterson, M.H.

    1997-01-01

    An investigation is made of Health, Safety and Environmental (HSE) aspects for the manufacturing, use and decommissioning of CdTe, CIS and a-Si modules. Issues regarding energy requirements, resource availability, emissions of toxic materials, occupational health and safety and module waste treatment are reviewed. Waste streams in thin film module manufacturing are analyzed in detail and treatment methods are discussed. Finally the technological options for thin film module recycling are inve...

  3. Mechanical Robustness and Hermeticity Monitoring for MEMS Thin Film Encapsulation

    OpenAIRE

    Santagata, F.

    2011-01-01

    Many Micro-Electro-Mechanical-Systems (MEMS) require encapsulation, to prevent delicate sensor structures being exposed to external perturbations such as dust, humidity, touching, and gas pressure. An upcoming and cost-effective way of encapsulation is zero-level packaging or thin-film encapsulation. With this method, MEMS are already sealed during wafer processing. Thin-film encapsulation poses a number of challenges, in particular to hermeticity, mechanical robustness, and compatibility wit...

  4. Growth of cuprate high temperature superconductor thin films

    Directory of Open Access Journals (Sweden)

    H-U Habermeier

    2006-09-01

    Full Text Available   This paper reviews briefly the development of physical vapour deposition based HTS thin film preparation technologies to today’s state-of-the-art methods. It covers the main trends of in-situ process and growth control. The current activities to fabricate tapes for power applications as well as to tailor interfaces in cuprate are described. Some future trends in HTS thin film research, both for science as well as application driven activities are outlined.

  5. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  6. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  7. Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films

    Science.gov (United States)

    Chen, Chia-Min; Huang, Yi-Jiun; Wei, Kung-Hwa

    2014-05-01

    The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of polystyrene-block-poly(4-vinylpyridine) (PS56k-b-P4VP8k)--a highly asymmetric diblock copolymer having a spherical micelle morphology--to incorporate various amounts of one-phase-synthesized dodecanethiol-passivated silver (DT-Ag) NPs and a fixed amount of ligand-exchanged pyridine-coated gold (Py-Au) NPs into the polystyrene (PS) and poly(4-vinylpyridine) (P4VP) blocks, respectively. We characterized the packing of these metal NPs in the two blocks of the nanostructured diblock copolymer using reciprocal-space synchrotron grazing incidence small-angle X-ray scattering (GISAXS) as well as atomic force microscopy (AFM) and transmission electron microscopy (TEM) in the real space. The packing of the Ag NPs in the PS block was dependent on their content, which we tuned by varying the concentrations in the composite solution at a constant rate of spin-coating. The two-dimensional hierarchical arrangement of Ag and Au NPs within the BCP thin films was enhanced after addition of the Py-Au NPs into the P4VP block and after spin-coating a thinner film from a low concentration solution (0.1 wt%), due to the DT-Ag NPs accumulating around the Py-Au/P4VP cores; this two-dimensional hierarchical arrangement decreased at a critical DT-Ag NP weight ratio (c) of 0.8 when incorporating the Py-Au NPs into the P4VP domains through spin-coating at higher solution concentration (0.5 wt%), where the DT-Ag NPs realigned by rotating 20° along the z axis in the real space, due to oversaturation of the DT-Ag NPs within the PS domains.The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of

  8. Characterization of polymer thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, Zip RO-077125, Magurele, Bucharest (Romania); Dinca, V.; Ion, V.; Moldovan, A.; Mitu, B.; Luculescu, C.; Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, Zip RO-077125, Magurele, Bucharest (Romania)

    2011-04-01

    The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate). The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. It was found that for laser fluences up to 1.5 J/cm{sup 2} the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm{sup 2} the polyepichlorohydrin films present deviations from the bulk polymer. Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm{sup 2}). The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material. The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.

  9. Characterization of polymer thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Palla-Papavlu, A.; Dinca, V.; Ion, V.; Moldovan, A.; Mitu, B.; Luculescu, C.; Dinescu, M.

    2011-04-01

    The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate). The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. It was found that for laser fluences up to 1.5 J/cm 2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm 2 the polyepichlorohydrin films present deviations from the bulk polymer. Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm 2). The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material. The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.

  10. Statistical and fractal features of nanocrystalline AZO thin films

    Science.gov (United States)

    Hosseinabadi, S.; Abrinaei, F.; Shirazi, M.

    2017-09-01

    In this paper, We investigate the morphology effect of Aluminum-doped zinc oxide (AZO) thin films on the physical properties such as conductivity and grain size. The AZO thin films are prepared by spray pyrolysis at different thicknesses in the range 100-400 nm. Height fluctuations obtained from atomic force microscopy (AFM) analysis are applied to the statistical and fractal analysis of thin films. We show that the conductivity of thin films is proportional to the roughness parameter as σ ∼Wm which m = 6 . 42 ± 0 . 50. Calculating the nonlinear measures (skewness and kurtosis) of height fluctuations demonstrates the isotropic nature of AZO rough surfaces. Fractal analysis of the mentioned thin films using two dimensional multifractal detrended fluctuation analysis illustrates the multifractality scaling and the strength of multifractality increases with thickness. Our results show that the reason for the multi-affinity is the existence of different correlations in the height fluctuations of the thin films. Calculating the contour loops features of the height fluctuations reveals that the radius, length, and area of loops increase with thickness enhancement and the radius of contour loops is introduced as a new statistical parameter which is linearly related to the grain size and could be useful to calculate it.

  11. Methods for preparing colloidal nanocrystal-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  12. Reflectometric monitoring of the dissolution process of thin polymeric films.

    Science.gov (United States)

    Laitinen, Riikka; Räty, Jukka; Korhonen, Kristiina; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2017-05-15

    Pharmaceutical thin films are versatile drug-delivery platforms i.e. allowing transdermal, oral, sublingual and buccal administration. However, dissolution testing of thin films is challenging since the commonly used dissolution tests for conventional dosage forms correspond rather poorly to the physiological conditions at the site of administration. Here we introduce a traditional optical reflection method for monitoring the dissolution behavior of thin polymeric films. The substances, e.g. drug molecules, released from the film generate an increase in the refractive index in the liquid medium which can be detected by reflectance monitoring. Thin EUDRAGIT(®) RL PO poly(ethyl acrylate-co-methyl methacrylate-co trimethylammonioethyl methacrylate chloride) (RLPO) films containing the model drug perphenazine (PPZ) were prepared by spraying on a glass substrate. The glass substrates were placed inside the flow cell in the reflectometer which was then filled with phosphate buffer solution. Dissolution was monitored by measuring the reflectance of the buffer liquid. The method was able to detect the distinctive dissolution characteristics of different film formulations and measured relatively small drug concentrations. In conclusion, it was demonstrated that a traditional optical reflection method can provide valuable information about the dissolution characteristics of thin polymeric films in low liquid volume surroundings. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis and structural characterization of boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Elena, M. (CMBM, 38050 Povo (Trento) (Italy)); Guzman, L. (CMBM, 38050 Povo (Trento) (Italy)); Calliari, L. (CMBM, 38050 Povo (Trento) (Italy)); Moro, L. (CMBM, 38050 Povo (Trento) (Italy)); Steiner, A. (Institute for Advanced Materials, Joint Research Centre, Commission of the European Communities, 21020 Ispra (Vatican City State, Holy See) (Italy)); Miotello, A. (Department of Physics, Trento Univ. (Italy)); Bonelli, M. (Department of Physics, Trento Univ. (Italy)); Capelletti, R. (Department of Physics, Parma Univ. (Italy)); Ossi, P.M. (Dipartimento di Ingegneria Nucleare del Politecnico, Milano (Italy))

    1994-12-15

    The purpose of this paper is to present first results of an investigation on the properties of boron-nitrogen thin films obtained by different deposition techniques. Films of different stoichiometries were produced on silicon substrates using r.f. magnetron sputtering and ion-beam-assisted deposition.In order to study the influence of the deposition process parameters on the film properties, the films were characterized by scanning electron microscopy. Auger electron spectroscopy, secondary neutral mass spectrometry, IR spectroscopy and nanoindentation.With the chosen experimental conditions, only hexagonal BN is formed. A considerable dependence of hardness of film microstructure has been evidenced. ((orig.))

  14. Structural, dielectric and ferroelectric characterization of PZT thin films

    Directory of Open Access Journals (Sweden)

    Araújo E.B.

    1999-01-01

    Full Text Available In this work ferroelectric thin films of PZT were prepared by the oxide precursor method, deposited on Pt/Si substrate. Films of 0.5 mm average thickness were obtained. Electrical and ferroelectric characterization were carried out in these films. The measured value of the dielectric constant for films was 455. Ferroelectricity was confirmed by Capacitance-Voltage (C-V characteristics and P-E hysteresis loops. Remanent polarization for films presented value around 5.0 µC/cm2 and a coercive field of 88.8 kV/cm.

  15. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4. Photoelectrochemical (PEC) studies on CdSe thin films electrodeposited from non-aqueous bath on different substrates ... Optical absorption study showed that CdSe films were of direct band gap type semiconductor with a band gap energy of 1.8 eV.

  16. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Abhishek Kumar, A.K.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  17. The deposition of magnesium fluoride (MGF 2 ) thin films by ...

    African Journals Online (AJOL)

    The Chemical Bath Deposition (CBD) technique was successfully employed in the growth of magnesium fluoride (MgF2) thin films. The films were characterized and optimized. The characterization included: the optical and solid state properties such as the transmittance (T)/reflectance (R) absorbance (A) spectra which ...

  18. High coercivity in nanostructured Co-ferrite thin films

    Indian Academy of Sciences (India)

    Abstract. Three methods including sol–gel, rf sputtering and pulsed laser deposition (PLD) have been used for the fabrication of high coercivity Co-ferrite thin films with a nanocrystalline structure. The PLD method is demonstrated to be a possible tool to achieve Co-ferrite films with high coercivity and small grain size at.

  19. Magnetic properties of electrodeposited Co-W thin films

    NARCIS (Netherlands)

    Admon, U.; Dariel, M.P.; Grunbaum, E.; Lodder, J.C.

    1987-01-01

    Thin films of Co-W, 300-500 Å thick, were electrodeposited at various compositions under a wide range of plating conditions. The saturation magnetization, coercivity, and squareness ratio of the films were derived from the parallel (in-plane) and perpendicular hysteresis loops, measured by using a

  20. Creation of the cathodoluminescence structures based on thin film technology

    Directory of Open Access Journals (Sweden)

    Tzyrkunov Yu. A.

    2008-12-01

    Full Text Available Technologiсal route and technological processes for the batch production of thin film cathodoluminescence structures for the high resolution displays were chosen. Cathodoluminescence structures with luminance of glow up to 1000 cd/m2 based on film 6 – 8 mkm thickness were experimentally created and investigated.

  1. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Unknown

    Among the large number of processes to fabricate thin films of materials, pulsed laser deposition (PLD) has emerged as a ... It is important to recognize that highly stoichiometric, nearly single crystal like epitaxial film is aimed for in the PLD .... This new class of Josephson junctions is attractive for novel phase devices.

  2. Studies to Enhance Superconductivity in Thin Film Carbon

    Science.gov (United States)

    Pierce, Benjamin; Brunke, Lyle; Burke, Jack; Vier, David; Steckl, Andrew; Haugan, Timothy

    2012-02-01

    With research in the area of superconductivity growing, it is no surprise that new efforts are being made to induce superconductivity or increase transition temperatures (Tc) in carbon given its many allotropic forms. Promising results have been published for boron doping in diamond films, and phosphorus doping in highly oriented pyrolytic graphite (HOPG) films show hints of superconductivity.. Following these examples in the literature, we have begun studies to explore superconductivity in thin film carbon samples doped with different elements. Carbon thin films are prepared by pulsed laser deposition (PLD) on amorphous SiO2/Si and single-crystal substrates. Doping is achieved by depositing from (C1-xMx) single-targets with M = B4C and BN, and also by ion implantation into pure-carbon films. Previous research had indicated that Boron in HOPG did not elicit superconducting properties, but we aim to explore that also in thin film carbon and see if there needs to be a higher doping in the sample if trends were able to be seen in diamond films. Higher onset temperatures, Tc , and current densities, Jc, are hoped to be achieved with doping of the thin film carbon with different elements.

  3. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    K(1 0 0) and Cs(1 0 0) thin films are represented by a repeated slab geometry. Each slab contains the desired number of (1 0 0) planes of the alkali metal. In the starting geometry, the atoms in the films were placed at their bulk positions. Values of the bulk lattice constant used were calculated with the particular method (LDA ...

  4. Plastic deformation of freestanding thin films : Experiments and modeling

    NARCIS (Netherlands)

    Nicola, L.; Xiang, Y.; Vlassak, J. J.; Van der Giessen, E.; Needleman, A.

    2006-01-01

    Experimental measurements and computational results for the evolution of plastic deformation in freestanding thin films are compared. In the experiments, the stress-strain response of two sets of Cu films is determined in the plane-strain bulge test. One set of samples consists of electroplated Cu

  5. Growth and characterization of benzylic amide [2]catenane thin films

    NARCIS (Netherlands)

    Fustin, C.A.; Rudolf, P.; Taminiaux, A.F.; Zerbetto, F.; Leigh, D.A.; Caudano, R.

    1998-01-01

    We report here the first results on the thin-film growth of benzylic amide catenanes. The films were deposited onto gold single crystals by two different methods: by sublimation under ultra-high vacuum and by dipping of the substrate into a solution of the catenane. Sublimation yielded well-ordered

  6. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ...

  7. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    1School of Chemistry; 2School of Physics, University of Hyderabad,. Hyderabad 500 046, India ... for the in-situ fabrication of highly monodisperse silver nanoparticles in a polymer film matrix. The methodology can be used ... also amenable to fabrication as thin films which offer advantages like high purity due to the vacuum ...

  8. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Administrator

    temperatures (Ts), on chemically and ultrasonically cleaned glass substrates at a vacuum of the order of 10. –6 torr. Pure (99⋅999%) bulk CdSe sample was used as the source material. Prior to deposition of the thin films, high purity aluminium electrodes were vacuum evaporated on glass substrates on which the films ...

  9. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical va- pour deposition using an adducted β-diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (~ 550°C), while they grow with a strong (111) orientation as the.

  10. New approach to optical analysis of absorbing thin solid films.

    Science.gov (United States)

    Demichelis, F; Kaniadakis, G; Tagliaferro, A; Tresso, E

    1987-05-01

    A powerful new technique is reported which enables realistic calculation of the optical energy gap of absorbing thin solid films by an analysis of measured transmittance and reflectance spectra in the fundamental absorption region. At the same time a new analytical method allows the thickness of films to be evaluated by measurements of transmittance only.

  11. Low resistance polycrystalline diamond thin films deposited by hot ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 3 ... Keywords. Carbon materials; chemical vapour deposition; crystal growth; thin films; electrical resistivity; grain size. ... Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth ...

  12. Studies on thin film materials on acrylics for optical applications

    Indian Academy of Sciences (India)

    Unknown

    Films are also coated on plastics to protect the surfaces against abrasion and moisture penetration. Deposition of thin film coatings on acrylics is a challenging job because they are soft, temperature sensitive, moisture absorbing and desorb in vacuum. Moreover, there is a large gap between thermal expansion coefficient of ...

  13. Nonlinear dielectric response in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    Lente, M. H.

    2004-08-01

    Full Text Available Electrical permittivity dependence on electric external bias field was investigated in PZT thin films. The results revealed the existence of two mechanisms contributing to the electrical permittivity. The first one was related to the domain reorientation, which was responsible for a strong no linear dielectric behavior, acting only during the poling process. The second mechanism was associated with the domain wall vibrations, which presented a reasonable linear electrical behavior with the applied bias field, contributing always to the permittivity independently of the poling state of the sample. The results also indicated that the gradual reduction of the permittivity with the increase of the bias field strength may be related to the gradual bending of the domain walls. It is believed that the domain wall bending induces a hardening and/or a thinning of the walls, thus reducing the electrical permittivity. A reinterpretation of the model proposed in the literature to explain the dielectric characteristics of ferroelectric materials at high electric field regime is proposed.

    Se ha estudiado la dependencia de la permitividad eléctrica con un campo bias externo en láminas delgadas de PZT. Los resultados revelaron la existencia de dos mecanismos que contribuyen a la permitividad eléctrica. El primero está relacionado con la reorientación de dominios, actúa sólo durante el proceso de polarización y es responsable de un comportamiento dieléctrico fuertemente no lineal. El segundo mecanismo se asocia a las vibraciones de las paredes de dominio, presentando un comportamiento eléctrico razonablemente lineal con el campo bias aplicado, contribuyendo siempre a la permitividad independientemente del estado de polarización de la muestra. Los resultados indicaron también que la reducción gradual de la permitividad con el aumento de la fuerza del campo bias podría estar relacionada con el “bending” gradual de las paredes de dominio

  14. Formation of nanostructured metallic glass thin films upon sputtering

    Directory of Open Access Journals (Sweden)

    Sergey V. Ketov

    2017-01-01

    Full Text Available Morphology evolution of the multicomponent metallic glass film obtained by radio frequency (RF magnetron sputtering was investigated in the present work. Two modes of metallic glass sputtering were distinguished: smooth film mode and clustered film mode. The sputtering parameters, which have the most influence on the sputtering modes, were determined. As a result, amorphous Ni-Nb thin films with a smooth surface and nanoglassy structure were deposited on silica float glass and Si substrates. The phase composition of the target appeared to have a significant influence on the chemical composition of the deposited amorphous thin film. The differences in charge transport and nanomechanical properties between the smooth and nanoglassy Ni-Nb film were also determined.

  15. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eloussifi, H. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Farjas, J., E-mail: jordi.farjas@udg.cat [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Roura, P. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Ricart, S.; Puig, T.; Obradors, X. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Dammak, M. [Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia)

    2013-10-31

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF{sub 3} appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films.

  16. Characterization of molybdenum-doped indium oxide thin films by ...

    Indian Academy of Sciences (India)

    index, extension coefficient and bandgap of these films also were investigated. Keywords. Molybdenum-doped indium oxide; spray pyrolysis; thin films. 1. Introduction. Transparent conducting oxide (TCOs) films such as In2O3,. ZnO, SnO2 and In2O3:Sn (ITO), In2O3:Mo (IMO), etc due to their high optical transparency in the ...

  17. Impact of X-ray irradiation on PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Saman, E-mail: saman.khan343@gmail.com [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Rafique, Muhammad Shahid [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Anjum, Safia [Physics Department, Lahore College for Woman University, Lahore (Pakistan); Hayat, Asma [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Iqbal, Nida [Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia (UTM) (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PMMA thin films were deposited at 300 Degree-Sign C and 500 Degree-Sign C using PLD technique. Black-Right-Pointing-Pointer These films were irradiated with different fluence of laser produced X-rays. Black-Right-Pointing-Pointer Irradiation affects the ordered packing as well as surface morphology of film. Black-Right-Pointing-Pointer Hardness of film decreases up to certain value of X-ray fluence. Black-Right-Pointing-Pointer Absorption in UV-visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 Degree-Sign C and 500 Degree-Sign C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm{sup -2}. Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV-vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 Degree-Sign C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 Degree-Sign C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV-visible region.

  18. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    Science.gov (United States)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  19. Tribological thin films on steel rolling element bearing surfaces

    Science.gov (United States)

    Evans, Ryan David

    Tribological thin films are of interest to designers and end-users of friction management and load transmission components such as steel rolling element bearings. This study sought to reveal new information about the properties and formation of such films, spanning the scope of their technical evolution from natural oxide films, to antiwear films from lubricant additives, and finally engineered nanocomposite metal carbide/amorphous hydrocarbon (MC/a-C:H) films. Transmission electron microscopy (TEM) was performed on the near-surface material (depth lubricated conditions in mineral oil with and without sulfur- and phosphorus-containing gear oil additives. Site-specific thinning of cross-section cone surface sections for TEM analyses was conducted using the focused ion beam milling technique. Two types of oxide surface films were characterized for the cones tested in mineral oil only, each one corresponding to a different lubrication severity. Continuous and adherent antiwear films were found on the cone surfaces tested with lubricant additives, and their composition depended on the lubrication conditions. A sharp interface separated the antiwear film and base steel. Various TEM analytical techniques were used to study the segregation of elements throughout the film volume. The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend sensitively on reactive magnetron sputtering deposition process conditions. TaC/a-C:H film growth was studied as a function of three deposition parameters in designed experiments: acetylene flow rate, applied d.c. bias voltage, and substrate carousel rotation rate. Empirical models were developed for the following film characteristics to identify process-property trend relationships: Ta/C atomic ratio, hydrogen content, film thickness. TaC crystallite size, Raman spectrum, compressive stress, hardness, and elastic modules. TEM measurements revealed the film base structure consisted of equiaxed

  20. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy.

    Science.gov (United States)

    Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred

    2011-10-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  1. Thin films growth parameters in MAPLE; application to fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M [Institute of Physics ASCR, Na Slovance 2, 182 21Prague 8 (Czech Republic); Cristescu, R [Institute of Physics ASCR, Na Slovance 2, 182 21Prague 8 (Czech Republic); Kocourek, T [Institute of Physics ASCR, Na Slovance 2, 182 21Prague 8 (Czech Republic); Vorlicek, V [Institute of Physics ASCR, Na Slovance 2, 182 21Prague 8 (Czech Republic); Remsa, J [Institute of Physics ASCR, Na Slovance 2, 182 21Prague 8 (Czech Republic); Stamatin, L [Longhin Scarlat Dermato-Venerologic Hospital, Bucharest (Romania); Mihaiescu, D [University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest (Romania); Stamatin, I [University of Bucharest, Faculty of Physics, PO Box MG-11, 3Nano-SAE, Bucharest-Magurele (Romania); Mihailescu, I N [National Institute for Laser, Plasma and Radiation Physics, MG-36, RO-77125, Bucharest (Romania); Chrisey, D B [Naval Research Laboratory, Code 6851 Washington, DC 20375 (United States)

    2007-04-15

    Increasingly requirements on the thin film quality of functionalized materials are efficiently met by a novel laser processing technique - Matrix Assisted Pulsed Laser Evaporation (MAPLE). Examples of deposition conditions and main features characteristic to film growth rate of MAPLE-fabricated organic materials are summarized. MAPLE experimental results are compared with ones corresponding to the classical Pulsed Laser Deposition (PLD). In particular, the results of investigation of MAPLE-deposited fibrinogen blood protein thin films using a KrF* excimer laser and characterized by FTIR and Raman spectrometry are reported.

  2. Effects of humidity during photoprocessing on thin film metallization adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, D.P.

    1980-03-01

    Humidity effects during photoprocessing on tantalum/chromium/gold thin film networks (TFNs) were investigated. Humidity conditions at various process steps were controlled by placing either desiccant or water in handling containers for the TFNs. The TFNs photoprocessed in humid conditions had a much higher occurrence of metallization failures compared to TFNs processed in dry conditions. Ceramic surface defects were shown to cause pores in the thin films, and these pores enhanced corrosion susceptibility for the films. This study resulted in a desiccated storage process for production of TFNs.

  3. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  4. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  5. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR

    Directory of Open Access Journals (Sweden)

    Ventsislav Yantchev

    2011-07-01

    Full Text Available The mass sensitivity of thin aluminum nitride (AlN film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  6. Anomalous Structure of Palladium-Capped Magnesium Thin Films

    Directory of Open Access Journals (Sweden)

    Kazuki Yoshimura

    2012-07-01

    Full Text Available Pd capped pure Mg thin film (50 nm thick was prepared by magnetron sputtering and its hydrogenation at room temperature has been investigated. After exposure to 4% hydrogen gas diluted by argon, the Pd/Mg thin films show drastic optical changes from the metallic state to the transparent state within five seconds by hydrogenation. Transmission electron microscope observation reveals that this sample has an anomalous structure; Mg grain is surrounded by Pd. This structure may be the reason why Pd/Mg films can be hydrogenated so quickly at room temperature.

  7. Morphology of nanocermet thin films: X-ray scattering study

    Science.gov (United States)

    Hazra, S.; Gibaud, A.; Désert, A.; Sella, C.; Naudon, A.

    2000-06-01

    The morphology of ceramic-metal (cermet) thin films is studied by surface-sensitive X-ray scattering techniques. Grazing incidence small angle X-ray scattering (GISAXS) experiments carried out at LURE with a 2D detector show that metal clusters of nanometer size, known as nanoparticles, are dispersed in the thin film. Analyses of the X-ray reflectivity along with the diffuse scattering allow to predict the formation of layers of nanoparticles along the growth direction of the films. The formation of such cumulative-disordered layers in one direction is likely to be related to the boundary condition in the reduced dimension.

  8. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Science.gov (United States)

    Salcedo, K. L.; Rodríguez, C. A.; Perez, F. A.; Riascos, H.

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al2O3) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  9. Recent studies on photoconductive thin films of binary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bernede, J.C.; Pouzet, J.; Gourmelon, E.; Hadouda, H. [Equipe de Phys. des Solides pour l`Electronique, Nantes (France). Groupe Couches Minces]|[Laboratoire de Physique des Materiaux et Composants de l`Electronique, Universite d`Oran es Senia, BP 1624 (Algeria)

    1999-01-29

    In this paper a review of recent progress achieved in the domain of MX{sub 2} films (M=Mo, W; X=Se, S) is presented. The MoS{sub 2} is essentially discussed. It is shown that the emerging interest in the use of MX{sub 2} thin films as absorbing layer in photovoltaic cells has induced significant improvements of the crystalline and optoelectrical properties of these films. Some years ago the films obtained were crystallized in the 2H-MoS{sub 2} structure but the size of their crystallites was small and the samples were poorly photoconductive. Recently many works have shown that, whatever the deposition technique used, textured films with large grains and good photoconductive properties could be obtained when a thin nickel layer is used. During the post annealing treatment, this thin nickel layer diffuses all over the thickness of the films. It is proposed that systematically the crystallization process of MX{sub 2} films is a two-step process. The primary crystallization corresponds to small crystallites formation and the secondary crystallization corresponds to large ordered domains growth by coalescence of the small crystallized domains. This secondary crystallization process is facilitated by the presence of Van der Waals surfaces parallel to the plane of the substrate. Moreover, this effect is strongly improved in the presence of nickel which allows the obtention of high quality films. The electrical properties of these films are interpreted with the help of grain boundary theories. (orig.) 37 refs.

  10. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  11. Oxide-based thin film transistors for flexible electronics

    Science.gov (United States)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  12. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    Science.gov (United States)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  13. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  14. Pulsed photonic fabrication of nanostructured metal oxide thin films

    Science.gov (United States)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  15. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  16. Thin-film absorber for a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  17. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  18. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  19. Water-Based Peeling of Thin Hydrophobic Films

    Science.gov (United States)

    Khodaparast, Sepideh; Boulogne, François; Poulard, Christophe; Stone, Howard A.

    2017-10-01

    Inks of permanent markers and waterproof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows for complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface.

  20. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Science.gov (United States)

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  1. Thin film encapsulation for flexible AM-OLED: a review

    Science.gov (United States)

    Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang

    2011-03-01

    Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.

  2. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications

    Science.gov (United States)

    Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.

    2018-02-01

    Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.

  3. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  4. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  5. A new process for fabricating nanodot arrays on selective regions with diblock copolymer thin film

    Science.gov (United States)

    Park, Dae-Ho

    2007-09-01

    A procedure for micropatterning a single layer of nanodot arrays in selective regions is demonstrated by using thin films of polystyrene-b-poly(t-butyl acrylate) (PS-b-PtBA) diblock copolymer. The thin-film self-assembled into hexagonally arranged PtBA nanodomains in a PS matrix on a substrate by solvent annealing with 1,4-dioxane. The PtBA nanodomains were converted into poly(acrylic acid) (PAA) having carboxylic-acid-functionalized nanodomains by exposure to hydrochloric acid vapor, or were removed by ultraviolet (UV) irradiation to generate vacant sites without any functional groups due to the elimination of PtBA domains. By sequential treatment with aqueous sodium bicarbonate and aqueous zinc acetate solution, zinc cations were selectively loaded only on the carboxylic-acid-functionalized nanodomains prepared via hydrolysis. Macroscopic patterning through a photomask via UV irradiation, hydrolysis, sequential zinc cation loading and calcination left a nanodot array of zinc oxide on a selectively UV-shaded region.

  6. Effects of the embedding kinetics on the surface nano-morphology of nano-grained Au and Ag films on PS and PMMA layers annealed above the glass transition temperature

    Science.gov (United States)

    Ruffino, F.; Torrisi, V.; Marletta, G.; Grimaldi, M. G.

    2012-06-01

    The morphology evolution of nano-grained Ag and Au films deposited on polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric layers were studied, using the atomic force microscopy technique, when annealed above the polymers glass transition temperature. The main effects on the morphology changes were identified with those concerning the embedding kinetics of the Ag and Au nanoparticles in the PS or PMMA layers. The embedding process of the nanoparticles follows as a consequence of the long-range mobility of the polymeric chains above the glass transition temperature. In particular, the dependence of the nanoparticles mean height and surface density on the annealing time at various temperatures was quantified. The analyses of these behaviors allowed us: (1) to distinguish the overall embedding process in a first stage in which a thin wetting layer of the polymer coats the nanoparticles followed by a true embedding process of the nanoparticles into the polymer layer; (2) to evaluate the characteristic coating time for the Ag and Au nanoparticles in the PS and PMMA in the first stage; (3) to evaluate the characteristic embedding velocity for the Ag and Au nanoparticles in the PS and PMMA in the second stage; (4) to derive the activation energies for the embedding process of the Ag and Au nanoparticles in PS and PMMA; (5) to identify the embedding statistics of the Ag and Au nanoparticles in PS and PMMA with a "failure" Weibull statistics.

  7. Towards an optimum design for thin film phase plates

    Energy Technology Data Exchange (ETDEWEB)

    Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de

    2016-01-15

    A variety of physical phase plate designs have been developed to maximize phase contrast for weak phase objects in the transmission electron microscope (TEM). Most progress towards application in structural biology has been made with Zernike PPs consisting of a ~30 nm film of amorphous carbon with a central hole. Although problems such as beam-induced deterioration of Zernike PPs remain unsolved, it is likely that thin film phase plates will be applied routinely in TEM of ice-embedded biological specimens in the near future. However, the thick carbon film of thin film PPs dampens high-resolution information, which precludes their use for single-particle electron cryo-microscopy at atomic resolution. In this work, an improved design for a thin film phase plate is proposed, combining the advantages of Zernike PPs and 2D materials, such as graphene. The improved design features a disc of phase-shifting material mounted on an ultrathin support film. The proposed device imparts a phase shift only to electrons scattered to low angles, whereas contrast at high resolution is generated by conventional defocusing. The device maximizes phase contrast at low spatial frequencies, where defocus contrast is limiting, while damping of information at high spatial frequencies is avoided. Experiments demonstrate that the fabrication of such a device is feasible. - Highlights: • Thin film phase plates enable in-focus TEM imaging of biological specimens. • The thick amorphous carbon film causes damping of high-resolution information. • New thin film phase plate design imparts phase shift only to low spatial frequencies. • Improved design holds promise to facilitate cryo-EM of single particles.

  8. Mechanical and physicochemical properties study on gellan gum thin film prepared using film casting method

    Science.gov (United States)

    Ismail, Nur Arifah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat

    2017-09-01

    The GG thin films were prepared by film casting technique using gelzan (GG1) and kelcogel (GG2) respectively. The physical appearances of the thin films were observed and their mechanical and chemical properties were investigated. Chemical characterizations were done by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), UV-Vis Spectroscopy, and Scanning Electron Microscopy (SEM). Based on the ATR-FTIR result, GG1 and GG2 thin films show a broad peak in the range of 3600-3200 cm-1 assigned to -OH functional group. A broad peaks also was observed at 3000-2600 cm-1 and 1800-1600 cm-1 which are belong to -CH and C=O functional group, respectively. The UV-Vis Spectroscopy analysis shows that single absorption peak was observed at 260 nm for both films. For mechanical properties, GG1 thin film has high tensile strength (80±12), but low strain at break (2±1), on the other hand GG2 thin film has low tensile strength (3±0.08) but high strain at break (13±0.58). The Water Vapour Transmission Rates (WVTR) and swelling of GG1 and GG2 thin films were (422±113, 415±26) and (987±113, 902±63), respectively.

  9. Low thermal emissivity surfaces using AgNW thin films

    Science.gov (United States)

    Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.

    2017-12-01

    The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.

  10. Material properties of very thin electroless silver-tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Bogush, V.; Inberg, A.; Croitoru, N.; Dubin, V.; Shacham-Diamand, Y

    2003-02-24

    Thin electroless silver-tungsten (Ag-W) films were deposited on silicon dioxide substrate from the benzoate solution. The layer composition and microstructure as well as the film deposition rate were studied as a function of the bath formulation. The tungsten concentration in the deposit was up to {approx}2.1 atm% with corresponding oxygen concentration approximately 4 atm%. It was found that electrical, optical, and mechanical properties of Ag-W films depend on the W content in the deposit. Ag-W films of sub 120 nm thickness with {approx}0.6 atm% tungsten and 1.8 atm% oxygen have demonstrated the resistivity of {approx}4 {mu}{omega}{center_dot}cm. Finally, the possibility to use the Ag-W thin films for microelectronic metallization is discussed.

  11. Characterization of fully functional spray-on antibody thin films

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Jhon [Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5250 (United States); Magaña, Sonia; Lim, Daniel V. [Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-7115 (United States); Schlaf, Rudy, E-mail: schlaf@eng.usf.edu [Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5101 (United States)

    2014-02-15

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin–avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin–biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin–biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  12. Characterization of fully functional spray-on antibody thin films

    Science.gov (United States)

    Figueroa, Jhon; Magaña, Sonia; Lim, Daniel V.; Schlaf, Rudy

    2014-02-01

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin-avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin-biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin-biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  13. Optical Thin Film Thickness Measurement for the Single Atom Microscope

    Science.gov (United States)

    Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team

    2017-09-01

    The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.

  14. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects

    Directory of Open Access Journals (Sweden)

    Qiuyan Yang

    2017-10-01

    Full Text Available Solvent vapor annealing of block copolymer (BCP thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is essential, but in most cases difficult to achieve. In this work, we investigated the solvent and thickness effects on the morphology of poly(styrene-b-2 vinyl pyridine (PS-b-P2VP thin films with a film thickness range from 0.4 L0 up to 0.8 L0. Ordered perpendicular structures were achieved. One of the main merits of our work is that the phase behavior of the ultra-high molecular weight BCP thin films, which hold a 100-nm sized domain distance, can be easily monitored via current available techniques, such as scanning electron microscope (SEM, atomic force microscope (AFM, and transmission electron microscope (TEM. Systematic monitoring of the self-assembly behavior during solvent vapor annealing can thus provide an experimental guideline for the optimization of processing conditions of related BCP films systems.

  15. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  16. Laser ablation and photo-dissociation of solid-nitrogen film by UV ps-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Hiroyuki; Sato, Tadatake; Narazaki, Aiko; Kawaguchi, Yoshizo; Yabe, Akira

    2002-09-30

    Nitrogen solid film deposited on a copper plate at 10 K was irradiated with a picosecond UV laser at 263 nm in vacuum. Photo-dissociation of nitrogen molecule in the solid film was confirmed by the optical emissions, which were ascribed to atomic nitrogen, during the laser irradiation at the fluence of 5 J cm{sup -2} pulse{sup -1}. This photolysis was discussed by the comparison with laser-induced breakdown of nitrogen gas. At the fluence over ca. 10 J cm{sup -2} pulse{sup -1}, the ablation of the frozen nitrogen film was observed. Employing the ablation plume including a reactive species such as nitrogen atoms, the surface reaction of a graphite (highly oted pyrolytic graphite (HOPG)) plate and silicon wafer was studied. XPS analysis indicated that nitrides were formed on the surfaces by the treatment. The ps-laser ablation of nitrogen solid film provides a novel technique for surface modification of materials.

  17. Laser-induced vibration of a thin soap film.

    Science.gov (United States)

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  18. Structural evolution during chemical vapor deposition of diamond thin films

    Science.gov (United States)

    Morell, G.; Cancel, L. M.; Figueroa, O. L.; González, J. A.; Weiner, B. R.

    2000-11-01

    In situ phase-modulated ellipsometry was employed to monitor the nucleation and growth processes of diamond thin films fabricated by chemical vapor deposition. The effective extinction coefficient (k) at 1.96 eV was used as a basis for dividing the deposition process into intervals. The film growth was aborted at various k values yielding diamond film samples that represent snapshots of the growth process at different stages. Ex situ characterization of the films was performed using Raman spectroscopy, scanning electron microscopy, and x-ray diffraction. The results indicate that the diamond film deposition process consists of various stages in which the crystalline quality, the net compressive stress, and the relative amount of non-sp3 carbon follow different trends. A correlation between the effective k value measured in situ and the film microstructure characterized ex situ was established which enables the monitoring of the diamond film growth process in real time.

  19. Ferroelectric Properties of Large Area Evaporated Vinylidene Fluoride Thin Films

    Science.gov (United States)

    Foreman, Keith; Poddar, Shashi; Workman, Adam; Callori, Sara; Ducharme, Stephen; Adenwalla, Shireen

    Organic electronics provide advantages in price, processing, and functionality. Poly(vinylidene fluoride) (PVDF) is a popular organic ferroelectric used a in wide variety of applications. The VDF oligomer features a higher surface charge density than PVDF and its copolymers and oligomer thin films can be deposited in vacuum, allowing for deposition on a metallic thin film without breaking vacuum. Despite these advantages, there has been little work towards employing the VDF oligomer in devices. Here, we report on stable and tunable ferroelectric behavior of large area VDF oligomer thin films and the interface with Co thin films. Pyroelectric measurements are used to identify the operating temperature of VDF oligomer-based devices and probe the stability of the ferroelectric polarization states over long periods of time. Using capacitance-voltage, current-voltage, and x-ray diffraction measurements, the remanent polarization and crystalline phase are reported, and the effects of annealing are clarified. X-ray photoelectron spectroscopy is used to characterize the VDF/Co interface. Finally, piezoresponse force microscopy is used to demonstrate large area ferroelectric domain writing VDF oligomer thin films. This work sets the stage for VDF oligomer based organic electronics. Supported by NSF ECCS-1101256 and MRSEC DMR-1420645.

  20. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  1. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng

    2015-02-04

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  2. Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films.

    Science.gov (United States)

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M; Adjokatse, Sampson; Kovalenko, Maksym V; Loi, Maria Antonietta

    2017-08-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI 3 ) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is dominant in NC ensemble because of the localization of electron-hole pairs. A promisingly high quantum yield above 70%, and a large absorption cross-section (5.2 × 10 -13 cm -2 ) are measured. At high pump fluence, biexcitonic recombination is observed, featuring a slow recombination lifetime of 0.4 ns. In polycrystalline thin films, the quantum efficiency is limited by nonradiative trap-assisted recombination that turns to bimolecular at high pump fluences. From the temperature-dependent photoluminescence (PL) spectra, a phase transition is clearly observed in both NC ensemble and polycrystalline thin film. It is interesting to note that NC ensemble shows PL temperature antiquenching, in contrast to the strong PL quenching displayed by polycrystalline thin films. This difference is explained in terms of thermal activation of trapped carriers at the nanocrystal's surface, as opposed to the exciton thermal dissociation and trap-mediated recombination, which occur in thin films at higher temperatures. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thin film PV manufacturing. Materials costs and their optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [National Renewable Energy Laboratory, Thin Film PV Partnership, 1617 Cole Boulevard, 80401 Golden, CO (United States)

    2000-08-31

    Thin film PV technologies face a number of hurdles as they advance towards low-cost goals that would make them competitive with traditional sources of electricity. The US Department of Energy cost goal for thin films is about $0.33/W{sub p}, which corresponds to module efficiencies of about 15% and module manufacturing costs of about $50/m{sup 2}. Past papers have provided a framework for examining thin film efficiencies and manufacturing costs, especially those costs for equipment, labor, materials, utilities, and others. Although materials costs appear to be a large fraction of the total, we have not yet broken them down in enough detail to seek significant improvement. In the future, with more mature thin film production, materials costs such as those from semiconductor layers, contacts, pottants, substrates, and electrical interconnection will dominate total module cost. This paper (1) breaks down the materials costs into two broad categories (active and inactive materials) and then (2) investigates the issues associated with reducing their costs much below today's levels. Materials will likely be such an overwhelming cost-driver for mature manufacturing of thin film PV that issues associated with their optimization should be examined as soon as possible in order to meet the DOE long-term goals for PV module costs.

  4. Single crystalline thin films as a novel class of electrocatalysts

    Directory of Open Access Journals (Sweden)

    Snyder Joshua

    2013-01-01

    Full Text Available The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. However, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111 terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal films yields characteristic (111 electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. This procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.

  5. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  6. Synthesis and kinetics studies of poly(styrene-b-vinylmethylsiloxane) and its thin film ordering by thermal and solvent annealing

    Science.gov (United States)

    Chatterjee, Sourav; Uddin, Md Fakar; Lwoya, Baraka; Albert, Julie N. L.

    Nano-structured thin film materials are important materials that find uses in templating and membrane applications. Block copolymers (BCP) have gained considerable attention for next-generation lithographic masks due to their self-assemble into morphologies with periodic sub 20 nm feature sizes with high regularity and reproducibility. A novel synthetic block copolymer of poly(styrene-b-vinylmethylsiloxane) (PS-b-PVMS) was synthesized. Like poly(styrene-b-dimethylsiloxane), this polymer has a high Flory Huggins interaction parameter between blocks to minimize feature size. Furthermore, incorporation of the vinyl side group provides an opportunity for post-polymerization chemical modification to manipulate the interaction parameter or impart functionality for various applications. Synthesis and kinetic studies of PS-b-PVMS as well as PS and PVMS homopolymers will be presented. All polymers are well characterized by proton NMR and GPC. As proof of concept, we show that block copolymers having different block fractions self-assemble into the expected nanostructures (lamellae, cylinders, spheres). Thin film studies also will be presented showing how the ordering of PS-b-PVMS is affected by different solvent and thermal annealing conditions.

  7. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  8. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, M., E-mail: mousumi@cgcri.res.in; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-08-31

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu{sub 2}O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap.

  9. Platinum thin film resistors as accurate and stable temperature sensors

    Science.gov (United States)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  10. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed....

  11. Optical Kerr phase shift in a nanostructured nickel-doped zinc oxide thin solid film.

    Science.gov (United States)

    Torres-Torres, C; Can-Uc, B A; Rangel-Rojo, R; Castañeda, L; Torres-Martínez, R; García-Gil, C I; Khomenko, A V

    2013-09-09

    The optical Kerr effect exhibited by a nickel doped zinc oxide thin solid film was explored with femto- and pico-second pulses using the z-scan method. The samples were prepared by the ultrasonic spray pyrolysis technique. Opposite signs for the value of the nonlinear refractive index were observed in the two experiments. Self-defocusing together with a two-photon absorption process was observed with 120 ps pulses at 1064 nm, while a dominantly self-focusing effect accompanied by saturated absorption was found for 80 fs pulses at 825 nm. Regarding the nanostructured morphology of the resulting film, we attribute the difference in the two ultrafast optical responses to the different physical mechanism responsible of energy transfer generated by multiphoton processes under electronic and thermal effects.

  12. Laser processing of natural mussel adhesive protein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Doraiswamy, A. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States); Narayan, R.J. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States)]. E-mail: roger_narayan@unc.edu; Cristescu, R. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Chrisey, D.B. [United States Naval Research Laboratory, Washington, DC (United States)

    2007-04-15

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications.

  13. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donguk [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Park, Young [High-Speed Railroad Infrastructure System Research Team, Korea Railroad Research Institute, Uiwang 437-757 (Korea, Republic of); Kim, Minha [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Choi, Youngkwan [Water Facility Research Center, K-water, 125, 1689 Beon-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-730 (Korea, Republic of); Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity, surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.

  14. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  15. Bilaterally Microstructured Thin Polydimethylsiloxane Film Production

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2015-01-01

    with the existing manufacturing process. In employing the new technique, films with microstructures on both surfaces are successfully made with two different liquid silicone rubber (LSR) formulations: 1) pure XLR630 and 2) XLR630 with titanium dioxide (TiO2). The LSR films (∼70 μm) are cast on a carrier web...

  16. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  17. Thin film zinc oxide deposited by CVD and PVD

    Science.gov (United States)

    Hamelmann, Frank U.

    2016-10-01

    Zinc oxide is known as a mineral since 1810, but it came to scientific interest after its optoelectronic properties found to be tuneable by p-type doping. Since the late 1980’s the number of publications increased exponentially. All thin film deposition technologies, including sol-gel and spray pyrolysis, are able to produce ZnO films. However, for outstanding properties and specific doping, only chemical vapor deposition and physical vapor deposition have shown so far satisfying results in terms of high conductivity and high transparency. In this paper the different possibilities for doping will be discussed, some important applications of doped ZnO thin films will be presented. The deposition technologies used for industrial applications are shown in this paper. Especially sputtering of aluminium doped Zinc Oxide (ZnO:Al or AZO) and LPCVD of boron doped Zinc Oxide (ZnO:B or BZO) are used for the commercial production of transparent conductive oxide films on glass used for thin film photovoltaic cells. For this special application the typical process development for large area deposition is presented, with the important trade-off between optical properties (transparency and ability for light scattering) and electrical properties (conductivity). Also, the long term stability of doped ZnO films is important for applications, humidity in the ambient is often the reason for degradation of the films. The differences between the mentioned materials are presented.

  18. THz spectroscopy on superconducting NbN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Daschke, Lena; Pracht, Uwe S.; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Ilin, Konstantin S.; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    Epitaxial thin-film niobium nitride (NbN) is a conventional BCS superconductor. In presence of strong disorder, however, electronic inhomogeneities appear, which is not fully understood yet. To obtain a better insight into the physics of such disordered materials, studies on model systems such as structurally tailored films might be useful. Furthermore, disordered NbN films are used for single-photon detection devices, whose proper performance depends on a profound understanding of the superconducting properties. The studied NbN films have a T{sub c} ranging from 10 to 15 K and the superconducting energy gap is easily accessible with THz spectroscopy (0.4 - 5.6 meV). We investigate thin films of NbN sputtered on a sapphire substrate. With a Mach-Zehnder interferometer we measure the amplitude and phase shift of radiation transmitted through the thin-film sample. From there we can determine the real and imaginary parts of the optical conductivity. These results give information about the energy gap, Cooper pair density, and quasiparticle dynamics, including the temperature evolution of these quantities. We found that a film with 10 nm thickness roughly follows the BCS behavior, as expected. We will present results of our measurements on several different NbN samples.

  19. The strength limits of ultra-thin copper films

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhirn, Guillaume

    2007-07-02

    Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 {mu}m thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method between -160 C and 500 C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 {mu}m and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they

  20. Thin films of photoactive polymer blends.

    Science.gov (United States)

    Ruderer, Matthias A; Metwalli, Ezzeldin; Wang, Weinan; Kaune, Gunar; Roth, Stephan V; Müller-Buschbaum, Peter

    2009-03-09

    The morphology inside photoactive blended films of two conjugated homopolymers poly [(1-methoxy)-4-(2-ethylhexyloxy)-p-phenylene-vinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) is investigated. For both homopolymers a linear dependence of the installed film thickness from the concentration of the polymer solution used in spin coating is probed. This dependence allows preparation of an efficient series of blended films with constant thickness and different blending ratios. Information about the lateral structure inside the films is gained from grazing incidence small angle X-ray scattering. At the calculated critical blending ratio the smallest lateral separation between adjacent domains is found representing the highest surface contact between both homopolymers in the films. The presence of wetting layers at both interfaces as detected with X-ray reflectivity and atomic force microscopy is promising for photovoltaic applications. UV/Vis spectroscopy complements the structural investigation.

  1. Morphology of Cellulose and Cellulose Blend Thin FilmsMorphology of cellulose and cellulose blend thin films

    Science.gov (United States)

    Lu, Rui

    Cellulose is the most abundant, renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. It is useful to study amorphous cellulose as most reactions happen in the non-crystalline regions first and at the edge of crystalline regions. In this study, amorphous thin films of cotton linter cellulose with various thicknesses were spincoated on silicon wafers from cellulose solutions in dimethyl sulfoxide / ionic liquid mixtures. Optical microscopy and atomic force microscopy indicated that the morphology of as-cast films was sensitive to the film preparation conditions. A sample preparation protocol with low humidity system was developed to achieve featureless smooth films over multiple length scales from nanometers to tens of microns. X-ray reflectivity, X-ray diffraction, Fourier transform infrared spectroscopy and high resolution sum-frequency generation vibrational spectroscopy were utilized to confirm that there were no crystalline regions in the films. One- and three- layer models were used to analyze the X-ray reflectivity data to obtain information about roughness, density and interfacial roughness as a function of film thickness from 10-100nm. Stability tests of the thin films were conducted under harsh conditions including hot water, acid and alkali solutions. The stability of thin films of cellulose blended with the synthetic polymer, polyacrylonitrile, was also investigated. The blend thin films improved the etching resistance to alkali solutions and retained the stability in hot water and acid solutions compared to the pure cellulose films.

  2. Optically Thin Metallic Films for High-radiative-efficiency Plasmonics

    CERN Document Server

    Yang, Yi; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-01-01

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and ...

  3. Dielectric Spectroscopy of Localized Electrical Charges in Ferrite Thin Film

    Science.gov (United States)

    Abdellatif, M. H.; Azab, A. A.; Moustafa, A. M.

    2018-01-01

    A thin film of Gd-doped Mn-Cr ferrite has been prepared by pulsed laser deposition from a bulk sample of the same ferrite prepared by the conventional double sintering ceramic technique. The charge localization and surface conduction in the ferromagnetic thin film were studied. The relaxation of the dielectric dipoles after exposure to an external alternating-current (AC) electric field was investigated. The effect of charge localization on the real and imaginary parts of the dielectric modulus was studied. The charge localization in the thin film was enhanced and thereby the Maxwell-Wagner-type interfacial polarization. The increase in interfacial polarization is a direct result of the enhanced charge localization. The sample was characterized in terms of its AC and direct-current (DC) electrical conductivity, and thermally stimulated discharge current.

  4. Ultra-thin Graphitic Film: Synthesis and Physical Properties

    Science.gov (United States)

    Kaplas, Tommi; Kuzhir, Polina

    2016-02-01

    A scalable technique of chemical vapor deposition (CVD) growth of ultra-thin graphitic film is proposed. Ultra-thin graphitic films grown by a one-step CVD process on catalytic copper substrate have higher crystallinity than pyrolytic carbon grown on a non-catalytic surface and appear to be more robust than a graphene monolayer. The obtained graphitic material, not thicker than 8 nm, survives during the transfer process from a Cu substrate without a template polymer layer, typically used in the graphene transfer process to protect graphene. This makes the transfer process much more simple and cost-effective. Having electrical and optical properties compatible with what was observed for a few layers of CVD graphene, the proposed ultra-thin graphitic film offers new avenues for implementing 2D materials in real-world devices.

  5. Single Source Precursors for Thin Film Solar Cells

    Science.gov (United States)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  6. Characterization of reactive magnetron sputtering plasma during thin film deposition

    Science.gov (United States)

    Gordon, Rylan; Mahabaduge, Hasitha

    Reactive magnetron sputtering is used extensively as a thin film deposition technique. During sputtering, a plasma is generated. The evolution of the plasma dictates the thin film composition and structure. The residence time of a reactive gas molecule, the mean time it remains in the process chamber before being pumped away also plays an important role in reactive sputtering. We simulated the residence time and partial pressure of the respective reactive gasses in magnetron sputtering environment using Matlab. Using Optical Emission Spectroscopy we confirmed the trend in mean residence time of the reactive gasses. The thin film properties of reactively sputtered aluminum-doped zinc oxide will be presented along with the correlation to the plasma properties during the deposition.

  7. Flexible polycrystalline thin-film photovoltaics for space applications

    Science.gov (United States)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  8. Potential of thin-film solar cell module technology

    Science.gov (United States)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  9. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  10. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration.

    Science.gov (United States)

    Sorribas, Sara; Gorgojo, Patricia; Téllez, Carlos; Coronas, Joaquín; Livingston, Andrew G

    2013-10-09

    Thin-film nanocomposite membranes containing a range of 50-150 nm metal-organic framework (MOF) nanoparticles [ZIF-8, MIL-53(Al), NH2-MIL-53(Al) and MIL-101(Cr)] in a polyamide (PA) thin film layer were synthesized via in situ interfacial polymerization on top of cross-linked polyimide porous supports. MOF nanoparticles were homogeneously dispersed in the organic phase containing trimesoyl chloride prior to the interfacial reaction, and their subsequent presence in the PA layer formed was inferred by a combination of contact angle measurements, FT-IR spectroscopy, SEM, EDX, XPS, and TEM. Membrane performance in organic solvent nanofiltration was evaluated on the basis of methanol (MeOH) and tetrahydrofuran (THF) permeances and rejection of styrene oligomers (PS). The effect of different post-treatments and MOF loadings on the membrane performance was also investigated. MeOH and THF permeance increased when MOFs were embedded into the PA layer, whereas the rejection remained higher than 90% (molecular weight cutoff of less than 232 and 295 g·mol(-1) for MeOH and THF, respectively) in all membranes. Moreover, permeance enhancement increased with increasing pore size and porosity of the MOF used as filler. The incorporation of nanosized MIL-101(Cr), with the largest pore size of 3.4 nm, led to an exceptional increase in permeance, from 1.5 to 3.9 and from 1.7 to 11.1 L·m(-2)·h(-1)·bar(-1) for MeOH/PS and THF/PS, respectively.

  11. Structure and Thermal Stability of Copper Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Guangan Zhang

    2013-01-01

    Full Text Available Copper nitride (Cu3N thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.

  12. Orbital orientation mapping of V2O5 thin films

    Science.gov (United States)

    Lamoureux, B. R.; Jovic, V.; Singh, V. R.; Smith, K. E.

    2017-07-01

    We report the effects of growth methods on the orbital orientation in vanadium pentoxide (V2O5) thin films, an important factor to consider when selecting growth techniques for highly selective catalysts and devices. Thermal evaporation and sol-gel methods were used to synthesize the V2O5 films. The surface morphology, roughness, and orientation of the films were characterized by atomic force microscopy and x-ray diffraction. Surface electronic properties and oxidation states were assessed by x-ray photoemission spectroscopy. Polarized x-ray absorption spectroscopy demonstrated that the thermally evaporated film [which was in the (001) orientation] exhibited greater anisotropy than the (100) oriented sol-gel film. The observed increase in anisotropy agrees well with computational findings which revealed that more vanadyl bonds are present at the surface of the thermally evaporated film than at the surface of the sol-gel film. The same computational study also found that the orientation of these bonds is more parallel to the film surface in the thermally evaporated film than in the sol-gel film. The data suggest that the method of growth may be used as a controlled variable to select key film characteristics for potential applications.

  13. Sn-doped Zinc Oxide thin films for LPG sensors

    Directory of Open Access Journals (Sweden)

    R. K. Nath

    2012-03-01

    Full Text Available Sn doped zinc oxide (ZnO:Sn thin films have been prepared by chemical spray pyrolysis technique using Zn(CH3COO2 as a precursor solution and SnCl4 as a doping solution respectively. The dopant concentration (Sn/Zn at% is varied from 0 to 1.5 at%. The structural, morphological, optical and electrical properties of the films are explored and then tested for LPG sensing. The resistivity of the Sn-doped films decreases with the Sn doping up to 0.5at%, while at a higher doping concentration the disorder produced in the lattice causes an increase in resistivity of the films. Exposure of LPG decreases the resistance of undoped and doped films. The response of the film is measured for both ZnO and ZnO:Sn films at different operating temperature (275-400℃ and concentration (vol % of LPG in air. It is observed that Sn-doped ZnO films are more sensitive to LPG than undoped ZnO film. In this work, maximum response (~88 % is observed for 0.5at % ZnO:Sn film for 1 vol% of LPG in air at 300℃. Further all the films have shown faster response and recovery times at higher operating temperatures

  14. Sn-doped Zinc Oxide Thin Films for Methanol

    Directory of Open Access Journals (Sweden)

    Rajarshi Krishna NATH

    2009-09-01

    Full Text Available Sn doped zinc oxide (ZnO:Sn thin films have been prepared by chemical spray pyrolysis technique with dopant concentration (Sn/Zn at % from 0 to 1.5 at %. The structural, morphological, optical and electrical properties of the films are explored and then tested for methanol sensing. The resistivity of the films decreases with Sn doping up to 0.5 at %, while at higher doping concentration the disorder produced in the lattice causes an increase in resistivity of the films. Exposure of methanol decreases the resistance of the films. The response of the film is measured for both ZnO and ZnO:Sn films at different operating temperature (200-350 0C and concentration (ppm of methanol in air. It is observed that ZnO:Sn films are more sensitive to methanol than undoped ZnO film. The maximum response (~53 % is observed for 0.5at % ZnO:Sn film to 500 ppm of methanol in air at 300 0C. Further the films have shown faster response and recovery times at higher operating temperatures.

  15. Advanced Structural Characterization of Organic Thin Films

    DEFF Research Database (Denmark)

    Gu, Yun

    In this thesis, the structural characterizations of three organic film systems are described. Several X-ray based techniques have been utilized for the characterizations for different research goals. The structures of N,N',N-trioctyltriazatriangulenium (Oct3-TATA+) salts have been investigated...... of small molecule and polymer layers is indicated by Flory- Huggins theory for the triisopropylsilylethynl pentacene (TIPS-PEN) and polystyrene blend films. In order to investigate the phase separated layers in the ink-jet printed films, we propose a method to measure diraction Bragg peaks by X...

  16. Interfacial Properties of CZTS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  17. Critical thickness for the agglomeration of thin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Boragno, C.; Buatier de Mongeot, F.; Felici, R.; Robinson, I.K.; (U Genova); (ESRF); (UCL)

    2009-09-15

    A thin metal film can exist in a metastable state with respect to breaking into small clusters. In this paper we report on grazing incidence small-angle x-ray scattering studies carried out in situ during the annealing of thin Ni films, between 2 and 10 nm thick, deposited on an amorphous SiO{sub 2} substrate. Our results show the presence of two different regimes which depend on the initial film thickness. For thicknesses less than 5 nm the annealing results in the formation of small, compact clusters on top of a residual Ni wetting layer. For thicknesses greater than 5 nm the film breaks into large, well-separated clusters and the substrate shows an uncovered clean surface.

  18. Ferroelectric thin films using oxides as raw materials

    Directory of Open Access Journals (Sweden)

    E.B. Araújo

    1999-01-01

    Full Text Available This work describes an alternative method for the preparation of ferroelectric thin films based on pre-calcination of oxides, to be used as precursor material for a solution preparation. In order to show the viability of the proposed method, PbZr0.53Ti0.47O3 and Bi4Ti3O12 thin films were prepared on fused quartz and Si substrates. The results were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Rutherford Backscattering Spectroscopy (RBS. The films obtained show good quality, homogeneity and the desired stoichiometry. The estimated thickness for one layer deposition was approximately 1000 Å and 1500 Å for Bi4Ti3O12 and PbZr0.53Ti0.47O3 films, respectively.

  19. Morphological and optical properties of silicon thin films by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Ayouchi, R. [Departamento de Fisica, Instituto Superior Tecnico, Lisboa (Portugal)], E-mail: rachid.ayouchi@ist.utl.pt; Schwarz, R.; Melo, L.V.; Ramalho, R. [Departamento de Fisica, Instituto Superior Tecnico, Lisboa (Portugal); Alves, E.; Marques, C.P. [Instituto Tecnologico e Nuclear, ITN, Sacavem (Portugal); Santos, L.; Almeida, R. [Departamento de Engenharia de Materiais, Instituto Superior Tecnico, Lisboa (Portugal); Conde, O. [Departamento de Fisica, Facultade de Ciencias da Universidade de Lisboa, Lisboa (Portugal)

    2009-03-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10{sup -6} mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm{sup -2} has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.

  20. Electron-beam deposition of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, R.E.; Appavoo, K. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Choi, B.K. [Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN (United States); Nag, J. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Haglund, R.F. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Vanderbilt University, Institute for Nanoscale Science and Engineering, Nashville, TN (United States); Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States)

    2013-06-15

    Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass. (orig.)

  1. Optical, wetting and electrical properties of functionalized fulleropyrrolidine thin films

    Science.gov (United States)

    Abdulrazack, Parveen; Venkatesan, Sughanya; Chellasamy, Manoharan; Samuthira, Nagarajan

    2017-12-01

    Fulleropyrrolidine derivatives acts as an electron acceptor in the fabrication of solar cells and other optoelectronic devices. In this investigation thin film of functionalized fulleropyrrolidines were fabricated and studied their photo-physical properties. Surface morphology of the thin films was investigated through AFM and FE-SEM. The results suggested that large dependence on structure vs molecular packing. The long alkyl chain substituted C60 were assembled in the form of nanorods. C60- C60 intermolecular distance were measured, the films were with good absorption and exhibits n-type semiconducting behavior. The films were having high contact angle and can be effectively used for fabricating semiconducting devices with self- cleaning property.

  2. Linking rigid multibody systems via controllable thin fluid films

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    , this paper gives a theoretical contribution to the combined fields of fluid–structure interaction and vibration control. The methodology is applied to a reciprocating linear compressor, where the dynamics of the mechanical components are described with help of multibody dynamics. The crank is linked......This work deals with the mathematical modelling of multibody systems interconnected via thin fluid films. The dynamics of the fluid films can be actively controlled by means of different types of actuators, allowing significant vibration reduction of the system components. In this framework...... to the rotor via a thin fluid film, where the hydrodynamic pressure is described by the Reynolds equation, which is modified to accommodate the controllable lubrication conditions. The fluid film forces are coupled to the set of nonlinear equations that describes the dynamics of the reciprocating linear...

  3. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    . However, organic materials are usually not well suited for direct laser irradiation, since the organic molecules may suffer from fragmentation by the laser light. We have, therefore, explored the possible fragmentation of organic molecules by attempting to produce thin films of C60 which is a strongly...... bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target...

  4. Zro2 Thin-Film-Based Sapphire Fiber Temperature Sensor

    OpenAIRE

    Wang, Jiajun; Lally, Evan M; Wang, Xiaoping; Gong, Jianmin; Pickrell, Gary R.; Wang, Anbo

    2012-01-01

    A submicrometer-thick zirconium dioxide film was deposited on the tip of a polished C-plane sapphire fiber to fabricate a temperature sensor that can work to an extended temperature range. Zirconium dioxide was selected as the thin film material to fabricate the temperature sensor because it has relatively close thermal expansion to that of sapphire, but more importantly it does not react appreciably with sapphire up to 1800 degrees C. In order to study the properties of the deposited thin fi...

  5. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    Directory of Open Access Journals (Sweden)

    Bruno Pignataro

    2013-03-01

    Full Text Available This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions.

  6. Vertically integrated thin film color sensor arrays for imaging applications.

    Science.gov (United States)

    Knipp, Dietmar; Street, Robert A; Stiebig, Helmut; Krause, Mathias; Lu, Jeng-Ping; Ready, Steve; Ho, Jackson

    2006-04-17

    Large area color sensor arrays based on vertically integrated thin-film sensors were realized. The complete color information of each color pixel is detected at the same position of the sensor array without using optical filters. The sensor arrays consist of amorphous silicon thin film color sensors integrated on top of amorphous silicon readout transistors. The spectral sensitivity of the sensors is controlled by the applied bias voltage. The operating principle of the color sensor arrays is described. Furthermore, the image quality and the pixel cross talk of the sensor arrays is analyzed by measurements of the line spread function and the modulation transfer function.

  7. Investigation of thin film energy-saving coatings

    Directory of Open Access Journals (Sweden)

    Bukhmirov Vyacheslav

    2017-01-01

    Full Text Available The report presents the results of an experimental study of the thermophysical properties and energy efficiency of thin-film energy-saving coatings consisting of hollow microspheres and a binder material from styrene-acrylic dispersion. The value of the thermal conductivity coefficient of the energy-saving paint is estimated depending on its composition and temperature, and the thermal diffusivity coefficient is determined. Experimental results of energy efficiency of using thin-film coatings for insulation of facades of buildings and as thermal insulation for pipelines with a hot coolant are presented.

  8. Progress and issues in polycrystalline thin-film PV technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.; Ullal, H.S.; Roedern, B. von [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  9. Terahertz study of hole transport in pentacene thin films

    Science.gov (United States)

    Engelbrecht, Stefan G.; Prinz, Markus; Arend, Thomas R.; Kersting, Roland

    2014-10-01

    Terahertz electromodulation spectroscopy is a novel tool for studying charge carrier transport in polycrys­talline thin films. The technique selectively probes the high-frequency response of mobile carriers and is insensitive to scattering at grain boundaries as well as to trapping processes. In thin films of pentacene we find a hole mobility of 21 cm2 /Vs, which exceeds the largest previously reported values obtained in poly­ crystalline pentacene. Additionally, the data provide an upper limit of the hole conductivity effective mass of mh ≍ 0.8 me.

  10. CZTS nanoparticle absorber layer for thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ørnsbjerg; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells have the potential to revolutionize the solar energy market. They are cheap, non-toxic and present an efficiency up to 9,2% [1]. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. There are various fabrication...... is furthermore characterized. Photoluminescence measurements indicate which absorber layer are of higher efficiency, which allows us to study why some crystalline configurations enhance the efficiency of resulting solar cells....

  11. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  12. Grating coupler on single-crystal lithium niobate thin film

    Science.gov (United States)

    Chen, Zhihua; Wang, Yiwen; Jiang, Yunpeng; Kong, Ruirui; Hu, Hui

    2017-10-01

    The grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) was designed. A bottom reflector was added in the LNOI material to improve the coupling efficiency. The grating structure was optimized by FDTD method. The material parameters such as layer thickness of lithium niobate thin film, SiO2 thickness were discussed with respect to the coupling efficiency, and the tolerances of grating period, etch depth, groove width and fiber position were also studied systematically. The simulated maximum coupling efficiency from a grating coupler with (without) bottom reflector to a single-mode fiber is about 78% (40%) in z-cut LNOI for TE polarization.

  13. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Photoluminescence, time-resolved emission and photoresponse of plasma-modified porous silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Benyahia, Be., E-mail: benyahiabedra@hotmail.com [Unité de Développement de la Technologie du Silicium, 2 Boulevard Frantz Fanon, B.P. 140, Alger-7 Merveilles, Algiers 16200 (Algeria); Guerbous, L. [Centre de Recherche Nucléaire d' Alger, 2 Boulevard Frantz Fanon, B.P. 399, Alger-Gare, Algiers 16000 (Algeria); Gabouze, N.; Mahmoudi, Br. [Unité de Développement de la Technologie du Silicium, 2 Boulevard Frantz Fanon, B.P. 140, Alger-7 Merveilles, Algiers 16200 (Algeria)

    2013-07-01

    Photoluminescence and photoelectrical study on plasma-modified porous silicon (PS) thin films is presented. Porous silicon passivated by hydrocarbon groups (CH{sub x}) shows an intense broad and stable photoluminescence (PL) band centered at 623 nm whereas the maximum of the photosensitivity spectrum is placed around 400 nm. Along with its potential utilization for silicon-based light emitters' fabrication, it could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using its luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. Excitation spectra (PLE) under steady-state conditions are reported. PLE shows that visible PL is excited by light from UV region. The time-resolved photoluminescence of CH{sub x}/PS in the range of some tenth of μs are investigated at room temperature. The PL decay line shape, in CH{sub x}/PS is well described by stretched exponential. The photosensitivity spectroscopy shows a significant increase of absorption at high photon energy excitation. - Highlights: • Coating porous silicon (PS) by hydrocarbon (CH{sub x}) reduces nonradiative transition. • Drop of the photoluminescence (PL) intensity. • The PL of CH{sub x}/PS is due to radiative transitions at 1.8 and 1.87 eV. • Photosensitivity revealed an excess spectral response (SR) at high-energy excitation. • For photovoltaic PL and SR could be used for the evolution of the silicon solar cells.

  15. Phase diagram of compressively strained nickelate thin films

    Directory of Open Access Journals (Sweden)

    A. S. Disa

    2013-09-01

    Full Text Available The complex phase diagrams of strongly correlated oxides arise from the coupling between physical and electronic structure. This can lead to a renormalization of the phase boundaries when considering thin films rather than bulk crystals due to reduced dimensionality and epitaxial strain. The well-established bulk RNiO3 phase diagram shows a systematic dependence between the metal-insulator transition and the perovskite A-site rare-earth ion, R. Here, we explore the equivalent phase diagram for nickelate thin films under compressive epitaxial strain. We determine the metal-insulator phase diagram for the solid solution of Nd1-yLayNiO3 thin films within the range 0 ≤ y ≤ 1. We find qualitative similarity between the films and their bulk analogs, but with an overall renormalization in the metal-insulator transition to lower temperature. A combination of x-ray diffraction measurements and soft x-ray absorption spectroscopy indicates that the renormalization is due to increased Ni–O bond hybridization for coherently strained thin films.

  16. Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application.

    Science.gov (United States)

    Fu, Zhihua; Xu, Gang

    2017-05-01

    The thin film of metal-organic frameworks (MOFs) is a rapidly developing research area which has tremendous potential applications in many fields. One of the major challenges in this area is to fabricate MOF thin film with good crystallinity, high orientation and well-controlled thickness. In order to address this challenge, different appealing approaches have been studied intensively. Among various oriented MOF films, many efforts have also been devoted to developing novel properties and broad applications, such as in gas separator, thermoelectric, storage medium and photovoltaics. As a result, there has been a large demand for fundamental studies that can provide guidance and experimental data for further applications. In this account, we intend to present an overview of current synthetic methods for fabricating oriented crystalline MOF thin film and bring some updated applications. We give our perspective on the background, preparation and applications that led to the developments in this area and discuss the opportunities and challenges of using crystalline, highly oriented MOF thin film. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dielectric and Raman spectroscopy of TlSe thin films

    Science.gov (United States)

    Ozel, Aysen E.; Deger, Deniz; Celik, Sefa; Yakut, Sahin; Karabak, Binnur; Akyüz, Sevim; Ulutas, Kemal

    2017-12-01

    In this report, the results of Dielectric and Raman spectroscopy of TlSe thin films are presented. The films were deposited in different thicknesses ranging from 290 Å to 3200 Å by thermal evaporation method. The relative permittivity (dielectric constant εr‧) and dielectric loss (εr″) of TlSe thin films were calculated by measuring capacitance (C) and dielectric loss factor (tan δ) in the frequencies ranging between 10-2 Hz-107 Hz and in the temperature ranging between 173 K and 433 K. In the given intervals, both the dielectric constant and the dielectric loss of TlSe thin films decrease with increasing frequency, but increase with increasing temperature. This behavior can be explained as multicomponent polarization in the structure. The ac conductivity obeys the ωs law when s (s dielectric constant of TlSe thin films is determined from Dielectric and Raman spectroscopy measurements. The results obtained by two different methods are in agreement with each other.

  18. Effect of microstructure on irradiated ferroelectric thin films

    Science.gov (United States)

    Brewer, Steven J.; Zhou, Hanhan; Williams, Samuel C.; Rudy, Ryan Q.; Rivas, Manuel; Polcawich, Ronald G.; Cress, Cory D.; Glaser, Evan R.; Paisley, Elizabeth A.; Ihlefeld, Jon F.; Jones, Jacob L.; Bassiri-Gharb, Nazanin

    2017-06-01

    This work investigates the role of microstructure on radiation-induced changes to the functional response of ferroelectric thin films. Chemical solution-deposited lead zirconate titanate thin films with columnar and equiaxed grain morphologies are exposed to a range of gamma radiation doses up to 10 Mrad and the resulting trends in functional response degradation are quantified using a previously developed phenomenological model. The observed trends of global degradation as well as local rates of defect saturation suggest strong coupling between ferroelectric thin film microstructure and material radiation hardness. Radiation-induced degradation of domain wall motion is thought to be the major contributor to the reduction in ferroelectric response. Lower rates of defect saturation are noted in samples with columnar grains, due to increased grain boundary density offering more sites to act as defect sinks, thus reducing the interaction of defects with functional material volume within the grain interior. Response trends for measurements at low electric field show substantial degradation of polarization and piezoelectric properties (up to 80% reduction in remanent piezoelectric response), while such effects are largely diminished at increased electric fields, indicating that the defects created/activated are primarily of low pinning energy. The correlation of film microstructure to radiation-induced changes to the functional response of ferroelectric thin films can be leveraged to tune and tailor the eventual properties of devices relying on these materials.

  19. Identifying intrinsic ferroelectricity of thin film with piezoresponse force microscopy

    Directory of Open Access Journals (Sweden)

    Zhao Guan

    2017-09-01

    Full Text Available Piezoresponse force microscopy (PFM is a powerful technique to characterize ferroelectric thin films by measuring the dynamic electromechanical response. The ferroelectricity is commonly demonstrated by the PFM hysteresis loops and a 180o phase difference of PFM images before and after poling. Such ferroelectric-like behaviors, however, recently are also found in many non-ferroelectrics. Consequently, it is still a challenge to identify intrinsic ferroelectricity in various kinds of thin films. Here, using PFM, we systematically studied the electromechanical responses in ferroelectric thin films with fast (BaTiO3 and slow (PVDF switch dynamics, and also in the non-ferroelectric (Al2O3 thin films. It is found that both of the ac voltage (Vac and pulsed dc voltage (Vdc play an important role in the PFM measurement. When the Vac amplitude is higher than a explicit threshold voltage (Vc, collapse of the PFM hysteresis loops is observed for the films with fast switch dynamics. By measuring PFM hysteresis loops at various Vdc frequencies, an explicit Vc could be found in ferroelectric rather than in non-ferroelectric. The existence of an explicit Vc as well as nonvolatile behavior is proposed as an important approach to unambiguously identify intrinsic ferroelectricity in materials regardless of switch dynamics.

  20. Dynamics of faceted thin films formation during vapor deposition

    Science.gov (United States)

    Li, Kun-Dar; Huang, Po-Yu

    2018-01-01

    In this study, an anisotropic phase-field model was established to simulate the growth of crystalline thin films during vapor deposition. The formation and evolution of characteristic surface with faceted morphologies were demonstrated, in accordance with the regularly obtained microstructure in the actual experiments. In addition, the influences of deposition parameters, such as the deposition rate and the interfacial energy, on the formation mechanism of the characteristic morphology were also illustrated. While a relatively low surface energy of substrate was regarded, the faceted islands were formed, owing to the anisotropic interfacial energy of thin films. In the condition of a high surface energy of substrate, the layered structures of deposited films were produced, which was corresponding to the Frank–van der Merwe growth mode. As various deposition rates were utilized in the numerical simulations, diverse surface morphologies were developed on the basis of the dominant mechanisms, correlating with the adatom diffusion and the deposition kinetics. According to the calculation results, it was observed that a surface character with flattened morphology was generally driven by the adatom diffusion, while the factor of the deposition kinetics was inclined to roughen the surface of thin films. These numerical simulations enhanced the knowledge of thin film growth and facilitated the progress of the vapor deposition technology for advanced applications.

  1. Perovskite phase thin films and method of making

    Science.gov (United States)

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  2. Sputter deposited Terfenol-D thin films for multiferroic applications

    Directory of Open Access Journals (Sweden)

    K. P. Mohanchandra

    2015-09-01

    Full Text Available In this paper, we study the sputter deposition and crystallization process to produce high quality Terfenol-D thin film (100 nm with surface roughness below 1.5 nm. The Terfenol-D thin film was produced using DC magnetron sputtering technique with various sputtering parameters and two different crystallization methods, i.e. substrate heating and post-annealing. Several characterization techniques including WDS, XRD, TEM, AFM, SQUID and MOKE were used to determine the physical and magnetic properties of the Terfenol-D films. TEM studies reveal that the film deposited on the heated substrate has large grains grown along the film thickness producing undesirable surface roughness while the film crystallized by post-annealing method shows uniformly distributed small grains producing a smooth surface. The Terfenol-D film was also deposited onto (011 cut PMN-PT single crystal substrate. With the application of an electric field the film exhibited a 1553 Oe change in coercivity with an estimated saturation magnetostriction of λs = 910 x 10−6.

  3. Unlocking the Structure and Dynamics of Thin Polymeric Films

    Science.gov (United States)

    2016-11-13

    librational freedom, branched structures , and in the case of copolymers, monomers of (potentially) differing surface energy along the chain...containing molecules are known to have low surface energy , and to partition to the interfaces in heterogeneous films. In paper 2, the architecture and...AFRL-AFOSR-JP-TR-2016-0092 Unlocking the Structure and Dynamics of Thin Polymeric Films Andrew Whittaker THE UNIVERSITY OF QUEENSLAND Final Report 11

  4. Magnetic properties of electrodeposited FePd alloy thin films

    Science.gov (United States)

    Soundararaj, A.; Mohanty, J.

    2017-05-01

    We studied the effect of various deposition potential on the growth of FePd alloy thin films by pulsed electrodeposition. GIXRD results confirm all the deposits are grains and crystallites with slight change in orientation, which results due to variation in alloy composition. MOKE studies reveal in-plane easy axis and variation in coercivity for different deposition potentials. AFM/MFM images show in-plane magnetized domains with low film roughness.

  5. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low......Grain boundary engineering aims for a deliberate manipulation of the grain boundary characteristics to improve the properties of polycrystalline materials. Despite the emergence of some successful industrial applications, the mechanism(s) by which the boundary specific properties can be improved...... to engineer new materials. In this study, one of the most widely used electrolytes for electrodeposition is chosen for the synthesis of nickel films and based on thorough characterization of the boundaries the potentials in grain boundary engineering are outlined. The internal structure of the nickel films...

  6. Reflectance of thin silver film on the glass substrate at the interaction with femtosecond laser pulses

    Science.gov (United States)

    Petrov, Yu V.; Khokhlov, V. A.; Inogamov, N. A.; Khishchenko, K. V.; Anisimov, S. I.

    2016-11-01

    The optical response of thin silver film (of 60 nm thickness) coated on a glass prism (Kretschmann configuration) and heated by the femtosecond laser pulse of small intensity is investigated by the computational modeling. We have calculated the reflectance of p-polarized probe laser beam when it is incident onto the metal film from the glass side. Reflectance is calculated at incidence angles close to the surface plasmon resonance angle. We have considered first 100 ps after the action of femtosecond laser pulse onto the film surface. Changes in thermodynamic state and hydrodynamic motion of film material are described by the system of hydrodynamic equations taking into account different temperatures of electrons and ions (two- temperature state) and consequently two-temperature thermodynamics and kinetics at such early times. These changes define the changes in electron-ion and electron-electron collision frequencies. The collision frequencies of conduction electrons, being calculated in dependence on the density and electron and ion temperatures, allow us to find the Drude part of dielectric permittivity. Together with the interband contribution it gives possibility to calculate reflectance depending on the state of metal surface. It is shown a great importance of electron-electron interactions in the temporal behavior of reflectance at early times of laser-film interaction.

  7. Ising-Type Magnetic Ordering in Atomically Thin FePS3.

    Science.gov (United States)

    Lee, Jae-Ung; Lee, Sungmin; Ryoo, Ji Hoon; Kang, Soonmin; Kim, Tae Yun; Kim, Pilkwang; Park, Cheol-Hwan; Park, Je-Geun; Cheong, Hyeonsik

    2016-12-14

    Magnetism in two-dimensional materials is not only of fundamental scientific interest but also a promising candidate for numerous applications. However, studies so far, especially the experimental ones, have been mostly limited to the magnetism arising from defects, vacancies, edges, or chemical dopants which are all extrinsic effects. Here, we report on the observation of intrinsic antiferromagnetic ordering in the two-dimensional limit. By monitoring the Raman peaks that arise from zone folding due to antiferromagnetic ordering at the transition temperature, we demonstrate that FePS3 exhibits an Ising-type antiferromagnetic ordering down to the monolayer limit, in good agreement with the Onsager solution for two-dimensional order-disorder transition. The transition temperature remains almost independent of the thickness from bulk to the monolayer limit with TN ∼ 118 K, indicating that the weak interlayer interaction has little effect on the antiferromagnetic ordering.

  8. Elevated transition temperature in Ge doped VO2 thin films

    Science.gov (United States)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  9. Structural, Optical and Electrical Properties of ITO Thin Films

    Science.gov (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2017-11-01

    Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity (ρ) ˜ 10-3 Ω cm and high carrier concentration (n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path (L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

  10. Structural, Optical and Electrical Properties of ITO Thin Films

    Science.gov (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-02-01

    Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity ( ρ) ˜ 10-3 Ω cm and high carrier concentration ( n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path ( L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

  11. Investigation of defects in highly photosensitive germanosilicate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Simmons-Potter, K.; Potter, B.G. Jr.; Warren, W.L.

    1997-02-01

    Germanosilicate glasses exhibit a significant photosensitive response which has been linked to the presence of oxygen-deficient germanium point defects in the glass structure. Based on this correlation, highly photosensitive thin films have been engineered which demonstrate the largest reported ultraviolet-induced refractive index perturbations (An) in an as-synthesized material. Our thin-film fabrication process avoids the use of hydrogen sensitizing treatments and, thus, yields stable films which retain their predisposition for large photosensitivity for over one year of storage. Understanding the nature of the defects in such films and their relationship to charge trapping and enhanced photosensitivity is of paramount importance in designing and optimizing the materials. Toward this end, our films have been studied using electron paramagnetic resonance (EPR), capacitance-voltage, and optical bleaching and absorption spectroscopies. We find experimental evidence suggesting a model in which a change in spin state and charge state of isolated paramagnetic neutral Ge dangling bonds form either diamagnetic positively or negatively charged Ge sites which are largely responsible for the charge trapping and photosensitivity in these thin films. We present experimental data and theoretical modeling to support our defect model and to show the relevance of the work.

  12. Structural, electrical and thermoelectric properties of chromium silicate thin films

    Science.gov (United States)

    Abd El Qader, Makram

    2011-12-01

    Thermoelectric devices can generate electrical power as a result of their ability to produce electrical currents in the presence of thermal gradients. They can also produce refrigerative cooling when electrical power is supplied to them. Among the potential semiconducting silicides, CrSi 2 is attractive because of its high thermal and chemical stability and its potential for thermoelectric application. CrSi2/SiO2 thin-film structures were prepared using RF sputtering. As deposited and annealed (300°C to 600°C) thin films were characterized for their structural, electrical, and thermoelectric transport properties. As-sputtered CrSi 2 film is amorphous at room temperature and crystallizes around 300°C independent of thickness. Resistivity of the as-deposited 1im films is 1.20 mO-cm, whereas, the annealed films were not electrically conducting as a result of the formation of cracks in the film. The measured Seebeck voltage of the 1im films is markedly enhanced upon annealing and reaches a value of 81muV/K; close to that of bulk CrSi2. The 0.1mum-thick film exhibit an increase in the resistivity up to 0.9mO-cm upon annealing at 300°C, which drops for higher temperature anneals. This behavior is not well-understood. The Seebeck voltages of the 0.1mum thin films increase with annealing temperatures, reaching a maximum value of 62muV/K. Thermoelectric power factors for 0.1 mum thin films exhibit a similar behavior to that of the Seebeck coefficients; increasing with temperature and reaching a plateau value of 10-3 W/(K2 m) at around 400°C to 450°C. These results suggest that annealed thin films of thicknesses in the range of 0.1mum are more suitable for device applications when glass substrates are employed. In order a deposit ternary and higher order alloys, a three gun sputtering system was designed, built and tested for its level of vacuum levels and cleanliness. The tests showed that the three-gun sputtering system is of vacuum levels of 10-9 Torr and shows

  13. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  14. Application of Response Surface Methodology in Development of Sirolimus Liposomes Prepared by Thin Film Hydration Technique

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-04-01

    Full Text Available Introduction: The present investigation was aimed to optimize the formulating process of sirolimus liposomes by thin film hydration method. Methods: In this study, a 32 factorial design method was used to investigate the influence of two independent variables in the preparation of sirolimus liposomes. The dipalmitoylphosphatidylcholine (DPPC /Cholesterol (Chol and dioleoyl phosphoethanolamine(DOPE /DPPC molar ratios were selected as the independent variables. Particle size (PS and Encapsulation Efficiency (EE % were selected as the dependent variables. To separate the un-encapsulated drug, dialysis method was used. Drug analysis was performed with a validated RP-HPLC method. Results: Using response surface methodology and based on the coefficient values obtained for independent variables in the regression equations, it was clear that the DPPC/Chol molar ratio was the major contributing variable in particle size and EE %. The use of a statistical approach allowed us to see individual and/or interaction effects of influencing parameters in order to obtain liposomes with desired properties and to determine the optimum experimental conditions that lead to the enhancement of characteristics. In the prediction of PS and EE % values, the average percent errors are found to be as 3.59 and 4.09%. This value is sufficiently low to confirm the high predictive power of model. Conclusion: Experimental results show that the observed responses were in close agreement with the predicted values and this demonstrates the reliability of the optimization procedure in prediction of PS and EE % in sirolimus liposomes preparation.

  15. Phase separation in Fe2CrSi thin films

    Science.gov (United States)

    Meinert, Markus; Hübner, Torsten; Schmalhorst, Jan; Reiss, Günter; Arenholz, Elke

    2013-09-01

    Thin films of a nominal Fe2CrSi alloy have been deposited by magnetron co-sputtering with various heat treatments on MgO and MgAl2O4 substrates. After heat treatment, the films were found to decompose into a nearly epitaxial Fe3Si film with the D03 structure and Cr3Si precipitates with the A15 structure. We explain the experimental results on the basis of ab initio calculations, which reveal that this decomposition is energetically highly favorable.

  16. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    Science.gov (United States)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  17. Thin-film structure of semiconducting end-capped oligothiophenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, N [Graduate School of Engineering, Iwate University, Ueda Morioka 020-8551 (Japan); Li, W Y [JST Innovation Satellite Iwate, Iiokashinden Morioka 020-0852 (Japan); Omote, K [Rigaku Corporation, 3-9-12 Matsubara-cho Akishima, Tokyo 196-8666 (Japan); Ackermann, J [Laboratoire des Materiaux Moleculaires et des Biomateriaux, GCOM2 UMR CNRS 6114 Faculte des Sciences de Luminy, Case 901, F-13288, Marseille cedex 09 (France); Videlot-Ackermann, C [Laboratoire des Materiaux Moleculaires et des Biomateriaux, GCOM2 UMR CNRS 6114 Faculte des Sciences de Luminy, Case 901, F-13288, Marseille cedex 09 (France); Brisset, H [Laboratoire des Materiaux Moleculaires et des Biomateriaux, GCOM2 UMR CNRS 6114 Faculte des Sciences de Luminy, Case 901, F-13288, Marseille cedex 09 (France); Fages, F [Laboratoire des Materiaux Moleculaires et des Biomateriaux, GCOM2 UMR CNRS 6114 Faculte des Sciences de Luminy, Case 901, F-13288, Marseille cedex 09 (France)

    2007-10-15

    Distyryl-oligothiophenes (DS-nT) is one of the promising semiconducting materials that use for organic thin-film transistors (OTFTs). The in-plane structures of vapor deposited ultrathin films of DS-4T, and its derivatives with different end-cap groups, on SiO{sub 2}substrate were characterized by grazing incidence x-ray diffractometry (GIXD). The morphology and film structure change with the nature of end-cap groups. The increase in volume of end-cap group causes the decrease in crystallinity and increase in frequency in nucleation. These characteristics could affect to the transport properties in OTFTs.

  18. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    Science.gov (United States)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  19. Local imaging of magnetic flux in superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shapoval, Tetyana

    2010-01-26

    Local studies of magnetic flux line (vortex) distribution in superconducting thin films and their pinning by natural and artificial defects have been performed using low-temperature magnetic force microscopy (LT-MFM). Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural defects under the influence of the force that the MFM tip exerts on the individual vortex was visualized and the local pinning force was estimated. The good agreement of these results with global transport measurements demonstrates that MFM is a powerful and reliable method to probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the presence of an ordered array of 1-{mu}m-sized ferromagnetic permalloy dots being in a magneticvortex state underneath the Nb film significantly influences the natural pinning landscape of the superconductor leading to commensurate pinning effects. This strong pinning exceeds the repulsive interaction between the superconducting vortices and allows vortex clusters to be located at each dot. Additionally, for industrially applicable YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films the main question discussed was the possibility of a direct correlation between vortices and artificial defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness (droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge polishing technique that allows to overcome this problem was developed. Mounting the sample under a defined small angle results in a smooth surface and a monotonic thickness reduction of the film along the length of the sample. It provides a continuous insight from the film surface down to the substrate with surface sensitive scanning techniques. (orig.)

  20. Fabrication of organic semiconducting materials and high-performance organic thin-film transistors based on electron-irradiated polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeok Moo

    2011-02-15

    It was discovered that non-luminescent polystyrene (PS) can be converted to luminescent materials whose color can be changed in a wide visible range by electron irradiation. After the analyses of electron-irradiated PS, it was found that polycyclic aromatic hydrocarbons are produced by the irradiation and these PAHs are the origin of the luminescence from the electron-irradiated polymer. Based on the finding, a straightforward approach to produce desired light-emitting nanoarchitectures and nanopatterns only by irradiating an electron beam to the polymer was presented. In particular, the top-down irradiation approach provides a powerful tool to fabricate a variety of interesting nanoarchitectures when combined with bottom-up approaches; PS nanostructures prepared by self-assembling techniques can be directly transformed to luminescent nanostructures by electron irradiation while keeping their pristine morphologies. Light-emitting materials are widely used for optical, photonic, chemical and biomedical devices and a rapid progress in the devices requires well-defined luminescent nanoarchitectures. The approach presented here will be useful for a wide range of research fields including optics, photonics, chemistry, and biologics. On the other hand, a very simple but effective approach to produce high-performance rubrene organic thin-film transistors (OTFTs) with characteristics better than amorphous silicon TFTs was presented. Only by an abrupt heating process, high-quality crystalline rubrene semiconductor thin films that have almost ideal structures for OTFTs are created. The produced crystalline thin films consist of highly ordered, uniaxially oriented single-crystalline grains with large average sizes and the grains are interconnected with one another to form continuous films over the whole dielectric surfaces. Such high-quality crystalline rubrene thin films are remarkably rapidly produced in just 30 sec through this approach. Moreover, the increase of carrier

  1. Polymer-grafted gold nanorods in polymer thin films: Dispersion and plasmonic coupling

    Science.gov (United States)

    Hore, Michael-Jon Ainsley

    This dissertation describes complementary experimental and theoretical studies to deter- mine the thermodynamic factors that affect the dispersion of polymer-grafted Au nanorods within polymer thin films. Au nanorods exhibit a uniform dispersion with a regular spacing for favorable brush / matrix interactions, such as poly(ethylene glycol) (PEG)-Au / poly(methyl methacrylate) (PMMA) and polystyrene (PS)-Au / poly(2,6-dimethyl-p-phenylene oxide) (PPO). For PEG-Au / PMMA, the nanorods are locally oriented and their dispersion is independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), α = P/N, whereas for chemically similar brush / matrix combinations, such as PS-Au / PS and PEG-Au / poly(ethylene oxide) (PEO), nanorods are randomly dispersed for α 2. For aggregated systems (α > 2), nanorods are found primarily within aggregates containing side-by-side aligned nanorods with a spacing that scales with N. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that coupling between surface plasmons within the aggregates leads to a blue shift in the optical absorption as α increases, indicating the sensitivity of spectroscopy for determining nanorod dispersion in polymer nanocomposite films. Self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations show that the aggregation of nanorods for α > 2 can be attributed to depletion-attraction forces caused by autophobic dewetting of the brush and matrix. Finally, miscible blends of PS and PPO are investigated as a route to control depletion-attraction interactions between PS-Au nanorods. Initially, nanorods aggregate in matrices having 50 vol. % PPO and then gradually disperse as PPO becomes the majority component. The brush and matrix density profiles, determined by SCFT, show that PPO segregates into the PS brush, and acts as a compatibilizer, which improves dispersion. As dispersion improves, coupling between surface

  2. Removable Thin Films used for the Abatement and Mitigation of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    M. Lumia; C. Gentile; K. Creek; R. Sandoval

    2003-11-06

    The use of removable thin films for the abatement of hazardous particulates has many advantages. Removable thin films are designed to trap and fix particulates in the film's matrix by adhesion. Thin films can be applied to an existing contaminated area to fix and capture the particulates for removal. The nature of the removable thin films, after sufficient cure time, is such that it can typically be removed as one continuous entity. The removable thin films can be applied to almost any surface type with a high success rate of removal.

  3. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  4. Asymptotic behavior of local dipolar fields in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2016-10-15

    A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.

  5. CISSY: A station for preparation and surface/interface analysis of thin film materials and devices

    Directory of Open Access Journals (Sweden)

    Iver Lauermann

    2016-04-01

    Full Text Available The CISSY end station combines thin film deposition (sputtering, molecular beam epitaxy ambient-pressure methods with surface and bulk-sensitive analysis (photo emission, x-ray emission, x-ray absorption in the same UHV system, allowing fast and contamination–free transfer between deposition and analysis. It is mainly used for the fabrication and characterization of thin film devices and their components like thin film photovoltaic cells, water-splitting devices and other functional thin film materials.

  6. Formation of ultrasmooth thin silver films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, I. A.; Garaeva, M. Ya.; Mamichev, D. A., E-mail: d_mamichev@mail.ru; Grishchenko, Yu. V.; Zanaveskin, M. L. [NBIC Center, National Research Centre ' Kurchatov Institute' (Russian Federation)

    2013-09-15

    Ultrasmooth thin silver films have been formed on a quartz substrate with a buffer yttrium oxide layer by pulsed laser deposition. The dependence of the surface morphology of the film on the gas (N{sub 2}) pressure in the working chamber and laser pulse energy is investigated. It is found that the conditions of film growth are optimal at a gas pressure of 10{sup -2} Torr and lowest pulse energy. The silver films formed under these conditions on a quartz substrate with an initial surface roughness of 0.3 nm had a surface roughness of 0.36 nm. These films can be used as a basis for various optoelectronics and nanoplasmonics elements.

  7. Metal contact properties of poly3-octylthiophene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Oscar H.; Lopez-Mata, C.; Hu, Hailin; Sanchez, Aaron [Centro de investigacion en Energia, UNAM, Av.Xochicalco S/N, Temixco, Morelos, 62580 (Mexico); Nicho, Ma. Elena [CIICAp-UAEM, Cuernavaca, Morelos (Mexico)

    2006-04-14

    Chemically synthesized undoped poly3-octylthiophene (P3OT) was deposited as thin films on conducting glass substrates by drop casting. Doping state of P3OT was obtained by adding FeCl{sub 3} into the original P3OT solution. A qualitative explanation of the electrical contact behavior of the P3OT films was given by a band diagram made from optical absorbance spectra and electrochemical current-voltage curves of the polymeric films. Gold contacts on both undoped and doped P3OT films give an ohmic contact. Silver/P3OT contact shows a rectifying behavior; the forward current is 500 times the reverse current at 0.5V. Aluminum also forms rectifying contact with the two types of P3OT films, although the experimental rectification ratio is lower than that of the silver. The I-V curves of rectifying contacts were analyzed with Schottky equation and different diode parameters were obtained. (author)

  8. Structural characterization of chemically deposited PbS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Lima, F.A. [Instituto Superior de Tecnologias y Ciencias Aplicadas Ave Salvador Allende esq. Luaces, s/n, AP 6163, CP 10600, Ciudad de La Habana (Cuba); Departamento de Fisica, Pontificia Universidade Catolica do Rio do Janeiro, 22453-900 Rio de Janeiro, RJ (Brazil); Gonzalez-Alfaro, Y. [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba); Larramendi, E.M. [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba); Fonseca Filho, H.D. [Departamento de Fisica, Pontificia Universidade Catolica do Rio do Janeiro, 22453-900 Rio de Janeiro, RJ (Brazil); Maia da Costa, M.E.H. [Departamento de Fisica, Pontificia Universidade Catolica do Rio do Janeiro, 22453-900 Rio de Janeiro, RJ (Brazil); Freire, F.L. [Departamento de Fisica, Pontificia Universidade Catolica do Rio do Janeiro, 22453-900 Rio de Janeiro, RJ (Brazil)]. E-mail: lazaro@vdg.fis.puc-rio.br; Prioli, R. [Departamento de Fisica, Pontificia Universidade Catolica do Rio do Janeiro, 22453-900 Rio de Janeiro, RJ (Brazil); Avillez, R.R. de [Departamento de Ciencia dos Materiais e Metalurgia, Pontificia Universidade Catolica do Rio do Janeiro, 22453-900 Rio de Janeiro, RJ (Brazil); Silveira, E.F. da [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba); Calzadilla, O. [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba); Melo, O. de [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba); Pedrero, E. [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba); Hernandez, E. [Facultad de Fisica-IMRE, Universidad de La Habana (Cuba)

    2007-01-25

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate.

  9. Optoelectrical and structural properties of evaporated indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naseem, S. (Centre for Solid State Physics, Univ. of the Punjab, Lahore (Pakistan)); Iqbal, M. (Centre for Solid State Physics, Univ. of the Punjab, Lahore (Pakistan)); Hussain, K. (Centre for Solid State Physics, Univ. of the Punjab, Lahore (Pakistan))

    1993-11-01

    Indium oxide thin films have been prepared by evaporating indium metal in the presence of oxygen atmosphere. The oxygen partial pressure was kept at a fixed value, of 1 mTorr, previously found to be optimum for the present investigations. The substrate temperature was varied from room temperature to 300 C. Once an optimum substrate temperature of 250 C was established, more films were prepared at this temperature and these films were then given a post-deposition heat treatment in nitrogen and oxygen atmospheres. The resultant films were characterized for their optical, electrical and structural properties. The results show that films with a resistivity as low as 3.38x10[sup -4] [Omega] cm, and with a transmittance as high as 91% can be achieved by controlling the preparation conditions. (orig.)

  10. THIN FILM A-Slzfl SOLAR CELLS

    African Journals Online (AJOL)

    circuit current were compared to the parameters of crystalline silicon pit-junction solar cells. The effect of irradiance and spectral illumination on the cell performance was investigated. Finally, the applicability of the investigated thin. film a-Si:H solar cells for its practical operation in Ethiopia is discussed. Key words/phrases: ...

  11. fabrication and performance study of uniform thin film integrated filters

    African Journals Online (AJOL)

    Dr Obe

    structure and theoretical analysis of the same using a general transmission line model. Further experimental study of the fabricated structure has been done and it has been observed that theoretical and experimental results are in good agreement. 2. ANALYSIS OF THE THIN FILM. FILTERS: A unidirectional transmission ...

  12. Thin metal films in resistivity-based chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Podešva, Pavel; Foret, František

    2013-01-01

    Roč. 9, č. 4 (2013), s. 642-652 ISSN 1573-4110 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : voltohmmetric sensing * chemiresistor * thin metal film * gas sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.194, year: 2013

  13. Vertical III-nitride thin-film power diode

    Science.gov (United States)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  14. Some spectral response characteristics of ZnTe thin films

    Indian Academy of Sciences (India)

    Unknown

    used in optoelectronic detection of THz radiation (Winnewis- ser et al 1997). Photoluminescence study on ZnTe was also carried out in recent years (Nishio et al 1999). The ZnTe thin films grown at room temperature and high temperature substrates are found to be polycrystalline in nature (Kalita et al 1999). By investigating ...

  15. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Bull. Mater. Sci., Vol. 30, No. 4, August 2007, pp. 321–327. © Indian Academy of Sciences. 321. Photoelectrochemical (PEC) studies on CdSe thin films electrodeposited from non-aqueous bath on different substrates. Y G GUDAGE, N G DESHPANDE, A A SAGADE, R P SHARMA*, S M PAWAR. † and. C H BHOSALE.

  16. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    Optical characteristics of transparent samarium oxide thin films deposited by the radio-frequency sputtering technique. A A ATTA M M EL-NAHASS KHALED M ELSABAWY M M ABD EL-RAHEEM A M HASSANIEN A ALHUTHALI ALI BADAWI AMAR MERAZGA. Regular Volume 87 Issue 5 November 2016 Article ID 72 ...

  17. Optical characterisation of thin film cadmium oxide prepared by a ...

    African Journals Online (AJOL)

    The optical transmission spectra of transparent conducting cadmium oxide (CdO) thin films deposited by a modified reactive evaporation process onto glass substrates have been measured. The interference fringes were used to calculate the refractive index, thickness variation, average thickness and absorption coefficient ...

  18. Magnetic and structural properties of Co nanocluster thin films

    NARCIS (Netherlands)

    Koch, SA; Palasantzas, G; Vystavel, T; De Hosson, JTM; Binns, C; Louch, S

    In this work we report on the magnetic characterization of thin films composed of gas-phase cobalt nanoclusters deposited on surfaces. Measurements of magnetization curves at ambient temperature indicate a strong exchange interaction between the clusters, while at cryogenic temperatures an exchange

  19. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.|info:eu-repo/dai/nl/304830585; Liu, Y.|info:eu-repo/dai/nl/304831743; de Jong, M.M.|info:eu-repo/dai/nl/325844208; de Wild, J.|info:eu-repo/dai/nl/314641378; Schuttauf, J.A.|info:eu-repo/dai/nl/314118039; Brinza, M.|info:eu-repo/dai/nl/304823325; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  20. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,