WorldWideScience

Sample records for ps temporal resolution

  1. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS).

    Science.gov (United States)

    Kawaji, Keigo; Patel, Mita B; Cantrell, Charles G; Tanaka, Akiko; Marino, Marco; Tamura, Satoshi; Wang, Hui; Wang, Yi; Carroll, Timothy J; Ota, Takeyoshi; Patel, Amit R

    2017-07-01

    To introduce a pair of accelerated non-Cartesian acquisition principles that when combined, exploit the periodicity of k-space acquisition, and thereby enable acquisition of high-temporal cine Cardiac Magnetic Resonance (CMR). The mathematical formulation of a noniterative, undersampled non-Cartesian cine acquisition and reconstruction is presented. First, a low-pass filtering step that exploits streaking artifact redundancy is provided (i.e., Dynamically Interleaved Streak removal in the Power-spectrum Encoded domain with Low-pass filtering [DISPEL]). Next, an effective radial acquisition for the DISPEL approach that exploits the property of prime numbers is described (i.e., Modulo-Prime Spoke [MoPS]). Both DISPEL and MoPS are examined using numerical simulation of a digital heart phantom to show that high-temporal cine-CMR is feasible without removing physiologic motion vs aperiodic interleaving using Golden Angles. The combined high-temporal cine approach is next examined in 11 healthy subjects for a time-volume curve assessment of left ventricular systolic and diastolic performance vs conventional Cartesian cine-CMR reference. The DISPEL method was first shown using simulation under different streak cycles to allow separation of undersampled radial streaking artifacts from physiologic motion with a sufficiently frequent streak-cycle interval. Radial interleaving with MoPS is next shown to allow interleaves with pseudo-Golden-Angle variants, and be more compatible with DISPEL against irrational and nonperiodic rotation angles, including the Golden-Angle-derived rotations. In the in vivo data, the proposed method showed no statistical difference in the systolic performance, while diastolic parameters sensitive to the cine's temporal resolution were statistically significant (P cine). We demonstrate a high-temporal resolution cine-CMR using DISPEL and MoPS, whose streaking artifact was separated from physiologic motion. © 2017 American Association of Physicists

  2. Scanning SQUID sampler with 40-ps time resolution

    Science.gov (United States)

    Cui, Zheng; Kirtley, John R.; Wang, Yihua; Kratz, Philip A.; Rosenberg, Aaron J.; Watson, Christopher A.; Gibson, Gerald W.; Ketchen, Mark B.; Moler, Kathryn. A.

    2017-08-01

    Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.

  3. A multichannel time-to-digital converter ASIC with better than 3 ps RMS time resolution

    Science.gov (United States)

    Perktold, L.; Christiansen, J.

    2014-01-01

    The development of a new multichannel, fine-time resolution time-to-digital converter (TDC) ASIC is currently under development at CERN. A prototype TDC has been designed, fabricated and successfully verified with demonstrated time resolutions of better than 3 ps-rms. Least-significant-bit (LSB) sizes as small as 5 ps with a differential-non-linearity (DNL) of better than ±0.9 LSB and integral-non-linearity (INL) of better than ±1.3 LSB respectively have been achieved. The contribution describes the implemented architecture and presents measurement results of a prototype ASIC implemented in a commercial 130 nm technology.

  4. High-Resolution TomoSAR & PS-InSAR Analysis in Urban Areas

    Science.gov (United States)

    Wei, Lianhuan; Liao, Mingsheng; Balz, Timo; Liu, Kang; Jendryke, Michael

    2013-01-01

    The surveillance of urban infrastructures is of great importance. Urban infrastructure monitoring benefits from the launch of the new generation of high-resolution SAR satellites. With high-resolution SAR stacks, even deformation details of different building parts can be observed by PS-InSAR technique. However, high-rise building areas suffer severely from layover effects, which can cause serious phase unwrapping errors in PS-InSAR processing. SAR tomography (TomoSAR) provides a method of overcoming layover effects in urban areas. With tomographic techniques, the 3D distribution of multiple scatterers and their position can be reconstructed. In this poster, the PS-InSAR method is illustrated first, followed with PS-InSAR analysis results in Shanghai. Then, we will describe SAR tomography and why we need TomoSAR, especially in dense cities like Shanghai. Finally, preliminary tomographic results are presented. By combining PS-InSAR and TomoSAR, a 4D dynamic mapping of urban areas could be executed.

  5. A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.; Benitez, J.; Coleman, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.; Schwiening, J.; /SLAC

    2006-07-05

    We have achieved {approx}30 psec single-photoelectron and {approx}12ps for multi-photoelectron timing resolution with a new 64 pixel Burle MCP-PMT with 10 micron microchannel holes. We have also demonstrated that this detector works in a magnetic field of 15kG, and achieved a single-photoelectron timing resolution of better than 60 psec. The study is relevant for a new focusing DIRC RICH detector for particle identification at future Colliders such as the super B-factory or ILC, and for future TOF techniques. This study shows that a highly pixilated MCP-PMT can deliver excellent timing resolution.

  6. High Resolution TomoSAR & PS-InSAR Analysis in Urban Areas

    Science.gov (United States)

    Wei, Lianhuan; Liao, Mingsheng; Balz, Timo; Liu, Kang; Jendryke, Michael

    2013-01-01

    The surveillance of urban infrastructures is of great importance. Urban infrastructure monitoring benefits from the launch of the new generation of high-resolution SAR satellites. With high-resolution SAR stacks, even deformation details of different building parts can be observed. The PS-InSAR technique has become a favorable tool for urban area subsidence monitoring, and it has been demonstrated that millimeter accuracy can be achieved. However, high-rise building areas suffer severely from layover effects, which can cause serious phase unwrapping errors. SAR tomography provides a method of overcoming layover effects in urban areas. With tomographic techniques, the 3D distribution of multiple scatterers and their position can be reconstructed. In this paper, the PS-InSAR method is briefly described first, followed by PS-InSAR analysis results in Shanghai. Then, we will describe SAR tomography and why we need TomoSAR, especially in dense cities like Shanghai. Finally, preliminary tomographic results about Shanghai are presented. By combining PS-InSAR and TomoSAR, a 4D dynamic mapping of urban areas could be executed.

  7. Temporal resolution of figures and grounds.

    Science.gov (United States)

    Hecht, Lauren N; Vecera, Shaun P

    2014-03-01

    Recent studies have demonstrated that establishing figure-ground organization influences other perceptual processes. Specifically, figures undergo perceptual processing earlier than ground regions (Lester, Hecht, & Vecera, 2009), and they are processed for longer durations relative to ground regions (Hecht & Vecera, 2011). One potential consequence of figures' extended processing is degraded temporal resolution compared to ground regions. To test this hypothesis, observers completed a modified flicker-fusion task while viewing either displays that contained well-defined figures and grounds or displays that were ambiguous. As evidenced by increased sensitivity for flickering targets on the ground regions, the current results support the claim that figures have poorer temporal resolution than ground regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Bergson e a Natureza Temporal da Vida Psíquica

    Directory of Open Access Journals (Sweden)

    Rossetti Regina

    2001-01-01

    Full Text Available Para Bergson, a vida interior é de natureza temporal e não espacial. Na psique, a multiplicidade qualitativa dos estados psicológicos se modifica o tempo todo numa sucessão contínua e solidária; se algo parece solidificar-se e fragmentar-se é porque se representa, ilusoriamente, a consciência como se existisse num tempo homogêneo e espacial. Na raiz do problema está a confusão que se faz entre tempo e espaço quando não se percebe que os estados psicológicos e toda vida psíquica são de natureza exclusivamente temporal. A partir dessa confusão, tem-se a representação de um eu superficial e de uma multiplicidade quantitativa dos estados psicológicos como se fossem de natureza física, como o fez a psicofísica, porque se concebe a vida psíquica existindo num ilusório tempo espacial.

  9. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... and intensities are calculated simultaneously in a multiresolution setting. A frame doubling version of our algorithm is implemented and in testing it, we focus on making the motion of high contrast edges to seem smooth and thus reestablish the illusion of motion pictures....

  10. Sex & vision I: Spatio-temporal resolution

    Directory of Open Access Journals (Sweden)

    Abramov Israel

    2012-09-01

    Full Text Available Abstract Background Cerebral cortex has a very large number of testosterone receptors, which could be a basis for sex differences in sensory functions. For example, audition has clear sex differences, which are related to serum testosterone levels. Of all major sensory systems only vision has not been examined for sex differences, which is surprising because occipital lobe (primary visual projection area may have the highest density of testosterone receptors in the cortex. We have examined a basic visual function: spatial and temporal pattern resolution and acuity. Methods We tested large groups of young adults with normal vision. They were screened with a battery of standard tests that examined acuity, color vision, and stereopsis. We sampled the visual system’s contrast-sensitivity function (CSF across the entire spatio-temporal space: 6 spatial frequencies at each of 5 temporal rates. Stimuli were gratings with sinusoidal luminance profiles generated on a special-purpose computer screen; their contrast was also sinusoidally modulated in time. We measured threshold contrasts using a criterion-free (forced-choice, adaptive psychophysical method (QUEST algorithm. Also, each individual’s acuity limit was estimated by fitting his or her data with a model and extrapolating to find the spatial frequency corresponding to 100% contrast. Results At a very low temporal rate, the spatial CSF was the canonical inverted-U; but for higher temporal rates, the maxima of the spatial CSFs shifted: Observers lost sensitivity at high spatial frequencies and gained sensitivity at low frequencies; also, all the maxima of the CSFs shifted by about the same amount in spatial frequency. Main effect: there was a significant (ANOVA sex difference. Across the entire spatio-temporal domain, males were more sensitive, especially at higher spatial frequencies; similarly males had significantly better acuity at all temporal rates. Conclusion As with other sensory systems

  11. Sex & vision I: Spatio-temporal resolution.

    Science.gov (United States)

    Abramov, Israel; Gordon, James; Feldman, Olga; Chavarga, Alla

    2012-09-04

    Cerebral cortex has a very large number of testosterone receptors, which could be a basis for sex differences in sensory functions. For example, audition has clear sex differences, which are related to serum testosterone levels. Of all major sensory systems only vision has not been examined for sex differences, which is surprising because occipital lobe (primary visual projection area) may have the highest density of testosterone receptors in the cortex. We have examined a basic visual function: spatial and temporal pattern resolution and acuity. We tested large groups of young adults with normal vision. They were screened with a battery of standard tests that examined acuity, color vision, and stereopsis. We sampled the visual system's contrast-sensitivity function (CSF) across the entire spatio-temporal space: 6 spatial frequencies at each of 5 temporal rates. Stimuli were gratings with sinusoidal luminance profiles generated on a special-purpose computer screen; their contrast was also sinusoidally modulated in time. We measured threshold contrasts using a criterion-free (forced-choice), adaptive psychophysical method (QUEST algorithm). Also, each individual's acuity limit was estimated by fitting his or her data with a model and extrapolating to find the spatial frequency corresponding to 100% contrast. At a very low temporal rate, the spatial CSF was the canonical inverted-U; but for higher temporal rates, the maxima of the spatial CSFs shifted: Observers lost sensitivity at high spatial frequencies and gained sensitivity at low frequencies; also, all the maxima of the CSFs shifted by about the same amount in spatial frequency. Main effect: there was a significant (ANOVA) sex difference. Across the entire spatio-temporal domain, males were more sensitive, especially at higher spatial frequencies; similarly males had significantly better acuity at all temporal rates. As with other sensory systems, there are marked sex differences in vision. The CSFs we measure

  12. Analysis of L -shell line spectra with 50-ps time resolution from Mo X -pinch plasmas.

    Science.gov (United States)

    Hansen, S B; Shlyaptseva, A S; Pikuz, S A; Shelkovenko, T A; Sinars, D B; Chandler, K M; Hammer, D A

    2004-08-01

    Mo wire X pinches typically emit several x-ray bursts from a bright spot near the crossing of the X -pinch wires. Streak camera images of L -shell line emission from Mo wire X pinches have been analyzed using a non-local thermodynamic equilibrium (NLTE) collisional-radiative atomic kinetics model, providing temperature and density profiles with approximately 50 ps time resolution over the approximately 350 ps x-ray bursts. In conjunction with nonspectroscopic measurements, the analysis is used to propose a picture of the dynamic evolution of the X -pinch plasma. The L -shell spectra from the first x-ray burst indicate an electron density near 10(22) cm(-3) and an electron temperature near 1 keV; subsequent x-ray bursts have L -shell spectra that indicate electron temperatures slightly above 1 keV and electron densities near 10(20) and 10(21) cm(-3). The size of the L -shell line-emitting region is estimated to be near 10 microm for the first x-ray burst and much larger for the later bursts. It is proposed that inner-shell excitation of low ionization stages of Mo in a microm -scale plasma region contributes to the observed radiation from the first micropinch, which typically emits a short burst of >3 keV radiation and has L -shell spectra characterized by broad spectral lines overlaying an intense continuum.

  13. Implementation of a high resolution (< 11 ps RMS) Time-to-Digital Converter in a Field Programmable Gate Array

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, Cahit [Helmholtz-Institut Mainz, Johannes Gutenberg-Universitaet Mainz (Germany); Bayer, Eugen [Department for Digital Electronics, University Kassel (Germany); Kurz, Nikolaus; Traxler, Michael [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Michel, Jan [Institute for Nuclear Physics, Goethe University Frankfurt, Frankfurt am Main (Germany)

    2012-07-01

    A high resolution time-to-digital converter (TDC) was implemented in a general purpose field-programmable gate array (FPGA), a re-programmable digital chip. RMS and the time resolution of different channels are calculated for one clock cycle (5 ns) interval and a minimum of 10.3 ps RMS on two channels is achieved, which yields to a time resolution of 7.3 ps (10.3 ps/{radical}(2)) on a single channel. The TDC can be used in time-of-flight, time-over-threshold, drift time measurement applications as well as many other measurements with specific Front-End Electronics (FEE), e.g. charge measurements with charge-to-width (Q2W) FEE. The re-programmable flexibility of FPGAs also allows to have application specific features, e.g. trigger window, zero dead time etc.

  14. Early temporal short-term memory deficits in double transgenic APP/PS1 mice.

    Science.gov (United States)

    Lagadec, Saioa; Rotureau, Lolita; Hémar, Agnès; Macrez, Nathalie; Delcasso, Sebastien; Jeantet, Yannick; Cho, Yoon H

    2012-01-01

    We tested single APP (Tg2576) transgenic, PS1 (PS1dE9) transgenic, and double APP/PS1 transgenic mice at 3 and 6 months of age on the acquisition of a hippocampal-dependent operant "differential reinforcement of low rate schedule" (DRL) paradigm. In this task mice are required to wait for at least 10 seconds (DRL-10s) between 2 consecutive nose poke responses. Our data showed that while single APP and PS1 transgene expression did not affect DRL learning and performance, mice expressing double APP/PS1 transgenes were impaired in the acquisition of DRL-10s at 6 months, but not at 3 months of age. The same impaired double transgenic mice, however, were perfectly capable of normal acquisition of signaled DRL-10s (SDRL-10s) task, a hippocampal-independent task, wherein mice were required to emit responses when the end of the 10-second delay was signaled by a lighting of the chamber. The age-dependent and early deficits of APP/PS1 mice suggest that the appetitive DRL paradigm is sensitive to the amyloid pathology present in double APP/PS1 mice, and that this mouse line represents a good model with which to study the efficacy of therapeutic strategies against Alzheimer's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from...

  16. Topological Data Analysis of High-Resolution Temporal Rainfall

    Science.gov (United States)

    Carsteanu, Alin Andrei; Fernández Méndez, Félix; Vásquez Aguilar, Raciel

    2017-04-01

    This study applies topological data analysis (TDA) to the state space representations of high-resolution temporal rainfall intensity data from Iowa City (IIHR, U of Iowa). Using a sufficient embedding dimension, topological properties of the underlying manifold are depicted.

  17. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of sigma=18 ps and energy resolution Delta E/E=3.5%.

    Science.gov (United States)

    Vredenborg, Arno; Roeterdink, Wim G; Janssen, Maurice H M

    2008-06-01

    We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 microm) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to sigma=18 ps. We observed that our electron coincidence detector has a timing resolution better than sigma=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of DeltaE(FWHM)/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about Deltam(FWHM)/m=14150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to sigma=115 microm.

  18. Controllable optical demultiplexing using continuously tunable optical parametric delay at 160 Gbit/s with <0.1 ps resolution.

    Science.gov (United States)

    Wu, Xiaoxia; Nuccio, Scott; Yilmaz, Omer F; Wang, Jian; Bogoni, Antonella; Willner, Alan E

    2009-12-15

    We experimentally demonstrate the use of continuously tunable optical parametric delay at 160 Gbit/s, based on conversion/dispersion for demultiplexing a 160 Gbit/s signal to 40 Gbit/s. A 15.2 ns delay is shown for a 160 Gbit/s signal, with <0.1 ps resolution, achieved by inserting cascaded acousto-optic modulators after the pump laser for delay fine tuning.

  19. Temporal Properties of Chronic Cochlear Electrical Stimulation Determine Temporal Resolution of Neurons in Cat Inferior Colliculus

    National Research Council Canada - National Science Library

    Maike Vollmer; Russell L. Snyder; Patricia A. Leake; Ralph E. Beitel; Charlotte M. Moore; Stephen J. Rebscher

    1999-01-01

    .... We have developed an animal model of congenital deafness and investigated the effect of electrical stimulus frequency on the temporal resolution of central neurons in the developing auditory system of deaf cats...

  20. The TDCpix readout ASIC: A 75ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

    CERN Document Server

    Kluge, A; Bonacini, S; Jarron, P; Kaplon, J; Morel, M; Noy, M; Perktold, L; Poltorak, K

    2013-01-01

    The TDCpix is a novel pixel readout ASIC for the NA62 Gigatracker detector. NA62 is a new experiment being installed at the CERN Super Proton Synchrotron. Its Gigatracker detector shall provide on-beam tracking and time stamping of individual particles with a time resolution of 150 ps rms. It will consist of three tracking stations, each with one hybrid pixel sensor. The peak fl ow of particles crossing the detector modules reaches 1.27 MHz/mm 2 for a total rate of about 0.75 GHz. Ten TDCpix chips will be bump-bonded to every silicon pixel sensor. Each chip shall perform time stamping of 100 M particle hits per second with a detection ef fi ciency above 99% and a timing accuracy better than 200 ps rms for an overall three-station-setup time resolution of better than 150 ps. The TDCpix chip has been designed in a 130 nm CMOS technology. It will feature 45 40 square pixels of 300 300 μ m 2 and a complex End of Column peripheral region including an array of TDCs based on DLLs, four high speed serializers, a low...

  1. Large Area Field of View for Fast Temporal Resolution Astronomy

    Science.gov (United States)

    Covarrubias, Ricardo A.

    2018-01-01

    Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.

  2. Generating high-temporal and spatial resolution tir image data

    NARCIS (Netherlands)

    Herrero Huerta, M.; Lagüela, S.; Alfieri, S.M.; Menenti, M.; Lichti, D.; Weng, Q

    2017-01-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single

  3. Temporal and spatial resolution in transmission Raman spectroscopy.

    Science.gov (United States)

    Everall, Neil; Matousek, Pavel; MacLeod, Neil; Ronayne, Kate L; Clark, Ian P

    2010-01-01

    Picosecond time-resolved transmission Raman data were acquired for 1 mm thick powder samples of trans-stilbene, and a Monte Carlo model was developed that can successfully model the laser and Raman pulse profiles. Photon migration broadened the incident (approximately 1 ps) probe pulse by two orders of magnitude. As expected from previous studies of Raman photon migration in backscattering mode, the transmitted Raman pulse was broader than the transmitted laser pulse and took longer to propagate through the sample. The late-arriving photons followed tortuous flight paths in excess of 50 mm on traversing the 1 mm sample. The Monte Carlo code was also used to study the spatial resolution (lateral and depth) of steady-state transmission Raman spectroscopy in the diffusion regime by examining the distribution of Raman generation positions as a function of incident beam size, sample thickness, and transport length. It was predicted that the lateral resolution should worsen linearly with sample thickness (typically the resolution was about 50% of the sample thickness), and this is an inevitable consequence of operating in the diffusion regime. The lateral resolution was better at the sample surface (essentially determined by the probe beam diameter or the collection aperture) than for buried objects, but transmission sampling was shown to be biased towards the mid-point of thick samples. Time-resolved transmission experiments should improve the lateral resolution by preferentially detecting snake photons, subject to constraints of signal-to-noise ratio.

  4. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca

    CERN Document Server

    Nemallapudi, Mythra Varun; Lecoq, Paul; Auffray, Etiennette; Ferri, Alessandro; Gola, Alberto; Piemonte, Claudio

    2015-01-01

    The coincidence time resolution (CTR) becomes a key parameter of 511keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.4%Ca crystals. We compare the measurements performed at two separate test setups, i.e. at CERN and at FBK, showing that the obtained results agree within a few percent. We achieve a best CTR value of 85  ±  4 ps FWHM for 2  ×  2  ×  3 mm3 LSO:Ce codoped 0.4%Ca crystals, thus breaking the 100 ps barrier with scintillators similar to LSO:Ce or LYSO:Ce. We also demonstrate that a CTR of 140  ±  5 ps can be achieved for longer 2  ×  2  ×  20 mm3 crystals, which can readily be implemented in the current generation PET syst...

  5. Generating High-Temporal and Spatial Resolution TIR Image Data

    Science.gov (United States)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  6. GENERATING HIGH-TEMPORAL AND SPATIAL RESOLUTION TIR IMAGE DATA

    Directory of Open Access Journals (Sweden)

    M. Herrero-Huerta

    2017-09-01

    Full Text Available Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere collected by MODIS daily 1-km and Landsat – TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  7. Modular 125 ps resolution time interval digitizer for 10 MHz stop burst rates and 33 ms range

    Energy Technology Data Exchange (ETDEWEB)

    Turko, B.

    1978-01-01

    A high resolution multiple stop time interval digitizer is described. It is capable of resolving stop burst rates of up to 10 MHz with an incremental resolution of 125 ps within a range of 33 ms. The digitizer consists of five CAMAC modules and uses a standard CAMAC crate and controller. All the functions and ranges are completely computer controlled. Any two subsequent stop pulses in a burst can be resolved within 100 ns due to a new dual interpolation technique employed. The accuracy is maintained by a high stability 125 MHz reference clock. Up to 131 stop events can be stored in a 48-bit, 10 MHz derandomizing storage register before the digitizer overflows. The experimental data are also given.

  8. Effect of passive smoking on auditory temporal resolution in children.

    Science.gov (United States)

    Durante, Alessandra Spada; Massa, Beatriz; Pucci, Beatriz; Gudayol, Nicolly; Gameiro, Marcella; Lopes, Cristiane

    2017-06-01

    To determine the effect of passive smoking on auditory temporal resolution in primary school children, based on the hypothesis that individuals who are exposed to smoking exhibit impaired performance. Auditory temporal resolution was evaluated using the Gaps In Noise (GIN) test. Exposure to passive smoking was assessed by measuring nicotine metabolite (cotinine) excreted in the first urine of the day. The study included 90 children with mean age of 10.2 ± 0.1 years old from a public school in São Paulo. Participants were divided into two groups: a study group, comprising 45 children exposed to passive smoking (cotinine > 5 ng/mL); and a control group, constituting 45 children who were not exposed to passive smoking. All participants had normal audiometry and immittance test results. Statistically significant differences (p passive smoking had poorer performance both in terms of thresholds and correct responses percentage on auditory temporal resolution assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)

    2008-07-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  10. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  11. Temporal resolution deficits in patients with refractory complex partial seizures and mesial temporal sclerosis (MTS).

    Science.gov (United States)

    Aravindkumar, Rajasekaran; Shivashankar, N; Satishchandra, P; Sinha, Sanjib; Saini, J; Subbakrishna, D K

    2012-05-01

    We studied the temporal resolution ability in patients with refractory complex partial seizures and mesial temporal sclerosis (MTS) using Gaps-In-Noise (GIN) test in a prospective cross-sectional study. Thirteen patients with right MTS (age: 31±7.67 years; M:F=8:5) and 13 patients with left MTS (age: 25.76±8.26 years; M:F=9:4) having normal hearing and mini-mental state examination (MMSE) score of >23/30 were recruited. Fifty healthy volunteers (26.3±5.17 years; M:F=28:22) formed the control group. Gaps-In-Noise test demonstrated impaired temporal resolution: 69.2% of patients with right MTS (RMTS) and 76.9% of patients with left MTS (LMTS) had abnormal scores in the right ear for gap detection threshold (GDT) measure. Similarly, 53.8% of patients in the RMTS group and 76.9% of patients in the LMTS group had abnormal scores in the left ear. In percentage of correct identification (PCI), 46.1% of patients with RMTS and 69.2% of patients with LMTS had poorer scores in the right ear, whereas 46.1% of patients with RMTS and 61.5% of patients with LMTS had poorer scores in the left ear. Both patient groups, viz., RMTS and LMTS, demonstrated bilateral temporal resolution deficits. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Modeling the Nucleus Laminaris of the Barn Owl: Achieving 20 ps resolution on a 85MHz-Clocked Digital Device

    Directory of Open Access Journals (Sweden)

    Ralf eSalomon

    2012-02-01

    Full Text Available The nucleus laminaris of the barn owl auditory system is quite impressive, since its underlying time estimation is much better than the processing speed of the involved neurons. Since precise localization is also very important in many technical applications, this paper explores to what extent the main principles of the nucleus laminaris can be implemented in digital hardware. The first prototypical implementation yields a time resolution of about 20 ps, even though the chosen standard, lowcost device is clocked at only 85MHz, which leads to an internal duty cycle of approximately 12 ns. In addition, this paper also explores the utility of an advanced sampling scheme, known as unfolding-in-time. It turns out that with this sampling method, the prototyp can easily process input signals of up to 300MHz, which is almost four times higher than the sampling rate.

  13. Synthesis of rainfall time series in a high temporal resolution

    Science.gov (United States)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe

    2014-05-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  14. Effect of temporal resolution on the accuracy of ADCP measurements

    Science.gov (United States)

    Gonzalez-Castro, J. A.; Oberg, K.; Duncker, J.J.

    2004-01-01

    The application of acoustic Doppler current profilers (ADCP's) in river flow measurements is promoting a great deal of progress in hydrometry. ADCP's not only require shorter times to collect data than traditional current meters, but also allow streamflow measurements at sites where the use of conventional meters is either very expensive, unsafe, or simply not possible. Moreover, ADCP's seem to offer a means for collecting flow data with spatial and temporal resolutions that cannot be achieved with traditional current-meters. High-resolution data is essential to characterize the mean flow and turbulence structure of streams, which can in turn lead to a better understanding of the hydrodynamic and transport processes in rivers. However, to properly characterize the mean flow and turbulence intensities of stationary flows in natural turbulent boundary layers, velocities need to be sampled over a long-enough time span. The question then arises, how long should velocities be sampled in the flow field to achieve an adequate temporal resolution? Theoretically, since velocities cannot be sampled over an infinitely long time interval, the error due to finite integration time must be considered. This error can be estimated using the integral time scale. The integral time scale is not only a measure of the time interval over which a fluctuating function is correlated with itself but also a measure of the time span over which the function is dependent on itself. This time scale, however, is not a constant but varies spatially in the flow field. In this paper we present an analysis of the effect of the temporal resolution (sampling time span) on the accuracy of ADCP measurements based on the integral time scale. Single ping velocity profiles collected with frequencies of 1 Hz in the Chicago River at Columbus Drive using an uplooking 600 kHz ADCP are used in this analysis. The integral time scale at different depths is estimated based on the autocorrelation function of the

  15. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  16. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    Science.gov (United States)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  17. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  18. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications. PMID:23982053

  19. Multiplatform observations enabling albedo retrievals with high temporal resolution

    Science.gov (United States)

    Riihelä, Aku; Manninen, Terhikki; Key, Jeffrey; Sun, Qingsong; Sütterlin, Melanie; Lattanzio, Alessio; Schaaf, Crystal

    2017-04-01

    In this paper we show that combining observations from different polar orbiting satellite families (such as AVHRR and MODIS) is physically justifiable and technically feasible. Our proposed approach will lead to surface albedo retrievals at higher temporal resolution than the state of the art, with comparable or better accuracy. This study is carried out in the World Meteorological Organization (WMO) Sustained and coordinated processing of Environmental Satellite data for Climate Monitoring (SCOPE-CM) project SCM-02 (http://www.scope-cm.org/projects/scm-02/). Following a spectral homogenization of the Top-of-Atmosphere reflectances of bands 1 & 2 from AVHRR and MODIS, both observation datasets are atmospherically corrected with a coherent atmospheric profile and algorithm. The resulting surface reflectances are then fed into an inversion of the RossThick-LiSparse-Reciprocal surface bidirectional reflectance distribution function (BRDF) model. The results of the inversion (BRDF kernels) may then be integrated to estimate various surface albedo quantities. A key principle here is that the larger number of valid surface observations with multiple satellites allows us to invert the BRDF coefficients within a shorter time span, enabling the monitoring of relatively rapid surface phenomena such as snowmelt. The proposed multiplatform approach is expected to bring benefits in particular to the observation of the albedo of the polar regions, where persistent cloudiness and long atmospheric path lengths present challenges to satellite-based retrievals. Following a similar logic, the retrievals over tropical regions with high cloudiness should also benefit from the method. We present results from a demonstrator dataset of a global combined AVHRR-GAC and MODIS dataset covering the year 2010. The retrieved surface albedo is compared against quality-monitored in situ albedo observations from the Baseline Surface Radiation Network (BSRN). Additionally, the combined retrieval

  20. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  1. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  2. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Fu, F.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, X.; Wang, L.; Wang, X. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Wan, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-09-21

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10{sup −19} ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  3. Design and assessment of a 6 ps-resolution time-to-digital converter with 5 MGy gamma-dose tolerance for nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. [ESAT-MICAS Div., Katholieke Universiteit Leuven, B-3001 Heverlee (Belgium); SCK.CEN, Belgian Nuclear Research Centre, B-2400 Mol (Belgium); Leroux, P. [ESAT-MICAS Div., Katholieke Universiteit Leuven, B-3001 Heverlee (Belgium); ICT-RELIC Div., Katholieke Hogeschool Kempen, B-2440 Geel (Belgium); De Cock, W. [SCK.CEN, Belgian Nuclear Research Centre, B-2400 Mol (Belgium); Steyaert, M. [ESAT-MICAS Div., Katholieke Universiteit Leuven, B-3001 Heverlee (Belgium)

    2011-07-01

    Time-to-Digital Converters (TDCs) are key building blocks in time-based mixed-signal systems, used for the digitization of analog signals in time domain. A short survey on state-of-the-art TDCs is given. In order to realize a TDC with picosecond time resolution as well as multi MGy gamma-dose radiation tolerance, a novel multi-stage noise-shaping (MASH) delta-sigma ({Delta}{Sigma}) TDC structure is proposed. The converter, implemented in 0.13 {mu}m, achieves a time resolution of 5.6 ps and an ENOB of 11 bits, when the over sampling ratio (OSR) is 250. The TDC core consumes only 1.7 mW, and occupies an area of 0.11 mm{sup 2}. Owing to the usage of circuit level radiation hardened-by-design techniques, such as passive RC oscillators and constant-g{sub m} biasing, the TDC exhibits enhanced radiation tolerance. At a low dose rate of 1.2 kGy/h, the frequency of the counting clock in the TDC remains constant up to at least 160 kGy. Even after a total dose of 3.4 MGy at a high dose rate of 30 kGy/h, the TDC still achieves a time resolution of 10.5 ps with an OSR of 250. (authors)

  4. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentencesa)

    Science.gov (United States)

    Stilp, Christian E.; Goupell, Matthew J.

    2015-01-01

    Short-time spectral changes in the speech signal are important for understanding noise-vocoded sentences. These information-bearing acoustic changes, measured using cochlea-scaled entropy in cochlear implant simulations [CSECI; Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136–EL141; Stilp (2014). J. Acoust. Soc. Am. 135(3), 1518–1529], may offer better understanding of speech perception by cochlear implant (CI) users. However, perceptual importance of CSECI for normal-hearing listeners was tested at only one spectral resolution and one temporal resolution, limiting generalizability of results to CI users. Here, experiments investigated the importance of these informational changes for understanding noise-vocoded sentences at different spectral resolutions (4–24 spectral channels; Experiment 1), temporal resolutions (4–64 Hz cutoff for low-pass filters that extracted amplitude envelopes; Experiment 2), or when both parameters varied (6–12 channels, 8–32 Hz; Experiment 3). Sentence intelligibility was reduced more by replacing high-CSECI intervals with noise than replacing low-CSECI intervals, but only when sentences had sufficient spectral and/or temporal resolution. High-CSECI intervals were more important for speech understanding as spectral resolution worsened and temporal resolution improved. Trade-offs between CSECI and intermediate spectral and temporal resolutions were minimal. These results suggest that signal processing strategies that emphasize information-bearing acoustic changes in speech may improve speech perception for CI users. PMID:25698018

  5. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus

    2015-11-12

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  6. Emotional cues enhance the attentional effects on spatial and temporal resolution

    NARCIS (Netherlands)

    B.R. Bocanegra (Bruno); R. Zeelenberg (René)

    2011-01-01

    textabstractIn the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i. e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face

  7. Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution

    NARCIS (Netherlands)

    Wierda, Stefan M.; van Rijn, Hedderik; Taatgen, Niels A.; Martens, Sander

    2012-01-01

    The size of the human pupil increases as a function of mental effort. However, this response is slow, and therefore its use is thought to be limited to measurements of slow tasks or tasks in which meaningful events are temporally well separated. Here we show that high-temporal-resolution tracking of

  8. Temporal and spatial resolution of rainfall measurements required for urban hydrology

    NARCIS (Netherlands)

    Berne, A.D.; Delrieu, G.; Creutin, J.D.; Obled, C.

    2004-01-01

    The objective of the paper is to provide recommendations on the temporal and spatial resolution of rainfall measurements required for urban hydrological applications, based on quantitative investigations of the space-time scales of urban catchments and rainfall. First the temporal rainfall-runoff

  9. Association between temporal resolution and Specific Language Impairment: The role of nonsensory processing.

    Science.gov (United States)

    Alvarez, Waleska; Fuente, Adrian; Coloma, Carmen Julia; Quezada, Camilo

    2015-10-01

    Many authors have suggested that a perceptual auditory disorder involving temporal processing is the primary cause of Specific Language Impairment (SLI). The aim of this study was to compare the performance of children with and without SLI on a temporal processing task controlling for the confounding of verbal short-term memory and working memory. Thirty participants with SLI aged 6 years were selected, along with 30 age- and gender-matched participants with typical language development. The Adaptive Test of Temporal Resolution (ATTR) was used to evaluate temporal resolution ability (an aspect of temporal processing), and the digit span subtest of the Wechsler Intelligence Scale for Children was used to evaluate auditory short-term memory and working memory. The analysis of covariance showed that children with SLI performed significantly worse than children with typical language development on the temporal resolution task (ATTR), even when controlling for short-term memory and working memory. Statistically significant correlations between ATTR and digit span were found for the group of children with SLI but not for the children with typical language development. Children with SLI showed significantly worse temporal resolution ability than their peers with typical language development. Such differences cannot be attributed solely to the immediate memory deficit associated with SLI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. A 75 ps rms time resolution BiCMOS time to digital converter optimized for high rate imaging detectors

    CERN Document Server

    Hervé, C

    2002-01-01

    This paper presents an integrated time to digital converter (TDC) with a bin size adjustable in the range of 125 to 175 ps and a differential nonlinearity of +-0.3%. The TDC has four channels. Its architecture has been optimized for the readout of imaging detectors in use at Synchrotron Radiation facilities. In particular, a built-in logic flags piled-up events. Multi-hit patterns are also supported for other applications. Time measurements are extracted off chip at the maximum throughput of 40 MHz. The dynamic range is 14 bits. It has been fabricated in 0.8 mu m BiCMOS technology. Time critical inputs are PECL compatible whereas other signals are CMOS compatible. A second application specific integrated circuit (ASIC) has been developed which translates NIM electrical levels to PECL ones. Both circuits are used to assemble board level TDCs complying with industry standards like VME, NIM and PCI.

  11. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Francesco Pennacchio

    2017-07-01

    Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  12. Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R

    2014-01-22

    Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties.

  13. Modeling the Nucleus Laminaris of the Barn Owl: Achieving 20 ps Resolution on a 85-MHz-Clocked Digital Device.

    Science.gov (United States)

    Salomon, Ralf; Heinrich, Enrico; Joost, Ralf

    2012-01-01

    The nucleus laminaris of the barn owl auditory system is quite impressive, since its underlying time estimation is much better than the processing speed of the involved neurons. Since precise localization is also very important in many technical applications, this paper explores to what extent the main principles of the nucleus laminaris can be implemented in digital hardware. The first prototypical implementation yields a time resolution of about 20 ps, even though the chosen standard, low-cost device is clocked at only 85 MHz, which leads to an internal duty cycle of approximately 12 ns. In addition, this paper also explores the utility of an advanced sampling scheme, known as unfolding-in-time. It turns out that with this sampling method, the prototype can easily process input signals of up to 300 MHz, which is almost four times higher than the sampling rate.

  14. Ultrahigh temporal resolution of visual presentation using gaming monitors and G-Sync.

    Science.gov (United States)

    Poth, Christian H; Foerster, Rebecca M; Behler, Christian; Schwanecke, Ulrich; Schneider, Werner X; Botsch, Mario

    2018-02-01

    Vision unfolds as an intricate pattern of information processing over time. Studying vision and visual cognition therefore requires precise manipulations of the timing of visual stimulus presentation. Although standard computer display technologies offer great accuracy and precision of visual presentation, their temporal resolution is limited. This limitation stems from the fact that the presentation of rendered stimuli has to wait until the next refresh of the computer screen. We present a novel method for presenting visual stimuli with ultrahigh temporal resolution (visual presentation with external measurements by using a photodiode. Moreover, a psychophysical experiment revealed that the ultrahigh temporal resolution impacts on human visual performance. Specifically, observers' object recognition performance improved over fine-grained increases of object presentation duration in a theoretically predicted way. Taken together, the present study shows that the G-Sync-based presentation method enables researchers to investigate visual processes whose data patterns were concealed by the low temporal resolution of previous technologies. Therefore, this new presentation method may be a valuable tool for experimental psychologists and neuroscientists studying vision and its temporal characteristics.

  15. Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification

    Science.gov (United States)

    Gao, G.; Zhang, M.; Gu, Y.

    2017-05-01

    Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".

  16. Electrophysiological measures of temporal resolution, contrast sensitivity and spatial resolving power in sharks.

    Science.gov (United States)

    Ryan, Laura A; Hemmi, Jan M; Collin, Shaun P; Hart, Nathan S

    2017-03-01

    In most animals, vision plays an important role in detecting prey, predators and conspecifics. The effectiveness of vision in assessing cues such as motion and shape is influenced by the ability of the visual system to detect changes in contrast in both space and time. Understanding the role vision plays in shark behaviour has been limited by a lack of knowledge about their temporal resolution, contrast sensitivity and spatial resolution. In this study, an electrophysiological approach was used to compare these measures across five species of sharks: Chiloscyllium punctatum, Heterodontus portusjacksoni, Hemiscyllium ocellatum, Mustelus mustelus and Haploblepharus edwardsii. All shark species were highly sensitive to brightness contrast and were able to detect contrast differences as low as 1.6%. Temporal resolution of flickering stimuli ranged from 28 to 44 Hz. Species that inhabit brighter environments were found to have higher temporal resolution. Spatial resolving power was estimated in C. punctatum, H. portusjacksoni and H. ocellatum and ranged from 0.10 to 0.35 cycles per degree, which is relatively low compared to other vertebrates. These results suggest that sharks have retinal adaptations that enhance contrast sensitivity at the expense of temporal and spatial resolution, which is beneficial for vision in dimly lit and/or low contrast aquatic environments.

  17. On the creation of high spatial resolution imaging spectroscopy data from multi-temporal low spatial resolution imagery

    Science.gov (United States)

    Yao, Wei; van Aardt, Jan; Messinger, David

    2017-05-01

    The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel

  18. Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution

    CERN Document Server

    Valdano, Eugenio; Colizza, Vittoria

    2015-01-01

    The epidemic threshold of a spreading process indicates the condition for the occurrence of the wide spreading regime, thus representing a predictor of the network vulnerability to the epidemic. Such threshold depends on the natural history of the disease and on the pattern of contacts of the network with its time variation. Based on the theoretical framework introduced in (Valdano et al. PRX 2015) for a susceptible-infectious-susceptible model, we formulate here an infection propagator approach to compute the epidemic threshold accounting for more realistic effects regarding a varying force of infection per contact, the presence of immunity, and a limited time resolution of the temporal network. We apply the approach to two temporal network models and an empirical dataset of school contacts. We find that permanent or temporary immunity do not affect the estimation of the epidemic threshold through the infection propagator approach. Comparisons with numerical results show the good agreement of the analytical ...

  19. PET investigation of a fluidized particle : spatial and temporal resolution and short term motion

    NARCIS (Netherlands)

    Hoffmann, AC; Dechsiri, C; van de Wiel, F; Dehling, HG

    The motion of a single particle in a fluidized bed has been followed with high temporal and spatial resolution using an ECAT EXACT HR+ PET camera. An account is given of the analysis of the output from the camera, and the calculation of the particle position. The particle position was determined

  20. Impact of rainfall temporal resolution on urban water quality modelling performance and uncertainties.

    Science.gov (United States)

    Manz, Bastian Johann; Rodríguez, Juan Pablo; Maksimović, Cedo; McIntyre, Neil

    2013-01-01

    A key control on the response of an urban drainage model is how well the observed rainfall records represent the real rainfall variability. Particularly in urban catchments with fast response flow regimes, the selection of temporal resolution in rainfall data collection is critical. Furthermore, the impact of the rainfall variability on the model response is amplified for water quality estimates, as uncertainty in rainfall intensity affects both the rainfall-runoff and pollutant wash-off sub-models, thus compounding uncertainties. A modelling study was designed to investigate the impact of altering rainfall temporal resolution on the magnitude and behaviour of uncertainties associated with the hydrological modelling compared with water quality modelling. The case study was an 85-ha combined sewer sub-catchment in Bogotá (Colombia). Water quality estimates showed greater sensitivity to the inter-event variability in rainfall hyetograph characteristics than to changes in the rainfall input temporal resolution. Overall, uncertainties from the water quality model were two- to five-fold those of the hydrological model. However, owing to the intrinsic scarcity of observations in urban water quality modelling, total model output uncertainties, especially from the water quality model, were too large to make recommendations for particular model structures or parameter values with respect to rainfall temporal resolution.

  1. Erythrocyte orientation and lung conductivity analysis with a high temporal resolution FEM model for bioimpedance measurements

    NARCIS (Netherlands)

    Ulbrich, M.; Paluchowski, P.; Muehlsteff, J.; Leonhardt, S.

    2012-01-01

    Impedance cardiography (ICG) is a simple and cheap method to acquirehemodynamic parameters. In this work, the influence of three dynamic physiological sources has been analyzed using a model of the humanthorax with a high temporal resolution. Therefore, simulations havebeen conducted using the

  2. An advection-based model to increase the temporal resolution of PIV time series

    NARCIS (Netherlands)

    Scarano, F.; Moore, P.

    2012-01-01

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor’s hypothesis of frozen turbulence. In the present work, the advection

  3. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  4. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites

    Science.gov (United States)

    Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.

    2016-12-01

    Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring

  6. Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus.

    Science.gov (United States)

    Schneider, E; Hennig, R M

    2012-03-01

    A behavioural gap detection paradigm was used to determine the temporal resolution for song patterns by female crickets, Gryllus bimaculatus. For stimuli with a modulation depth of 100% the critical gap duration was 6-8 ms. A reduction of the modulation depth of gaps to 50% led either to an increase or a decrease of the critical gap duration. In the latter case, the critical gap duration dropped to 3-4 ms indicating a higher sensitivity of auditory processing. The response curve for variation of pulse period was not limited by temporal resolution. However, the reduced response to stimuli with a high duty cycle, and thus short pause durations, was in accordance with the limits of temporal resolution. The critical duration of masking pulses inserted into pauses was 4-6 ms. An analysis of the songs of males revealed that gaps (5.8 ms) and masking pulses (6.9 ms) were at detectable time scales for the auditory pathway of female crickets. However, most of the observed temporal variation of song patterns was tolerated by females. Critical cues such as pulse period and pulse duty cycle provided little basis for inter-individual selection by females.

  7. Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution

    OpenAIRE

    Meng, Yunlong; Lin, Wei; Li, Chenglin; Chen, Shih-chi

    2017-01-01

    We present a new two-snapshot structured light illumination (SLI) reconstruction algorithm for fast image acquisition. The new algorithm, which only requires two mutually {\\pi} phase-shifted raw structured images, is implemented on a custom-built temporal focusing fluorescence microscope (TFFM) to enhance its axial resolution via a digital micromirror device (DMD). First, the orientation of the modulated sinusoidal fringe patterns is automatically identified via spatial frequency vector detec...

  8. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  9. Temporal Resolution Ability in Students with Dyslexia and Reading and Writing Disorders

    Directory of Open Access Journals (Sweden)

    Chaubet, Juliana

    2014-01-01

    Full Text Available Introduction The Gaps-in-Noise (GIN test assesses the hearing ability of temporal resolution. The development of this ability can be considered essential for learning how to read. Objective Identify temporal resolution in individuals diagnosed with reading and writing disorders compared with subjects with dyslexia. Methods A sample of 26 subjects of both genders, age 10 to 15 years, included 11 diagnosed with dyslexia and 15 diagnosed with reading and writing disorders. Subjects did not display otologic, neurologic, and/or cognitive diseases. A control group of 30 normal-hearing subjects was formed to compare thresholds and percentages obtained from the GIN test. The responses were obtained considering two measures of analysis: the threshold gap and the percentage of correct gap. Results The threshold was lower in the GIN for the typical group than for the other groups. There was no difference between groups with dyslexia and with reading and writing disorders. The GIN results of the typical group revealed a higher percentage of correct answer than in the other groups. No difference was obtained between the groups with dyslexia and with reading and writing disorders. Conclusion The GIN test identified a difficulty in auditory ability of temporal resolution in individuals with reading and writing disorders and in individuals with dyslexia in a similar way.

  10. Temporal resolution ability in students with dyslexia and reading and writing disorders.

    Science.gov (United States)

    Chaubet, Juliana; Pereira, Liliane; Perez, Ana Paula

    2014-04-01

    Introduction The Gaps-in-Noise (GIN) test assesses the hearing ability of temporal resolution. The development of this ability can be considered essential for learning how to read. Objective Identify temporal resolution in individuals diagnosed with reading and writing disorders compared with subjects with dyslexia. Methods A sample of 26 subjects of both genders, age 10 to 15 years, included 11 diagnosed with dyslexia and 15 diagnosed with reading and writing disorders. Subjects did not display otologic, neurologic, and/or cognitive diseases. A control group of 30 normal-hearing subjects was formed to compare thresholds and percentages obtained from the GIN test. The responses were obtained considering two measures of analysis: the threshold gap and the percentage of correct gap. Results The threshold was lower in the GIN for the typical group than for the other groups. There was no difference between groups with dyslexia and with reading and writing disorders. The GIN results of the typical group revealed a higher percentage of correct answer than in the other groups. No difference was obtained between the groups with dyslexia and with reading and writing disorders. Conclusion The GIN test identified a difficulty in auditory ability of temporal resolution in individuals with reading and writing disorders and in individuals with dyslexia in a similar way.

  11. High-resolution fine mapping of ps-2, a mutated gene conferring functional male sterility in tomato due to non-dehiscent anthers

    NARCIS (Netherlands)

    Gorguet, B.J.M.; Schipper, E.H.; Heusden, van A.W.; Lindhout, P.

    2006-01-01

    Functional male sterility is an important trait for the production of hybrid seeds. Among the genes coding for functional male sterility in tomato is the positional sterility gene ps-2. ps-2 is monogenic recessive, confers non-dehiscent anthers and is the most suitable for practical uses. In order

  12. Temporal Resolution of the Normal Ear in Listeners with Unilateral Hearing Impairment.

    Science.gov (United States)

    Mishra, Srikanta K; Dey, Ratul; Davessar, Jai Lal

    2015-12-01

    Unilateral hearing loss (UHL) leads to an imbalanced input to the brain and results in cortical reorganization. In listeners with unilateral impairments, while the perceptual deficits associated with the impaired ear are well documented, less is known regarding the auditory processing in the unimpaired, clinically normal ear. It is commonly accepted that perceptual consequences are unlikely to occur in the normal ear for listeners with UHL. This study investigated whether the temporal resolution in the normal-hearing (NH) ear of listeners with long-standing UHL is similar to those in listeners with NH. Temporal resolution was assayed via measuring gap detection thresholds (GDTs) in within- and between-channel paradigms. GDTs were assessed in the normal ear of adults with long-standing, severe-to-profound UHL (N = 13) and age-matched, NH listeners (N = 22) at two presentation levels (30 and 55 dB sensation level). Analysis indicated that within-channel GDTs for listeners with UHL were not significantly different than those for the NH subject group, but the between-channel GDTs for listeners with UHL were poorer (by greater than a factor of 2) than those for the listeners with NH. The hearing thresholds in the normal or impaired ears were not associated with the elevated between-channel GDTs for listeners with UHL. Contrary to the common assumption that auditory processing capabilities are preserved for the normal ear in listeners with UHL, the current study demonstrated that a long-standing unilateral hearing impairment may adversely affect auditory perception--temporal resolution--in the clinically normal ear. From a translational perspective, these findings imply that the temporal processing deficits in the unimpaired ear of listeners with unilateral hearing impairments may contribute to their overall auditory perceptual difficulties.

  13. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    Science.gov (United States)

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites

  14. High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data.

    Science.gov (United States)

    Huang, Tom; Elghafari, Anas; Relia, Kunal; Chunara, Rumi

    2017-11-01

    Understanding tobacco- and alcohol-related behavioral patterns is critical for uncovering risk factors and potentially designing targeted social computing intervention systems. Given that we make choices multiple times per day, hourly and daily patterns are critical for better understanding behaviors. Here, we combine natural language processing, machine learning and time series analyses to assess Twitter activity specifically related to alcohol and tobacco consumption and their sub-daily, daily and weekly cycles. Twitter self-reports of alcohol and tobacco use are compared to other data streams available at similar temporal resolution. We assess if discussion of drinking by inferred underage versus legal age people or discussion of use of different types of tobacco products can be differentiated using these temporal patterns. We find that time and frequency domain representations of behaviors on social media can provide meaningful and unique insights, and we discuss the types of behaviors for which the approach may be most useful.

  15. An approach for generating synthetic fine temporal resolution solar radiation time series from hourly gridded datasets

    Directory of Open Access Journals (Sweden)

    Matthew Perry

    2017-06-01

    Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.

  16. Determination of Destructed and Infracted Forest Areas with Multi-temporal High Resolution Satellite Images

    Science.gov (United States)

    Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.

    2015-12-01

    Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of

  17. Impact of laser phase and amplitude noises on streak camera temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Wlotzko, V., E-mail: wlotzko@optronis.com [ICube, UMR 7357, University of Strasbourg and CNRS, 23 rue du Loess, 67037 Strasbourg (France); Optronis GmbH, Ludwigstrasse 2, 77694 Kehl (Germany); Uhring, W. [ICube, UMR 7357, University of Strasbourg and CNRS, 23 rue du Loess, 67037 Strasbourg (France); Summ, P. [Optronis GmbH, Ludwigstrasse 2, 77694 Kehl (Germany)

    2015-09-15

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement with a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.

  18. Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing

    Science.gov (United States)

    Tal, Eran; Oron, Dan; Silberberg, Yaron

    2005-07-01

    By introducing spatiotemporal pulse shaping techniques to multiphoton microscopy it is possible to obtain video-rate images with depth resolution similar to point-by-point scanning multiphoton microscopy while mechanically scanning in only one dimension. This is achieved by temporal focusing of the illumination pulse: The pulsed excitation field is compressed as it propagates through the sample, reaching its shortest duration (and highest peak intensity) at the focal plane before stretching again beyond it. This method is applied to produce, in a simple and scalable setup, video-rate two-photon excitation fluorescence images of Drosophila egg chambers with nearly 100,000 effective pixels and 1.5 μm depth resolution.

  19. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics.

    Directory of Open Access Journals (Sweden)

    Jan Sedlacik

    Full Text Available The purpose of this work was to demonstrate the capability of magnetic particle imaging (MPI to assess the hemodynamics in a realistic 3D aneurysm model obtained by additive manufacturing. MPI was compared with magnetic resonance imaging (MRI and dynamic digital subtraction angiography (DSA.The aneurysm model was of saccular morphology (7 mm dome height, 5 mm cross-section, 3-4 mm neck, 3.5 mm parent artery diameter and connected to a peristaltic pump delivering a physiological flow (250 mL/min and pulsation rate (70/min. High-resolution (4 h long 4D phase contrast flow quantification (4D pc-fq MRI was used to directly assess the hemodynamics of the model. Dynamic MPI, MRI, and DSA were performed with contrast agent injections (3 mL volume in 3 s through a proximally placed catheter.4D pc-fq measurements showed distinct pulsatile flow velocities (20-80 cm/s as well as lower flow velocities and a vortex inside the aneurysm. All three dynamic methods (MPI, MRI, and DSA also showed a clear pulsation pattern as well as delayed contrast agent dynamics within the aneurysm, which is most likely caused by the vortex within the aneurysm. Due to the high temporal resolution of MPI and DSA, it was possible to track the contrast agent bolus through the model and to estimate the average flow velocity (about 60 cm/s, which is in accordance with the 4D pc-fq measurements.The ionizing radiation free, 4D high resolution MPI method is a very promising tool for imaging and characterization of hemodynamics in human. It carries the possibility of overcoming certain disadvantages of other modalities like considerably lower temporal resolution of dynamic MRI and limited 2D characteristics of DSA. Furthermore, additive manufacturing is the key for translating powerful pre-clinical techniques into the clinic.

  20. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  1. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  2. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    Directory of Open Access Journals (Sweden)

    Stuart Batterman

    2015-04-01

    Full Text Available Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information.

  3. Echoic Memory: Investigation of Its Temporal Resolution by Auditory Offset Cortical Responses

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms. PMID:25170608

  4. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  5. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Science.gov (United States)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  6. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-07-15

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  7. An advection-based model to increase the temporal resolution of PIV time series

    Energy Technology Data Exchange (ETDEWEB)

    Scarano, Fulvio; Moore, Peter [TU Delft, Aerospace Engineering Department, Delft (Netherlands)

    2012-04-15

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence. In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence, where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time. An additional favorable effect is observed by the analysis in the

  8. An advection-based model to increase the temporal resolution of PIV time series.

    Science.gov (United States)

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence. In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence, where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time. An additional favorable effect is observed by the analysis in the frequency

  9. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    Science.gov (United States)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  10. An assessment of SEVIRI imagery at different temporal resolutions and the effect on accurate dust emission mapping

    Science.gov (United States)

    Hennen, Mark; White, Kevin; Shahgedanova, Maria

    2017-04-01

    This paper compares Dust RGB products derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data at 15 minute, 30 minute and hourly temporal resolutions. From January 2006 to December 2006, observations of dust emission point sources were observed at each temporal resolution across the entire Middle East region (38.50N; 30.00E - 10.00N; 65.50E). Previous work has demonstrated that 15-minute resolution SEVIRI data can be used to map dust sources across the Sahara by observing dust storms back through sequential images to the point of first emission (Schepanski et al., 2007; 2009; 2012). These observations have improved upon lower resolution maps, based on daily retrievals of aerosol optical depth (AOD), whose maxima can be biased by prevalent transport routes, not necessarily coinciding with sources of emissions. Based on the thermal contrast of atmospheric dust to the surface, brightness temperature differences (BTD's) in the thermal infrared (TIR) wavelengths (8.7, 10.8 and 12.0 µm) highlight dust in the scene irrespective of solar illumination, giving both increased accuracy of dust source areas and a greater understanding of diurnal emission behaviour. However, the highest temporal resolution available (15-minute repeat capture) produces 96 images per day, resulting in significantly higher data storage demands than 30 minute or hourly data. To aid future research planning, this paper investigates what effect lowering the temporal resolution has on the number and spatial distribution of the observed dust sources. The results show a reduction in number of dust emission events observed with each step decrease in temporal resolution, reducing by 17% for 30-minute resolution and 50% for hourly. These differences change seasonally, with the highest reduction observed in summer (34% and 64% reduction respectively). Each resolution shows a similar spatial distribution, with the biggest difference seen near the coastlines, where near-shore convective

  11. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays.

    Science.gov (United States)

    Zhang, Bo; Heien, Michael L A V; Santillo, Michael F; Mellander, Lisa; Ewing, Andrew G

    2011-01-15

    Carbon-fiber-microelectrode arrays (MEAs) have been utilized to electrochemically image neurochemical secretion from individual pheochromocytoma (PC12) cells. Dopamine release events were electrochemically monitored from seven different locations on single PC12 cells using alternately constant-potential amperometry and fast-scan cyclic voltammetry (FSCV). Cyclic voltammetry, when compared to amperometry, can provide excellent chemical resolution; however, spatial and temporal resolution are both compromised. The spatial and temporal resolution of these two methods have been quantitatively compared and the differences explained using models of molecular diffusion at the nanogap between the electrode and the cell. A numerical simulation of the molecular flux reveals that the diffusion of dopamine molecules and electrochemical reactions both play important roles in the temporal resolution of electrochemical imaging. The simulation also reveals that the diffusion and electrode potential cause the differences in signal crosstalk between electrodes when comparing amperometry and FSCV.

  12. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  13. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  14. Explore spatial-temporal relations: transient super-resolution with PMD sensors

    Science.gov (United States)

    Han, Chaosheng; Lin, Xing; Lin, Jingyu; Yan, Chenggang; Dai, Qionghai

    2014-11-01

    Transient imaging provides a direct view of how light travel in the scene, which leads to exciting applications such as looking around corners. Low-budget transient imagers, adapted from Time-of-Fight (ToF) cameras, reduce the barrier of entry for performing research of this new imaging modality. However, the image quality is far from satisfactory due to the limited resolution of PMD sensors. In this paper, we improve the resolution of transient images by modulating the illumination. We capture the scene under three linearly independent lighting conditions, and derive a theoretical model for the relationship between the time-profile and the corresponding 3D details of each pixel. Our key idea is that the light flight time in each pixel patch is proportional to the cross product of the illuminating direction and the surface normal. First we capture and reconstruct transient images by Fourier analysis at multiple illumination locations, and then fuse the data of acquired low-spatial resolution images to calculate the surface normal. Afterwards, we use an optimization procedure to split the pixels and finally enhance the image quality. We show that we can not only reveal the fine structure of the object but may also uncover the reflectance properties of different materials. We hope the idea of utilizing spatial-temporal relations will give new insights to the research and applications of transient imaging.

  15. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Apfaltrer, Paul, E-mail: paul.apfaltrer@medma.uni-heidelberg.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoendube, Harald, E-mail: harald.schoendube@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Allmendinger, Thomas, E-mail: thomas.allmendinger@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Tricarico, Francesco, E-mail: francescotricarico82@gmail.com [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Department of Bioimaging and Radiological Sciences, Catholic University of the Sacred Heart, “A. Gemelli” Hospital, Largo A. Gemelli 8, Rome (Italy); Schindler, Andreas, E-mail: andreas.schindler@campus.lmu.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Vogt, Sebastian, E-mail: sebastian.vogt@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Sunnegårdh, Johan, E-mail: johan.sunnegardh@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); and others

    2013-02-15

    Objective: To evaluate the effect of a temporal resolution improvement method (TRIM) for cardiac CT on diagnostic image quality for coronary artery assessment. Materials and methods: The TRIM-algorithm employs an iterative approach to reconstruct images from less than 180° of projections and uses a histogram constraint to prevent the occurrence of limited-angle artifacts. This algorithm was applied in 11 obese patients (7 men, 67.2 ± 9.8 years) who had undergone second generation dual-source cardiac CT with 120 kV, 175–426 mAs, and 500 ms gantry rotation. All data were reconstructed with a temporal resolution of 250 ms using traditional filtered-back projection (FBP) and of 200 ms using the TRIM-algorithm. Contrast attenuation and contrast-to-noise-ratio (CNR) were measured in the ascending aorta. The presence and severity of coronary motion artifacts was rated on a 4-point Likert scale. Results: All scans were considered of diagnostic quality. Mean BMI was 36 ± 3.6 kg/m{sup 2}. Average heart rate was 60 ± 9 bpm. Mean effective dose was 13.5 ± 4.6 mSv. When comparing FBP- and TRIM reconstructed series, the attenuation within the ascending aorta (392 ± 70.7 vs. 396.8 ± 70.1 HU, p > 0.05) and CNR (13.2 ± 3.2 vs. 11.7 ± 3.1, p > 0.05) were not significantly different. A total of 110 coronary segments were evaluated. All studies were deemed diagnostic; however, there was a significant (p < 0.05) difference in the severity score distribution of coronary motion artifacts between FBP (median = 2.5) and TRIM (median = 2.0) reconstructions. Conclusion: The algorithm evaluated here delivers diagnostic imaging quality of the coronary arteries despite 500 ms gantry rotation. Possible applications include improvement of cardiac imaging on slower gantry rotation systems or mitigation of the trade-off between temporal resolution and CNR in obese patients.

  16. Examining Spatio-Temporal Intensity-Frequency Variations in Extreme Monsoon Rainfall using High Resolution Data

    Science.gov (United States)

    Devak, M.; Rajendran, V.; C T, D.

    2015-12-01

    The study of extreme events has gained the attention of hydrologists in recent times. Though these events are rare, the effects are catastrophic. It is reported that the frequency of the occurrence of these events has increased in recent decades, and is attributed to the recent revelation of climate change. Numerous studies have pointed out significant changes in extremely heavy precipitation over India, using coarse resolution data. Though there are disagreements in the results and its spatial uniformity, all these studies emphasize the need of fine resolution analysis. Fine resolution analysis is necessary mainly due to the highly heterogeneous characteristics of Indian monsoon, and for the proper employment in flood hazard preparedness and water resources management. The present study aims to analyse the spatio-temporal variation and trends in the intensity and frequency of heavy precipitation during Indian monsoon using 0.25°×0.25° resolution gridded data for a period of 113 years (1901-2013). The exceedance threshold is fixed at 90th percentile of rainfall over 113 years and parameters are defined accordingly. The maximum intensity of each extreme rainfall episode of 30 year moving window has been modelled using Peak Over Threshold based Extreme Value Theory to compute return level (considered for intensity). In addition, the number of such episodes in a particular year has been termed as frequency. Non-parametric Mann-Kendall test has been carried out for both intensity and frequency, to compute the statistical trend. In addition, moving block bootstrap approach has been used to incorporate the serial correlation. The significance of the trend has been evaluated at different significance levels and finally, change in trend over last century has been examined.

  17. Geo-statistical model of Rainfall erosivity by using high temporal resolution precipitation data in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2015-04-01

    Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error

  18. Spatiotemporal neurodynamics underlying internally and externally driven temporal prediction: a high spatial resolution ERP study.

    Science.gov (United States)

    Mento, Giovanni; Tarantino, Vincenza; Vallesi, Antonino; Bisiacchi, Patrizia Silvia

    2015-03-01

    Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively.

  19. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of

  20. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  1. Monitoring with high temporal resolution to search for optical transients in the wide field

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Ivanov, Evgeny; Karpov, Sergey; Katkova, Elena; Pozanenko, Alexei; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Greco, Giuseppe; Molinari, Emilio; Covino, Stefano

    2008-02-01

    In order to detect and investigate short stochastic optical flares from a number of variable astrophysical objects (GRBs, SNs, flare stars, CVs, X-Ray binaries) of unknown localizations as well as near-earth objects (NEOs), both natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we describe the design of a system able to perform such a task, which consists of a wide-field camera with high time resolution able to detect and classify the transient events on a subsecond time scale, and a fast robotic telescope aimed to perform their detailed investigation. In a last few years we've created the prototype FAVOR wide-field camera, placed at North Caucasus near Russian 6-m telescope, and a complete two-telescope complex TORTOREM, combining TORTORA wide-field camera with REM robotic telescope and placed at La Silla ESO observatory. Its technical parameters and first results of operation are described.

  2. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  3. Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing

    Directory of Open Access Journals (Sweden)

    Andrew J. Oxenham

    2014-09-01

    Full Text Available Under normal conditions, human speech is remarkably robust to degradation by noise and other distortions. However, people with hearing loss, including those with cochlear implants, often experience great difficulty in understanding speech in noisy environments. Recent work with normal-hearing listeners has shown that the amplitude fluctuations inherent in noise contribute strongly to the masking of speech. In contrast, this study shows that speech perception via a cochlear implant is unaffected by the inherent temporal fluctuations of noise. This qualitative difference between acoustic and electric auditory perception does not seem to be due to differences in underlying temporal acuity but can instead be explained by the poorer spectral resolution of cochlear implants, relative to the normally functioning ear, which leads to an effective smoothing of the inherent temporal-envelope fluctuations of noise. The outcome suggests an unexpected trade-off between the detrimental effects of poorer spectral resolution and the beneficial effects of a smoother noise temporal envelope. This trade-off provides an explanation for the long-standing puzzle of why strong correlations between speech understanding and spectral resolution have remained elusive. The results also provide a potential explanation for why cochlear-implant users and hearing-impaired listeners exhibit reduced or absent masking release when large and relatively slow temporal fluctuations are introduced in noise maskers. The multitone maskers used here may provide an effective new diagnostic tool for assessing functional hearing loss and reduced spectral resolution.

  4. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.

    Science.gov (United States)

    Oxenham, Andrew J; Kreft, Heather A

    2014-10-13

    Under normal conditions, human speech is remarkably robust to degradation by noise and other distortions. However, people with hearing loss, including those with cochlear implants, often experience great difficulty in understanding speech in noisy environments. Recent work with normal-hearing listeners has shown that the amplitude fluctuations inherent in noise contribute strongly to the masking of speech. In contrast, this study shows that speech perception via a cochlear implant is unaffected by the inherent temporal fluctuations of noise. This qualitative difference between acoustic and electric auditory perception does not seem to be due to differences in underlying temporal acuity but can instead be explained by the poorer spectral resolution of cochlear implants, relative to the normally functioning ear, which leads to an effective smoothing of the inherent temporal-envelope fluctuations of noise. The outcome suggests an unexpected trade-off between the detrimental effects of poorer spectral resolution and the beneficial effects of a smoother noise temporal envelope. This trade-off provides an explanation for the long-standing puzzle of why strong correlations between speech understanding and spectral resolution have remained elusive. The results also provide a potential explanation for why cochlear-implant users and hearing-impaired listeners exhibit reduced or absent masking release when large and relatively slow temporal fluctuations are introduced in noise maskers. The multitone maskers used here may provide an effective new diagnostic tool for assessing functional hearing loss and reduced spectral resolution. © The Author(s) 2014.

  5. Small-size meshless 50 ps streak tube

    Science.gov (United States)

    Ageeva, N. V.; Andreev, S. V.; Belolipetski, V. S.; Bryukhnevich, G. I.; Greenfield, D. E.; Ivanova, S. R.; Kaverin, A. M.; Khohlova, A. N.; Kuz'menko, E. A.; Levina, G. P.; Makushina, V. A.; Monastyrskiy, M. A.; Schelev, M. Ya.; Semichastnova, Z. M.; Serdyuchenko, Yu. N.; Skaballanovich, T. A.; Sokolov, V. E.

    2008-11-01

    In contrast to the conventional image intensifier with large work area, a streak image tube should possess additional important feature - the comparatively small temporal distortion at the entire work area of the photocathode. With this additional engineering restriction taken into account, a novel small-size meshless streak image tube has been developed by means of numerical optimization. The tube with 25-mm wide work area contains a pair of deflection plates to sweep the electron image along the 25 mm output phosphor screen that is separated by 100 mm from the photocathode. The electron image can be shuttered with a 300 V blanking electric pulse. Electron-optical magnification of the tube is unit; spatial resolution reaches 30 lp/mm over the entire photocathode work area; temporal resolution lies in the 20 - 50 ps range, depending on the accelerating voltage (6 - 15 kV).

  6. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  7. Estimation of crops biomass and evapotranspiration from high spatial and temporal resolutions remote sensing data

    Science.gov (United States)

    Claverie, Martin; Demarez, Valérie; Duchemin, Benoît.; Ceschia, Eric; Hagolle, Olivier; Ducrot, Danielle; Keravec, Pascal; Beziat, Pierre; Dedieu, Pierre

    2010-05-01

    Carbon and water cycles are closely related to agricultural activities. Agriculture has been indeed identified by IPCC 2007 report as one of the options to sequester carbon in soil. Concerning the water resources, their consumptions by irrigated crops are called into question in view of demographic pressure. In the prospect of an assessment of carbon production and water consumption, the use of crop models at a regional scale is a challenging issue. The recent availability of high spatial resolution (10 m) optical sensors associated to high temporal resolution (1 day) such as FORMOSAT-2 and, in the future, Venµs and SENTINEL-2 will offer new perspectives for agricultural monitoring. In this context, the objective of this work is to show how multi-temporal satellite observations acquired at high spatial resolution are useful for a regional monitoring of following crops biophysical variables: leaf area index (LAI), aboveground biomass (AGB) and evapotranspiration (ET). This study focuses on three summer crops dominant in South-West of France: maize, sunflower and soybean. A unique images data set (82 FORMOSAT-2 images over four consecutive years, 2006-2009) was acquired for this project. The experimental data set includes LAI and AGB measurements over eight agricultural fields. Two fields were intensively monitored where ET flux were measured with a 30 minutes time step using eddy correlation methods. The modelisation approach is based on FAO-56 method coupled with a vegetation functioning model based on Monteith theory: the SAFY model [5]. The model operates at a daily time step model to provide estimates of plant characteristics (LAI, AGB), soil conditions (soil water content) and water use (ET). As a key linking variable, LAI is deduced from FORMOSAT-2 reflectances images, and then introduced into the SAFY model to provide spatial and temporal estimates of these biophysical variables. Most of the SAFY parameters are crop related and have been fixed according to

  8. Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools.

    Science.gov (United States)

    O'Reilly, Christian; Nielsen, Tore

    2015-01-01

    Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: (1) that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; (2) because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; (3) reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew's correlation coefficient, F1-score, or Cohen's κ is necessary for adequate evaluation; (4) reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; (5) performance differences between tested automated detectors were found to be similar to those between available expert scorings; (6) much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldomly posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment.

  9. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    Science.gov (United States)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.

  10. High temporal resolution tracing of xylem CO2 transport in oak trees

    Science.gov (United States)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  11. Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution.

    Science.gov (United States)

    Meng, Yunlong; Lin, Wei; Li, Chenglin; Chen, Shih-Chi

    2017-09-18

    We present a new two-snapshot structured light illumination (SLI) reconstruction algorithm for fast image acquisition. The new algorithm, which only requires two mutually π phase-shifted raw structured images, is implemented on a custom-built temporal focusing fluorescence microscope (TFFM) to enhance its axial resolution via a digital micromirror device (DMD). First, the orientation of the modulated sinusoidal fringe patterns is automatically identified via spatial frequency vector detection. Subsequently, the modulated in-focal-plane images are obtained via rotation and subtraction. Lastly, a parallel amplitude demodulation method, derived based on Hilbert transform, is applied to complete the decoding processes. To demonstrate the new SLI algorithm, a TFFM is custom-constructed, where a DMD replaces the generic blazed grating in the system and simultaneously functions as a diffraction grating and a programmable binary mask, generating arbitrary fringe patterns. The experimental results show promising depth-discrimination capability with an axial resolution enhancement factor of 1.25, which matches well with the theoretical estimation, i.e, 1.27. Imaging experiments on pollen grain and mouse kidney samples have been performed. The results indicate that the two-snapshot algorithm presents comparable contrast reconstruction and optical cross-sectioning capability than those adopting the conventional root-mean-square (RMS) reconstruction method. The two-snapshot method can be readily applied to any sinusoidally modulated illumination systems to realize high-speed 3D imaging as less frames are required for each in-focal-plane image restoration, i.e., the image acquisition speed is improved by 2.5 times for any two-photon systems.

  12. Temporal Resolution in Time Series and Probabilistic Models of Renewable Power Systems

    Science.gov (United States)

    Hoevenaars, Eric

    There are two main types of logistical models used for long-term performance prediction of autonomous power systems: time series and probabilistic. Time series models are more common and are more accurate for sizing storage systems because they are able to track the state of charge. However, the computational time is usually greater than for probabilistic models. It is common for time series models to perform 1-year simulations with a 1-hour time step. This is likely because of the limited availability of high resolution data and the increase in computation time with a shorter time step. Computation time is particularly important because these types of models are often used for component size optimization which requires many model runs. This thesis includes a sensitivity analysis examining the effect of the time step on these simulations. The results show that it can be significant, though it depends on the system configuration and site characteristics. Two probabilistic models are developed to estimate the temporal resolution error of a 1-hour simulation: a time series/probabilistic model and a fully probabilistic model. To demonstrate the application of and evaluate the performance of these models, two case studies are analyzed. One is for a typical residential system and one is for a system designed to provide on-site power at an aquaculture site. The results show that the time series/probabilistic model would be a useful tool if accurate distributions of the sub-hour data can be determined. Additionally, the method of cumulant arithmetic is demonstrated to be a useful technique for incorporating multiple non-Gaussian random variables into a probabilistic model, a feature other models such as Hybrid2 currently do not have. The results from the fully probabilistic model showed that some form of autocorrelation is required to account for seasonal and diurnal trends.

  13. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    Science.gov (United States)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  14. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  15. Coronary artery visibility in free-breathing young children on non-gated chest CT: impact of temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bridoux, Alexandre; Hutt, Antoine; Faivre, Jean-Baptiste; Pagniez, Julien; Remy, Jacques; Remy-Jardin, Martine [CHRU et Universite de Lille, Department of Thoracic Imaging, Hospital Calmette (EA 2694), 59037 Lille Cedex (France); Flohr, Thomas [Siemens Healthcare, Department of Research and Development in CT, Forchheim (Germany); Duhamel, Alain [Universite de Lille, Department of Biostatistics, Lille (France)

    2015-11-15

    Dual-source CT allows scanning of the chest with high pitch and high temporal resolution, which can improve the detection of proximal coronary arteries in infants and young children when scanned without general anesthesia, sedation or beta-blockade. To compare coronary artery visibility between higher and standard temporal resolution. We analyzed CT images in 93 children who underwent a standard chest CT angiographic examination with reconstruction of images with a temporal resolution of 75 ms (group 1) and 140 ms (group 2). The percentage of detected coronary segments was higher in group 1 than in group 2 when considering all segments (group 1: 27%; group 2: 24%; P = 0.0004) and proximal segments (group 1: 37%; group 2: 32%; P = 0.0006). In both groups, the highest rates of detection were observed for the left main coronary artery (S1) (group 1: 65%; group 2: 58%) and proximal left anterior descending coronary artery (S2) (group 1: 43%; group 2: 42%). Higher rates of detection were seen in group 1 for the left main coronary artery (P = 0.03), proximal right coronary artery (P = 0.01), proximal segments of the left coronary artery (P = 0.02) and proximal segments of the left and right coronary arteries (P = 0.0006). Higher temporal resolution improved the visibility of proximal coronary arteries in pediatric chest CT. (orig.)

  16. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  17. Global rainfall erosivity assessment based on high-temporal resolution rainfall records.

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano

    2017-06-23

    The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha-1 h-1 yr-1, with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.

  18. A solar radio dynamic spectrograph with flexible temporal-spectral resolution

    Science.gov (United States)

    Du, Qing-Fu; Chen, Lei; Zhao, Yue-Chang; Li, Xin; Zhou, Yan; Zhang, Jun-Rui; Yan, Fa-Bao; Feng, Shi-Wei; Li, Chuan-Yang; Chen, Yao

    2017-09-01

    Observation and research on solar radio emission have unique scientific values in solar and space physics and related space weather forecasting applications, since the observed spectral structures may carry important information about energetic electrons and underlying physical mechanisms. In this study, we present the design of a novel dynamic spectrograph that has been installed at the Chashan Solar Radio Observatory operated by the Laboratory for Radio Technologies, Institute of Space Sciences at Shandong University. The spectrograph is characterized by real-time storage of digitized radio intensity data in the time domain and its capability to perform off-line spectral analysis of the radio spectra. The analog signals received via antennas and amplified with a low-noise amplifier are converted into digital data at a speed reaching up to 32 k data points per millisecond. The digital data are then saved into a high-speed electronic disk for further off-line spectral analysis. Using different word lengths (1-32 k) and time cadences (5 ms-10 s) for off-line fast Fourier transform analysis, we can obtain the dynamic spectrum of a radio burst with different (user-defined) temporal (5 ms-10 s) and spectral (3 kHz˜320 kHz) resolutions. This enables great flexibility and convenience in data analysis of solar radio bursts, especially when some specific fine spectral structures are under study.

  19. Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis.

    Directory of Open Access Journals (Sweden)

    Matthias Deliano

    Full Text Available Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.

  20. Diagnostic applications of an optoelectronic device for high temporal resolution of erythrocyte sedimentation (ESR-graphy)

    Science.gov (United States)

    Voeikov, Vladimir L.; Buravleva, Ekaterina; Bulargina, Yulia; Gurfinkel, Youri I.

    2001-10-01

    An automatic device for high-temporal resolution of the process of erythrocytes sedimentation in blood was designed. The position of the boundary between red blood and plasma is registered each 30 sec in several pipettes simultaneously with +/- 10 mkm precision. Data are processed by a PC and presented as velocity-time curves (ESR-grams) and the curves describing time evolution of the boundary position. ESR-grams demonstrate non-monotonous character of erythrocytes sedimentation in blood. Blood of particular donor being in a stable physiological state taken on different days is characterized by similar ESR-grams. Pathological deviations from a normal physiological state are reflected in the shortening of duration of each process stage and increasing of average sedimentation rate. Intravenous infusion of some medical preparations may lead either to improving (prolonging of macrokinetic stages, decreasing of sedimentation rate), or to worsening of studied parameters depending on an individual. The low extent of blood dilution with saline in vitro lead as a rule to decreasing of sedimentation rate and improving of microkinetic parameters of the process. Adding of highly diluted hydrogen peroxide to blood samples of patients resulted in the improving of sedimentation kinetics. ESR-graphy may widen opportunities of practical medicine in diagnostics, prognostics and drug therapy.

  1. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  2. Soil wetting processes at high temporal resolution in a semiarid mediterranean watershed with scattered tree cover

    Science.gov (United States)

    Lozano-Parra, Javier; van Schaik, Loes; Schnabel, Susanne; Gómez-Gutiérrez, Álvaro

    2015-04-01

    Soil wetting processes play a key role for the distribution of water and solutes and thereby for the water availability for plants. However, characterization of such processes (from slower to faster flows), frequency of occurrence, and factors that cause them, are still poorly known. This characterization is important in hydrological studies because enables a better understanding of spatio-temporal variability of water resources and allows improving the design of models. Using a method based on the maximal soil water increase registered by a sensor over a minimum given time interval during a rainfall event, types of soil wetting processes were classified and quantified. For this, capacitance sensors which registered the volumetric water content at high temporal resolution (30-min) along of more than two hydrological years (mainly for 2010-2011 and 2011-2012), were installed in soil profiles at 5, 15 cm, and 5 cm above the bedrock and depending on soil depth. This distribution along the soil profile is justified because soils are generally very shallow and most of the roots are concentrated in the upper layer. The sensors were gathered in 9 soil moisture stations characterized by lithology, topographic position, as well as by different vegetation covers: under tree canopy, under shrub, and in open spaces or grasslands. Besides, the data mining technique Multivariate Adaptive Regression Spline (MARS) was used to identify and rank the factors influencing flow types as well as modelling their occurrence. The work was carried out in an experimental catchment of the Spanish region of Extremadura. Results indicated that there is a general behavior or pattern of soil moisture dynamics in the catchment with a dominant occurrence of slower soil wetting processes (>50%), which may be considered as matrix flows, and a low occurrence of those faster processes (process, so that the ecological role of both flow types becomes prominent in water-limited environments. Statistical

  3. Auditory temporal resolution and integration - stages of analyzing time-varying sounds

    DEFF Research Database (Denmark)

    Pedersen, Benjamin

    2007-01-01

    , much is still unknown of how temporal information is analyzed and represented in the auditory system. The PhD lecture concerns the topic of temporal processing in hearing and the topic is approached via four different listening experiments designed to probe several aspects of temporal processing......) temporal pattern recognition where listeners have to identify properties of the actual patterns of level changes. Typically temporal processing is modeled by some sort of temporal summation or integration device. The results of the present experiments are to a large extent incompatible with this modeling......An important property of sound is its variation as a function of time, which carries much relevant information about the origin of a given sound. Further, in analyzing the ?meaning? of a sound perceptually, the temporal variation is of tremendous importance. In spite of its perceptual importance...

  4. High temporal resolution tracing of up-and downward carbon transport in oak trees

    Science.gov (United States)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2017-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a secondary C flux of large magnitude. The relative magnitude of both fluxes in a same set of trees and their concurrent role in C allocation remains unclear. In this study, we 13C pulse labeled five year old potted oak (Quercus rubra) trees to investigate both the role of C transport via the phloem and xylem in C allocation. To this end trees were randomly assigned to two 13C labeling experiments: 1) a canopy labeling experiment using transparent canopy chambers and 2) a stem labeling experiment based on the infusion of 13C labeled water in the stem base. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux to monitor both the down-and upward transport of 13C label. Additional tissue samples at stem, canopy and root level were analyzed to validate the assimilation of the label in tree tissues during transport. Overall, after both labeling experiments enrichment was observed in both stem and soil CO2 efflux, showing that the 13C label was removed from both xylem and phloem transport during up- and downward transport, respectively. Higher enrichments of CO2 efflux were observed after stem labeling as compared to canopy labeling, which implies that xylem transport strongly contributes to C lost to the atmosphere. This study is the first to show combined results from tracing of xylem and phloem transport of C for a same set of trees at high temporal resolution using a

  5. A high resolution temporal study of phytoplankton bloom dynamics in the eutrophic Taw Estuary (SW England).

    Science.gov (United States)

    Maier, Gerald; Glegg, Gillian A; Tappin, Alan D; Worsfold, Paul J

    2012-09-15

    The Taw Estuary (SW England) is eutrophic as a result of enhanced nutrient inputs from its catchment. However, factors influencing the timing and extent of phytoplankton bloom formation are not fully understood in this system. In this study, high resolution chemical and biological sampling was undertaken in late-winter/spring and summer 2008 in order to gain further insights into bloom dynamics in the Taw Estuary. Temporal variations in chlorophyll a maxima in the upper and middle estuary during summer were controlled by river flow and tidal amplitude, with nutrient limitation probably less important. Concentrations of chlorophyll a were highest during low river flow and neap tides. Increased river flows advected the chlorophyll maximum to the outer estuary, and under highest river discharges, chlorophyll a concentrations were further reduced. This feature was even more pronounced when spring tides coincided with high flows. The main bloom species were the diatoms Asterionellopsis glacialis and Thalassiosira guillardii. Using two multivariate statistical techniques in combination, five distinct physical and biogeochemical states in the Taw estuarine waters were identified. These states can be summarised as: A(1), high chlorophyll a, high temperature, long residence times, nutrient depletion; A(2), strong coastal water influence; B(1), decreasing chlorophyll a, increasing river flow and/or spring tides; B(2), transitional between states A(1) and B(3); B(3), high river flow. It was thus possible to differentiate between contrasting environmental conditions that were either beneficial or detrimental for the development of algal blooms. A conceptual model of diatom - dominated primary production for the Taw Estuary is proposed which describes how physical controls (river flow, tidal state) moderate plankton biomass production in the upper and mid - estuarine regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution

    Science.gov (United States)

    Johansson, Lasse; Jalkanen, Jukka-Pekka; Kukkonen, Jaakko

    2017-10-01

    We present a comprehensive global shipping emission inventory and the global activities of ships for the year 2015. The emissions were evaluated using the Ship Traffic Emission Assessment Model (STEAM3), which uses Automatic Identification System data to describe the traffic activities of ships. We have improved the model regarding (i) the evaluation of the missing technical specifications of ships, and (ii) the treatment of shipping activities in case of sparse satellite AIS-data. We have developed a model for the collection and processing of available information on the technical specifications, using data assimilation techniques. We have also developed a path regeneration model that constructs, whenever necessary, the detailed geometry of the ship routes. The presented results for fuel consumption were qualitatively in agreement both with those in the 3rd Greenhouse Gas Study of the International Maritime Organisation and those reported by the International Energy Agency. We have also presented high-resolution global spatial distributions of the shipping emissions of NOx, CO2, SO2 and PM2.5. The emissions were also analysed in terms of selected sea areas, ship categories, the sizes of ships and flag states. The emission datasets provided by this study are available upon request; the datasets produced by the model can be utilized as input data for air quality modelling on a global scale, including the full temporal and spatial variation of shipping emissions for the first time. Dispersion modelling using this inventory as input can be used to assess the impacts of various emission abatement scenarios. The emission computation methods presented in this paper could also be used, e.g., to provide annual updates of the global ship emissions.

  7. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    Directory of Open Access Journals (Sweden)

    Ingo eHertrich

    2013-08-01

    Full Text Available In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1 the auditory system, (2 supramodal representations, and (3 frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (> 16 syllables/s, exceeding by far the normal range of 6 syllables/s. An fMRI study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic (MEG measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to a demand for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments considering cross-modal adjustments in space, time, and object recognition.

  8. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    Science.gov (United States)

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2013-01-01

    In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition.

  9. Identification and characterisation of local aerosol sources using high temporal resolution measurements.

    Science.gov (United States)

    Contini, D; Donateo, A; Cesari, D; Belosi, F; Francioso, S

    2010-09-01

    Aerosol and gaseous pollution measurements were carried out at an urban background site in the south of Italy located near an industrial complex. Collection of 24 h samples of PM10 and PM2.5 and successive chemical quantification of metals were performed. Data were compared with measurements taken at a suburban background site, located at 25 km distance. The comparison showed the presence of an industrial contribution with a well defined chemical emission profile, similar, in terms of metals content, to urban emissions. As this made difficult the quantitative characterisation of the contribution of the two sources to atmospheric PM, a statistical method based on the treatment of data arising from high temporal resolution measurements was developed. Data were taken with a micrometeorological station based on an integrating nephelometer (Mie pDR-1200) for optical detection of PM2.5 concentration, with successive evaluation of vertical turbulent fluxes using the eddy-correlation method. Results show that the contribution from the two sources (urban emissions and industrial releases) have a very different behaviour, with the industrial contribution being present at high wind velocity with short concentration peaks (average duration 4 min) associated to strong positive and negative vertical fluxes. The estimated contribution to PM2.5 is 2.3% over long-term averages. The urban emissions are mainly present at low wind velocity, with longer concentration peaks in the morning and late evening hours, generally associated to small positive vertical fluxes. The characterisation of the contribution was performed using deposition velocity V(d) that is on average -3.5 mm s(-1) and has a diurnal pattern, with negligible values during the night and a minimum value of around -9 mm s(-1) late in the afternoon. Results show a correlation between V(d), friction velocity and wind velocity that could be the basis for a parameterisation of V(d) to be used in dispersion codes.

  10. Temporal Bone CT: Improved Image Quality and Potential for Decreased Radiation Dose Using an Ultra-High-Resolution Scan Mode with an Iterative Reconstruction Algorithm.

    Science.gov (United States)

    Leng, S; Diehn, F E; Lane, J I; Koeller, K K; Witte, R J; Carter, R E; McCollough, C H

    2015-09-01

    Radiation dose in temporal bone CT imaging can be high due to the requirement of high spatial resolution. In this study, we assessed whether CT imaging of the temporal bone by using an ultra-high-resolution scan mode combined with iterative reconstruction provides higher spatial resolution and lower image noise than a z-axis ultra-high-resolution mode. Patients with baseline temporal bone CT scans acquired by using a z-axis ultra-high-resolution protocol and a follow-up scan by using the ultra-high-resolution-iterative reconstruction technique were identified. Images of left and right temporal bones were reconstructed in the axial, coronal, and Poschl planes. Three neuroradiologists assessed the spatial resolution of the following structures: round and oval windows, incudomallear and incudostapedial joints, basal turn spiral lamina, and scutum. The paired z-axis ultra-high-resolution and ultra-high-resolution-iterative reconstruction images were displayed side by side in random order, with readers blinded to the imaging protocol. Image noise was compared in ROIs over the posterior fossa. We identified 8 patients, yielding 16 sets of temporal bone images (left and right). Three sets were excluded because the patient underwent surgery between the 2 examinations. Spatial resolution was comparable (Poschl) or slightly better (axial and coronal planes) with ultra-high-resolution-iterative reconstruction than with z-axis ultra-high-resolution. A paired t test indicated that noise was significantly lower with ultra-high-resolution-iterative reconstruction than with z-axis ultra-high-resolution (P iterative reconstruction scan mode has similar or slightly better resolution relative to the z-axis ultra-high-resolution mode for CT of the temporal bone but significantly (P < .01) lower image noise, which may enable the dose to be reduced by approximately 50%. © 2015 by American Journal of Neuroradiology.

  11. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Nicholas Clinton

    2014-08-01

    Full Text Available Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI, MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

  12. Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data

    OpenAIRE

    Xiaolong Liu; Yanchen Bo; Jian Zhang; Yaqian He

    2015-01-01

    The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by b...

  13. Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments.

    Science.gov (United States)

    McComb, D Michelle; Frank, Tamara M; Hueter, Robert E; Kajiura, Stephen M

    2010-01-01

    Visual temporal resolution and scotopic spectral sensitivity of three coastal shark species (bonnethead Sphyrna tiburo, scalloped hammerhead Sphyrna lewini, and blacknose shark Carcharhinus acronotus) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum critical flicker-fusion frequency (CFF). Photopic CFF(max) was significantly higher than scotopic CFF(max) in all species. The bonnethead had the shortest photoreceptor response latency time (23.5 ms) and the highest CFF(max) (31 Hz), suggesting that its eyes are adapted for a bright photic environment. In contrast, the blacknose had the longest response latency time (34.8 ms) and lowest CFF(max) (16 Hz), indicating its eyes are adapted for a dimmer environment or nocturnal lifestyle. Scotopic spectral sensitivity revealed maximum peaks (480 nm) in the bonnethead and blacknose sharks that correlated with environmental spectra measured during twilight, which is a biologically relevant period of heightened predation.

  14. Status and Perspectives of the Mini-MegaTORTORA Wide-field Monitoring System with High Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sergey Karpov

    2013-01-01

    Full Text Available Here we briefly summarize our long-term experience of constructing and operating wide-field monitoring cameras with sub-second temporal resolution to look for optical components of GRBs, fast-moving satellites and meteors. The general hardware requirements for these systems are discussed, along with algorithms for real-time detection and classification of various kinds of short optical transients. We also give a status report on the next generation, the MegaTORTORA multi-objective and transforming monitoring system, whose 6-channel (Mini-MegaTORTORA-Spain and 9-channel prototypes (Mini-MegaTORTORA-Kazan we have been building at SAO RAS. This system combines a wide field of view with subsecond temporal resolution in monitoring regime, and is able, within fractions of a second, to reconfigure itself to follow-up mode, which has better sensitivity and simultaneously provides multi-color and polarimetric information on detected transients.

  15. Retrospective Reconstruction of High Temporal Resolution Cine Images from Real-Time MRI using Iterative Motion Correction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild; Arai, Andrew

    2012-01-01

    Cardiac function has traditionally been evaluated using breath-hold cine acquisitions. However, there is a great need for free breathing techniques in patients who have difficulty in holding their breath. Real-time cardiac MRI is a valuable alternative to the traditional breath-hold imaging...... approach, but the real-time images are often inferior in spatial and temporal resolution. This article presents a general method for reconstruction of high spatial and temporal resolution cine images from a real-time acquisition acquired over multiple cardiac cycles. The method combines parallel imaging...... and motion correction based on nonrigid registration and can be applied to arbitrary k-space trajectories. The method is demonstrated with real-time Cartesian imaging and Golden Angle radial acquisitions, and the motion-corrected acquisitions are compared with raw real-time images and breath-hold cine...

  16. High Spatio-Temporal-Resolution Detection of Chlorophyll Fluorescence Dynamics from a Single Chloroplast with Confocal Imaging Fluorometer

    CERN Document Server

    Tseng, Yi-Chin

    2016-01-01

    Chlorophyll fluorescence (CF) is a key indicator to study plant physiology or photosynthesis efficiency. Conventionally, CF is characterized by fluorometers, which only allows ensemble measurement through wide-field detection. For imaging fluorometers, the typical spatial and temporal resolutions are on the order of millimeter and second, far from enough to study cellular/sub-cellular CF dynamics. In addition, due to the lack of optical sectioning capability, conventional imaging fluorometers cannot identify CF from a single cell or even a single chloroplast. Here we demonstrated a novel fluorometer based on confocal imaging, that not only provides high contrast images, but also allows CF measurement with spatiotemporal resolution as high as micrometer and millisecond. CF transient (the Kautsky curve) from a single chloroplast is successfully obtained, with both the temporal dynamics and the intensity dependences corresponding well to the ensemble measurement from conventional studies. The significance of con...

  17. Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate

    Science.gov (United States)

    Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.; Hilsabeck, T. J.; Izumi, N.; Khan, S.; Kyrala, G. A.; Ma, T.; Pak, A.

    2016-11-01

    The dilation x-ray imager (DIXI) [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010); S. R. Nagel et al., ibid. 83, 10E116 (2012); S. R. Nagel et al., ibid. 85, 11E504 (2014)] is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10 × improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method [J. Salmon et al., J. Math. Imaging Vision 48, 279294 (2014)] to improve the robustness of the DIXI data analysis. Here we present results on ignition-relevant experiments at the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P0, P2, and P4 Legendre modes, and their temporal evolution/swings).

  18. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data

    OpenAIRE

    Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Hagolle, Olivier; Ducrot, D.; Marais Sicre, C.; Dejoux, J.-F.; Huc, M.; P. Keravec; Béziat, P.; R. Fieuzal; Ceschia, E.; Dedieu, G.

    2012-01-01

    The recent availability of high spatial and temporal resolution (HSTR) remote sensing data (Formosat-2, and future missions of Ven mu s and Sentinel-2) offers new opportunities for crop monitoring. In this context, we investigated the perspective offered by coupling a simple algorithm for yield estimate (SAFY) with the Formosat-2 data to estimate crop production over large areas. With a limited number of input parameters, the SAFY model enables the simulation of time series of green area inde...

  19. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    Science.gov (United States)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  20. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    Science.gov (United States)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  1. A Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Tom D. Pering

    2017-02-01

    Full Text Available Water vapour (H2O is the dominant species in volcanic gas plumes. Therefore, measurements of H2O fluxes could provide valuable constraints on subsurface degassing and magmatic processes. However, due to the large and variable concentration of this species in the background atmosphere, little attention has been devoted to monitoring the emission rates of this species from volcanoes. Instead, the focus has been placed on remote measurements of SO2, which is present in far lower abundances in plumes, and therefore provides poorer single flux proxies for overall degassing conditions. Here, we present a new technique for the measurement of H2O emissions at degassing volcanoes at high temporal resolution (≈1 Hz, via remote sensing with low cost digital cameras. This approach is analogous to the use of dual band ultraviolet (UV cameras for measurements of volcanic SO2 release, but is focused on near infrared absorption by H2O. We report on the field deployment of these devices on La Fossa crater, Vulcano Island, and the North East Crater of Mt. Etna, during which in-plume calibration was performed using a humidity sensor, resulting in estimated mean H2O fluxes of ≈15 kg·s−1 and ≈34 kg·s−1, respectively, in accordance with previously reported literature values. By combining the Etna data with parallel UV camera and Multi-GAS observations, we also derived, for the first time, a combined record of 1 Hz gas fluxes for the three most abundant volcanic gas species: H2O, CO2, and SO2. Spectral analysis of the Etna data revealed oscillations in the passive emissions of all three species, with periods spanning ≈40–175 s, and a strong degree of correlation between the periodicity manifested in the SO2 and H2O data, potentially related to the similar exsolution depths of these two gases. In contrast, there was a poorer linkage between oscillations in these species and those of CO2, possibly due to the deeper exsolution of carbon dioxide, giving

  2. Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Flint, Madeleine; Michel, Alexander; Billington, Sarah L.

    2014-01-01

    a numerical heat and mass transport model that includes full coupling of heat, moisture and ion transport. Heat, moisture, and chloride concentration distributions were passed to a simplified reinforcement corrosion initiation and propagation model. The numerical study indicates that processing and temporal...... resolution of the exposure data has a considerable impact on long-term hygrothermal distribution, chloride ingress, and reinforcement section loss results. Use of time-averaged exposure data in the heat and mass transport model reduces the rate of chloride ingress in concrete and affects prediction...... of reinforcement corrosion initiation and propagation. Randomly sampled exposure data at daily, weekly, or monthly resolution yields prediction of reinforcement corrosion initiation and propagation closer to original resolution results than time-averaged exposure data....

  3. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    gauges in the model area. The spatio-temporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatio-temporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying onprecipitation output......Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...

  4. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    Science.gov (United States)

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of

  5. Resolução temporal de crianças escolares Temporal resolution of young students

    Directory of Open Access Journals (Sweden)

    Sheila Andreoli Balen

    2009-01-01

    Full Text Available OBJETIVO: estudar a resolução temporal de crianças com desenvolvimento normal no teste de detecção de intervalos de silêncio (Random gap detection - RGDT e no teste de detecção do intervalo no ruído (Gaps-in-noise - GIN. MÉTODOS: a população foi composta por 73 crianças escolares, sendo selecionadas 19 com desenvolvimento normal, na faixa etária de seis a 14 anos, de ambos os sexos, ausência de histórico otológico e/ou audiológico e de queixas escolares; audição normal; produção articulatória de todos os sons do Português e sem distúrbios do processamento auditivo. Os procedimentos da pesquisa foram os testes RGDT e GIN, realizados a 50 dB NS sendo o primeiro apresentado binaural e o segundo monoauralmente. Para análise dos dados foi aplicado teste t de Student. RESULTADOS: no teste RGDT, a média dos intervalos de silêncio para as freqüências de 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz foram respectivamente, 10,13 ms; 8,69 ms; 11,94 ms; 10,56 ms, não ocorrendo diferenças estatisticamente significantes em relação à freqüência testada. No teste GIN, a média do limiar foi de 5,7 ms para a orelha direita e 5,4 ms para a orelha esquerda, não havendo diferença estatisticamente significante quanto à orelha avaliada. CONCLUSÃO: há evidências de diferenças dos limiares dos testes, o que aponta a hipótese de que GIN e RGDT não estejam avaliando a mesma habilidade auditiva ou requisitem processos não auditivos nas tarefas solicitadas. Desta forma, são necessárias novas pesquisas para entender melhor a aplicabilidade e os parâmetros de ambos os testes na prática clínica no Brasil.PURPOSE: to study temporal processing in children with normal development through the Random Gap Detection Test and the Gaps-in-noise Test. METHODS: a population comprised of 73 students, 19 having normal development, between 6 and 14-year old, males and females, no otologic and/or audiologic history, and no learning disabilities

  6. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  7. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  8. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Spatial and temporal beam profile monitor with nanosecond resolution for CERN's Linac4 and Superconducting Proton Linac

    CERN Document Server

    Hori, M

    2008-01-01

    The Linac4, now being developed at CERN, will provide 160-MeV H- beams of high intensity . Before this beam can be injected into the CERN Proton Synchrotron Booster or future Superconducting Proton Linac for further acceleration, some sequences of 500-ps-long micro-bunches must be removed from it, using a beam chopper. These bunches, if left in the beam, would fall outside the longitudinal acceptance of the accelerators and make them radioactive. We developed a monitor to measure the time structure and spatial profile of this chopped beam, with respective resolutions and . Its large active area and dynamic range also allows investigations of beam halos. The ion beam first struck a carbon foil, and secondary electrons emerging from the foil were accelerated by a series of parallel grid electrodes. These electrons struck a phosphor screen, and the resulting image of the scintillation light was guided to a thermoelectrically cooled, charge-coupled device camera. The time resolution was attained by applying high-...

  10. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  11. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics.

    Science.gov (United States)

    Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2009-11-01

    We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.

  12. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  13. Bipolar high temporal resolution measurements of snow UV albedo in Sodankylä and Marambio

    Science.gov (United States)

    Meinander, Outi; Kontu, Anna; Asmi, Eija; Sanchez, Ricardo; Mei, Miguel; de Leeuw, Gerrit

    2015-04-01

    In this presentation we will give an overview of our high temporal resolution polar snow UV albedo data from Arctic Sodankylä, and from Marambio, Antarctica. These both are WMO GAW stations with many measurement parameters relevant to the albedo data usage. We will also describe our campaign based polar albedo data (SNORTEX and SOS campaigns), and an important data set of light absorbing impurities (BC) in the Arctic snow. The black carbon (BC) has been estimated to be the second most important human emission after carbon dioxide, in terms of its climate forcing in the present-day atmosphere. The reflectance effect of BC deposited on snow surface is the bigger the smaller the wavelength, i.e. the albedo effect of BC is the biggest at UV. This is also shown in SNICAR-model simulated albedo values. In Sodankylä, our bipolar snow ultraviolet (UV) albedo research started within the International Polar Year (IPY) 2007-2008. In 2007, the continuous Sodankylä snow UV albedo measurements were installed in Sodankylä, in the operational albedo field of the Finnish Meteorological Institute Arctic Research Center (FMI-ARC). These Sodankylä 1-min data during snow time were soon compared with the German Antarctic Neumayer Station UV albedo data, also with the same sensor type. In both data we found an up to 10 % decrease in albedo as a function of time within a day, ranging from 0.77 to 0.67 in Sodankylä and from 0.96 to 0.86 in Neumeyer. Physical explanations to asymmetry were found for cases with high relative humidity and low surface temperature during the previous night, favorable to frost and higher albedo on the next morning; new snow on the previous night; snow melting during day time and refreezing during night. In Marambio, in the beginning of 2013, our new continuous Finnish-Argentinian co-operation snow UV albedo measurements were installed and started as part of a larger continuous meteorological and environmental instrumentation. These new UV radiation data

  14. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  15. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget.

    Science.gov (United States)

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-04-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n -2 power-law with radial order n and temporal spectra follow a f -1.5 power-law with temporal frequency f . From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.

  16. Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?

    Directory of Open Access Journals (Sweden)

    Anna Carter

    2016-01-01

    Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.

  17. Exploiting Temporal Context in High-Resolution Movement-Related EEG Classification

    Directory of Open Access Journals (Sweden)

    J. Dolezal

    2011-09-01

    Full Text Available The contribution presents an application of a movement-related EEG temporal development classification which improves the classification score of voluntary movements controlled by closely localized regions of the brain. A dynamic Hidden Markov Model-based (HMM classifier specifically designed to capture EEG temporal behavior was used. Surprisingly, HMM classifiers are rarely used for BCI design despite of their advantages. Because of this we also experimented with Learning Vector Quantization, Perceptron, and Support Vector Machine classifiers using a feature space which captures the temporal dynamics of the data. The results presented in this work show that HMM achieves the best performance due to an a priori information on physiological behavior of EEG inserted to the HMM classifier. Feature extraction process and problems with classification were analyzed as well. Classification scores of 66.7% – 94.7% were achieved in our experiments.

  18. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    Directory of Open Access Journals (Sweden)

    Shi Chen

    Full Text Available Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density, subgroup clustering (modularity, triadic property (transitivity, and dyadic interactions (correlation coefficient from a quadratic assignment procedure at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level or temporal (aggregated at daily level resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc. also changed substantially at different time and locations. There were certain time (feeding and location (hay that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect disease transmission pathways.

  19. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    Science.gov (United States)

    Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.

  20. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    for vector field estimation already known from short-term weather radar nowcasting. However, instead of forecasting the weather radar rainfall, the proposed interpolation method exploits the advection of the rainfall in the interpolation. The interpolated rainfall fields are validated by measurements......The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...... at ground level from laser disdrometers. The proposed interpolation method performs better when compared to traditional interpolation of weather radar rainfall where the radar observation is considered constant in time between measurements. It is demonstrated that the advection-based interpolation method...

  1. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

    OpenAIRE

    Yuhan Rao; Xiaolin Zhu; Jin Chen; Jianmin Wang

    2015-01-01

    Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal) NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Linear Mixing Growth Model (NDVI-LMGM), is proposed to achieve the goal of accurately and efficiently bl...

  2. Last PS magnet refurbished

    CERN Document Server

    2009-01-01

    PS Magnet Refurbishment Programme Completed. The 51st and final refurbished magnet was transported to the PS on Tuesday 3 February. The repair and consolidation work on the PS started back in 2003 when two magnets and a busbar connection were found to be faulty during routine high-voltage tests. The cause of the fault was a combination of age and radiation on electrical insulation. After further investigation the decision was taken to overhaul half of the PS’s 100 magnets to reduce the risk of a similar fault. As from 20 February the PS ring will start a five-week test programme to be ready for operation at the end of March.

  3. Prosodic Temporal Alignment of Co-Speech Gestures to Speech Facilitates Referent Resolution

    Science.gov (United States)

    Jesse, Alexandra; Johnson, Elizabeth K.

    2012-01-01

    Using a referent detection paradigm, we examined whether listeners can determine the object speakers are referring to by using the temporal alignment between the motion speakers impose on objects and their labeling utterances. Stimuli were created by videotaping speakers labeling a novel creature. Without being explicitly instructed to do so,…

  4. High temporal resolution photography for observing riparian area use and grazing behavior

    Science.gov (United States)

    In 2014, a 2.4 hectare site within the Apache-Sitgreaves National Forest in northeastern Arizona, USA was selected to characterize temporal and spatial patterns of riparian area use. Three consecutive 30, 8, and 46 day time periods representing 1) unrestricted access, 2) prescribed cattle use, and 3...

  5. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V.; Petry, H.; Ebel, A. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  6. Spatial models for probabilistic prediction of wind power with application to annual-average and high temporal resolution data

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Pinson, Pierre; Clemmensen, Line Katrine Harder

    2017-01-01

    average wind power generation, and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial correlation is captured by a latent Gaussian field. We explore how such models can be handled...... with stochastic partial differential approximations of Matérn Gaussian fields together with Integrated Nested Laplace Approximations. We demonstrate the proposed methods on wind farm data from Western Denmark, and compare the results to those obtained with standard geostatistical methods. The results show...

  7. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Yeung, Ivan W. T. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  8. Slice-accelerated gradient-echo echo planar imaging dynamic susceptibility contrast-enhanced MRI with blipped CAIPI: effect of increasing temporal resolution.

    Science.gov (United States)

    Takamura, Tomohiro; Hori, Masaaki; Kamagata, Koji; Kumamaru, Kanako K; Irie, Ryusuke; Hagiwara, Akifumi; Hamasaki, Nozomi; Aoki, Shigeki

    2018-01-01

    To assess the influence of high temporal resolution on the perfusion measurements and image quality of perfusion maps, by applying simultaneous-multi-slice acquisition (SMS) dynamic susceptibility contrast-enhanced (DSC) magnetic resonance imaging (MRI). DSC-MRI data using SMS gradient-echo echo planar imaging sequences in 10 subjects with no intracranial abnormalities were retrospectively analyzed. Three additional data sets with temporal resolution of 1.0, 1.5, and 2.0 s were created from the raw data sets of 0.5 s. Cerebral blood flow (CBF), cerebral blood volume, mean transit time (MTT), time to peak (TTP), and time to maximum tissue residue function (T max ) measurements were performed, as was visual perfusion map analysis. The perfusion parameter for temporal resolution of 0.5 s (reference) was compared with each synthesized perfusion parameter. CBF, MTT, and TTP values at temporal resolutions of 1.5 and 2.0 s differed significantly from the reference. The image quality of MTT, TTP, and T max maps deteriorated with decreasing temporal resolution. The temporal resolution of DSC-MRI influences perfusion parameters and SMS DSC-MRI provides better image quality for MTT, TTP, and T max maps.

  9. Study of the dependence of resolution temporal activity for a Philips gemini TF PET/CT scanner by applying a statistical analysis of time series; Estudio de la dependencia de la resolucion temporal con la actividad para un escaner PET-TAC philips gemini TF aplicando un analisis estadistico de series temporales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Merino, G.; Cortes Rpdicio, J.; Lope Lope, R.; Martin Gonzalez, T.; Garcia Fidalgo, M. A.

    2013-07-01

    The aim of the present work is to study the dependence of temporal resolution with the activity using statistical techniques applied to the series of values time series measurements of temporal resolution during daily equipment checks. (Author)

  10. Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-11-01

    Full Text Available The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by blending MODIS (Moderate Resolution Imaging Spectroradiometer and ETM+ (Enhanced Thematic Mapper Plus data. The blended data exhibited a high correlation (R2 = 0.88 with the satellite derived ETM+ data. The time-series NDVI (Normalized Difference Vegetation Index data were then generated using the blended high spatio-temporal resolution data to capture the phenological differences between the C3 and C4 vegetation. The time-series NDVI revealed that the C3 vegetation turns green earlier in spring than the C4 vegetation, and senesces later in autumn than the C4 vegetation. C4 vegetation has a higher NDVI value than the C3 vegetation during summer time. Based on the distinguished characteristics, the time-series NDVI was used to extract the C3 and C4 classification features. Five features were selected from the 18 classification features according to the ground investigation data, and subsequently used for the C3 and C4 classification. The overall accuracy of the C3 and C4 vegetation classification was 85.75% with a kappa of 0.725 in our study area.

  11. Towards High Spa-Temporal Resolution Estimates of Surface Radiative Fluxes from Geostationary Satellite Observations for the Tibetan Plateau

    Science.gov (United States)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2014-12-01

    Surface Solar Radiation (SSR) plays an important role of the hydrological and land process modeling, which particularly contributes more than 90% to the total melt energy for the Tibetan Plateau (TP) ice melting. Neither surface measurement nor existing remote sensing products can meet that requirement in TP. The well-known satellite products (i.e. ISCCP-FD and GEWEX-SRB) are in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly). The objective of this study is to develop capabilities to improved estimates of SSR in TP based on geostationary satellite observations from the Multi-functional Transport Satellite (MTSAT) with high spatial (0.05º) and temporal (hourly) resolution. An existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the GEWEX-SRB model, is re-visited to improve SSR estimates in TP. The UMD-SRB algorithm transforms TOA radiances into broadband albedos in order to infer atmospheric transmissivity which finally determines the SSR. Specifically, main updates introduced in this study are: implementation at 0.05º spatial resolution at hourly intervals integrated to daily and monthly time scales; and improvement of surface albedo model by introducing the most recently developed Global Land Surface Broadband Albedo Product (GLASS) based on MODIS data. This updated inference scheme will be evaluated against ground observations from China Meteorological Administration (CMA) radiation stations and three TP radiation stations contributed from the Institute of Tibetan Plateau Research.

  12. Deriving Spatio-Temporal Development of Ground Subsidence Due to Subway Construction and Operation in Delta Regions with PS-InSAR Data: A Case Study in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Huiqiang Wang

    2017-09-01

    Full Text Available Subways have been an important method for relieving traffic pressures in urban areas, but ground subsidence, during construction and operation, can be a serious problem as it may affect the safety of its operation and that of the surrounding buildings. Thus, conducting long-term ground deformation monitoring and modeling for subway networks are essential. Compared with traditional geodetic methods, the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR technique offers wider coverage and denser measurements along subway lines. In this study, we mapped the surface deformation of the Guangzhou subway network with Advanced Synthetic Aperture Radar (ASAR and Phased Array Type L-band Synthetic Aperture Radar (PALSAR data using the Interferometric Point Target Analysis (IPTA technique. The results indicate that newly excavated tunnels have regional subsidence with an average rate of more than 8 mm/year, as found on Lines Two, Three, Six, and GuangFo (GF. Furthermore, we determined the spatio-temporal subsidence behavior of subways with PALSAR in delta areas using Peck’s formula and the logistic time model. We estimated the tunneling-related parameters in soft soil areas, which had not been previously explored. We examined a section of line GF, as an example, to estimate the ground settlement trough development. The results showed the maximum settlement increased from −5.2 mm to −23.6 mm and its ground loss ratio ranged from 1.5–8.7% between 13 July 2008 and 19 January 2011. In addition, we found that the tunnels in line GF will become stable after a period of about 2300 days in peak subsidence areas. The results show that the proposed approach can help explain the dynamic ground subsidence along a metro line. This study can provide references for urban subway projects in delta areas, and for the risk assessment of nearby buildings and underground pipelines along metro lines.

  13. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    2017-01-01

    gauges in the model area. The spatiotemporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatiotemporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying on precipitation output......Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...

  15. Processamento auditivo, resolução temporal e teste de detecção de gap: revisão da literatura Auditory processing, temporal resolution and gap detection test: literature review

    Directory of Open Access Journals (Sweden)

    Alessandra Giannella Samelli

    2008-01-01

    Full Text Available TEMA: processamento auditivo temporal e resolução temporal. OBJETIVO: realizar revisão teórica sobre processamento auditivo e resolução temporal, bem como sobre os diferentes parâmetros de marcadores utilizados em testes de detecção de gap e como eles podem interferir na determinação dos limiares. CONCLUSÃO: o processamento auditivo e a resolução temporal são fundamentais para o desenvolvimento da linguagem. Em virtude dos diferentes parâmetros que podem ser utilizados no teste em questão, os limiares de detecção de gap podem variar consideravelmente.BACKGROUND: temporal auditory processing and temporal resolution. PURPOSE: promote a theoretical approach on auditory processing, temporal resolution, and different parameters of markers used at various gap detection tests and how they can interfere in threshold determination. CONCLUSION: auditory processing and temporal resolution are key-factors for language development. The diverse parameters that can be used in the study of gap detection thresholds can result in quite discrepant thresholds.

  16. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    Science.gov (United States)

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  17. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    The GRACE mission is designed to monitor mass flux on the Earth's surface at one month and high spatial resolution through the estimation of monthly gravity fields. Although this approach has been largely successful, information at submonthly time scales can be lost or even aliased through...

  18. A spatial Coherent Global Soil Moisture Product with Improved Temporal Resolution

    NARCIS (Netherlands)

    de Jeu, R.A.M.; Holmes, T.R.H.; Parinussa, R.M.; Owe, M.

    2014-01-01

    Global soil moisture products that are completely independent of any type of ancillary data and solely rely on satellite observations are presented. Additionally, we further develop an existing downscaling technique that enhances the spatial resolution of such products to approximately 11. km. These

  19. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    Science.gov (United States)

    Van der Merwe, Deon; Price, Kevin P.

    2015-01-01

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055

  20. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Deon Van der Merwe

    2015-03-01

    Full Text Available Harmful algal blooms (HABs degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV. Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  1. Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems.

    Science.gov (United States)

    Van der Merwe, Deon; Price, Kevin P

    2015-03-27

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r(2)-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  2. Assessment of cardiac time intervals using high temporal resolution real-time spiral phase contrast with UNFOLDed-SENSE.

    Science.gov (United States)

    Kowalik, Grzegorz T; Knight, Daniel S; Steeden, Jennifer A; Tann, Oliver; Odille, Freddy; Atkinson, David; Taylor, Andrew; Muthurangu, Vivek

    2015-02-01

    To develop a real-time phase contrast MR sequence with high enough temporal resolution to assess cardiac time intervals. The sequence utilized spiral trajectories with an acquisition strategy that allowed a combination of temporal encoding (Unaliasing by fourier-encoding the overlaps using the temporal dimension; UNFOLD) and parallel imaging (Sensitivity encoding; SENSE) to be used (UNFOLDed-SENSE). An in silico experiment was performed to determine the optimum UNFOLD filter. In vitro experiments were carried out to validate the accuracy of time intervals calculation and peak mean velocity quantification. In addition, 15 healthy volunteers were imaged with the new sequence, and cardiac time intervals were compared to reference standard Doppler echocardiography measures. For comparison, in silico, in vitro, and in vivo experiments were also carried out using sliding window reconstructions. The in vitro experiments demonstrated good agreement between real-time spiral UNFOLDed-SENSE phase contrast MR and the reference standard measurements of velocity and time intervals. The protocol was successfully performed in all volunteers. Subsequent measurement of time intervals produced values in keeping with literature values and good agreement with the gold standard echocardiography. Importantly, the proposed UNFOLDed-SENSE sequence outperformed the sliding window reconstructions. Cardiac time intervals can be successfully assessed with UNFOLDed-SENSE real-time spiral phase contrast. Real-time MR assessment of cardiac time intervals may be beneficial in assessment of patients with cardiac conditions such as diastolic dysfunction. © 2014 Wiley Periodicals, Inc.

  3. The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method

    Science.gov (United States)

    Lin, Yong-Qing; Lin, Yuan-Chien

    2017-04-01

    Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental

  4. Large-Area, High-Resolution Tree Cover Mapping with Multi-Temporal SPOT5 Imagery, New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Adrian Fisher

    2016-06-01

    Full Text Available Tree cover maps are used for many purposes, such as vegetation mapping, habitat connectivity and fragmentation studies. Small remnant patches of native vegetation are recognised as ecologically important, yet they are underestimated in remote sensing products derived from Landsat. High spatial resolution sensors are capable of mapping small patches of trees, but their use in large-area mapping has been limited. In this study, multi-temporal Satellite pour l’Observation de la Terre 5 (SPOT5 High Resolution Geometrical data was pan-sharpened to 5 m resolution and used to map tree cover for the Australian state of New South Wales (NSW, an area of over 800,000 km2. Complete coverages of SPOT5 panchromatic and multispectral data over NSW were acquired during four consecutive summers (2008–2011 for a total of 1256 images. After pre-processing, the imagery was used to model foliage projective cover (FPC, a measure of tree canopy density commonly used in Australia. The multi-temporal imagery, FPC models and 26,579 training pixels were used in a binomial logistic regression model to estimate the probability of each pixel containing trees. The probability images were classified into a binary map of tree cover using local thresholds, and then visually edited to reduce errors. The final tree map was then attributed with the mean FPC value from the multi-temporal imagery. Validation of the binary map based on visually assessed high resolution reference imagery revealed an overall accuracy of 88% (±0.51% standard error, while comparison against airborne lidar derived data also resulted in an overall accuracy of 88%. A preliminary assessment of the FPC map by comparing against 76 field measurements showed a very good agreement (r2 = 0.90 with a root mean square error of 8.57%, although this may not be representative due to the opportunistic sampling design. The map represents a regionally consistent and locally relevant record of tree cover for NSW, and

  5. Integrating Real-time and Manual Monitored Soil Moisture Data to Predict Hillslope Soil Moisture Variations with High Temporal Resolutions

    Science.gov (United States)

    Zhu, Qing; Lv, Ligang; Zhou, Zhiwen; Liao, Kaihua

    2016-04-01

    Spatial-temporal variability of soil moisture 15 has been remaining an challenge to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time soil moisture monitoring methods. This restricted the comprehensive and intensive examination of soil moisture dynamics. In this study, we aimed to integrate the manual and real-time monitored soil moisture to depict the hillslope dynamics of soil moisture with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear models (support vector machines-SVM) were used to predict soil moisture at 38 manual sites (collected 1-2 times per month) with soil moisture automatically collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each manual site, optimal soil moisture prediction model of this site was then determined. Results show that soil moisture at these 38 manual sites can be reliably predicted (root mean square errorsindex, profile curvature, and relative difference of soil moisture and its standard deviation influenced the selection of prediction model since they related to the dynamics of soil water distribution and movement. By using this approach, hillslope soil moisture spatial distributions at un-sampled times and dates were predicted after a typical rainfall event. Missing information of hillslope soil moisture dynamics was then acquired successfully. This can be benefit for determining the hot spots and moments of soil water movement, as well as designing the proper soil moisture monitoring plan at the field scale.

  6. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.

    2017-01-01

    The increase in extreme precipitation is likely to be one of the most significant impacts of climate change in cities due to increased pluvial flood risk. Hence, reliable information on changes in sub-daily extreme precipitation is needed for robust adaptation strategies. This study explores...... extreme precipitation over Denmark generated by the regional climate model (RCM) HIRHAM-ECEARTH at different spatial resolutions (8, 12, 25 and 50km), three RCM from the RiskChange project at 8km resolution and three RCMs from ENSEMBLES at 25km resolution at temporal aggregations from 1 to 48h......) are more consistent across all temporal aggregations in the representation of high-order moments and extreme precipitation. The biases in the spatial pattern of extreme precipitation change across temporal and spatial resolution. The hourly extreme value distributions of the HIRHAM-ECEARTH simulations...

  7. The evolution of active Lavina di Roncovetro landslides by multi-temporal high-resolution topographic data

    Science.gov (United States)

    Isola, Ilaria; Fornaciai, Alessandro; Favalli, Massimiliano; Gigli, Giovanni; Nannipieri, Luca; Mucchi, Lorenzo; Intrieri, Emanuele; Pizziolo, Marco; Bertolini, Giovanni; Trippi, Federico; Casagli, Nicola; Schina, Rosa; Carnevale, Ennio

    2017-04-01

    High-resolution topographic data has been collected over the Lavina di Roncovetro active landslide (Reggio Emilia, Italy) for about 3 years by using various methods and technologies. Tha Lavina di Roncovetro landslide can be considered as a fluid-viscous mudflow, which can reach a down flow maximum rate of 10 m/day. The landslide started between the middle and the end of the XIX century and since then it has had a rapid evolution mainly characterized by the rapid retrogression of the crown to the extent that now reaches the top of Mount Staffola. In the frame of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12ENV/IT/001033) the Lavina di Roncovetro landslide has been periodically tracked using technologies that span from the LiDAR, both terrestrial and aerial, to the Structure from Motion (SfM) photogrammetry method based on Unmanned Aerial Vehicle (UAV) and aerial survey. These data are used to create six high-resolution Digital Terrain Models (DEMs), which imaged the landslide surface on March 2014, October 2014, June 2015, July 2015, January 2016 and December 2016. Multi-temporal high-resolution topographic data have been used for qualitative and quantitative morphometric analysis and topographic change detection of the landslide with the aim to estimate and map the volume of removed and/or accumulated material, the average rates of vertical and horizontal displacement and the deformation structures affecting the landslide over the investigated period.

  8. High-resolution temporal analysis of deep subseafloor microbial communities inhabiting basement fluids

    Science.gov (United States)

    Jungbluth, S.; Lin, H. T.; Hsieh, C. C.; Rappe, M. S.

    2014-12-01

    The temporal variation in microbial communities inhabiting the anoxic, sediment-covered basaltic ocean basement is largely uncharacterized due to the inaccessible nature of the environment and difficulties associated with collection of samples from low-biomass microbial habitats. Here, a deep sea instrumented platform was employed on the Juan de Fuca Ridge in the summer of 2013 to collect 46 samples of basement fluids from the most recent generation of borehole observatories (U1362A and B), which feature multiple sampling horizons at a single location and fluid delivery lines manufactured using stainless steel or inert polytetrafluoroethylene (PTFE) parts. Included were three time-series deployments of the GEOmicrobe sled meant to resolve the fine-scale (i.e. hourly) temporal variation within in situ crustal microbial communities. Illumina technology was used to sequence small subunit ribosomal RNA (SSU rRNA) gene fragments from sediment, seawater, and subseafloor fluids. Similar to has been reported previously, basic differences in the three environments was observed. Fluid samples from depth horizons extending 30, 70, and ~200 meters sub-basement revealed differences in the observed microbial communities, indicating potential depth-specific zonation of microorganisms in the basaltic basement fluids. Extensive overlap between microorganisms collected from a single depth horizon but using two fluid delivery lines manufactured with different materials was observed, though some differences were also noted. Several archaeal (e.g. THSCG, MCG, MBGE, Archaeoglobus) and bacterial (e.g. Nitrospiraceae, OP8, KB1) lineages detected in previous years of basement fluid sampling nearby were found here, which further supports the notion that these microorganisms are stable residents of anoxic basaltic subseafloor fluids. Direct cell enumeration of samples collected from U1362A and U1362B revealed an elevated biomass compared to samples at these locations from previous years

  9. Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations

    Science.gov (United States)

    de Kleer, Katherine R.; de Pater, Imke

    2017-10-01

    Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.

  10. A high spatio-temporal resolution optical pyrometer at the ORION laser facility.

    Science.gov (United States)

    Floyd, Emma; Gumbrell, Edward T; Fyrth, Jim; Luis, James D; Skidmore, Jonathan W; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  11. A high spatio-temporal resolution optical pyrometer at the ORION laser facility

    Science.gov (United States)

    Floyd, Emma; Gumbrell, Edward T.; Fyrth, Jim; Luis, James D.; Skidmore, Jonathan W.; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  12. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development

    Directory of Open Access Journals (Sweden)

    Nick D.L. Owens

    2016-01-01

    Full Text Available Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that “temporal synexpression” predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  13. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  14. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    Science.gov (United States)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  15. Single-Cell Resolution of Temporal Gene Expression during Heart Development.

    Science.gov (United States)

    DeLaughter, Daniel M; Bick, Alexander G; Wakimoto, Hiroko; McKean, David; Gorham, Joshua M; Kathiriya, Irfan S; Hinson, John T; Homsy, Jason; Gray, Jesse; Pu, William; Bruneau, Benoit G; Seidman, J G; Seidman, Christine E

    2016-11-21

    Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions

    Directory of Open Access Journals (Sweden)

    Moschner Carsten

    2007-08-01

    Full Text Available Abstract Background Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. Results Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. Conclusion We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.

  17. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Han, Shin-Chan; Morcrette, Cyril J.

    2017-01-01

    New, viable, and sustainable observation strategies from a constellation of satellites have attracted great attention across many scientific communities. Yet the potential for monitoring global Earth outgoing radiation using such a strategy has not been explored. To evaluate the potential of such a constellation concept and to investigate the configuration requirement for measuring radiation at a time resolution sufficient to resolve the diurnal cycle for weather and climate studies, we have developed a new recovery method and conducted a series of simulation experiments. Using idealized wide field-of-view broadband radiometers as an example, we find that a baseline constellation of 36 satellites can monitor global Earth outgoing radiation reliably to a spatial resolution of 1000 km at an hourly time scale. The error in recovered daily global mean irradiance is 0.16 W m-2 and -0.13 W m-2, and the estimated uncertainty in recovered hourly global mean irradiance from this day is 0.45 W m-2 and 0.15 W m-2, in the shortwave and longwave spectral regions, respectively. Sensitivity tests show that addressing instrument-related issues that lead to systematic measurement error remains of central importance to achieving similar accuracies in reality. The presented error statistics therefore likely represent the lower bounds of what could currently be achieved with the constellation approach, but this study demonstrates the promise of an unprecedented sampling capability for better observing the Earth's radiation budget.

  18. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  19. Inside the PS tunnel

    CERN Multimedia

    1974-01-01

    Pre-start work is going on at the end of the PS long shut-down. The photo shows secondary beams drawn from an internal target (bottom) towards South Hall, behind the shielding wall (top) (see also photo 7409012X).

  20. PS Control Room

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    The good old PS Control Room, all manual. For each parameter, a knob or a button to control it; for each, a light or meter or oscilloscope to monitor it; carefully written pages serve as the data bank; phones and intercom for communication. D.Dekkers is at the microphone, M.Valvini sits in front.

  1. PS auxiliary magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  2. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (...... non-intrusively and reliably image freezing patterns and their lateral variation on a 10-100 m scale that is difficult to sample by point measurements.......) measurements at high temporal resolution at a heath tundra site on Disko Island on the west coast of Greenland (69°N). Borehole sediment characteristics and subsurface temperatures supplemented the DC-IP measurements. Data acquired during the freezing period of October 2013 – February 2014 clearly image...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing...

  3. Observation of fiber fuse propagation speed with high temporal resolution using heterodyne detection and time-frequency analysis.

    Science.gov (United States)

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Shuai; He, Zuyuan

    2017-09-01

    We demonstrate real-time observation of fiber fuse propagation speed with high temporal resolution of 2.4 μs by combining heterodyne detection and time-frequency analysis. The periodic oscillation of fiber fuse propagation speed over a power range from 2.5 to 6.3 W with an increase in oscillation frequency from 6.18 to 6.45 kHz was observed. The relaxation processes before reaching equilibrium have been studied during initiation and power modulation processes for the first time, to the best of our knowledge. We confirm that the speed variation is largely dependent on the power fluctuation during the termination process. The proposed method is useful for validating the different fiber fuse heat conduction models.

  4. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  5. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    Directory of Open Access Journals (Sweden)

    M. Furger

    2017-06-01

    Full Text Available The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb showed excellent correlation between the compared methods, with r2 values  ≥  0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28 and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  6. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    Science.gov (United States)

    Furger, Markus; Cruz Minguillón, María; Yadav, Varun; Slowik, Jay G.; Hüglin, Christoph; Fröhlich, Roman; Petterson, Krag; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  7. Checking Asymmetry of Magnetic Helicity Using Magnetograms with High Spatial and Temporal Resolution

    Science.gov (United States)

    Tian, Lirong; Zhu, C.; Alexander, D.

    2010-05-01

    In order to check if the helicity imbalance is robust between the leading and following polarities, found by Tian & Alexander, we use an improved technique, differential affline velocity estimator (DAVE), on series of MDI 1m and 96m line-of-sight magnetograms with spatial resolution of 0.6 and 2 arcsecs. respectively, to measure photospheric flow motions of an emerging active region: NOAA 10365 (S08). A better parameter of helicity density (Gθ) than GA is employed to calculate helicity injection rate of leading and following polarities. Our results display that the helicity injection rate of using MDI/1m data is 2 times larger than that of using MDI/ 96m data. The helicity injection rate is little affected by the size of apodizing window selected and the noise level (20 Gauss). However, it is improved so much due to decreasing time difference (up to Δt=10 mines) of two images tracked. The helicity injection rate of two polarities of the active region developed as roughly same step with flux emergence,and maintain its imbalance with more amount in the negative (leading) polarity over tracking period of three days, which is a similar development tendency no matter using MDI/1m data or MDI/96m data. These results reflect that the time difference of two tracking images is the most important factor affecting amount of helicity injection rate, while there is little relation with spatial resolution of data, the size of apodizing window, and the noise level. Therefore, it should be reliable to study the development of helicity injection rate and imbalanced relationship of two polarities when using MDI/96m data, though the amount calculated is two times smaller. Further test for MDI/96m data of ARs 8214 and 0656 confirm that the helicity imbalance indeed exists between the leading and following polarities.

  8. Estimating rainfall distributions at high temporal resolutions using a multifractal model

    Directory of Open Access Journals (Sweden)

    A. Pathirana

    2003-01-01

    Full Text Available Rainfall data from 18 stations in the vicinity of Tokyo city, measured to a precision of 1 mm, were analysed for multifractal properties. A multifractal model based on the scaling properties of temporal distribution of rainfall intensities was formulated to investigate the intensity distribution relationships in the available scaling regime. Although conventional analysis did not provide encouraging results with these measurements, an alternative approach that could be applied to rainfall data of widely variable quality and duration was used to establish a scaling relationship between daily and hourly rainfall intensities. Using a discrete cascade algorithm based on the log-Lèvy generator, synthetic hourly rainfall series were generated from the multifractal statistics of daily-accumulated rainfall. Several properties of rainfall time series that are relevant to the use of rainfall data in surface hydrological studies were used to determine, statistically, the degree of agreement between the synthetic hourly series and observed hourly rainfall. Keywords: rainfall modelling, cascades, multifractal, downscaling

  9. Temporal Correlations in Vortex Channel Flow Studied Using High-Resolution Hall Probes.

    Science.gov (United States)

    James, S.; Field, S. B.; Shtrikman, H.; Hong, K.; Reich, D. H.

    1998-03-01

    The dynamics of vortices near the depinning transition can be quite complex, with vortices moving via channel-like flow configurations in a manner which is not fully understood. We have investigated this system using single and multiple GaAs heterojunction Hall probes fixed to a current-carrying Nb strip. A single 1μm fixed probe reveals that the (time-averaged) flux beneath it changes in a discrete fashion at evidently random times. The flux may remain at a particular value for up to several seconds before changing, during which time millions of vortices pass under the probe. This suggests that the vortices flow along very long-lived channels which occasionally rearrange themselves, perhaps due to thermal activation of pinned vortices. An extension of the investigation using a linear array of 16 Hall probes arranged perpendicular to the vortex flow will further reveal spatial and temporal correlations in this channel flow. The array consists of a 1μm-wide bar along which adjoin 16 pairs of 1μm-wide voltage leads at 1μm intervals. A 16 channel digital lockin technique has been developed to record the data.

  10. SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Jacinto [Queen' s University, Belfast; Fernandes, Daniel [University of Aveiro, Portugal; Aiouache, Farid [Queen' s University, Belfast; Goguet, Alexandre [Queen' s University, Belfast; Hardacdre, Christopher [Queen' s University, Belfast; Lundie, David [Hiden Analytical Ltd; Naeem, Wasif [Queen' s University, Belfast; Partridge Jr, William P [ORNL; Stere, Cristina [Queen' s University, Belfast

    2010-01-01

    Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

  11. Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution.

    Science.gov (United States)

    Dumont, Egon; Johnson, Andrew C; Keller, Virginie D J; Williams, Richard J

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ~6 x 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production.Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L(-1) nano silver and 1.5 ng L(-1) nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L(-1) and 150 ng L(-1), respectively. Predicted concentrations were usually highest in July.

  12. Image Fusion-Based Change Detection for Flood Extent Extraction Using Bi-Temporal Very High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Younggi Byun

    2015-08-01

    Full Text Available Change detection based on satellite images acquired from an area at different dates is of widespread interest, according to the increasing number of flood-related disasters. The images help to generate products that support emergency response and flood management at a global scale. In this paper, a novel unsupervised change detection approach based on image fusion is introduced. The approach aims to extract the reliable flood extent from very high-resolution (VHR bi-temporal images. The method takes an advantage of the spectral distortion that occurs during image fusion process to detect the change areas by flood. To this end, a change candidate image is extracted from the fused image generated with bi-temporal images by considering a local spectral distortion. This can be done by employing a universal image quality index (UIQI, which is a measure for local evaluation of spectral distortion. The decision threshold for the determination of changed pixels is set by applying a probability mixture model to the change candidate image based on expectation maximization (EM algorithm. We used bi-temporal KOMPSAT-2 satellite images to detect the flooded area in the city of N′djamena in Chad. The performance of the proposed method was visually and quantitatively compared with existing change detection methods. The results showed that the proposed method achieved an overall accuracy (OA = 75.04 close to that of the support vector machine (SVM-based supervised change detection method. Moreover, the proposed method showed a better performance in differentiating the flooded area and the permanent water body compared to the existing change detection methods.

  13. SU-E-J-126: Respiratory Gating Quality Assurance: A Simple Method to Achieve Millisecond Temporal Resolution

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, B; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2014-06-01

    Purpose: Low temporal latency between a gating on/off signal and a linac beam on/off during respiratory gating is critical for patient safety. Although, a measurement of temporal lag is recommended by AAPM Task Group 142 for commissioning and annual quality assurance, there currently exists no published method. Here we describe a simple, inexpensive, and reliable method to precisely measure gating lag at millisecond resolutions. Methods: A Varian Real-time Position Management™ (RPM) gating simulator with rotating disk was modified with a resistive flex sensor (Spectra Symbol) attached to the gating box platform. A photon diode was placed at machine isocenter. Output signals of the flex sensor and diode were monitored with a multichannel oscilloscope (Tektronix™ DPO3014). Qualitative inspection of the gating window/beam on synchronicity were made by setting the linac to beam on/off at end-expiration, and the oscilloscope's temporal window to 100 ms to visually examine if the on/off timing was within the recommended 100-ms tolerance. Quantitative measurements were made by saving the signal traces and analyzing in MatLab™. The on and off of the beam signal were located and compared to the expected gating window (e.g. 40% to 60%). Four gating cycles were measured and compared. Results: On a Varian TrueBeam™ STx linac with RPM gating software, the average difference in synchronicity at beam on and off for four cycles was 14 ms (3 to 30 ms) and 11 ms (2 to 32 ms), respectively. For a Varian Clinac™ 21EX the average difference at beam on and off was 127 ms (122 to 133 ms) and 46 ms (42 to 49 ms), respectively. The uncertainty in the synchrony difference was estimated at ±6 ms. Conclusion: This new gating QA method is easy to implement and allows for fast qualitative inspection and quantitative measurements for commissioning and TG-142 annual QA measurements.

  14. High spatio-temporal resolution PIV of laminar boundary layer relaxation instability at the free surface of a jet

    Science.gov (United States)

    Andre, Matthieu; Bardet, Philippe

    2012-11-01

    In high-speed free surface flows, microscale instabilities can lead to dramatic macroscale effects such as waves, breakup, or air entrainment. The importance of jets in practical applications requires a better understanding of the mechanisms leading to these instabilities. This experimental study focuses on laminar boundary layer relaxation (LBLR) instability. This has received fewer attention than other instabilities due to the small scale, the high Reynolds number and the proximity of an interface. The experiment features a 20 . 3 mm × 146 . 0 mm laminar slab wall jet exiting a nozzle into quiescent air (Re= 3 . 1 ×104 to 1 . 6 ×105). The free surface is flat near the nozzle exit then the LBLR leads to 2D capillary waves which can become very steep eventually resulting in primary breakup and air entrainment. The inception and growth of the capillaries are investigated using time-resolved PIV coupled with PLIF to track the free surface. A magnification of 4 allows a spatial and temporal resolution better than 0.1mm and 0.1ms, respectively. These high resolution results show the role of vortices -created by the roll-up of the shear layer below the surface- in the formation of capillaries. Vortices and waves are a coupled system; the waves can sustain, damp, or amplify. This study has been supported by the start-up funds from The George Washington University to Dr. Bardet.

  15. Temporal resolution: performance of school-aged children in the GIN - Gaps-in-noise test.

    Science.gov (United States)

    Amaral, Maria Isabel Ramos do; Colella-Santos, Maria Francisca

    2010-01-01

    Time resolution hearing skill is the minimum time necessary to solve acoustic events, which is fundamental for speech understanding, and which may be assessed by gap-detection tests, such as the Gaps-in-noise test (GIN). the purpose of this study was to verify the performance of time processing ability in children with no hearing and/or education difficulties by applying the GIN test in both genders and ages from 8 to 10 years. a prospective cross-sectional contemporary cohort. The GIN test was applied to 75 school-aged children separated into three groups by age. The findings showed no statistical differences among age groups or ears. Males had slightly better responses than females on the percentage of correct responses only. The gap threshold and percentage of correct responses were calculated regardless of the ear, gender or age, and were respectively 4.7ms and 73.6%. Based on a 95% confidence interval, the cut-off criterion for normal and abnormal performance was 6.1ms for the mean gap detection threshold and 60% for the percentage of correct responses.

  16. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    Science.gov (United States)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  17. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  18. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  19. Is High Temporal Resolution Achievable for Paediatric Cardiac Acquisitions during Several Heart Beats? Illustration with Cardiac Phase Contrast Cine-MRI.

    Directory of Open Access Journals (Sweden)

    Laurent Bonnemains

    Full Text Available During paediatric cardiac Cine-MRI, data acquired during cycles of different lengths must be combined. Most of the time, Feinstein's model is used to project multiple cardiac cycles of variable lengths into a mean cycle.To assess the effect of Feinstein projection on temporal resolution of Cine-MRI.1/The temporal errors during Feinstein's projection were computed in 306 cardiac cycles fully characterized by tissue Doppler imaging with 6-phase analysis (from a population of 7 children and young adults. 2/The effects of these temporal errors on tissue velocities were assessed by simulating typical tissue phase mapping acquisitions and reconstructions. 3/Myocardial velocities curves, extracted from high-resolution phase-contrast cine images, were compared for the 6 volunteers with lowest and highest heart rate variability, within a population of 36 young adults.1/The mean of temporal misalignments was 30 ms over the cardiac cycle but reached 60 ms during early diastole. 2/During phase contrast MRI simulation, early diastole velocity peaks were diminished by 6.1 cm/s leading to virtual disappearance of isovolumic relaxation peaks. 3/The smoothing and erasing of isovolumic relaxation peaks was confirmed on tissue phase mapping velocity curves, between subjects with low and high heart rate variability (p = 0.05.Feinstein cardiac model creates temporal misalignments that impair high temporal resolution phase contrast cine imaging when beat-to-beat heart rate is changing.

  20. Fine-Scale Temporal Resolution of Sediment Source by Be-7

    Science.gov (United States)

    Stubblefield, A. P.; Whiting, P. J.; Fondran, C. L.; Matisoff, G.

    2005-05-01

    Understanding of erosional processes occurring at fine scales (cm) and over short time periods (min) in agricultural settings is essential for efforts to minimize landscape scarring, conserve surface nutrients, and reduce off-site impacts. Cosmogenic and fallout radionuclides have been successfully used in a variety of settings to determine sediment source and sediment transport processes. In this study we used the short-lived radionuclide Be-7 (t1/2= 53 d) to investigate erosional processes occurring during runoff from a 4 m by 9 m erosion plot. The plot was established in a 9.8% slope no-till corn field at the USDA ARS Deep Loess Research Station in Treynor, Iowa. Before and after the rainfall, fine resolution soil profiles were collected to determine the distribution of radionuclides and soil nutrients with depth. Be-7 was concentrated near the soil surface. Prior to the rainfall event, rare earth tagged soil particles were applied in three discrete strips, 0.5 m wide, along the contour. Forty runoff samples were collected during the course of a 5.7 cm thunderstorm event. Runoff efficiency was 25% and sediment yield was 0.234 kg m-2. Be-7 activities in runoff varied with hydrologic conditions and rainfall intensity, ranging from 0.06-0.6 Bq gm-1. Dominant erosional processes observed were rain splash erosion, overland flow and rill transport. Be-7 rich sediment was delivered at times corresponding corresponded to peaks in rainfall intensity, onset of overland flow, and development of hydrologic connectivity. Sediment had lower Be-7 activity during peak sediment delivery, probably due to dilution by large volumes of Be-7 poor sediment derived from deeper rill erosion. Soil tagged with the rare earth elements Ho, Tb, and Eu showed downslope movement in interrill areas, supporting conclusion of rain splash and sheetflow erosive mechanisms.

  1. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions.

    Science.gov (United States)

    Xue, Hui; Kellman, Peter; Larocca, Gina; Arai, Andrew E; Hansen, Michael S

    2013-11-14

    Cine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically. This study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm²) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and

  2. A co-training, mutual learning approach towards mapping snow cover from multi-temporal high-spatial resolution satellite imagery

    Science.gov (United States)

    Zhu, Liujun; Xiao, Pengfeng; Feng, Xuezhi; Zhang, Xueliang; Huang, Yinyou; Li, Chengxi

    2016-12-01

    High-spatial and -temporal resolution snow cover maps for mountain areas are needed for hydrological applications and snow hazard monitoring. The Chinese GF-1 satellite is potential to provide such information with a spatial resolution of 8 m and a revisit of 4 days. The main challenge for the extraction of multi-temporal snow cover from high-spatial resolution images is that the observed spectral signature of snow and snow-free areas is non-stationary in both spatial and temporal domains. As a result, successful extraction requires adequate labelled samples for each image, which is difficult to be achieved. To solve this problem, a semi-supervised multi-temporal classification method for snow cover extraction (MSCE) is proposed. This method extends the co-training based algorithms from single image classification to multi-temporal ones. Multi-temporal images in MSCE are treated as different descriptions of the same land surface, and consequently, each pixel has multiple sets of features. Independent classifiers are trained on each feature set using a few labelled samples, and then, they are iteratively re-trained in a mutual learning way using a great number of unlabelled samples. The main principle behind MSCE is that the multi-temporal difference of land surface in spectral space can be the source of mutual learning inspired by the co-training paradigm, providing a new strategy to deal with multi-temporal image classification. The experimental findings of multi-temporal GF-1 images confirm the effectiveness of the proposed method.

  3. PS injection area

    CERN Multimedia

    1974-01-01

    Looking against the direction of protons in the main ring (left): the beam coming from the linac 1 either goes to the booster (on the right) or is deflected towards the PS to be directly injected into section 26 (facing the camera). Also shown the start of the TT2 line, ejected from straight section 16 to go towards the ISR passing over the beam line from the linac. (see Photo Archive 7409009)

  4. PS injection area

    CERN Multimedia

    1974-01-01

    To the right is the PS ring viewed along the direction of the protons. At the left the injection line coming from the 50 MeV Linac 1 (bottom) and going towards the 800 MeV booster, or deflected to the right to be injected directly into straight section 16. The drumlike element behind the (blue) dipole magnet is a 'debuncher' (a 200 MHz cavity). See photos 7409014X and 7409009.

  5. Design and evaluation of an innovative MRI-compatible Braille stimulator with high spatial and temporal resolution.

    Science.gov (United States)

    Debowska, Weronika; Wolak, Tomasz; Soluch, Pawel; Orzechowski, Mateusz; Kossut, Malgorzata

    2013-02-15

    Neural correlates of Braille reading have been widely studied with different neuroimaging techniques. Nevertheless, the exact brain processes underlying this unique activity are still unknown, due to suboptimal accuracy of imaging and/or stimuli delivery methods. To study somatosensory perception effectively, the stimulation must reflect parameters of the natural stimulus and must be applied with precise timing. In functional magnetic resonance imaging (fMRI) providing these characteristics requires technologically advanced solutions and there have been several successful direct tactile stimulation devices designed that allow investigation of somatotopic organization of brain sensory areas. They may, however, be of limited applicability in studying brain mechanisms related to such distinctive tactile activity as Braille reading. In this paper we describe the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS) enabling precise and stable delivery of standardized Braille characters with high temporal resolution. Our device is fully programmable, flexible in stimuli delivery and can be easily implemented in any research unit. The Braille Character Stimulator was tested with a same-different discrimination task on Braille characters during an event-related fMRI experiment in eleven right-handed sighted adult subjects. The results show significant activations in several cortical areas, including bilateral primary (SI) and secondary somatosensory (SII) cortices, bilateral premotor and supplementary motor areas, inferior frontal gyri, inferior temporal gyri and precuneus, as well as contralateral (to the stimulated hand) thalamus. The results validate the use of the BCS as a method of effective stimuli application in fMRI studies, in both sighted and visually impaired subjects. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The influence of vegetation covers on soil moisture dynamics at high temporal resolution in scattered tree woodlands of Mediterranean climate

    Science.gov (United States)

    Lozano-Parra, Javier; Schnabel, Susanne; Ceballos-Barbancho, Antonio

    2015-04-01

    Soil water is a key factor that controls the organization and functioning of dryland ecosystems. However, in spite of its great importance in ecohydrological processes, most of the studies focus on daily or longer timescales, while its dynamics at shorter timescales are very little known. The main objective of this work was to determine the role of vegetation covers (grassland and tree canopy) in the soil hydrological response using measurements with high temporal resolution in evergreen oak woodland with Mediterranean climate. For this, soil water content was monitored continuously with a temporal resolution of 30 minutes and by means of capacitance sensors, mainly for the hydrological years 2010-2011 and 2011-2012. They were installed at 5, 10 and 15 cm, and 5 cm above the bedrock and depending on soil profile. This distribution along the soil profile is justified because soils are generally very shallow and most of the roots are concentrated in the upper layer. The sensors were gathered in 8 soil moisture stations in two contrasting situations characterized by different vegetation covers: under tree canopy and in open spaces or grasslands. Soil moisture variations were calculated at rainfall event scale at top soil layer and deepest depth by the difference between the final and initial soil moisture registered by a sensor at the finish and the beginning of the rainfall event, respectively. Besides, as soil moisture changes are strongly influenced by antecedent conditions, different antecedent soil moisture conditions or states, from driest to wettest, were also defined. The works were carried out in 3 experimental farms of the Spanish region of Extremadura. Results obtained revealed that rainwater amount bypassing vegetation covers and reaching the soil may temporarily be modified by covers according to precipitation properties and antecedent environmental conditions (from dry to wet) before the rain episode. Rainfall amounts triggering a positive soil

  7. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Rilling, M [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada); Goulet, M [Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Beaulieu, L; Archambault, L [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Thibault, S [Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada)

    2016-06-15

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second

  8. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  9. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  10. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    Science.gov (United States)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  11. Temporal variability in dynamic and colloidal metal fractions determined by high resolution in situ measurements in a UK estuary.

    Science.gov (United States)

    Braungardt, Charlotte B; Howell, Kate A; Tappin, Alan D; Achterberg, Eric P

    2011-07-01

    In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations. VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77±17%) and Cu (60±25%) were present as colloids, which constituted a less important fraction for Cd (37±30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. On the possibility of TLE measurements with high sensitivity and temporal resolution by TUS detector on board Lomonosov satellite

    Science.gov (United States)

    Klimov, P.; Garipov, G.; Khrenov, B.; Morozenko, V.; Panasyuk, M.; Sharakin, S.; Yashin, I.

    2012-12-01

    Moscow State University in collaboration with other Russian and foreign institutions is preparing a new scientific and educational satellite Lomonosov. Its scientific payload consists of various detectors which measurements directed mostly to extreme processes in the far Universe (gamma ray bursts - GRB and ultra high energy cosmic rays - UHECR). Near Earth extreme phenomena, like atmospheric transient luminous events (TLE) can be considered as additional scientific objectives for detector TUS. The UHECR detector TUS will observe faint fluorescent tracks of extensive air shower (EAS), produced by a primary energetic particle in the atmosphere. For this purpose the detector contains a large Fresnel-type mirror-concentrator (~2 sq.m.) and photo receiver placed in the focal plane (matrix of 16x16 PM tubes with a spatial resolution in the atmosphere ~ 5 km). Electronics allow to achieve a microsecond time sampling for the fastest events and sub-millisecond for the slower ones. In addition to the main photo receiver, which measure UV light collected by a mirror, there was installed a pin-hole camera with two multi anode PM tubes orientated directly to the atmosphere. It has the same FOV, but smaller aperture ratio. The main photo receiver of TUS detector will measure more faint light (EAS fluorescence, TLE initial stage, meteor tracks). In case of large signal and TUS electronics saturation, the pin-hole camera will continue measurements and provide additional information about luminous events. Estimations of TLE frequency and their intensity in UV wavelength range could be done based on Universitetsy-Tatiana-2 satellite data. In the presented work a possibility of transient luminous events measurements from space by TUS detector with high sensitivity and temporal resolution is discussed.

  13. Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2013-01-01

    The aim of this paper is to assess the relative importance of low flow indicators for the River Rhine and to identify their appropriate temporal lag and resolution. This is done in the context of low flow forecasting with lead times of 14 and 90 days. First, the Rhine basin is subdivided into seven

  14. Cardiac imaging with multi-sector data acquisition in volumetric CT: variation of effective temporal resolution and its potential clinical consequences

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.

    2009-02-01

    With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.

  15. At PS170 (APPLE)

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    APPLE stands for Antiproton-Proton to Pair of LEptons (an acronym of the ancestor experiment PAPLEP), the PS170 experiment setup at LEAR to study e+e-pair production in antiproton-proton annihilation by Padova-(CEN) Saclay- Torino Collaboration. It consisted of a liquid hydrogen target surrounded by several layers of proportional chambers in the vertical field of a C-magnet (this photo), a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter (see photo 8302539X, 8302540X). See also photo 8301539X for the setup assembly at an early stage.

  16. High Resolution Spatio Temporal Moments Analysis of Solute Migration Captured using Pre-clinical Medical Imaging Techniques

    Science.gov (United States)

    Dogan, M.; Moysey, S. M.; Powell, B. A.; DeVol, T. A.

    2016-12-01

    Advances in medical imaging technologies are continuously expanding the range of applications enabled within the earth sciences. While computed x-ray tomography (CT) scans have traditionally been used for investigating the structure of geologic materials, it is now possible to perform 3D time-lapse imaging of dynamic processes, such as monitoring the infiltration of water into a soil, with sub-millimeter resolution. Likewise, single photon emission computed tomography (SPECT) can provide information on the evolution of solute transport with spatial resolution on the order of a millimeter by tracking the migration of gamma-ray emitting isotopes like 99mTc and 111In. While these imaging techniques are revolutionizing our ability to look within porous media, techniques for the analysis of such rich and large data sets are limited. The spatial and temporal moments of a plume have long been used to provide quantitative measures to describe plume movement in a wide range of settings from the lab to field. Moment analysis can also be used to estimate the hydrologic properties of the porous media. In this research, we investigate the use of moments for analyzing a high resolution 4D SPECT data set collected during a 99mTc transport experiment performed in a heterogeneous column. The 4D nature of the data set makes it amenable to the use of data mining and pattern recognition methods, such as cluster analysis, to identify regions or zones within the data that exhibit abnormal or unexpected behaviors. We then compare anomalous features within the SPECT data to similar features identified within the CT image to relate the flow behavior to pore-scale structures, such as porosity differences and macropores. Such comparisons help to identify whether these features are good predictors of preferential transport. Likewise, we evaluate whether local analysis of moments can be used to infer apparent parameters governing non-conservative transport in a heterogeneous porous media, such

  17. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data

    KAUST Repository

    Castruccio, Stefano

    2018-01-23

    Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)—coarser or larger spatial units—rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs). The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke.

  18. The Sentinel-2 MSI Can Increase the Temporal Resolution of 30m Satellite-Derived LAI Estimates

    Science.gov (United States)

    Dungan, J. L.; Li, S.; Ganguly, S.; Wang, W.; Nemani, R. R.; Ju, J.; Claverie, M.; Masek, J. G.

    2016-12-01

    The successful launch of the European Space Agency (ESA) Sentinel-2A (S2-A) on 23 June 2015 with its MultiSpectral Instrument (MSI) provides an important means to augment Earth-observation capabilities following the legacy of Landsat. After the three-month satellite commissioning campaign, the MSI onboard S-2A is performing very well (ESA, 2015). By 3 December 2015, the sensor data records have achieved provisional maturity status and have been accessed in level-1C Top-Of-Atmosphere (TOA) reflectance by the remote sensing community worldwide. Near-nadir observations by the MSI onboard S-2A and the Operational Land Imager (OLI) onboard Landsat 8 were collected during Simultaneous Nadir Overpasses as well as nearly coincident overpasses. This paper presents a processing chain using harmonized S-2A MSI and Landsat 8 OLI sensors to obtain increased temporal resolution in Leaf Area Index (LAI) estimates using the red-edge band B8A of MSI to replace the NIR band B08. Results demonstrate that LAI estimates from the MSI and OLI are comparable, and, given sufficient preprocessing for atmospheric correction and geometric rectification, can be used interchangeably to improve the frequency with which low LAI canopies can be monitored.

  19. Is bronchial wall imaging affected by temporal resolution? Comparative evaluation at 140 and 75 ms in 90 patients

    Energy Technology Data Exchange (ETDEWEB)

    Hutt, Antoine; Tacelli, Nunzia; Faivre, Jean-Baptiste; Remy, Jacques; Remy-Jardin, Martine [CHRU et Universite de Lille, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); Flohr, Thomas [Computed Tomography, Siemens Healthcare, Forchheim (Germany); Duhamel, Alain [CHRU et Universite de Lille, Department of Biostatistics (EA 2694), Lille (France)

    2016-02-15

    To evaluate the influence of temporal resolution (TR) on cardiogenic artefacts at the level of bronchial walls. Ninety patients underwent a dual-source, single-energy chest CT examination enabling reconstruction of images with a TR of 75 ms (i.e., optimized TR) (Group 1) and 140 ms (i.e., standard TR) (Group 2). Cardiogenic artefacts were analyzed at the level of eight target bronchi, i.e., right (R) and left (L) B1, B5, B7, and B10 (total number of bronchi examined: n = 720). Cardiogenic artefacts were significantly less frequent and less severe in Group 1 than in Group 2 (p < 0.0001) with the highest scores of discordant ratings for bronchi in close contact with cardiac cavities: RB5 (61/90; 68 %); LB5 (66/90; 73 %); LB7 (63/90; 70 %). In Group 1, 78 % (560/720) of bronchi showed no cardiac motion artefacts, whereas 22 % of bronchi (160/720) showed artefacts rated as mild (152/160; 95 %), moderate (7/160; 4 %), and severe (1/160; 1 %). In Group 2, 70 % of bronchi (503/720) showed artefacts rated as mild (410/503; 82 %), moderate (82/503; 16 %), and severe (11/503; 2 %). At 75 ms, most bronchi can be depicted without cardiogenic artefacts. (orig.)

  20. High temporal resolution measurements of ozone precursors in a rural background station. A two-year study.

    Science.gov (United States)

    Navazo, M; Durana, N; Alonso, L; Gómez, M C; García, J A; Ilardia, J L; Gangoiti, G; Iza, J

    2008-01-01

    We present a very complete database of individual non-methane hydrocarbon (NMHC) measurements with high temporal resolution (hourly) in a rural background atmosphere. We show their use to characterize the biogenic NMHC as well as to identify the transport and impact of anthropogenic NMHC on rural areas. In January 2003 an automatic GC-FID analyzer of volatile organic compounds between 2 and 10 carbon atoms (C2-C10 VOCs) was placed in the centre of the Valderejo Natural Park in northern Iberia (42.87 degrees N, 3.22 degrees W), far away from important cities. The system operated continuously until December 2004. Data coverage was higher than 70% for a total of 59 VOC of both anthropogenic and biogenic origin, with detection limits in the range of pptv. Our results allow for the description of the behaviour of these compounds, in order to identify external impacts arriving to the sampling site which has been recognized to be highly representative of a rural background atmosphere. Biogenic VOC concentrations have been compared also with the calculated emissions, using Guenther's algorithm, and the discrepancies interpreted in terms of the different reactivity of such compounds.

  1. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data.

    Science.gov (United States)

    Castruccio, Stefano; Ombao, Hernando; Genton, Marc G

    2018-01-22

    Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)-coarser or larger spatial units-rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs). The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke. © 2018, The International Biometric Society.

  2. High temporal resolution measurements of the isotopic composition of CH4 at the Lutjewad station, The Netherlands

    Science.gov (United States)

    Röckmann, Thomas; van der Veen, Carina; Chen, Huilin; Scheeren, Bert

    2017-04-01

    Isotope measurements can help constraining the atmospheric budget of the greenhouse gas methane (CH4) because different sources emit CH4 with slightly different isotopic composition. In the past, high precision isotope measurements have primarily been carried out by isotope ratio mass spectrometry on flask samples that are usually collected at relatively low temporal resolution. We have recently developed a fully automated gas chromatography - isotope ratio mass spectrometry system (GC-IRMS) for autonomous and unattended CH4 isotope measurements (δD and δ13C) in the field. The first deployment at the Cabauw Experimental Site for Atmospheric Research (CESAR) indicated that CH4 emissions from fossil fuel sources are overestimated in this region [1]. To further exploit the potential of this approach, the in situ system has been installed in November 2016 at the Lutjewad atmospheric monitoring and sampling site in the North of the Netherlands. This site is expected to sample also emissions from the large Groningen gas fields. The isotope measurements are expected to allow distinguishing these emissions from the agricultural emissions, which are also strong in this region. We will present the results from these ongoing measurements of δD and δ13C in CH4.. 1. Röckmann, T., et al., In situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 2016. 16: 10469-10487.

  3. A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution.

    Science.gov (United States)

    Cárdenas-Rodríguez, Julio; Howison, Christine M; Pagel, Mark D

    2013-05-01

    Dynamic contrast enhanced MRI (DCE-MRI) has utility for improving clinical diagnoses of solid tumors, and for evaluating the early responses of anti-angiogenic chemotherapies. The Reference Region Model (RRM) can improve the clinical implementation of DCE-MRI by substituting the contrast enhancement of muscle for the Arterial Input Function that is used in traditional DCE-MRI methodologies. The RRM is typically fitted to experimental results with a non-linear least squares algorithm. This report demonstrates that this algorithm produces inaccurate and imprecise results when DCE-MRI results have low SNR or slow temporal resolution. To overcome this limitation, a linear least-squares algorithm has been derived for the Reference Region Model. This new algorithm improves accuracy and precision of fitting the Reference Region Model to DCE-MRI results, especially for voxel-wise analyses. This linear algorithm is insensitive to injection speeds, and has 300- to 8000-fold faster calculation speed relative to the non-linear algorithm. The linear algorithm produces more accurate results for over a wider range of permeabilities and blood volumes of tumor vasculature. This new algorithm, termed the Linear Reference Region Model, has strong potential to improve clinical DCE-MRI evaluations. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    Directory of Open Access Journals (Sweden)

    Nathan J. Downs

    2017-11-01

    Full Text Available Exposure to natural sunlight, specifically solar ultraviolet (UV radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall, or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations, to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones. The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies.

  5. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    Science.gov (United States)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  6. Beyond iPS!

    Directory of Open Access Journals (Sweden)

    Editorial

    2012-01-01

    Full Text Available It’s undoubtedly a jubilant moment for scientists and clinicians working in the stem cell arena as Prof. Gurdon and Prof. Shinya Yamanaka have been chosen for the Nobel Prize in Physiology & Medicine this year. The mystery of cell biology is something unfathomable and probably the work of this duo as well as the other scientists, who have put their hands on in- vitro de-differentiation have opened our eyes to a new window or a new paradigm in cell biology. The iPS invention has brought a lot of hope in terms of potential direct benefits to treat several diseases, which have no definite options at the moment. But, we envisage that several spin-offs could come out of this invention and one very significant spin-off finding recently witnessed is the finding by Prof. Masaharu Seno and his team of researchers at the Okayama University, Japan (Chen L, et al. 2012, PLoS ONE 7(4:e33544.doi:10.1371/journal.pone.0033544. According to Prof. Seno, mouse iPS cells (miPS when cultured in the conditioned medium derived from cancer cell lines, differentiate into cancer stem cells (CSCs. While differentiating into CSCs, they do retain the potential to develop endothelial progenitor cells. Several questions arise here: 1.Are these miPS derived CSCs really pluripotent, even if the terminal differentiation destined to specific phenotypes? 2.Shouldn’t the Cancer Stem Cells be termed as cancer progenitor cells, as till date they are considered to be producing only cancer cells but not pluripotent to yield other types of normal tissues? The spin-offs could be infinite as the process of differentiation and de-differentiation happening due to trillions of signals and pathways, most still remaining not-so-well understood. A special mention should be made to Prof. Shinya Yamanaka as he has several sterling qualities to be a role-model for budding scientists. Apart from his passion for science, which made him shift his career from orthopedics to a cell biologist, his

  7. A high-resolution temporal record of environmental changes in the Eastern Caribbean (Guadeloupe) from 40 to 10 ka BP

    Science.gov (United States)

    Royer, Aurélien; Malaizé, Bruno; Lécuyer, Christophe; Queffelec, Alain; Charlier, Karine; Caley, Thibaut; Lenoble, Arnaud

    2017-01-01

    In neotropical regions, fossil bat guano accumulated over time as laminated layers in caves, hence providing a high-resolution temporal record of terrestrial environmental changes. Additionally, cave settings have the property to preserve such organic sediments from processes triggered by winds (deflation, abrasion and sandblasting) and intense rainfall (leaching away). This study reports both stable carbon and nitrogen isotope compositions of frugivorous bat guano deposited in a well-preserved stratigraphic succession of Blanchard Cave on Marie-Galante, Guadeloupe. These isotopic data are discussed with regard to climate changes and its specific impact on Eastern Caribbean vegetation during the Late Pleistocene from 40 to 10 ka cal. BP. Guano δ13C values are higher than modern ones, suggesting noticeable vegetation changes. This provides also evidence for overall drier environmental conditions during the Pleistocene compared to today. Meanwhile, within this generally drier climate, shifts between wetter and drier conditions can be observed. Large temporal amplitudes in both δ13C and δ15N variations reaching up to 5.9‰ and 16.8‰, respectively, also indicate these oceanic tropical environments have been highly sensitive to regional or global climatic forcing. Stable isotope compositions of bat guano deposited from 40 to 35 ka BP, the Last Glacial Maximum and the Younger-Dryas reveal relatively wet environmental conditions whereas, at least from the end of the Heinrich event 1 and the Bølling period the region experienced drier environmental conditions. Nevertheless, when considering uncertainties in the model age, the isotopic record of Blanchard Cave show relatively similar variations with known proxy records from the northern South America and Central America, suggesting thus that the Blanchard Cave record is a robust proxy of past ITCZ migration. Teleconnections through global atmospheric pattern suggest that islands of the eastern Caribbean Basin could

  8. High resolution spatio-temporal mapping of NO2 pollution for estimating personal exposures of the Dutch population

    Science.gov (United States)

    Soenario, Ivan; Helbich, Marco; Schmitz, Oliver; Strak, Maciek; Hoek, Gerard; Karssenberg, Derek

    2017-04-01

    Air pollution has been associated with adverse health effects (e.g., cardiovascular and respiration diseases) in the urban environments. Therefore, the assessment of people's exposure to air pollution is central in epidemiological studies. The estimation of exposures on an individual level can be done by combining location information across space and over time with spatio-temporal data on air pollution concentrations. When detailed information on peoples' space-time paths (e.g. commuting patterns calculated by means of spatial routing algorithms or tracked through GPS) and peoples' major activity locations (e.g. home location, work location) are available, it is possible to calculate more precise personal exposure levels depending on peoples' individual space-time mobility patterns. This requires air pollution values not only at a high level of spatial accuracy and high temporal granularity but such data also needs to be available on a nation-wide scale. As current data is seriously limited in this respect, we introduce a novel data set of NO2 levels across the Netherlands. The provided NO2 concentrations are accessible on hourly timestamps on a 5 meter grid cell resolution for weekdays and weekends, and each month of the year. We modeled a single Land Use Regression model using a five year average of NO2 data from the Dutch NO2 measurement network consisting of N=46 sampling locations distributed over the country. Predictor variables for this model were selected in a data-driven manner using an Elastic Net and Best Subset Selection procedure from 70 candidate predictors including traffic, industry, infrastructure and population-based variables. Subsequently, to model NO2 for each time scale (hour, week, month), the LUR coefficients were fitted using the NO2 data, aggregated per time scale. Model validation was grounded on independent data collected in an ad hoc measurement campaign. Our results show a considerable difference in urban concentrations between

  9. High-resolution CT of temporal bone trauma: review of 38 cases; L'apport du scanner dans les traumatismes du rocher: a propos de 38 cas

    Energy Technology Data Exchange (ETDEWEB)

    Hiroual, M.R.; Zougarhi, A.; Cherif Idrissi El Ganouni, N.; Essadki, O.; Ousehal, A. [CHU Mohamed 6, Service de Radiologie, Marrakech (Morocco); Tijani Adil, O.; Maliki, O.; Aderdour, L.; Raji, A. [CHU Mohamed 6, Service d' ORL, Marrakech (Morocco)

    2010-01-15

    Purpose Temporal bone trauma is frequent but difficult to assess due to the diversity of clinical presentations and complex anatomy. We have sought to assess the different types of fractures and complications on high-resolution CT. Materials and methods Descriptive retrospective study over a 24 month period performed in the ENT radiology section of the Mohammed 6 university medical center in Marrakech. A total of 38 cases of temporal bone trauma were reviewed. All patients underwent ENT evaluation and high-resolution CT of the temporal bone using 1 mm axial and coronal sections. Results Mean patient age was 33 years (range: 14-55 years) with male predominance (sex ratio: 36/2). Clinical symptoms were mainly otorrhagia and conductive hearing loss. Oblique extra-labyrinthine fractures were most frequent. Two cases of pneumo-labyrinth were noted. Management was conservative in most cases with deafness in 3 cases. Conclusion High-resolution CT of the temporal bone provides accurate depiction of lesions explaining the clinical symptoms and helps guide management. MRI is complimentary to further assess the labyrinth and VII-VIII nerve complex. (author)

  10. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

    Directory of Open Access Journals (Sweden)

    Yuhan Rao

    2015-06-01

    Full Text Available Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Linear Mixing Growth Model (NDVI-LMGM, is proposed to achieve the goal of accurately and efficiently blending MODIS NDVI time-series data and multi-temporal Landsat TM/ETM+ images. This method firstly unmixes the NDVI temporal changes in MODIS time-series to different land cover types and then uses unmixed NDVI temporal changes to predict Landsat-like NDVI dataset. The test over a forest site shows high accuracy (average difference: −0.0070; average absolute difference: 0.0228; and average absolute relative difference: 4.02% and computation efficiency of NDVI-LMGM (31 seconds using a personal computer. Experiments over more complex landscape and long-term time-series demonstrated that NDVI-LMGM performs well in each stage of vegetation growing season and is robust in regions with contrasting spatial and spatial variations. Comparisons between NDVI-LMGM and current methods (i.e., Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM, Enhanced STARFM (ESTARFM and Weighted Linear Model (WLM show that NDVI-LMGM is more accurate and efficient than current methods. The proposed method will benefit land surface process research, which requires a dense NDVI time-series dataset with high spatial resolution.

  11. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  12. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  13. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique

    Science.gov (United States)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper

    2016-04-01

    Soil-atmosphere exchange of greenhouse gases (GHGs) is commonly measured with closed static chambers (Pihlatie et al., 2013) with off-site gas chromatographic (GC) analysis for CH4 and N2O. Static chambers are widely used to observe in detail the effect of experimental manipulations, like climate change experiments, on GHG exchange (e.g. Carter et al., 2012). However, the low sensitivity of GC systems necessitates long measurement times and manual sampling, which increases the disturbance of the exchange of GHGs and leads to potential underestimation of fluxes (Christiansen et al., 2011; Creelman et al., 2013). The recent emergence of field proof infrared lasers using cavity ring-down spectroscopy (CRDS) have increased frequency and precision of concentration measurements and enabled better estimates of GHG fluxes (Christiansen et al., 2015) due to shorter chamber enclosure times. This minimizes the negative impact of the chamber enclosure on the soil-atmosphere gas exchange rate. Secondly, an integral aspect of understanding GHG exchange in terrestrial ecosystem is to achieve high temporal coverage. This is needed to capture the often dynamic behavior where fluxes can change rapidly over the course of days or even a few hours in response to e.g. rain events. Consequently, low temporal coverage in measurements of GHG exchange have in many past investigations led to highly uncertain annual budgets which severely limits our understanding of the ecosystem processes interacting with the climate system through GHG exchange. Real-time field measurements at high temporal resolution are needed to obtain a much more detailed understanding of the processes governing ecosystem CH4 exchange as well as for better predicting the effects of climate and environmental changes. We combined a state-of-the-art field applicable CH4 sensor (Los Gatos UGGA) with a newly developed ecosystem-level automatic chamber controlled by a LI-COR 8100/8150 system. The chamber is capable of

  14. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI), International Journal of Applied Earth Observation and Geoinformation

    KAUST Repository

    Houborg, Rasmus

    2015-12-12

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0

  15. Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial perfusion imaging.

    Science.gov (United States)

    Maredia, Neil; Radjenovic, Aleksandra; Kozerke, Sebastian; Larghat, Abdulghani; Greenwood, John P; Plein, Sven

    2010-12-01

    k-t Sensitivity-encoded (k-t SENSE) acceleration has been used to improve spatial resolution, temporal resolution, and slice coverage in first-pass cardiac magnetic resonance myocardial perfusion imaging. This study compares the effect of investing the speed-up afforded by k-t SENSE acceleration in spatial or temporal resolution. Ten healthy volunteers underwent adenosine stress myocardial perfusion imaging using four saturation-recovery gradient echo perfusion sequences: a reference sequence accelerated by sensitivity encoding (SENSE), and three k-t SENSE-accelerated sequences with higher spatial resolution ("k-t High"), shorter acquisition window ("k-t Fast"), or a shared increase in both parameters ("k-t Hybrid") relative to the reference. Dark-rim artifacts and image quality were analyzed. Semiquantitative myocardial perfusion reserve index (MPRI) and Fermi-derived quantitative MPR were also calculated. The k-t Hybrid sequence produced highest image quality scores at rest (P = 0.015). Rim artifact thickness and extent were lowest using k-t High and k-t Hybrid sequences (P spatial resolution by k-t SENSE acceleration produces the greatest reduction in dark rim artifact. There is good agreement between k-t SENSE and standard acquisition methods for semiquantitative and fully quantitative myocardial perfusion analysis. Copyright © 2010 Wiley-Liss, Inc.

  16. SPS and PS Experiments Committee

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    OPEN SESSION: 09:00 Status report of NA58 / COMPASS: A. Magnon 09:40 Status report of PS212 / DIRAC: L. Tausher 10:10 PS212 / DIRAC Addendum: L. Nemenov CLOSED SESSION on Tuesday, 27 April 2004 after the open session, Main Building, 6th floor conference room

  17. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    Science.gov (United States)

    Zhu, Qing; Zhou, Zhiwen; Duncan, Emily W.; Lv, Ligang; Liao, Kaihua; Feng, Huihui

    2017-02-01

    Spatio-temporal variability of soil moisture (θ) is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time θ monitoring methods. This restricted the comprehensive and intensive examination of θ dynamics. In this study, we integrated the manual and real-time monitored data to depict the hillslope θ dynamics with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear (support vector machines-SVM) models were used to predict θ at 39 manual sites (collected 1-2 times per month) with θ collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each depth and manual site, an optimal prediction model was then determined at this depth of this site. Results showed that θ at the 39 manual sites can be reliably predicted (root mean square errors index, profile curvature, and θ temporal stability influenced the selection of prediction model since they were related to the subsurface soil water distribution and movement. Using this approach, hillslope θ spatial distributions at un-sampled times and dates can be predicted. Missing information of hillslope θ dynamics can be acquired successfully.

  18. High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe

    Science.gov (United States)

    Preston, Alison R.; Bornstein, Aaron M.; Hutchinson, J. Benjamin; Gaare, Meghan E.; Glover, Gary H.; Wagner, Anthony D.

    2009-01-01

    The essential role of the medial temporal lobe (MTL) in long-term memory for individual events is well established, yet important questions remain regarding the mnemonic functions of the component structures that constitute the region. Within the hippocampus, recent functional neuroimaging findings suggest that formation of new memories depends on the den tate gyrus and the CA3 field, whereas the contribution of the subiculum may be limited to retrieval. During encoding, it has been further hypothesized that structures within MTL cortex contribute to encoding in a content-sensitive manner, whereas hippocampal structures may contribute to encoding in a more domain-general manner. In the current experiment, high-resolution fMRI techniques were utilized to assess novelty and subsequent memory effects in MTL subregions for two classes of stimuli—faces and scenes. During scanning, participants performed an incidental encoding (target detection) task with novel and repeated faces and scenes. Subsequent recognition memory was indexed for the novel stimuli encountered during scanning. Analyses revealed voxels sensitive to both novel faces and novel scenes in all MTL regions. However, similar percentages of voxels were sensitive to novel faces and scenes in perirhinal cortex, entorhinal cortex, and a combined region comprising the dentate gyrus, CA2, and CA3, whereas parahippocampal cortex, CA1, and subiculum demonstrated greater sensitivity to novel scene stimuli. Paralleling these findings, subsequent memory effects in perirhinal cortex were observed for both faces and scenes, with the magnitude of encoding activation being related to later memory strength, as indexed by a graded response tracking recognition confidence, whereas subsequent memory effects were scene-selective in parahippocampal cortex. Within the hippocampus, encoding activation in the subiculum correlated with subsequent memory for both stimulus classes, with the magnitude of encoding activation varying

  19. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    Science.gov (United States)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is

  20. Estimating gross primary productivity (GPP) of forests across southern England at high spatial and temporal resolution using the FLIGHT model

    Science.gov (United States)

    Pankaew, Prasan; Milton, Edward; Dawson, Terry; Dash, Jadu

    2013-04-01

    and spring period and under-estimate GPP in the summer months. Correction factors were computed based on the midday GPP for each month of the year. The modified FLIGHT model was used to estimate GPP from each of the two forest sites at hourly intervals over a year. Both sites showed a strong linear relationship between GPP estimated from FLIGHT and GPP measured by FLUXNET (Alice Holt forest, R2=0.96, RMSE = 2.39 μmol m-2 s-1, MBE = 1.32 μmol m-2 s-1 , Wytham Wood R2 = 0.97, RMSE = 1.42 μmol m-2 s-1, MBE = 0.57 μmol m-2 s-1). The results suggest that the modified FLIGHT model could be used to estimate GPP at hourly intervals over non-instrumented forest sites across southern England, and thereby obtain regional estimates of GPP at high spatial and temporal resolution. Reference North, P. R. J. (1996). Three-Dimensional Forest Light Interaction Model Using a Monte Carlo Method. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 946-956.

  1. Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve

    Science.gov (United States)

    Bellofiore, Alessandro; Donohue, Eilis M.; Quinlan, Nathan J.

    2011-07-01

    A scale-up approach is developed to enhance effective spatial and temporal resolution of PIV measurements. An analysis shows that complete similarity can be maintained for certain unsteady flows and that all types of error in PIV are either reduced or unaffected by scale-up. Implementation and results are described for flow through a mechanical heart valve (MHV), in which high resolution is necessary to advance understanding of the effects of small-scale flow structure on blood cells. With a large-scale model geometry and a low-viscosity model fluid, spatial and temporal resolutions are increased by factors of 5.8 and 118, respectively, yielding the finest resolution to date for MHV flow. Measurements near the downstream tip of a valve leaflet detect eddies as small as 400 μm shed in the leaflet wake. Impulsively started flow exhibits vortex shedding frequencies broadly consistent with the literature on flat-plate and aerofoil wakes, while the physiological unsteady flow waveform promotes 40% higher frequency at peak flow.

  2. Effects of External Digital Elevation Model Inaccuracy on StaMPS-PS Processing: A Case Study in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Yanan Du

    2017-11-01

    Full Text Available External Digital Elevation Models (DEMs with different resolutions and accuracies cause different topographic residuals in differential interferograms of Multi-temporal InSAR (MTInSAR, especially for the phase-based StaMPS-PS. The PS selection and deformation parameter estimation of StaMPS-PS are closely related to the spatially uncorrected error, which is directly affected by external DEMs. However, it is still far from clear how the high resolution and accurate external DEM affects the results of the StaMPS-PS (e.g., PS selection and deformation parameter calculation on different platforms (X band TerraSAR, C band ENVISAT ASAR and L band ALOS/PALSAR1. In this study, abundant synthetic tests are performed to assess the influences of external DEMs on parameter estimations, such as the mean deformation rate and the deformation time-series. Real SAR images, covering Shenzhen city in China, are also selected to analyze the PS selection and distribution as well as to validate the results of synthetic tests. The results show that the PS points selected by the 5 m TanDEM-X DEM are 10.32%, 4.25% and 0.34% more than those selected by the 30 m SRTM DEM at X, C and L bands SAR platforms, respectively, when a multi-look geocoding operation is adopted for X band in the SRTM DEM case. We also find that the influences of external DEMs on the mean deformation rate are not significant and are inversely proportional to the wavelength of the satellite platforms. The standard deviations of the mean deformation rate difference for the X, C and L bands are 0.54, 0.30 and 0.10 mm/year, respectively. Similarly, the influences of external DEMs on the deformation time-series estimation for the three platforms are also slight, except for local artifacts whose root-mean-square error (RMSE ≥ 6 mm. Based on these analyses, some implications and suggestions for external DEMs on StaMPS-PS processing are discussed and provided.

  3. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    Science.gov (United States)

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  4. Evaluation of temporal bone pneumatization on high resolution CT (HRCT) measurements of the temporal bone in normal and otitis media group and their correlation to measurements of internal auditory meatus, vestibular or cochlear aqueduct

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Miyako

    1988-07-01

    High resolution CT axial scans were made at the three levels of the temoral bone 91 cases. These cases consisted of 109 sides of normal pneumatization (NR group) and 73 of poor pneumatization resulted by chronic otitis (OM group). NR group included sensorineural hearing loss cases and/or sudden deafness on the side. Three levels of continuous slicing were chosen at the internal auditory meatus, the vestibular and the cochlear aqueduct, respectively. In each slice two sagittal and two horizontal measurements were done on the outer contour of the temporal bone. At the proper level, diameter as well as length of the internal acoustic meatus, the vestibular or the cochlear aqueduct were measured. Measurements of the temporal bone showed statistically significant difference between NR and OM groups. Correlation of both diameter and length of the internal auditory meatus to the temporal bone measurements were statistically significant. Neither of measurements on the vestibular or the cochlear aqueduct showed any significant correlation to that of the temporal bone.

  5. Development and applications of coherent imaging with improved temporal and spatial resolution; Developpement et applications de l'imagerie coherente aux rayons X a tres haute resolution spatiale et temporelle

    Energy Technology Data Exchange (ETDEWEB)

    Mokso, Rajmund

    2006-07-01

    This work has 2 purposes: the improvement of both temporal and spatial resolution of X-ray tomography. The first part is devoted to the technical aspects of the tomographic technique, particularly at the ESRF (European Synchrotron Radiation Facility) beamline ID19, and the application of the new acquisition scheme to the imaging of liquid foams. We have improved the temporal resolution and field of view of the setup, which allowed to obtain for the first time experimental data with good statistics on three dimensional liquid foams. In the second part of the thesis we have described the Kirkpatrick-Baez focusing system and its first applications. In terms of stability and image quality the developments presented in this part of the thesis provide valuable evidence for the feasibility of phase contrast tomography in magnifying geometry. Since the ultimate goal of this research is to improve the spatial resolution in tomography for applications, four different contributions are important for the characterization of the imaging system: 1) the thermal stability and mechanical imperfections, 2) effects of distortion induced by mirror imperfections, 3) effects of refraction on sample borders, and 4) phase propagation effects with the influence of the magnification. Each of these factors has been studied.

  6. High temporal resolution mapping of total suspended matter in Belgian coastal waters with SEVIRI data: a feasibility study

    OpenAIRE

    G. Neukermans; Ruddick, K.

    2008-01-01

    This study aims to investigate the potential of The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) of the ‘Meteosat Second Generation’ (MSG) geostationary satellite system for suspended matter mapping in Belgian Coastal Waters. The SEVIRI radiometer has 12 spectral channels with a spatial resolution of 3km in all channels except the High Resolution Visual (HRV) channel, where the resolution is 1km. Data is available in near real time every 15 minutes. A test data set was obtained from...

  7. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    Science.gov (United States)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  8. High Temporal Resolution Measurements to Investigate Carbon Dynamics in Subtropical Peat Soils Using Automated Ground Penetrating Radar (GPR) Measurements at the Laboratory Scale

    Science.gov (United States)

    McClellan, M. D.; Wright, W. J.; Job, M. J.; Comas, X.

    2015-12-01

    Peatlands have the capability to produce and release significant amounts of free phase biogenic gasses (CO2, CH4) into the atmosphere and are thus regarded as key contributors of greenhouse gases into the atmosphere. Many studies throughout the past two decades have investigated gas flux dynamics in peat soils; however a high resolution temporal understanding in the variability of these fluxes (particularly at the matrix scale) is still lacking. This study implements an array of hydrogeophysical methods to investigate the temporal variability in biogenic gas accumulation and release in high resolution for a large 0.073 m3 peat monolith from the Blue Cypress Preserve in central Florida. An autonomous rail system was constructed in order to estimate gas content variability (i.e. build-up and release) within the peat matrix using a series of continuous, uninterrupted ground penetrating radar (GPR) transects along the sample. This system ran non-stop implementing a 0.01 m shot interval using high frequency (1.2 GHz) antennas. GPR measurements were constrained with an array of 6 gas traps fitted with time-lapse cameras in order to capture gas releases at 15 minute intervals. A gas chromatograph was used to determine CH4 and CO2 content of the gas collected in the gas traps. The aim of this study is to investigate the temporal variability in the accumulation and release of biogenic gases in subtropical peat soils at the lab scale at a high resolution. This work has implications for better understanding carbon dynamics in subtropical freshwater peatlands and how climate change may alter such dynamics.

  9. Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.

    Science.gov (United States)

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-05-15

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm(3) voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: -52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. Copyright © 2012

  10. Stimulating the Brain's Language Network: Syntactic Ambiguity Resolution after TMS to the Inferior Frontal Gyrus and Middle Temporal Gyrus

    NARCIS (Netherlands)

    Acheson, D.J.; Hagoort, P.

    2013-01-01

    The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic

  11. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often...... is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI...... or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems....

  12. Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images

    Directory of Open Access Journals (Sweden)

    Cécile Cazals

    2016-07-01

    Full Text Available In Europe, water levels in wetlands are widely controlled by environmental managers and farmers. However, the influence of these management practices on hydrodynamics and biodiversity remains poorly understood. This study assesses advantages of using radar data from the recently launched Sentinel-1A satellite to monitor hydrological dynamics of the Poitevin marshland in western France. We analyze a time series of 14 radar images acquired in VV and HV polarizations from December 2014 to May 2015 with a 12-day time step. Both polarizations are used with a hysteresis thresholding algorithm which uses both spatial and temporal information to distinguish open water, flooded vegetation and non-flooded grassland. Classification results are compared to in situ piezometric measurements combined with a Digital Terrain Model derived from LiDAR data. Results reveal that open water is successfully detected, whereas flooded grasslands with emergent vegetation and fine-grained patterns are detected with moderate accuracy. Five hydrological regimes are derived from the flood duration and mapped. Analysis of time steps in the time series shows that decreased temporal repetitivity induces significant differences in estimates of flood duration. These results illustrate the great potential to monitor variations in seasonal floods with the high temporal frequency of Sentinel-1A acquisitions.

  13. Not all trees sleep the same - High temporal resolution terrestrial laser scanning shows differences in nocturnal plant movement

    DEFF Research Database (Denmark)

    Zlinszky, András; Barfod, Anders; Molnár, Bence

    2017-01-01

    Circadian leaf movements are widely known in plants, but nocturnal movement of tree branches were only recently discovered by using terrestrial laser scanning (TLS), a high resolution three-dimensional surveying technique. TLS uses a pulsed laser emitted in a regular scan pattern for rapid measur...

  14. Replacing the polarizer wheel with a polarization camera to increase the temporal resolution and reduce the overall complexity of a solar coronagraph

    Science.gov (United States)

    Reginald, Nelson L.; Gopalswamy, Natchimuthuk; Yashiro, Seiji; Gong, Qian; Guhathakurta, Madhulika

    2017-01-01

    Experiments that require linearly polarized brightness measurements, traditionally have obtained three successive images through a linear polarizer that is rotated through three well-defined angles and the images are combined to get the linearly polarized brightness. This technique requires a mechanism to hold the linear polarizer in place and to precisely turn it through the three angles. Obviously, the temporal resolution is lost in such a scenario, since the three images that are used to derive the linearly polarized brightness are taken at three different times. Specifically, in a dynamic corona that is in constant reshaping of its structures, the linearly polarized brightness image produced in this manner may not yield true values all around the corona. In this regard, with the advent of the polarization camera, the linearly polarized brightness can be measured from a single image. This also eliminates the need for a linear polarizer and the associated rotator mechanisms and can contribute toward lower weight, size, power requirements, overall risk of the instrument, and most importantly, increase the temporal resolution. We evaluate the capabilities of a selected polarization camera and how these capabilities could be tested in a ground experiment conducted in conjunction with a total solar eclipse. The ground experiment requires the measurement of the linearly polarized brightness, also known as K-corona, in a corona that also contains unpolarized brightness, known as F-corona, in order to measure three important physical properties pertaining to coronal electrons, namely, the electron density, electron temperature, and the electron speed.

  15. Integrated change detection and temporal trajectory analysis of coastal wetlands using high spatial resolution Korean Multi-Purpose Satellite series imagery

    Science.gov (United States)

    Nguyen, Hoang Hai; Tran, Hien; Sunwoo, Wooyeon; Yi, Jong-hyuk; Kim, Dongkyun; Choi, Minha

    2017-04-01

    A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images was used to detect the geographical changes in four different tidal flats between the Yellow Sea and the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from satellite images, which were then used as input for temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps of KOMPSAT images, with overall accuracy ranging from 83.34% to 95.43%, indicate that these multispectral high-resolution satellite data are highly applicable to the generation of high-quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the variation of the tidal flats in the Gyeonggi and Jeollabuk provinces was well correlated with the regular tidal regimes, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in the Jeollanam province revealed that effective social and environmental policies could help in protecting coastal wetlands from degradation.

  16. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    2014-04-01

    Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.

  17. Profiling the microRNA Expression in Human iPS and iPS-derived Retinal Pigment Epithelium.

    Science.gov (United States)

    Wang, Heuy-Ching; Greene, Whitney A; Kaini, Ramesh R; Shen-Gunther, Jane; Chen, Hung-I H; Cai, Hong; Wang, Yufeng

    2014-01-01

    The purpose of this study is to characterize the microRNA (miRNA) expression profiles of induced pluripotent stem (iPS) cells and retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE). MiRNAs have been demonstrated to play critical roles in both maintaining pluripotency and facilitating differentiation. Gene expression networks accountable for maintenance and induction of pluripotency are linked and share components with those networks implicated in oncogenesis. Therefore, we hypothesize that miRNA expression profiling will distinguish iPS cells from their iPS-RPE progeny. To identify and analyze differentially expressed miRNAs, RPE was derived from iPS using a spontaneous differentiation method. MiRNA microarray analysis identified 155 probes that were statistically differentially expressed between iPS and iPS-RPE cells. Up-regulated miRNAs including miR-181c and miR-129-5p may play a role in promoting differentiation, while down-regulated miRNAs such as miR-367, miR-18b, and miR-20b are implicated in cell proliferation. Subsequent miRNA-target and network analysis revealed that these miRNAs are involved in cellular development, cell cycle progression, cell death, and survival. A systematic interrogation of temporal and spatial expression of iPS-RPE miRNAs and their associated target mRNAs will provide new insights into the molecular mechanisms of carcinogenesis, eye differentiation and development.

  18. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O.; Henzler, Thomas [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Raupach, Rainer; Schmidt, Bernhard; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas [Siemens Healthcare, Imaging and Therapy Division, Forchheim (Germany); Lietzmann, Florian; Schad, Lothar R. [Heidelberg University, Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany)

    2015-01-15

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm{sup 2} removesthe necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63 %/39 % lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. (orig.)

  19. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions

    Directory of Open Access Journals (Sweden)

    Dengfeng Xie

    2016-02-01

    Full Text Available Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven’t been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM with the help of an Unmixing-based method (USTARFM to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value < 0.001; Root Mean Square Error (RMSE values were 0.0245, 0.0300, 0.0401, respectively; and ERGAS values were 0.5416, 0.6507, 0.8737, respectively. The USTARM showed consistently higher performance than STARM when the degree of heterogeneity ranged from 2 to 10, highlighting that the use of this method provides the capacity to solve the data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  20. The implementation of temporal synthetic aperture imaging for ultrafast optical processing

    Science.gov (United States)

    Zhao, Xiaoxiang; Xiao, Shaoqiu; Gong, Cheng; Yi, Tao; Liu, Shenye

    2017-12-01

    A new technique of temporal imaging, called temporal synthetic aperture imaging (TSAI), is proposed to achieve higher time resolution of the imaging system for ultrafast optical processing. The proposed technique combines several of independent small-aperture systems together to get a higher time resolution and better image quality as a large-aperture system. It can solve the problem that an oversized aperture time lens is difficult to achieve in practice. In this paper, after analyzing the filtering effect, a novel implementation method of TSAI is presented. In order to verify the correctness, we demonstrate a decuple magnification of a signal with two 1ps width pulse separated 2ps, using a synthetic aperture by the system simulation.

  1. Assessment of Rainfall Influence Over Water Quality at the Effluent of an Urban Catchment by High Temporal Resolution Measurements

    OpenAIRE

    Sandoval Arenas, Santiago

    2013-01-01

    El presente estudio se trazó como objetivo establecer la influencia de la lluvia sobre la calidad del agua en el efluente de una cuenca urbana mediante el uso de medición en alta resolución temporal. Los parámetros de calidad y cantidad de agua en el efluente de la cuenca urbana estudiada (Gibraltar: Bogotá, Colombia) se midieron mediante captores con tecnología uni-paramétrica, espectrometría UV-VIS (en cuanto a calidad) y medición ultrasónica (en cuanto a cantidad). Los registros de lluvia ...

  2. The PS locomotive runs again

    CERN Multimedia

    2001-01-01

    Over forty years ago, the PS train entered service to steer the magnets of the accelerator into place... ... a service that was resumed last Tuesday. Left to right: Raymond Brown (CERN), Claude Tholomier (D.B.S.), Marcel Genolin (CERN), Gérard Saumade (D.B.S.), Ingo Ruehl (CERN), Olivier Carlier (D.B.S.), Patrick Poisot (D.B.S.), Christian Recour (D.B.S.). It is more than ten years since people at CERN heard the rumbling of the old PS train's steel wheels. Last Tuesday, the locomotive came back into service to be tested. It is nothing like the monstrous steel engines still running on conventional railways -just a small electric battery-driven vehicle employed on installing the magnets for the PS accelerator more than 40 years ago. To do so, it used the tracks that run round the accelerator. In fact, it is the grandfather of the LEP monorail. After PS was commissioned in 1959, the little train was used more and more rarely. This is because magnets never break down, or hardly ever! In fact, the loc...

  3. The PS Booster hits 40

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    Many accelerators’ "round" birthdays are being celebrated at CERN these days – the PS turned 50 in 2009, the SPS was 35 in 2011, and this year it's the turn of the PS Booster to mark its 40th anniversary. Originally designed to accelerate 1013 protons to 800 MeV, it has far exceeded its initial design performance over the years.   The PS Booster in the 1970s. Imagine the scene: a group of accelerator physicists staring expectantly at a monitor, when suddenly a shout of joy goes up as a signal flickers across the screen. Does that sound familiar? Well, turn the clock back 40 years (longer hair, wider trouser legs) and you have the situation at the PS Booster on 26 May 1972. On that day, beam was injected into the Booster for the first time. “It was a real buzz,” says Heribert Koziol, then Chairman of the Running-in Committee. “We were very happy – and also a little relieved – when the beam finally...

  4. Convective rain cells: spatio-temporal characteristics, synoptic patterns and a high resolution synoptically conditioned weather generator

    Science.gov (United States)

    Peleg, Nadav; Morin, Efrat

    2014-05-01

    Information on rain cell features was extracted from high-resolution weather radar data for a total of 191,586 radar volume scans from 12 hydrological years. The convective rain cell features (i.e., cell area, rainfall intensity and cell orientation) were obtained using cell segmentation technique and cell tracking algorithm was used to analyze the changes of those features over time. Three synoptic types were defined for the study area (northen Israel), two extratropical winter lows: deep Cyprus low and a shallow low, and a tropical intrusion: Active Red Sea Trough. Empirical distributions were computed to describe the spatiotemporal characteristics of convective rain cells for these synoptic systems. Those empirical distributions were used for the development of the HiReS-WG (high-resolution synoptically conditioned weather generator). This weather generator is a stochastic model that generates high resolution rainfall fields (5 min and 0.25 km2). The WG is composed of four modules: the synoptic generator, the motion vector generator, the convective rain cell generator and the low-intensity rainfall generator. The weather generator was evaluated for annual rain depth, season timing, wet-/dry-period duration, rain-intensity distributions and spatial correlations using 300 years of simulated rainfall data. It was found that the weather generator well-represented the above properties compared to radar and rain-gauge observations from the studied region. The HiReS-WG is a good tool to study catchments' hydrological responses to variations in rainfall, especially small- to medium-size catchments, and it can also be linked to climate models to force the prevailing synoptic conditions.

  5. Gridded precipitation fields at high temporal and spatial resolution for operational flood forecasting in the Rhine basin

    Science.gov (United States)

    van Osnabrugge, Bart; Weerts, Albrecht; Uijlenhoet, Remko

    2017-04-01

    Gridded areal precipitation, as one of the most important hydrometeorological input variables for initial state estimation in operational hydrological forecasting, is available in the form of raster data sets (e.g. HYRAS and EOBS) for the River Rhine basin. These datasets are compiled off-line on a daily time step using station data with the highest possible spatial density. However, such a product is not available operationally and at an hourly discretisation. Therefore, we constructed an hourly gridded precipitation dataset at 1.44 km2 resolution for the Rhine basin for the period from 1998 to present using a REGNIE-like interpolation procedure (Weerts et al., 2008) using a low and a high density rain gauge network. The datasets were validated against daily HYRAS (Rauthe, 2013) and EOBS (Haylock, 2008) data. The main goal of the operational procedure is to emulate the HYRAS dataset as good as possible, as the daily HYRAS dataset is used in the off-line calibration of the hydrological model. Our main findings are that even with low station density, the spatial patterns found in the HYRAS data set are well reproduced. With low station density (years 1999-2006) our dataset underestimates precipitation compared to HYRAS and EOBS, notably during the winter. However, interpolation based on the same set of stations overestimates precipitation compared to EOBS for the years 2006-2014. This discrepancy disappears when switching to the high station density. We also analyze the robustness of the hourly precipitation fields by comparing with stations not used during interpolation. Specific issues regarding the data when creating the gridded precipitation fields will be highlighted. Finally, the datasets are used to drive an hourly and daily gridded WFLOW_HBV model of the Rhine at the same spatial resolution. Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and

  6. High-Spatial- and High-Temporal-Resolution Dynamic Contrast-enhanced MR Breast Imaging with Sweep Imaging with Fourier Transformation: A Pilot Study

    Science.gov (United States)

    Benson, John C.; Idiyatullin, Djaudat; Snyder, Angela L.; Snyder, Carl J.; Hutter, Diane; Everson, Lenore I.; Eberly, Lynn E.; Nelson, Michael T.; Garwood, Michael

    2015-01-01

    Purpose To report the results of sweep imaging with Fourier transformation (SWIFT) magnetic resonance (MR) imaging for diagnostic breast imaging. Materials and Methods Informed consent was obtained from all participants under one of two institutional review board–approved, HIPAA-compliant protocols. Twelve female patients (age range, 19–54 years; mean age, 41.2 years) and eight normal control subjects (age range, 22–56 years; mean age, 43.2 years) enrolled and completed the study from January 28, 2011, to March 5, 2013. Patients had previous lesions that were Breast Imaging Reporting and Data System 4 and 5 based on mammography and/or ultrasonographic imaging. Contrast-enhanced SWIFT imaging was completed by using a 4-T research MR imaging system. Noncontrast studies were completed in the normal control subjects. One of two sized single-breast SWIFT-compatible transceiver coils was used for nine patients and five controls. Three patients and five control subjects used a SWIFT-compatible dual breast coil. Temporal resolution was 5.9–7.5 seconds. Spatial resolution was 1.00 mm isotropic, with later examinations at 0.67 mm isotropic, and dual breast at 1.00 mm or 0.75 mm isotropic resolution. Results Two nonblinded breast radiologists reported SWIFT image findings of normal breast tissue, benign fibroadenomas (six of six lesions), and malignant lesions (10 of 12 lesions) concordant with other imaging modalities and pathologic reports. Two lesions in two patients were not visualized because of coil field of view. The images yielded by SWIFT showed the presence and extent of known breast lesions. Conclusion The SWIFT technique could become an important addition to breast imaging modalities because it provides high spatial resolution at all points during the dynamic contrast-enhanced examination. © RSNA, 2014 PMID:25247405

  7. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    Science.gov (United States)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed

  8. Monitoring of the Spatial Distribution and Temporal Dynamics of the Green Vegetation Fraction of Croplands in Southwest Germany Using High-Resolution RapidEye Satellite Images

    Science.gov (United States)

    Imukova, Kristina; Ingwersen, Joachim; Streck, Thilo

    2014-05-01

    The green vegetation fraction (GVF) is a key input variable to the evapotranspiration scheme applied in the widely used NOAH land surface model (LSM). In standard applications of the NOAH LSM, the GVF is taken from a global map with a 15 km×15 km resolution. The central objective of the present study was (a) to derive gridded GVF data in a high spatial and temporal resolution from RapidEye images for a region in Southwest Germany, and (b) to improve the representation of the GVF dynamics of croplands in the NOAH LSM for a better simulation of water and energy exchange between land surface and atmosphere. For the region under study we obtained monthly RapidEye satellite images with a resolution 5 m×5 m by the German Aerospace Center (DLR). The images hold five spectral bands: blue, green, red, red-edge and near infrared (NIR). The GVF dynamics were determined based on the Normalized Difference Vegetation Index (NDVI) calculated from the red and near-infrared bands of the satellite images. The satellite GVF data were calibrated and validated against ground truth measurements. Digital colour photographs above the canopy were taken with a boom-mounted digital camera at fifteen permanently marked plots (1 m×1 m). Crops under study were winter wheat, winter rape and silage maize. The GVF was computed based on the red and the green band of the photographs according to Rundquist's method (2002). Based on the obtained calibration scheme GVF maps were derived in a monthly resolution for the region. Our results confirm a linear relationship between GVF and NDVI and demonstrate that it is possible to determine the GVF of croplands from RapidEye images based on a simple two end-member mixing model. Our data highlight the high variability of the GVF in time and space. At the field scale, the GVF was normally distributed with a coefficient of variation of about 32%. Variability was mainly caused by soil heterogeneities and management differences. At the regional scale the GVF

  9. Observation of coupled vortex gyrations by 70-ps-time and 20-nm-space- resolved full-field magnetic transmission soft x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Im, Mi-Young; Fischer, Peter; Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido; Kim, Sang-Koog

    2010-09-01

    We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni{sub 80}Fe{sub 20}) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators.

  10. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    Science.gov (United States)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  11. Formation of vortices on the Kronian magnetosphere with the high temporal and spatial resolution for MHD simulation

    Science.gov (United States)

    Fukazawa, K.; Ogino, T.; Walker, R. J.; Yumoto, K.

    2010-12-01

    In a series of studies we have reported vortices at the dawn magnetopause at Saturn in simulations when IMF was northward which we interpreted at resulting from the Kelvin Helmholtz (K-H) instability [Fukazawa et al., 2007; Walker et al., 2010]. Studies of the K-H waves using quasi-local simulations at the Earth have shown that the formation of the vortices can be highly dependent on the grid spacing used in the simulations [Matsumoto and Seki, 2010] In particular there can be secondary variations in the vortex structure. However these simulations did not include the magnetic curvature which affects the occurrence of KH instability because they do not treat the global configuration. On the other hand, it has been hard to simulate the global magnetosphere with a sufficiently small grid interval to investigate these effects on the global configuration. Recently thanks to the developments of computer and numerical calculation techniques, we have been able perform the global magnetospheric simulations of the magnetosphere with relatively small grid spacing. As the results of this simulation of Kronian magnetosphere, we found that the formation process and configuration of vortex were different from the previous low resolution simulations. In particular, the growth rate of KH wave seems to be high and waves is appeared around dusk side clearly. In this study we will show the results of high resolution global simulation of the Kronian magnetosphere, analysis of the vortices, changes in the configuration of magnetic field lines related to the vortices and their effects on aurora at Saturn.

  12. AUTOMATED WETLAND DELINEATION FROM MULTI-FREQUENCY AND MULTI-POLARIZED SAR IMAGES IN HIGH TEMPORAL AND SPATIAL RESOLUTION

    Directory of Open Access Journals (Sweden)

    L. Moser

    2016-06-01

    Full Text Available Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks and a high spatial sampling (about five meters. The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  13. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2, for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.

  14. High temporal resolution modelling of environmentally-dependent seabird ammonia emissions: Description and testing of the GUANO model

    Science.gov (United States)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Tang, Y. S.; Moring, A.; Daunt, F.; Wanless, S.; Hamer, K. C.; Sutton, M. A.

    2017-07-01

    Many studies in recent years have highlighted the ecological implications of adding reactive nitrogen (Nr) to terrestrial ecosystems. Seabird colonies represent a situation with concentrated sources of Nr, through excreted and accumulated guano, often occurring in otherwise nutrient-poor areas. To date, there has been little attention given to modelling N flows in this context, and particularly to quantifying the relationship between ammonia (NH3) emissions and meteorology. This paper presents a dynamic mass-flow model (GUANO) that simulates temporal variations in NH3 emissions from seabird guano. While the focus is on NH3 emissions, the model necessarily also treats the interaction with wash-off as far as this affects NH3. The model is validated using NH3 emissions measurements from seabird colonies across a range of climates, from sub-polar to tropical. In simulations for hourly time-resolved data, the model is able to capture the observed dependence of NH3 emission on environmental variables. With temperature and wind speed having the greatest effects on emission for the cases considered. In comparison with empirical data, the percentage of excreted nitrogen that volatilizes as NH3 is found to range from 2% to 67% (based on measurements), with the GUANO model providing a range of 2%-82%. The model provides a tool that can be used to investigate the meteorological dependence of NH3 emissions from seabird guano and provides a starting point to refine models of NH3 emissions from other sources.

  15. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets.

    Science.gov (United States)

    Zeng, Liping; Zhang, Ning; Zhang, Qiang; Endress, Peter K; Huang, Jie; Ma, Hong

    2017-05-01

    Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Automated Wetland Delineation from Multi-Frequency and Multi-Polarized SAR Images in High Temporal and Spatial Resolution

    Science.gov (United States)

    Moser, L.; Schmitt, A.; Wendleder, A.

    2016-06-01

    Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks) and a high spatial sampling (about five meters). The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  17. Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jihui Tu

    2017-04-01

    Full Text Available The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-use variation at the semantic level. In this paper, a novel method is proposed for detecting damaged building regions based on semantic scene change in a visual Bag-of-Words model. Pre- and post-disaster scene change in building regions are represented by a uniform visual codebook frequency. The scene change of damaged and non-damaged building regions is discriminated using the Support Vector Machine (SVM classifier. An evaluation of experimental results, for a selected study site of the Longtou hill town of Yunnan, China, which was heavily damaged in the Ludian earthquake of 14 March 2013, shows that this method is feasible and effective for detecting damaged building regions. For the experiments, WorldView-2 optical imagery and aerial imagery is used.

  18. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  19. Forest fuel treatment detection using multi-temporal airborne Lidar data and high resolution aerial imagery ---- A case study at Sierra Nevada, California

    Science.gov (United States)

    Su, Y.; Guo, Q.; Collins, B.; Fry, D.; Kelly, M.

    2014-12-01

    Forest fuel treatments (FFT) are often employed in Sierra Nevada forest (located in California, US) to enhance forest health, regulate stand density, and reduce wildfire risk. However, there have been concerns that FFTs may have negative impacts on certain protected wildlife species. Due to the constraints and protection of resources (e.g., perennial streams, cultural resources, wildlife habitat, etc.), the actual FFT extents are usually different from planned extents. Identifying the actual extent of treated areas is of primary importance to understand the environmental influence of FFTs. Light detection and ranging (Lidar) is a powerful remote sensing technique that can provide accurate forest structure measurements, which provides great potential to monitor forest changes. This study used canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne Lidar data to detect FFTs by an approach combining a pixel-wise thresholding method and a object-of-interest segmentation method. We also investigated forest change following the implementation of landscape-scale FFT projects through the use of normalized difference vegetation index (NDVI) and standardized principle component analysis (PCA) from multi-temporal high resolution aerial imagery. The same FFT detection routine was applied on the Lidar data and aerial imagery for the purpose of comparing the capability of Lidar data and aerial imagery on FFT detection. Our results demonstrated that the FFT detection using Lidar derived CC products produced both the highest total accuracy and kappa coefficient, and was more robust at identifying areas with light FFTs. The accuracy using Lidar derived CHM products was significantly lower than that of the result using Lidar derived CC, but was still slightly higher than using aerial imagery. FFT detection results using NDVI and standardized PCA using multi-temporal aerial imagery produced almost identical total accuracy and kappa coefficient

  20. The PS complex produces the nominal LHC beam

    CERN Document Server

    Benedikt, Michael; Borburgh, J; Cappi, R; Chanel, M; Chohan, V; Cyvoct, G; Garoby, R; Grier, D G; Gruber, J; Hancock, S; Hill, C E; Jensen, E; Krusche, A; Lindroos, M; Métral, Elias; Métral, G; Metzmacher, K D; Olsfors, J; Pedersen, F; Raich, U; Riunaud, J P; Royer, J P; Sassowsky, M; Schindl, Karlheinz; Schönauer, Horst Otto; Thivent, M; Ullrich, H M; Völker, F V; Vretenar, Maurizio; Barnes, M; Blackmore, E W; Cifarelli, F; Clark, G; Jones, F; Koscielniak, Shane Rupert; Mammarella, F; Mitra, A; Poirier, R; Reiniger, K W; Ries, T C

    2000-01-01

    The LHC [1] will be supplied, via the SPS, with protons from the pre-injector chain comprising Linac2, PS Booster (PSB) and PS. These accelerators have under-gone a major upgrading programme [2] during the last five years so as to meet the stringent requirements of the LHC. These imply that many high-intensity bunches of small emittance and tight spacing (25 ns) be available at the PS extraction energy (25 GeV). The upgrading project involved an increase of Linac2 current, new RF systems in the PSB and the PS, raising the PSB energy from 1 to 1.4 GeV, two-batch filling of the PS and the installation of high-resolution beam profile measurement devices. With the project entering its final phase and most of the newly installed hardware now being operational, the emphasis switches to producing the nominal LHC beam and tackling the associated beam physics problems. While a beam with transverse characteristics better than nominal has been obtained, the longitudinal density still needs to be increased. An alternativ...

  1. High spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors

    Science.gov (United States)

    Nouri, Hamideh; Beecham, Simon; Anderson, Sharolyn; Nagler, Pamela

    2014-01-01

    Evapotranspiration estimation has benefitted from recent advances in remote sensing and GIS techniques particularly in agricultural applications rather than urban environments. This paper explores the relationship between urban vegetation evapotranspiration (ET) and vegetation indices derived from newly-developed high spatial resolution WorldView-2 imagery. The study site was Veale Gardens in Adelaide, Australia. Image processing was applied on five images captured from February 2012 to February 2013 using ERDAS Imagine. From 64 possible two band combinations of WorldView-2, the most reliable one (with the maximum median differences) was selected. Normalized Difference Vegetation Index (NDVI) values were derived for each category of landscape cover, namely trees, shrubs, turf grasses, impervious pavements, and water bodies. Urban landscape evapotranspiration rates for Veale Gardens were estimated through field monitoring using observational-based landscape coefficients. The relationships between remotely sensed NDVIs for the entire Veale Gardens and for individual NDVIs of different vegetation covers were compared with field measured urban landscape evapotranspiration rates. The water stress conditions experienced in January 2013 decreased the correlation between ET and NDVI with the highest relationship of ET-Landscape NDVI (Landscape Normalized Difference Vegetation Index) for shrubs (r2 = 0.66) and trees (r2 = 0.63). However, when the January data was excluded, there was a significant correlation between ET and NDVI. The highest correlation for ET-Landscape NDVI was found for the entire Veale Gardens regardless of vegetation type (r2 = 0.95, p > 0.05) and the lowest one was for turf (r2 = 0.88, p > 0.05). In support of the feasibility of ET estimation by WV2 over a longer period, an algorithm recently developed that estimates evapotranspiration rates based on the Enhanced Vegetation Index (EVI) from MODIS was employed. The results revealed a significant positive

  2. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    Science.gov (United States)

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  3. Linking innovative measurement technologies (ConMon and Dataflow© systems) for high-resolution temporal and spatial dissolved oxygen criteria assessment.

    Science.gov (United States)

    O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R

    2015-10-01

    One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the

  4. Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis[C][W

    Science.gov (United States)

    Windram, Oliver; Madhou, Priyadharshini; McHattie, Stuart; Hill, Claire; Hickman, Richard; Cooke, Emma; Jenkins, Dafyd J.; Penfold, Christopher A.; Baxter, Laura; Breeze, Emily; Kiddle, Steven J.; Rhodes, Johanna; Atwell, Susanna; Kliebenstein, Daniel J.; Kim, Youn-sung; Stegle, Oliver; Borgwardt, Karsten; Zhang, Cunjin; Tabrett, Alex; Legaie, Roxane; Moore, Jonathan; Finkenstadt, Bärbel; Wild, David L.; Mead, Andrew; Rand, David; Beynon, Jim; Ott, Sascha; Buchanan-Wollaston, Vicky; Denby, Katherine J.

    2012-01-01

    Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea. PMID:23023172

  5. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2016-03-01

    Full Text Available Regional haze episodes have occurred frequently in eastern China over the past decades. As a critical indicator to evaluate air quality, the mass concentration of ambient fine particulate matters smaller than 2.5 μm in aerodynamic diameter (PM2.5 is involved in many studies. To overcome the limitations of ground measurements on PM2.5 concentration, which is featured in disperse representation and coarse coverage, many statistical models were developed to depict the relationship between ground-level PM2.5 and satellite-derived aerosol optical depth (AOD. However, the current satellite-derived AOD products and statistical models on PM2.5–AOD are insufficient to investigate PM2.5 characteristics at the urban scale, in that spatial resolution is crucial to identify the relationship between PM2.5 and anthropogenic activities. This paper presents a geographically and temporally weighted regression (GTWR model to generate ground-level PM2.5 concentrations from satellite-derived 500 m AOD. The GTWR model incorporates the SARA (simplified high resolution MODIS aerosol retrieval algorithm AOD product with meteorological variables, including planetary boundary layer height (PBLH, relative humidity (RH, wind speed (WS, and temperature (TEMP extracted from WRF (weather research and forecasting assimilation to depict the spatio-temporal dynamics in the PM2.5–AOD relationship. The estimated ground-level PM2.5 concentration has 500 m resolution at the MODIS satellite’s overpass moments twice a day, which can be used for air quality monitoring and haze tracking at the urban and regional scale. To test the performance of the GTWR model, a case study was carried out in a region covering the adjacent parts of Jiangsu, Shandong, Henan, and Anhui provinces in central China. A cross validation was done to evaluate the performance of the GTWR model. Compared with OLS, GWR, and TWR models, the GTWR model obtained the highest value of coefficient of determination

  6. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA.

    Science.gov (United States)

    Hadizadeh, Dariusch R; von Falkenhausen, Marcus; Gieseke, Jürgen; Meyer, Bernhard; Urbach, Horst; Hoogeveen, Romhild; Schild, Hans H; Willinek, Winfried A

    2008-01-01

    To prospectively test the hypothesis that subsecond-temporal-resolution four-dimensional (4D) contrast material-enhanced magnetic resonance (MR) angiography at 3.0 T enables the same Spetzler-Martin classification (nidus size, venous drainage, eloquence) of cerebral arteriovenous malformation (AVM) as that at digital subtraction angiography (DSA). Institutional ethics committee approval and written informed consent were obtained. In a prospective intraindividual comparative study, 18 consecutive patients with cerebral AVM (nine men, nine women; mean age, 41.9 years +/- 14.0 [standard deviation]; range, 23-69 years) were examined with 4D contrast-enhanced MR angiography and DSA. Four-dimensional contrast-enhanced MR angiography combined randomly segmented central k-space ordering, keyhole imaging, sensitivity encoding, and half-Fourier imaging, which yielded a total acceleration factor of 60. Fifty dynamic scans were obtained every 608 msec at an acquired spatial resolution of 1.1 x 1.4 x 1.1 mm. Four-dimensional contrast-enhanced MR angiograms were independently reviewed by one neuroradiologist and one neurosurgeon according to Spetzler-Martin classification, overall diagnostic quality, and level of confidence. Kendall W coefficients of concordance (K) were computed to compare reader assessment of image quality, level of confidence, and Spetzler-Martin classification by using 4D contrast-enhanced MR angiography and to compare Spetzler-Martin classification as determined with DSA with that at 4D contrast-enhanced MR angiography. Spetzler-Martin classification of cerebral AVM at 4D contrast-enhanced MR angiography and at DSA matched in 18 of 18 patients for both readers, which yielded 100% interobserver agreement (K = 1). Image quality of 4D contrast-enhanced MR angiography was judged to be at least adequate for diagnosis in all patients by both readers. In three of 18 patients, DSA depicted additional arterial feeders of cerebral AVM. Subsecond-temporal-resolution 4

  7. Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability

    Science.gov (United States)

    Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.

  8. Mid-tropospheric δD observations from IASI/MetOp at high spatial and temporal resolution

    Directory of Open Access Journals (Sweden)

    J.-L. Lacour

    2012-11-01

    Full Text Available In this paper we retrieve atmospheric HDO, H2O concentrations and their ratio δD from IASI radiances spectra. Our method relies on an existing radiative transfer model (Atmosphit and an optimal estimation inversion scheme, but goes further than our previous work by explicitly considering correlations between the two species. A global HDO and H2O a priori profile together with a covariance matrix were built from daily LMDz-iso model simulations of HDO and H2O profiles over the whole globe and a whole year. The retrieval parameters are described and characterized in terms of errors. We show that IASI is mostly sensitive to δD in the middle troposphere and allows retrieving δD for an integrated 3–6 km column with an error of 38‰ on an individual measurement basis. We examine the performance of the retrieval to capture the temporal (seasonal and short-term and spatial variations of δD for one year of measurement at two dedicated sites (Darwin and Izaña and a latitudinal band from −60° to 60° for a 15 day period in January. We report a generally good agreement between IASI and the model and indicate the capabilities of IASI to reproduce the large scale variations of δD (seasonal cycle and latitudinal gradient with good accuracy. In particular, we show that there is no systematic significant bias in the retrieved δD values in comparison with the model, and that the retrieved variability is similar to the one in the model even though there are certain local differences. Moreover, the noticeable differences between IASI and the model are briefly examined and suggest modeling issues instead of retrieval effects. Finally, the results further reveal the unprecedented capabilities of IASI to capture short-term variations in δD, highlighting the added value of the sounder for monitoring hydrological processes.

  9. Temperature monitoring during thermal treatments using magnetic resonance imaging incorporating novel multi spatial and temporal resolution strategies

    Science.gov (United States)

    Aljallad, Mohammed H.

    Thermal therapy is widely used for the treatment of tumors such as uterine fibroid tumors. When heating the fibroid volume, continuous and fast temperature monitoring is required to limit the damage to healthy tissue. The phase component of the Magnetic Resonance (MR) image changes with heating; this phase change can be converted to temperature using a scaling parameter. One plane alone can be imaged in the current treatments while monitoring the temperature during heating because of time limitations. This plane is usually prescribed at the focus of the transducer (focal plane) to cover the maximum heat deposition. However, the heat distribution is not limited to the focal plane only, which requires temperature monitoring in more than one plane. MUltiple Resolution along Phase-encode and Slice-select-dimensions (MURPS) was a method previously introduced [7] to produce a variable slice thickness in the z-direction and variable phase encodings in the y-direction. MURPS is implemented to address the need for very fast imaging of multiple planes. Because only a small portion of the field of view (FOV) has real clinical value in the thermotherapy of a large volume, the FOV can be reduced to image that portion and speed up the scanning. The MURPS method, combined with half reduced field of view (rFOV), can image three planes in the same time needed to image a single full field of view plane without MURPS. The proposed technique of MURPS with rFOV should have a significant advantage for monitoring thermal therapies and should provide more robust temperature control for current thermal therapy treatment procedures.

  10. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingson; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0

  11. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  12. A influência do nível socioeconômico na resolução temporal em escolares The influence of socioeconomic level in temporal resolution in school-age children

    Directory of Open Access Journals (Sweden)

    Sheila Andreoli Balen

    2010-01-01

    Full Text Available OBJETIVO: Verificar a influência do nível socioeconômico na resolução temporal de escolares em dois protocolos de avaliação. MÉTODOS: A amostra foi constituída por 44 crianças de seis a 11 anos, sem histórico de alterações otológicas e/ou audiológicas, de doenças neurológicas e psicológicas conhecidas e com audição normal. A amostra foi dividida em três grupos, de acordo com o Critério de Classificação Econômica do Brasil da Associação Brasileira de Empresas de Pesquisa: Grupo 1: nível socioeconômico alto; Grupo 2: nível socioeconômico médio; Grupo 3: nível socioeconômico baixo. Foram aplicados os testes de detecção de intervalos de silêncio (RGDT e de detecção de intervalo no ruído (GIN. A análise estatística utilizou o teste Ryan-Einot-Gabriel-Welch Multiple Range Test. RESULTADOS: As médias de desempenho dos grupos 1, 2 e 3 foram maiores no teste de detecção de intervalos de silêncio do que em relação ao de intervalos no ruído. Em relação ao nível socioeconômico, em ambos os testes houve diferenças estatisticamente significativas entre os grupos. CONCLUSÃO: Houve influência do nível socioeconômico na resolução temporal medida tanto pelo teste de detecção de intervalos de silêncio quanto pelo de intervalos no ruído.PURPOSE: To verify the influence of socioeconomic status in temporal resolution of school-age children in two evaluation protocols. METHODS: The sample comprised 44 children with ages ranging from six to 11 years old; all of them had no history of otological and/or audiological alterations, known neurological and psychological diseases, and had normal hearing. The sample was divided into three groups, according to the Brazilian Criterion of Economic Classification of the Brazilian Research Enterprises Association: Group 1: high socioeconomic level; Group 2: middle socioeconomic level; Group 3: low socioeconomic level. The random gap detection test (RGDT and the gaps

  13. High Resolution Measurement of Rhizosphere Priming Effects and Temporal Variability of CO2 Fluxes under Zea Mays

    Science.gov (United States)

    Splettstößer, T.; Pausch, J.

    2016-12-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.

  14. EDH 'Millionaire' in PS Division

    CERN Document Server

    2001-01-01

    Christmas cheer! Left to right: Gerard Lobeau receives a bottle of Champagne from Derek Mathieson and Jurgen De Jonghe in recognition of EDH's millionth document. At 14:33 on Monday 3 December a technician in PS division, Gerard Lobeau, unwittingly became part of an important event in the life of CERN's Electronic Document Handling system (EDH). While ordering some pieces of aluminum for one of the PS's 10Mhz RF cavities, he created EDH document number 1,000,000. To celebrate the event Derek Mathieson (EDH Project Leader) and Jurgen De Jonghe (Original EDH Project Leader) presented Mr Lobeau with a bottle of champagne. As with 93% of material requests, Mr Lobeau's order was delivered within 24 hours. 'I usually never win anything' said Mr Lobeau as he accepted his prize, 'I initially though there may have been a problem with EDH when the document number had so many zeros in it, and was then surprised to get a phone call from you a few minutes later.' The EDH team had been monitoring the EDH document number ...

  15. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.

    Science.gov (United States)

    Mento, Giovanni

    2017-12-01

    A main distinction has been proposed between voluntary and automatic mechanisms underlying temporal orienting (TO) of selective attention. Voluntary TO implies the endogenous directing of attention induced by symbolic cues. Conversely, automatic TO is exogenously instantiated by the physical properties of stimuli. A well-known example of automatic TO is sequential effects (SEs), which refer to the adjustments in participants' behavioral performance as a function of the trial-by-trial sequential distribution of the foreperiod between two stimuli. In this study a group of healthy adults underwent a cued reaction time task purposely designed to assess both voluntary and automatic TO. During the task, both post-cue and post-target event-related potentials (ERPs) were recorded by means of a high spatial resolution EEG system. In the results of the post-cue analysis, the P3a and P3b were identified as two distinct ERP markers showing distinguishable spatiotemporal features and reflecting automatic and voluntary a priori expectancy generation, respectively. The brain source reconstruction further revealed that distinct cortical circuits supported these two temporally dissociable components. Namely, the voluntary P3b was supported by a left sensorimotor network, while the automatic P3a was generated by a more distributed frontoparietal circuit. Additionally, post-cue contingent negative variation (CNV) and post-target P3 modulations were observed as common markers of voluntary and automatic expectancy implementation and response selection, although partially dissociable neural networks subserved these two mechanisms. Overall, these results provide new electrophysiological evidence suggesting that distinct neural substrates can be recruited depending on the voluntary or automatic cognitive nature of the cognitive mechanisms subserving TO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallajökull eruption case study

    Directory of Open Access Journals (Sweden)

    M. Boichu

    2013-09-01

    Full Text Available Depending on the magnitude of their eruptions, volcanoes impact the atmosphere at various temporal and spatial scales. The volcanic source remains a major unknown to rigorously assess these impacts. At the scale of an eruption, the limited knowledge of source parameters, including time variations of erupted mass flux and emission profile, currently represents the greatest issue that limits the reliability of volcanic cloud forecasts. Today, a growing number of satellite and remote sensing observations of distant plumes are becoming available, bringing indirect information on these source terms. Here, we develop an inverse modelling approach combining satellite observations of the volcanic plume with an Eulerian regional chemistry-transport model (CHIMERE to characterise the volcanic SO2 emissions during an eruptive crisis. The May 2010 eruption of Eyjafjallajökull is a perfect case study to apply this method as the volcano emitted substantial amounts of SO2 during more than a month. We take advantage of the SO2 column amounts provided by a vast set of IASI (Infrared Atmospheric Sounding Interferometer satellite images to reconstruct retrospectively the time series of the mid-tropospheric SO2 flux emitted by the volcano with a temporal resolution of ~2 h, spanning the period from 1 to 12 May 2010. We show that no a priori knowledge on the SO2 flux is required for this reconstruction. The initialisation of chemistry-transport modelling with this reconstructed source allows for reliable simulation of the evolution of the long-lived tropospheric SO2 cloud over thousands of kilometres. Heterogeneities within the plume, which mainly result from the temporal variability of the emissions, are correctly tracked over a timescale of a week. The robustness of our approach is also demonstrated by the broad similarities between the SO2 flux history determined by this study and the ash discharge behaviour estimated by other means during the phases of high

  17. Spatio Temporal Detection and Virtual Mapping of Landslide Using High-Resolution Airborne Laser Altimetry (lidar) in Densely Vegetated Areas of Tropics

    Science.gov (United States)

    Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.

    2017-10-01

    Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.

  18. Sensitivity of advective transfer times across the North Atlantic Ocean to the temporal and spatial resolution of model velocity data: Implication for European eel larval transport

    Science.gov (United States)

    Blanke, Bruno; Bonhommeau, Sylvain; Grima, Nicolas; Drillet, Yann

    2012-05-01

    European eel (Anguilla anguilla) larvae achieve one of the longest larval migrations of the marine realm, i.e., more than 6000 km from their spawning grounds in the Sargasso Sea to European continental shelves. The duration of this migration remains debated, between 7 months and 3 years. This information is, however, crucial since it determines the period over which larvae are affected by environmental conditions and hence the subsequent recruitment success. We investigate the pathways and duration of trans-Atlantic connections using 3 years of high-resolution (daily, 1/12°) velocity fields available from a Mercator-Océan model configuration without data assimilation. We study specifically the effect of spatial and temporal resolutions on our estimates by applying various filters in time (from daily to 12-day averages) and space (from 1/12° to 1° gridcell aggregation) to the nominal model outputs. Numerical particles are released in the presumed European eel spawning area and considered as passive tracers at three specific depths (around 0, 50, and 200 m). We diagnose particularly the intensity of the water transfer between suitable control sections that encompass the eel larva distribution. Transit ages are also investigated, with a particular focus on the pathways that minimize the connection times between the western and eastern North Atlantic. We show that small-scale structures (eddies and filaments) contribute to faster connections though they also correspond to additional complexity in trajectories. The shortest pathways mostly follow the Gulf Stream and the North Atlantic Drift, whereas interior connections require longer transfers that prove less compatible with biological observations.

  19. Desempenho de crianças e adolescentes em tarefas envolvendo habilidade auditiva de ordenação temporal simples Child and adolescent performance in plain temporal resolution hearing skills

    Directory of Open Access Journals (Sweden)

    Aline Mansueto Mourão

    2012-08-01

    Full Text Available OBJETIVO: analisar o desempenho de crianças e adolescentes na habilidade auditiva de ordenação temporal simples segundo as variáveis: idade, sexo, queixas e hipóteses diagnósticas fonoaudiológicas. MÉTODO: trata-se de 400 sujeitos, na faixa etária de 4 e 14 anos, avaliados no período 2006 a julho de 2010. Os instrumentos de coleta de dados foram anamnese e os testes de sequencialização de sons verbais (MSV e não-verbais (MSNV. Para análise dos dados foi utilizado o programa SPSS versão 12, cálculo do risco relativo (RR e o teste do qui-quadrado de Pearson. O nível de significância considerado foi de 5%. O presente estudo foi aprovado pelo Comitê de Ética e Pesquisa da instituição. RESULTADOS: dos 400 pacientes, 262 (65,6% do gênero masculino e 138 (34,5% do gênero feminino. 138 pacientes (34,5% apresentaram MSV alterado e 109 (27,5% MSNV alterado. Não houve relação com significância estatística com a variável gênero. Ao associar os resultados dos testes MSV e MSNV à variável queixa fonoaudiológica, observou-se associação estatística nas queixas de fala, voz e leitura/escrita. Ao comparar os resultados dos testes aos da avaliação fonoaudiológica, obteve-se relação estatisticamente significante com alterações de fala, voz, leitura/escrita, consciência fonológica, funções e aspectos cognitivos da linguagem. Houve melhora estatisticamente significante no desempenho auditivo com o avanço da idade. CONCLUSÃO: o processamento auditivo temporal está envolvido na maioria das habilidades de comunicação, e sujeitos com alterações fonoaudiológicas possuem desempenhos inferiores quando comparados a sujeitos sem alterações.PURPOSE: to analyze children and adolescent performance in plain temporal resolution hearing skills based on the following variables: age, gender, complaint and speech pathology diagnose. METHOD: the survey had 400 subjects, between 4 and 14-year old, evaluated from July 2006 to July

  20. Detection of insulin granule exocytosis by an electrophysiology method with high temporal resolution reveals enlarged insulin granule pool in BIG3-knockout mice.

    Science.gov (United States)

    Liu, Tao; Li, Hongyu; Gounko, Natalia V; Zhou, Zhuan; Xu, Aimin; Hong, Wanjin; Han, Weiping

    2014-10-01

    We recently identified BIG3 as a negative regulator of insulin granule biogenesis and reported increased insulin secretion in BIG3-knockout (BKO) mice. To pinpoint the site of action for BIG3, we investigated whether BIG3 regulates quantal insulin granule exocytosis. We established an assay to detect insulin granule exocytosis by recording ATP-elicited currents at high temporal resolution by patch clamp. Similarly to insulin, ATP release was increased in BKO β-cells. Although the frequency of insulin granule exocytosis was increased in BKO β-cells, quantal size or release kinetics remained unchanged. Electron microscopy studies showed that the number of insulin granules was increased by >60% in BKO β-cells. However, the number of morphologically docked granules was unaltered. The number of insulin granules having significant distances away from plasma membrane was greatly increased in BKO β-cells. Thus, BIG3 negatively regulates insulin granule exocytosis by restricting insulin granule biogenesis without the release kinetics of individual granules at the final exocytotic steps being affected. Depletion of BIG3 leads to an enlarged releasable pool of insulin granules, which accounts for increased release frequency and consequently increased insulin secretion. Copyright © 2014 the American Physiological Society.

  1. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series

    Directory of Open Access Journals (Sweden)

    Nicolas Matton

    2015-10-01

    Full Text Available Cropland mapping relies heavily on field data for algorithm calibration, making it, in many cases, applicable only at the field campaign scale. While the recently launched Sentinel-2 satellite will be able to deliver time series over large regions, it will not really be compatible with the current mapping approach or the available in situ data. This research introduces a generic methodology for mapping annual cropland along the season at high spatial resolution with the use of globally available baseline land cover and no need for field data. The methodology is based on cropland-specific temporal features, which are able to cope with the diversity of agricultural systems, prior information from which mislabeled pixels have been removed and a cost-effective classifier. Thanks to the JECAM network, eight sites across the world were selected for global cropland mapping benchmarking. Accurate cropland maps were produced at the end of the season, showing an overall accuracy of more than 85%. Early cropland maps were also obtained at three-month intervals after the beginning of the growing season, and these showed reasonable accuracy at the three-month stage (>70% overall accuracy and progressive improvement along the season. The trimming-based method was found to be key for using spatially coarse baseline land cover information and, thus, avoiding costly field campaigns for prior information retrieval. The accuracy and timeliness of the proposed approach shows that it has substantial potential for operational agriculture monitoring programs.

  2. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images

    Science.gov (United States)

    El Bastawesy, M.; Cherif, O. H.; Sultan, M.

    2017-12-01

    This paper investigates the relevance of landforms to the subsidence of the Nile Delta using a high resolution topographic digital elevation model (DEM) and sets of multi-temporal Landsat satellite images. 195 topographic map sheets produced in 1946 at 1:25,000 scale were digitized, and the DEM was interpolated. The undertaken processing techniques have distinguished all the natural low-lying closed depressions from the artificial errors induced by the interpolation of the DEM. The local subsidence of these depressions from their surroundings reaches a maximum depth of 2.5 m. The regional subsidence of the Nile Delta has developed inverted topography, where the tracts occupied by the contemporary distributary channels are standing at higher elevations than the areas in between. This inversion could be related to the differences in the hydrological and sedimentological properties of underlying sediments, as the channels are underlain by water-saturated sands while the successions of clay and silt on flood plains are prone to compaction. Furthermore, the analysis of remote sensing and topographic data clearly show significant changes in the land cover and land use, particularly in the northern lagoons and adjacent sabkhas, which are dominated by numerous low subsiding depressions. The areas covered by water logging and ponds are increasing on the expense of agricultural areas, and aquaculture have been practiced instead. The precise estimation of subsidence rates and distribution should be worked out to evaluate probable changes in land cover and land use.

  3. Multi-Temporal Land-Cover Classification of Agricultural Areas in Two European Regions with High Resolution Spotlight TerraSAR-X Data

    Directory of Open Access Journals (Sweden)

    Sylvia Herrmann

    2011-04-01

    Full Text Available Functioning ecosystems offer multiple services for human well-being (e.g., food, freshwater, fiber. Agriculture provides several of these services but also can cause negative impacts. Thus, it is essential to derive up-to-date information about agricultural land use and its change. This paper describes the multi-temporal classification of agricultural land use based on high resolution spotlight TerraSAR-X images. A stack of l4 dual-polarized radar images taken during the vegetation season have been used for two different study areas (North of Germany and Southeast Poland. They represent extremely diverse regions with regard to their population density, agricultural management, as well as geological and geomorphological conditions. Thereby, the transferability of the classification method for different regions is tested. The Maximum Likelihood classification is based on a high amount of ground truth samples. Classification accuracies differ in both regions. Overall accuracy for all classes for the German area is 61.78% and 39.25% for the Polish region. Accuracies improved notably for both regions (about 90% when single vegetation classes were merged into groups of classes. Such regular land use classifications, applicable for different European agricultural sites, can serve as basis for monitoring systems for agricultural land use and its related ecosystems.

  4. A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing

    Science.gov (United States)

    Zhang, Shuai; Gao, Huilin

    2016-08-01

    Flood mitigation in developing countries has been hindered by a lack of near real-time reservoir storage information at high temporal resolution. By leveraging satellite passive microwave observations over a reservoir and its vicinity, we present a globally applicable new algorithm to estimate reservoir storage under all-weather conditions at a 4 day time step. A weighted horizontal ratio (WHR) based on the brightness temperatures at 36.5 GHz is introduced, with its coefficients calibrated against an area training data set over each reservoir. Using a predetermined area-elevation (A-H) relationship, these coefficients are then applied to the microwave data to calculate the storage. Validation results over four reservoirs in South Asia indicate that the microwave-based storage estimations (after noise reduction) perform well (with coefficients of determination ranging from 0.41 to 0.74). This is the first time that passive microwave observations are fused with other satellite data for quantifying the storage of individual reservoirs.

  5. The electrophysiological "delayed effect" of focal interictal epileptiform discharges. A low resolution electromagnetic tomography (LORETA) study.

    Science.gov (United States)

    Clemens, Béla; Piros, Pálma; Bessenyei, Mónika; Varga, Edit; Puskás, Szilvia; Fekete, István

    2009-08-01

    Collating the findings regarding the role of focal interictal epileptiform discharges (IEDs) on CNS functions raises the possibility that IEDs might have negative impact that outlasts the duration of the spike-and-wave complexes. The aim of this study was the electrophysiological demonstration of the "delayed effect" of the IEDs. 19-channel, linked-ears referenced, digital waking EEG records of 11 children (aged 6-14 years, eight with idiopathic, three with cryptogenic focal epilepsy, showing a single spike focus) were retrospectively selected from our database. A minimum of 20 (preferably, 30), 2-s epochs containing a single focal spike-and-wave complex were selected (Spike epochs). Thereafter, Postspike-1 (Ps1), Postspike-2 (Ps2) and Postspike-3 (Ps3) epochs were selected, representing the first and second seconds (Ps1), the third and fourth seconds (Ps2) and the fifth and sixth seconds (Ps3) after the Spike epoch, respectively. Interspike epochs (Is) were selected at a distance at least 10s after the Spike epoch. Individual analysis: the frequency of interest (FOI=the individual frequency of the wave component of the IEDs), and the region of interest (ROI=the site of the IEDs) were identified by reading the raw EEG waveform and the instant power spectrum. Very narrow band LORETA (low resolution electromagnetic tomography) analysis at the FOI and ROI was carried out. Age-adjusted, Z-transformed LORETA "activity" (=current source density, amperes/meters squared) was compared in the Spike, Ps1, Ps2, Ps3 and Is epochs. the greatest (uppermost pathological) Z-scores and the greatest spatial extension of the LORETA-abnormality were always found in the Spike epochs, followed by the gradual decrease of activity in terms of severity and spatial extension in the Ps1, Ps2, Ps3 epochs. The lowest (baseline) level and extension of the abnormality was found in the Is epochs. Group analysis: average values of activity across the patients were computed for the temporal decrease

  6. Determining time resolution of microchannel plate detectors for electron time-of-flight spectrometers.

    Science.gov (United States)

    Zhang, Qi; Zhao, Kun; Chang, Zenghu

    2010-07-01

    The temporal resolution of a 40 mm diameter chevron microchannel plate (MCP) detector followed by a constant fraction discriminator and a time-to-digital converter was determined by using the third order harmonic of 25 fs Ti:sapphire laser pulses. The resolution was found to deteriorate from 200 to 300 ps as the total voltage applied on the two MCPs increased from 1600 to 2000 V. This was likely due to a partial saturation of the MCP and/or the constant fraction discriminator working with signals beyond its optimum range of pulse width and shape.

  7. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR, P. R. China

    Directory of Open Access Journals (Sweden)

    K. Leempoel

    2013-08-01

    Full Text Available Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc. to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively. Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36% was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%, the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements (August–September, 2009 as well as spectral reflectance values (obtained from pansharpened GeoEye-1, both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%. In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e

  8. Using Actively Heated Fibre Optics (AHFO) to determine soil thermal conductivity and soil moisture content at high spatial and temporal resolution

    Science.gov (United States)

    Ciocca, Francesco; Abesser, Corinna; Hannah, David; Blaen, Philip; Chalari, Athena; Mondanos, Michael; Krause, Stefan

    2017-04-01

    Optical fibre distributed temperature sensing (DTS) is increasingly used in environmental monitoring and for subsurface characterisation, e.g. to obtain precise measurements of soil temperature at high spatio-temporal resolution, over several kilometres of optical fibre cable. When combined with active heating of metal elements embedded in the optical fibre cable (active-DTS), the temperature response of the soil to heating provides valuable information from which other important soil parameters, such as thermal conductivity and soil moisture content, can be inferred. In this presentation, we report the development of an Actively Heated Fibre Optics (AHFO) method for the characterisation of soil thermal conductivity and soil moisture dynamics at high temporal and spatial resolutions at a vegetated hillslope site in central England. The study site is located within a juvenile forest adjacent to the Birmingham Institute of Forest Research (BIFoR) experimental site. It is instrumented with three loops of a 500m hybrid-optical cable installed at 10cm, 25cm and 40cm depths. Active DTS surveys were undertaken in June and October 2016, collecting soil temperature data at 0.25m intervals along the cable, prior to, during and after the 900s heating phase. Soil thermal conductivity and soil moisture were determined according to Ciocca et al. 2012, applied to both the cooling and the heating phase. Independent measurements of soil thermal conductivity and soil moisture content were collected using thermal needle probes, calibrated capacitance-based probes and laboratory methods. Results from both the active DTS survey and independent in-situ and laboratory measurements will be presented, including the observed relationship between thermal conductivity and moisture content at the study site and how it compares against theoretical curves used by the AHFO methods. The spatial variability of soil thermal conductivity and soil moisture content, as observed using the different

  9. High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study.

    Directory of Open Access Journals (Sweden)

    Fabian Hezel

    Full Text Available Myocardial tissue characterization using T(2(* relaxation mapping techniques is an emerging application of (preclinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2(* mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2(* imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2(* mapping. In phantom experiments single cardiac phase and dynamic (CINE gradient echo imaging techniques provided similar T(2(* maps. In vivo studies showed that the peak-to-peak B(0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2(* weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2(* values were found for anterior (T(2(* = 14.0 ms, anteroseptal (T(2(* = 17.2 ms and inferoseptal (T(2(* = 16.5 ms myocardial segments. Shorter T(2(* values were observed for inferior (T(2(* = 10.6 ms and inferolateral (T(2(* = 11.4 ms segments. A significant difference (p = 0.002 in T(2(* values was observed between end-diastole and end-systole with T(2(* changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2(* mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.

  10. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study.

    Science.gov (United States)

    Jena, Amarnath; Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan; Sarin, Ramesh

    2017-01-01

    To evaluate the reliability of pharmacokinetic parameters like K(trans), Kep and ve derived through DCE MRI breast protocol using 3T Simultaneous PET/MRI (3Tesla Positron Emission Tomography/Magnetic Resonance Imaging) system in distinguishing benign and malignant lesions. High temporal resolution DCE (Dynamic Contrast Enhancement) MRI performed as routine breast MRI for diagnosis or as a part of PET/MRI for cancer staging using a 3T simultaneous PET/MRI system in 98 women having 109 breast lesions were analyzed for calculation of pharmacokinetic parameters (K(trans), ve, and Kep) at 60s time point using an in-house developed computation scheme. Receiver operating characteristic (ROC) curve analysis revealed a cut off value for K(trans), Kep, ve as 0.50, 2.59, 0.15 respectively which reliably distinguished benign and malignant breast lesions. Data analysis revealed an overall accuracy of 94.50%, 79.82% and 87.16% for K(trans), Kep, ve respectively. Introduction of native T1 normalization with an externally placed phantom showed a higher accuracy (94.50%) than without native T1 normalization (93.50%) with an increase in specificity of 87% vs 84%. Overall the results indicate that reliable measurement of pharmacokinetic parameters with reduced acquisition time is feasible in a 3TMRI embedded PET/MRI system with reasonable accuracy and application may be extended to exploit the potential of simultaneous PET/MRI in further work on breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast.

    Science.gov (United States)

    Svedin, Bryant T; Payne, Allison; Bolster, Bradley D; Parker, Dennis L

    2017-06-22

    Implement and evaluate a 3D MRI method to measure temperature changes with high spatial and temporal resolution and large field of view. A multiecho pseudo-golden angle stack-of-stars (SOS) sequence with k-space weighted image contrast (KWIC) reconstruction was implemented to simultaneously measure multiple quantities, including temperature, initial signal magnitude M(0), transverse relaxation time ( T2*), and water/fat images. Respiration artifacts were corrected using self-navigation. KWIC artifacts were removed using a multi-baseline library. The phases of the multiple echo images were combined to improve proton resonance frequency precision. Temperature precision was tested through in vivo breast imaging (N = 5 healthy volunteers) using both coronal and sagittal orientations and with focused ultrasound (FUS) heating in a pork phantom using a breast specific MR-guided FUS system. Temperature measurement precision was significantly improved after echo combination when compared with the no echo combination case (spatial average of the standard deviation through time of 0.3-1.0 and 0.7-1.9°C, respectively). Temperature measurement accuracy during heating was comparable to a 3D seg-EPI sequence. M(0) and T2* values showed temperature dependence during heating in pork adipose tissue. A self-navigated 3D multiecho SOS sequence with dynamic KWIC reconstruction is a promising thermometry method that provides multiple temperature sensitive quantitative values. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Evaluation of Coastline Changes under Human Intervention Using Multi-Temporal High-Resolution Images: A Case Study of the Zhoushan Islands, China

    Directory of Open Access Journals (Sweden)

    Xiaoping Zhang

    2014-10-01

    Full Text Available Continued sea-level rise and coastal development have led to considerable concerns on coastline changes along inhabited islands. Analysis of long-term coastline changes of islands is however limited due to unavailable data and the cost of field work. In this study, high-resolution images taken from 1970–2011 at an interval of about 10 years and topographic maps were collected to determine coastline changes and their drivers in the Zhoushan Islands, China. Results show that nearly all inhabited islands appeared to have noteworthy seaward expansion during the past four decades. Coastline change rates varied among islands, and the annual change rate of Zhoushan Island (the main island reached 12.83 ± 0.17 m/year during the same period. Since 2003, the study area has been dominated by artificial coast. The proportion of harbor/port and urban/industrial coast has significantly increased, while rocky coasts and shelter-farm coasts have shrunk greatly. Preliminary analysis of drivers for these coastline changes across the Zhoushan Islands highlights the roles of human policies during different periods as well as location, which were the dominant factors controlling the great spatial and temporal complexity of coastline changes of the major islands. Sediment supply from the Yangtze River decreased after the completion of the Three Gorges Dam in 2003; however, the Zhoushan coast rapidly accreted seaward during the last decade and the artificial siltation, coastal engineering, and harbor dredging materials could be responsible for the observed coastline changes. Pressured by rapid development of the port industry, the Zhoushan coast may face unprecedented challenges in coastal use in the near future. This research provides the basic background information for future studies on coastal protection and management.

  13. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  14. Inferring runoff generation processes through high resolution spatial and temporal UV-Vis absorbance measurements in a mountainous headwater catchment in Southern Ecuador

    Science.gov (United States)

    Windhorst, David; Schob, Sarah; Zang, Carina; Crespo, Patricio; Breuer, Lutz

    2015-04-01

    The alpine grassland páramo - typically occurring in the headwater catchments of the Andes - plays an important role in flow regulation, hydropower generation and local water supply. However, hydrological and hydro-biogeochemical processes in the páramo and their potential reactions to climate and land use change are largely unknown. Therefore, we used a UV-Vis absorbance spectrometer to investigate fluxes of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity and nitrate (NO3-N) in a small headwater catchment (91.31 km²) in the páramo in south Ecuador on a 5 min temporal and 100 m spatial resolution to gain first insights in its hydrological functioning. Spatial sampling was realized during three snapshot sampling campaigns along the 14.2 km long stream between October 2013 and January 2014, while temporal sampling took place at a permanent sampling site within the catchment between February and June 2014. To identify the runoff generation processes the spatial patterns have been associated with local site specific (e.g. fish ponds) and sub-catchment wide (e.g. land use) characteristics. Storm flow events within the time series allowed to further study temporal changes and rotational patterns of concentration-discharge relations (hysteresis). In total, 35 events were identified to be suitable for analyzing hysteresis effects of BOD, COD, and turbidity. Nitrate concentrations could be studied for 20 events. Regardless of the flow conditions nitrate leaching increased with a growing share of non-native pine forests or pastures in the study area. During low flow conditions, the high water holding capacity of the upstream páramo areas ensured a continuous supply of BOD to the stream. Pasture and pine forest sites, mostly occurring in the downstream section of the stream, contributed to BOD only during discharge events. Contradicting the expectations the trout farms along the lower part of the streams had a relatively closed nutrient cycle and

  15. Ps-atom scattering at low energies

    CERN Document Server

    Fabrikant, I I

    2015-01-01

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $v<1$ a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the inter...

  16. Enhanced personal protection at the PS

    CERN Multimedia

    Samuel Morier Genoud

    2013-01-01

    Pictures 03, 06, 07 08 : Pierre Ninin, deputy group leader of GS-ASE and responsible for the installation of the new PS complex safety system, in front of a new access control system.Pictures 10, 12 ,13 : View of Building 271, the future control centre of the new PS complex safety system.

  17. PS, SL and LHC Auditoria change names

    CERN Document Server

    2003-01-01

    Following the replacement of the PS, SL and LHC Divisions by the AB and AT Divisions, the Auditoria are also changing their names. PS Auditorium is renamed AB Meyrin SL Auditorium is renamed AB Prévessin LHC Auditorium is renamed AT

  18. Resolução temporal: desempenho de escolares no teste GIN - Gaps-in-noise Temporal resolution: performance of school-aged children in the GIN - Gaps-in-noise test

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ramos do Amaral

    2010-12-01

    Full Text Available A habilidade auditiva denominada resolução temporal consiste no tempo mínimo necessário para resolver eventos acústicos, sendo fundamental para a compreensão de fala, e pode ser avaliada por testes de detecção de gaps, dentre eles o teste GIN - Gaps In Noise. OBJETIVO: Verificar o desempenho da resolução temporal em crianças sem queixas auditivas e/ou dificuldades escolares, no teste GIN, considerando-se o gênero masculino e feminino e a faixa etária de 8, 9 e 10 anos. FORMA DO ESTUDO: Coorte contemporânea com corte transversal prospectivo. MATERIAL E MÉTODO: O teste GIN foi aplicado em 75 escolares, reunidos em três grupos por faixa etária. RESULTADOS: Não foram encontradas diferenças significantes em relação às variáveis orelha e faixa etária. O gênero masculino obteve desempenho levemente melhor do que o feminino em relação apenas à porcentagem de acertos. CONCLUSÃO: A média do limiar de detecção de gaps e porcentagem de acertos foram calculados independente das variáveis orelha, gênero e faixa etária, sendo encontrados os valores de 4,7ms e 73,6%. Baseado no critério de intervalo de confiança 95% como corte para normalidade, os valores do limiar de detecção de gap e porcentagem de acertos foram 6,1ms e 60%, respectivamente.Time resolution hearing skill is the minimum time necessary to solve acoustic events, which is fundamental for speech understanding, and which may be assessed by gap-detection tests, such as the Gaps-in-noise test (GIN. AIM: the purpose of this study was to verify the performance of time processing ability in children with no hearing and/or education difficulties by applying the GIN test in both genders and ages from 8 to 10 years. STUDY DESIGN: a prospective cross-sectional contemporary cohort. MATERIAL AND METHOD: The GIN test was applied to 75 school-aged children separated into three groups by age. RESULTS: The findings showed no statistical differences among age groups or ears

  19. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Liana, E-mail: liana.annunziatta@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); Monasse, Bernard, E-mail: bernard.monasse@mines-paristech.fr [Mines-ParisTech, CEMEF, Centre de Mise en Forme des Matériaux, UMR CNRS 7635, Sophia Antipolis (France); Rizzo, Paola; Guerra, Gaetano [Dipartimento di Chimica e Biologia, Università degli studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Duc, Michel [Total Petrochemicals Research Feluy, Zone Industrielle Feluy C, B-7181 Seneffe (Belgium); Carpentier, Jean-François, E-mail: jean-francois.carpentier@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2013-09-16

    Crystallization and morphological features of syndiotactic-b-atactic polystyrene stereodiblock copolymers (sPS-b-aPS), atactic/syndiotactic polystyrene blends (aPS/sPS), and aPS/sPS blends modified with sPS-b-aPS, with different compositions in aPS and sPS, have been investigated using differential scanning calorimetry (DSC), polarized light optical microscopy (POM) and wide angle X-ray diffraction (WAXRD) techniques. For comparative purposes, the properties of parent pristine sPS samples were also studied. WAXRD analyses revealed for all the samples, independently from their composition (aPS/sPS ratio) and structure (blends, block copolymers, blends modified with block copolymers), the same polymorphic β form of sPS. The molecular weight of aPS and sPS showed opposite effects on the crystallization of 50:50 aPS/sPS blends: the lower the molecular weight of aPS, the slower the crystallization while the lower the molecular weight of sPS, the faster the crystallization. DSC studies performed under both isothermal and non-isothermal conditions, independently confirmed by POM studies, led to a clear trend for the crystallization rate at a given sPS/aPS ratio (ca. 50:50 and 20:80): sPS homopolymers > sPS-b-aPS block copolymers ∼sPS/aPS blends modified with sPS-b-aPS copolymers > sPS/aPS blends. Interestingly, sPS-b-aPS block copolymers not only crystallized faster than blends, but also affected positively the crystallization behavior of blends. At 50:50 sPS/aPS ratio, blends (Blend-2), block copolymers (Cop-1) and blends modified with block copolymers (Blend-2-mod) crystallized via spherulitic crystalline growth controlled by an interfacial process. In all cases, an instantaneous nucleation was observed. The density of nuclei in block copolymers (160,000−190,000 nuclei mm{sup −3}) was always higher than that in blends and modified blends (30,000−60,000 nuclei mm{sup −3}), even for quite different sPS/aPS ratio. At 20:80 sPS/aPS ratio, the block copolymers

  20. Ps 22 in Gospels’ interpretation of Passion

    Directory of Open Access Journals (Sweden)

    Sylwester Jędrzejewski

    2012-09-01

    Full Text Available Ps 22 is a piece of artistically high poetry, clear images and metaphors, historical and prophetic references. The conviction of biblical scholars that the New Testament writers has recognized in Ps 22 prophetic witness of passion, accompanies the Church from its beginnings. The words of Jesus on the cross, taken from Ps 22: 2, have a character of lamentable re-symbolization of the prayer of Israel. These words establish a theological answer in the form of suitable credo as well. Dramatic question “why?” is connected with a proclamation and identification “My God”. The personal experience of oppression and death is included by Jesus in the history of his nation and in the experience of God. Ps 22 in the Gospels’ passion context becomes a proclamation form of prayer and a very personal, expressed in such dramatic circumstances confession of the faith.

  1. Yasp for LEIR to PS injection

    CERN Document Server

    Kain, V; Bartosik, H; Huschauer, A; Jacquet, D; Nicosia, D; Pasinelli, S; Wenninger, J

    2017-01-01

    The steering program YASP was introduced in the LEIRinjection as well as the extraction lines in 2016 to correctthe trajectories with well-known model based correctionalgorithms such as MICADO or SVD. In addition a YASPconfiguration was prepared to correct the extraction linetogether with the first turn of the PS. In this way the injectionoscillations can be corrected while keeping the trajectoryreasonable in the PS injection line.

  2. PS overcomes two serious magnet failures

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Two magnets and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators' spring start-up to two weeks. Here we see the PS magnet string awaiting the replacement no. 6 magnet.

  3. Low energy o-Ps-o-Ps elastic scattering using a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Himanshu, Sharma [Veer Kunwar Singh Univ., Dept. of Physics, Bihar (India); Kiran, Kumari [R N College, P. G. Dept. of Physics, Bihar (India); Sumana, Chakraborty [Indian Association for the Cultivation of Science, Dept. of Theoretical Physics (India)

    2009-06-15

    A simple model is employed to investigate o-Ps-o-Ps (positronium-positronium) scattering at low energies. This model contains the effect of exchange explicitly and a model long range potential in the framework of static-exchange model. These two physical features are of key importance in Ps-Ps (atom-atom) scattering system. S-wave triplet-triplet and singlet-singlet scattering lengths and corresponding phase shifts up to the incident momentum k = 0.5 a.u. are in excellent agreement with those yielded by most elaborate and theoretically sound predictions. (authors)

  4. A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix.

    Science.gov (United States)

    Zhang, Min; Wang, Hai; Liu, Yan

    2017-04-14

    In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time.

  5. LS1 Report: PS beams are back!

    CERN Multimedia

    Katarina Anthony & Anaïs Schaeffer

    2014-01-01

    For the first time in over 15 months, there are beams back in the PS. Making their first tour of the accelerator today, 20 June, their injection marks the end of weeks of cold checkouts and hardware commissioning in the PS.   The CERN Control Centre (CCC) is back in business: people gather to restart the LHC injectors, today the PS. Since hardware commissioning was wrapped up on 23 May, the Operations Group (BE-OP) has been conducting cold checkouts on the PS. This involves switching on all of the machine's systems, verifying that they respond to commands by OP and ensuring they are calibrated to beam timings. "These verifications were done, in part, during the hardware commissioning dry runs," says Rende Steerenberg, PS section leader. "But the cold checkouts are on a much larger scale, as we act as if there is beam in the whole machine. We placed a full load on the controls system, cooling, networks, etc. in order to setup the accelerator in the most realis...

  6. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    Science.gov (United States)

    Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  7. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cartiglia, N., E-mail: cartiglia@to.infn.it [INFN, Torino (Italy); Staiano, A.; Sola, V. [INFN, Torino (Italy); Arcidiacono, R. [INFN, Torino (Italy); Università del Piemonte Orientale (Italy); Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R. [INFN, Torino (Italy); Università di Torino, Torino (Italy); Bellora, A.; Durando, S. [Università di Torino, Torino (Italy); Mandurrino, M. [Politecnico di Torino, Torino (Italy); Minafra, N. [University of Kansas, KS (United States); Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E. [SCIPP, University of California Santa Cruz, CA 95064 (United States); and others

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 µm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm{sup 2}. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  8. Temporal resolution of misfolded prion protein transport, accumulation, glial activation, and neuronal death in the retinas of mice inoculated with scrapie

    Science.gov (United States)

    Currently, there is a lack of pathologic landmarks to describe the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between the transport of misfolded prion protein from the brain to the retina, the accumulation of PrPSc in the retina, the respon...

  9. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NARCIS (Netherlands)

    Wanders, N.|info:eu-repo/dai/nl/364253940; Karssenberg, D.|info:eu-repo/dai/nl/241557119; Bierkens, M. F. P.|info:eu-repo/dai/nl/125022794; Van Dam, J. C.; De Jong, S. M.|info:eu-repo/dai/nl/120221306

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture

  10. PS overcomes two serious magnet failures

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Two magnets and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators' spring start-up to two weeks. These pictures show one of the magnets (no. 19) on the PS locomotive brought back into service for the removal and replacement operations.

  11. Ultrafast pump-probe microscopy with high temporal dynamic range.

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P

    2012-04-23

    Ultrafast pump-probe microscopy is a common method for time and space resolved imaging of short and ultra-short pulse laser ablation. The temporal delay between the ablating pump pulse and the illuminating probe pulse is tuned either by an optical delay, resulting in several hundred femtoseconds temporal resolution for delay times up to a few ns, or by an electronic delay, resulting in several nanoseconds resolution for longer delay times. In this work we combine both delay types for temporally high resolved observations of complete ablation processes ranging from femtoseconds to microseconds, while ablation is initiated by an ultrafast 660 fs laser pump pulse. For this purpose, we also demonstrate the calibration of the delay time zero point, the synchronization of both probe sources, as well as a method for image quality enhancing. In addition, we present for the first time to our knowledge pump-probe microscopy investigations of the complete substrate side selective ablation process of molybdenum films on glass. The initiation of mechanical film deformation is observed at about 400 ps, continues until approximately 15 ns, whereupon a Mo disk is sheared off free from thermal effects due to a directly induced laser lift-off ablation process. © 2012 Optical Society of America

  12. Land Subsidence Monitoring Using PS-InSAR Technique for L-Band SAR Data

    Science.gov (United States)

    Thapa, S.; Chatterjee, R. S.; Singh, K. B.; Kumar, D.

    2016-10-01

    Differential SAR-Interferometry (D-InSAR) is one of the potential source to measure land surface motion induced due to underground coal mining. However, this technique has many limitation such as atmospheric in homogeneities, spatial de-correlation, and temporal decorrelation. Persistent Scatterer Interferometry synthetic aperture radar (PS-InSAR) belongs to a family of time series InSAR technique, which utilizes the properties of some of the stable natural and anthropogenic targets which remain coherent over long time period. In this study PS-InSAR technique has been used to monitor land subsidence over selected location of Jharia Coal field which has been correlated with the ground levelling measurement. This time series deformation observed using PS InSAR helped us to understand the nature of the ground surface deformation due to underground mining activity.

  13. Positron Annihilation in the Bipositronium Ps2

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  14. The 4 Ps as a Guiding Perspective

    Science.gov (United States)

    Kalsbeek, David H.

    2013-01-01

    A 4 Ps perspective addresses immediate needs: to help institutions gain traction in their retention strategies by framing and reframing the challenges and the possible responses, by challenging some of the traditional mental models about retention that can distract or dilute those strategies, and by offering focus and coherence to institutional…

  15. 10th Anniversary P.S.

    CERN Multimedia

    Adams,J

    1969-01-01

    John Adams parle de la préhistoire du P.S. avec présentation des dias. Le DG B.Gregory prend la parole. Les organisateurs présentent sous la direction du "Prof.Ocktette"(?) un sketch très humoristique (p.e.existence de Quark etc.....)

  16. Back to work for the PS

    CERN Multimedia

    2006-01-01

    On 22 June, the PS's rotating machine started turning again for the first time since its enforced shutdown one month ago (see Bulletin No. 23-24/2006) - and the PS was back in operation the very next day! A team from Siemens worked their socks off, 6 days a week for one month (including public holidays), to repair the electrical power supply in collaboration with the AB/PO Group's Main Power Converters (MPC) Section. The generator's faulty rotor was dismantled and replaced by the renovated spare rotor. The multitude of electrical and mechanical connections together with the sheer weight of the rotor (80 tonnes) made this an extremely complex job. The AB/PO Group used the shutdown to test a back-up solution for the PS power supply. The accelerator was directly wired up to the 18 kV electrical network via a 13 MVA transformer, installed at the end of the 1970s but never used. This solution succeeded in bringing the PS back into operation but at limited energy and frequency. Just 14 GeV could be achieved, whic...

  17. The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment

    NARCIS (Netherlands)

    Cibis, Merih; Potters, Wouter V.; Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; VanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.

    2016-01-01

    Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these

  18. Spectral-temporal dynamics of multipulse mode-locking

    Science.gov (United States)

    Yu, Ying; Li, Bowen; Wei, Xiaoming; Xu, Yiqing; Tsia, Kevin K. M.; Wong, Kenneth K. Y.

    2017-05-01

    In addition to stable pulse generation, passively mode-locked fiber lasers can easily run into an unstable regime of multipulse mode-locking. The birth and dynamic behaviors of multipulse mode-locking so far have rarely been experimentally explored, particularly in the spectral domain. In this letter, several kinds of multipulse spectral-temporal dynamics of a passively mode-locked fiber laser are observed in a single-shot manner, e.g., energy quantization, self-phase modulation spectral broadening, wavelength shifting, spectral interfering, and ultraweak pulse interaction. This study is enabled by the high temporal resolution of spectral-temporal technology, i.e., 50 ps in the time domain and tens of nanoseconds in the spectral domain. Moreover, a wide observing time span of our spectral-temporal analyzing system, i.e., >6 ms—equivalent to 100 000 round trips, enables evolutionary characterization of individual pulses. The results will have a significant impact on optimizing the performance of mode-locked fiber lasers and understanding the nonlinear physics in a dissipative system.

  19. Sub-10ps monolithic and low-power photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Varner, Gary S.; Ruckman, Larry L.

    2009-02-20

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device.

  20. PS overcomes two serious magnet failures

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Two magnets (no.'s 6 and 19)and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators' spring start-up to two weeks. Pictured here are members of the PS team with the replacement no. 6 magnet. From left to right: In the back row, Frédéric Roussel (Transport DBS), Yves Bernard (Transport DBS), Luc Moreno (Cegelec), Thierry Battimanza (Transport DBS), Raymond Brown (AB/ABP), Thomas Zickler (AT/MEL); at the front, Steven Southern (AT/VAC), Thierry Gaidon (Brun & Sorensen), Philippe Vidales (Cegelec), Daniel Aubert (Cegelec), Jerome Cachet (Transport DBS), Jose Manual Gomes de Faria (AT/MEL), Eric Page (AT/VAC).

  1. PS overcomes two serious magnet failures

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Two magnets and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators´ spring start-up to two weeks. Here we see one of the replacement magnets (no. 19) being prepared.

  2. The PS overcomes two serious magnet failures

    CERN Multimedia

    2003-01-01

    Two magnets and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators' spring start-up to two weeks.

  3. Motor-Generator Set, PS Main Supply

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    This is the "new" motor-generator set. It replaced the previous, original, one which had served from the PS start-up in 1959. Ordered in 1965, installed in 1967, it was brought into operation at the beginning of 1968. Regularly serviced and fitted with modern regulation and controls, it still serves at the time of writing (2006) and promises to serve for several more years, as a very much alive museum-piece. See also 6803016 and 0201010.

  4. Measuring target for the PS Booster

    CERN Multimedia

    1971-01-01

    The measuring target for the PS Booster (originally 800 MeV, now 1.4 GeV). It measures the size of the beam by destroying all particles with amplitudes greater than the size of the fork, the position and width of which are adjustable. The plunging time is only 20 ms and the acceleration at the tip of the fork reaches 90 g. The servo-controlled linear motor is shown detached from the mechanism. See also 7602008.

  5. Memories of the PS and of LEP

    CERN Document Server

    Steinberger, Jack

    2012-01-01

    The CERN PS, which started in 1959, and the Brookhaven AGS in 1960, represented an advance by a factor of more than five in the energy of proton accelerators, from the 5 GeV of the Berkeley Bevatron to about 30 GeV. These accelerators made possible the large progress in our understanding of particles and their interactions over the next two decades, culminating in the electroweak and QCD gauge theories.

  6. PS overcomes two serious magnet failures

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Two magnets and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators' spring start-up to two weeks. Here we see one of the replacement magnets (no. 6) being prepared.

  7. Enhanced personal protection system for the PS

    CERN Multimedia

    Caroline Duc

    2013-01-01

    During the first long shutdown (LS1) a new safety system will be installed in the primary beam areas of the PS complex in order to bring the standard of personnel radiation protection at the PS into line with that of the LHC.   Pierre Ninin, deputy group leader of GS-ASE and responsible for the installation of the new PS complex safety system, in front of a new access control system. The LHC access control systems are state-of-the-art, whereas those of the injection chain accelerators were running the risk of becoming obsolete. For the past two years a project to upgrade the access and safety systems of the first links in the LHC accelerator chain has been underway to bring them into compliance with nuclear safety standards. These systems provide the personnel with automatic protection by limiting access to hazardous areas and by ensuring that nobody is present in the areas when the accelerator is in operation. By the end of 2013, the project teams will ha...

  8. Auditory-model based assessment of the effects of hearing loss and hearing-aid compression on spectral and temporal resolution

    DEFF Research Database (Denmark)

    Kowalewski, Borys; MacDonald, Ewen; Strelcyk, Olaf

    2016-01-01

    Most state-of-the-art hearing aids apply multi-channel dynamic-range compression (DRC). Such designs have the potential to emulate, at least to some degree, the processing that takes place in the healthy auditory system. One way to assess hearing-aid performance is to measure speech intelligibility....... However, due to the complexity of speech and its robustness to spectral and temporal alterations, the effects of DRC on speech perception have been mixed and controversial. The goal of the present study was to obtain a clearer understanding of the interplay between hearing loss and DRC by means....... Outcomes were simulated using the auditory processing model of Jepsen et al. (2008) with the front end modified to include effects of hearing impairment and DRC. The results were compared to experimental data from normal-hearing and hearing-impaired listeners....

  9. Temporal and spectral resolution of hearing in patients with precipitous hearing loss: Gap release of masking (GRM) and the role of cognitive function

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2005-01-01

    gaps, masking was measured repeatedly over 3 months post-fitting. GRM was characterized as the release from masking under the gap conditions. The cognitive skills of the participants were assessed with two tests for measuring working memory capacity and lexical vigilance. The results showed that while...... the masking by one-octave wide noise maskers without any gaps was constant over time, GRM increased over time for maskers involving a temporal gap. Moreover, at low frequencies where the subjects had normal hearing-threshold levels, they performed as hearing-impaired for the spectral-gap condition....... Surprisingly, the results also showed moderate though highly significant correlation between lexical vigilance and GRM. [Work supported by the William Demant Foundation.] a)Currently at CNBH, Dept. Physiol., University of Cambridge, CB2 3EG Cambridge, UK....

  10. Regeneration of tumor antigen-specific CTLs utilizing iPS technology.

    Science.gov (United States)

    Maeda, Takuya; Masuda, Kyoko; Kawamoto, Hiroshi

    2016-08-01

    Tumor immunotherapy, especially tumor antigen specific T cell therapy, is currently attracting attention. However, a critical issue still awaits resolution; it is difficult to efficiently expand tumor antigen-specific T cells. To solve this problem, we are now utilizing iPS cell technology. When iPS cells are established from tumor antigen specific T cells, T cells regenerated from these iPS cells are expected to express the same TCRs as the original T cells. In line with this concept, we succeeded in regenerating tumor antigen specific cytotoxic T cells. The regenerated T cells exhibited TCR specific killing activity comparable to that of the original cells, and were able to kill leukemia cells in an antigen-specific manner. We are currently endeavoring to apply this method clinically. In the future, we intend to establish an allogeneic transfusion system, in which various tumor antigen specific T-iPS cells from a wide range of HLA haplotype homozygous donors will be lined up as a "T-iPS cell bank", with the aim of making off-the-shelf tumor immunotherapy a reality.

  11. Temporal Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny

    2010-01-01

    , constituting a temporal smoothing of rapidly changing illumination. In global illumination temporal smoothing can be achieved with distribution ray tracing (Cook et al., 1984). Unfortunately, this, and resembling methods, requires a high temporal resolution as samples has to be drawn from in-between frames. We...... present a novel method which is able to produce high quality temporal smoothing for indirect illumination without using in-between frames. Our method is based on ray differentials (Igehy, 1999) as it has been extended in (Sporring et al., 2009). Light rays are traced as bundles creating footprints, which......The finite frame rate also used in computer animated films is cause of adverse temporal aliasing effects. Most noticeable of these is a stroboscopic effect that is seen as intermittent movement of fast moving illumination. This effect can be mitigated using non-zero shutter times, effectively...

  12. The Spatial and Temporal Variability of a High-Energy Beach: Insight Gained From Over 50 High-Resolution Sub-aerial Surveys

    Science.gov (United States)

    Hansen, J. E.; Barnard, P. L.

    2008-12-01

    Since April 2004 a monitoring program of 7 km-long Ocean Beach, San Francisco, CA, has led to the completion of 55 Global Positioning System topographic surveys of the sub-aerial beach. The four-year timeseries contains over 1 million beach elevation measurements and documents detailed changes of the beach over a variety of spatial, temporal, and physical forcing scales. The goal of this ongoing data collection is to understand the variability in beach response as a function of wave forcing and offshore morphology which will ultimately aid in sediment management and erosion mitigation efforts. Several statistical methods are used to describe and account for the observed beach change, including empirical orthogonal functions (EOFs) and linear regression. Results from the EOF analysis show that the first mode, and approximately 50% of the observed variance of either the mean high water (MHW) or mean sea level (MSL) position, is explained by the seasonal movement of sediment on and offshore. The second mode, and approximately 15% of the variance, is dominated by alongshore variability, possibly corresponding to the position of cusps and embayments. Higher level modes become increasingly variable in the alongshore direction and each explain little of the observed variance. In both cases the first temporal mode is well correlated (R2~=0.7) with offshore significant wave height averaged over the previous 80 to 110 days, suggesting that seasonal wave height variations are the primary driver of intra-annual shoreline position. No other modes exhibit good correlation with offshore wave parameters regardless of the averaging time. The observed seasonal change is superimposed on a longer term trend of net annual accretion at the north end of Ocean Beach and erosion at the south end. Areas at the northern end have seen as much as 60 m of cumulative shoreline progradation since 2004, while some areas of the southern portion have retrograded nearly as much. This pattern shows an

  13. High temporal and spatial resolution 3D time-resolved contrast-enhanced magnetic resonance angiography of the hands and feet.

    Science.gov (United States)

    Haider, Clifton R; Riederer, Stephen J; Borisch, Eric A; Glockner, James F; Grimm, Roger C; Hulshizer, Thomas C; Macedo, Thanila A; Mostardi, Petrice M; Rossman, Phillip J; Vrtiska, Terri J; Young, Phillip M

    2011-07-01

    Methods are described for generating 3D time-resolved contrast-enhanced magnetic resonance (MR) angiograms of the hands and feet. Given targeted spatial resolution and frame times, it is shown that acceleration of about one order of magnitude or more is necessary. This is obtained by a combination of 2D sensitivity encoding (SENSE) and homodyne (HD) acceleration methods. Image update times from 3.4-6.8 seconds are provided in conjunction with view sharing. Modular receiver coil arrays are described which can be designed to the targeted vascular region. Images representative of the technique are generated in the vasculature of the hands and feet in volunteers and in patient studies. Copyright © 2011 Wiley-Liss, Inc.

  14. Psühhodramaatikud annavad Pärnus eksami

    Index Scriptorium Estoniae

    2008-01-01

    29. maist kuni 1. juunini kestab Pärnus psühhodraama konverents "Geeniuste kohtumine", kus rahvusvahelise koolituse läbinud annavad eksami. Ruuda Palmquist on psühhodraama kui teadusharu rajajaid Eestis. Pärnus on kohal Rootsi Moreno Instituudi juhataja, psühhodraama lavastaja Marc Treadwell

  15. Psychometric properties of the French translation of the reduced KOOS and HOOS (KOOS-PS and HOOS-PS)

    DEFF Research Database (Denmark)

    Ornetti, P; Perruccio, A V; Roos, E M

    2009-01-01

    OBJECTIVE: To evaluate the psychometric properties of the French KOOS physical function (KOOS-PS) and HOOS physical function (HOOS-PS), specifically its feasibility, reliability, construct validity, and responsiveness. METHODS: Consecutive outpatients consulting for primary knee or hip osteoarthr......OBJECTIVE: To evaluate the psychometric properties of the French KOOS physical function (KOOS-PS) and HOOS physical function (HOOS-PS), specifically its feasibility, reliability, construct validity, and responsiveness. METHODS: Consecutive outpatients consulting for primary knee or hip...

  16. Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation.

    Science.gov (United States)

    Lu, Ping; Chen, Xiaolong; Feng, Yun; Zeng, Qiao; Jiang, Cizhong; Zhu, Xianmin; Fan, Guoping; Xue, Zhigang

    2016-11-01

    Fragile X syndrome (FXS) patients carry the expansion of over 200 CGG repeats at the promoter of fragile X mental retardation 1 (FMR1), leading to decreased or absent expression of its encoded fragile X mental retardation protein (FMRP). However, the global transcriptional alteration by FMRP deficiency has not been well characterized at single nucleotide resolution, i.e., RNA-seq. Here, we performed in-vitro neuronal differentiation of human induced pluripotent stem (iPS) cells that were derived from fibroblasts of a FXS patient (FXS-iPSC). We then performed RNA-seq and examined the transcriptional misregulation at each intermediate stage during in-vitro differentiation of FXS-iPSC into neurons. After thoroughly analyzing the transcriptomic data and integrating them with those from other platforms, we found up-regulation of many genes encoding TFs for neuronal differentiation (WNT1, BMP4, POU3F4, TFAP2C, and PAX3), down-regulation of potassium channels (KCNA1, KCNC3, KCNG2, KCNIP4, KCNJ3, KCNK9, and KCNT1) and altered temporal regulation of SHANK1 and NNAT in FXS-iPSC derived neurons, indicating impaired neuronal differentiation and function in FXS patients. In conclusion, we demonstrated that the FMRP deficiency in FXS patients has significant impact on the gene expression patterns during development, which will help to discover potential targeting candidates for the cure of FXS symptoms.

  17. Evolving science enhanced with iPS

    Directory of Open Access Journals (Sweden)

    Editor

    2007-11-01

    Full Text Available Dear friends, Greetings from all in the team. With the stage set for online submissions and the review-response-revision-resubmission process standardized, we have come with the first regular issue and from now there will be quarterly issues of the journal. Since the starting of the JSRM in a short span there have been a lot of developments, which we would rather say as "evolutions" keeping in mind, the recent iPS! This evolution we would like you to see from a background of the various developments in the art and science of medicine throughout in the past three centuries. We have come across the era of investigative tools such as bamboo made laryngoscopes to era of vaccines and antibiotics followed by the era of revolutionary non-invasive procedures and recently the nano technology based drugs and now the iPS! Macro to Micro, but still more to go. All through the influence of the society, religions, philosophies have been playing a very important role in every step the science of biology moves ahead. Starting with the contraception, assisted reproduction then the gene modified plants....and now the embryonic stem cells! With the advent of the iPS, though the issues of oncogenes, teratoma yet to be ruled out, we have found there is a way which can bypass the ES cells! Hats off to those scientists who have burnt their midnight oil to have found this way out! The lesson we learn is to explore things with an open mind and continue to proceed further without spending much time fingers crossed. Yours sincerely,The Editorial team.

  18. Position pickup of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The beam position around the 4 rings of the PS Booster (originally 800 MeV, now 1.4 GeV), is measured with electrostatic pickups (PU). They consist of a ceramic cylinder forming part of the vacuum chamber, and, in order to save space, they are located inside the multipole lenses. The inside of the ceramic is coated with a metallic layer, into which the form of the electrodes was cut by computer-controlled micro-sandblasting. Each PU has a pair of horizontal and a pair of vertical electrodes, as well as a separate intensity-sensing circular electrode.

  19. Space charge studies in the PS

    CERN Document Server

    Asvesta, F; Damerau, H; Huschauer, A; Papaphilippou, Y; Serluca, M; Sterbini, G; Zisopoulos, P

    2017-01-01

    In this paper the results of Machine Development (MD)studies conducted at the CERN Proton Sychrotron (PS) arepresented. The main focus was the investigation of newworking points in an effort to characterize and potentiallyimprove the brightness for LHC-type beams in view of theLHC Injectors Upgrade (LIU). Various working points werecompared in terms of losses and emittance evolution. Sincespace charge and the resonances it excites are the main causefor emittance blow-up and losses, tunes close to excitedresonances were carefully studied. Mitigation techniques,such as bunch flattening using a double harmonic RF system,were also tested.

  20. PAN/PS elctrospun fibers for oil spill cleanup

    Science.gov (United States)

    Ying, Qiao; Lili, Zhao; Haixiang, Sun; Peng, Li

    2014-08-01

    A high-capacity oil sorbent was fabricated by electrospinning using PS/PAN blend. Morphology, contact angle and oil adsorption of PAN/PS fiber and PP nonwoven fabric were studied. It was found that the PAN/PS fiber had a smaller diameter than PP, and the maximum sorption capacities of the PAN/PS sorbent for pump oil, peanut oil, diesel, and gasoline were 194.85, 131.7, 66.75, and 43.38 g/g, which were far higher than those of PP. The sorbent PS/PAN fiber showed a contact angle of water144.32° and diesel oil 0°. The sorption kinetics of PAN/PS and PP sorbent were also investigated. Compared with the commercial PP fabric, the PAN/PS fiber seems to have the ability to be used in oil-spill cleanup application.

  1. Chemotherapy and quality of life in NSCLC PS 2 patients

    DEFF Research Database (Denmark)

    Helbekkmo, Nina; Strøm, Hans H; Sundstrøm, Stein H

    2009-01-01

    INTRODUCTION: Nearly 40% of patients with advanced NSCLC are in performance status (PS) 2. These patients have a shorter life expectancy than PS 0/1 patients and they are underrepresented in clinical trials. Data on how platinum-based combination chemotherapy affects Health Related Quality of Life...... (HRQOL) of patients with PS 2 are scarce and the treatment of this important group of patients is controversial. METHODS: A national multicenter phase III study on platinum based chemotherapy to 432 advanced NSCLC patients included 123 patients with PS 2. To explore the treatment impact on HRQOL......: Whereas the demographic data at baseline were well balanced between the groups, the PS 2 patients had significantly worse function and more severe symptoms than the PS 0/1 patients. In response to combination chemotherapy, the PS 2 patients had a more profound improvement of global QOL, cognitive function...

  2. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  3. The PS Booster Fast Wire Scanner

    CERN Document Server

    Burger, S; Priestnall, K; Raich, U

    2003-01-01

    The very tight emittance budget for LHC type beams makes precise emittance measurements in the injector complex a necessity. The PS machine uses 2 fast wire scanners per transverse plane for emittance measurement of the circulating beams. In order to ease comparison the same type of wire scanners have been newly installed in the upstream machine, the PS Booster, where each of the 4 rings is equipped with 2 wire scanners measuring the horizontal and vertical profiles. Those wire scanners use new and more modern control and readout electronics featuring dedicated intelligent motor movement controllers, which relieves the very stringent real time constraints due to the very high speed of 20m/s. In order to be able to measure primary beams at the very low injection energy of the Booster (50MeV) secondary emission currents from the wire can be measured as well as secondary particle flows at higher primary particle energies during and after acceleration. The solution adopted for the control of the devices is descri...

  4. Sofrimento psíquico e trabalho

    Directory of Open Access Journals (Sweden)

    Sarah Rosa Salles Vieira

    2014-03-01

    Full Text Available O presente artigo aprofunda questões clínico-téoricas relacionadas especificamente ao trabalho docente e ao sofrimento psíquico a ele relacionado a partir da observação clínica e vivência grupal nos atendimentos terapêuticos ocupacionais realizados no Hospital do Servidor Público Estadual de São Paulo "Francisco Morato de Oliveira" (HSPE-FMO. Partindo dos estudos acerca da Psicopatologia do Trabalho de Christophe Dejours, do trabalho docente e do relato de um caso clínico, caracteriza a problemática do sofrimento no trabalho, os sistemas de defesa contra este sofrimento, a ameaça à subjetividade do próprio trabalhador, as representações e conflitos vivenciados no trabalho docente, bem como a relação aditiva estabelecida como uma estratégia inconsciente de sobrevivência psíquica.

  5. KAJIAN INDUCED PLURIPOTENT STEMCELL (iPS (HARAPAN DAN TANTANGAN

    Directory of Open Access Journals (Sweden)

    Masagus Zainuri

    2014-05-01

    Full Text Available AbstractInduced Pluripotent Stemcell (iPS are adult cells which the genetic information in the nucleus of those cells being reprogrammed (reprogram by inserting exogenous pluripotential genes. The exogenous gene transduction is using vectors, such as lentivirus, retrovirus, or adenovirus, which suppressed the gene expression of the original cells, so they will express the transduced exogenous gene. Viral vectors are then used to reprogramming and producing iPS clones that are pluripotent. iPS derived from adult cells of patient with certain diseases will be used as a tool to study the mechanisms of those specific diseases and the effects of selected drugs against the diseases. Several previous studies have shown that iPS clones developed from specific genetic disease have its original genotype and retain the character of the response to the drug that similar as the original adult cells. Opportunities for the utilization of autologous iPS cell therapy in the future is wide open as expected iPS transplant will not be rejected when transplanted back to the patient. Behind all its potential, iPS production is still facing some problems to be applicable clinically. The use of viruses as vectors may cause problems due to virus gene sequences may be integrated into the genome of the DNA donor cell, thereby causing mutations of the iPS clones. Several subsequent studies have succeeded in replacing the use of viruses as vectors, but the level of efficiency obtained is still very low. Another problem that arises is that epigenetic changes may occur in iPS cultures. Many advanced research related to iPS may be developed in Indonesia and is necessary to improve the production efficiency of iPS and solve iPS clones epigenetic changes problems in the future.Keywords: iPS, pluripotency, transduction, transfection.AbstrakInduced Pluripotent Stemcell (iPS adalah sel somatic dewasa yang informasi genetika dalam inti selnyadiprogram ulang (reprogram dengan cara

  6. Comparison of molecular species of various transphosphatidylated phosphatidylserine (PS) with bovine cortex PS by mass spectrometry

    NARCIS (Netherlands)

    Chen, S.; Li, K.W.

    2008-01-01

    The exogenous introduction of a molecular species mixture of bovine cortex phosphatidylserine (BC-PS) has been claimed to improve memory function in subjects suffering from age-associated memory impairment and dementia. However, it has been also reported that oral administration of another molecular

  7. PS main supply: motor-generator set.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In picture 04 the motor is on the right in the background and the main view is of the generator. The peak power in each PS cycle drawn from the generator, up to 96 MW, is taken from the rotational kinetic energy of the rotor (a heavy-weight of 80 tons), which makes the rotational speed drop by only a few percent. The motor replenishes the average power of 2 to 4 MW. Photo 05: The motor-generator set is serviced every year and, in particular, bearings and slip-rings are carefully checked. To the left is the motor with its slip-rings visible. It has been detached from the axle and moved to the side, so that the rotor can be removed from the huge generator, looming at the right.

  8. PS: A nonprocedural language with data types and modules

    Science.gov (United States)

    Gokhale, M. B.

    1986-01-01

    The Problem Specification (PS) nonprocedural language is a very high level language for algorithm specification. PS is suitable for nonprogrammers, who can specify a problem using mathematically-oriented equations; for expert programmers, who can prototype different versions of a software system for evaluation; and for those who wish to use specifications for portions (if not all) of a program. PS has data types and modules similar to Modula-2. The compiler generates C code. PS is first shown by example, and then efficiency issues in scheduling and code generation are discussed.

  9. Distinct iPS Cells Show Different Cardiac Differentiation Efficiency.

    Science.gov (United States)

    Ohno, Yohei; Yuasa, Shinsuke; Egashira, Toru; Seki, Tomohisa; Hashimoto, Hisayuki; Tohyama, Shugo; Saito, Yuki; Kunitomi, Akira; Shimoji, Kenichiro; Onizuka, Takeshi; Kageyama, Toshimi; Yae, Kojiro; Tanaka, Tomofumi; Kaneda, Ruri; Hattori, Fumiyuki; Murata, Mitsushige; Kimura, Kensuke; Fukuda, Keiichi

    2013-01-01

    Patient-specific induced pluripotent stem (iPS) cells can be generated by introducing transcription factors that are highly expressed in embryonic stem (ES) cells into somatic cells. This opens up new possibilities for cell transplantation-based regenerative medicine by overcoming the ethical issues and immunological problems associated with ES cells. Despite the development of various methods for the generation of iPS cells that have resulted in increased efficiency, safety, and general versatility, it remains unknown which types of iPS cells are suitable for clinical use. Therefore, the aims of the present study were to assess (1) the differentiation potential, time course, and efficiency of different types of iPS cell lines to differentiate into cardiomyocytes in vitro and (2) the properties of the iPS cell-derived cardiomyocytes. We found that high-quality iPS cells exhibited better cardiomyocyte differentiation in terms of the time course and efficiency of differentiation than low-quality iPS cells, which hardly ever differentiated into cardiomyocytes. Because of the different properties of the various iPS cell lines such as cardiac differentiation efficiency and potential safety hazards, newly established iPS cell lines must be characterized prior to their use in cardiac regenerative medicine.

  10. In vivo monitoring of serotonin in the striatum of freely moving rats with one minute temporal resolution by online microdialysis-capillary high-performance liquid chromatography at elevated temperature and pressure.

    Science.gov (United States)

    Zhang, Jing; Jaquins-Gerstl, Andrea; Nesbitt, Kathryn M; Rutan, Sarah C; Michael, Adrian C; Weber, Stephen G

    2013-10-15

    Online monitoring of serotonin in striatal dialysate from freely moving rats was carried out for more than 16 h at 1 min time resolution using microdialysis coupled online to a capillary HPLC system operating at about 500 bar and 50 °C. Several aspects of the system were optimized toward robust, in vivo online measurements. A two-loop, eight-port rotary injection valve demonstrated better consistency of continuous injections than the more commonly used two-loop, 10-port valve. A six-port loop injector for introducing stimulating solutions (stimulus injector) was placed in-line between the syringe pump and microdialysis probe. We minimized solute dispersion by using capillary tubing (75 μm inside diameter, 70 cm long) for the probe inlet and outlet. In vitro assessment of concentration dispersion during transport with a 30 s time resolution showed that the dispersion standard deviation for serotonin was well within the desired system temporal resolution. Each 30 or 60 s measurement reflects the integral of the true time response over the measurement time. We have accounted for this mathematically in determining the concentration dispersion during transport. The delay time between a concentration change at the probe and its detection is 7 min. The timing of injections from the stimulus injector and the cycle time for the HPLC monitoring of the flow stream were controlled. The electrochemical detector contained a 13 μm spacer to minimize detector dead volume. During in vivo experiments, retention time and separation efficiency were stable and reproducible. There was no statistically significant change over 5.5 h in the electrochemical detector sensitivity factor for serotonin. Dialysate serotonin concentrations change significantly in response to a 120 mM K(+) stimulus. Release of serotonin evoked by a 10 min, 120 mM K(+) stimulation, but not for other K(+) stimuli, exhibited a reproducible, oscillating profile of dialysate serotonin concentration versus time

  11. LEADIR-PS: providing unprecedented SMR safety and economics

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R.S., E-mail: N2i2@xplornet.ca [Northern Nuclear Industries Incorporated, Cambridge, ON (Canada)

    2015-07-01

    Northern Nuclear Industries Incorporated (N{sup 2} I{sup 2}) is developing Small Modular Reactors (SMRs) called LEADIR-PS, an acronym for LEAD-cooled Integral Reactor-Passively Safe. LEADIR-PS integrates proven technologies including TRISO fuel, Pebble Bed core and graphite moderator, with molten lead coolant in an integral pool type reactor configuration to achieve unprecedented safety and economics. Plants under development are LEADIR-PS30, producing 30 MWth, LEADIR-PS100 producing 100 MWth and LEADIR-PS300 producing 300 MWth that are focused on serving the energy demands of areas with a small electrical grid and/or process heat applications. A plant consisting of six LEADIR-PS300 reactor modules serving a common turbine-generator, called the LEADIR-PS Six-Pack, is focused on serving areas with higher energy demands and a robust electricity grid. The Gen{sup +} I LEADIR-PS plants are inherently/passively safe. There is no potential for a Loss Of Coolant Accident, a reactivity transient without shutdown, a loss of heat sink, or hydrogen generation. No active systems or operator actions are required to assure safety. The unprecedented safety of LEADIR-PS reactors avoids large exclusion radius and demanding evacuation plan requirements. LEADIR-PS, with steam conditions of 370 {sup o}C and 12 MPa can serve over 85% of the world's non-transportation process heat demands. In Canada, the electricity and process heat demands, ranging from those of remote communities and the oil sands to densely populated areas can be served by LEADIR-PS. (author)

  12. Moveout-based geometrical-spreading correction for PS-waves in layered anisotropic media

    Science.gov (United States)

    Xu, Xiaoxia; Tsvankin, Ilya

    2008-06-01

    This paper is devoted to pre-stack amplitude analysis of reflection seismic data from anisotropic (e.g., fractured) media. Geometrical-spreading correction is an important component of amplitude-variation-with-offset (AVO) analysis, which provides high-resolution information for anisotropic parameter estimation and fracture characterization. Here, we extend the algorithm of moveout-based anisotropic spreading correction (MASC) to mode-converted PSV-waves in VTI (transversely isotropic with a vertical symmetry axis) media and symmetry planes of orthorhombic media. While the geometrical-spreading equation in terms of reflection traveltime has the same form for all wave modes in laterally homogeneous media, reflection moveout of PS-waves is more complicated than that of P-waves (e.g., it can become asymmetric in common-midpoint geometry). Still, for models with a horizontal symmetry plane, long-spread reflection traveltimes of PS waves can be well approximated by the Tsvankin-Thomsen and Alkhalifah-Tsvankin moveout equations, which are widely used for P-waves. Although the accuracy of the Alkhalifah-Tsvankin equation is somewhat lower, it includes fewer moveout parameters and helps to maintain the uniformity of the MASC algorithm for P- and PS-waves. The parameters of both moveout equations are obtained by least-squares traveltime fitting or semblance analysis and are different from those for P-waves. Testing on full-waveform synthetic data generated by the reflectivity method for layered VTI media confirms that MASC accurately reconstructs the plane-wave conversion coefficient from conventional-spread PS data. Errors in the estimated conversion coefficient, which become noticeable at moderate and large offsets, are mostly caused by the offset-dependent transmission loss of PS-waves.

  13. The HARP detector at the CERN PS

    CERN Document Server

    Catanesi, M G; Radicioni, E; Simone, S; Edgecock, R; Ellis, M; Robbins, S; Soler, F J P; Gößling, C; Mass, M; Bunyatov, S; Chukanov, A; Klimov, O; Krasin, I; Krasnoperov, A; Kustov, D; Popov, B; Serdiouk, V; Tereshchenko, V; Carassiti, V; Di Capua, E; Evangelisti, F; Vidal-Sitjes, G; Artamonov, A; Arce, P; Brocard, R; Decreuse, G; Friend, B; Giani, S; Gilardoni, S; Gorbunov, p; Grant, A; Grossheim, A; Gruber, P; Ivanchenko, V; Legrand, J C; Kayis-Topaksu,A; Panman, P; Papadopoulos, I; Pasternak, J; Chernyaev, E; Tsukerman, I; van der Vlugt, R; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Campanelli, M; Cervera-Villanueva, A; Morone, M C; Prior, G; Schroeter, R; Kato, I; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Chignoli, F; Ferri, F; Paleari, F; Kirsanov, M; Postoev, V; Bagulya A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Pattison, C; Zuber, K; Barichello, G; Bobisut, F; Gibin, D; Guglielmi, A; Laveder, M; Menegolli, A; Mezzetto M; Pepato, Adriano; Dumarchez, J; Troquereau, S; Vannucci, F; Dore, U; Iaciofano, A; Lobello, M; Marinilli, F; Orestano, D; Panayotov, D; Pasquali, M; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Buttar, C; Hodgson, P; Howlett, L; Nicholson, R; Bogomilovw, M; Burin, K; Chizhov, M; Kolev, D; Petev, P; Rusinov, I; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Santin, G; Burguet-Castell, J; Gómez-Cadenas, J J; Novella, P; Sorel, M; Tornero, A

    2007-01-01

    HARP is a high-statistics, large solid angle experiment to measure hadron production using proton and pion beams with momenta between 1.5 and 15 GeV/c impinging on many different solid and liquid targets from low to high Z. The experiment, located in the T9 beam of the CERN PS, took data in 2001 and 2002. For the measurement of momenta of produced particles and for the identification of particle types, the experiment includes a large-angle spectrometer, based on a Time Projection Chamber and a system of Resistive Plate Chambers, and a forward spectrometer equipped with a set of large drift chambers, a threshold Cherenkov detector, a time-of-flight wall and an electromagnetic calorimeter. The large angle system uses a solenoidal magnet, while the forward spectrometer is based on a dipole magnet. Redundancy in particle identification has been sought, to enable the cross-calibration of efficiencies and to obtain a few percent overall accuracy in the cross-section measurements. Detector construction, operation an...

  14. Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management

    Science.gov (United States)

    Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.

    2018-01-01

    During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (< 300 ps). It is also possible to reconstruct the direction of propagation of the photons inside the detector using timing constraints. The sensitivity of our system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.

  15. Percepção de limitações de atividades comunicativas, resolução temporal e figura-fundo em perda auditiva unilateral Perception of limitations on communicative activities, temporal resolution and figure-to-ground in unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Márcia Ribeiro Vieira

    2011-12-01

    Full Text Available OBJETIVO: Avaliar os comportamentos auditivos de figura-fundo e resolução temporal, e a auto-percepção das limitações de atividades comunicativas de crianças e adolescentes portadores de perda auditiva unilateral. MÉTODOS: Participaram do estudo 38 indivíduos, com idades entre 8 e 19 anos, divididos em: grupo estudo (portadores de perda auditiva unilateral e grupo controle (ouvintes normais, cada um formado por 19 indivíduos, pareados conforme gênero, idade e escolaridade. Todos foram submetidos à anamnese, avaliação audiológica e aos procedimentos do estudo: questionário de auto-avaliação das limitações de atividades comunicativas, testes de processamento auditivo Gaps-in-Noise e Pediatric Speech Intelligibility Test. A análise estatística foi realizada por meio de testes não paramétricos. RESULTADOS: No grupo estudo, a perda auditiva unilateral na maioria dos participantes foi de grau profundo, com início na fase pré-escolar, com etiologias desconhecidas ou identificadas como meningite, traumas, caxumba e sarampo. A maioria dos indivíduos apresentou queixa de dificuldades de aprendizagem e mostrou limitações de atividades comunicativas de grau moderado predominantemente, e principalmente em situações ruidosas. No grupo estudo foram observadas as piores respostas tanto para os limiares de detecção de gap como no teste Pediatric Speech Intelligibility Test obtidas na orelha normal. Não houve correlação significativa entre os limiares de detecção de gap na orelha normal e o lado da orelha com perda auditiva. CONCLUSÃO: Indivíduos com perda auditiva unilateral apresentam limitações de atividades comunicativas, principalmente em ambientes ruidosos associadas a piores habilidades auditivas de resolução temporal e de figura-fundo.PURPOSE: To evaluate the hearing behavior of figure-to-ground and temporal resolution, and the self-perception of limitations on communicative activities of children and

  16. Resolução temporal de crianças: comparação entre audição normal, perda auditiva condutiva e distúrbio do processamento auditivo Temporal resolution in children: comparing normal hearing, conductive hearing loss and auditory processing disorder

    Directory of Open Access Journals (Sweden)

    Sheila Andreoli Balen

    2009-02-01

    Full Text Available A resolução temporal é essencial na percepção acústica da fala, podendo estar alterada nos distúrbios auditivos gerando prejuízos no desenvolvimento da linguagem. OBJETIVO: Comparar a resolução temporal de crianças com audição normal, perda auditiva condutiva e distúrbios do processamento auditivo. CASUÍSTICA E MÉTODO: A amostra foi de 31 crianças de 07 a 10 anos, divididas em três grupos: G1: 12 com audição normal, G2: sete com perda auditiva condutiva e G3: 12 com distúrbio do processamento auditivo. Os procedimentos de seleção foram: questionário aos responsáveis, avaliação audiológica e do processamento auditivo. O procedimento de pesquisa foi o teste de detecção de intervalos no silêncio realizado a 50 dB NS acima da média de 500, 1000 e 2000Hz na condição binaural em 500, 1000, 2000 e 4000Hz. Na análise dos dados foi utilizado o Teste de Wilcoxon, com nível de significância de 1%. RESULTADO: Observou-se que houve diferença entre os G1 e G2 e entre os G1 e G3 em todas as freqüências. Por outro lado, esta diferença não foi observada entre os G2 e G3. CONCLUSÃO A perda auditiva condutiva e o distúrbio do processamento auditivo têm influência no limiar de detecção de intervalos.Temporal resolution is essential to speech acoustic perception. It may be altered in subjects with auditory disorders, thus impairing the development of spoken and written language. AIM: The goal was to compare temporal resolution of children with normal hearing, with those bearing conductive hearing loss and auditory processing disorders. MATERIALS AND METHODS: The sample had 31 children, between 7 and 10 years of age, broken down into three groups: G1: 12 subjects with normal hearing; G2: 7 with conductive hearing loss and G3: 12 subjects with auditory processing disorders. This study was clinical and experimental. Selection procedures were: a questionnaire to be answered by the parents/guardians, audiologic and hearing

  17. Interleaving of beam lines inside the PS tunnel

    CERN Multimedia

    1983-01-01

    View against the direction of the proton beams. The PS ring (section 26) is on the left. The injection tunnel for LEAR leaving from here has increased the trafic in this already busy area where the two Linacs and the transfer tunnel leading to the SPS, ISR and AA join the PS ring (cf. photo 7802260, 7802261, Annual Report 1981, p. 89, fig. 12).

  18. Modulation of enzymatic PS synthesis by liposome membrane composition.

    Science.gov (United States)

    Pinsolle, Alexandre; Roy, Philippe; Cansell, Maud

    2014-03-01

    Phosphatidylserine (PS) is a phospholipid known to exert important physiological roles in humans. However, this phospholipid (PL) is poorly available as a natural source and hardly produced by the chemical route. In this work, PS was obtained by transphosphatidylation using phospholipase D (PLD) and PL self-assembled into liposomes as the substrates. The aim was to better understand how the liposome membrane composition could modulate PS yield. Three lecithins were used as PL substrates, one originated from a marine source providing a high amount of n-3 polyunsaturated fatty acids, and two issued from soya differing in their phosphatidylcholine (PC) content. Different parameters such as Ca(2+) content, enzyme and L-serine concentrations modulated PS synthesis. The presence of Ca(2+) increased PS conversion yield. The alcohol acceptor (L-serine) concentration positively acted on PL conversion, by governing the equilibrium between transphosphatidylation and hydrolysis. Beside these specific reaction conditions, it was demonstrated that the membrane composition of the liposomes modulated PS synthesis. A direct correlation between PS accumulation and the amount of cholesterol or α-tocopherol incorporated into the soya lecithins was observed. This result was interpreted in terms of "head" spacers promoting PLD transphosphatidylation. On the whole, this work provided key parameters for the formulation of liposomes using enzymatic PLD technology, to produce lecithins enriched in different proportions of PS and esterified with various types of fatty acids depending on the initial lecithin source. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Spectroscopic Classification of PS16chs with SOAR/Goodman

    Science.gov (United States)

    Miller, J. A.; Hounsell, R. A.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-05-01

    We report the classification of PS16chs from spectroscopic observation with the Goodman spectrograph on the SOAR telescope. The observation was made on 2016 May 08 UT. We classify PS16chs as a SN Ia near maximum light at z = 0.19.

  20. Motor-Generator powering the PS (Proton Synchrotron) main magnets

    CERN Multimedia

    1983-01-01

    This motor-generator,30 MW peak, 1500 r.p.m.,pulsed power supply for the PS main magnet replaced in 1968 the initial 3000 r.p.m. motor-generator-flywheel set which had served from the PS start-up in 1959 until end 1967. See also photo 8302337 and its abstract.

  1. Transfer line TT70 (electrons from PS to SPS)

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    As injectors for LEP, PS and SPS had to be converted to the acceleration of electrons and positrons. So far, only positively charged particles had been transferred from the PS to the SPS, for the negatively charged electrons a new transfer line, TT70, had to be built. Due to the difference in level of the two machines, the transfer line slopes and tilts.

  2. Psühhodraama - spontaansuse kool / Taimi Elenurm

    Index Scriptorium Estoniae

    Elenurm, Taimi

    2010-01-01

    Viinis ja New Yorgis tegutsenud psühhiaatri Jakob Levy Moreno loodud psühhodraamast, mis võimaldab rollimängu kaudu näha ennast läbi teiste silmade, aga ka vabaneda pingetest andes võimaluse käituda teisiti kui tavaelus

  3. Successful online learning – the five Ps

    Directory of Open Access Journals (Sweden)

    Jim FLOOD

    2004-04-01

    Full Text Available Successful online learning – the five Ps Jim FLOOD E-learning Consultant-UK jimflood@btinternet.com Key learning points • An important aspect of design for online learning is visual ergonomics. • Learning theories offer poor predictive power in terms of how learners work and learn. • Success at learning is closely related to emotional engagement–and learning designers tend to ignore this aspect. • Online learning poses a challenging experience for learners–and they need support to cope with it. • A key goal to achieve Praxis – being able to put learning into practice. Many of you will be familiar with the three (or more Ps of marketing and even if not, as trainers or teachers you are likely to have used mnemonics as an aid to retention and recall. Mnemonics are especially useful when you need to get the key points to ‘stick’ in the minds of your audience. With this in mind I offer you the 5 Ps of online learning: Presentation, Pedagogy, Promotion, Preparation and Props. What I offer is not new; in fact much of it results from the eleven years of online teaching and learning at The Open University, the £22 million it has spent on research and evaluation 1, and the worldwide community that have been sharing experience in recent years. You can therefore consider these 5 Ps to be a convenient re-packing of the information and experience that can be found in abundance on the Internet. Presentation Good graphic design appeals to the subtle process by which the brain processes information and, as a result, we decide if we like the ‘look and feel’ of a visual environment. Part of liking this ‘look and feel’ is the way the text and pictorial layout can appear inviting and encouraging–a vital aspect of any online learning environment. Another aspect of presentation is how the text reads in terms of engaging the learner and introducing the story to be told–as well as being written in clear and concise English When browsing through books

  4. Applications of a streak-camera-based imager with simultaneous high space and time resolution

    Science.gov (United States)

    Klick, David I.; Knight, Frederick K.

    1993-01-01

    A high-speed imaging device has been built that is capable of recording several hundred images over a time span of 25 to 400 ns. The imager is based on a streak camera, which provides both spatial and temporal resolution. The system's current angular resolution is 16 X 16 pixels, with a time resolution of 250 ps. It was initially employed to provide 3-D images of objects, in conjunction with a short-pulse (approximately 100 ps) laser. For the 3-D (angle-angle-range) laser radar, the 250 ps time resolution corresponds to a range resolution of 4 cm. In the 3-D system, light from a short-pulse laser (a frequency-doubled, Q-switched, mode-locked Nd:YAG laser operating at a wavelength of 532 nm) flood-illuminates a target of linear dimension approximately 1 m. The returning light from the target is imaged, and the image is dissected by a 16 X 16 array of optical fibers. At the other end of the fiber optic image converter, the 256 fibers form a vertical line array, which is input to the slit of a streak camera. The streak camera sweeps the input line across the output phosphor screen so that horizontal position is directly proportional to time. The resulting 2-D image (fiber location vs. time) at the phosphor is read by an intensified (SIT) vidicon TV tube, and the image is digitized and stored. A computer subsequently decodes the image, unscrambling the linear pixels into an angle-angle image at each time or range bin. We are left with a series of snapshots, each one depicting the portion of target surface in a given range bin. The pictures can be combined to form a 3-D realization of the target. Continuous recording of many images over a short time span is of use in imaging other transient phenomena. These applications share a need for multiple images from a nonrepeatable transient event of time duration on the order of nanoseconds. Applications discussed for the imager include (1) pulsed laser beam diagnostics -- measuring laser beam spatial and temporal structure, (2

  5. Telomere reprogramming and maintenance in porcine iPS cells.

    Directory of Open Access Journals (Sweden)

    Guangzhen Ji

    Full Text Available Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells. Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  6. Telomere reprogramming and maintenance in porcine iPS cells.

    Science.gov (United States)

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  7. Inverse modeling using PS-InSAR for improved calibration of hydraulic parameters and prediction of future subsidence for Las Vegas Valley, USA

    Directory of Open Access Journals (Sweden)

    T. J. Burbey

    2015-11-01

    Full Text Available Las Vegas Valley has had a long history of surface deformation due to groundwater pumping that began in the early 20th century. After nearly 80 years of pumping, PS-InSAR interferograms have revealed detailed and complex spatial patterns of subsidence in the Las Vegas Valley area that do not coincide with major pumping regions. High spatial and temporal resolution subsidence observations from InSAR and hydraulic head data were used to inversely calibrate transmissivities (T, elastic and inelastic skeletal storage coefficients (Ske and Skv of the developed-zone aquifer and conductance (CR of the basin-fill faults for the entire Las Vegas basin. The results indicate that the subsidence observations from PS-InSAR are extremely beneficial for accurately quantifying hydraulic parameters, and the model calibration results are far more accurate than when using only water-levels as observations, and just a few random subsidence observations. Future predictions of land subsidence to year 2030 were made on the basis of existing pumping patterns and rates. Simulation results suggests that subsidence will continue in northwest subsidence bowl area, which is expected to undergo an additional 11.3 cm of subsidence. Even mitigation measures that include artificial recharge and reduced pumping do not significantly reduce the compaction in the northwest subsidence bowl. This is due to the slow draining of thick confining units in the region. However, a small amount of uplift of 0.4 cm is expected in the North and Central bowl areas over the next 20 years.

  8. Prospects for electron imaging with ultrafast time resolution

    Science.gov (United States)

    Armstrong, Michael R.; Reed, Bryan W.; Torralva, Ben R.; Browning, Nigel D.

    2007-03-01

    Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here the authors demonstrate the feasibility of short-pulse electron imaging with 10nm/10ps spatiotemporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10km/s) without smearing. The authors outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, the authors present a model electron imaging system that achieves 10nm/10ps spatiotemporal resolution.

  9. Estimation of yield and water requirements of maize crops combining high spatial and temporal resolution images with a simple crop model, in the perspective of the Sentinel-2 mission

    Science.gov (United States)

    Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie

    2016-04-01

    Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret

  10. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-Young; Chander, Gyanesh; Wu, Aisheng

    2010-04-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  11. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng

    2010-01-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  12. Application of a crop model forced with remote sensing data at high spatio-temporal resolution to estimate evaporation and yields of irrigated grasslands in the South Eastern France

    Science.gov (United States)

    Couralt, D.; Hadria, R.; Ruget, F.; Duchemin, B.; Hagolle, O.

    2009-09-01

    This study focused on the feasibility of using remote sensing data acquired at high spatial and temporal resolution (FORMOSAT-2 images(http://www.spotimage.fr/web/en/977--formosat-2-images.php) for crop monitoring at regional scale. The monitoring of agricultural practices such as grassland mowing and irrigation is essential to simulate accurately all processes related to crop system. This information is needed for example in crop simulation models to estimate production, water and fertilizer consumption and can thus serve to better understand the interactions between agriculture and climate. The analysis of these interactions is especially important in Mediterranean region where the effects of climate changes and crop management modifications are increasingly marked. In this context, an experiment was conducted in 2006 in Crau region in the South-Eastern France. In this area, permanent grassland represents 67 % of the usable agricultural area, and it is often used with irrigation (47 % of the permanent grassland). A time series of 36 FORMOSAT-2 images was acquired with a three days frequency from March to October 2006. Information concerning grassland mowing and irrigation was collected through a survey over 120 fields. The high FORMOSAT-2 revisit frequency allowed replicating the dynamics of Leaf Area index (LAI), and detecting to some extents cultural practices like vegetation cut. Simple automatic algorithms were developed to obtain daily values of LAI for each grasslands field linked with the main agricultural practices performed (cut and irrigation dates). This information was then used in a crop model called STICS (http://147.100.66.194/stics/) to estimate the spatial variability of evapotranspiration and drainage associated with the aerial biomass productions. Comparisons between simulated and observed yields gave satisfactory results. The great spatial variations of evapotranspiration were strongly related to the crop and water management. Such

  13. VizieR Online Data Catalog: The Pan-STARRS release 1 (PS1) Survey - DR1 (Chambers+, 2016)

    Science.gov (United States)

    Chambers, K. C.; et al.

    2017-07-01

    The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is a system for wide-field astronomical imaging developed and operated by the Institute for Astronomy at the University of Hawaii. Pan-STARRS1 (PS1) is the first part of Pan-STARRS to be completed and is the basis for Data Release 1 (DR1). The PS1 survey used a 1.8m telescope and its 1.4 Gigapixel camera (GPC1) to image the sky in five broadband filters (g, r, i, z, y). PS1 took approximately 370000 exposures from 2010 to 2015. The PS1 camera surveyed the sky using 5 filters: g, r, i, z, and y. The effective wavelengths (and spectral resolutions) of these 5 filters are 481nm (R=3.5), 617nm (R=4.4), 752nm (R=5.8), 866nm (R=8.3), and 962nm (R=11.6), respectively. Please refer to Table 4 in Tonry+ (2012, J/ApJ/750/99) for bandpass details. Schlafly+ (2012ApJ...756..158S) provides updated zeropoints in Table 1. In the PS1 nomenclature, Detections are sources found in a single exposure, while Objects are either collections of Detections matched across exposures, or sources found in stacked images that combine multiple epochs to produce deeper detection limits. Only Objects are included in DR1; Detections will be included in DR2. (1 data file).

  14. Shallow PS-logging by high frequency wave; Koshuha wo mochiita senbu PS kenso

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, A.; Miyazawa, M.; Azuma, H. [OYO Corp., Tokyo (Japan)

    1996-05-01

    This paper describes the following matters on down-hole PS logging in shallow subsurface. Determining an elastic wave velocity structure in shallow subsurface with high accuracy by using down-hole PS logging requires reduction of errors in reading travel time. Therefore, a high-frequency vibration source was fabricated with an objective to raise frequencies of waves used for the measurement. Measurements were made on two holes, A and B, at a measurement interval of 0.5 m, whereas at the hole A a measurement was performed simultaneously by using a normal type (low-frequency) vibration source. A spectral analysis on the waveform record revealed that the frequencies with each vibration source were 127 Hz and 27 Hz for the hole A, 115 Hz for the hole B, and the S/N ratio was all the same for both holes. When the high-frequency vibration source was used, the velocity was determined at accuracy of 5% over the whole length of the shallow section. When the low-frequency vibration source was used, sections with the velocity determining error greater than 5% were found, and it was not possible to derive the velocity structure in the shallow subsurface in fine segments. 3 refs., 8 figs., 2 tabs.

  15. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    Science.gov (United States)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1–100 ns scales.

  16. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...... multiply in interaction with project management technologies and how conventional linear conceptions of project time may be contested with the emergence of new non-human stakeholders and temporalities. Research limitations/implications – The study draws on ANT to show how animals can become stakeholders...

  17. Late Quaternary environments on the western Lomonosov Ridge (Arctic Ocean) - first results from RV Polarstern expedition PS87 (2014)

    Science.gov (United States)

    Spielhagen, Robert F.; Stein, Rüdiger; Mackensen, Andreas; PS87 Shipboard Scientific Party

    2016-04-01

    The interior Arctic Ocean is still one of the least known parts of the earth's surface. In particular this holds true for the deep-sea area north of Greenland which has been reached by research ships only within the last decade. The region is of special interest for climate researchers because numerical climate models predict that under future global warming the shrinking summer sea ice cover will finde a place of refuge here until it totally disappears. In summer 2014 several short and long undisturbed large-volume sediment cores were obtained from the western Lomonosov Ridge between 86.5°N and the North Pole. Here we present first results from site PS87/030 situated at 88°40'N. The combined sedimentary record of a box core and a kasten core analyzed so far is interpreted to represent the environmental variability in the last ca. 200,000 years and can be correlated to comparable records from the eastern Lomonosov Ridge and the Morris Jesup Rise. The well-defined coarse layers with abundant ice-rafted detritus reflect the history of circum-Arctic ice sheets. Planktic foraminifers with a distinct dominance of the polar species were found in most of the analyzed samples and allow to reconstruct the water mass history for this part of the Arctic Ocean. Planktic oxygen and carbon isotope records allow to identify several freshwater events which can be correlated to the decay of ice sheets surrounding the Arctic Ocean. The results presented are, however, preliminary and will be refined by future work including an improved temporal resolution of the records and the addition of further proxy records.

  18. Overview of the Moral Status of iPS Cells.

    Science.gov (United States)

    Martinho, Andreia Martins

    2016-07-01

    The production of induced pluripotent stem (iPS) cells in 2006 by Takahashi and Yamanaka was a major breakthrough in stem cell research. IPS cells technology holds great promise for cell therapy, disease modelling, and drug testing, but it poses ethical questions concerning the moral status of somatic cells, which can re-gain pluripotency (iPS cells). This article provides an overview of the arguments that substantiate the debate on the moral assessment of iPS cells: potentiality argument; relational properties/standard view; and genetic basis for moral status.

  19. Observation of emittance growth at KEK PS

    CERN Document Server

    Igarashi, S; Nakamura, E; Shimosaki, Y; Shirakata, M; Takayama, K; Toyama, T

    2003-01-01

    Emittance growth has been observed in the transverse direction at the injection period of the 12 GeV main ring of the KEK proton synchrotron. Measurement of the beam profiles using flying wires has revealed a characteristic temporal change of the beam profile within a few milliseconds after injection. Horizontal emittance growth was observed when the horizontal tune was close to the integer. The effect was more enhanced for higher beam intensity and could not be explained with the injection mismatch. Resonance created by the space charge field was the cause of the emittance growth. A multiparticle tracking simulation program, ACCSIM, taking account of space charge effects has qualitatively reproduced the beam profiles.

  20. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  1. New safety training for access to the PS complex areas

    CERN Multimedia

    2012-01-01

    Since 10/08/2012, a new course dedicated to the specific radiological risks in the accelerators of the PS complex has been available on SIR (https://sir.cern.ch/). This course complements the general classroom-based Radiation Safety training. Successful completion of the course will be obligatory and verified by the access system as from 01/11/2012 for access to the following accelerator areas: LINAC2, BOOSTER, PS and TT2. Information and reminder e-mails will be sent to all persons currently authorized to access the accelerators of the PS complex. For questions please contact the HSE unit and in particular, the Radiation Protection Group (+41227672504 or safety-rp-ps-complex@cern.ch).

  2. Study of Value Co-Creation in CoPS

    OpenAIRE

    Mingli Zhang; Jianhua Ye

    2013-01-01

    Value co-creation is associated with specific investment in the context of CoPS. The feature of CoPS decides that the study of co-creation cannot execute without regarding asset specificity. This study considers that value co-creation will be associated with specific value, which is outcome of relationship value and asset specificity. Supplier and customer have a close relation, which conducts to specific investment and then it turns to obstacle for competitors. Trust, commitment and satisfac...

  3. Motor-generator set of the PS main supply

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1968-01-01

    Already in 1964, the PS improvement programme included a new main magnet supply with more power for the longer cycles needed for slow extraction at the full energy of 26 GeV. This motor-generator set was installed in 1967 and took up service at the beginning of 1968. Regularly serviced and fitted with modern electronic regulation, it pulses the PS to this day.

  4. The Libera as a PS orbit measurement system building block

    CERN Document Server

    Belleman, J M; CERN. Geneva. AB Department

    2005-01-01

    During the year 2004, extensive tests using a Libera data processor have been made in order to study its suitability as a building block for a complete PS trajectory and orbit measurement system. The Libera consists of four fast 12-bits ADCs, a Virtex II Pro FPGA and a large memory. This note presents some of the results of the analysis of acquisitions made on a position pick-up in the CERN PS.

  5. DiPS: A Unifying Approach for developing System Software

    OpenAIRE

    Michiels, Sam; Matthijs, Frank; Walravens, Dirk; Verbaeten, Pierre

    2002-01-01

    In this paper we unify three essential features for flexible system software: a component oriented approach, self-adaptation and separation of concerns.We propose DiPS (Distrinet Protocol Stack), a component framework, which offers components, an anonymous interaction model and connectors to handle non-functional aspects such as concurrency. DiPS has effectively been used in industrial protocol stacks and device drivers.

  6. The new heart of the PS is beating strongly

    CERN Document Server

    Corinne Pralavorio

    2011-01-01

    The PS has resumed operation with a brand new electrical power system called POPS; this enormous system comprising power electronics and capacitors is crucial because if it broke down practically no particles would be able to circulate at CERN. As soon as it started, POPS passed all the tests with flying colours and is now pulsing at full power.   The new PS power system is made up of 6 containers, each with 60 tonnes of capacitors and 8 power converters. The date 11/02/11 will always be remembered with affection by the engineers in the Electrical Power Converters Group. At 11:11 in the morning (no joke), the first beams powered by the new system began to circulate in the PS. The cutely-named POPS (POwer for PS) took over from the old rotating machine that had been working since 1968. From now on it will be POPS that supplies the PS main magnets with the electrical pulses needed to accelerate the beams for the LHC and all CERN's other facilities. The system is crucial as the PS is one of the lyn...

  7. The PS will soon be back in operation

    CERN Multimedia

    2006-01-01

    The PS's power supply system is undergoing repairs for the accelerator to restart on 26 June. The AB Department's Power Converter Group is working flat out with Siemens to return the PS's power supply system to working order. A problem appeared on the insulation of the power cables of the rotor of the rotating machine (photo) which supplies power to the PS magnets. To prevent more significant damage to the rotating machine, the AB Department, with the approval of the CERN Management, decided to shut down the PS which had started running on 15 May. Everything is being done to restart the accelerator on 26 June. The PS's rotating machine comprises a motor coupled to a generator. The generator's rotor acts like a flywheel, supplying high-power pulses of 40 to 50 megawatts to the PS magnets. The 6 megawatt motor drives the installation at 1000 revolutions per minute and compensates only for variations in speed. It is an essential interface since it would be hard to imagine connecting such an electrical charge, p...

  8. iPS-Cinderella Story in Cell Biology

    Directory of Open Access Journals (Sweden)

    Editorial

    2010-01-01

    Full Text Available As we step through the frontiers of modern Science, we are all witnesses to the Cinderella story repeating itself in the form of the iPS. The process of re-programming adult somatic cells to derive Induced Pluripotent stem cells (iPS with the wand of transcription factors and then differentiating them back to adult somatic cells resembles the transformation of Cinderella from a Cinder girl to princess and back to a Cinder girl after the ball; but the iPS-Cinderella is the most fascinating thing ever in cell biology!From the day iPS first made its headlines when it was first produced by Shinya Yamanaka at Kyoto University in Japan, Stem Cell scientists all over the world are re- doing their experiments so far done using other sources like embryonic and adult Stem cells with the iPS cells exploring their potential to the fullest. A Stem Cell science news page without this magic word of iPS is difficult to imagine these days and Scientists have been successful in growing most of the adult Cell types from iPS cells.iPS cells was the key to solve the problems of Immune rejection and Immunosupression required when using other allogeneic Stem cell types which had baffled scientists previously. But the issues raised by scientists about the use of viruses and Oncogenes in producing iPS cells were made groundless when scientists in February 2008 published the discovery of a technique that could remove oncogenes after the induction of pluripotency and now it is possible to induce pluripotency using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. The word of the day is pIPS which are protein-induced Pluripotent stem cells which are iPS cells that were generated without any genetic alteration of the adult cell. This research by the group of Sheng Ding in La Jolla, California made public in April 2009 showed that the generation of poly-arginine anchors was sufficient to induce

  9. Simulation of a wide area survey for NEOs with Pan-STARRS PS1 & PS2 Telescopes

    Science.gov (United States)

    Chambers, Kenneth C.; Lilly (Schunova), Eva; Dukes, Martin Todd; Wainscoat, Richard J.

    2017-10-01

    We have performed a new survey simulation for a wide area survey with PS1 & PS2 as part of our quest to optimize the discovery rate of Near Earth Objects with the full Pan-STARRS system. The survey is intended to be as unbiased and as complete as possible given the available sky visibility and the anticipated performance of the PS1 and PS2 telescopes working together. The simulation includes a complete model of both telescopes, camera and slew overhead, sky visibility, moon phase, galactic plane exclusion, and weather. The performance of the resulting survey strategy is then evaluated using the method of Lilly et. al. 2017. This uses the Greenstreet et al. 2012 model with 50 million NEOs with absolute magnitudes 13 < H < 29 and the Moving Object Processing System (MOPS, Denneau et al. 2013) for linkages. The results are compared with other possible strategies.

  10. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  11. A 41 ps ASIC time-to-digital converter for physics experiments

    Science.gov (United States)

    Russo, Stefano; Petra, Nicola; De Caro, Davide; Barbarino, Giancarlo; Strollo, Antonio G. M.

    2011-12-01

    We present a novel Time-to-Digital (TDC) converter for physics experiments. Proposed TDC is based on a synchronous counter and an asynchronous fine interpolator. The fine part of the measurement is obtained using NORA inverters that provide improved resolution. A prototype IC was fabricated in 180 nm CMOS technology. Experimental measurements show that proposed TDC features 41 ps resolution associated with 0.35LSB differential non-linearity, 0.77LSB integral non-linearity and a negligible single shot precision. The whole dynamic range is equal to 18 μs. The proposed TDC is designed using a flash architecture that reduces dead time. Data reported in the paper show that our design is well suited for present and future particle physics experiments.

  12. Imaging early demineralization with PS-OCT

    Science.gov (United States)

    Kang, Hobin; Jiao, Jane J.; Lee, Chulsung; Darling, Cynthia L.; Fried, Daniel

    2010-02-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we attempt to determine the earliest stage at which we can detect significant differences in lesion severity. Automated methods of analysis were used to measure the depth and severity of demineralized bovine enamel produced using a simulated caries model that emulates demineralization in the mouth. Significant differences in the depth and integrated reflectivity from the lesions were detected after only a few hours of demineralization. These results demonstrate that cross polarization OCT is ideally suited for the nondestructive assessment of early demineralization.

  13. Characterization of crosslinked polystyrene(PS) beads in SBR matrix

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yoon-Jong; Choe, Soonja [Inha Univ. (Korea, Republic of)

    1995-12-01

    Monodisperse sized crosslinked polystyrene(PS) beads were prepared by a reaction of semibatch emulsion polymerization with styrene monomer, divinylbenzene(DVB) crosslinking agent and potassium persulfate(K{sub 2}S{sub 2}O{sub 9}) initiator in the absence of emulsifier. The glass transition temperature(T{sub g}) and the mean diameter of the beads were increased from 100{degrees}C to 135{degrees}C and from 402 nm to 532 nm, respectively, for an incorporation of 2 to 10 mol% DVB. Crosslinking density was also linearly increased with DVB content. SEM microphotographs of SBR composite filled with various contents of PS beads revealed that PS beads are relatively well dispersed without changing the spherical shape of the beads in all range of compositions. In stress-strain analysis, elongation at break and tensile strength of SBR composite were increased with the bead content. Applicability of the PS beads as a filler in SBR matrix is tested by plotting Mooney-Rivlin or Guth-Smallwood equations. However, mechanical properties of the composite with the beads were not so excellent as those of the composite with carbon black. Crosslinked PS beads are still tentative as a white color reinforcing filler on SBR matrix.

  14. Pressure Monitoring Using Hybrid fs/ps Rotational CARS

    Science.gov (United States)

    Kearney, Sean P.; Danehy, Paul M.

    2015-01-01

    We investigate the feasibility of gas-phase pressure measurements at kHz-rates using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is then probed by a high-energy 6-ps pulse introduced at a time delay from the Raman preparation. Rotational CARS spectra were recorded in N2 contained in a room-temperature gas cell for pressures from 0.1 to 3 atm and probe delays ranging from 10-330 ps. Using published self-broadened collisional linewidth data for N2, both the spectrally integrated coherence decay rate and the spectrally resolved decay were investigated as means for detecting pressure. Shot-averaged and single-laser-shot spectra were interrogated for pressure and the accuracy and precision as a function of probe delay and cell pressure are discussed. Single-shot measurement accuracies were within 0.1 to 6.5% when compared to a transducer values, while the precision was generally between 1% and 6% of measured pressure for probe delays of 200 ps or more, and better than 2% as the delay approached 300 ps. A byproduct of the pressure measurement is an independent but simultaneous measurement of the gas temperature.

  15. Free-running InGaAs/InP single-photon avalanche diodes with 50 ps timing jitter (Conference Presentation)

    Science.gov (United States)

    Boso, Gianluca; Amri, Emna; Korzh, Boris; Zbinden, Hugo

    2017-05-01

    In recent years, many applications have been proposed that require detection of light signals in the near-infrared (NIR) range with single-photon sensitivity and time resolution below 100 ps; notably laser ranging, biomedical imaging, quantum key distribution (QKD) and quantum information and communication experiments. The current state of the art in terms of timing resolution in the NIR range is a jitter below 20 ps achieved by superconducting nanowire single-photon detector (SNSPD). A more practical and compact alternative that does not require cryogenic cooling is represented by InGaAs/InP single-photon avalanche diodes (SPADs). Indeed, gated-mode SPADs can achieve a timing resolution below 50 ps at relatively high excess biases (above 7 V). However, despite their good performance in terms of photon detection efficiency, dark count rate and timing resolution, standard InGaAs/InP SPADs are limited by their afterpulsing noise to gated-mode operation, thus precluding their use in many applications. Negative-feedback avalanche diodes (NFADs) are a special structure of InGaAs/InP SPADs where a monolitically-integrated quenching resistor is used to reduce the afterpulsing noise contribution hence allowing free-running operation. Here, we present our recent results on the characterization of the timing response of different NFAD detectors for temperatures down to 143 K that demonstrate how NFADs can achieve timing jitter down to 50 ps in an extended range of operating conditions.

  16. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2017-05-01

    Full Text Available Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D at specific times (1D. In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  17. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    Science.gov (United States)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  18. Temporal naturalism

    Science.gov (United States)

    Smolin, Lee

    2015-11-01

    Two people may claim both to be naturalists, but have divergent conceptions of basic elements of the natural world which lead them to mean different things when they talk about laws of nature, or states, or the role of mathematics in physics. These disagreements do not much affect the ordinary practice of science which is about small subsystems of the universe, described or explained against a background, idealized to be fixed. But these issues become crucial when we consider including the whole universe within our system, for then there is no fixed background to reference observables to. I argue here that the key issue responsible for divergent versions of naturalism and divergent approaches to cosmology is the conception of time. One version, which I call temporal naturalism, holds that time, in the sense of the succession of present moments, is real, and that laws of nature evolve in that time. This is contrasted with timeless naturalism, which holds that laws are immutable and the present moment and its passage are illusions. I argue that temporal naturalism is empirically more adequate than the alternatives, because it offers testable explanations for puzzles its rivals cannot address, and is likely a better basis for solving major puzzles that presently face cosmology and physics. This essay also addresses the problem of qualia and experience within naturalism and argues that only temporal naturalism can make a place for qualia as intrinsic qualities of matter.

  19. Final Results on the CERN PS Electrostatic Septa Consolidation Program

    CERN Document Server

    Borburgh, Jan; Bobbio, Piero; Carlier, Etienne; Hourican, Michael; Masson, Thierry; Müller, Tania; Prost, Antoine; Crescenti, Massimo

    2003-01-01

    The CERN PS electrostatic septum consolidation program is coming to completion after almost 4 years of development. The program was started to fulfil the increased requirements on vacuum performance and the need to reduce the time necessary for maintenance interventions. The new design of septum 31, used for the so-called 'continuous transfer' 5-turn extraction, and the related construction issues will be presented together with the operational experience gained during the PS 2002 run. In addition, the experience of two years of operation with the new generation septum 23, used for a resonant slow extraction, will be briefly discussed. The continued development undertaken since its installation in the PS ring in 2001 will also be described.

  20. A&T Sector Note on the PS transverse feedback

    CERN Document Server

    Coly, Marcel; Blas, Alfred; Sterbini, Guido; CERN. Geneva. ATS Department

    2017-01-01

    In a particle accelerator, several contributions can degrade the beam quality and particularly the beam transverse emittance. In this document we will describe a system used in the CERN Proton Synchrotron (PS) to cope with the injection steering errors and the transverse instabilities: the PS transverse feedback (PS TFB). As time progresses, this system is also being used for other purpose, to increase in a controlled way the beam transverse emittance and to excite the beam for the Multi-Turn-Extraction (MTE). In 2016, it has been successfully used on some operational beams to damp injection oscillations. This allowed to test the reliability of the system for its operational deployment. A piquet service is available in case of problem.

  1. SAFETY: STRICTER CONTROLS IN CONTROLLED AREAS IN THE PS

    CERN Document Server

    G. Daems

    2001-01-01

    The PS accelerators will soon stop for several months. Work will take place in controlled areas in the PS and will involve many people who are not always aware of the risks associated with the work sites. To guarentee the safety of these workers, the following two measures will be applied: everyone working in a controlled zone - Linacs, PSB, and PS machines tunnels, and transfer lines - must wear, visibly, his CERN access card and his film badge. the CERN access card and the film badge will only be issued after following a basic safety course. Regular checks will be carried out during the shutdown. Anyone without these two items on their person will be obliged to leave the area immediately.

  2. Electrophysical properties of PMN-PT-PS-PFN:Li ceramics

    Directory of Open Access Journals (Sweden)

    R. Skulski

    2013-01-01

    Full Text Available We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li. The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN. Addition of PS i.e., PbSnO3 (which is unstable in ceramic form permits to shift the temperature of the maximum of dielectric permittivity. One-step method of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples.

  3. Effect of interfaces on the melting of PEO confined in triblock PS-b-PEO-b-PS copolymers.

    Science.gov (United States)

    Beaudoin, E; Phan, T N T; Robinet, M; Denoyel, R; Davidson, P; Bertin, D; Bouchet, R

    2013-08-27

    Block copolymers form nanostructures that have interesting physical properties because they combine, for a single compound, the complementary features brought by each block. However, in order to fully exploit these properties, the physical state of each kind of domain must be precisely controlled. In this work, triblock PS-b-PEO-b-PS copolymers consisting of a central poly(ethylene oxide) (PEO) block covalently bonded to polystyrene (PS) blocks were synthesized by Atom Transfer Radical Polymerization. Their morphology was investigated by X-ray scattering and TEM experiments whereas their thermodynamic behavior was characterized by DSC. A strong decrease of both the melting temperature and the degree of crystallinity of PEO, due to its confinement between the PS domains, was observed and analyzed with a modified Gibbs-Thomson equation, following the approaches used for fluids confined in porous media. The existence of an amorphous bound layer, a few nanometers thick, at the PEO/PS interface, that does not undergo any phase transition in the temperature range investigated, accounts for both the melting temperature depression and the decrease of crystallinity upon confinement. This interfacial layer may significantly affect the mechanical and transport properties of these block copolymers that find applications as solid polymer electrolytes in batteries for example. Moreover, the value obtained for the solid PEO/liquid PEO surface tension is lower than those previously published but is thermodynamically consistent with the surface tensions of polymers at the solid/vapor and liquid/vapor interfaces.

  4. Inauguration of POPS: the new power system of the PS

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Pictures 03 and 04 : The team from the Electrical Power Converters Group (TE/EPC) is joined by the Director of Accelerators, the heads of the BE, TE and FI departments, CERN managers and Converteam representatives in a group portrait in front of three of the containers that house the capacitor banks of the PS's new power supply system, POPS. Pictures 01, 06 and 07 : Magid-Michel Saikaly, energy and infrastructure director at Converteam, receives a prize from Steve Myers, Director of Accelerators at CERN, for the development and fabrication of the new electrical power system for the PS, called POPS.

  5. The Septa for LEIR Extraction and PS Injection

    CERN Document Server

    Borburgh, J; Masson, T; Prost, A

    2006-01-01

    The Low Energy Ion Ring (LEIR) is part of the CERN LHC injector chain for ions. The LEIR extraction uses a pulsed magnetic septum, clamped around a metallic vacuum chamber. Apart from separating the ultra high vacuum in the LEIR ring from the less good vacuum in the transfer line to the PS this chamber also serves as magnetic screen and retains the septum conductor in place. The PS ion injection septum consists of a pulsed laminated magnet under vacuum, featuring a single-turn water cooled coil and a remote positioning system. The design, the construction and the commissioning of both septa are described.

  6. The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS): definitions of key pathologies, suggested MRI sequences, and preliminary scoring system for PsA Hands

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; McQueen, Fiona; Wiell, Charlotte

    2009-01-01

    This article describes a preliminary OMERACT psoriatic arthritis magnetic resonance image scoring system (PsAMRIS) for evaluation of inflammatory and destructive changes in PsA hands, which was developed by the international OMERACT MRI in inflammatory arthritis group. MRI definitions of important...... pathologies in peripheral PsA and suggestions concerning appropriate MRI sequences for use in PsA hands are also provided....

  7. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    Actinomycetes were isolated from the sediment samples of an estuarine shrimp pond located along the south east coast of India. During the investigation, a total of 28 strains of actinomycetes were isolated and examined for their protease activity. Among them, one strain PS-18A which was tentatively identified as ...

  8. Seismic receiver function interpretation: Ps splitting or anisotropic underplating?

    Science.gov (United States)

    Liu, Zhen; Park, Jeffrey

    2017-03-01

    Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear wave splitting of Moho P-to-S converted phases in receiver functions (RFs) have been often used to study crustal anisotropy. Harmonic variation of Moho Ps phases in delay times are used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may distribute at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in the Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is constrained well by intracrust Ps conversions at high frequencies using a harmonic-decomposition technique. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. We suggest that the harmonic variation of Moho Ps phases should always be investigated to check for anisotropic layering using RFs with frequency content above 1 Hz, rather than simply reporting averaged anisotropy of the whole crust.

  9. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    STORAGESEVER

    Isolation Agar Medium in duplicate Petri plates. To minimize ... on the Petri plates were counted from 5th day onwards, up to 28th .... After the dialysis, the volume was measured and analyzed for proteins and stored in deep freezer. Taxonomic investigation. The genus level identification was made for the strain PS-18A using ...

  10. Framing Retention for Institutional Improvement: A 4 Ps Framework

    Science.gov (United States)

    Kalsbeek, David H.

    2013-01-01

    A 4 Ps framework for student retention strategy is a construct for reframing the retention discussion in a way that enables institutional improvement by challenging some conventional wisdom and prevailing perspectives that have characterized retention strategy for years. It opens new possibilities for action and improvement by suggesting that…

  11. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  12. The Swelling Behaviour of Polystyrene (PS)/ Polyvinylacetate (Pvac ...

    African Journals Online (AJOL)

    The effect of the variation of the type of solvent responsible for the differences in the swelling kinetics of Polystyrene (PS) and Polyvinyl acetate (PVAc) blends was studied. The results showed that the nature of solvent control or affects the degree of swelling. Also, 1-V characteristics at temperature range of 323-363K shows ...

  13. Boiling treatment of ABS and PS plastics for flotation separation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Temporal resolution of PrPSc transport, PrPSc accumulation, activation of glia and neuronal death in retinas from C57Bl/6 mice inoculated with RML scrapie: Relevance to biomarkers of prion disease progression

    Science.gov (United States)

    Currently, there is a lack of pathologic landmarks to objectively evaluate the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between transport of misfolded prion protein to the retina from the brain, accumulation of PrPSc in the retina, the re...

  15. psRNATarget: a plant small RNA target analysis server.

    Science.gov (United States)

    Dai, Xinbin; Zhao, Patrick Xuechun

    2011-07-01

    Plant endogenous non-coding short small RNAs (20-24 nt), including microRNAs (miRNAs) and a subset of small interfering RNAs (ta-siRNAs), play important role in gene expression regulatory networks (GRNs). For example, many transcription factors and development-related genes have been reported as targets of these regulatory small RNAs. Although a number of miRNA target prediction algorithms and programs have been developed, most of them were designed for animal miRNAs which are significantly different from plant miRNAs in the target recognition process. These differences demand the development of separate plant miRNA (and ta-siRNA) target analysis tool(s). We present psRNATarget, a plant small RNA target analysis server, which features two important analysis functions: (i) reverse complementary matching between small RNA and target transcript using a proven scoring schema, and (ii) target-site accessibility evaluation by calculating unpaired energy (UPE) required to 'open' secondary structure around small RNA's target site on mRNA. The psRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of small RNA/target site pairs that may affect small RNA binding activity to target transcript. The psRNATarget server is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded small RNAs and transcript sequences; and outputs a comprehensive list of small RNA/target pairs along with the online tools for batch downloading, key word searching and results sorting. The psRNATarget server is freely available at http://plantgrn.noble.org/psRNATarget/.

  16. Basic performance of a position-sensitive tissue-equivalent proportional chamber (PS-TEPC)

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yuji, E-mail: yuji.kishimoto@kek.jp [High Energy Accelerator Research Organization (KEK) (Japan); Sasaki, Shinichi; Saito, Kiwamu; Takahashi, Kazutoshi [High Energy Accelerator Research Organization (KEK) (Japan); Doke, Tadayoshi [Waseda University (Japan); Miuchi, Kentaro [Kobe University (Japan); Fuse, Tetsuhito; Nagamatsu, Aiko [Japan Aerospace Exploration Agency (JAXA) (Japan); Uchihori, Yukio; Kitamura, Hisashi [National Institute of Radiological Sciences (Japan); Terasawa, Kazuhiro [Keio University (Japan); Japan Aerospace Exploration Agency (JAXA) (Japan)

    2013-12-21

    The characteristics and performance of the prototype of a Position-Sensitive Tissue-Equivalent Proportional Chamber (PS-TEPC), consisting of a miniaturized micro-pixel chamber (μ-PIC), were investigated. The gas–gain curve of the μ-PIC and an approximate function with which to convert measured collected charge into the primary charge ionized by incident heavy-ion particles were obtained. The measured Linear Energy Transfer (LET) indicated good agreement with that of the injected beam calculated using SRIM2008 code in the LET range from 0.4 to 180keV/μm, which roughly covers the whole LET range required for space dosimeters. As expected, the measured energy resolution improved with increasing LET of the injected beam. It was estimated to be 27% for 0.4keV/μm, which is just about the LET of minimum-ionizing particles. Consequently, it was confirmed that the PS-TEPC exhibits no significant undesirable feature but is well suited for space dosimetry.

  17. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement

    Science.gov (United States)

    Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.

    2017-08-01

    In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.

  18. The role of a conserved membrane proximal cysteine in altering αPS2CβPS integrin diffusion

    Science.gov (United States)

    Syed, Aleem; Arora, Neha; Bunch, Thomas A.; Smith, Emily A.

    2016-12-01

    Cysteine residues (Cys) in the membrane proximal region are common post-translational modification (PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-subunit Cys1368 on the diffusion properties of αPS2CβPS integrins are reported. Sequence alignment shows that this cysteine is palmitoylated in human α3 and α6 integrin subunits. Replacing Cys1368 in wild-type integrins with valine (Val1368) putatively blocks a PTM site and alters integrins’ ligand binding and diffusion characteristics. Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion measurements show Val1368 integrins are more mobile compared to wild-type integrins. Approximately 33% and 8% more Val1368 integrins are mobile as measured by FRAP and SPT, respectively. The mobile Val1368 integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass spectrometry data suggest that Cys1368 contains a redox or palmitoylation PTM in αPS2CβPS integrins. This membrane proximal Cys may play an important role in the diffusion of other alpha subunits that contain this conserved residue.

  19. Simulation and observation of driven beam oscillations with space charge in the CERN PS Booster

    CERN Document Server

    McAteer, M; Benedetto, E; Carli, C; Findlay, A; Mikulec, B; Tomás, R

    2014-01-01

    As part of the LHC Injector Upgrade project, the CERN PS Booster will be required to operate at nearly doubled intensity with little allowable increase in emittance growth or beam loss. A campaign of nonlinear optics measurements from turn-by-turn trajectory measurements, with the goal of characterizing and then compensating for higher-order resonances, is planned for after Long Shutdown 1. The trajectory measurement system is expected initially to require high intensity beam in order to have good position measurement resolution, so understanding space charge effects will be important for optics analysis. We present the results of simulations of driven beam oscillations with space charge effects, and comparison with trial beam trajectory measurements.

  20. [Retinal Cell Therapy Using iPS Cells].

    Science.gov (United States)

    Takahashi, Masayo

    2016-03-01

    Progress in basic research, starting with the work on neural stem cells in the middle 1990's to embryonic stem (ES) cells and induced pluripotent stem (iPS) cells at present, will lead the cell therapy (regenerative medicine) of various organs, including the central nervous system to a big medical field in the future. The author's group transplanted iPS cell-derived retinal pigment epithelial (RPE) cell sheets to the eye of a patient with exudative age-related macular degeneration (AMD) in 2014 as a clinical research. Replacement of the RPE with the patient's own iPS cell-derived young healthy cell sheet will be one new radical treatment of AMD that is caused by cellular senescence of RPE cells. Since it was the first clinical study using iPS cell-derived cells, the primary endpoint was safety judged by the outcome one year after surgery. The safety of the cell sheet has been confirmed by repeated tumorigenisity tests using immunodeficient mice, as well as purity of the cells, karyotype and genetic analysis. It is, however, also necessary to prove the safety by clinical studies. Following this start, a good strategy considering cost and benefit is needed to make regenerative medicine a standard treatment in the future. Scientifically, the best choice is the autologous RPE cell sheet, but autologous cell are expensive and sheet transplantation involves a risky part of surgical procedure. We should consider human leukocyte antigen (HLA) matched allogeneic transplantation using the HLA 6 loci homozyous iPS cell stock that Prof. Yamanaka of Kyoto University is working on. As the required forms of donor cells will be different depending on types and stages of the target diseases, regenerative medicine will be accomplished in a totally different manner from the present small molecule drugs. Proof of concept (POC) of photoreceptor transplantation in mouse is close to being accomplished using iPS cell-derived photoreceptor cells. The shortest possible course for treatment

  1. A transmissão psíquica geracional

    Directory of Open Access Journals (Sweden)

    Vinícius Oliveira dos Santos

    Full Text Available O artigo seguinte refere-se a um estudo sobre como ocorre a transmissão psíquica entre as gerações e qual sua importância na constituição psíquica do sujeito. É também objetivo deste artigo explicar o que são as transmissões intergeracional e transgeracional. Para buscar respostas para essas questões, fez-se uma pesquisa bibliográfica sobre a transmissão psíquica, pelo viés psicanalítico, principalmente a partir da teoria lacaniana e com conceitos oriundos da linguística saussuriana. Será a partir de uma determinada ordem simbólica, constituída pela linguagem que precede o sujeito, nomeado por Lacan como o Outro, que a transmissão psíquica entre gerações ganhará o seu caráter unívoco, sempre se tendo em mente a importância fundamental do recalcamento e de seus efeitos, bem como do retorno do recalcado nas diferentes gerações. A transmissão psíquica é necessária e concomitante à constituição do sujeito, e ocorre através da linguagem, dos significantes que irão determinar uma ordem simbólica para o ser que nasce através dos diferentes discursos que perpassam as gerações nas figuras dos pais desse novo ser. Essa ordem simbólica continuará a se fazer presente nesse novo sujeito pelo restante de sua existência. Este artigo busca dar nova luz ao aspecto da transmissão psíquica transgeracional, diferenciando-se da recalque s abordagens psicanalíticas contemporâneas por ser uma leitura lacaniana. Serão usados dois exemplos: um de como a transmissão aparece na cultura, outro, na subjetividade do sujeito através da arte.

  2. Temporal Reasoning and Default Logics.

    Science.gov (United States)

    1985-10-01

    OCOPY RESOLUTION TEST CHART NATIONAL BUJREAU OF 5TANDAROS - 963 - ET VERIT TEMPRAL EASNINGAND EFALT LGIC Stev Rans an Dre Mc~rmot YALE UIVERIT DEATETO...couch the ab example in temporal terms. Consider the successor predicate to indicate fatherhood -(s x y) is intended to mean "x is the father of y...11.111j.W IL. &6I 1.1 ~ 2.0 111.8 MICROCOPY RESOLUTION TEST CHART NATIONAL BLREAU OF STANDARDS - 1965~ A 36 h . • ,% V. end point), and n is a nonnegative

  3. Transfer line from the PSB to the PS (recombination)

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    After sequential ejection of 5 bunches from each of the 4 rings of the Booster (originally 800 MeV, now 1.4 GeV), the 4 batches are brought to the same vertical level, so as to form a string of 20 bunches, filling the circumference of the PS. This vertical "recombination" is performed in the transfer line, using vertical bending magnets, septa and kickers. Here we see the section where the beam from ring 4 (the top one) is brought down to the level of ring 3, and the beam from ring 1 up to the level of ring 2. Further downstream (to the right, outside this picture), level 2 is brought up to level 3, identical to that of the PS. After this original recombination scheme, other ways of combining the 4 beams, vertically and/or longitudinally, were developed and used in operation.

  4. O Trabalho Psíquico da Intersubjetividade

    Directory of Open Access Journals (Sweden)

    Maria Inês Assumpção Fernandes

    2003-01-01

    Full Text Available O presente trabalho procura refletir sobre o trabalho psíquico da intersubjetividade nos grupos. Trata-se de pensá-lo na relação com a ruptura de investimentos durante o processo de Transformação x Criação, em primeiro lugar. A partir desse ponto, discutiremos a relação entre Transformação, Trabalho e Dispositivo. Neste caso pensamos nas possibilidades de intervenção, refletindo sobre a intervenção inpidual e a intervenção grupal. A questão da Transmissão Psíquica entre gerações será focalizada, fundamentalmente, no que se refere aos tempos lógicos do recalque.

  5. Images of Christ's Saving Work in Ps.-Epiphanius' Homilies

    Directory of Open Access Journals (Sweden)

    H. F. Stander

    1997-12-01

    Full Text Available Images of Christ's Saving Work in Ps.-Epiphanius' Homilies. One cannot really speak of a systematic theology on the subject of atone-ment in the patristic writers. Frances Young once said that 'it is in fact impossible to categorize neatly the thought of the major patristic writers on the subject of atonement'. She adds that one cannot do justice to the range of motifs and images that are found in describing the saving and atoning work of Christ if we merely dismember 'systematic theologies' to illustrate common soteriological themes. One can only appreciate patristic views of atonement if one begins by recognizing the multifaceted unity of imagery that pervades the literature. This then is the goal of this article: to discuss the rich images which Ps: -Epiphanius uses to describe the atoning work of Christ.

  6. Magnetoelectric MnPS3 as a candidate for ferrotoroidicity

    Science.gov (United States)

    Ressouche, E.; Loire, M.; Simonet, V.; Ballou, R.; Stunault, A.; Wildes, A.

    2010-09-01

    We have revisited the magnetic structure of manganese phosphorus trisulfide MnPS3 using neutron diffraction and polarimetry. MnPS3 undergoes a transition toward a collinear antiferromagnetic order at 78 K. The resulting magnetic point-group breaks both the time reversal and the space inversion thus allowing a linear magnetoelectric coupling. Neutron polarimetry was subsequently used to prove that this coupling provides a way to manipulate the antiferromagnetic domains simply by cooling the sample under crossed magnetic and electrical fields, in agreement with the nondiagonal form of the magnetoelectric tensor. In addition, this tensor has, in principle, an antisymmetric part that results in a toroidic moment and provides with a pure ferrotoroidic compound.

  7. PS Dreyer: Bakens op die pad van die wetenskap

    Directory of Open Access Journals (Sweden)

    A. J. Antonites

    1986-01-01

    Full Text Available PS Dreyer: Beacons on the path of science Professor PS Dreyer is an academic who has shown insight and vision into several problems of the human sciences since 1951. He has identified problems, but also contributed solutions to them. In this respect his philosophy on causality and freedom is of utmost importance. The same applies to his investigations into the relationship history-Christianity as well as the unity of sciences and how the concepts scientific, unscientic and nonscientific are related to one another. His contribution to the understanding of Greek philosophy should be of significance for time to come. Two milestones could be distinguished: Dreyer's particular solution to the problem of the criterion on truth, viz meaningfulness and his notion of the knowledge of values in ethics by valuation in contradistinction to knowledge through feeling, reason and will.

  8. Images of Christ's Saving Work in Ps.-Epiphanius' Homilies

    Directory of Open Access Journals (Sweden)

    H. F. Stander

    1997-01-01

    Full Text Available Images of Christ's Saving Work in Ps.-Epiphanius' Homilies. One cannot really speak of a systematic theology on the subject of atone-ment in the patristic writers. Frances Young once said that 'it is in fact impossible to categorize neatly the thought of the major patristic writers on the subject of atonement'. She adds that one cannot do justice to the range of motifs and images that are found in describing the saving and atoning work of Christ if we merely dismember 'systematic theologies' to illustrate common soteriological themes. One can only appreciate patristic views of atonement if one begins by recognizing the multifaceted unity of imagery that pervades the literature. This then is the goal of this article: to discuss the rich images which Ps: -Epiphanius uses to describe the atoning work of Christ.

  9. Longitudinal coupled-bunch instability studies in the PS

    CERN Document Server

    Damerau, H

    2017-01-01

    The main longitudinal limitation for LHC-type beams inthe PS are coupled-bunch instabilities. A dedicated proto-typefeedbacksystemusingaFinemetcavityasalongitudinalkicker has been installed. Extensive tests with beam havebeen performed to explore the intensity reach with this feed-back. The maximum intensity with nominal longitudinalemittance at PS extraction has been measured, as well as theemittance required to keep the beam longitudinally stableat the design intensity for the High-Luminosity LHC (HL-LHC). A higher-harmonic cavity is a complementary op-tion to extend the intensity reach beyond the capabilities ofthe coupled-bunch feedback. Preliminary machine develop-ment (MD) studies operating one20MHzor one40MHzRF system as a higher harmonic at the flat-top indicate thebeneficial effect on longitudinal beam stability

  10. Resolution and super-resolution.

    Science.gov (United States)

    Sheppard, Colin J R

    2017-06-01

    Many papers have claimed the attainment of super-resolution, i.e. resolution beyond that achieved classically, by measurement of the profile of a feature in the image. We argue that measurement of the contrast of the image of a dark bar on a bright background does not give a measure of resolution, but of detection sensitivity. The width of a bar that gives an intensity at the center of the bar of 0.735 that in the bright region (the same ratio as in the Rayleigh resolution criterion) is λ/(13.9×numerical aperture) for the coherent case with central illumination. This figure, which compares with λ/(numerical aperture) for the Abbe resolution limit with central illumination, holds for the classical case, and so is no indication of super-resolution. Theoretical images for two points, two lines, arrays of lines, arrays of bars, and grating objects are compared. These results can be used a reference for experimental results, to determine if super-resolution has indeed been attained. The history of the development of the theory of microscope resolution is outlined. © 2017 Wiley Periodicals, Inc.

  11. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available Calcineurin plays a key role in morphogenesis, pathogenesis and drug resistance in most fungi. However, the function of calcineurin genes in Puccinia striiformis f. sp. tritici (Pst is unclear. We identified and characterized the calcineurin genes PsCNA1 and PsCNB1 in Pst. Phylogenetic analyses indicate that PsCNA1 and PsCNB1 form a calcium/calmodulin regulated protein phosphatase belonging to the calcineurin heterodimers composed of subunits A and B. Quantitative RT-PCR analyses revealed that both PsCNA1 and PsCNB1 expression reached their maximum in the stage of haustorium formation, which is one day after inoculation. Using barely stripe mosaic virus (BSMV as a transient expression vector in wheat, the expression of PsCNA1 and PsCNB1 in Pst was suppressed, leading to slower extension of fungal hyphae and reduced production of urediospores. The immune-suppressive drugs cyclosporin A and FK506 markedly reduced the germination rates of urediospores, and when germination did occur, more than two germtubes were produced. These results suggest that the calcineurin signaling pathway participates in stripe rust morphogenetic differentiation, especially the formation of haustoria during the early stage of infection and during the production of urediospores. Therefore PsCNA1 and PsCNB1 can be considered important pathogenicity genes involved in the wheat-Pst interaction.

  12. Consolidation of the 45-Year Old PS Main Magnet System

    CERN Document Server

    Zickler, Thomas; Kalbreier, Wilhelm; Mess, Karl Hubert; Newborough, Antony

    2006-01-01

    After a major coil insulation breakdown on two of the 47-year-old CERN PS main magnets in 2003, an extensive magnet consolidation program has been launched. This article reviews the analysis of the magnet state be-fore the repair and the applied major improvements. An overview is given of the production of the new compo-nents, the actual refurbishment and the commissioning of the main magnet system after 18 months shutdown.

  13. Specification of the Beam Position Measurement in the PS Machine

    CERN Document Server

    Bravin, Enrico; Chanel, M; Ludwig, M; Métral, Elias; Métral, G; Potier, J P; Raich, U; Scrivens, R; Steerenberg, R; CERN. Geneva. AB Department

    2003-01-01

    This specification, drawn up by the instrumentation specification board 2, describes the requirements concerning orbit and trajectory measurements in the PS machine. The orbit measurement and the trajectory measurement are both indispensable in order to be able to guarantee the correct beam quality for beams like LHC, the future Grand Sasso beam, the nTOF beam and surely the combined operation of the nTOF beam and the East Area beam.

  14. Science spin: iPS cell research in the news.

    Science.gov (United States)

    Caulfield, T; Rachul, C

    2011-05-01

    Big scientific developments have always been spun to meet particular social agendas. We have seen it in the context of global warming, nuclear power, and genetically modified organisms. But few stories illustrate the phenomenon of spin as well as the reaction, and concomitant media coverage, that surrounded the November 2007 announcement regarding the reprogramming of skin cells to produce cells with qualities comparable to those of human embryonic stem cells (hESCs) known as induced pluripotent stem (iPS) cells.

  15. Physics at the AD/PS/SPS (1/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 1: The CERN injector complex and beams for non-LHC physics. The various machines and beam lines in the CERN injector complex are presented, from the linacs to the SPS. Special emphasis is given to the beam lines at the PS and SPS machines: AD, North and East Areas, nTOF and CNGS and HiRadMad as well as the ion beams. A short outlook is given to possible future upgrades and projects.

  16. Ps18.pdf | sep2002 | jess | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; jess; sep2002; Ps18.pdf. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Associates – 2017. Posted on 17 July 2017. Click here to see the list · 28th Mid Year Meeting. Posted on 26 May ...

  17. New Electron Cloud Detectors for the PS Main Magnets

    CERN Document Server

    Yin Vallgren, Ch; Gilardoni, S; Taborelli, M; Neupert, H; Ferreira Somoza, J

    2014-01-01

    Electron cloud (EC) has already been observed during normal operation of the PS, therefore it is necessary to study its in fluence on any beam instability for the future LHC Injector Upgrade (LIU). Two new electron cloud detectors have been discussed, developed and installed during the Long Shutdown (LS1) in one of the PS main magnets. The first measurement method is based on current measurement by using a shielded button-type pick-up. Due to the geometry and space limitation in the PS magnet, the button-type pick-up made of a 96%Al2O3 block coated with a thin layer of solvent-based Ag painting, placed 30 degrees to the bottom part of the vacuum chamber was installed in the horizontal direction where the only opening of the magnet coil is. The other newly developed measurement method is based on detection of photons emitted by the electrons from the electron cloud impinging on the vacuum chamber walls. The emitted photons are reected to a quartz window. A MCP-PMT (Micro-Channel Plate Photomultiplier Tube) wit...

  18. LS1 Report: PS Booster prepares for beam

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    With Linac2 already up and running, the countdown to beam in the LHC has begun! The next in line is the PS Booster, which will close up shop to engineers early next week. The injector will be handed over to the Operations Group who are tasked with getting it ready for active duty.   Taken as we approach the end of LS1 activities, this image shows where protons will soon be injected from Linac2 into the four PS Booster rings. Over the coming two months, the Operations Group will be putting the Booster's new elements through their paces. "Because of the wide range of upgrades and repairs carried out in the Booster, we have a very full schedule of tests planned for the machine," says Bettina Mikulec, PS Booster Engineer in Charge. "We will begin with cold checks; these are a wide range of tests carried out without beam, including system tests with power on/off and with varying settings, as well as verification of the controls system and timings." Amon...

  19. Developing of the database of meteorological and radiation fields for Moscow region (urban reanalysis) for 1981-2014 period with high spatial and temporal resolution. Strategy and first results.

    Science.gov (United States)

    Konstantinov, Pavel; Varentsov, Mikhail; Platonov, Vladimir; Samsonov, Timofey; Zhdanova, Ekaterina; Chubarova, Natalia

    2017-04-01

    The main goal of this investigation is to develop a kind of "urban reanalysis" - the database of meteorological and radiation fields under Moscow megalopolis for period 1981-2014 with high spatial resolution. Main meteorological fields for Moscow region are reproduced with COSMO_CLM regional model (including urban parameters) with horizontal resolution 1x1 km. Time resolution of output fields is 1 hour. For radiation fields is quite useful to calculate SVF (Sky View Factor) for obtaining losses of UV radiation in complex urban conditions. Usually, the raster-based SVF analysis the shadow-casting algorithm proposed by Richens (1997) is popular (see Ratti and Richens 2004, Gal et al. 2008, for example). SVF image is obtained by combining shadow images obtained from different directions. An alternative is to use raster-based SVF calculation similar to vector approach using digital elevation model of urban relief. Output radiation field includes UV-radiation with horizontal resolution 1x1 km This study was financially supported by the Russian Foundation for Basic Research within the framework of the scientific project no. 15-35-21129 _mol_a_ved and project no 15-35-70006 mol_a_mos References: 1. Gal, T., Lindberg, F., and Unger, J., 2008. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theoretical and applied climatology, 95 (1-2), 111-123. 2. Richens, P., 1997. Image processing for urban scale environmental modelling. In: J.D. Spitler and J.L.M. Hensen, eds. th Intemational IBPSA Conference Building Si