WorldWideScience

Sample records for prtechnology programogram nistir

  1. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ... 7823 includes numerous stakeholders in the Smart Grid space, particularly customers, Smart Meter... National Institute of Standards and Technology Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter Upgradeability Test Framework; Request for Comments AGENCY: National...

  2. 75 FR 18819 - Second DRAFT NIST Interagency Report (NISTIR) 7628, Smart Grid Cyber Security Strategy and...

    Science.gov (United States)

    2010-04-13

    ... National Institute of Standards and Technology Second DRAFT NIST Interagency Report (NISTIR) 7628, Smart..., Smart Grid Cyber Security Strategy and Requirements. This second draft has been updated to address the... and the requirements section has been revised to include requirements for the entire Smart Grid...

  3. 78 FR 63964 - Request for Comments on Draft NIST Interagency Report (NISTIR) 7628 Rev. 1, Guidelines for Smart...

    Science.gov (United States)

    2013-10-25

    ... key management, privacy, vulnerability classes, research and development topics, standards review, and key power system use cases have been updated and expanded to reflect changes in the Smart Grid... the electric grid. (2) Dynamic optimization of grid operations and resources, with full cyber-security...

  4. Evolution of public relations in the activity of organizations of ukrainian socio-cultural sphere

    Directory of Open Access Journals (Sweden)

    Євгенія Олегівна Кияниця

    2015-04-01

    Full Text Available The article traces the evolution of public relations in various fields of life including socio-cultural and found creative and social potential of this activity. Analysis of historical experience of using the PR-technologies in the field of sociocultural institutions promotes understanding of importance of this activity for the efficient work of organizations of this sphere

  5. Demonstration of CBR Modeling and Simulation Tool (CBRSim) Capabilities. Installation Technology Transfer Program

    Science.gov (United States)

    2009-04-01

    collection of about 200 residences defined to represent 80% of the U.S. housing stock (Persily, Musser, and Leber 2006). This set of dwellings was...assessment survey and evaluation (BASE) study. NISTIR 7145. National Institute of Standards and Technology. Persily, A. K., A. Musser, and D. Leber

  6. Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, R. K. [ORNL; Peters, Scott [Sypris Electronics, LLC

    2014-05-28

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  7. Cryptographic Key Management and Critical Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Robert K [ORNL

    2014-05-01

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) CyberSecurity for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing CyberSecurity for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system