WorldWideScience

Sample records for prp prion protein

  1. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure

    Energy Technology Data Exchange (ETDEWEB)

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-09-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  2. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure.

    Science.gov (United States)

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-01-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  3. Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation.

    Directory of Open Access Journals (Sweden)

    Jia Shao

    Full Text Available Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis.

  4. Early embryonic gene expression profiling of zebrafish prion protein (Prp2 morphants.

    Directory of Open Access Journals (Sweden)

    Rasoul Nourizadeh-Lillabadi

    Full Text Available BACKGROUND: The Prion protein (PRNP/Prp plays a crucial role in transmissible spongiform encephalopathies (TSEs like Creutzfeldt-Jakob disease (CJD, scrapie and mad cow disease. Notwithstanding the importance in human and animal disease, fundamental aspects of PRNP/Prp function and transmission remains unaccounted for. METHODOLOGY/PRINCIPAL FINDINGS: The zebrafish (Danio rerio genome contains three Prp encoding genes assigned prp1, prp2 and prp3. Currently, the second paralogue is believed to be the most similar to the mammalian PRNP gene in structure and function. Functional studies of the PRNP gene ortholog was addressed by prp2 morpholino (MO knockdown experiments. Investigation of Prp2 depleted embryos revealed high mortality and apoptosis at 24 hours post fertilization (hpf as well as impaired brain and neuronal development. In order to elucidate the underlying mechanisms, a genome-wide transcriptome analysis was carried out in viable 24 hpf morphants. The resulting changes in gene expression profiles revealed 249 differently expressed genes linked to biological processes like cell death, neurogenesis and embryonic development. CONCLUSIONS/SIGNIFICANCE: The current study contributes to the understanding of basic Prp functions and demonstrates that the zebrafish is an excellent model to address the role of Prp in vertebrates. The gene knockdown of prp2 indicates an essential biological function for the zebrafish ortholog with a morphant phenotype that suggests a neurodegenerative action and gene expression effects which are apoptosis related and effects gene networks controlling neurogenesis and embryo development.

  5. NMR structure of the mouse prion protein domain PrP(121-231).

    Science.gov (United States)

    Riek, R; Hornemann, S; Wider, G; Billeter, M; Glockshuber, R; Wüthrich, K

    1996-07-11

    The 'protein only' hypothesis states that a modified form of normal prion protein triggers infectious neurodegenerative diseases, such as bovine spongiform encephalopathy (BSE), or Creutzfeldt-Jakob disease (CJD) in humans. Prion proteins are thought to exist in two different conformations: the 'benign' PrPcform, and the infectious 'scrapie form', PrPsc. Knowledge of the three-dimensional structure of PrPc is essential for understanding the transition to PrPsc. The nuclear magnetic resonance (NMR) structure of the autonomously folding PrP domain comprising residues 121-231 (ref. 6) contains a two-stranded antiparallel beta-sheet and three alpha-helices. This domain contains most of the point-mutation sites that have been linked, in human PrP, to the occurrence of familial prion diseases. The NMR structure shows that these mutations occur within, or directly adjacent to, regular secondary structures. The presence of a beta-sheet in PrP(121-231) is in contrast with model predictions of an all-helical structure of PrPc (ref. 8), and may be important for the initiation of the transition from PrPc to PrPsc.

  6. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David (UCLA)

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

  7. Peroxiredoxin 6 promotes upregulation of the prion protein (PrP in neuronal cells of prion-infected mice

    Directory of Open Access Journals (Sweden)

    Wagner Wibke

    2012-12-01

    Full Text Available Abstract Background It has been widely established that the conversion of the cellular prion protein (PrPC into its abnormal isoform (PrPSc is responsible for the development of transmissible spongiform encephalopathies (TSEs. However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion pathogenesis. Findings Apolipoprotein E and peroxiredoxin 6 (PRDX6 were identified as upregulated proteins in brains of scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells. Conclusions Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an attractive target molecule in putative pharmacological intervention strategies in the future.

  8. Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent.

    OpenAIRE

    Sakaguchi, S; Katamine, S.; Shigematsu, K.; Nakatani, A; Moriuchi, R.; Nishida, N.; Kurokawa, K; Nakaoke, R; Sato, H; Jishage, K

    1995-01-01

    Creutzfeldt-Jakob disease (CJD) is a transmissible neurodegenerative disease of humans caused by an unidentified infectious agent, the prion. To determine whether there was an involvement of the host-encoded prion protein (PrPc) in CJD development and prion propagation, mice heterozygous (PrP+/-) or homozygous (PrP-/-) for a disrupted PrP gene were established and inoculated with the mouse-adapted CJD agent. In keeping with findings of previous studies using other lines of PrP-less mice inocu...

  9. Porcine prion protein amyloid

    OpenAIRE

    Hammarstr?m, Per; Nystr?m, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat...

  10. Generating a Prion with Bacterially Expressed Recombinant Prion Protein**

    OpenAIRE

    Wang, Fei; Wang, Xinhe; Yuan, Chong-Gang; Ma, Jiyan

    2010-01-01

    The prion hypothesis posits that a misfolded form of prion protein (PrP) is responsible for the infectivity of prion disease. Using recombinant murine PrP purified from Escherichia coli, we created a recombinant prion with the hallmarks of the pathogenic PrP isoform: aggregated, protease-resistant, and self-perpetuating. After intracerebral injection of the recombinant prion, wild-type mice developed neurological signs in ~130 days and reached the terminal stage of disease in ~150 days. Chara...

  11. Mouse Prion Protein (PrP) Segment 100 to 104 Regulates Conversion of PrPC to PrPSc in Prion-Infected Neuroblastoma Cells

    Science.gov (United States)

    Hara, Hideyuki; Okemoto-Nakamura, Yuko; Shinkai-Ouchi, Fumiko; Hanada, Kentaro; Yamakawa, Yoshio

    2012-01-01

    Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrPSc; PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrPC) to PrPSc and the subsequent conversion of PrPC to PrPSc. We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrPC and PrPSc. Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrPSc state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrPSc and interfered with the conversion of endogenous MoPrPC. The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrPSc. Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrPC reduced the accumulation of PrPSc after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrPC plays a key role in conversion after binding to MoPrPSc. PMID:22398286

  12. Human prion protein (PrP) 219K is converted to PrPSc but shows heterozygous inhibition in variant Creutzfeldt-Jakob disease infection.

    Science.gov (United States)

    Hizume, Masaki; Kobayashi, Atsushi; Teruya, Kenta; Ohashi, Hiroaki; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2009-02-06

    Prion protein gene (PRNP) E219K is a human polymorphism commonly occurring in Asian populations but is rarely found in patients with sporadic Creutzfeldt-Jakob disease (CJD). Thus the polymorphism E219K has been considered protective against sporadic CJD. The corresponding mouse prion protein (PrP) polymorphism variant (mouse PrP 218K) is not converted to the abnormal isoform (PrP(Sc)) and shows a dominant negative effect on wild-type PrP conversion. To define the conversion activity of this human molecule, we herein established knock-in mice with human PrP 219K and performed a series of transmission experiments with human prions. Surprisingly, the human PrP 219K molecule was converted to PrP(Sc) in variant CJD infection, and the conversion occurred more efficiently than PrP 219E molecule. Notably the knock-in mice with PRNP codon 219E/K showed the least efficient conversion compared with their hemizygotes with PRNP codon 219E/0 or codon 219K/0, or homozygotes with PRNP codon 219E/E or codon 219K/K. This phenomenon indicated heterozygous inhibition. This heterozygous inhibition was observed also in knock-in mice with PRNP codon 129M/V genotype. In addition to variant CJD infection, the human PrP 219K molecule is conversion-competent in transmission experiments with sporadic CJD prions. Therefore, the protective effect of PRNP E219K against sporadic CJD might be due to heterozygous inhibition.

  13. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  14. Prions and prion-like proteins.

    Science.gov (United States)

    Fraser, Paul E

    2014-07-18

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  16. Quantitating PrP polymorphisms present in prions from heterozygous scrapie-infected sheep

    Science.gov (United States)

    Scrapie is a prion (PrPSc) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep’s normal cellular prion protein (PrPC). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic pept...

  17. PrPSc-like prion protein peptide inhibits the function of cellular prion protein.

    OpenAIRE

    Brown, D.R.

    2000-01-01

    Mice lacking expression of the prion protein are protected against infection with prion disease. Neurodegeneration in prion disease requires the formation of the abnormal isoform of the prion protein (PrP(Sc)) from host prion protein. Therefore expression of normal host prion protein is necessary for prion disease. In the present investigation, it was demonstrated that PrP(Sc) and a peptide resembling PrP(Sc), PrP106-126, both bind to cellular prion protein at amino acid residues 112-119. Int...

  18. A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation.

    Science.gov (United States)

    Westergard, Laura; Turnbaugh, Jessie A; Harris, David A

    2011-12-23

    The cellular prion protein (PrPC) undergoes constitutive proteolytic cleavage between residues 111/112 to yield a soluble N-terminal fragment (N1) and a membrane-anchored C-terminal fragment (C1). The C1 fragment represents the major proteolytic fragment of PrPC in brain and several cell types. To explore the role of C1 in prion disease, we generated Tg(C1) transgenic mice expressing this fragment (PrP(Δ23-111)) in the presence and absence of endogenous PrP. In contrast to several other N-terminally deleted forms of PrP, the C1 fragment does not cause a spontaneous neurological disease in the absence of endogenous PrP. Tg(C1) mice inoculated with scrapie prions remain healthy and do not accumulate protease-resistant PrP, demonstrating that C1 is not a substrate for conversion to PrPSc (the disease-associated isoform). Interestingly, Tg(C1) mice co-expressing C1 along with wild-type PrP (either endogenous or encoded by a second transgene) become ill after scrapie inoculation, but with a dramatically delayed time course compared with mice lacking C1. In addition, accumulation of PrPSc was markedly slowed in these animals. Similar effects were produced by a shorter C-terminal fragment of PrP(Δ23-134). These results demonstrate that C1 acts as dominant-negative inhibitor of PrPSc formation and accumulation of neurotoxic forms of PrP. Thus, C1, a naturally occurring fragment of PrPC, might play a modulatory role during the course of prion diseases. In addition, enhancing production of C1, or exogenously administering this fragment, represents a potential therapeutic strategy for the treatment of prion diseases.

  19. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions

    NARCIS (Netherlands)

    Leliveld, S. R.; Dame, R.T.; Wuite, G.J.L.; Stitz, L.; Korth, C.

    2006-01-01

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrP

  20. Human Variant Creutzfeldt-Jakob disease and sheep scrapie PrP (res) detection using seeded conversion of recombinant prion protein.

    NARCIS (Netherlands)

    Orrú, C.D.; Wilham, J.M.; Hughson, A.G.; Raymond, L.D.; McNally, K.L.; Bossers, A.; Ligios, C.; Caughey, B.

    2009-01-01

    The pathological isoform of the prion protein (PrPres) can serve as a marker for prion diseases, but more practical tests are needed for preclinical diagnosis and sensitive detection of many prion infections. Previously we showed that the quaking-induced conversion (QuIC) assay can detect

  1. Protein Misfolding Cyclic Amplification of Infectious Prions.

    Science.gov (United States)

    Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies, or prion diseases, are a group of incurable disorders caused by the accumulation of an abnormally folded prion protein (PrP Sc ) in the brain. According to the "protein-only" hypothesis, PrP Sc is the infectious agent able to propagate the disease by acting as a template for the conversion of the correctly folded prion protein (PrP C ) into the pathological isoform. Recently, the mechanism of PrP C conversion has been mimicked in vitro using an innovative technique named protein misfolding cyclic amplification (PMCA). This technology represents a great tool for studying diverse aspects of prion biology in the field of basic research and diagnosis. Moreover, PMCA can be expanded for the study of the misfolding process associated to other neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal lobar degeneration. © 2017 Elsevier Inc. All rights reserved.

  2. Polymorphism of the PrP prion protein gene in Polish Merino and old-type Polish Merino from Brylewo flock

    Directory of Open Access Journals (Sweden)

    Niżnikowski Roman

    2015-06-01

    Full Text Available The study was conducted on Polish Merino (143♀ and 39♂ and old-type Polish Merino sheep (176♀ and 61♂ in Brylewo flock (Wielkopolskie Province. The examined sheep were at the age of one year. Prion protein (PrP genotype was determined in all animals. In both breeds four alleles (ARR, ARQ, AHQ, VRQ were found. Highly significant effect of breed and insignificant impact of gender within breed was observed in regard to the frequency of occurrence of alleles and genotypes susceptible to classical scrapie in the sheep. Eight different PrP genotypes in Polish Merino and nine genotypes in old-type Polish Merino were identified. Very high frequency of ARR/ARR genotype in old-type Polish Merino and high frequency of ARR/ARQ genotype in Polish Merino were found, with relatively significant frequency of occurrence of the genotypes containing VRQ allele. In old-type Polish Merino, three animals (of both genders had VRQ/VRQ genotype. Breeding work involving elimination of animals encoding valine at codon 136, and introduction of rams with ARR allele to the population increased the frequency of occurrence of ARR/ARR genotype and ARR allele in the population of old-type Polish Merino. To improve the distribution of the genotypes genetically resistant to scrapie in the flock of Polish Merino only rams with ARR/ARR genotype were left. This guarantees an increase in the frequency of occurrence of genotypes genetically resistant to scrapie in the offspring.

  3. Aptamers against prion proteins and prions.

    Science.gov (United States)

    Gilch, Sabine; Schätzl, Hermann M

    2009-08-01

    Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrP(c)) into the aberrantly folded pathologic isoform PrP(Sc). RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrP(Sc) as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.

  4. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  5. Prion proteins leading to neurodegeneration.

    Science.gov (United States)

    La Mendola, D; Mendola, D L; Pietropaolo, A; Pappalardo, G; Zannoni, C; Rizzarelli, E

    2008-12-01

    Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evidences indicate that prion is a copper binding protein and thus involved in the copper metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in mammals while they seem to be spared to other species. The chicken prion protein (chPrP C) shares about 30% of identity in its primary sequence with mammal PrP C. Both types of proteins have an N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR studies have highlighted a similar globular domain containing three alpha-helices, one short 3(10)-helix and a short antiparallel beta-sheet. Despite this structural similarity, it should be noted that the normal isoform of mammalian PrP C is totally degraded by proteinase K, while avian PrP C is not, thereby producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper binding sites, the affinity and the coordination environment of metal ions are still matter of discussion for both mammal and avian proteins. In this review, we summarize the similarities and the differences between mammalian and avian prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, using a range of

  6. Oxidation reduces the fibrillation but not the neurotoxicity of the prion peptide PrP106-126

    DEFF Research Database (Denmark)

    Bergstrøm, Linda Alice; Chabry, J.; Bastholm, L.

    2007-01-01

    There is increasing evidence that soluble oligomers of misfolded protein may play a role in the pathogenesis of protein misfolding diseases including the transmissible spongiform encephalopathies (TSE) where the protein involved is the prion protein, PrP. The effect of oxidation on fibrillation...... tendency and neurotoxicity of different molecular variants of the prion peptide PrP106-126 was investigated. It was found that methionine oxidation significantly reduced amyloid fibril formation and proteinase K resistance, but it did not reduce (but rather increase slightly) the neurotoxicity...

  7. Healthy goats naturally devoid of prion protein

    Directory of Open Access Journals (Sweden)

    Benestad Sylvie L

    2012-12-01

    Full Text Available Abstract Prion diseases such as scrapie in small ruminants, bovine spongiform encephalopathy (BSE in cattle and Creutzfeldt-Jakob disease (CJD in man, are fatal neurodegenerative disorders. These diseases result from the accumulation of misfolded conformers of the host-encoded prion protein (PrP in the central nervous system. To date naturally-occurring PrP free animals have not been reported. Here we describe healthy non-transgenic animals, Norwegian Dairy Goats, lacking prion protein due to a nonsense mutation early in the gene. These animals are predicted to be resistant to prion disease and will be valuable for research and for production of prion-free products.

  8. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    NARCIS (Netherlands)

    Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; Chesebro, B.

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer

  9. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    Science.gov (United States)

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. © 2016 The Authors.

  10. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways.

    Science.gov (United States)

    Wang, Yiming; Shao, Qing; Hall, Carol K

    2016-10-14

    The prion diseases are a family of fatal neurodegenerative diseases associated with the misfolding and accumulation of normal prion protein (PrP(C)) into its pathogenic scrapie form (PrP(Sc)). Understanding the fundamentals of prion protein aggregation and the molecular architecture of PrP(Sc) is key to unraveling the pathology of prion diseases. Our work investigates the early-stage aggregation of three prion protein peptides, corresponding to residues 120-144 of human (Hu), bank vole (BV), and Syrian hamster (SHa) prion protein, from disordered monomers to β-sheet-rich fibrillar structures. Using 12 μs discontinuous molecular dynamics simulations combined with the PRIME20 force field, we find that the Hu-, BV-, and SHaPrP(120-144) aggregate via multiple nucleation-dependent pathways to form U-shaped, S-shaped, and Ω-shaped protofilaments. The S-shaped HuPrP(120-144) protofilament is similar to the amyloid core structure of HuPrP(112-141) predicted by Zweckstetter. HuPrP(120-144) has a shorter aggregation lag phase than BVPrP(120-144) followed by SHaPrP(120-144), consistent with experimental findings. Two amino acid substitutions I138M and I139M retard the formation of parallel in-register β-sheet dimers during the nucleation stage by increasing side chain-side chain association and reducing side chain interaction specificity. On average, HuPrP(120-144) aggregates contain more parallel β-sheet content than those formed by BV- and SHaPrP(120-144). Deletion of the C-terminal residues 138-144 prevents formation of fibrillar structures in agreement with the experiment. This work sheds light on the amyloid core structures underlying prion strains and how I138M, I139M, and S143N affect prion protein aggregation kinetics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Prions, prionoids and pathogenic proteins in Alzheimer disease.

    Science.gov (United States)

    Ashe, Karen H; Aguzzi, Adriano

    2013-01-01

    Like patients with prion disease, Alzheimer patients suffer from a fatal, progressive form of dementia. There is growing evidence that amyloid-β (Aβ) aggregates may be transmissible similar to prions, at least under extreme experimental conditions. However, unlike mice infected with prion protein (PrP) prions, those inoculated with Aβ do not die. The transmission of Aβ and PrP thus differs conspicuously in the neurological effects they induce in their hosts, the difference being no less than a matter of life and death. Far from being a mere academic nuance, this distinction between Aβ and PrP begs the crucial questions of what, exactly, controls prion toxicity and how prion toxicity relates to prion infectivity.

  12. Rôle du domaine N-terminal de la PrP dans la pathogenèse des maladies à prions

    OpenAIRE

    Erlich, Paul

    2009-01-01

    The role of the N-terminal (N-ter) domain of PrP protein in the conversion of PrPc into an infectious isoform PrPSc is poorly understood. The objective of my thesis was to create a synthetic prion composed of the N-ter domain of PrP and the Doppel protein to get an insight in the involvement of this PrP domain in the aggregation mechanisms and the pathogenesis of prion diseases. Three PrP/Dpl chimeric recombinant proteins were expressed, purified and aggregated in vitro into oligomers. These ...

  13. A systematic investigation of production of synthetic prions from recombinant prion protein.

    Science.gov (United States)

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. © 2015 The Authors.

  14. A naturally occurring variant of the human prion protein completely prevents prion disease.

    Science.gov (United States)

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.

  15. Protecting effect of PrP codons M142 and K222 in goats orally challenged with bovine spongiform encephalopathy prions

    NARCIS (Netherlands)

    Fast, C.; Goldmann, W.; Berthon, P.; Tauscher, Kerstin; Andréoletti, O.; Lantier, I.; Rossignol, C.; Bossers, A.; Jacobs, J.G.; Hunter, N.; Groschup, Martin H.; Lantier, F.; Langeveld, J.P.M.

    2017-01-01

    Breeding towards genetic resistance to prion disease is effective in eliminating scrapie. In sheep, classical forms of scrapie have been eradicated almost completely in several countries by breeding programs using a prion protein (PrP) gene (PRNP) amino acid polymorphism. For goats, field and

  16. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9

    National Research Council Canada - National Science Library

    Kaczmarczyk, Lech; Mende, Ylva; Zevnik, Branko; Jackson, Walker S

    2016-01-01

    The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild...

  17. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    OpenAIRE

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicit...

  18. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions.

    Science.gov (United States)

    Chapuis, Jérôme; Moudjou, Mohammed; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Chapuis, Céline; Quadrio, Isabelle; Boulliat, Jacques; Perret-Liaudet, Armand; Dron, Michel; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2016-02-05

    Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP(Sc), a misfolded isoform of the host-encoded prion protein PrP(C). Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP(Sc) in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP(Sc)), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP(C). In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP(Sc) biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of

  19. Detection of Prion Protein Particles in Blood Plasma of Scrapie Infected Sheep

    NARCIS (Netherlands)

    Bannach, O.; Birkmann, E.; Reinartz, E.; Karl-Erich, J.; Langeveld, J.P.M.; Rohwer, R.G.; Gregori, L.; Terry, L.A.; Willbold, D.; Riesner, D.

    2012-01-01

    Prion diseases are transmissible neurodegenerative diseases affecting humans and animals. The agent of the disease is the prion consisting mainly, if not solely, of a misfolded and aggregated isoform of the host-encoded prion protein (PrP). Transmission of prions can occur naturally but also

  20. Amidation and structure relaxation abolish the neurotoxicity of the prion peptide PrP106-126 in vivo and in vitro

    DEFF Research Database (Denmark)

    Bergstrøm, Linda Alice; Hvass, Henriette Cordes; Zsurger, N.

    2005-01-01

    One of the major pathological hallmarks of transmissible spongiform encephalopathies (TSEs) is the accumulation of a pathogenic (scrapie) isoform (PrPSc) of the cellular prion protein (PrPC) primarily in the central nervous system. The synthetic prion peptide PrP106-126 shares many characteristics...... with PrPSc in that it shows PrPC-dependent neurotoxicity both in vivo and in vitro. Moreover, PrP106-126 in vitro neurotoxicity has been closely associated with the ability to form fibrils. Here, we studied the in vivo neurotoxicity of molecular variants of PrP106-126 toward retinal neurons using...

  1. Role of Prion Protein Aggregation in Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Tullio Florio

    2012-07-01

    Full Text Available In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP, the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126 and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  2. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    Science.gov (United States)

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  3. Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases.

    Science.gov (United States)

    Torrent, Joan; Vilchez-Acosta, Alba; Muñoz-Torrero, Diego; Trovaslet, Marie; Nachon, Florian; Chatonnet, Arnaud; Grznarova, Katarina; Acquatella-Tran Van Ba, Isabelle; Le Goffic, Ronan; Herzog, Laetitia; Béringue, Vincent; Rezaei, Human

    2015-04-03

    The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association induced aggregation of monomeric PrP and modified the structural properties of PrP amyloid fibrils. Following its recruitment into PrP fibrils, AChE loses its enzymatic activity and enhances PrP-mediated cytotoxicity. Using several truncated PrP variants and specific tight-binding AChE inhibitors (AChEis), we then demonstrate that the PrP-AChE interaction requires two mutually exclusive sub-sites in PrP N-terminal domain and an aromatic-rich region at the entrance of AChE active center gorge. We show that AChEis that target this site impair PrP-AChE complex formation and also limit the accumulation of pathological prion protein (PrPSc) in prion-infected cell cultures. Furthermore, reduction of AChE levels in prion-infected heterozygous AChE knock-out mice leads to slightly but significantly prolonged incubation time. Finally, we found that AChE levels were altered in prion-infected cells and tissues, suggesting that AChE might be directly associated with abnormal PrP. Our results indicate that AChE deserves consideration as a new actor in expanding pathologically relevant PrP morphotypes and as a therapeutic target.

  4. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    Science.gov (United States)

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  5. Transition-metal prion protein attachment: Competition with copper

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  6. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP

    NARCIS (Netherlands)

    Jansen, C.; Parchi, P.; Capellari, S.; Vermeij, A.J.; Corrado, P.; Baas, F.; Strammiello, R.; van Gool, W.A.; van Swieten, J.C.; Rozemuller, A.J.M.

    2010-01-01

    Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrP

  7. Genetic variation of the prion protein gene (PRNP) in alpaca (Vicugna pacos)

    Science.gov (United States)

    Transmissible spongiform encephalopathies (TSE) are caused by accumulation of a misfolded form of the prion protein (PrP). The normal cellular isoform of PrP is produced by the prion gene (PRNP) and is highly expressed in the central nervous system. Currently, there is an absence of information rega...

  8. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    Science.gov (United States)

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic reticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases. PMID:25206608

  9. PrP(ST, a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    Full Text Available While the conversion of PrP(C into PrP(Sc in the transmissible form of prion disease requires a preexisting PrP(Sc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST, a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST as in TgMHu2ME199K mice, and "classical" PrP(Sc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  10. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency.

    Directory of Open Access Journals (Sweden)

    Samia Hannaoui

    2017-08-01

    Full Text Available Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC. We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD.

  11. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency

    Science.gov (United States)

    Hannaoui, Samia; Amidian, Sara; Cheng, Yo Ching; Duque Velásquez, Camilo; Law, Sampson; Telling, Glenn; Stepanova, Maria; McKenzie, Debbie

    2017-01-01

    Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD. PMID:28800624

  12. Quantifying the relative amounts of PrP polymorphisms present in prions isolated from heterozygous prion-infected animals

    Science.gov (United States)

    Prions cause protein misfolding diseases, such as transmissible spongiform encephalopathy. They propagate infections by converting a normal cellular prion protein into a prion (PrPSc). PrPC and PrPSc are isosequential and differ only in their respective conformations. PrPC is monomeric and sensit...

  13. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    Directory of Open Access Journals (Sweden)

    Emmanuel A Asante

    Full Text Available Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP gene (PRNP and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc, pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((CtmPrP. Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc was demonstrated in the brains of recipient transgenic mice. This PrP(Sc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  14. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    Science.gov (United States)

    Asante, Emmanuel A; Linehan, Jacqueline M; Smidak, Michelle; Tomlinson, Andrew; Grimshaw, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Powell, Caroline; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2013-01-01

    Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  15. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    2010-10-01

    Full Text Available A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  16. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  17. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  18. Prion protein scrapie and the normal cellular prion protein.

    Science.gov (United States)

    Atkinson, Caroline J; Zhang, Kai; Munn, Alan L; Wiegmans, Adrian; Wei, Ming Q

    2016-01-01

    Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.

  19. Prion protein degradation by lichens of the genus Cladonia

    Science.gov (United States)

    Bennett, James P.; Rodriguez, Cynthia M.; Johnson, Christopher J.

    2012-01-01

    It has recently been discovered that lichens contain a serine protease capable of degrading the pathogenic prion protein, the etiological agent of prion diseases such as sheep scrapie and cervid chronic wasting disease. Limited methods are available to degrade or inactivate prion disease agents, especially in the environment, and lichens or their serine protease could prove important for management of these diseases. Scant information is available regarding the presence or absence of the protease responsible for degrading prion protein (PrP) in lichen species and, in this study, we tested the hypothesis that PrP degradation activity in lichens is phylogenetically-based by testing 44 species of Cladonia lichens, a genus for which a significant portion of the phylogeny is well established. We categorized PrP degradation activity among the 44 species (high, moderate, low or none) and found that activity in Cladonia species did not correspond with phylogenetic position of the species. Degradation of PrP did correspond, however, with three classical taxonomic characters within the genus: species with brown apothecia, no usnic acid, and the presence of a cortex. Of the 44 species studied, 18 (41%) had either high or moderate PrP degradation activity, suggesting the protease may be frequent in this genus of lichens.

  20. The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation.

    Science.gov (United States)

    Norstrom, Eric M; Mastrianni, James A

    2005-07-22

    The molecular hallmark of prion disease is the conversion of normal prion protein (PrPC) to an insoluble, proteinase K-resistant, pathogenic isoform (PrPSc). Once generated, PrPSc propagates by complexing with, and transferring its pathogenic conformation onto, PrPC. Defining the specific nature of this PrPSc-PrPC interaction is critical to understanding prion genesis. To begin to approach this question, we employed a prion-infected neuroblastoma cell line (ScN2a) combined with a heterologous yeast expression system to independently model PrPSc generation and propagation. We additionally applied fluorescence resonance energy transfer analysis to the latter to specifically study PrP-PrP interactions. In this report we focus on an N-terminal hydrophobic palindrome of PrP (112-AGAAAAGA-119) thought to feature intimately in prion generation via an unclear mechanism. We found that, in contrast to wild type (wt) PrP, PrP lacking the palindrome (PrPDelta112-119) neither converted to PrPSc when expressed in ScN2a cells nor generated proteinase K-resistant PrP when expressed in yeast. Furthermore, PrPDelta112-119 was a dominant-negative inhibitor of wtPrP in ScN2a cells. Both wtPrP and PrPDelta112-119 were highly insoluble when expressed in yeast and produced distinct cytosolic aggregates when expressed as fluorescent fusion proteins (PrP::YFP). Although self-aggregation was evident, fluorescence resonance energy transfer studies in live yeast co-expressing PrPSc-like protein and PrPDelta112-119 indicated altered interaction properties. These results suggest that the palindrome is required, not only for the attainment of the PrPSc conformation but also to facilitate the proper association of PrPSc with PrPC to effect prion propagation.

  1. Characterization of Truncated Forms of Abnormal Prion Protein in Creutzfeldt-Jakob Disease

    NARCIS (Netherlands)

    Notari, S.; Strammiello, R.; Capellari, S.; Giese, A.; Cescatti, M.; Grassi, J.; Ghetti, B.; Langeveld, J.P.M.; Zou, W.Q.; Gambetti, P.; Kretzschmar, H.A.; Parchi, P.

    2008-01-01

    In prion disease, the abnormal conformer of the cellular prion protein, PrPSc, deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrPSc to proteolytic digestion in vitro generates a core fragment of 19-21 kDa, named PrP27-30, which is also found in vivo. Recent

  2. Prion protein dynamics before aggregation

    National Research Council Canada - National Science Library

    Srivastava, Kinshuk Raj; Lapidusa, Lisa J

    2017-01-01

      Prion diseases, like Alzheimer's disease and Parkinson disease, are rapidly progressive neurodegenerative disorders caused by misfolding followed by aggregation and accumulation of protein deposits in neuronal cells...

  3. The role of the unusual threonine string in the conversion of prion protein.

    Science.gov (United States)

    Abskharon, Romany; Wang, Fei; Vander Stel, Kayla J; Sinniah, Kumar; Ma, Jiyan

    2016-12-16

    The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnp(a) and Prnp(b) polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrP(a) and PrP(b). Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity.

  4. Adult human microglia secrete cytokines when exposed to neurotoxic prion protein peptide: no intermediary role for prostaglandin E2

    NARCIS (Netherlands)

    Veerhuis, Robert; Hoozemans, Jeroen J. M.; Janssen, Ingrid; Boshuizen, Ronald S.; Langeveld, Jan P. M.; Eikelenboom, Piet

    2002-01-01

    Prion diseases are characterized by accumulation of protease resistant isoforms of prion protein (termed PrP(SC)), glial activation and neurodegeneration. The time course of PrP deposition, appearance of activated microglia, and of neuronal apoptosis in experimentally-induced prion disease suggests

  5. Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt-Jakob disease: its effect on the phenotype and prion-type characteristics

    NARCIS (Netherlands)

    Cali, I.; Castellani, R.; Alshekhlee, A.; Cohen, Y.; Blevins, J.; Yuan, J.; Langeveld, J.P.M.; Parchi, P.; Safar, J.G.; Zou, W.Q.; Gambetti, P.

    2009-01-01

    Five phenotypically distinct subtypes have been identified in sporadic Creutzfeldt-Jakob disease (sCJD), based on the methionine/valine polymorphic genotype of codon 129 of the prion protein (PrP) gene and the presence of either one of the two protease K-resistant scrapie prion protein (PrPSc) types

  6. Sensitive detection of aggregated prion protein via proximity ligation.

    Science.gov (United States)

    Hammond, Maria; Wik, Lotta; Deslys, Jean-Philippe; Comoy, Emmanuel; Linné, Tommy; Landegren, Ulf; Kamali-Moghaddam, Masood

    2014-01-01

    The DNA assisted solid-phase proximity ligation assay (SP-PLA) provides a unique opportunity to specifically detect prion protein (PrP) aggregates by investigating the collocation of 3 or more copies of the specific protein. We have developed an SP-PLA that can detect PrP aggregates in brain homogenates from infected hamsters even after a 10(7)-fold dilution. In contrast, brain homogenate from uninfected animals did not generate a detectable signal at 100-fold higher concentration. Using either of the 2 monoclonal anti-PrP antibodies, 3F4 and 6H4, we successfully detected low concentrations of aggregated PrP. The presented results provide a proof of concept that this method might be an interesting tool in the development of diagnostic approaches of prion diseases.

  7. Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein

    NARCIS (Netherlands)

    Zou, W.Q.; Puoti, G.; Xiao, X.; Yuan, J.; Qing, L.; Cali, I.; Shimoji, M.; Langeveld, J.P.M.; Castellani, R.; Notari, S.; Crain, B.; Schmidt, R.; Geschwind, M.; DeArmond, S.J.; Cairns, N.; Dickson, D.; Honig, I.; Torres, J.M.; Mastrianni, J.; Capellari, S.; Giaccone, G.; Belay, E.D.; Schonberger, L.B.; Cohen, M.; Perry, G.; Kong, Q.; Parchi, P.; Tagliavini, F.; Gambetti, P.

    2010-01-01

    Objective: The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are

  8. Rapid cell-surface prion protein conversion revealed using a novel cell system

    Science.gov (United States)

    Goold, R.; Rabbanian, S.; Sutton, L.; Andre, R.; Arora, P.; Moonga, J.; Clarke, A.R.; Schiavo, G.; Jat, P.; Collinge, J.; Tabrizi, S.J.

    2011-01-01

    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion. PMID:21505437

  9. Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality.

    Science.gov (United States)

    Coleman, Bradley M; Harrison, Christopher F; Guo, Belinda; Masters, Colin L; Barnham, Kevin J; Lawson, Victoria A; Hill, Andrew F

    2014-03-01

    Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the

  10. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.

    Science.gov (United States)

    Leliveld, Sirik Rutger; Dame, Remus Thei; Wuite, Gijs J L; Stitz, Lothar; Korth, Carsten

    2006-02-10

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparently, an expanded octarepeat domain directs folding of PrP toward the PrPSc conformation and initiates a self-replicating conversion process. Here, based on three main observations, we have provided a model on how altered molecular interactions between wild-type and mutant PrP set the stage for familial Creutzfeldt Jakob disease with octarepeat insertions. First, we showed that wild-type octarepeat domains interact in a copper-dependent and reversible manner, a "copper switch." This interaction becomes irreversible upon domain expansion, possibly reflecting a loss of function. Second, expanded octarepeat domains of increasing length gradually form homogenous globular multimers of 11-21 nm in the absence of copper ions when expressed as soluble glutathione S-transferase fusion proteins. Third, octarepeat domain expansion causes a gain of function with at least 10 repeats selectively binding PrPSc in a denaturant-resistant complex in the absence of copper ions. Thus, the combination of both a loss and gain of function profoundly influences homomeric interaction behavior of PrP with an expanded octarepeat domain. A multimeric cluster of prion proteins carrying expanded octarepeat domains may therefore capture and incorporate spontaneously arising short-lived PrPSc-like conformers, thereby providing a matrix for their conversion.

  11. Evidence that bank vole PrP is a universal acceptor for prions.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2014-04-01

    Full Text Available Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP, we inoculated Tg(M109 and Tg(I109 mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109 and Tg(I109 mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD subtype MM1, into Tg(M109 mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109 mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109 mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates--including the size of proteinase K-resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability--were remarkably conserved upon serial passage in Tg(M109 mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions.

  12. Sheep scrapie susceptibility-linked polymorphisms do not modulate the initial binding of cellular to disease-associated prion protein prior to conversion

    NARCIS (Netherlands)

    Rigter, A.; Bossers, A.

    2005-01-01

    Conversion of the host-encoded protease-sensitive cellular prion protein (PrPC) into the scrapie-associated protease-resistant isoform (PrPSc) of prion protein (PrP) is the central event in transmissible spongiform encephalopathies or prion diseases. Differences in transmissibility and

  13. A novel expression system for production of soluble prion proteins in E. coli

    Directory of Open Access Journals (Sweden)

    Abskharon Romany NN

    2012-01-01

    Full Text Available Abstract Expression of eukaryotic proteins in Escherichia coli is challenging, especially when they contain disulfide bonds. Since the discovery of the prion protein (PrP and its role in transmissible spongiform encephalopathies, the need to obtain large quantities of the recombinant protein for research purposes has been essential. Currently, production of recombinant PrP is achieved by refolding protocols. Here, we show that the co-expression of two different PrP with the human Quiescin Sulfhydryl OXidase (QSOX, a human chaperone with thiol/disulfide oxidase activity, in the cytoplasm of E. coli produces soluble recombinant PrP. The structural integrity of the soluble PrP has been confirmed by nuclear magnetic resonance spectroscopy, demonstrating that properly folded PrP can be easily expressed in bacteria. Furthermore, the soluble recombinant PrP produced with this method can be used for functional and structural studies.

  14. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions.

    Science.gov (United States)

    Yamaguchi, Yoshitaka; Miyata, Hironori; Uchiyama, Keiji; Ootsuyama, Akira; Inubushi, Sachiko; Mori, Tsuyoshi; Muramatsu, Naomi; Katamine, Shigeru; Sakaguchi, Suehiro

    2012-01-01

    Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

  15. Prions: Beyond a Single Protein.

    Science.gov (United States)

    Das, Alvin S; Zou, Wen-Quan

    2016-07-01

    Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. The N-terminus of the prion protein is a toxic effector regulated by the C-terminus

    OpenAIRE

    Wu, Bei; McDonald, Alex J.; Markham, Kathleen; Rich, Celeste B.; McHugh, Kyle P; Tatzelt, J?rg; David W Colby; Millhauser, Glenn L.; David A Harris

    2017-01-01

    eLife digest Prion diseases are a group of degenerative illnesses of the brain caused when a molecule called the prion protein (PrP for short) adopts the wrong shape. These diseases include the human form of mad cow disease, and are often fatal with no effective treatments or cures. Though the normal activity of PrP is not certain, abnormal PrP can affect the healthy PrP on the surface of brain cells and lead to disease. Similar mechanisms may also contribute to other life-threatening brain d...

  17. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway.

    Science.gov (United States)

    Lee, J-H; Jeong, J-K; Park, S-Y

    2014-10-10

    Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. In human neuroblastoma cells, sulforaphane protected prion protein (PrP) (106-126)-mediated neurotoxicity and increased autophagy flux marker microtubule-associated protein 1 light chain 3-II protein levels, following a decrease of p62 protein level. Pharmacological and genetical inhibition of autophagy by 3MA, wortmannin and knockdown of autophagy-related 5 (ATG5) led to block the effect of sulforaphane against PrP (106-126)-induced neurotoxicity. Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Expression of the Prion Protein Family Member Shadoo Causes Drug Hypersensitivity That Is Diminished by the Coexpression of the Wild Type Prion Protein*

    OpenAIRE

    Nyeste, Antal; Bencsura, Petra; Vida, István; Hegyi, Zoltán; Homolya, László; Fodor, Elfrieda; Welker, Ervin

    2015-01-01

    The prion protein (PrP) seems to exert both neuroprotective and neurotoxic activities. The toxic activities are associated with the C-terminal globular parts in the absence of the flexible N terminus, specifically the hydrophobic domain (HD) or the central region (CR). The wild type prion protein (PrP-WT), having an intact flexible part, exhibits neuroprotective qualities by virtue of diminishing many of the cytotoxic effects of these mutant prion proteins (PrPΔHD and PrPΔCR) when coexpressed...

  19. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  20. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  1. Strain-dependent profile of misfolded prion protein aggregates.

    Science.gov (United States)

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-02-15

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration.

  2. Strain-dependent profile of misfolded prion protein aggregates

    Science.gov (United States)

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V.; Soto, Claudio

    2016-01-01

    Prions are composed of the misfolded prion protein (PrPSc) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrPSc aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrPSc aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrPSc aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrPSc aggregates and the incubation periods for the strains studied. The relative presence of PrPSc in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrPSc aggregates in prion-induced neurodegeneration. PMID:26877167

  3. Immunology of Prion Protein and Prions.

    Science.gov (United States)

    Mabbott, Neil A

    2017-01-01

    Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered. © 2017 Elsevier Inc. All rights reserved.

  4. Role of the prion protein family in the gonads.

    Science.gov (United States)

    Allais-Bonnet, Aurélie; Pailhoux, Eric

    2014-01-01

    The prion-gene family comprises four members named PRNP (PRP(c)), PRND (Doppel), PRNT (PRT), and SPRN (Shadoo). According to species, PRND is located 16-52 kb downstream from the PRNP locus, whereas SPRN is located on another chromosome. The fourth prion-family gene, PRNT, belongs to the same genomic cluster as PRNP and PRND in humans and bovidae. PRNT and PRND possibly resulted from a duplication event of PRND and PRNP, respectively, that occurred early during eutherian species divergence. Although most of the studies concerning the prion-family has been done on PRP(c) and its involvement in transmissible neurodegenerative disorders, different works report some potential roles of these proteins in the reproductive function of both sexes. Among them, a clear role of PRND, that encodes for the Doppel protein, in male fertility has been demonstrated through gene targeting studies in mice. In other species, Doppel seems to play a role in testis and ovary development but its cellular localization is variable according to the gonadal developmental stage and to the mammalian species considered. For the other three genes, their roles in reproductive function appear ill-defined and/or controversial. The present review aimed to synthesize all the available data on these prion-family members and their relations with reproductive processes, mainly in the gonad of both sexes.

  5. The complexity and implications of yeast prion domains

    OpenAIRE

    Du, Zhiqiang

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are genera...

  6. Amino acid sequence of the Amur tiger prion protein.

    Science.gov (United States)

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank.

  7. Prions, protein homeostasis, and phenotypic diversity.

    Science.gov (United States)

    Halfmann, Randal; Alberti, Simon; Lindquist, Susan

    2010-03-01

    Prions are fascinating but often misunderstood protein aggregation phenomena. The traditional association of the mammalian prion protein with disease has overshadowed a potentially more interesting attribute of prions: their ability to create protein-based molecular memories. In fungi, prions alter the relationship between genotype and phenotype in a heritable way that diversifies clonal populations. Recent findings in yeast indicate that prions might be much more common than previously realized. Moreover, prion-driven phenotypic diversity increases under stress, and can be amplified by the dynamic maturation of prion-initiating states. In this article, we suggest that these qualities allow prions to act as 'bet-hedging' devices that facilitate the adaptation of yeasts to stressful environments, and might speed the evolution of new traits.

  8. Combined pharmacological induction of Hsp70 suppresses prion protein neurotoxicity in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Prion diseases are rare and aggressive neurodegenerative disorders caused by the accumulation of misfolded, toxic conformations of the prion protein (PrP. Therapeutic strategies directed at reducing the levels of PrP offer the best chance of delaying or halting disease progression. The challenge, though, is to define pharmacologic targets that result in reduced PrP levels. We previously reported that expression of wild type hamster PrP in flies induces progressive locomotor dysfunction and accumulation of pathogenic PrP conformations, while co-expression of human Hsp70 delayed these changes. To validate the therapeutic potential of Hsp70, we treated flies with drugs known to induce Hsp70 expression, including the Hsp90 inhibitor 17-DMAG and the glucocorticoid dexamethasone. Although the individual treatment with these compounds produced no significant benefits, their combination significantly increased the level of inducible Hsp70, decreased the level of total PrP, reduced the accumulation of pathogenic PrP conformers, and improved locomotor activity. Thus, the combined action of two pharmacological activators of Hsp70 with distinct targets results in sustained high levels of inducible Hsp70 with improved behavioral output. These findings can have important therapeutic applications for the devastating prion diseases and other related proteinopathies.

  9. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein.

    Directory of Open Access Journals (Sweden)

    Gabriele Giachin

    Full Text Available Humic substances (HS are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of "salting-out" whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of "prion ecology". These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment.

  10. Lactoferrin from bovine colostrum regulates prolyl hydroxylase 2 activity and prevents prion protein-mediated neuronal cell damage via cellular prion protein.

    Science.gov (United States)

    Park, Y-G; Moon, J-H; Park, S-Y

    2014-08-22

    Prion disorders are associated with the conversion of normal cellular prion protein (PrPc) to the abnormal scrapie isoform of prion protein (PrPsc). Recent studies have shown that expression of normal PrPc is regulated by hypoxia-inducible factor-1 alpha (HIF-1α), and that lactoferrin increases full-length PrPc on the cell surface. Lactoferrin is an 80-kDa iron-binding glycoprotein with various biological activities, including iron-chelating ability. HIF-1α and the associated ubiquitin-proteasome pathway are regulated by HIF prolyl-hydroxylases 2 (PHD2). We hypothesized that lactoferrin regulates PHD2 expression and enzymatic activity, and the PHD2 regulation promotes HIF-1α stability and prevention of neuronal cell death mediated by prion protein (PrP) residues (106-126). Lactoferrin prevented PrP (106-126)-induced neurotoxicity by the induction of PrPc expression via promoting HIF-1α stability in neuronal cells. Our results demonstrated that lactoferrin prevented PrP (106-126)-induced neurotoxicity via the up-regulation of HIF-1α stability determined by PHD2 expression and enzymatic activity. These findings suggest that possible therapies such as PHD2 inhibition, or promotion of lactoferrin secretion, may have clinical benefits in neurodegenerative diseases, including prion disease. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.

    Directory of Open Access Journals (Sweden)

    Victoria A Lawson

    Full Text Available BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS from the PrP(C substrate was found to specifically prevent PrP(res formation seeded by mouse derived PrP(Sc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res formation, while having no effect on PrP(res formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.

  12. The prion protein and New World primate phylogeny

    Directory of Open Access Journals (Sweden)

    Igor Schneider

    2004-01-01

    Full Text Available The PrP C prion protein contains 250 amino acids with some variation among species and is expressed in several cell types. PrP C is converted to PrP Sc by a post-translational process in which it acquires amino acid sequences of three-dimensional conformation of beta-sheets. Variations in the prion protein gene were observed among 16 genera of New World primates (Platyrrhini, and resulted in amino acid substitutions when compared with the human sequence. Seven substitutions not yet described in the literature were found: W -> R at position 31 in Cebuella, T -> A at position 95 in Cacajao and Chiropotes, N-> S at position 100 in Brachyteles, L -> Q at position 130 in Leontopithecus (in the sequence responsible for generating the beta-sheet 1, D -> E at position 144 in Lagothrix (in the sequence responsible for the alpha-helix 1, D-> G at position 147 in Saguinus (also located in the alpha-helix 1 region, and M -> I at position 232 in Alouatta. The phylogenetic trees generated by parsimony, neighbor-joining and Bayesian analyses strongly support the monophyletic status of the platyrrhines, but did not resolve relationships among families. However, the results do corroborate previous findings, which indicate that the three platyrrhine families radiated rapidly from an ancient split.

  13. Green fluorescent protein as a reporter of prion protein folding

    Directory of Open Access Journals (Sweden)

    Dalton Kevin

    2006-08-01

    Full Text Available Abstract Background The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. However, as some structure is likely to exist we have investigated the use of an established protein refolding technology, fusion to green fluorescence protein (GFP, as a method to examine the refolding of the amino terminal domain of mouse prion protein. Results Fusion proteins of PrPc and GFP were expressed at high level in E.coli and could be purified to near homogeneity as insoluble inclusion bodies. Following denaturation, proteins were diluted into a refolding buffer whereupon GFP fluorescence recovered with time. Using several truncations of PrPc the rate of refolding was shown to depend on the prion sequence expressed. In a variation of the format, direct observation in E.coli, mutations introduced randomly in the PrPc protein sequence that affected folding could be selected directly by recovery of GFP fluorescence. Conclusion Use of GFP as a measure of refolding of PrPc fusion proteins in vitro and in vivo proved informative. Refolding in vitro suggested a local structure within the amino terminal domain while direct selection via fluorescence showed that as little as one amino acid change could significantly alter folding. These assay formats, not previously used to study PrP folding, may be generally useful for investigating PrPc structure and PrPc-ligand interaction.

  14. Idiopathic Brainstem Neuronal Chromatolysis (IBNC: a novel prion protein related disorder of cattle?

    Directory of Open Access Journals (Sweden)

    Martin Stuart

    2008-09-01

    Full Text Available Abstract Background The epidemic form of Bovine Spongiform Encephalopathy (BSE is generally considered to have been caused by a single prion strain but at least two strain variants of cattle prion disorders have recently been recognized. An additional neurodegenerative condition, idiopathic brainstem neuronal chromatolysis and hippocampal sclerosis (IBNC, a rare neurological disease of adult cattle, was also recognised in a sub-set of cattle submitted under the BSE Orders in which lesions of BSE were absent. Between the years of 1988 and 1991 IBNC occurred in Scotland with an incidence of 7 cases per 100,000 beef suckler cows over the age of 6 years. Results When the brains of 15 IBNC cases were each tested by immunohistochemistry, all showed abnormal labelling for prion protein (PrP. Immunohistological labelling for PrP was also present in the retina of a single case available for examination. The pattern of PrP labelling in brain is distinct from that seen in other ruminant prion diseases and is absent from brains with other inflammatory conditions and from normal control brains. Brains of IBNC cattle do not reveal abnormal PrP isoforms when tested by the commercial BioRad or Idexx test kits and do not reveal PrPres when tested by Western blotting using stringent proteinase digestion methods. However, some weakly protease resistant isoforms of PrP may be detected when tissues are examined using mild proteinase digestion techniques. Conclusion The study shows that a distinctive neurological disorder of cattle, which has some clinical similarities to BSE, is associated with abnormal PrP labelling in brain but the pathology and biochemistry of IBNC are distinct from BSE. The study is important either because it raises the possibility of a significant increase in the scope of prion disease or because it demonstrates that widespread and consistent PrP alterations may not be confined to prion diseases. Further studies, including transmission

  15. Role of misfolded prion protein in neurodegeneration

    OpenAIRE

    Alibhai, James David

    2015-01-01

    Chronic neurodegenerative diseases, such as Alzheimer’s disease, prion diseases and many others are unified by the aberrant folding of a host encoded protein to a disease-associated isoform and the predictable cell-to-cell spread of disease-associated misfolded proteins via a putative prion-like mechanism. Prion diseases, for example, are associated with the aberrant folding of host encoded prion protein (PrPC) to a disease-associated isoform, which acts as a seed for the furth...

  16. Induced prion protein controls immune-activated retroviruses in the mouse spleen.

    Directory of Open Access Journals (Sweden)

    Marius Lötscher

    Full Text Available The prion protein (PrP is crucially involved in transmissible spongiform encephalopathies (TSE, but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.

  17. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Gonzalo P Solis

    Full Text Available Analyses of cultured cells and transgenic mice expressing prion protein (PrP deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1 the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2 the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and

  18. Non-infectious aggregates of the prion protein react with several PrPSc-directed antibodies.

    Science.gov (United States)

    Biasini, Emiliano; Seegulam, M Esa; Patti, Brianna N; Solforosi, Laura; Medrano, Andrea Z; Christensen, Heather M; Senatore, Assunta; Chiesa, Roberto; Williamson, R Anthony; Harris, David A

    2008-06-01

    The key event in the pathogenesis of prion diseases is the conformational conversion of the normal prion protein (PrP) (PrP(C)) into an infectious, aggregated isoform (PrP(Sc)) that has a high content of beta-sheet. Historically, a great deal of effort has been devoted to developing antibodies that specifically recognize PrP(Sc) but not PrP(C), as such antibodies would have enormous diagnostic and experimental value. A mouse monoclonal IgM antibody (designated 15B3) and three PrP motif-grafted monoclonal antibodies (referred to as IgG 19-33, 89-112, and 136-158) have been previously reported to react specifically with infectious PrP(Sc) but not PrP(C). In this study, we extend the characterization of these four antibodies by testing their ability to immunoprecipitate and immunostain infectious and non-infectious aggregates of wild-type, mutant, and recombinant PrP. We find that 15B3 as well as the motif-grafted antibodies recognize multiple types of aggregated PrP, both infectious and non-infectious, including forms found in brain, in transfected cells, and induced in vitro from purified recombinant protein. These antibodies are exquisitely selective for aggregated PrP, and do not react with soluble PrP even when present in vast excess. Our results suggest that 15B3 and the motif-grafted antibodies recognize structural features common to both infectious and non-infectious aggregates of PrP. Our study extends the utility of these antibodies for diagnostic and experimental purposes, and it provides new insight into the structural changes that accompany PrP oligomerization and prion propagation.

  19. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  20. Enhanced virulence of sheep-passaged bovine spongiform encephalopathy agent is revealed by decreased polymorphism barriers in prion protein conversions studies.

    NARCIS (Netherlands)

    Priem, J.; Langeveld, J.P.M.; Keulen, van L.J.M.; Zijderveld, van F.G.; Andreoletti, O.; Bossers, A.

    2014-01-01

    Bovine spongiform encephalopathy (BSE) can be efficiently transmitted to small ruminants (sheep and goats) with certain prion protein (PrP) genotypes. Polymorphisms in PrP of both the host and donor influence the transmission efficiency of transmissible spongiform encephalopathies (TSEs) in general.

  1. Dissociation of recombinant prion autocatalysis from infectivity

    OpenAIRE

    Noble, Geoffrey P; Supattapone, Surachai

    2015-01-01

    Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication – that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and ...

  2. Controlling the prion propensity of glutamine/asparagine-rich proteins.

    Science.gov (United States)

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.

  3. In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms.

    Directory of Open Access Journals (Sweden)

    Pedro Fernandez-Funez

    2009-06-01

    Full Text Available Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrP(C converts into a misfolded isoform (PrP(Sc with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrP(C; in older flies, PrP misfolds, acquires biochemical and structural properties of PrP(Sc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrP(Sc-specific conformational epitopes. In contrast to PrP(Sc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrP(Sc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrP(Sc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrP(Sc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover

  4. Expression of the Prion Protein Family Member Shadoo Causes Drug Hypersensitivity That Is Diminished by the Coexpression of the Wild Type Prion Protein.

    Science.gov (United States)

    Nyeste, Antal; Bencsura, Petra; Vida, István; Hegyi, Zoltán; Homolya, László; Fodor, Elfrieda; Welker, Ervin

    2016-02-26

    The prion protein (PrP) seems to exert both neuroprotective and neurotoxic activities. The toxic activities are associated with the C-terminal globular parts in the absence of the flexible N terminus, specifically the hydrophobic domain (HD) or the central region (CR). The wild type prion protein (PrP-WT), having an intact flexible part, exhibits neuroprotective qualities by virtue of diminishing many of the cytotoxic effects of these mutant prion proteins (PrPΔHD and PrPΔCR) when coexpressed. The prion protein family member Doppel, which possesses a three-dimensional fold similar to the C-terminal part of PrP, is also harmful to neuronal and other cells in various models, a phenotype that can also be eliminated by the coexpression of PrP-WT. In contrast, another prion protein family member, Shadoo (Sho), a natively disordered protein possessing structural features similar to the flexible N-terminal tail of PrP, exhibits PrP-WT-like protective properties. Here, we report that, contrary to expectations, Sho expression in SH-SY5Y or HEK293 cells induces the same toxic phenotype of drug hypersensitivity as PrPΔCR. This effect is exhibited in a dose-dependent manner and is also counteracted by the coexpression of PrP-WT. The opposing effects of Shadoo in different model systems revealed here may be explored to help discern the relationship of the various toxic activities of mutant PrPs with each other and the neurotoxic effects seen in neurodegenerative diseases, such as transmissible spongiform encephalopathy and Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Prion protein self-interaction in prion disease therapy approaches

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Langeveld, J.P.M.; Bossers, A.

    2011-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders

  6. Complement Regulatory Protein Factor H Is a Soluble Prion Receptor That Potentiates Peripheral Prion Pathogenesis.

    Science.gov (United States)

    Kane, Sarah J; Farley, Taylor K; Gordon, Elizabeth O; Estep, Joshua; Bender, Heather R; Moreno, Julie A; Bartz, Jason; Telling, Glenn C; Pickering, Matthew C; Zabel, Mark D

    2017-12-01

    Several complement proteins exacerbate prion disease, including C3, C1q, and CD21/35. These proteins of the complement cascade likely increase uptake, trafficking, and retention of prions in the lymphoreticular system, hallmark sites of early prion propagation. Complement regulatory protein factor H (fH) binds modified host proteins and lipids to prevent C3b deposition and, thus, autoimmune cell lysis. Previous reports show that fH binds various conformations of the cellular prion protein, leading us to question the role of fH in prion disease. In this article, we report that transgenic mice lacking Cfh alleles exhibit delayed peripheral prion accumulation, replication, and pathogenesis and onset of terminal disease in a gene-dose manner. We also report a biophysical interaction between purified fH and prion rods enriched from prion-diseased brain. fH also influences prion deposition in brains of infected mice. We conclude from these data and previous findings that the interplay between complement and prions likely involves a complex balance of prion sequestration and destruction via local tissue macrophages, prion trafficking by B and dendritic cells within the lymphoreticular system, intranodal prion replication by B and follicular dendritic cells, and potential prion strain selection by CD21/35 and fH. These findings reveal a novel role for complement-regulatory proteins in prion disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions.

    Science.gov (United States)

    Wang, Fei; Yang, Fan; Hu, Yunfei; Wang, Xu; Wang, Xinhe; Jin, Changwen; Ma, Jiyan

    2007-06-12

    The conversion of prion protein (PrP) to the pathogenic PrPSc conformation is central to prion disease. Previous studies revealed that PrP interacts with lipids and the interaction induces PrP conformational changes, yet it remains unclear whether in the absence of any denaturing treatment, PrP-lipid interaction is sufficient to convert PrP to the classic proteinase K-resistant conformation. Using recombinant mouse PrP, we analyzed PrP-lipid interaction under physiological conditions and followed lipid-induced PrP conformational change with proteinase K (PK) digestion. We found that the PrP-lipid interaction was initiated by electrostatic contact and followed by hydrophobic interaction. The PrP-lipid interaction converted full-length alpha-helix-rich recombinant PrP to different forms. A significant portion of PrP gained a conformation reminiscent of PrPSc, with a PrPSc-like PK-resistant core and increased beta-sheet content. The efficiency for lipid-induced PrP conversion depended on lipid headgroup structure and/or the arrangement of lipids on the surface of vesicles. When lipid vesicles were disrupted by Triton X-100, PrP aggregation was necessary to maintain the lipid-induced PrPSc-like conformation. However, the PK resistance of lipid-induced PrPSc-like conformation does not depend on amyloid fiber formation. Our results clearly revealed that the lipid interaction can overcome the energy barrier and convert full-length alpha-helix-rich PrP to a PrPSc-like conformation under physiological conditions, supporting the relevance of lipid-induced PrP conformational change to in vivo PrP conversion.

  8. Nonspecific prion protein-nucleic acid interactions lead to different aggregates and cytotoxic species.

    Science.gov (United States)

    Macedo, Bruno; Millen, Thiago A; Braga, Carolina A C A; Gomes, Mariana P B; Ferreira, Priscila S; Kraineva, Julia; Winter, Roland; Silva, Jerson L; Cordeiro, Yraima

    2012-07-10

    A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP-DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP-D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP-nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP-nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.

  9. α-Synuclein Amyloids Hijack Prion Protein to Gain Cell Entry, Facilitate Cell-to-Cell Spreading and Block Prion Replication.

    Science.gov (United States)

    Aulić, Suzana; Masperone, Lara; Narkiewicz, Joanna; Isopi, Elisa; Bistaffa, Edoardo; Ambrosetti, Elena; Pastore, Beatrice; De Cecco, Elena; Scaini, Denis; Zago, Paola; Moda, Fabio; Tagliavini, Fabrizio; Legname, Giuseppe

    2017-08-30

    The precise molecular mechanism of how misfolded α-synuclein (α-Syn) accumulates and spreads in synucleinopathies is still unknown. Here, we show the role of the cellular prion protein (PrP C ) in mediating the uptake and the spread of recombinant α-Syn amyloids. The in vitro data revealed that the presence of PrP C fosters the higher uptake of α-Syn amyloid fibrils, which was also confirmed in vivo in wild type (Prnp +/+ ) compared to PrP knock-out (Prnp -/- ) mice. Additionally, the presence of α-Syn amyloids blocked the replication of scrapie prions (PrP Sc ) in vitro and ex vivo, indicating a link between the two proteins. Indeed, whilst PrP C is mediating the internalization of α-Syn amyloids, PrP Sc is not able to replicate in their presence. This observation has pathological relevance, since several reported case studies show that the accumulation of α-Syn amyloid deposits in Creutzfeldt-Jakob disease patients is accompanied by a longer disease course.

  10. How does domain replacement affect fibril formation of the rabbit/human prion proteins.

    Directory of Open Access Journals (Sweden)

    Xu Yan

    Full Text Available It is known that in vivo human prion protein (PrP have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs.As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles.We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2 have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and why macromolecular crowding has different

  11. Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells

    OpenAIRE

    Kim, Boe-Hyun; Shin, Hae-Young; Goto, Joy J.; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2016-01-01

    Prion diseases are infectious and fatal neurodegenerative diseases which require the cellular prion protein, PrPC, for development of diseases. The current study shows that the PrPC augments infectivity and plaque formation of a mouse endogenous retrovirus, MuLV. We have established four neuronal cell lines expressing mouse PrPC, PrP+/+; two express wild type PrPC (MoPrP wild ) and the other two express mutant PrPC (MoPrP mut ). Infection of neuronal cells from various PrP+/+ and PrP-/- (MoPr...

  12. Ultra-sensitive detection of prion protein fibrils by flow cytometry in blood from cattle affected with bovine spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Maas Elke

    2005-10-01

    Full Text Available Abstract Background The definite diagnosis of prion diseases such as Creutzfeldt-Jakob disease (CJD in humans or bovine spongiform encephalopathy (BSE in cattle currently relies on the post mortem detection of the pathological form of the prion protein (PrPSc in brain tissue. Infectivity studies indicate that PrPSc may also be present in body fluids, even at presymptomatic stages of the disease, albeit at concentrations well below the detection limits of currently available analytical methods. Results We developed a highly sensitive method for detecting prion protein aggregates that takes advantage of kinetic differences between seeded and unseeded polymerization of prion protein monomers. Detection of the aggregates was carried out by flow cytometry. In the presence of prion seeds, the association of labelled recombinant PrP monomers in plasma and serum proceeds much more efficiently than in the absence of seeds. In a diagnostic model system, synthetic PrP aggregates were detected down to a concentration of approximately 10-8 nM [0.24 fg/ml]. A specific signal was detected in six out of six available serum samples from BSE-positive cattle. Conclusion We have developed a method based on seed-dependent PrP fibril formation that shows promising results in differentiating a small number of BSE-positive serum samples from healthy controls. This method may provide the basis for an ante mortem diagnostic test for prion diseases.

  13. [Expression of Prion protein and its clinical significance in oral squamous cells carcinoma and oral leukoplakia].

    Science.gov (United States)

    Zhang, Jie; Zeng, Yan; Zheng, Jun; Xu, Jiang

    2013-12-01

    To examine Prion protein(PrP) expression and its clinical significance in oral mucosa, oral leukoplakia, oral squamous cell carcinoma(OSCC) and its subgroups. Expression of PrP in OSCC, oral leukoplakia and mucosa specimen was detected by immunohistochemistry. The association between the expression and gender, TNM clinical stages, pathological grades was evaluated. The positive expression rate of PrP in normal, oral leukoplakia and OSCC tissues was 15% (3/20) , 42% (11/26) and 95% (80/84) , respectively. There was a significant difference between the expression of PrP in leukoplakia and in high, moderately and poorly differentiated OSCC(P 0.05). Between stages I+II and III+IV in the overa II expression of PrP, there was a significant difference(P leukoplakia to OSCC was closely related to the carcinogenesis of OSCC, pathologic stage and clinical TNM stage.

  14. The Volumetric Diversity of Misfolded Prion Protein Oligomers Revealed by Pressure Dissociation*

    Science.gov (United States)

    Torrent, Joan; Lange, Reinhard; Rezaei, Human

    2015-01-01

    Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of the prion protein PrP, a protein characterized by a variety of infectious quaternary structures that can propagate stably and faithfully and cause diseases with specific phenotypic traits. We show that pressure induces dissociation of the oligomers and leads to a lower volume monomeric PrP state that refolds into the native conformation after pressure release. By measuring the different pressure and temperature sensitivity of the tested PrP oligomers, we demonstrate significantly different void volumes in their quaternary structure. In addition, by focusing on the kinetic and energetic behavior of the pressure-induced dissociation of one specific PrP oligomer, we reveal a large negative activation volume and an increase in both apparent activation enthalpy and entropy. This suggests a transition state ensemble that is less structured and significantly more hydrated than the oligomeric state. Finally, we found that site-specific fluorescent labeling allows monitoring of the transient population of a kinetic intermediate in the dissociation reaction. Our results indicate that defects in atomic packing may deserve consideration as a new factor that influences differences between PrP assemblies and that could be relevant also for explaining the origin of prion strains. PMID:26126829

  15. Chimeric elk/mouse prion proteins in transgenic mice.

    Science.gov (United States)

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of 250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  16. Assessing Proteinase K Resistance of Fish Prion Proteins in a Scrapie-Infected Mouse Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Evgenia Salta

    2014-11-01

    Full Text Available The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrPC, into an aberrant and partially proteinase K resistant isoform, PrPSc. Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK, as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs.

  17. Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    OpenAIRE

    Hicks, M R; Gill, A C; Bath, I K; Rullay, A K; Sylvester, I D; Crout, D H; Pinheiro, T J T

    2006-01-01

    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of...

  18. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins

    CERN Document Server

    Zhang, Jiapu

    2014-01-01

    Prion diseases are invariably fatal neurodegenerative diseases that affect humans and animals. Unlike most other amyloid forming neurodegenerative diseases, these can be highly infectious. Prion diseases occur in a variety of species. They include the fatal human neurodegenerative diseases Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Straussler-Scheinker syndrome (GSS), Kuru, the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) in deer and elk, and scrapie in sheep and goats, etc. Transmission across the species barrier to humans, especially in the case of BSE in Europe, CWD in North America, and variant CJDs (vCJDs) in young people of UK, is a major public health concern. Fortunately, scientists reported that the (central) hydrophobic region of prion proteins (PrP) controls the formation of diseased prions. This article gives a detailed survey on PrP hydrophobic region and does molecular dynamics studies of human PrP(110-136...

  19. Prion protein promotes growth cone development through reggie/flotillin-dependent N-cadherin trafficking

    OpenAIRE

    Bodrikov, Vsevolod; Solis Padilla, Gonzalo; Stürmer, Claudia

    2011-01-01

    The role of prion protein (PrP) is insufficiently understood partially because PrP-deficient (-/-) neurons from C57BL/6J mice seem to differentiate normally and are functionally mildly impaired. Here, we reassessed this notion and, unexpectedly, discovered that PrP(-/-) hippocampal growth cones were abnormally small and poor in filopodia and cargo-containing vesicles. Based on our findings that PrP-PrP trans-interaction recruits E-cadherin to cell contact sites and reggie microdomains, and th...

  20. Prion protein-specific antibodies-development, modes of action and therapeutics application.

    Science.gov (United States)

    Rovis, Tihana Lenac; Legname, Giuseppe

    2014-10-01

    Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are lethal neurodegenerative disorders involving the misfolding of the host encoded cellular prion protein, PrPC. This physiological form of the protein is expressed throughout the body, and it reaches the highest levels in the central nervous system where the pathology occurs. The conversion into the pathogenic isoform denoted as prion or PrPSc is the key event in prion disorders. Prominent candidates for the treatment of prion diseases are antibodies and their derivatives. Anti-PrPC antibodies are able to clear PrPSc from cell culture of infected cells. Furthermore, application of anti-PrPC antibodies suppresses prion replication in experimental animal models. Major drawbacks of immunotherapy are immune tolerance, the risks of neurotoxic side effects, limited ability of compounds to cross the blood-brain barrier and their unfavorable pharmacokinetic. The focus of this review is to recapitulate the current understanding of the molecular mechanisms for antibody mediated anti-prion activity. Although relevant for designing immunotherapeutic tools, the characterization of key antibody parameters shaping the molecular mechanism of the PrPC to PrPSc conversion remains elusive. Moreover, this review illustrates the various attempts towards the development of anti-PrP antibody compounds and discusses therapeutic candidates that modulate PrP expression.

  1. Potential roles for prions and protein-only inheritance in cancer

    Science.gov (United States)

    Antony, H; Wiegmans, AP; Wei, MQ; Chernoff, YO; Khanna, KK; Munn, AL

    2011-01-01

    Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations), however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be up-regulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in gene expression and hyper-activation of MAP kinase (MAPK) signalling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses and there is considerable evidence for association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets. PMID:22138778

  2. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides.

    Science.gov (United States)

    Soto, C; Kascsak, R J; Saborío, G P; Aucouturier, P; Wisniewski, T; Prelli, F; Kascsak, R; Mendez, E; Harris, D A; Ironside, J; Tagliavini, F; Carp, R I; Frangione, B

    2000-01-15

    Transmissible spongiform encephalopathies are associated with a structural transition in the prion protein that results in the conversion of the physiological PrPc to pathological PrP(Sc). We investigated whether this conformational transition can be inhibited and reversed by peptides homologous to the PrP fragments implicated in the abnormal folding, which contain specific residues acting as beta-sheet blockers (beta-sheet breaker peptides). We studied the effect of a 13-residue beta-sheet breaker peptide (iPrP13) on the reversion of the abnormal structure and properties of PrP(Sc) purified from the brains of mice with experimental scrapie and from human beings affected by sporadic and variant Creutzfeldt-Jakob disease. In a cellular model of familial prion disease, we studied the effect of the peptide in the production of the abnormal form of PrP in intact cells. The influence of the peptide on prion infectivity was studied in vivo by incubation time assays in mice with experimental scrapie. The beta-sheet breaker peptide partly reversed in-vitro PrP(Sc) to a biochemical and structural state similar to that of PrPc. The effect of the peptide was also detected in intact cells. Treatment of prion infectious material with iPrP13 delayed the appearance of clinical symptoms and decreased infectivity by 90-95% in mice with experimental scrapie. Beta-sheet breaker peptides reverse PrP conformational changes implicated in the pathogenesis of spongiform encephalopathies. These peptides or their derivatives provide a useful tool to study the role of PrP conformation and might represent a novel therapeutic approach for prion-related disorders.

  3. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  4. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment.

    OpenAIRE

    Pérez, M; Wandosell, F; Colaço, C; Avila, J

    1998-01-01

    Although a number of features distinguish the disease isoform of the prion protein (PrPSc) from its normal cellular counterpart (PrPC) in the transmissible spongiform encephalopathies (TSEs), the neuropathogenesis of these diseases remains an enigma. The amyloid fibrils formed by fragments of human PrP have, however, been shown to be directly neurotoxic in vitro. We show here that sulphated polysaccharides (heparin, keratan and chondroitin) inhibit the neurotoxicity of these amyloid fibrils a...

  5. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    Science.gov (United States)

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  6. Evolutionary Implications of Metal Binding Features in Different Species’ Prion Protein: An Inorganic Point of View

    Directory of Open Access Journals (Sweden)

    Diego La Mendola

    2014-05-01

    Full Text Available Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species’ prion protein, as revealed by studies carried out on the entire protein and related peptide fragments.

  7. Evolutionary Implications of Metal Binding Features in Different Species’ Prion Protein: An Inorganic Point of View

    Science.gov (United States)

    La Mendola, Diego; Rizzarelli, Enrico

    2014-01-01

    Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species’ prion protein, as revealed by studies carried out on the entire protein and related peptide fragments. PMID:24970230

  8. Prion search and cellular prion protein expression in stranded dolphins.

    Science.gov (United States)

    Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C

    2012-01-01

    The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine.

  9. Localization of disease-related PrP in Danish patients with different subtypes of prion disease

    DEFF Research Database (Denmark)

    Bergstrom, A.L.; Heegaard, P.M.; Dyrbye, H.

    2009-01-01

    OBJECTIVE: The transmissible spongiform encephalopathies are characterized by vacuolization, neuronal loss, gliosis and deposition of a misfolded and Proteinase K resistant isoform of the prion protein (PrP(Sc)) in the central nervous system. METHODS MATERIALS AND PATIENTS: Paraffin-embedded tissue...

  10. Localization of disease-related PrP in Danish patients with different subtypes of prion disease

    DEFF Research Database (Denmark)

    Bergström, A. L.; Heegaard, Peter M. H.; Dyrbye, H.

    2009-01-01

    Objective: The transmissible spongiform encephalopaties are characterized by vacuolization, neuronal loss, gliosis and deposition of a misfilded and Proteinase K resistant isoform of the prion protein (PrPSc) in the central nervous system. Methods, materials and patients: Paraffin-embedded tissue...

  11. Multiple folding pathways for heterologously expressed human prion protein.

    Science.gov (United States)

    Jackson, G S; Hill, A F; Joseph, C; Hosszu, L; Power, A; Waltho, J P; Clarke, A R; Collinge, J

    1999-04-12

    Human PrP (residues 91-231) expressed in Escherichia coli can adopt several conformations in solution depending on pH, redox conditions and denaturant concentration. Oxidised PrP at neutral pH, with the disulphide bond intact, is a soluble monomer which contains 47% alpha-helix and corresponds to PrPC. Denaturation studies show that this structure has a relatively small, solvent-excluded core and unfolds to an unstructured state in a single, co-operative transition with a DeltaG for folding of -5.6 kcal mol-1. The unfolding behaviour is sensitive to pH and at 4.0 or below the molecule unfolds via a stable folding intermediate. This equilibrium intermediate has a reduced helical content and aggregates over several hours. When the disulphide bond is reduced the protein adopts different conformations depending upon pH. At neutral pH or above, the reduced protein has an alpha-helical fold, which is identical to that observed for the oxidised protein. At pH 4 or below, the conformation rearranges to a fold that contains a high proportion of beta-sheet structure. In the reduced state the alpha- and beta-forms are slowly inter-convertible whereas when oxidised the protein can only adopt an alpha-conformation in free solution. The data we present here shows that the human prion protein can exist in multiple conformations some of which are known to be capable of forming fibrils. The precise conformation that human PrP adopts and the pathways for unfolding are dependent upon solvent conditions. The conditions we examined are within the range that a protein may encounter in sub-cellular compartments and may have implications for the mechanism of conversion of PrPC to PrPSc in vivo. Since the conversion of PrPC to PrPSc is accompanied by a switch in secondary structure from alpha to beta, this system provides a useful model for studying major structural rearrangements in the prion protein.

  12. Direct evidence of generation and accumulation of β-sheet-rich prion protein in scrapie-infected neuroblastoma cells with human IgG1 antibody specific for β-form prion protein.

    Science.gov (United States)

    Kubota, Toshiya; Hamazoe, Yuta; Hashiguchi, Shuhei; Ishibashi, Daisuke; Akasaka, Kazuyuki; Nishida, Noriyuki; Katamine, Shigeru; Sakaguchi, Suehiro; Kuroki, Ryota; Nakashima, Toshihiro; Sugimura, Kazuhisa

    2012-04-20

    We prepared β-sheet-rich recombinant full-length prion protein (β-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935-1937). Using this β-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to β-form but not α-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of β-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of β-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing β-form may represent so-called PrP(Sc) with prion propagation activity. PRB7 is the first human antibody specific to β-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology.

  13. Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype

    Science.gov (United States)

    Crowell, Jenna; Hughson, Andrew; Caughey, Byron

    2015-01-01

    ABSTRACT Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrPSc conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrPSc polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrPSc differed for the CWD strains in a host-dependent manner. WST CWD produced PrPSc amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrPSc from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrPSc properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrPSc conformation of certain prion strains, leading to changes in the biophysical properties of PrPSc, neuropathology, and clinical prion disease. IMPORTANCE Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In

  14. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low-density lipop......For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low...... clusters 2 and 4, PrP(C) and PrP(Sc) fibrils bind only to receptor cluster 4. PrP(Sc) fibrils out-compete PrP(C) for internalization. When endocytosed, PrP(Sc) fibrils are routed to lysosomes, rather than recycled to the cell surface with PrP(C). Thus, although LRP1 binds both forms of PrP, it traffics...

  15. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9.

    Directory of Open Access Journals (Sweden)

    Lech Kaczmarczyk

    Full Text Available The mammalian prion protein (PrP, encoded by Prnp is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9, have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs. It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.

  16. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  17. Cavitation during the protein misfolding cyclic amplification (PMCA) method – The trigger for de novo prion generation?

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, Cathryn L., E-mail: chaigh@unimelb.edu.au [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); Drew, Simon C., E-mail: sdrew@unimelb.edu.au [Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010 (Australia)

    2015-06-05

    The protein misfolding cyclic amplification (PMCA) technique has become a widely-adopted method for amplifying minute amounts of the infectious conformer of the prion protein (PrP). PMCA involves repeated cycles of 20 kHz sonication and incubation, during which the infectious conformer seeds the conversion of normally folded protein by a templating interaction. Recently, it has proved possible to create an infectious PrP conformer without the need for an infectious seed, by including RNA and the phospholipid POPG as essential cofactors during PMCA. The mechanism underpinning this de novo prion formation remains unknown. In this study, we first establish by spin trapping methods that cavitation bubbles formed during PMCA provide a radical-rich environment. Using a substrate preparation comparable to that employed in studies of de novo prion formation, we demonstrate by immuno-spin trapping that PrP- and RNA-centered radicals are generated during sonication, in addition to PrP-RNA cross-links. We further show that serial PMCA produces protease-resistant PrP that is oxidatively modified. We suggest a unique confluence of structural (membrane-mimetic hydrophobic/hydrophilic bubble interface) and chemical (ROS) effects underlie the phenomenon of de novo prion formation by PMCA, and that these effects have meaningful biological counterparts of possible relevance to spontaneous prion formation in vivo. - Highlights: • Sonication during PMCA generates free radicals at the surface of cavitation bubbles. • PrP-centered and RNA-centered radicals are formed in addition to PrP-RNA adducts. • De novo prions may result from ROS and structural constraints during cavitation.

  18. Do prion protein gene polymorphisms induce apoptosis in non ...

    Indian Academy of Sciences (India)

    2016-01-15

    Jan 15, 2016 ... prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 315 331–333. Colby DW and Prusiner SB 2011 Prions. Cold Spring Harb. Perspect. Biol. 3 a006833. Fournier JG, Escaig-Haye F and Grigoriev V 2000 Ultrastructural localization of prion proteins: physiological and pathological.

  19. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce

    2016-07-03

    Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.

  20. The Structure of PrPScPrions.

    Science.gov (United States)

    Wille, Holger; Requena, Jesús R

    2018-02-07

    PrP Sc (scrapie isoform of the prion protein) prions are the infectious agent behind diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (deer, elk, moose, and reindeer), as well as goat and sheep scrapie. PrP Sc is an alternatively folded variant of the cellular prion protein, PrP C , which is a regular, GPI-anchored protein that is present on the cell surface of neurons and other cell types. While the structure of PrP C is well studied, the structure of PrP Sc resisted high-resolution determination due to its general insolubility and propensity to aggregate. Cryo-electron microscopy, X-ray fiber diffraction, and a variety of other approaches defined the structure of PrP Sc as a four-rung β-solenoid. A high-resolution structure of PrP Sc still remains to be solved, but the four-rung β-solenoid architecture provides a molecular framework for the autocatalytic propagation mechanism that gives rise to the alternative conformation of PrP Sc . Here, we summarize the current knowledge regarding the structure of PrP Sc and speculate about the molecular conversion mechanisms that leads from PrP C to PrP Sc .

  1. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  2. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein.

    Science.gov (United States)

    Madsen-Bouterse, Sally A; Schneider, David A; Zhuang, Dongyue; Dassanayake, Rohana P; Balachandran, Aru; Mitchell, Gordon B; O'Rourke, Katherine I

    2016-09-01

    Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.

  3. Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice.

    Science.gov (United States)

    Hara, Hideyuki; Miyata, Hironori; Das, Nandita Rani; Chida, Junji; Yoshimochi, Tatenobu; Uchiyama, Keiji; Watanabe, Hitomi; Kondoh, Gen; Yokoyama, Takashi; Sakaguchi, Suehiro

    2018-01-01

    Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPC into PrPSc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPC into PrPSc after infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0 mice than PrPSc in control wild-type mice. Taken together, these results indicate that the OR region of PrPC could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCE Structure-function relationship studies of PrPC conformational conversion into PrPSc are worthwhile to understand the mechanism of the conversion of PrPC into PrPSc We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPC into PrPSc after infection with RML

  4. Insights into the physiological function of cellular prion protein

    Directory of Open Access Journals (Sweden)

    Martins V.R.

    2001-01-01

    Full Text Available Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie, appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.

  5. Prion protein gene frequencies in three Sicilian dairy sheep populations

    Directory of Open Access Journals (Sweden)

    Santo Caracappa

    2010-01-01

    Full Text Available The objective of this paper was to investigate the prion protein (PrP genotype and haplotype frequencies in three Sicilian dairy sheep populations. The three populations were: (1 1096 Valle del Belice animals, (2 1143 Comisana animals, and (3 1771 individuals from 5 flocks with scrapie outbreaks, in which the animals were crossbreds derived from indigenous Sicilian dairy breeds. PrP genotypes are described for the three codons 136 (Alanine or Valine; A, V, 154 (Histidine or Arginine; H, R, and 171 (Glutamine, Arginine or Histidine; Q, R, H which represent polymorphisms known to be linked with scrapie susceptibility. The Valle del Belice haplotype frequencies were 32.3% ARR, 6.5% AHQ, 1.0% ARH, 58.8% ARQ, and 1.4% VRQ. The Comisana frequencies were 39.4% ARR, 2.9% AHQ, 2.9% ARH, 50.9% ARQ, and 3.9% VRQ. In the flocks with scrapie outbreaks the frequencies were 32.8% ARR, 2.4% AHQ, 1.7% ARH, 59.1% ARQ, and 3.9% VRQ. In all three populations ARQ and ARR were the most frequent haplotypes. Multiple generations of strong selection will be needed to fixate the most resistant ARR haplotype.

  6. Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids.

    Science.gov (United States)

    Macedo, Bruno; Cordeiro, Yraima

    2017-05-17

    Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrP(C)) into the pathogenic conformer (PrP(Sc)) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrP(C) to PrP(Sc). Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP-NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (10(14)-10(16)) of random sequences of the same size (~20-100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation

  7. Prions: Protein Rebels with a Cause!

    Science.gov (United States)

    Marshall, Karen E.; Serpell, Louise C.

    2017-01-01

    Traditionally we consider infection to arise from viruses, bacteria and parasites. Prions are infectious proteins without any nucleic acids, and therefore do not represent living things. Despite this, they have the ability to replicate themselves and cause diseases such as mad cow disease (bovine spongiform encepthalopathy) and human…

  8. Structural Instability of the Prion Protein upon M205S/R Mutations Revealed by Molecular Dynamics Simulations

    OpenAIRE

    Hirschberger, Thomas; Stork, Martina; Schropp, Bernhard; Winklhofer, Konstanze F.; Tatzelt, Jörg; Tavan, Paul

    2006-01-01

    The point mutations M205S and M205R have been demonstrated to severely disturb the folding and maturation process of the cellular prion protein (PrPC). These disturbances have been interpreted as consequences of mutation-induced structural changes in PrP, which are suggested to involve helix 1 and its attachment to helix 3, because the mutated residue M205 of helix 3 is located at the interface of these two helices. Furthermore, current models of the prion protein scrapie (PrPSc), which is th...

  9. Solid-state NMR studies of the prion protein H1 fragment.

    Science.gov (United States)

    Heller, J.; Kolbert, A. C.; Larsen, R.; Ernst, M.; Bekker, T.; Baldwin, M.; Prusiner, S. B.; Pines, A.; Wemmer, D. E.

    1996-01-01

    Conformational changes in the prion protein (PrP) seem to be responsible for prion diseases. We have used conformation-dependent chemical-shift measurements and rotational-resonance distance measurements to analyze the conformation of solid-state peptides lacking long-range order, corresponding to a region of PrP designated H1. This region is predicted to undergo a transformation of secondary structure in generating the infectious form of the protein. Solid-state NMR spectra of specifically 13C-enriched samples of H1, residues 109-122 (MKHMAGAAAAGAVV) of Syrian hamster PrP, have been acquired under cross-polarization and magic-angle spinning conditions. Samples lyophilized from 50% acetonitrile/50% water show chemical shifts characteristic of a beta-sheet conformation in the region corresponding to residues 112-121, whereas samples lyophilized from hexafluoroisopropanol display shifts indicative of alpha-helical secondary structure in the region corresponding to residues 113-117. Complete conversion to the helical conformation was not observed and conversion from alpha-helix back to beta-sheet, as inferred from the solid-state NMR spectra, occurred when samples were exposed to water. Rotational-resonance experiments were performed on seven doubly 13C-labeled H1 samples dried from water. Measured distances suggest that the peptide is in an extended, possibly beta-strand, conformation. These results are consistent with the experimental observation that PrP can exist in different conformational states and with structural predictions based on biological data and theoretical modeling that suggest that H1 may play a key role in the conformational transition involved in the development of prion diseases. PMID:8844854

  10. The N-Terminal Sequence of Prion Protein Consists an Epitope Specific to the Abnormal Isoform of Prion Protein (PrPSc)

    Science.gov (United States)

    Masujin, Kentaro; Kaku-Ushiki, Yuko; Miwa, Ritsuko; Okada, Hiroyuki; Shimizu, Yoshihisa; Kasai, Kazuo; Matsuura, Yuichi; Yokoyama, Takashi

    2013-01-01

    The conformation of abnormal prion protein (PrPSc) differs from that of cellular prion protein (PrPC), but the precise characteristics of PrPSc remain to be elucidated. To clarify the properties of native PrPSc, we attempted to generate novel PrPSc-specific monoclonal antibodies (mAbs) by immunizing PrP-deficient mice with intact PrPSc purified from bovine spongiform encephalopathy (BSE)-affected mice. The generated mAbs 6A12 and 8D5 selectivity precipitated PrPSc from the brains of prion-affected mice, sheep, and cattle, but did not precipitate PrPC from the brains of healthy animals. In histopathological analysis, mAbs 6A12 and 8D5 strongly reacted with prion-affected mouse brains but not with unaffected mouse brains without antigen retrieval. Epitope analysis revealed that mAbs 8D5 and 6A12 recognized the PrP subregions between amino acids 31–39 and 41–47, respectively. This indicates that a PrPSc-specific epitope exists in the N-terminal region of PrPSc, and mAbs 6A12 and 8D5 are powerful tools with which to detect native and intact PrPSc. We found that the ratio of proteinase K (PK)-sensitive PrPSc to PK-resistant PrPSc was constant throughout the disease time course. PMID:23469131

  11. Selective processing and metabolism of disease-causing mutant prion proteins.

    Directory of Open Access Journals (Sweden)

    Aarthi Ashok

    2009-06-01

    Full Text Available Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrP(C. In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrP(Sc form that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires knowledge of the quality control pathways that recognize and degrade aberrant PrPs. Here, we present comparative analyses of the biosynthesis, trafficking, and metabolism of a panel of genetic disease-causing prion protein mutants in the C-terminal domain. Using quantitative imaging and biochemistry, we identify a misfolded subpopulation of each mutant PrP characterized by relative detergent insolubility, inaccessibility to the cell surface, and incomplete glycan modifications. The misfolded populations of mutant PrPs were neither recognized by ER quality control pathways nor routed to ER-associated degradation despite demonstrable misfolding in the ER. Instead, mutant PrPs trafficked to the Golgi, from where the misfolded subpopulation was selectively trafficked for degradation in acidic compartments. Surprisingly, selective re-routing was dependent not only on a mutant globular domain, but on an additional lysine-based motif in the highly conserved unstructured N-terminus. These results define a specific trafficking and degradation pathway shared by many disease-causing PrP mutants. As the acidic lysosomal environment has been implicated in facilitating the conversion of PrP(C to PrP(Sc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrP(Sc in familial prion disease.

  12. The Volumetric Diversity of Misfolded Prion Protein Oligomers Revealed by Pressure Dissociation.

    Science.gov (United States)

    Torrent, Joan; Lange, Reinhard; Rezaei, Human

    2015-08-14

    Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of the prion protein PrP, a protein characterized by a variety of infectious quaternary structures that can propagate stably and faithfully and cause diseases with specific phenotypic traits. We show that pressure induces dissociation of the oligomers and leads to a lower volume monomeric PrP state that refolds into the native conformation after pressure release. By measuring the different pressure and temperature sensitivity of the tested PrP oligomers, we demonstrate significantly different void volumes in their quaternary structure. In addition, by focusing on the kinetic and energetic behavior of the pressure-induced dissociation of one specific PrP oligomer, we reveal a large negative activation volume and an increase in both apparent activation enthalpy and entropy. This suggests a transition state ensemble that is less structured and significantly more hydrated than the oligomeric state. Finally, we found that site-specific fluorescent labeling allows monitoring of the transient population of a kinetic intermediate in the dissociation reaction. Our results indicate that defects in atomic packing may deserve consideration as a new factor that influences differences between PrP assemblies and that could be relevant also for explaining the origin of prion strains. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Perturbation of the Secondary Structure of the Scrapie Prion Protein Under Conditions that Alter Infectivity

    Science.gov (United States)

    Gasset, Maria; Baldwin, Michael A.; Fletterick, Robert J.; Prusiner, Stanley B.

    1993-01-01

    Limited proteolysis of the scrapie prion protein (PrPSc) generates PrP 27-30, which polymerizes into amyloid. By attenuated total reflection-Fourier transform infrared spectroscopy, PrP 27-30 polymers contained 54% β-sheet, 25% α-helix, 10% turns, and 11% random coil; dispersion into detergent-lipid-protein-complexes preserved infectivity and secondary structure. Almost 60% of the β-sheet was low-frequency infrared-absorbing, reflecting intermolecular aggregation. Decreased low-frequency β-sheet and increased turn content were found after SDS/PAGE, which disassembled the amyloid polymers, denatured PrP 27-30, and diminished scrapie infectivity. Acid-induced transitions were reversible, whereas alkali produced an irreversible transition centered at pH 10 under conditions that diminished infectivity. Whether PrPSc synthesis involves a transition in the secondary structure of one or more domains of the cellular prion protein from α-helical, random coil, or turn into β-sheet remains to be established.

  14. Methamphetamine increases Prion Protein and induces dopamine-dependent expression of protease resistant PrPsc.

    Science.gov (United States)

    Ferrucci, M; Ryskalin, L; Biagioni, F; Gambardella, S; Busceti, C L; Falleni, A; Lazzeri, G; Fornai, F

    2017-07-01

    The cellular prion protein (PrPc) is physiologically expressed within selective brain areas of mammals. Alterations in the secondary structure of this protein lead to scrapie-like prion protein (PrPsc), which precipitates in the cell. PrPsc has been detected in infectious, inherited or sporadic neurodegenerative disorders. Prion protein metabolism is dependent on autophagy and ubiquitin proteasome. Despite not being fully elucidated, the physiological role of prion protein relates to chaperones which rescue cells under stressful conditions.Methamphetamine (METH) is a widely abused drug which produces oxidative stress in various brain areas causing mitochondrial alterations and protein misfolding. These effects produce a compensatory increase of chaperones while clogging cell clearing pathways. In the present study, we explored whether METH administration modifies the amount of PrPc. Since high levels of PrPc when the clearing systems are clogged may lead to its misfolding into PrPsc, we further tested whether METH exposure triggers the appearance of PrPsc. We analysed the effects of METH and dopamine administration in PC12 and striatal cells by using SDS-PAGE Coomassie blue, immune- histochemistry and immune-gold electron microscopy. To analyze whether METH administration produces PrPsc aggregates we used antibodies directed against PrP following exposure to proteinase K or sarkosyl which digest folded PrPc but misfolded PrPsc. We fond that METH triggers PrPsc aggregates in DA-containing cells while METH is not effective in primary striatal neurons which do not produce DA. In the latter cells exogenous DA is needed to trigger PrPsc accumulation similarly to what happens in DA containing cells under the effects of METH. The present findings, while fostering novel molecular mechanisms involving prion proteins, indicate that, cell pathology similar to prion disorders can be mimicked via a DA-dependent mechanism by a drug of abuse.

  15. Interaction networks of prion, prionogenic and prion-like proteins in budding yeast, and their role in gene regulation.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    Prions are transmissible, propagating alternative states of proteins. Prions in budding yeast propagate heritable phenotypes and can function in large-scale gene regulation, or in some cases occur as diseases of yeast. Other 'prionogenic' proteins are likely prions that have been determined experimentally to form amyloid in vivo, and to have prion-like domains that are able to propagate heritable states. Furthermore, there are over 300 additional 'prion-like' yeast proteins that have similar amino-acid composition to prions (primarily a bias for asparagines and glutamines). Here, we examine the protein functional and interaction networks that involve prion, prionogenic and prion-like proteins. Set against a marked overall preference for N/Q-rich prion-like proteins not to interact with each other, we observe a significant tendency of prion/prionogenic proteins to interact with other, N/Q-rich prion-like proteins. This tendency is mostly due to a small number of networks involving the proteins NUP100p, LSM4p and PUB1p. In general, different data analyses of functional and interaction networks converge to indicate a strong linkage of prionogenic and prion-like proteins, to stress-granule assembly and related biological processes. These results further elucidate how prions may impact gene regulation, and reveal a broader horizon for the functional relevance of N/Q-rich prion-like domains.

  16. Prion protein alpha-to-beta transition monitored by time-resolved Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ollesch, Julian; Künnemann, Eva; Glockshuber, Rudi; Gerwert, Klaus

    2007-10-01

    The conformational change of the recombinant, murine prion protein (PrP) from an alpha-helical to a beta-sheet enriched state was monitored by time-resolved Fourier transform infrared (FT-IR) spectroscopy. The alpha-to-beta transition is induced by reduction of the single disulfide bond in PrP. This transition is believed to generate the scrapie form PrP(Sc), the supposed infectious agent of transmissible spongiform encephalopathies. We followed the kinetics of this conformational change using a novel method for amide I band analysis of the infrared (IR) spectra. The amide I analysis provides the secondary structure. The amide I decomposition was calibrated with the three dimensional structure of cellular PrP solved by nuclear magnetic resonance (NMR). The novel secondary structure analysis provides a root mean squared deviation (RMSD) of only 3% as compared to the NMR structure. Reduction of alpha-helical PrP caused the transient accumulation of a partially unfolded intermediate, followed by formation of a state with higher beta-sheet than alpha-helical structure contents. The novel approach allows us to now determine the secondary structure of the beta-sheet conformation. This was not determined by either NMR or X-ray. The experiments were performed in a double-sealed security cuvette developed for IR analysis of potentially infectious PrP samples outside the biosafety laboratory.

  17. Can copper binding to the prion protein generate a misfolded form of the protein?

    Science.gov (United States)

    Pushie, M Jake; Rauk, Arvi; Jirik, Frank R; Vogel, Hans J

    2009-02-01

    The native prion protein (PrP) has a two domain structure, with a globular folded alpha-helical C-terminal domain and a flexible extended N-terminal region. The latter can selectively bind Cu(2+) via four His residues in the octarepeat (OR) region, as well as two sites (His96 and His111) outside this region. In the disease state, the folded C-terminal domain of PrP undergoes a conformational change, forming amorphous aggregates high in beta-sheet content. Cu(2+) bound to the ORs can be redox active and has been shown to induce cleavage within the OR region, a process requiring conserved Trp residues. Using computational modeling, we have observed that electron transfer from Trp residues to copper can be favorable. These models also reveal that an indole-based radical cation or Cu(+) can initiate reactions leading to protein backbone cleavage. We have also demonstrated, by molecular dynamics simulations, that Cu(2+) binding to the His96 and His111 residues in the remaining PrP N-terminal fragment can induce localized beta-sheet structure, allowing us to suggest a potential mechanism for the initiation of beta-sheet misfolding in the C-terminal domain by Cu(2+).

  18. Treatment with a non-toxic, self-replicating anti-prion delays or prevents prion disease in vivo.

    Science.gov (United States)

    Diaz-Espinoza, R; Morales, R; Concha-Marambio, L; Moreno-Gonzalez, I; Moda, F; Soto, C

    2018-03-01

    Transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders caused by prions, which are composed of a misfolded protein (PrP Sc ) that self-propagates in the brain of infected individuals by converting the normal prion protein (PrP C ) into the pathological isoform. Here, we report a novel experimental strategy for preventing prion disease based on producing a self-replicating, but innocuous PrP Sc -like form, termed anti-prion, which can compete with the replication of pathogenic prions. Our results show that a prophylactic inoculation of prion-infected animals with an anti-prion delays the onset of the disease and in some animals completely prevents the development of clinical symptoms and brain damage. The data indicate that a single injection of the anti-prion eliminated ~99% of the infectivity associated to pathogenic prions. Furthermore, this treatment caused significant changes in the profile of regional PrP Sc deposition in the brains of animals that were treated, but still succumbed to the disease. Our findings provide new insights for a mechanistic understanding of prion replication and support the concept that prion replication can be separated from toxicity, providing a novel target for therapeutic intervention.

  19. Lichens: unexpected anti-prion agents?

    Science.gov (United States)

    Rodriguez, Cynthia M.; Bennett, James P.; Johnson, Christopher J.

    2012-01-01

    The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than 20 lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.

  20. Lichens: unexpected anti-prion agents?

    Science.gov (United States)

    Rodriguez, Cynthia M; Bennett, James P; Johnson, Christopher J

    2012-01-01

    The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than twenty lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.

  1. Mouse Prion Protein Polymorphism Phe-108/Val-189 Affects the Kinetics of Fibril Formation and the Response to Seeding

    Science.gov (United States)

    Cortez, Leonardo M.; Kumar, Jitendra; Renault, Ludovic; Young, Howard S.; Sim, Valerie L.

    2013-01-01

    Prion diseases are fatal neurodegenerative disorders associated with the polymerization of the cellular form of prion protein (PrPC) into an amyloidogenic β-sheet infectious form (PrPSc). The sequence of host PrP is the major determinant of host prion disease susceptibility. In mice, the presence of allele a (Prnpa, encoding the polymorphism Leu-108/Thr-189) or b (Prnpb, Phe-108/Val-189) is associated with short or long incubation times, respectively, following infection with PrPSc. The molecular bases linking PrP sequence, infection susceptibility, and convertibility of PrPC into PrPSc remain unclear. Here we show that recombinant PrPa and PrPb aggregate and respond to seeding differently in vitro. Our kinetic studies reveal differences during the nucleation phase of the aggregation process, where PrPb exhibits a longer lag phase that cannot be completely eliminated by seeding the reaction with preformed fibrils. Additionally, PrPb is more prone to propagate features of the seeds, as demonstrated by conformational stability and electron microscopy studies of the formed fibrils. We propose a model of polymerization to explain how the polymorphisms at positions 108 and 189 produce the phenotypes seen in vivo. This model also provides insight into phenomena such as species barrier and prion strain generation, two phenomena also influenced by the primary structure of PrP. PMID:23283973

  2. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  3. Kosmotropic anions promote conversion of recombinant prion protein into a PrPSc-like misfolded form.

    Science.gov (United States)

    Diaz-Espinoza, Rodrigo; Mukherjee, Abhisek; Soto, Claudio

    2012-01-01

    Prions are self-propagating proteins involved in transmissible spongiform encephalopaties in mammals. An aberrant conformation with amyloid-like features of a cell surface protein, termed prion protein (PrP), is thought to be the essential component of the infectious particle, though accessory co-factor molecules such as lipids and nucleotides may be involved. The cellular co-factors and environmental conditions implicated in PrP misfolding are not completely understood. To address this issue, several studies have been done inducing misfolding of recombinant PrP (recPrP) into classical amyloid structures using partially denaturing conditions. In this work, we report that misfolding of recPrP into PrP(Sc)-like aggregates can be induced by simply incubating the protein in the presence of kosmotropic salts at concentrations that are known to retain or increase the stability of the protein. We used a simple experimental reaction (protein, buffer and salts) submitted to agitation/incubation cycles at physiological temperature and pH. The formation of protease resistant-recPrP was time and salt-concentration dependent and required the presence of kosmotropic anions such as F(-) or SO(4)(-2). The molecular weights of the protease resistant recPrP fragments are reminiscent of those found in degradation assays of bona fide PrP(Sc). The aggregates also exhibited PrP(Sc)-like ultrastructural features including rod-shape morphology under electron microscope, high beta-sheet content and thioflavin-T positive signal. The formation of recPrP aggregates with PrP(Sc) biochemical features under conditions closer to physiological in the absence of organic co-factor molecules provides a simple setup that may prove helpful to understand the molecular mechanism of PrP misfolding.

  4. Kosmotropic anions promote conversion of recombinant prion protein into a PrPSc-like misfolded form.

    Directory of Open Access Journals (Sweden)

    Rodrigo Diaz-Espinoza

    Full Text Available Prions are self-propagating proteins involved in transmissible spongiform encephalopaties in mammals. An aberrant conformation with amyloid-like features of a cell surface protein, termed prion protein (PrP, is thought to be the essential component of the infectious particle, though accessory co-factor molecules such as lipids and nucleotides may be involved. The cellular co-factors and environmental conditions implicated in PrP misfolding are not completely understood. To address this issue, several studies have been done inducing misfolding of recombinant PrP (recPrP into classical amyloid structures using partially denaturing conditions. In this work, we report that misfolding of recPrP into PrP(Sc-like aggregates can be induced by simply incubating the protein in the presence of kosmotropic salts at concentrations that are known to retain or increase the stability of the protein. We used a simple experimental reaction (protein, buffer and salts submitted to agitation/incubation cycles at physiological temperature and pH. The formation of protease resistant-recPrP was time and salt-concentration dependent and required the presence of kosmotropic anions such as F(- or SO(4(-2. The molecular weights of the protease resistant recPrP fragments are reminiscent of those found in degradation assays of bona fide PrP(Sc. The aggregates also exhibited PrP(Sc-like ultrastructural features including rod-shape morphology under electron microscope, high beta-sheet content and thioflavin-T positive signal. The formation of recPrP aggregates with PrP(Sc biochemical features under conditions closer to physiological in the absence of organic co-factor molecules provides a simple setup that may prove helpful to understand the molecular mechanism of PrP misfolding.

  5. Molecular Dynamics Studies on the Buffalo Prion Protein

    CERN Document Server

    Zhang, Jiapu

    2015-01-01

    It was reported that buffalo is a low susceptibility species resisting to TSEs (Transmissible Spongiform Encephalopathies) (same as rabbits, horses and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (in humans prion diseases are (v)CJDs, GSS, FFI, and kulu etc). It was reported that buffalo is a low susceptibility species resisting to prion diseases (as rabbits, dogs, horses). In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein, predominantly with alpha-helices, into insoluble abnormally folded infectious prions, rich in beta-sheets. This paper studies the molecular structure and structural dynamics of buffalo prion protein, in order to find out the reason why buffaloes are resistant to prion diseases. We first did molecular modeling a homology structure constructed by one mutation at residue 143 from the Nuclear Magnetic Resonanc...

  6. Semi-synthesis of murine prion protein by native chemical ligation and chemical activation for preparation of polypeptide-α-thioester.

    Science.gov (United States)

    Shi, Lei; Chen, Huai; Zhang, Si-Yu; Chu, Ting-Ting; Zhao, Yu-Fen; Chen, Yong-Xiang; Li, Yan-Mei

    2017-06-01

    Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three-dimensional structure domain was constructed from three segments murine PrP (mPrP)(90-177), mPrP(178-212), and mPrP(213-230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C-terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  7. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  8. Role of the prion protein family in the gonads

    OpenAIRE

    Allais-Bonnet , Aurélie; Pailhoux, Eric

    2014-01-01

    The prion-gene family comprises four members named PRNP (PRP(c)), PRND (Doppel), PRNT (PRT), and SPRN (Shadoo). According to species, PRND is located 16-52 kb downstream from the PRNP locus, whereas SPRN is located on another chromosome. The fourth prion-family gene, PRNT, belongs to the same genomic cluster as PRNP and PRND in humans and bovidae. PRNT and PRND possibly resulted from a duplication event of PRND and PRNP, respectively, that occurred early during eutherian species divergence. A...

  9. Protease-Sensitive Synthetic Prions

    OpenAIRE

    Colby, David W.; Wain, Rachel; Baskakov, Ilia V.; Legname, Giuseppe; Palmer, Christina G.; Nguyen, Hoang-Oanh B.; Lemus, Azucena; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but no...

  10. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    Science.gov (United States)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  11. A closer look at prion strains: characterization and important implications.

    Science.gov (United States)

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrP (Sc) ), a pathogenic isoform of the host-encoded cellular prion protein (PrP (C) ). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrP (Sc) conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrP (Sc) biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.

  12. Male Infertility and DNA Damage in Doppel Knockout and Prion Protein/Doppel Double-Knockout Mice

    OpenAIRE

    Paisley, Derek; Banks, Stephen; Selfridge, Jim; McLennan, Neil F; Ritchie, Ann-Marie; McEwan, Carolanne; Irvine, D Stewart; Philippa T K Saunders; Jean C. Manson; Melton, David

    2004-01-01

    The prion protein (PrP) and Doppel (Dpl) have many structural and biochemical properties in common, leading to the suggestion that the lack of an obvious phenotype in PrP-deficient mice maybe because of compensation by Dpl. To test this hypothesis and also investigate the function of Dpl we have generated Prnd(-/-) and Prnp(-/-)/Prnd(-/-) mouse lines. Both develop normally and display an identical male sterility phenotype that differs from that reported for another Prnd(-/-) mouse line. Sperm...

  13. TIA-1 Is a Functional Prion-Like Protein.

    Science.gov (United States)

    Rayman, Joseph B; Kandel, Eric R

    2017-05-01

    Prions are self-propagating protein conformations that are traditionally regarded as agents of neurodegenerative disease in animals. However, it has become evident that prion-like aggregation of endogenous proteins can also occur under normal physiological conditions (e.g., during memory storage or activation of the immune response). In this review, we focus on the functional prion-related protein TIA-1, an RNA-binding protein that is involved in multiple aspects of RNA metabolism but is best understood in terms of its role in stress granule assembly during the cellular stress response. We propose that stress granule formation provides a useful conceptual framework with which to address the positive role of TIA-1 prion-like aggregation. Elucidating the function of TIA-1 prion-like aggregation will advance our understanding of how prion-based molecular switches are used in normal physiological settings. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Degradation of the disease-associated prion protein by a serine protease from lichens

    Science.gov (United States)

    Johnson, Christopher J.; Bennett, James P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, Cynthia M.; Bessen, R.A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  15. Intriguing nucleic-acid-binding features of mammalian prion protein.

    Science.gov (United States)

    Silva, Jerson L; Lima, Luís Maurício T R; Foguel, Debora; Cordeiro, Yraima

    2008-03-01

    In transmissible spongiform encephalopathies, the infectious material consists chiefly of a protein, the scrapie prion protein PrP(Sc), that carries no genetic coding material; however, prions are likely to have accomplices that chaperone their activity and promote the conversion of the cellular prion protein PrP(C) into the disease-causing isoform (PrP(Sc)). Recent studies from several laboratories indicate that PrP(C) recognizes many nucleic acids (NAs) with high affinities, and we correlate these findings with a possible pathophysiological role for this interaction. Thus, of the chaperones, NA is the most likely candidate for prions. The participation of NAs in prion propagation opens new avenues for developing new diagnostic tools and therapeutics to target prion diseases, as well as for understanding the function of PrP(C), probably as a NA chaperone.

  16. Translation of the prion protein mRNA is robust in astrocytes but does not amplify during reactive astrocytosis in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Walker S Jackson

    Full Text Available Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP, could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp, was replaced with that for green fluorescent protein (GFP. Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments.

  17. Disturbed vesicular trafficking of membrane proteins in prion disease.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  18. Establishment of a simple cell-based ELISA for the direct detection of abnormal isoform of prion protein from prion-infected cells without cell lysis and proteinase K treatment

    Science.gov (United States)

    Shan, Zhifu; Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2016-01-01

    ABSTRACT Prion-infected cells have been used for analyzing the effect of compounds on the formation of abnormal isoform of prion protein (PrPSc). PrPSc is usually detected using anti-prion protein (PrP) antibodies after the removal of the cellular isoform of prion protein (PrPC) by proteinase K (PK) treatment. However, it is expected that the PK-sensitive PrPSc (PrPSc-sen), which possesses higher infectivity and conversion activity than the PK-resistant PrPSc (PrPSc-res), is also digested through PK treatment. To overcome this problem, we established a novel cell-based ELISA in which PrPSc can be directly detected from cells persistently infected with prions using anti-PrP monoclonal antibody (mAb) 132 that recognizes epitope consisting of mouse PrP amino acids 119–127. The novel cell-based ELISA could distinguish prion-infected cells from prion-uninfected cells without cell lysis and PK treatment. MAb 132 could detect both PrPSc-sen and PrPSc-res even if all PrPSc molecules were not detected. The analytical dynamic range for PrPSc detection was approximately 1 log. The coefficient of variation and signal-to-background ratio were 7%–11% and 2.5–3.3, respectively, demonstrating the reproducibility of this assay. The addition of a cytotoxicity assay immediately before PrPSc detection did not affect the following PrPSc detection. Thus, all the procedures including cell culture, cytotoxicity assay, and PrPSc detection were completed in the same plate. The simplicity and non-requirement for cell lysis or PK treatment are advantages for the high throughput screening of anti-prion compounds. PMID:27565564

  19. Emergence and evolution of yeast prion and prion-like proteins.

    Science.gov (United States)

    An, Lu; Fitzpatrick, David; Harrison, Paul M

    2016-01-25

    Prions are transmissible, propagating alternative states of proteins, and are usually made from the fibrillar, beta-sheet-rich assemblies termed amyloid. Prions in the budding yeast Saccharomyces cerevisiae propagate heritable phenotypes, uncover hidden genetic variation, function in large-scale gene regulation, and can act like diseases. Almost all these amyloid prions have asparagine/glutamine-rich (N/Q-rich) domains. Other proteins, that we term here 'prionogenic amyloid formers' (PAFs), have been shown to form amyloid in vivo, and to have N/Q-rich domains that can propagate heritable states in yeast cells. Also, there are >200 other S.cerevisiae proteins with prion-like N/Q-rich sequence composition. Furthermore, human proteins with such N/Q-rich composition have been linked to the pathomechanisms of neurodegenerative amyloid diseases. Here, we exploit the increasing abundance of complete fungal genomes to examine the ancestry of prions/PAFs and other N/Q-rich proteins across the fungal kingdom. We find distinct evolutionary behavior for Q-rich and N-rich prions/PAFs; those of ancient ancestry (outside the budding yeasts, Saccharomycetes) are Q-rich, whereas N-rich cases arose early in Saccharomycetes evolution. This emergence of N-rich prion/PAFs is linked to a large-scale emergence of N-rich proteins during Saccharomycetes evolution, with Saccharomycetes showing a distinctive trend for population sizes of prion-like proteins that sets them apart from all the other fungi. Conversely, some clades, e.g. Eurotiales, have much fewer N/Q-rich proteins, and in some cases likely lose them en masse, perhaps due to greater amyloid intolerance, although they contain relatively more non-N/Q-rich predicted prions. We find that recent mutational tendencies arising during Saccharomycetes evolution (i.e., increased numbers of N residues and a tendency to form more poly-N tracts), contributed to the expansion/development of the prion phenomenon. Variation in these

  20. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment.

    Science.gov (United States)

    Pérez, M; Wandosell, F; Colaço, C; Avila, J

    1998-10-15

    Although a number of features distinguish the disease isoform of the prion protein (PrPSc) from its normal cellular counterpart (PrPC) in the transmissible spongiform encephalopathies (TSEs), the neuropathogenesis of these diseases remains an enigma. The amyloid fibrils formed by fragments of human PrP have, however, been shown to be directly neurotoxic in vitro. We show here that sulphated polysaccharides (heparin, keratan and chondroitin) inhibit the neurotoxicity of these amyloid fibrils and this appears to be mediated via inhibition of the polymerization of the PrP peptide into fibrils. This provides a rationale for the therapeutic effects of sulphated polysaccharides and suggests a rapid in vitro functional screen for TSE therapeutics.

  1. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    Directory of Open Access Journals (Sweden)

    McKenzie Debbie

    2009-07-01

    Full Text Available Abstract Background Transmissible spongiform encephalopathies (TSEs are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials.

  2. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    Science.gov (United States)

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  3. Experimental approaches to the interaction of the prion protein with nucleic acids and glycosaminoglycans: Modulators of the pathogenic conversion.

    Science.gov (United States)

    Silva, Jerson L; Vieira, Tuane C R G; Gomes, Mariana P B; Rangel, Luciana P; Scapin, Sandra M N; Cordeiro, Yraima

    2011-03-01

    The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry

    Science.gov (United States)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  5. Conformational diversity in prion protein variants influences intermolecular [beta]-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungjoo; Antony, Lizamma; Hartmann, Rune; Knaus, Karen J.; Surewicz, Krystyna; Surewicz, Witold K.; Yee, Vivien C. (Case Western); (Cleveland Clinic)

    2010-04-19

    A conformational transition of normal cellular prion protein (PrP{sup C}) to its pathogenic form (PrP{sup Sc}) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild-type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain-swapped dimers or closed monomers; the four mutant PrPs crystallized as non-swapped dimers. Three of the four mutant PrPs aligned to form intermolecular {beta}-sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular {beta}-sheets involving the M/V129 polymorphic residue.

  6. Biosynthesis of prion protein nucleocytoplasmic isoforms by alternative initiation of translation.

    Science.gov (United States)

    Juanes, María E; Elvira, Gema; García-Grande, Aranzazu; Calero, Miguel; Gasset, María

    2009-01-30

    The cellular prion protein PrP(C) is synthesized as a family of four distinct forms. Of these, (Cyt)PrP is a minor member that segregates outside of the secretory route and can generate cytotoxic forms. Using signal sequence mutants, we found that (Cyt)PrP is translated from a downstream AUG (coding for Met-8 in human PrP or Met-15 in Syrian hamster PrP). Shortening of the signal sequence dictated the spillage of this isoform into the cytosol, from where it accessed the nucleus or formed insoluble cytosolic aggregates if the proteasome is inhibited. The PrP isoform isolated from the nuclear fractions of cell and brain homogenates was partially SUMO-1-conjugated. Expression of HaPrP(M15) in cells caused an antiproliferative phenotype due to a cell cycle arrest at the G(0)/G(1) phase. The identification of this PrP isoform and its properties provides novel insight into PrP(C) physiological and pathological functions.

  7. Copper attachment to prion protein at a non-octarepeat site

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    Prion protein (PrP) plays a causative role in a group of neurodegenerative diseases, which include ``mad cow disease'' or its human form variant Creutzfeld-Jacob disease. Normal function of PrP remains unknown, but it is now well established that PrP can efficiently bind copper ions and this ability has been linked to its function. The primary binding sites are located in the so-called octarepeat region located between residues 60-91. While these are by now well characterized, the sites located outside these region remain mostly undetermined. In this work, we investigate the properties of Cu binding site located at His 111 using recently developed hybrid Kohn-Sham/orbital-free density functional simulations. Experimental data indicate that copper is coordinated by either four nitrogens or three nitrogens and one oxygen. We investigate both possibilities, comparing their energetics and attachment geometries. Similarities and differences with other binding sites and implications for PrP function will also be discussed.

  8. Relationship between magnetism and prion protein

    Directory of Open Access Journals (Sweden)

    F. Balzano

    2010-01-01

    Full Text Available The mechanism of conversion of the normal prion protein (PrPC into aggregates of its pathological conformer (PrPSc reamins unclear. The aim of this study was to evaluate the effects induced by exposure of biological samples containing PrPSC to a magnetic field induced prominent molecular changes of samples indicated by the IR spectra located in the region that contains contribution primarily from absorption of amides. This finding suggests the existence of a strong correlation between magnetism and PrPsc and supports a new hypothesis that explains the conversion of normal PrPc to abnormal isoform PrPsc.

  9. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells.

    Science.gov (United States)

    Iglesia, Rebeca Piatniczka; Prado, Mariana Brandão; Cruz, Lilian; Martins, Vilma Regina; Santos, Tiago Góss; Lopes, Marilene Hohmuth

    2017-04-17

    Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrP C ) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. GSCs expressing different levels of PrP C were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrP C binding site. Stable silencing of HOP was also performed in parental and/or PrP C -depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrP C is upregulated compared to monolayer culture and co-localizes with CD133. PrP C silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrP C in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrP C -dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrP C and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrP C -HOP complex by a HOP peptide, which mimics the PrP C binding site, affects GSC self

  10. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    Science.gov (United States)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions

  11. Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Directory of Open Access Journals (Sweden)

    Qingzhong Kong

    2013-07-01

    Full Text Available Prion diseases, or transmissible spongiform encephalopathies (TSEs, are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases.

  12. Do prion protein gene polymorphisms induce apoptosis in non ...

    Indian Academy of Sciences (India)

    Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, V225A and M237V, ...

  13. Recent developments in mucosal vaccines against prion diseases.

    Science.gov (United States)

    Sakaguchi, Suehiro; Arakawa, Takeshi

    2007-02-01

    Bovine spongiform encephalopathy in cattle is highly suspected to be orally transmitted to humans through contaminated food, causing new variant Creutzfeldt-Jakob disease. However, no prophylactic procedures against these diseases, such as vaccines, in particular those stimulating mucosal protective immunity, have been established. The causative agents of these diseases, termed prions, consist of the host-encoded prion protein (PrP). Therefore, prions are immunologically tolerated, inducing no host antibody responses. This immune tolerance to PrP has hampered the development of vaccines against prions. We and others recently reported that the immune tolerance could be successfully broken and mucosal immunity could be stimulated by mucosal immunization of mice with PrP fused with bacterial enterotoxin or delivered using an attenuated Salmonella strain, eliciting significantly higher immunoglobulin A and G antibody responses against PrP. In this review, we will discuss these reports.

  14. β-sheet-like formation during the mechanical unfolding of prion protein

    Science.gov (United States)

    Tao, Weiwei; Yoon, Gwonchan; Cao, Penghui; Eom, Kilho; Park, Harold S.

    2015-09-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrPC, whose misfolded form PrPSc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  15. β-sheet-like formation during the mechanical unfolding of prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Weiwei; Cao, Penghui; Park, Harold S., E-mail: parkhs@bu.edu [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Yoon, Gwonchan [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Eom, Kilho [Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2015-09-28

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP{sup C}, whose misfolded form PrP{sup Sc} can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  16. Soluble Aβ aggregates can inhibit prion propagation.

    Science.gov (United States)

    Sarell, Claire J; Quarterman, Emma; Yip, Daniel C-M; Terry, Cassandra; Nicoll, Andrew J; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Collinge, John

    2017-11-01

    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aβ and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common. © 2017 The Authors.

  17. PrionHome: a database of prions and other sequences relevant to prion phenomena.

    Science.gov (United States)

    Harbi, Djamel; Parthiban, Marimuthu; Gendoo, Deena M A; Ehsani, Sepehr; Kumar, Manish; Schmitt-Ulms, Gerold; Sowdhamini, Ramanathan; Harrison, Paul M

    2012-01-01

    Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing

  18. PrionHome: a database of prions and other sequences relevant to prion phenomena.

    Directory of Open Access Journals (Sweden)

    Djamel Harbi

    Full Text Available Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions, prionoids (i.e., proteins that propagate like prions between individual cells, and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant, and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments. We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic

  19. Computational Studies of the Structural Stability of Rabbit Prion Protein Compared to Human and Mouse Prion Proteins

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. The neurodegenerative diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Str$\\ddot{a}$ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle belong to prion diseases. By now there have not been some effective therapeutic approaches to treat all these prion diseases. Dogs, rabbits and horses were reported to be resistant to prion diseases. By the end of year 2010 all the NMR structures of dog, rabbit and horse prion proteins (X-ray for rabbits too) had been finished to release into protein data bank. Thus, at this moment it is very worth studying the NMR and X-ray molecular structures of horse, dog and rabbit prion proteins to obtain insights into their immunity prion diseases. The author found that dog and horse prion proteins have sta...

  20. Insights into alternative prion protein topologies induced under high hydrostatic pressure

    Science.gov (United States)

    Torrent, Joan; Alvarez-Martinez, Maria Teresa; Heitz, Frédéric; Liautard, Jean-Pierre; Balny, Claude; Lange, Reinhard

    2004-04-01

    The critical step in the pathogenesis of transmissible spongiform encephalopathies (TSEs) appears to be a conformational transition of a normal prion protein (PrPC) into a misfolded isoform (PrPSc). To gain insight into the structural conversion of the prion protein we have exploited the use of high hydrostatic pressure combined with various spectroscopic techniques. In vitro transitions of the recombinant PrP to a scrapie-like form have never resulted in an infectious structure. It is our hypothesis that the acquisition of the disease-causing conformation depends on folding pathways which are difficult to attain. We attempt to favour, via specific reaction conditions at high pressure, alternative routes of misfolding leading to a stable infectious amyloidogenic conformer. Our results have demonstrated the potential of high pressure to reveal various prion structural changes, which are inaccessible by conventional methods. Especially, we have characterized a pressure-induced conformer in which the normal agr-helical structure is changed into a highly aggregated bgr-sheet conformation showing markedly increased resistance to proteolysis (key markers of potential infectious agents). Our work may have important implications, not only for ultimately proving the protein-only hypothesis and for understanding the basic mechanism of the disease, but also for developing preventative and therapeutic measures.

  1. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  2. Genomic assessment of the evolution of the prion protein gene family in vertebrates.

    Science.gov (United States)

    Harrison, Paul M; Khachane, Amit; Kumar, Manish

    2010-05-01

    Prion diseases are devastating neurological disorders caused by the propagation of particles containing an alternative beta-sheet-rich form of the prion protein (PrP). Genes paralogous to PrP, called Doppel and Shadoo, have been identified, that also have neuropathological relevance. To aid in the further functional characterization of PrP and its relatives, we annotated completely the PrP gene family (PrP-GF), in the genomes of 42 vertebrates, through combined strategic application of gene prediction programs and advanced remote homology detection techniques (such as HMMs, PSI-TBLASTN and pGenThreader). We have uncovered several previously undescribed paralogous genes and pseudogenes. We find that current high-quality genomic evidence indicates that the PrP relative Doppel, was likely present in the last common ancestor of present-day Tetrapoda, but was lost in the bird lineage, since its divergence from reptiles. Using the new gene annotations, we have defined the consensus of structural features that are characteristic of the PrP and Doppel structures, across diverse Tetrapoda clades. Furthermore, we describe in detail a transcribed pseudogene derived from Shadoo that is conserved across primates, and that overlaps the meiosis gene, SYCE1, thus possibly regulating its expression. In addition, we analysed the locus of PRNP/PRND for significant conservation across the genomic DNA of eleven mammals, and determined the phylogenetic penetration of non-coding exons. The genomic evidence indicates that the second PRNP non-coding exon found in even-toed ungulates and rodents, is conserved in all high-coverage genome assemblies of primates (human, chimp, orang utan and macaque), and is, at least, likely to have fallen out of use during primate speciation. Furthermore, we have demonstrated that the PRNT gene (at the PRNP human locus) is conserved across at least sixteen mammals, and evolves like a long non-coding RNA, fashioned from fragments of ancient, long

  3. The roles of the conserved tyrosine in the β2-α2 loop of the prion protein.

    Science.gov (United States)

    Huang, Danzhi; Caflisch, Amedeo

    2015-01-01

    Prions cause neurodegenerative diseases for which no cure exists. Despite decades of research activities the function of the prion protein (PrP) in mammalians is not known. Moreover, little is known on the molecular mechanisms of the self-assembly of the PrP from its monomeric state (cellular PrP, PrP(C)) to the multimeric state. The latter state includes the toxic species (scrapie PrP, PrP(Sc)) knowledge of which would facilitate the development of drugs against prion diseases. Here we analyze the role of a tyrosine residue (Y169) which is strictly conserved in mammalian PrPs. Nuclear magnetic resonance (NMR) spectroscopy studies of many mammalian PrP(C) proteins have provided evidence of a conformational equilibrium between a 3(10)-helical turn and a type I β turn conformation in the β2-α2 loop (residues 165-175). In vitro cell-free experiments of the seeded conversion of PrP(C) indicate that non-aromatic residues at position 169 reduce the formation of proteinase K-resistant PrP. Recent molecular dynamics (MD) simulations of monomeric PrP and several single-point mutants show that Y169 stabilizes the 3(10)-helical turn conformation more than single-point mutants at position 169 or residues in contact with it. In the 3(10)-helical turn conformation the hydrophobic and aggregation-prone segment 169-YSNQNNF-175 is buried and thus not-available for self-assembly. From the combined analysis of simulation and experimental results it emerges that Y169 is an aggregation gatekeeper with a twofold role. Mutations related to 3 human prion diseases are interpreted on the basis of the gatekeeper role in the monomeric state. Another potential role of the Y169 side chain is the stabilization of the ordered aggregates, i.e., reduction of frangibility of filamentous protofibrils and fibrils, which is likely to reduce the generation of toxic species.

  4. Comparison of abnormal isoform of prion protein in prion-infected cell lines and primary-cultured neurons by PrPSc-specific immunostaining.

    Science.gov (United States)

    Tanaka, Misaki; Fujiwara, Ai; Suzuki, Akio; Yamasaki, Takeshi; Hasebe, Rie; Masujin, Kentaro; Horiuchi, Motohiro

    2016-08-01

    We established abnormal isoform of prion protein (PrPSc)-specific double immunostaining using mAb 132, which recognizes aa 119-127 of the PrP molecule, and novel PrPSc-specific mAb 8D5, which recognizes the N-terminal region of the PrP molecule. Using the PrPSc-specific double immunostaining, we analysed PrPSc in immortalized neuronal cell lines and primary cerebral-neuronal cultures infected with prions. The PrPSc-specific double immunostaining showed the existence of PrPSc positive for both mAbs 132 and 8D5, as well as those positive only for either mAb 132 or mAb 8D5. This indicated that double immunostaining detects a greater number of PrPSc species than single immunostaining. Double immunostaining revealed cell-type-dependent differences in PrPSc staining patterns. In the 22 L prion strain-infected Neuro2a (N2a)-3 cells, a subclone of N2a neuroblastoma cell line, or GT1-7, a subclone of the GT1 hypothalamic neuronal cell line, granular PrPSc stains were observed at the perinuclear regions and cytoplasm, whereas unique string-like PrPSc stains were predominantly observed on the surface of the 22 L strain-infected primary cerebral neurons. Only 14 % of PrPSc in the 22 L strain-infected N2a-3 cells were positive for mAb 8D5, indicating that most of the PrPSc in N2a-3 lack the N-terminal portion. In contrast, nearly half PrPSc detected in the 22 L strain-infected primary cerebral neurons were positive for mAb 8D5, suggesting the abundance of full-length PrPSc that possesses the N-terminal portion of PrP. Further analysis of prion-infected primary neurons using PrPSc-specific immunostaining will reveal the neuron-specific mechanism for prion propagation.

  5. Associations between lamb survival and prion protein genotype: analysis of data for ten sheep breeds in Great Britain

    Directory of Open Access Journals (Sweden)

    Bishop Stephen C

    2009-01-01

    Full Text Available Abstract Background Selective breeding programmes, based on prion protein (PrP genotype, have been introduced throughout the European Union to reduce the risk of sheep transmissible spongiform encephalopathies (TSEs. These programmes could have negative consequences on other important traits, such as fitness and production traits, if the PrP gene has pleiotropic effects or is in linkage disequilibrium with genes affecting these traits. This paper presents the results of an investigation into associations between lamb survival and PrP genotype in ten mainstream sheep breeds in Great Britain (GB. In addition, the reasons for lamb deaths were examined in order to identify any associations between these and PrP genotype. Results Survival times from birth to weaning were analysed for over 38000 lambs (2427 dead and 36096 live lambs from 128 flocks using Cox proportional hazard models for each breed, including additive animal genetic effects. No significant associations between PrP genotype and lamb survival were identified, except in the Charollais breed for which there was a higher risk of mortality in lambs of the ARR/VRQ genotype compared with those of the ARR/ARR genotype. Significant effects of birth weight, litter size, sex, age of dam and year of birth on survival were also identified. For all breeds the reasons for death changed significantly with age; however, no significant associations between reason for death and PrP genotype were found for any of the breeds. Conclusion This study found no evidence to suggest that a selective breeding programme based on PrP genotype will have a detrimental effect on lamb survival. The only significant effect of PrP genotype identified was likely to be of little consequence because an increased risk of mortality was associated with a genotype that is selected against in current breeding strategies.

  6. Dissociation of recombinant prion autocatalysis from infectivity.

    Science.gov (United States)

    Noble, Geoffrey P; Supattapone, Surachai

    2015-01-01

    Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication--that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain. (1) We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrP(C) substrates containing a glycosylphosphatidylinositol (GPI) anchor. (1) In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrP(C), and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication.

  7. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  8. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    Science.gov (United States)

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-06-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.

  10. Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development.

    Science.gov (United States)

    Xu, Wen-Liang; Zhang, De-Jing; Wu, Yan-Feng; Qin, Li-Xia; Huang, Geng-Qing; Li, Juan; Li, Long; Li, Xue-Bao

    2013-07-01

    Proline-rich proteins contribute to cell wall structure of specific cell types and are involved in plant growth and development. In this study, a fiber-specific gene, GhPRP5, encoding a proline-rich protein was functionally characterized in cotton. GhPRP5 promoter directed GUS expression only in trichomes of both transgenic Arabidopsis and tobacco plants. The transgenic Arabidopsis plants with overexpressing GhPRP5 displayed reduced cell growth, resulting in smaller cell size and consequently plant dwarfs, in comparison with wild type plants. In contrast, knock-down of GhPRP5 expression by RNA interference in cotton enhanced fiber development. The fiber length of transgenic cotton plants was longer than that of wild type. In addition, some genes involved in fiber elongation and wall biosynthesis of cotton were up-regulated or down-regulated in the transgenic cotton plants owing to suppression of GhPRP5. Collectively, these data suggested that GhPRP5 protein as a negative regulator participates in modulating fiber development of cotton.

  11. Memory impairment in transgenic Alzheimer mice requires cellular prion protein

    National Research Council Canada - National Science Library

    Gimbel, David A; Nygaard, Haakon B; Coffey, Erin E; Gunther, Erik C; Laurén, Juha; Gimbel, Zachary A; Strittmatter, Stephen M

    2010-01-01

    ...). Recently, we reported that synthetic Abeta oligomers bind to cellular prion protein (PrP(C)) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric Abeta peptide...

  12. Prion infection of epithelial Rov cells is a polarized event.

    Science.gov (United States)

    Paquet, Sophie; Sabuncu, Elifsu; Delaunay, Jean-Louis; Laude, Hubert; Vilette, Didier

    2004-07-01

    During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.

  13. Interaction of the human prion PrP(106-126) sequence with copper(II), manganese(II), and zinc(II): NMR and EPR studies.

    Science.gov (United States)

    Gaggelli, Elena; Bernardi, Francesca; Molteni, Elena; Pogni, Rebecca; Valensin, Daniela; Valensin, Gianni; Remelli, Maurizio; Luczkowski, Marek; Kozlowski, Henryk

    2005-01-26

    The synthetic peptide encompassing residues 106-126 (PrP106-126, KTNMKHMAGAAAAGAVVGGLG) of the human prion protein was considered for its binding properties toward copper(II), manganese(II) and zinc(II) at pH 5.7. 1H and 13C 1D spectra, 1H spin-lattice relaxation rates, and 1H-15N and 1H-13C HSQC 2D experiments were obtained in the absence and in the presence of metal ions. While Zn(II) was found to yield negligible effects upon any NMR parameter, metal-peptide association was demonstrated by the paramagnetic effects of Cu(II) and Mn(II) upon 1D and 2D spectra. Delineation of structures of metal complexes was sought by interpreting the paramagnetic effect on 1H spin-lattice relaxation rates. Exchange of peptide molecules from the metal coordination sphere was shown to provide sizable contribution to the observed relaxation rates. Such contribution was calculated in the case of Cu(II); whereas the faster paramagnetic rates of peptide molecules bound to Mn(II) were determining spin-lattice relaxation rates almost exclusively dominated by exchange. Proton-metal distances were therefore evaluated in the case of the Cu(II) complex only and used as restraints in molecular dynamics calculations where from the structure of the complex was obtained. The peptide was shown to bind copper through the imidazole nitrogen and the ionized amide nitrogen of His-111 and the amino-terminal group with the terminal carboxyl stabilizing the coordination sphere through ionic interactions. The data were interpreted as to demonstrate that the hydrophobic C-terminal region was not affecting the copper-binding properties of the peptide and that this hydrophobic tail is left free to interact with other target molecules. As for the complex with Mn(II), qualitative information was obtained on carbonyl oxygens of Gly-124 and Leu-125, beyond the terminal Gly-126 carboxyl, being at close distance from the metal ion, that also interacts, most likely, through a hydrogen bond of metal-bound water

  14. New insights into structural determinants of prion protein folding and stability.

    Science.gov (United States)

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  15. Hippocampal synaptic plasticity in mice devoid of cellular prion protein.

    Science.gov (United States)

    Maglio, Laura E; Perez, Mariela F; Martins, Vilma R; Brentani, Ricardo R; Ramirez, Oscar A

    2004-11-24

    The cellular prion protein plays a role in the etiology of transmissible and inherited spongiform encephalopathies. However, the physiological role of the cellular prion protein is still under debate. Results regarding the synaptic transmission using the same strain of animals where the cellular prion protein gene was ablated are controversial, and need further investigation. In this work, we have studied the hippocampal synaptic transmission in mice devoid of normal cellular prion protein, and have shown that these animals present an increased excitability in this area by the lower threshold (20 Hz) to generate long-term potentiation (LTP) in hippocampal dentate gyrus when compared to wild-type animals. The mice devoid of normal cellular prion protein are also more sensitive to the blocking effects of dizocilpine and 2-amino-5-phosphonopentanoic acid on the hippocampal long-term potentiation generation. In situ hydridization experiments demonstrated overexpression of the mRNAs for the N-methyl-D-aspartate (NMDA) receptor NR2A and NR2B subunits in mice devoid of normal cellular prion protein. Therefore, our results indicate that these animals have an increased hippocampal synaptic plasticity which can be explained by a facilitated glutamatergic transmission. The higher expression of specific N-methyl-d-aspartate receptor subunits may account for these effects.

  16. Both Met(109) and Met(112) are Utilized for Cu(II) Coordination to the Amyloidogenic Fragment of the Human Prion Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.; Soh, P; Lentz, S

    2008-01-01

    The prion protein is a ubiquitous neuronal membrane protein. Misfolding of the prion protein has been implicated in transmissible spongiform encephalopathies (prion diseases). It has been demonstrated that the human prion protein (PrP) is capable of coordinating at least five Cu{sup II} ions under physiological conditions; four copper binding sites can be found in the octarepeat domain between residues 61 and 91, while another copper binding site can be found in the unstructured 'amyloidogenic' domain between residues 91 and 126 PrP(91-126). Herein we expand upon a previous study (J. Shearer, P. Soh, Inorg. Chem. 46 (2007) 710-719) where we demonstrated that the physiologically relevant high affinity Cu{sup II} coordination site within PrP(91-126) is found between residues 106 and 114. It was shown that Cu{sup II} is contained within a square planar (N/O){sub 3}S coordination environment with one His imidazole ligand (H(111)) and one Met thioether ligand (either M(109) or M(112)). The identity of the Met thioether ligand was not identified in that study. In this study we perform a detailed investigation of the Cu{sup II} coordination environment within the PrP fragment containing residues 106-114 (PrP(106-114)) involving optical, X-ray absorption, EPR, and fluorescence spectroscopies in conjunction with electronic structure calculations. By using derivatives of PrP(106-114) with systematic Met {yields} Ile 'mutations' we show that the Cu{sup II} coordination environment within PrP(106-114) is actually comprised of a mixture of two major species; one CuII(N/O){sub 3}S center with the M(109) thioether coordinated to Cu{sup II} and another Cu{sup II}(N/O){sub 3}S center with the M(112) thioether coordinated to Cu{sup II}. Furthermore, deletion of one or more Met residues from the primary sequence of PrP(106-114) both reduces the Cu{sup II} affinity of the peptide by two to seven fold, and renders the resulting Cu{sup II} metallopeptides redox

  17. Copper(II) binding to the human Doppel protein may mark its functional diversity from the prion protein.

    Science.gov (United States)

    Cereghetti, Grazia M; Negro, Alessandro; Vinck, Evi; Massimino, Maria L; Sorgato, Maria C; Van Doorslaer, Sabine

    2004-08-27

    Doppel (Dpl) is the first described homologue of the prion protein, the main constituent of the agent responsible for prion diseases. The cellular prion protein (PrP(C)) is predominantly present in the central nervous system. Although its role is not yet completely clarified, PrP(C) seems to be involved in Cu(2+) recycling from synaptic clefts and in preventing neuronal oxidative damage. Conversely, Dpl is expressed in heart and testis and has been shown to regulate male fertility by intervening in gametogenesis and sperm-egg interactions. Therefore, despite a high sequence homology and a similar three-dimensional fold, the functions of PrP(C) and Dpl appear unrelated. Here we show by electron paramagnetic resonance and fluorescence spectroscopy that the in vitro binding of copper(II) to human recombinant Dpl occurs with a different pattern from that observed for recombinant PrP. At physiological pH values, two copper(II)-binding sites with different affinities were found in Dpl. At lower pH values, two additional copper(II)-binding sites can be identified as follows: one complex is present only at pH 4, and the other is observed in the pH range 5-6. As derived from the electron paramagnetic resonance characteristics, all Dpl-copper(II) complexes have a different coordination sphere from those present in PrP. Furthermore, in contrast to the effect shown previously for PrP(C), addition of Cu(2+) to Dpl-expressing cells does not cause Dpl internalization. These results suggest that binding of the ion to PrP(C) and Dpl may contribute to the different functional roles ascribed to these highly homologous proteins.

  18. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.

    Science.gov (United States)

    Leske, Henning; Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Reimann, Regina Rose; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano

    2017-01-01

    Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2-α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2-α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.

  19. Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J; Dugger, Brittany N; Patel, Smita; Oehler, Abby; Bhardwaj, Sumita; Sali, Andrej; Prusiner, Stanley B

    2016-11-01

    The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP). Inoculation of Tg(GPPrP) mice with BSE and vCJD prions resulted in mean incubation periods of 210 and 199 days, respectively, which shortened to 137 and 122 days upon serial transmission. In contrast, three different isolates of sporadic CJD prions failed to transmit disease to Tg(GPPrP) mice. Many of the strain-specified biochemical and neuropathological properties of BSE and vCJD prions, including the presence of type 2 protease-resistant PrPSc, were preserved upon propagation in Tg(GPPrP) mice. Structural modeling revealed that two residues near the N-terminal region of α-helix 1 in GPPrP might mediate its susceptibility to BSE and vCJD prions. Our results demonstrate that expression of GPPrP in Tg mice supports the rapid propagation of BSE and vCJD prions and suggest that Tg(GPPrP) mice may serve as a useful paradigm for bioassaying these prion isolates. Variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE) prions are two of the prion strains most relevant to human health. However, propagating these strains in mice expressing human or bovine prion protein has been difficult because of prolonged incubation periods or inefficient transmission. Here, we show that transgenic mice expressing guinea pig prion protein are fully susceptible to vCJD and BSE prions but not to sporadic CJD prions. Our results suggest that the guinea pig prion protein is a better, more rapid substrate than either bovine or human prion protein for

  20. Blood clearance of the prion protein introduced by intravenous route in sheep is influenced by host genetic and physiopathologic factors.

    Science.gov (United States)

    Gayrard, Véronique; Picard-Hagen, Nicole; Viguié, Catherine; Jeunesse, Elisabeth; Tabouret, Guillaume; Rezaei, Human; Toutain, Pierre-Louis

    2008-04-01

    The risk of transmissible spongiform encephalopathy (TSE) transmission by blood transfusion is dependent on the blood concentrations of the pathologic isoform of prion protein (PrPsc) but may also be influenced by blood concentrations of cellular PrP (PrPc). These concentrations are controlled by the blood clearance of PrP, which has never been evaluated. The blood (actually plasma) clearance of ovine purified prokaryote recombinant PrP (rPrP) was measured in genotyped and in nephrectomized sheep. The exposure to proteinase K-resistant fragments of PrP (PrPres) after intravenous (IV) administration of scrapie-associated fibrils (SAFs) was also investigated in a sheep. The ARR variant of rPrP was eliminated more rapidly than its VRQ counterpart. The PrPc plasma concentrations in homozygous highly susceptible VRQ sheep were greater than in homozygous ARR-resistant sheep, suggesting that clearance of the ARR variant of PrPc was higher than that of the VRQ variant. The plasma clearance of rPrP was decreased by 52 percent after a bilateral nephrectomy indicating the significant contribution of the kidneys in eliminating rPrP. PrPres was shown to be slowly eliminated after IV administration of scrapie-associated fibrils. PrP host genotype and physiopathologic factors could influence the risk of TSE transmission by modulating blood PrP clearance. This risk was increased by the sustained exposure to PrPres after IV administration. It should be noted that although the materials that have been administered (rPrP and SAFs) were not the actual species of interest, they can be of value as probes for investigating PrP clearance mechanisms.

  1. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state.

    Science.gov (United States)

    Caughey, B; Kocisko, D A; Raymond, G J; Lansbury, P T

    1995-12-01

    Scrapie infection instigates the in vivo conversion of normal, protease-sensitive prion protein (PrPC) into a protease-resistant form (PrPSc) by an unknown mechanism. In vitro studies have indicated that PrPSc can induce this conversion, consistent with proposals that PrPSc itself might be the infectious scrapie agent. Using this cell-free model of the PrPC to PrPSc conversion, we have studied the dependence of conversion on reactant concentration, and the properties of the PrPSc-derived species that has converting activity. The cell-free conversion of 35S PrPC to the proteinase K-resistant form was dependent on the reaction time and initial concentrations of PrPSc (above an apparent minimum threshold concentration) and 35S PrPC. Analysis of the physical size of the converting activity indicated that detectable converting activity was associated only with aggregates. Under mildly chaotropic conditions, which partially disaggregated PrPSc and enhanced the converting activity, the active species were heterogeneous in size, but larger than either effectively solubilized PrP or molecular weight standards of approximately 2000 kDa. The entity responsible for the converting activity was many times larger than a soluble PrP monomer and required a threshold concentration of PrPSc. These results are consistent with a nucleated polymerization mechanism of PrPSc formation and inconsistent with a heterodimer mechanism.

  2. Bovine spongiform encephalopathy induces misfolding of alleged prion-resistant species cellular prion protein without altering its pathobiological features.

    Science.gov (United States)

    Vidal, Enric; Fernández-Borges, Natalia; Pintado, Belén; Ordóñez, Montserrat; Márquez, Mercedes; Fondevila, Dolors; Torres, Juan María; Pumarola, Martí; Castilla, Joaquín

    2013-05-01

    Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrP(c)) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrP(C). Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species.

  3. How do PrPScPrions Spread between Host Species, and within Hosts?

    Science.gov (United States)

    Mabbott, Neil A

    2017-11-24

    Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrP Sc . Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrP Sc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrP Sc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrP Sc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.

  4. Distinct transmissibility features of TSE sources derived from ruminant prion diseases by the oral route in a transgenic mouse model (TgOvPrP4 overexpressing the ovine prion protein.

    Directory of Open Access Journals (Sweden)

    Jean-Noël Arsac

    Full Text Available Transmissible spongiform encephalopathies (TSEs are a group of fatal neurodegenerative diseases associated with a misfolded form of host-encoded prion protein (PrP. Some of them, such as classical bovine spongiform encephalopathy in cattle (BSE, transmissible mink encephalopathy (TME, kuru and variant Creutzfeldt-Jakob disease in humans, are acquired by the oral route exposure to infected tissues. We investigated the possible transmission by the oral route of a panel of strains derived from ruminant prion diseases in a transgenic mouse model (TgOvPrP4 overexpressing the ovine prion protein (A136R154Q171 under the control of the neuron-specific enolase promoter. Sources derived from Nor98, CH1641 or 87V scrapie sources, as well as sources derived from L-type BSE or cattle-passaged TME, failed to transmit by the oral route, whereas those derived from classical BSE and classical scrapie were successfully transmitted. Apart from a possible effect of passage history of the TSE agent in the inocula, this implied the occurrence of subtle molecular changes in the protease-resistant prion protein (PrPres following oral transmission that can raises concerns about our ability to correctly identify sheep that might be orally infected by the BSE agent in the field. Our results provide proof of principle that transgenic mouse models can be used to examine the transmissibility of TSE agents by the oral route, providing novel insights regarding the pathogenesis of prion diseases.

  5. Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Timmers-Parohi, D.; Langeveld, J.; Bossers, A.

    2009-01-01

    Protein-protein interactions are at the basis of most if not all biological processes in living cells. Therefore, adapting existing techniques or developing new techniques to study interactions between proteins are of importance in elucidating which amino acid sequences contribute to these

  6. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  7. Disruption of Amyloid Prion Protein Aggregates by Cationic Pyridylphenylene Dendrimers.

    Science.gov (United States)

    Sorokina, Svetlana A; Stroylova, Yulia Yu; Shifrina, Zinaida B; Muronetz, Vladimir I

    2016-02-01

    Disruption of amyloid protein aggregates is one of the potential therapies for treatment of neurodegenerative disorders such as prion diseases. Here, for the first time we report that pH-independent cationic pyridylphenylene dendrimers are able to disrupt amyloid protein aggregates at physiological pH as exemplified by inclusion bodies of ovine prion protein. The results show that exposure of inclusion bodies to the dendrimers leads to its partial disaggregation and release of the nanosize protein-dendrimer complexes. The complexes were characterized by SDS PAGE, DLS, and Western blotting methods. Thioflavin T fluorescence clearly demonstrated a decrease of amyloidogenic capability of the prion protein upon exposure to the dendrimers. The complexes formed are stable and do not show further aggregation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors.

    Science.gov (United States)

    Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan

    2017-10-04

    The infectious prion protein (PrPSc or prion) is derived from its cellular form (PrPC) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrPC to PrPSc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrPC (BVPrP) is highly susceptible to PrPSc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.

  9. Novel prion protein insert mutation associated with prolonged neurodegenerative illness.

    Science.gov (United States)

    Lewis, V; Collins, S; Hill, A F; Boyd, A; McLean, C A; Smith, M; Masters, C L

    2003-05-27

    Mutations in the prion protein gene (PRNP) are found in approximately 13 to 15% of persons classified as dying from a transmissible spongiform encephalopathy. Point and octapeptide repeat insert and deletion mutations are described in the open reading frame (ORF) of PRNP. The authors present a clinicopathologic study of a patient with a family history of a lengthy and progressive neurodegenerative disorder associated with a novel large octapeptide repeat insert mutation. Neuropathologic examination, including immunohistochemistry for the prion protein, was undertaken. The ORF of PRNP was amplified by PCR, cloned, and sequenced. Homogenate of cerebral tissue underwent Western blot analysis for the prion protein before and after proteinase K treatment. The proband died after a 16-year illness commencing at age 29 years. Confident premortem clinical diagnosis was not achieved despite a brain biopsy. Autopsy examination of the brain confirmed a spongiform encephalopathy. Prion protein immunohistochemistry revealed occasional granular deposits in the cerebellar granular layer. The proband was found to harbor a novel PRNP 168 base pair (bp) insert mutation. The authors have identified a novel 168 bp octapeptide repeat insert mutation. Prion protein immunohistochemistry differs from previous cases harboring seven octapeptide repeat and other long insert mutations. Optimization of PRNP analysis, especially PCR conditions, is essential to avoid overlooking this type of mutation and delay the correct molecular genetic diagnosis.

  10. Yeast prion architecture explains how proteins can be genes

    Science.gov (United States)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  11. Prions

    Directory of Open Access Journals (Sweden)

    W. Bodemer

    2016-09-01

    BSE is always unknown. Telemetry revealed a shift in sleep–wake cycles early on, long before behavioral changes or clinical symptoms appeared. Pathology confirmed non-neuronal tissue as hidden places where prions exist. The rhesus model also allowed first comparative studies of epigenetic modifications on RNA in peripheral blood and brain tissue collected from uninfected and prion-infected animals. To conclude, our studies clearly demonstrated that this model is valid since progression to disease is almost identical to human CJD.

  12. Targeted knock-down of cellular prion protein expression in myelinating Schwann cells does not alter mouse prion pathogenesis.

    Science.gov (United States)

    Halliez, Sophie; Chesnais, Nathalie; Mallucci, Giovanna; Vilotte, Marthe; Langevin, Christelle; Jaumain, Emilie; Laude, Hubert; Vilotte, Jean-Luc; Béringue, Vincent

    2013-06-01

    In naturally acquired transmissible spongiform encephalopathies, the pathogenic agents or prions spread from the sites of initial peripheral uptake or replication to the brain where they cause progressive and fatal neurodegeneration. Routing via the peripheral nervous system is considered to be one of the main pathways to the central nervous system. Replication of prions in Schwann cells is viewed as a potentially important mechanism for efficient prion spread along nerves. Here we used a Cre-loxP mouse transgenetic approach to disrupt host-encoded prion protein (PrP(C)) specifically in myelinating Schwann cells. Despite the use of infection routes targeting highly myelinated nerves, there was no alteration in mouse prion pathogenesis, suggesting that conversion-dependent, centripetal spread of prions does not crucially rely on PrP(C) expressed by myelinating Schwann cells.

  13. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP

    NARCIS (Netherlands)

    Jansen, Casper; Parchi, Piero; Capellari, Sabina; Vermeij, Ad J.; Corrado, Patrizia; Baas, Frank; Strammiello, Rosaria; van Gool, Willem A.; van Swieten, John C.; Rozemuller, Annemieke J. M.

    2010-01-01

    Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrPSc)

  14. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP

    NARCIS (Netherlands)

    C. Jansen (Casper); P. Parchi (Piero); S. Capellari (Sabina); A.J. Vermeij (Ad); P. Corrado (Patrizia); F. Baas (Frank); R. Strammiello (Rosario); W.A. van Gool (Willem); J.C. van Swieten (John); A.J.M. Rozemuller (Annemieke)

    2010-01-01

    textabstractStop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein

  15. Thermodynamics of model prions and its implications for the problem of prion protein folding.

    Science.gov (United States)

    Harrison, P M; Chan, H S; Prusiner, S B; Cohen, F E

    1999-02-19

    Prion disease is caused by the propagation of a particle containing PrPSc, a misfolded form of the normal cellular prion protein (PrPC). PrPC can re-fold to form PrPSc with loss of alpha-helical structure and formation of extensive beta-sheet structure. Here, we model this prion folding problem with a simple, low-resolution lattice model of protein folding. If model proteins are allowed to re-fold upon dimerization, a minor proportion of them (up to approximately 17%) encrypts an alternative native state as a homodimer. The structures in this homodimeric native state re-arrange so that they are very different in conformation from the monomeric native state. We find that model proteins that are relatively less stable as monomers are more susceptible to the formation of alternative native states as homodimers. These results suggest that less-stable proteins have a greater need for a well-designed energy landscape for protein folding to overcome an increased chance of encrypting substantially different native conformations stabilized by multimeric interactions. This conceptual framework for aberrant folding should be relevant in Alzheimer's disease and other disorders associated with protein aggregation. Copyright 1999 Academic Press.

  16. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins.

    Directory of Open Access Journals (Sweden)

    Christine Pampeno

    Full Text Available The laminin receptor (LamR is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C and PrP(Sc. Indeed, LamR is a receptor for PrP(C. Whether LamR interacts with PrP(Sc exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrP(Sc, is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI⁺] and [psi⁻]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI⁺] strains. The presence of [PSI⁺] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI⁺] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI⁺] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.

  17. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice.

    Science.gov (United States)

    Moda, Fabio; Vimercati, Chiara; Campagnani, Ilaria; Ruggerone, Margherita; Giaccone, Giorgio; Morbin, Michela; Zentilin, Lorena; Giacca, Mauro; Zucca, Ileana; Legname, Giuseppe; Tagliavini, Fabrizio

    2012-01-01

    Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.

  18. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Science.gov (United States)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  19. Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    Science.gov (United States)

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-10-01

    The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.

  20. What Makes a Prion: Infectious Proteins From Animals to Yeast.

    Science.gov (United States)

    MacLea, K S

    2017-01-01

    While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation. © 2017 Elsevier Inc. All rights reserved.

  1. Humic substances interfere with detection of pathogenic prion protein

    Science.gov (United States)

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  2. Neuroinflammation in Alzheimer's disease and prion disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Bate, C.; van Gool, W. A.; Hoozemans, J. J. M.; Rozemuller, J. M.; Veerhuis, R.; Williams, A.

    2002-01-01

    Alzheimer's disease (AD) and prion disease are characterized neuropathologically by extracellular deposits of Abeta and PrP amyloid fibrils, respectively. In both disorders, these cerebral amyloid deposits are co-localized with a broad variety of inflammation-related proteins (complement factors,

  3. Prion pathogenesis and secondary lymphoid organs (SLO): tracking the SLO spread of prions to the brain.

    Science.gov (United States)

    Mabbott, Neil A

    2012-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrP (Sc), an abnormally folded isoform of the cellular prion protein (PrP (C)), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.

  4. Analysis of Conformational Stability of Abnormal Prion Protein Aggregates across the Spectrum of Creutzfeldt-Jakob Disease Prions

    Science.gov (United States)

    Cescatti, Maura; Saverioni, Daniela; Capellari, Sabina; Tagliavini, Fabrizio; Kitamoto, Tetsuyuki; Ironside, James; Giese, Armin

    2016-01-01

    ABSTRACT The wide phenotypic variability of prion diseases is thought to depend on the interaction of a host genotype with prion strains that have self-perpetuating biological properties enciphered in distinct conformations of the misfolded prion protein PrPSc. This concept is largely based on indirect approaches studying the effect of proteases or denaturing agents on the physicochemical properties of PrPSc aggregates. Furthermore, most data come from studies on rodent-adapted prion strains, making current understanding of the molecular basis of strains and phenotypic variability in naturally occurring diseases, especially in humans, more limited. To fill this gap, we studied the effects of guanidine hydrochloride (GdnHCl) and heating on PrPSc aggregates extracted from 60 sporadic Creutzfeldt-Jakob disease (CJD) and 6 variant CJD brains. While denaturation curves obtained after exposure of PrPSc to increasing GdnHCl concentrations showed similar profiles among the 7 CJD types analyzed, PrPSc exposure to increasing temperature revealed significantly different and type-specific responses. In particular, MM1 and VV2, the most prevalent and fast-replicating CJD types, showed stable and highly resistant PrPSc aggregates, whereas VV1, a rare and slowly propagating type, revealed unstable aggregates that easily dissolved at low temperature. Taken together, our results indicate that the molecular interactions mediating the aggregation state of PrPSc, possibly enciphering strain diversity, are differently targeted by GdnHCl, temperature, and proteases. Furthermore, the detected positive correlation between the thermostability of PrPSc aggregates and disease transmission efficiency makes inconsistent the proposed hypothesis that a decrease in conformational stability of prions results in an increase in their replication efficiency. IMPORTANCE Prion strains are defined as infectious isolates propagating distinctive phenotypic traits after transmission to syngeneic hosts

  5. Analysis of Conformational Stability of Abnormal Prion Protein Aggregates across the Spectrum of Creutzfeldt-Jakob Disease Prions.

    Science.gov (United States)

    Cescatti, Maura; Saverioni, Daniela; Capellari, Sabina; Tagliavini, Fabrizio; Kitamoto, Tetsuyuki; Ironside, James; Giese, Armin; Parchi, Piero

    2016-07-15

    The wide phenotypic variability of prion diseases is thought to depend on the interaction of a host genotype with prion strains that have self-perpetuating biological properties enciphered in distinct conformations of the misfolded prion protein PrP(Sc) This concept is largely based on indirect approaches studying the effect of proteases or denaturing agents on the physicochemical properties of PrP(Sc) aggregates. Furthermore, most data come from studies on rodent-adapted prion strains, making current understanding of the molecular basis of strains and phenotypic variability in naturally occurring diseases, especially in humans, more limited. To fill this gap, we studied the effects of guanidine hydrochloride (GdnHCl) and heating on PrP(Sc) aggregates extracted from 60 sporadic Creutzfeldt-Jakob disease (CJD) and 6 variant CJD brains. While denaturation curves obtained after exposure of PrP(Sc) to increasing GdnHCl concentrations showed similar profiles among the 7 CJD types analyzed, PrP(Sc) exposure to increasing temperature revealed significantly different and type-specific responses. In particular, MM1 and VV2, the most prevalent and fast-replicating CJD types, showed stable and highly resistant PrP(Sc) aggregates, whereas VV1, a rare and slowly propagating type, revealed unstable aggregates that easily dissolved at low temperature. Taken together, our results indicate that the molecular interactions mediating the aggregation state of PrP(Sc), possibly enciphering strain diversity, are differently targeted by GdnHCl, temperature, and proteases. Furthermore, the detected positive correlation between the thermostability of PrP(Sc) aggregates and disease transmission efficiency makes inconsistent the proposed hypothesis that a decrease in conformational stability of prions results in an increase in their replication efficiency. Prion strains are defined as infectious isolates propagating distinctive phenotypic traits after transmission to syngeneic hosts. Although

  6. Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic pH

    Directory of Open Access Journals (Sweden)

    Chin Jung Cheng

    2014-02-01

    Full Text Available Bovine spongiform encephalopathy (BSE, or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP, which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process.

  7. Distribution of prion protein genotypes in breeds of sheep in New Zealand.

    Science.gov (United States)

    Lee, M A; Manley, T R; Glass, B C; Anderson, R M; Wilson, S J; O'keefe, J S; Tisdall, D J; McEwan, J C; Phua, S H; Tate, M L

    2007-10-01

    To use an established high through-put genotyping procedure to gain an estimate of the frequency of alleles of the prion protein (PrP) gene in some common sheep breeds in New Zealand. Using a genotyping procedure based on matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF), DNA samples from 3,024 sheep from New Zealand, including breeds such as Romney, Texel, Coopworth, Merino and mixed breed, were isolated, genotyped and the results analysed. The 15 scrapie genotypes commonly reported, and derived from the five commonly reported allelic variants (ARR, ARQ, AHQ, ARH and VRQ), were all observed in the samples analysed. The estimates were indicative of the frequencies in the population of alleles present in breeds of sheep in New Zealand. There was a significant difference between the frequencies of alleles between breeds, but the ARQ, followed by the ARR allele, were, except in Carwell sheep, the most common alleles present. This study gave an indication of the percentages of PrP gene alleles in sheep in New Zealand, including data previously unreported from breeds in this country. It is of interest because of the relatively large size of the sheep population in New Zealand compared with many countries, and it provides some useful information on the genetic susceptibility or resistance of the sheep population in New Zealand to scrapie. The frequencies of the alleles can be different for an individual breed compared between countries.

  8. Expression of prion protein in the cerebrospinal fluid of patients with Parkinson's disease complicated with rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Zhang, W J; Shang, X L; Peng, J; Zhou, M H; Sun, W J

    2017-01-23

    Parkinson's disease (PD) is one of the most common neurodegenerative diseases and mainly manifests with decreasing numbers of dopaminergic neurons. Rapid eye movement (REM) sleep behavior disorder (RBD) has an incidence of 15-47% in all PD patients. Prion proteins (PrPs), which are expressed in both neurons and glial cells of the brain, are believed to be correlated with abnormal neurological functions, although their role in PD-related sleeping disorders remains unclear. We therefore investigated the expressional profiles of PrP in PD patients with RBD. Quantitative real-time polymerase chain reaction and western blotting were used to detect the mRNA and protein levels of PrP, respectively, in the cerebrospinal fluid (CSF) of PD patients with RBD, PD patients without sleeping disorder, and healthy people (N = 23 each). We investigated the correlation between the CSF PrP level and sleeping behavior in PD patients. Patients with PD complicated with RBD had significantly elevated CSF PrP expression levels (both mRNA and protein) compared with either PD patients without sleeping disorder or healthy individuals (P < 0.05 in both cases). There is elevated expression of PrP in the CSF of PD patients with RBD. This may benefit the diagnosis of PD-related RBD.

  9. Prion Protein Gene Polymorphisms in Turkish Native Goat Breeds ...

    Indian Academy of Sciences (India)

    Navya

    Prion Protein Gene Polymorphisms in Turkish Native Goat Breeds. HASAN MEYDAN1,*, ERKAN PEHLİVAN2, MUSTAFA MUHIP ÖZKAN2,. MEHMET ALI YILDIZ2, WILFRED GOLDMANN3. 1 Akdeniz University, Faculty of Agriculture, Department of Agricultural Biotechnology, Antalya, Turkey. 2 Ankara University, Faculty of ...

  10. A novel form of human disease with a protease-sensitive prion protein and heterozygosity methionine/valine at codon 129: Case report

    Directory of Open Access Journals (Sweden)

    Bilbao Miren J

    2010-10-01

    Full Text Available Abstract Background Sporadic Creutzfeldt-Jakob disease (sCJD is a rare neurodegenerative disorder in humans included in the group of Transmissible Spongiform Encephalopathies or prion diseases. The vast majority of sCJD cases are molecularly classified according to the abnormal prion protein (PrPSc conformations along with polymorphism of codon 129 of the PRNP gene. Recently, a novel human disease, termed "protease-sensitive prionopathy", has been described. This disease shows a distinct clinical and neuropathological phenotype and it is associated to an abnormal prion protein more sensitive to protease digestion. Case presentation We report the case of a 75-year-old-man who developed a clinical course and presented pathologic lesions compatible with sporadic Creutzfeldt-Jakob disease, and biochemical findings reminiscent of "protease-sensitive prionopathy". Neuropathological examinations revealed spongiform change mainly affecting the cerebral cortex, putamen/globus pallidus and thalamus, accompanied by mild astrocytosis and microgliosis, with slight involvement of the cerebellum. Confluent vacuoles were absent. Diffuse synaptic PrP deposits in these regions were largely removed following proteinase treatment. PrP deposition, as revealed with 3F4 and 1E4 antibodies, was markedly sensitive to pre-treatment with proteinase K. Molecular analysis of PrPSc showed an abnormal prion protein more sensitive to proteinase K digestion, with a five-band pattern of 28, 24, 21, 19, and 16 kDa, and three aglycosylated isoforms of 19, 16 and 6 kDa. This PrPSc was estimated to be 80% susceptible to digestion while the pathogenic prion protein associated with classical forms of sporadic Creutzfeldt-Jakob disease were only 2% (type VV2 and 23% (type MM1 susceptible. No mutations in the PRNP gene were found and genotype for codon 129 was heterozygous methionine/valine. Conclusions A novel form of human disease with abnormal prion protein sensitive to protease and

  11. A receptor for infectious and cellular prion protein

    Directory of Open Access Journals (Sweden)

    V.R. Martins

    1999-07-01

    Full Text Available Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.

  12. Is the presence of abnormal prion protein in the renal glomeruli of feline species presenting with FSE authentic?

    Directory of Open Access Journals (Sweden)

    Bencsik Anna A

    2010-08-01

    Full Text Available Abstract In a recent paper written by Hilbe et al (BMC vet res, 2009, the nature and specificity of the prion protein deposition in the kidney of feline species affected with feline spongiform encephalopathy (FSE were clearly considered doubtful. This article was brought to our attention because we published several years ago an immunodetection of abnormal prion protein in the kidney of a cheetah affected with FSE. At this time we were convinced of its specificity but without having all the possibilities to demonstrate it. As previously published by another group, the presence of abnormal prion protein in some renal glomeruli in domestic cats affected with FSE is indeed generally considered as doubtful mainly because of low intensity detected in this organ and because control kidneys from safe animals present also a weak prion immunolabelling. Here we come back on these studies and thought it would be helpful to relay our last data to the readers of BMC Vet res for future reference on this subject. Here we come back on our material as it is possible to study and demonstrate the specificity of prion immunodetection using the PET-Blot method (Paraffin Embedded Tissue - Blot. It is admitted that this method allows detecting the Proteinase K (PK resistant form of the abnormal prion protein (PrPres without any confusion with unspecific immunoreaction. We re-analysed the kidney tissue versus adrenal gland and brain samples from the same cheetah affected with TSE using this PET-Blot method. The PET-Blot analysis revealed specific PrPres detection within the brain, adrenal gland and some glomeruli of the kidney, with a complete identicalness compared to our previous detection using immunohistochemistry. In conclusion, these new data enable us to confirm with assurance the presence of specific abnormal prion protein in the adrenal gland and in the kidney of the cheetah affected with FSE. It also emphasizes the usefulness for the re-examination of any

  13. Cell-biological aspects of the prion protein in transgenic Xenopus intermediate pituitary cells

    NARCIS (Netherlands)

    Rosmalen, J.W.G. van

    2007-01-01

    In mammals, prions are the causative agents of various neurodegenerative diseases (e.g. scrapie, mad cow and Creutzfeldt-Jakob disease) in which the three-dimensional structure of the normal cellular form of the prion protein (PrPC) is misfolded into the infectious scrapie form (PrPSc or prion). In

  14. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling.

    Science.gov (United States)

    Hu, Wei; Nessler, Stefan; Hemmer, Bernhard; Eagar, Todd N; Kane, Lawrence P; Leliveld, S Rutger; Müller-Schiffmann, Andreas; Gocke, Anne R; Lovett-Racke, Amy; Ben, Li-Hong; Hussain, Rehana Z; Breil, Andreas; Elliott, Jeffrey L; Puttaparthi, Krishna; Cravens, Petra D; Singh, Mahendra P; Petsch, Benjamin; Stitz, Lothar; Racke, Michael K; Korth, Carsten; Stüve, Olaf

    2010-02-01

    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein(1-11) T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central

  15. Yeast prions are useful for studying protein chaperones and protein quality control.

    Science.gov (United States)

    Masison, Daniel C; Reidy, Michael

    2015-01-01

    Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.

  16. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    OpenAIRE

    Moudjou, Mohammed; Chapuis, J?r?me; Mekrouti, M?riem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andr?oletti, Olivier; Rezaei, Human; Dron, Michel; B?ringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular req...

  17. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to

  18. Gingerol prevents prion protein-mediated neuronal toxicity by regulating HIF prolyl hydroxylase 2 and prion protein.

    Science.gov (United States)

    Park, Yang-Gyu; Park, Sang-Youel

    2014-11-01

    Prion diseases are a family of progressive neurodegenerative disorders, which are fatal in the majority of cases and affect both humans and domestic animals. Prion protein (PrP) (106-126) retains the neurotoxic properties of the entire pathological PrPsc and it is generally used as a reasonable model to study the mechanisms responsible for prion diseases. In our previous studies, we demonstrated that hypoxia-inducible factor (HIF)-1α is involved in the gingerol-mediated protection of neuronal cells. HIF mediates cellular adaptations to low oxygen. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an oxygen sensor that hydroxylates the HIF-α-subunit, promoting its proteasomal degradation under normoxic conditions. Thus, in the present study we wished to determine whether gingerol inhibits the catalytic activity of PHD2 and prevents HIF-1α protein proteasomal degradation, thereby preventing the occurrence of PrP (106-126)-induced neuronal apoptosis. We used the pharmacological inhibition of PHD2 by dimethyloxalylglycine (DMOG) or deferoxamine (DFO) and the genetic inhibition of HIF-1α by HIF-1α small interfering RNA (siRNA) to block the effects of gingerol against PrP (106-126)-induced neurotoxicity. Our results demonstrated that gingerol prevented PrP (106‑126)-induced neuronal apoptosis by upregulating HIF-1α and inhibiting the catalytic activity of PHD2 under normoxic conditions. Moreover, the protective effects of gingerol against PrP (106-126)-induced neuronal apoptosis were associated with the upregulation of the expression of cellular prion protein (PrPc). In conclusion, our results indicate that gingerol has therapeutic potential for use in the treatment or prevention of prion diseases, and its inhibitory effects on the catalytic activity of PHD2 may be of clinical benefit.

  19. Pigeonpea Hybrid-Proline-Rich Protein (CcHyPRP) Confers Biotic and Abiotic Stress Tolerance in Transgenic Rice

    Science.gov (United States)

    Mellacheruvu, Sunitha; Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2016-01-01

    In this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth. Further, transgenic rice lines showed increased panicle size and grain number compared to the control plants under different stress conditions. The CcHyPRP transgenics, as compared to the control, revealed enhanced activities of catalase and superoxide dismutase (SOD) enzymes and reduced malondialdehyde (MDA) levels. Expression pattern of CcHyPRP::GFP fusion-protein confirmed its predominant localization in cell walls. Moreover, the CcHyPRP transgenics, as compared to the control, exhibited increased resistance to the fungal pathogen Magnaporthe grisea which causes blast disease in rice. Higher levels of bZIP and endochitinase transcripts as well as endochitinase activity were observed in transgenic rice compared to the control plants. The overall results demonstrate the intrinsic role of CcHyPRP in conferring multiple stress tolerance at the whole-plant level. The multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants for enhanced tolerance/resistance to different stress factors. PMID:26834756

  20. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    Science.gov (United States)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  1. Absence of the prion protein homologue Doppel causes male sterility.

    Science.gov (United States)

    Behrens, Axel; Genoud, Nicolas; Naumann, Heike; Rülicke, Thomas; Janett, Fredi; Heppner, Frank L; Ledermann, Birgit; Aguzzi, Adriano

    2002-07-15

    The agent that causes prion diseases is thought to be identical with PrP(Sc), a conformer of the normal prion protein PrP(C). PrP(C)-deficient mice do not exhibit major pathologies, perhaps because they express a protein termed Dpl, which shares significant biochemical and structural homology with PrP(C). To investigate the physiological function of Dpl, we generated mice harbouring a homozygous disruption of the Prnd gene that encodes Dpl. Dpl deficiency did not interfere with embryonic and postnatal development, but resulted in male sterility. Dpl protein was expressed at late stages of spermiogenesis, and spermatids of Dpl mutants were reduced in numbers, immobile, malformed and unable to fertilize oocytes in vitro. Mechanical dissection of the zona pellucida partially restored in vitro fertilization. We conclude that Dpl regulates male fertility by controlling several aspects of male gametogenesis and sperm-egg interaction.

  2. Differential Toxicity of Antibodies to the Prion Protein.

    Directory of Open Access Journals (Sweden)

    Regina R Reimann

    2016-01-01

    Full Text Available Antibodies against the prion protein PrPC can antagonize prion replication and neuroinvasion, and therefore hold promise as possible therapeutics against prion diseases. However, the safety profile of such antibodies is controversial. It was originally reported that the monoclonal antibody D13 exhibits strong target-related toxicity, yet a subsequent study contradicted these findings. We have reported that several antibodies against certain epitopes of PrPC, including antibody POM1, are profoundly neurotoxic, yet antibody ICSM18, with an epitope that overlaps with POM1, was reported to be innocuous when injected into mouse brains. In order to clarify this confusing situation, we assessed the neurotoxicity of antibodies D13 and ICSM18 with dose-escalation studies using diffusion-weighted magnetic resonance imaging and various histological techniques. We report that both D13 and ICSM18 induce rapid, dose-dependent, on-target neurotoxicity. We conclude that antibodies directed to this region may not be suitable as therapeutics. No such toxicity was found when antibodies against the flexible tail of PrPC were administered. Any attempt at immunotherapy or immunoprophylaxis of prion diseases should account for these potential untoward effects.

  3. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    Science.gov (United States)

    Daus, Martin L

    2016-01-04

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  4. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    Science.gov (United States)

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  5. The Role of a Novel Topological Form of the Prion Protein in Prion Disease

    Science.gov (United States)

    2008-07-01

    form of the prion protein ( PrPSc ). However, there is mounting evidence that PrPSc is not directly toxic to neurons; it may require interaction with...Hegde et al. 1999]. This hypothesis suggests that 4 PrPSc itself is not toxic per se, but it causes disease by leading to the aberrant generation of...However, this does not rule out the separate hypothesis that CtmPrP and PrPSc may be separately activating a common neurodegenerative pathway

  6. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    Science.gov (United States)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  7. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins.

    Science.gov (United States)

    Silva, Jerson L; Cordeiro, Yraima

    2016-07-22

    Protein misfolding results in devastating degenerative diseases and cancer. Among the culprits involved in these illnesses are prions and prion-like proteins, which can propagate by converting normal proteins to the wrong conformation. For spongiform encephalopathies, a real prion can be transmitted among individuals. In other disorders, the bona fide prion characteristics are still under investigation. Besides inducing misfolding of native proteins, prions bind nucleic acids and other polyanions. Here, we discuss how nucleic acid binding might influence protein misfolding for both disease-related and benign, functional prions and why the line between bad and good amyloids might be more subtle than previously thought. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Characterization of prion protein (PrP)-derived peptides that discriminate full-length PrPSc from PrPC.

    Science.gov (United States)

    Lau, Anthony L; Yam, Alice Y; Michelitsch, Melissa M D; Wang, Xuemei; Gao, Carol; Goodson, Robert J; Shimizu, Robert; Timoteo, Gulliver; Hall, John; Medina-Selby, Angelica; Coit, Doris; McCoin, Colin; Phelps, Bruce; Wu, Ping; Hu, Celine; Chien, David; Peretz, David

    2007-07-10

    On our initial discovery that prion protein (PrP)-derived peptides were capable of capturing the pathogenic prion protein (PrP(Sc)), we have been interested in how these peptides interact with PrP(Sc). After screening peptides from the entire human PrP sequence, we found two peptides (PrP(19-30) and PrP(100-111)) capable of binding full-length PrP(Sc) in plasma, a medium containing a complex mixture of other proteins including a vast excess of the normal prion protein (PrP(C)). The limit of detection for captured PrP(Sc) was calculated to be 8 amol from a approximately 10(5)-fold dilution of 10% (wt/vol) human variant Creutzfeldt-Jakob disease brain homogenate, with >3,800-fold binding specificity to PrP(Sc) over PrP(C). Through extensive analyses, we show that positively charged amino acids play an important, but not exclusive, role in the interaction between the peptides and PrP(Sc). Neither hydrophobic nor polar interactions appear to correlate with binding activity. The peptide-PrP(Sc) interaction was not sequence-specific, but amino acid composition affected binding. Binding occurs through a conformational domain that is only present in PrP(Sc), is species-independent, and is not affected by proteinase K digestion. These and other findings suggest a mechanism by which cationic domains of PrP(C) may play a role in the recruitment of PrP(C) to PrP(Sc).

  9. A medicinal herb Scutellaria lateriflora inhibits PrP replication in vitro and delays the onset of prion disease in mice

    Directory of Open Access Journals (Sweden)

    Martin eEiden

    2012-02-01

    Full Text Available ABSTRACT Transmissible spongiform encephalopathies (TSE are characterized by the misfolding of the host encoded prion protein (PrPC into a pathogenic isoform (PrPSc which leads to the accumulation of -sheet-rich fibrils and subsequent loss of neurons and synaptic functions. Although many compounds have been identified which inhibit accumulation or dissolve fibrils and aggregates in vitro there is no therapeutic treatment to stop these progressive neurodegenerative diseases. Here we describe the effects of the traditional medicinal herb Scutellaria lateriflora (S. lateriflora and its natural compounds, the flavonoids Baicalein and Baicalin, on the development of prion disease using in vitro and in vivo models. S. lateriflora extract as well as both constituents reduced the PrPres accumulation in scrapie-infected cell cultures and cell-free conversion assays and lead to the destabilization of preexisting PrPSc fibrils. Moreover, tea prepared from S. lateriflora, prolonged significantly the incubation time of scrapie infected mice upon oral treatment. Therefore Scutellaria extracts as well as the individual compounds can be considered as promising candidates for the development of new therapeutic drugs against TSEs and other neurodegenerative diseases like Alzheimer’s and Parkinson’s disease.

  10. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  11. Neurodegeneration Induced by Clustering of Sialylated Glycosylphosphatidylinositols of Prion Proteins*

    Science.gov (United States)

    Bate, Clive; Williams, Alun

    2012-01-01

    The transmissible spongiform encephalopathies, more commonly known as the prion diseases, are associated with the production and aggregation of disease-related isoforms of the prion protein (PrPSc). The mechanisms by which PrPSc accumulation causes neurodegeneration in these diseases are poorly understood. In cultured neurons, the addition of PrPSc alters cell membranes, increasing cholesterol, activating cytoplasmic phospholipase A2 (cPLA2), and triggering synapse damage. These effects of PrPSc are dependent upon its glycosylphosphatidylinositol (GPI) anchor, suggesting that it is the increased density of GPIs that occurs following the aggregation of PrPSc molecules that triggers neurodegeneration. This hypothesis was supported by observations that cross-linkage of the normal cellular prion protein (PrPC) also increased membrane cholesterol, activated cPLA2, and triggered synapse damage. These effects were not seen after cross-linkage of Thy-1, another GPI-anchored protein, and were dependent on the GPI anchor attached to PrPC containing two acyl chains and sialic acid. We propose that the aggregation of PrPSc, or the cross-linkage of PrPC, causes the clustering of sialic acid-containing GPI anchors at high densities, resulting in altered membrane composition, the pathological activation of cPLA2, and synapse damage. PMID:22262833

  12. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  13. Synthetic prions with novel strain-specified properties.

    Science.gov (United States)

    Moda, Fabio; Le, Thanh-Nhat T; Aulić, Suzana; Bistaffa, Edoardo; Campagnani, Ilaria; Virgilio, Tommaso; Indaco, Antonio; Palamara, Luisa; Andréoletti, Olivier; Tagliavini, Fabrizio; Legname, Giuseppe

    2015-12-01

    Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrP(Sc). Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrP(Sc) were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties.

  14. Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia.

    Science.gov (United States)

    Redaelli, Veronica; Bistaffa, Edoardo; Zanusso, Gianluigi; Salzano, Giulia; Sacchetto, Luca; Rossi, Martina; De Luca, Chiara Maria Giulia; Di Bari, Michele; Portaleone, Sara Maria; Agrimi, Umberto; Legname, Giuseppe; Roiter, Ignazio; Forloni, Gianluigi; Tagliavini, Fabrizio; Moda, Fabio

    2017-04-07

    Fatal Familial Insomnia (FFI) is a genetic prion disease caused by a point mutation in the prion protein gene (PRNP) characterized by prominent thalamic atrophy, diffuse astrogliosis and moderate deposition of PrP Sc in the brain. Here, for the first time, we demonstrate that the olfactory mucosa (OM) of patients with FFI contains trace amount of PrP Sc detectable by PMCA and RT-QuIC. Quantitative PMCA analysis estimated a PrP Sc concentration of about 1 × 10 -14  g/ml. In contrast, PrP Sc was not detected in OM samples from healthy controls and patients affected by other neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and frontotemporal dementia. These results indicate that the detection limit of these assays is in the order of a single PrP Sc oligomer/molecule with a specificity of 100%.

  15. Methionine sulfoxides on PrPSc: a prion-specific covalent signature.

    Science.gov (United States)

    Canello, Tamar; Engelstein, Roni; Moshel, Ofra; Xanthopoulos, Konstantinos; Juanes, María E; Langeveld, Jan; Sklaviadis, Theodoros; Gasset, Maria; Gabizon, Ruth

    2008-08-26

    Prion diseases are fatal neurodegenerative disorders believed to be transmitted by PrP (Sc), an aberrant form of the membrane protein PrP (C). In the absence of an established form-specific covalent difference, the infectious properties of PrP (Sc) were uniquely ascribed to the self-perpetuation properties of its aberrant fold. Previous sequencing of the PrP chain isolated from PrP(27-30) showed the oxidation of some methionine residues; however, at that time, these findings were ascribed to experimental limitations. Using the unique recognition properties of alphaPrP mAb IPC2, protein chemistry, and state of the art mass spectrometry, we now show that while a large fraction of the methionine residues in brain PrP (Sc) are present as methionine sulfoxides this modification could not be found on brain PrP (C) as well as on its recombinant models. In particular, the pattern of oxidation of M213 with respect to the glycosylation at N181 of PrP (Sc) differs both within and between species, adding another diversity factor to the structure of PrP (Sc) molecules. Our results pave the way for the production of prion-specific reagents in the form of antibodies against oxidized PrP chains which can serve in the development of both diagnostic and therapeutic strategies. In addition, we hypothesize that the accumulation of PrP (Sc) and thereafter the pathogenesis of prion disease may result from the poor degradation of oxidized aberrantly folded PrP.

  16. Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures.

    Science.gov (United States)

    Arjona, Alvaro; Simarro, Laura; Islinger, Florian; Nishida, Noriyuki; Manuelidis, Laura

    2004-06-08

    Human Creutzfeldt-Jakob disease (CJD) and similar neurodegenerative diseases such as sheep scrapie are caused by a variety of related infectious agents. They are associated with abnormal host prion protein (PrP), which is assessed by limited proteolysis to yield resistant PrP bands (PrP-res). Although PrP-res has been posited as the infectious agent, purified PrP-res itself is not infectious. To establish the independence of CJD agent characteristics from those of PrP-res, two different mouse-passaged CJD strains were propagated in neuronal cell lines whose PrP-res patterns differ markedly from each other and from those found in infected brain. In mouse brain, the fast CJD strain, FU, elicits many PrP-res deposits, whereas the slow SY strain elicits few. Both strains evoked PrP-res in cultured murine cells, although SY induced PrP-res only transiently. PrP-res patterns in FU- and SY-infected GT1 cells were identical, and were significantly different from those in brain and in N2a cells. Nevertheless, all FU-infected cell lines reproduced their original fast disease in mice, even after extensive subculture, whereas SY-infected cells produced only slow disease. These data indicate PrP-res neither encodes nor alters agent-specific characteristics. PrP-res was also a poor predictor of infectivity because SY cells that had lost PrP-res were approximately 10-fold more infectious than PrP-res-positive cultures. Furthermore, FU titers increased 650-fold, whereas PrP-res remained constant. Passaged FU-infected cells had titers comparable to brain, and >30% of cells displayed abundant cytoplasmic PrP-res aggregates that may trap agent. The continuous substantial replication of CJD in monotypic cells will further the discrimination of agent-specific molecules from pathological host responses to infection.

  17. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma

    Directory of Open Access Journals (Sweden)

    Martin L. Daus

    2016-01-01

    Full Text Available In 1982, the term “prions” (proteinaceous infectious particles was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  18. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    Directory of Open Access Journals (Sweden)

    Christina D Orrú

    2015-06-01

    Full Text Available Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230 is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested.

  19. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein.

    Science.gov (United States)

    Wilson, Rona; Plinston, Chris; Hunter, Nora; Casalone, Cristina; Corona, Cristiano; Tagliavini, Fabrizio; Suardi, Silvia; Ruggerone, Margherita; Moda, Fabio; Graziano, Silvia; Sbriccoli, Marco; Cardone, Franco; Pocchiari, Maurizio; Ingrosso, Loredana; Baron, Thierry; Richt, Juergen; Andreoletti, Olivier; Simmons, Marion; Lockey, Richard; Manson, Jean C; Barron, Rona M

    2012-07-01

    The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.

  20. Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay.

    Science.gov (United States)

    Kang, Mino; Kim, Su Yeon; An, Seong Soo A; Ju, Young Ran

    2013-08-02

    Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1-42 oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23-39 and 93-119 in the prion protein were involved in binding to β-amyloid1-40 and 1-42, and monomers of this protein interacted with prion protein residues 93-113 and 123-166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1-42 at residues 23-40, 104-122 and 159-175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1-40 and 1-42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease.

  1. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  2. LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein

    DEFF Research Database (Denmark)

    Parkyn, Celia J; Vermeulen, Esmeralda G M; Mootoosamy, Roy C

    2008-01-01

    The trafficking of normal cellular prion protein (PrP(C)) is believed to control its conversion to the altered conformation (designated PrP(Sc)) associated with prion disease. Although anchored to the membrane by means of glycosylphosphatidylinositol (GPI), PrP(C) on neurons is rapidly and consti......The trafficking of normal cellular prion protein (PrP(C)) is believed to control its conversion to the altered conformation (designated PrP(Sc)) associated with prion disease. Although anchored to the membrane by means of glycosylphosphatidylinositol (GPI), PrP(C) on neurons is rapidly...

  3. Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity.

    Science.gov (United States)

    Katorcha, Elizaveta; Makarava, Natallia; Savtchenko, Regina; D'Azzo, Alessandra; Baskakov, Ilia V

    2014-09-01

    The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrP(C)) into the disease-associated, transmissible form (PrP(Sc)). Pr(PC) is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrP(C) and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrP(C) glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrP(Sc) glycoform ratio. The current study demonstrates that undersialylated PrP(C) is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrP(C). As a result, PMCAb-derived PrP(Sc) was less sialylated than brain-derived PrP(Sc). A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrP(C) using sialidase was found to increase the rate of PrP(Sc) amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrP(C) reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrP(C) was also found to control PrP(Sc) glycoform ratio. A decrease in Pr(PC) sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrP(Sc). 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrP(C) differed from that of spleen-derived PrP(C). Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrP(C), suggesting that Neu1 is not responsible for desialylation of Pr

  4. Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity.

    Directory of Open Access Journals (Sweden)

    Elizaveta Katorcha

    2014-09-01

    Full Text Available The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrP(C into the disease-associated, transmissible form (PrP(Sc. Pr(PC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrP(C and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrP(C glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrP(Sc glycoform ratio. The current study demonstrates that undersialylated PrP(C is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb at the expense of oversialylated PrP(C. As a result, PMCAb-derived PrP(Sc was less sialylated than brain-derived PrP(Sc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrP(C using sialidase was found to increase the rate of PrP(Sc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrP(C reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrP(C was also found to control PrP(Sc glycoform ratio. A decrease in Pr(PC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrP(Sc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrP(C differed from that of spleen-derived PrP(C. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrP(C, suggesting that Neu1 is not responsible for desialylation of Pr

  5. Quantum dots and prion proteins: is this a new challenge for neurodegenerative diseases imaging?

    Science.gov (United States)

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrP(Sc)), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrP(Sc) detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels.

  6. Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein.

    Directory of Open Access Journals (Sweden)

    Saurabh Srivastava

    Full Text Available Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP purified from E.coli into the infectious prion state (PrPSc with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA for generating PrPSc de novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1'-rac-glycerol (POPG or phosphatidylethanolamine (PE, as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, α-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of α-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE.

  7. Prion Protein-specific antibodies that detect multiple TSE Agents with high sensitivity

    NARCIS (Netherlands)

    McCutcheon, S.; Langeveld, J.P.M.; Tan, B.C.; Gill, A.C.; Wolf, de C.A.; Martin, S.; Gonzalez, L.; Alibhai, J.; Alejo Blanco, A.R.; Campbell, L.; Hunter, N.; Houston, E.F.

    2014-01-01

    This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning

  8. Metal induced conformational changes of prion protein into Β-sheet ...

    African Journals Online (AJOL)

    Metal induced conformational changes of prion protein into Β-sheet isoforms similar to amyloid. ... Animal Research International ... The transmissible spongiform encephalopathies (TSEs) are characterized by the conversion of the normal cellular prion protein to its abnormal pathogenic isoform which has an increased ...

  9. A panel of monoclonal antibodies against the prion protein proves that there is no prion protein in human pancreatic ductal epithelial cells.

    Science.gov (United States)

    Yang, Liheng; Zhang, Yan; Hu, Lipeng; Zhu, Ying; Sy, Man-Sun; Li, Chaoyang

    2014-08-01

    Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay (ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells (HPDC).

  10. Prion diseases and sleep disorders

    Directory of Open Access Journals (Sweden)

    ZHAN Shu-qin

    2013-06-01

    Full Text Available Prion diseases (PrD are a group of encephalopathies with neurodegenerative changes caused by prion protein (PrP whose characteristic datum is transmissibility. In most cases they occur in a sporadic form although a group of them are familial associated with mutations in PrP gene. Phenotypicvariability of fatal familial insomnia (FFI versus familial Creutzfeldt-Jakob disease178 (fCJD178 seems to determine the different methionine-valine polymorphism at codon 129 of the PrP gene. Sleep disorders is one of the important clinical features for the diagnosis and definition of PrD. FFI, a hereditary disorder characterized by loss of physiological sleep with oneiric stupor, autonomic and motor hyperactivity. The polysomnography (PSG shows disappearance of the physiological pattern of non-rapid eye movement (NREM and rapid eye movement (REM sleep, as well as sleep spindles and K-complexes were absent. The hypothesis of the origin of these disorders is thalamic neuronal loss, especially in the anterior and dorsomedial nuclei, described in the neuropathology of these patients; besides, PET reveals hypofunction of thalamic nuclei, centres responsible for controlling wake-sleep. In CJD the wake-sleep disorders is not considered characteristic; nonetheless, frequent alterations have been found in the electroencephalographic registers of sleep. Besides thalamic neurodegeneration, there could be common etiopathogenic mechanisms in PrD in relation to the biological function of PrP.

  11. In situ formation of protease-resistant prion protein in transmissible spongiform encephalopathy-infected brain slices.

    Science.gov (United States)

    Bessen, R A; Raymond, G J; Caughey, B

    1997-06-13

    The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal neurodegenerative diseases that are characterized by the conversion of the normal host cellular prion protein (PrPC), to the abnormal protease-resistant prion protein isoform (PrP-res). It has been proposed, though not proven, that the infectious TSE agent consists solely of PrP-res and that PrP-res-induced conformational conversion of PrPC to additional PrP-res represents agent replication. In this study we demonstrate in situ conversion of protease-sensitive PrPC to PrP-res in TSE-infected brain slices. One step in this process is the binding of soluble PrPC to endogenous PrP-res deposits. The newly formed PrP-res associated with the slices in a pattern that correlated with the pre-existing brain distribution of PrP-res. Punctate in situ PrP conversion was observed in brain regions containing PrP-res amyloid plaques, and a more dispersed conversion product was detected in areas containing diffuse PrP-res deposits. These studies provide direct evidence that PrP-res formation involves the incorporation of soluble PrPC into both nonfibrillar and fibrillar PrP-res deposits in TSE-infected brain. Our findings suggest that the in situ PrP conversion reaction leads to additional polymerization of endogenous PrP-res aggregates and is analogous to the process of PrP-res fibril and subfibril growth in vivo.

  12. Exploration of the main sites for the transformation of normal prion protein (PrPC into pathogenic prion protein (PrPsc

    Directory of Open Access Journals (Sweden)

    Liu Xi-Lin

    2017-03-01

    Full Text Available Introduction: The functions and mechanisms of prion proteins (PrPC are currently unknown, but most experts believe that deformed or pathogenic prion proteins (PrPSc originate from PrPC, and that there may be plural main sites for the conversion of normal PrPC into PrPSc. In order to better understand the mechanism of PrPC transformation to PrPSc, the most important step is to determine the replacement or substitution site.

  13. Analyses of Protease Resistance and Aggregation State of Abnormal Prion Protein across the Spectrum of Human Prions*

    Science.gov (United States)

    Saverioni, Daniela; Notari, Silvio; Capellari, Sabina; Poggiolini, Ilaria; Giese, Armin; Kretzschmar, Hans A.; Parchi, Piero

    2013-01-01

    Prion diseases are characterized by tissue accumulation of a misfolded, β-sheet-enriched isoform (scrapie prion protein (PrPSc)) of the cellular prion protein (PrPC). At variance with PrPC, PrPSc shows a partial resistance to protease digestion and forms highly aggregated and detergent-insoluble polymers, two properties that have been consistently used to distinguish the two proteins. In recent years, however, the idea that PrPSc itself comprises heterogeneous species has grown. Most importantly, a putative proteinase K (PK)-sensitive form of PrPSc (sPrPSc) is being increasingly investigated for its possible role in prion infectivity, neurotoxicity, and strain variability. The study of sPrPSc, however, remains technically challenging because of the need of separating it from PrPC without using proteases. In this study, we have systematically analyzed both PK resistance and the aggregation state of purified PrPSc across the whole spectrum of the currently characterized human prion strains. The results show that PrPSc isolates manifest significant strain-specific differences in their PK digestion profile that are only partially explained by differences in the size of aggregates, suggesting that other factors, likely acting on PrPSc aggregate stability, determine its resistance to proteolysis. Fully protease-sensitive low molecular weight aggregates were detected in all isolates but in a limited proportion of the overall PrPSc (i.e. PrPSc in the biogenesis of prion strains. Finally, we highlight the limitations of current operational definitions of sPrPSc and of the quantitative analytical measurements that are not based on the isolation of a fully PK-sensitive PrPSc form. PMID:23897825

  14. Different behavior toward bovine spongiform encephalopathy infection of bovine prion protein transgenic mice with one extra repeat octapeptide insert mutation.

    Science.gov (United States)

    Castilla, J; Gutiérrez-Adán, A; Brun, A; Pintado, B; Parra, B; Ramírez, M A; Salguero, F J; Díaz San Segundo, F; Rábano, A; Cano, M J; Torres, J M

    2004-03-03

    In humans, insert mutations within the repetitive octapeptide region of the prion protein gene (Prnp) are often associated with familial spongiform encephalopathies. In this study, transgenic mice expressing bovine PrP (boTg mice) bearing an additional octapeptide insertion to the wild type (seven octapeptide repeats instead of six) showed an altered course of bovine spongiform encephalopathy (BSE) infection, reflected as reduced incubation times when compared with boTg mice expressing similar levels of the wild-type six-octapeptide protein. In both boTg mouse lines (bo6ORTg and bo7ORTg), incubation times were affected drastically depending on transgene expression levels and the inoculum used. In accordance with the lack of an interspecies barrier to BSE infection, we detected the typical signs of CNS spongiform degeneration by histopathological analysis and the presence of the bovine prion PrP(res) by Western blot or immunohistochemical analyses. When 7OR-PrP(res) was propagated in bo7ORTg mice, a similar earlier onset of clinical signs was observed compared with bo6ORTg mice. Proteins PrP(C) and PrP(res) containing seven octapeptides (7OR-PrP(C) and 7OR-PrP(res)) showed similar protease sensitivity and insolubility in nondenaturing detergents to homologous 6OR-PrP(C) and 6OR-PrP(res). In addition, bo7ORTg mice showed a higher sensitivity than bo6ORTg mice for detecting prion infection in specimens previously diagnosed as negative by conventional biochemical techniques. In the absence of clinical signs of disease, 7OR-PrP(res) could be detected as early as 120 d after inoculation by immunohistochemical and Western blot analyses. These findings may help us improve the current mouse bioassays and understand the role of the octapeptide repeat region in susceptibility to disease.

  15. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  16. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-type bovine spongiform encephalopathy

    Science.gov (United States)

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from normal cellular prion protein to pathogenic misfolded conformation. This conversion has been used for in vitro assays including serial protein misfolding amplification...

  17. The fate of PrP GPI-anchor signal peptide is modulated by P238S pathogenic mutation.

    Science.gov (United States)

    Guizzunti, Gianni; Zurzolo, Chiara

    2014-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins are localized to the plasma membrane via a C-terminally linked GPI anchor. The GPI anchor is added concomitantly to the cleavage of the carboxy-terminal GPI-anchor signal sequence, thereby causing the release of a C-terminal hydrophobic peptide, whose fate has not yet been investigated. Here we followed the fate of the GPI-attachment signal of the prion protein (PrP), a protein implicated in various types of transmissible neurodegenerative spongiform encephalopathies (TSE). The PrP GPI-anchor signal sequence shows a remarkable and unusual degree of conservation across the species and contains two point mutations (M232R/T and P238S) that are responsible for genetic forms of prion disorders. We show that the PrP GPI-anchor signal peptide (SP), but not the one from an unrelated GPI-anchored protein (folate receptor), undergoes degradation via the proteasome. Moreover, the P238S point mutation partially protects the PrP GPI-anchor SP from degradation. Our data provide the first attempt to address the fate of a GPI-anchor SP and identify a role for the P238S mutation, suggesting the possibility that the PrP GPI-anchor SP could play a role in neurodegenerative prion diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Prion topology and toxicity.

    Science.gov (United States)

    Aguzzi, Adriano; Steele, Andrew D

    2009-06-12

    Inactivation of mahogunin, an E3 ubiquitin ligase, causes a spongiform encephalopathy resembling prion disease. Chakrabarti and Hegde (2009) now report that prion proteins with aberrant topologies inactivate mahogunin, providing a plausible explanation for certain aspects of prion pathology.

  19. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms

    NARCIS (Netherlands)

    Bossers, A.; Belt, P.B.G.M.; Raymond, G.J.; Caughey, B.; Vries, de R.; Smits, M.

    1997-01-01

    Prion diseases are natural transmissible neurodegenerative disorders in humans and animals. They are characterized by the accumulation of a protease-resistant scrapie-associated prion protein (PrPSc) of the host-encoded cellular prion protein (PrPC) mainly in the central nervous system.

  20. Prion proteins: physiological functions and role in neurological disorders.

    Science.gov (United States)

    Hu, Wei; Kieseier, Bernd; Frohman, Elliot; Eagar, Todd N; Rosenberg, Roger N; Hartung, Hans-Peter; Stüve, Olaf

    2008-01-15

    Stanley Prusiner was the first to promote the concept of misfolded proteins as a cause for neurological disease. It has since been shown by him and other investigators that the scrapie isoform of prion protein (PrP(Sc)) functions as an infectious agent in numerous human and non-human disorders of the central nervous system (CNS). Interestingly, other organ systems appear to be less affected, and do not appear to lead to major co-morbidities. The physiological function of the endogenous cellular form of the prion protein (PrP(C)) is much less clear. It is intriguing that PrP(c) is expressed on most tissues in mammals, suggesting not only biological functions outside the CNS, but also a role other than the propagation of its misfolded isotype. In this review, we summarize accumulating in vitro and in vivo evidence regarding the physiological functions of PrP(C) in the nervous system, as well as in lymphoid organs.

  1. Gingerol-induced hypoxia-inducible factor 1 alpha inhibits human prion peptide-mediated neurotoxicity.

    Science.gov (United States)

    Jeong, Jae-Kyo; Moon, Myung-Hee; Park, Yang-Gyu; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2013-08-01

    Prion diseases are a family member of neurodegenerative disorders caused by the accumulation of misfolded-prion proteins (scrapie form of PrP, PrP(Sc)). The accumulation of PrP(Sc) in the brain leads to neurotoxicity by the induction of mitochondrial-apoptotic pathways. Recent studies implicated gingerol in protection against neurodegeneration. However, the basis of the neuroprotection in prion disease remains unclear. Thus, we investigated the influence of gingerol on prion peptide-induced neuronal damage. Gingerol blocked PrP(106-126)-mediated neurotoxicity by protecting mitochondrial function. Moreover, the protective effect of gingerol against PrP(106-126)-induced mitochondrial damage was associated with hypoxia-inducible factor 1 alpha (HIF-1α) expression. Gingerol-induced HIF-1α expression inhibited the PrP(106-126)-induced mitochondrial dysfunction. On the other hand, inhibition of gingerol-induced HIF-1 α expression attenuated the gingerol-mediated neuroprotective effect. Here, we demonstrate for the first time that treatment with gingerol prevents prion peptide-mediated neuronal cell death and that the neuroprotection is induced by HIF-1α-mediated signals. This study suggests that treatment with gingerol may provide a novel therapeutic strategy for prion-mediated neurotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Polymorphisms at Amino Acid Residues 141 and 154 Influence Conformational Variation in Ovine PrP

    Directory of Open Access Journals (Sweden)

    Sujeong Yang

    2014-01-01

    Full Text Available Polymorphisms in ovine PrP at amino acid residues 141 and 154 are associated with susceptibility to ovine prion disease: Leu141Arg154 with classical scrapie and Phe141Arg154 and Leu141His154 with atypical scrapie. Classical scrapie is naturally transmissible between sheep, whereas this may not be the case with atypical scrapie. Critical amino acid residues will determine the range or stability of structural changes within the ovine prion protein or its functional interaction with potential cofactors, during conversion of PrPC to PrPSc in these different forms of scrapie disease. Here we computationally identified that regions of ovine PrP, including those near amino acid residues 141 and 154, displayed more conservation than expected based on local structural environment. Molecular dynamics simulations showed these conserved regions of ovine PrP displayed genotypic differences in conformational repertoire and amino acid side-chain interactions. Significantly, Leu141Arg154 PrP adopted an extended beta sheet arrangement in the N-terminal palindromic region more frequently than the Phe141Arg154 and Leu141His154 variants. We supported these computational observations experimentally using circular dichroism spectroscopy and immunobiochemical studies on ovine recombinant PrP. Collectively, our observations show amino acid residues 141 and 154 influence secondary structure and conformational change in ovine PrP that may correlate with different forms of scrapie.

  3. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds.

    Science.gov (United States)

    Chamachi, Neharika G; Chakrabarty, Suman

    2017-02-14

    The structural basis of pathways of misfolding of a cellular prion (PrPC) into the toxic scrapie form (PrPSC) and identification of possible intermediates (e.g., PrP*) still eludes us. In this work, we have used a cumulative ∼65 μs of replica exchange molecular dynamics simulation data to construct the conformational free energy landscapes and capture the structural and thermodynamic characteristics associated with various stages of the thermal denaturation process in human prion protein. The temperature-dependent free energy surfaces consist of multiple metastable states stabilized by non-native contacts and hydrogen bonds, thus rendering the protein prone to misfolding. We have been able to identify metastable conformational states with high β-content (∼30-40%) and low α-content (∼10-20%) that might be precursors of PrPSC oligomer formation. These conformations also involve participation of the unstructured N-terminal domain, and its role in misfolding has been investigated. All the misfolded or partially unfolded states are quite compact in nature despite having large deviations from the native structure. Although the number of native contacts decreases dramatically at higher temperatures, the radius of gyration and number of intraprotein hydrogen bonds and contacts remain relatively unchanged, leading to stabilization of the misfolded conformations by non-native interactions. Our results are in good agreement with the established view that the C-terminal regions of the second and third helices (H2 and H3, respectively) of mammal prions might be the Achilles heels of their stability, while separation of B1-H1-B2 and H2-H3 domains seems to play a key role, as well.

  4. Determining the relative susceptibility of four prion protein genotypes to atypical scrapie

    Science.gov (United States)

    Atypical scrapie is a sheep prion (PrPSc) disease whose epidemiology is consistent with a sporadic origin and is associated with specific polymorphisms of the normal cellular prion protein (PrPC). We describe a mass spectrometry-based method of detecting and quantifying the polymorphisms of sheep P...

  5. Detection of type 1 prion protein in variant Creutzfeldt-Jakob disease

    NARCIS (Netherlands)

    Yull, H.M.; Ritchie, D.L.; Langeveld, J.P.M.; Zijderveld, van F.G.; Bruce, M.E.; Ironside, J.W.; Head, M.W.

    2006-01-01

    Molecular typing of the abnormal form of the prion protein (PrPSc) has come to be regarded as a powerful tool in the investigation of the prion diseases. All evidence thus far presented indicates a single PrPSc molecular type in variant Creutzfeldt-Jakob disease (termed type 2B), presumably

  6. Loss of prion protein induces a primed state of type I interferon-responsive genes

    DEFF Research Database (Denmark)

    Malachin, Giulia; Reiten, Malin R.; Salvesen, Øyvind

    2017-01-01

    The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the Pr...

  7. Male infertility and DNA damage in Doppel knockout and prion protein/Doppel double-knockout mice.

    Science.gov (United States)

    Paisley, Derek; Banks, Stephen; Selfridge, Jim; McLennan, Neil F; Ritchie, Ann-Marie; McEwan, Carolanne; Irvine, D Stewart; Saunders, Philippa T K; Manson, Jean C; Melton, David W

    2004-06-01

    The prion protein (PrP) and Doppel (Dpl) have many structural and biochemical properties in common, leading to the suggestion that the lack of an obvious phenotype in PrP-deficient mice maybe because of compensation by Dpl. To test this hypothesis and also investigate the function of Dpl we have generated Prnd(-/-) and Prnp(-/-)/Prnd(-/-) mouse lines. Both develop normally and display an identical male sterility phenotype that differs from that reported for another Prnd(-/-) mouse line. Sperm from both our mutant lines were present at normal concentrations, had normal motility, and no morphological abnormalities. Despite only rarely fertilizing oocytes in vivo, because of an inability to perform the acrosome reaction, mutant sperm were capable of fertilization in vitro, albeit at reduced rates compared to wild type. Elevated levels of oxidative DNA damage were found in both types of mutant sperm and resulting embryos failed at an early stage. Therefore we found no evidence that Dpl compensates for the loss of PrP function in mutant mouse lines, but it does have an important anti-oxidant function necessary for sperm integrity and male fertility.

  8. Influence of the N-terminal domain on the aggregation properties of the prion protein

    OpenAIRE

    Frankenfield, Kristen N.; Powers, Evan T.; Kelly, Jeffery W.

    2005-01-01

    Prion diseases appear to be caused by the aggregation of the cellular prion protein (PrPC) into an infectious form denoted PrPSc. The in vitro aggregation of the prion protein has been extensively investigated, yet many of these studies utilize truncated polypeptides. Because the C-terminal portion of PrPSc is protease-resistant and retains infectivity, it is assumed that studies on this fragment are most relevant. The full-length protein can be distinguished from the truncated protein becaus...

  9. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification.

    Science.gov (United States)

    Shikiya, Ronald A; Eckland, Thomas E; Young, Alan J; Bartz, Jason C

    2014-01-01

    Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrP(Sc) accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrP(Sc) in animals is controlled by the relationship between the rate of PrP(Sc) formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrP(Sc) formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrP(Sc) and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrP(Sc) formation and did not observe either a reduction in PrP(Sc) abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.

  10. Ni K-Edge XAS Suggests that Coordination of Ni II to the Unstructured Amyloidogenice Region of the Human Prion Protein Produces a Ni2 bis-u-hydroxo Dimer

    Energy Technology Data Exchange (ETDEWEB)

    Shearer,J.; Soh, P.

    2007-01-01

    Prion diseases are thought to be caused by the misfolding of the ubiquitous neuronal membrane prion protein (PrP) through an unknown mechanism that may involve Cu{sup II} coordination to the PrP. Previous work has utilized Ni{sup II} as a diamagnetic probe for Cu{sup II} coordination [C.E. Jones, M. Klewpatinond, S.R. Abdelraheim, D.R. Brown, J.H. Viles, J. Mol. Biol. 346 (2005) 1393-1407]. Herein we investigate Ni{sup II} coordination to the PrP fragment PrP(93-114) (AcN-GGTHSQWNKPSKPKTNMKHMAG) at pH = 10.0 by Ni K-edge X-ray absorption spectroscopy (XAS). We find that two equivalents of Ni{sup II} will coordinate to PrP(93-114) by UV/Vis titrations and mass spectrometry. Ni K-edge XAS data is consistent with Ni{sup II} ligated by five N/O based ligands (three N/O ligands at 2.01(2) {angstrom} and two at 1.855(2) {angstrom}). We were also able to locate a Ni-Ni vector at 3.1(1) {angstrom}, which suggests the two Ni{sup II} centers are contained in a bis-{mu}-hydroxo dimer. We therefore suggest that Ni{sup II} may not be a suitable diamagnetic mimic for Cu{sup II} coordination within the PrP since differential coordination modes for the two metals exist.

  11. Asymptomatic deer excrete infectious prions in faeces.

    Science.gov (United States)

    Tamgüney, Gültekin; Miller, Michael W; Wolfe, Lisa L; Sirochman, Tracey M; Glidden, David V; Palmer, Christina; Lemus, Azucena; DeArmond, Stephen J; Prusiner, Stanley B

    2009-09-24

    Infectious prion diseases-scrapie of sheep and chronic wasting disease (CWD) of several species in the deer family-are transmitted naturally within affected host populations. Although several possible sources of contagion have been identified in excretions and secretions from symptomatic animals, the biological importance of these sources in sustaining epidemics remains unclear. Here we show that asymptomatic CWD-infected mule deer (Odocoileus hemionus) excrete CWD prions in their faeces long before they develop clinical signs of prion disease. Intracerebral inoculation of irradiated deer faeces into transgenic mice overexpressing cervid prion protein (PrP) revealed infectivity in 14 of 15 faecal samples collected from five deer at 7-11 months before the onset of neurological disease. Although prion concentrations in deer faeces were considerably lower than in brain tissue from the same deer collected at the end of the disease, the estimated total infectious dose excreted in faeces by an infected deer over the disease course may approximate the total contained in a brain. Prolonged faecal prion excretion by infected deer provides a plausible natural mechanism that might explain the high incidence and efficient horizontal transmission of CWD within deer herds, as well as prion transmission among other susceptible cervids.

  12. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease.

    Science.gov (United States)

    Makarava, Natallia; Kovacs, Gabor G; Savtchenko, Regina; Alexeeva, Irina; Budka, Herbert; Rohwer, Robert G; Baskakov, Ilia V

    2011-12-01

    The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.

  13. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease.

    Directory of Open Access Journals (Sweden)

    Natallia Makarava

    2011-12-01

    Full Text Available The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc, which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc template. Here we report that authentic PrP(Sc and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP amyloid fibrils, which are structurally different from PrP(Sc and lack any detectable PrP(Sc particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres before authentic PrP(Sc evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.

  14. A stretch of residues within the protease-resistant core is not necessary for prion structure and infectivity.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Igel-Egalon, Angelique; Barbereau, Clément; Chapuis, Jérôme; Ciric, Danica; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2017-01-02

    Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a β-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure.

  15. Transport of the Pathogenic Prion Protein through Landfill Materials

    Science.gov (United States)

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  16. Prion Diagnosis: Application of Real-Time Quaking-Induced Conversion

    Directory of Open Access Journals (Sweden)

    Hae-Eun Kang

    2017-01-01

    Full Text Available Prions composed of pathogenic scrapie prion protein (PrPSc are infectious pathogens that cause progressive neurological conditions known as prion diseases or transmissible spongiform encephalopathies. Although these diseases pose considerable risk to public health, procedures for early diagnosis have not been established. One of the most recent attempts at sensitive and specific detection of prions is the real-time quaking-induced conversion (RT-QuIC method, which measures the activity of PrPSc aggregates or amyloid formation triggered by PrPSc seeds in the presence of recombinant PrP. In this review, we summarize prions, prion diseases, and current approaches to diagnosis, including the principle, conditions for assay performance, and current diagnostic applications of RT-QuIC.

  17. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.

    Science.gov (United States)

    Vázquez-Fernández, Ester; Vos, Matthijn R; Afanasyev, Pavel; Cebey, Lino; Sevillano, Alejandro M; Vidal, Enric; Rosa, Isaac; Renault, Ludovic; Ramos, Adriana; Peters, Peter J; Fernández, José Jesús; van Heel, Marin; Young, Howard S; Requena, Jesús R; Wille, Holger

    2016-09-01

    The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.

  18. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.

    Directory of Open Access Journals (Sweden)

    Ester Vázquez-Fernández

    2016-09-01

    Full Text Available The structure of the infectious prion protein (PrPSc, which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.

  19. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.

    Science.gov (United States)

    Derkatch, Irina L; Liebman, Susan W

    2013-01-01

    Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller "seeds." Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI(+)] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI(+)] aggregates to enlarge. This is incompatible with a previously proposed "capping" model where the overexpressed Q/N-rich protein poisons, or "caps," the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI(+)] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI(+)] aggregates in a way that blocks their shearing.

  20. Prions in Yeast

    Science.gov (United States)

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  1. Immunological mimicry of PrPC-PrPSc interactions: antibody-induced PrP misfolding.

    Science.gov (United States)

    Li, Li; Guest, Will; Huang, Alan; Plotkin, Steven S; Cashman, Neil R

    2009-08-01

    Prion diseases are associated with the conversion of cellular prion protein (PrP(C)) to an abnormal protease-resistant conformational isoform (PrP(Sc)) by template-directed conversion. The interaction between PrP(C) and PrP(Sc) is mediated by specific sites which have been mapped to six putative 'binding and conversion domains' (PrP-BCD) through peptide and antibody competition studies. Monoclonal antibodies (mAbs) directed against the bityrosine motif Tyr-Tyr-Arg (YYR) specifically recognize PrP(Sc) and other misfolded PrP species. Here, we report that select bead-bound PrP-BCD mAbs induce exposure of bityrosine epitopes on mouse brain PrP. By competition immunoprecipitation, we show that PrP-BCD mAb-induced bityrosine exposure occurs at alpha-helices 1 and 3. However, PrP-BCD mAb-induced PrP(C) misfolding is not accompanied by beta-sheet dissociation, a key event in PrP(C) conversion to PrP(Sc), and is not associated with acquisition of protease resistance, or the capacity to recruit additional molecules of PrP. Our data suggest that mAb mimics of the physical interaction of PrP(C) with PrP(Sc) can induce unfolding of specific PrP domains, but that subsequent processes (including the energetically unfavorable beta-sheet dissociation) effect isoform conversion in prion disease.

  2. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  3. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  4. Rapid and Highly Sensitive Detection of Variant Creutzfeldt - Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies

    Science.gov (United States)

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  5. Rapid and Highly Sensitive Detection of Variant Creutzfeldt-Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies.

    Directory of Open Access Journals (Sweden)

    Maxime Belondrade

    Full Text Available The prevalence of variant Creutzfeldt-Jakob disease (vCJD in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA. This assay allowed the specific detection of minute quantities (10-8 brain dilution of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions.

  6. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are associated with accumulations of disease specific PrP (PrP(d in the central nervous system (CNS and often the lymphoreticular system (LRS. Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d is at the level of plasma membranes. However, the precise nature of PrP(d-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  7. Cellular Trafficking of the Pathogenic Prion Protein PrPSc and Phenotypic Characterisation of Deletion Mutants in the Hydrophobic Domain of the Normal Prion Protein PrPC

    OpenAIRE

    Veith, Nathalie Monika

    2008-01-01

    The localisation of the pathogenic prion protein PrPSc was investigated with light and electron microscopy. The PrPSc specific antibody 15B3 was tested for its efficiency in immuncytochemistry. Subsequently, an appropriate method was found to stain PrPSc selectively. PrPSc was detected in clathrin coated pits, early endosomes, late endosomes/lysosomes nad exosomes. PrPSc could not be observed in lipid droplets.In the next part of the thesis different mutants of the prion protein carrying micr...

  8. Immunochemical detection of prion protein on dipsticks prepared with crystalline bacterial cell-surface layers.

    Science.gov (United States)

    Völkel, Dirk; Zimmermann, Klaus; Breitwieser, Andreas; Pable, Sabrina; Glatzel, Markus; Scheiflinger, Friedrich; Schwarz, Hans P; Sara, Margit; Sleytr, Uwe B; Dorner, Friedrich

    2003-12-01

    Transmissible spongiform encephalopathy (TSE) represents a spectrum of diseases affecting humans and animals. A definitive diagnosis of TSEs is only possible by postmortem identification of pathologic prion protein in brain tissue that has been treated with protease. The pathologic protein is detected by Western blot analysis or ELISA methods. The bovine spongiform encephalopathy crisis and occurrence of a new variant of CJD has increased demand for rapid and simple assays. A dipstick assay has been developed for prion diagnosis based on a sandwich ELISA specific for prion protein, and crystalline bacterial cell-surface layers (S-layers) were used as an immobilization matrix. The usefulness of the dipstick assay was evaluated by determining the detection limit, comparison with other methods, and analysis of CJD samples. The sensitivity of the prion dipsticks was similar to that published for time-resolved fluorescence ELISA methods. After protease treatment, pathologic prion protein could be detected specifically. The dipstick assay is a sensitive and specific test useful for the detection of prion protein. The simplicity of the S-layer dipstick lends itself to a variety of potential applications including field diagnostics.

  9. Tracing Conformational Transition of Abnormal Prion Proteins during Interspecies Transmission by Using Novel Antibodies*

    OpenAIRE

    Ushiki-Kaku, Yuko; Endo, Ryo; Iwamaru, Yoshifumi; Shimizu, Yoshihisa; Imamura, Morikazu; Masujin, Kentaro; Yamamoto, Takuji; Hattori, Shunji; Itohara, Shigeyoshi; Irie, Shinkichi; Yokoyama, Takashi

    2010-01-01

    Conformational differences in abnormal prion proteins (PrPSc) have been postulated to produce different prion phenotypes. During the interspecies transmission of prions, the conformation of PrPSc may change with passage; however, little is known about the mechanism of PrPSc transition. In this study, novel PrPSc-specific monoclonal antibodies (mAbs) were developed that could detect the PrPSc of mouse but not that of sheep. By using these mAbs, we attempted to examine PrPSc accumulated in mice...

  10. Structural conservation of prion strain specificities in recombinant prion protein fibrils in real-time quaking-induced conversion.

    Science.gov (United States)

    Sano, Kazunori; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    A major unsolved issue of prion biology is the existence of multiple strains with distinct phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity of the abnormal prion protein (PrP(Sc)). Real-time quaking-induced conversion (RT-QUIC) assay that uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrP(Sc) results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are differences in the secondary structures, especially in the β-sheets, and conformational stability between 2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular, the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original PrP(Sc). However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific conformational properties of the original PrP(Sc) can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both.

  11. Loss of Octarepeats in Two Processed Prion Pseudogenes in the Red Squirrel, Sciurus vulgaris

    NARCIS (Netherlands)

    Madsen, O.; Kortum, T.T.; Hupkes, H.; Kohlen, W.; Rheede, T.; Jong, de W.W.

    2010-01-01

    The N-terminal region of the mammalian prion protein (PrP) contains an 'octapeptide' repeat which is involved in copper binding. This eight- or nine-residue peptide is repeated four to seven times, depending on the species, and polymorphisms in repeat number do occur. Alleles with three repeats are

  12. Small kinetochore associated protein (SKAP promotes UV-induced cell apoptosis through negatively regulating pre-mRNA processing factor 19 (Prp19.

    Directory of Open Access Journals (Sweden)

    Shan Lu

    Full Text Available Apoptosis is a regulated cellular suicide program that is critical for the development and maintenance of healthy tissues. Previous studies have shown that small kinetochore associated protein (SKAP cooperates with kinetochore and mitotic spindle proteins to regulate mitosis. However, the role of SKAP in apoptosis has not been investigated. We have identified a new interaction involving SKAP, and we propose a mechanism through which SKAP regulates cell apoptosis. Our experiments demonstrate that both overexpression and knockdown of SKAP sensitize cells to UV-induced apoptosis. Further study has revealed that SKAP interacts with Pre-mRNA processing Factor 19 (Prp19. We find that UV-induced apoptosis can be inhibited by ectopic expression of Prp19, whereas silencing Prp19 has the opposite effect. Additionally, SKAP negatively regulates the protein levels of Prp19, whereas Prp19 does not alter SKAP expression. Finally, rescue experiments demonstrate that the pro-apoptotic role of SKAP is executed through Prp19. Taken together, these findings suggest that SKAP promotes UV-induced cell apoptosis by negatively regulating the anti-apoptotic protein Prp19.

  13. Motif-grafted antibodies containing the replicative interface of cellular PrP are specific for PrPSc.

    Science.gov (United States)

    Moroncini, Gianluca; Kanu, Nnennaya; Solforosi, Laura; Abalos, Gil; Telling, Glenn C; Head, Mark; Ironside, James; Brockes, Jeremy P; Burton, Dennis R; Williamson, R Anthony

    2004-07-13

    Prion diseases are closely associated with the conversion of the cellular prion protein (PrPC) to an abnormal conformer (PrPSc) [Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. USA 95, 13363-13383]. Monoclonal antibodies that bind epitopes comprising residues 96-104 and 133-158 of PrPC potently inhibit this process, presumably by preventing heterodimeric association of PrPC and PrPSc, and suggest that these regions of PrPC may be critical components of the PrPC-PrPSc replicative interface. We reasoned that transplanting PrP sequence corresponding to these regions into a suitable carrier molecule, such as an antibody, could impart specific recognition of disease-associated forms of PrP. To test this hypothesis, polypeptides containing PrP sequence between residues 89-112 or 136-158 were used to replace the extended heavy chain complementarity-determining region 3 of an IgG antibody specific for the envelope glycoprotein of HIV-1. Herein the resulting engineered PrP-IgGs are shown to bind specifically to infective fractions of PrP in mouse, human, and hamster prion-infected tissues, but not to PrPC, other cellular components, or the HIV-1 envelope. PrPSc reactivity was abolished when the sequence of the PrP 89-112 and 136-158 grafts was mutated, scrambled, or N-terminally truncated. Our findings suggest that residues within the 89-112 and 136-158 segments of PrPC are key components of one face of the PrPC-PrPSc complex. PrPSc-specific antibodies produced by the approach described may find widespread application in the study of prion biology and replication and in the detection of infectious prions in human and animal materials.

  14. Detection of prion protein in urine-derived injectable fertility products by a targeted proteomic approach.

    Directory of Open Access Journals (Sweden)

    Alain Van Dorsselaer

    Full Text Available BACKGROUND: Iatrogenic transmission of human prion disease can occur through medical or surgical procedures, including injection of hormones such as gonadotropins extracted from cadaver pituitaries. Annually, more than 300,000 women in the United States and Canada are prescribed urine-derived gonadotropins for infertility. Although menopausal urine donors are screened for symptomatic neurological disease, incubation of Creutzfeldt-Jakob disease (CJD is impossible to exclude by non-invasive testing. Risk of carrier status of variant CJD (vCJD, a disease associated with decades-long peripheral incubation, is estimated to be on the order of 100 per million population in the United Kingdom. Studies showing infectious prions in the urine of experimental animals with and without renal disease suggest that prions could be present in asymptomatic urine donors. Several human fertility products are derived from donated urine; recently prion protein has been detected in preparations of human menopausal gonadotropin (hMG. METHODOLOGY/PRINCIPAL FINDINGS: Using a classical proteomic approach, 33 and 34 non-gonadotropin proteins were identified in urinary human chorionic gonadotropin (u-hCG and highly-purified urinary human menopausal gonadotropin (hMG-HP products, respectively. Prion protein was identified as a major contaminant in u-hCG preparations for the first time. An advanced prion protein targeted proteomic approach was subsequently used to conduct a survey of gonadotropin products; this approach detected human prion protein peptides in urine-derived injectable fertility products containing hCG, hMG and hMG-HP, but not in recombinant products. CONCLUSIONS/SIGNIFICANCE: The presence of protease-sensitive prion protein in urinary-derived injectable fertility products containing hCG, hMG, and hMG-HP suggests that prions may co-purify in these products. Intramuscular injection is a relatively efficient route of transmission of human prion disease, and

  15. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  16. Autopsy case of Creutzfeldt-Jakob disease with Met/Val heterozygosity at codon 129 and type 1 protease-resistant prion protein presenting some florid-type plaques and many Kuru plaques in the cerebellum.

    Science.gov (United States)

    Kawauchi, Yoko; Kamitani, Toshiaki; Yagishita, Saburo; Kitamoto, Tetsuyuki; Kishida, Hitaru

    2006-08-01

    We report an atypical case of CJD. The clinical course was similar to a classic CJD phenotype, but histopathological study revealed several florid-type plaques in the amygdale and abundant Kuru plaques in the cerebellum that are atypical of classic CJD. Molecular analysis showed methionine/valine heterozygosity at codon 129 and no pathogenic mutation in the coding region of the prion protein gene. Western immunoblots revealed type 1 protease-resistant prion protein (PrPres), and a ration analysis of PrPres showed a high ratio of the diglycosylated form and a low ratio of the non-glycosylated form. Our case could not be precisely classified in any of Parchi's six variants. It suggests the existence of some factors that determine the phenotypic variability other than the codon 129 genotypes in the PrP gene or the physicochemical properties of PrPres.

  17. Different structural stability and toxicity of PrP(ARR) and PrP(ARQ) sheep prion protein variants.

    Science.gov (United States)

    Paludi, Domenico; Thellung, Stefano; Chiovitti, Katia; Corsaro, Alessandro; Villa, Valentina; Russo, Claudio; Ianieri, Adriana; Bertsch, Uwe; Kretzschmar, Hans A; Aceto, Antonio; Florio, Tullio

    2007-12-01

    The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrP(ARQ) [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrP(ARR) [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrP(ARR) and PrP(ARQ) variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrP(ARR) form was more toxic than the scrapie susceptible PrP(ARQ) variant. Moreover, the alpha-helical conformation of PrP(ARR) was less stable than that of PrP(ARQ) and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrP(ARQ) variant displays a higher propensity to form large aggregates than PrP(ARR). Interestingly, in the presence of small amounts of PrP(ARR), PrP(ARQ) aggregability was reduced to levels similar to that of PrP(ARR). Thus, in contrast to PrP(ARR) toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrP(ARQ) that allows the formation of large amyloid fibrils.

  18. Prion Protein Self-Interactions: a gateway to novel therapeutic strategies?

    OpenAIRE

    Rigter, A.

    2011-01-01

    Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seems to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE...

  19. Covalent Surface Modification of Prions: A Mass Spectrometry-Based Means of Detecting Distinctive Structural Features of Prion Strains.

    Science.gov (United States)

    Silva, Christopher J; Erickson-Beltran, Melissa L; Dynin, Irina C

    2016-02-16

    Prions (PrP(Sc)) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrP(C)) into a prion. The only demonstrated difference between PrP(C) and PrP(Sc) is conformational: they are isoforms. A given host can be infected by more than one kind or strain of prion. Five strains of hamster-adapted scrapie [Sc237 (=263K), drowsy, 139H, 22AH, and 22CH] and recombinant PrP were reacted with five different concentrations (0, 1, 5, 10, and 20 mM) of reagent (N-hydroxysuccinimide ester of acetic acid) that acetylates lysines. The extent of lysine acetylation was quantitated by mass spectrometry. The lysines in rPrP react similarly. The lysines in the strains react differently from one another in a given strain and react differently when strains are compared. Lysines in the C-terminal region of prions have different strain-dependent reactivity. The results are consistent with a recently proposed model for the structure of a prion. This model proposes that prions are composed of a four-rung β-solenoid structure comprised of four β-sheets that are joined by loops and turns of amino acids. Variation in the amino acid composition of the loops and β-sheet structures is thought to result in different strains of prions.

  20. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.

    Science.gov (United States)

    Biverståhl, Henrik; Andersson, August; Gräslund, Astrid; Mäler, Lena

    2004-11-30

    The structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein (bPrPp) has been investigated by NMR spectroscopy in phospholipid membrane mimetic systems. CD spectroscopy revealed that the peptide adopts a largely alpha-helical structure in zwitterionic bicelles as well as in DHPC micelles but has a less degree of alpha-helix structure in partly charged bicelles. The solution structure of bPrPp was determined in DHPC micelles, and an alpha-helix was found between residues Ser8 and Ile21. The residues within the helical region show slow amide hydrogen exchange. Translational diffusion measurements in zwitterionic q = 0.5 bicelles show that the peptide does not induce aggregation of the bicelles. Increased quadrupolar splittings were observed in the outer part of the (2)H spectrum of DMPC in q = 3.5 bicelles, indicating that the peptide induces a certain degree of order in the bilayer. The amide hydrogen exchange and the (2)H NMR results are consistent with a slight positive hydrophobic mismatch and that bPrPp forms a stable helix that inserts in a transmembrane location in the bilayer. The structure of bPrPp and its position in the membrane may be relevant for the understanding of how the N-terminal (1-30) part of the bovine PrP functions as a cell-penetrating peptide. These findings may lead to a better understanding of how the prion protein accumulates at the membrane surface and also how the conversion into the scrapie form is carried out.

  1. The Antemortem Detection and Conformational Switches of Prion Proteins

    Science.gov (United States)

    2006-07-01

    PrPsc to detect individual cells that contain PrPsc . Sensitivity studies suggest that it can detect as low as 10 prion-infected cells in 5 x 105 WBCs...The amyloidogenic PrPSc is the only proven surrogate marker for the diagnosis of prion diseases. Therefore almost all of the efforts for diagnosing...prion diseases are directed at detecting PrPsc . Since the only difference between the normal cellular PrPc and the pathological PrPsc is their

  2. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Na+/K+-ATPase is present in scrapie-associated fibrils, modulates PrP misfolding in vitro and links PrP function and dysfunction.

    Directory of Open Access Journals (Sweden)

    James F Graham

    Full Text Available Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrP(C, to the disease-associated form, PrP(Sc, through mechanisms that remain elusive but which require either direct or indirect interaction between PrP(C and PrP(Sc isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrP(C or to provide a scaffold ensuring correct alignment of PrP(C and PrP(Sc during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na(+/K(+-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na(+/K(+-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrP(C and Na(+/K(+-ATPase have previously been reported in astrocytes, our data highlight this molecule as

  4. MSA prions exhibit remarkable stability and resistance to inactivation.

    Science.gov (United States)

    Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita; Freyman, Yevgeniy; Oehler, Abby; Aoyagi, Atsushi; Mordes, Daniel A; Halliday, Glenda M; Middleton, Lefkos T; Gentleman, Steve M; Olson, Steven H; Prusiner, Stanley B

    2018-01-01

    In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.

  5. Plasminogen: A cellular protein cofactor for PrPSc propagation

    OpenAIRE

    Mays, Charles E; Ryou, Chongsuk

    2011-01-01

    The biochemical essence of prion replication is the molecular multiplication of the disease-associated misfolded isoform of prion protein (PrP), termed PrPSc, in a nucleic acid-free manner. PrPSc is generated by the protein misfolding process facilitated by conformational conversion of the host-encoded cellular PrP to PrPSc. Evidence suggests that an auxiliary factor may play a role in PrPSc propagation. We and others previously discovered that plasminogen interacts with PrP, while its functi...

  6. A Specific Population of Abnormal Prion Protein Aggregates Is Preferentially Taken Up by Cells and Disaggregated in a Strain-Dependent Manner

    Science.gov (United States)

    Choi, Young Pyo

    2013-01-01

    Prion diseases are characterized by the conversion of the soluble protease-sensitive host-encoded prion protein (PrPC) into its aggregated, protease-resistant, and infectious isoform (PrPSc). One of the earliest events occurring in cells following exposure to an exogenous source of prions is the cellular uptake of PrPSc. It is unclear how the biochemical properties of PrPSc influence its uptake, although aggregate size is thought to be important. Here we show that for two different strains of mouse prions, one that infects cells (22L) and one that does not (87V), a fraction of PrPSc associated with distinct sedimentation properties is preferentially taken up by the cells. However, while the fraction of PrPSc and the kinetics of uptake were similar for both strains, PrPSc derived from the 87V strain was disaggregated more rapidly than that derived from 22L. The increased rate of PrPSc disaggregation did not correlate with either the conformational or aggregate stability of 87V PrPSc, both of which were greater than those of 22L PrPSc. Our data suggest that the kinetics of disaggregation of PrPSc following cellular uptake is independent of PrPSc stability but may be dependent upon some component of the PrPSc aggregate other than PrP. Rapid disaggregation of 87V PrPSc by the cell may contribute, at least in part, to the inability of 87V to infect cells in vitro. PMID:23966386

  7. BSE case associated with prion protein gene mutation.

    Directory of Open Access Journals (Sweden)

    Jürgen A Richt

    2008-09-01

    Full Text Available Bovine spongiform encephalopathy (BSE is a transmissible spongiform encephalopathy (TSE of cattle and was first detected in 1986 in the United Kingdom. It is the most likely cause of variant Creutzfeldt-Jakob disease (CJD in humans. The origin of BSE remains an enigma. Here we report an H-type BSE case associated with the novel mutation E211K within the prion protein gene (Prnp. Sequence analysis revealed that the animal with H-type BSE was heterozygous at Prnp nucleotides 631 through 633. An identical pathogenic mutation at the homologous codon position (E200K in the human Prnp has been described as the most common cause of genetic CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. A recent epidemiological study revealed that the K211 allele was not detected in 6062 cattle from commercial beef processing plants and 42 cattle breeds, indicating an extremely low prevalence of the E211K variant (less than 1 in 2000 in cattle.

  8. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob

    2008-01-01

    Post-mortem diagnosis of transmissible spongiform encephalopaties (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrPSc) of the prion protein (PrPc) on neuronal cells. These methods depend on antibodies directed aganinst Pr......Pc and capable of reacting with PrpSc in situ (immunohistochemistry on nervous tissue sections) or with the unfolded form of the protein (western and paraffin embedded tissue (PET) blotting). Here, high-affinity monoclonal antibodies (mAbs 1.5D7, 1.6F4) were produced against synthetic PrP peptides in wild......-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrPSc, including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and V"), familial CJD and Gerstmann-Sträussler-Scheinker (GSS) disease PrPSc as well as PrPSc of bovine...

  9. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Directory of Open Access Journals (Sweden)

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  10. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Stefanie A.G. Black

    2014-08-01

    Full Text Available Although it is well established that misfolding of the cellular prion protein (PrPC into the beta-sheet-rich, aggregated scrapie conformation (PrPSc causes a variety of transmissible spongiform encephalopathies (TSEs, the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Abeta peptides, suggesting a role for PrPC in Alzheimer’s disease. Our recent findings suggest that Abeta peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for Alzheimer’s disease and other neurodegenerative disorders involving dysfunction of PrPC.

  11. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Bräuer, S; Zimyanin, V; Hermann, A

    2018-02-08

    The hallmark of age-related neurodegenerative diseases is the appearance of cellular protein deposits and spreading of this pathology throughout the central nervous system. Growing evidence has shown the involvement and critical role of proteins with prion-like properties in the formation of these characteristic cellular aggregates. Prion-like domains of such proteins with their proposed function in the organization of membraneless organelles are prone for misfolding and promoting further aggregation. Spreading of these toxic aggregates between cells and across tissues can explain the progression of clinical phenotypes and pathology in a stereotypical manner, characteristic for almost every neurodegenerative disease. Here, we want to review the current evidence for the role of prion-like mechanisms in classical neurodegenerative diseases and ALS in particular. We will also discuss an intriguingly central role of the protein TDP-43 in the majority of cases of this devastating disease.

  12. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  13. Expression of prion protein in the gut of mice infected orally with the 301V murine strain of the bovine spongiform encephalopathy agent.

    Science.gov (United States)

    González, L; Terry, L; Jeffrey, M

    2005-05-01

    Transmissible spongiform encephalopathies (TSEs) are characterized by the accumulation of an abnormal, disease-associated prion protein (PrP(d)). Expression of its normal cellular counterpart (PrP(c)) by the host is a pre-requisite for the spread of infection to the central nervous system and the development of disease. Moreover, cells expressing PrP(c) at specific sites such as the gastrointestinal tract might be regarded as the initial point of PrP(c)-PrP(d) conversion after infection by the oral route. In this study, inbred mice of the I/M strain were infected orally with the 301V murine strain of the bovine spongiform encephalopathy agent. The expression of PrP(c) and the accumulation of PrP(d) in the intestine was then investigated immunohistochemically, together with the variations in immunoreactivity that resulted from different pretreatments of the tissue. After proteinase K (PK) pretreatment, abnormal PrP was still detectable only in the gut-associated lymphoid tissue (GALT) of clinically affected mice and, to a much more limited degree, in the enteric nervous system (ENS). Cellular PrP that disappeared after PK treatment was particularly conspicuous in the ENS and present to a lesser extent in the GALT of all mice examined after inoculation with 301V or with normal brain homogenates, as well as in uninoculated controls. These findings suggested that not all PrP found in infected mice was PrP(d) and that part of the PrP(d) was sensitive to PK treatment. Reactivity to PrP antibody 1A8 was consistently found in the absorptive epithelium of the intestinal villi, with or without PK pretreatment. However, epithelial immunolabelling was comparable in inoculated and uninoculated mice and was also consistently seen in PrP "knockout" mice used as controls. It is therefore concluded that immunohistochemically detectable accumulation of PrP(d) in the gut of mice is a relatively late event in the pathogenesis of experimental infection in this model and that the

  14. Discovery of a novel, monocationic, small-molecule inhibitor of scrapie prion accumulation in cultured sheep microglia and Rov cells.

    Science.gov (United States)

    Stanton, James B; Schneider, David A; Dinkel, Kelcey D; Balmer, Bethany F; Baszler, Timothy V; Mathison, Bruce A; Boykin, David W; Kumar, Arvind

    2012-01-01

    Prion diseases, including sheep scrapie, are neurodegenerative diseases with the fundamental pathogenesis involving conversion of normal cellular prion protein (PrP(C)) to disease-associated prion protein (PrP(Sc)). Chemical inhibition of prion accumulation is widely investigated, often using rodent-adapted prion cell culture models. Using a PrP(Sc)-specific ELISA we discovered a monocationic phenyl-furan-benzimidazole (DB772), which has previously demonstrated anti-pestiviral activity and represents a chemical category previously untested for anti-prion activity, that inhibited PrP(Sc) accumulation and prion infectivity in primary sheep microglial cell cultures (PRNP 136VV/154RR/171QQ) and Rov9 cultures (VRQ-ovinized RK13 cells). We investigated potential mechanisms of this anti-prion activity by evaluating PrP(C) expression with quantitative RT-PCR and PrP ELISA, comparing the concentration-dependent anti-prion and anti-pestiviral effects of DB772, and determining the selectivity index. Results demonstrate at least an approximate two-log inhibition of PrP(Sc) accumulation in the two cell systems and confirmed that the inhibition of PrP(Sc) accumulation correlates with inhibition of prion infectivity. PRNP transcripts and total PrP protein concentrations within cell lysates were not decreased; thus, decreased PrP(C) expression is not the mechanism of PrP(Sc) inhibition. PrP(Sc) accumulation was multiple logs more resistant than pestivirus to DB772, suggesting that the anti-PrP(Sc) activity was independent of anti-pestivirus activity. The anti-PrP(Sc) selectivity index in cell culture was approximately 4.6 in microglia and 5.5 in Rov9 cells. The results describe a new chemical category that inhibits ovine PrP(Sc) accumulation in primary sheep microglia and Rov9 cells, and can be used for future studies into the treatment and mechanism of prion diseases.

  15. Combined EXAFS and DFT Structure Calculations Provide Structural Insights into the 1:1 Multi-Histidine Complexes of CuII, CuI and ZnII with the Tandem Octarepeats of the Mammalian Prion Protein

    Science.gov (United States)

    Pushie, M. Jake; Nienaber, Kurt H.; McDonald, Alex; Millhauser, Glenn L.; George, Graham N.

    2014-01-01

    The metal coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of copper interaction with PrP just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, and yet the structural details of the various metal coordination modes have not been fully elucidated in some cases. Herein we employ X-ray absorption near edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI and ZnII with an N-terminal fragment of PrP. The PrP fragment constitutes four tandem repeats representative of the mammalian octarepeat domain, designated OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations provide additional structural and thermodynamic data, and candidate structures are used to inform EXAFS data analysis. The optimized geometries from DFT calculations are used to identify potential coordination complexes for multi-histidine coordination of CuII, CuI and ZnII in an aqueous medium, modeled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve fitting, using full multiple scattering on candidate structures from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as a square planar [CuII(His)4]2+, digonal [CuI(His)2]+ and tetrahedral [ZnII(His)3(OH2)]2+, respectively. PMID:25042361

  16. CpG oligodeoxynucleotide-enhanced humoral immune response and production of antibodies to prion protein PrPSc in mice immunized with 139A scrapie-associated fibrils.

    Science.gov (United States)

    Spinner, Daryl S; Kascsak, Regina B; Lafauci, Giuseppe; Meeker, Harry C; Ye, Xuemin; Flory, Michael J; Kim, Jae Il; Schuller-Levis, Georgia B; Levis, William R; Wisniewski, Thomas; Carp, Richard I; Kascsak, Richard J

    2007-06-01

    Prion diseases are characterized by conversion of the cellular prion protein (PrP(C)) to a protease-resistant conformer, the srapie form of PrP (PrP(Sc)). Humoral immune responses to nondenatured forms of PrP(Sc) have never been fully characterized. We investigated whether production of antibodies to PrP(Sc) could occur in PrP null (Prnp(-/-)) mice and further, whether innate immune stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN) 1826 could enhance this process. Whether such stimulation could raise anti-PrP(Sc) antibody levels in wild-type (Prnp(+/+)) mice was also investigated. Prnp(-/-) and Prnp(+/+) mice were immunized with nondenatured 139A scrapie-associated fibrils (SAF), with or without ODN 1826, and were tested for titers of PrP-specific antibodies. In Prnp(-/-) mice, inclusion of ODN 1826 in the immunization regime increased anti-PrP titers more than 13-fold after two immunizations and induced, among others, antibodies to an N-terminal epitope, which were only present in the immune repertoire of mice receiving ODN 1826. mAb 6D11, derived from such a mouse, reacts with the N-terminal epitope QWNK in native and denatured forms of PrP(Sc) and recombinant PrP and exhibits a K(d) in the 10(-)(11) M range. In Prnp(+/+) mice, ODN 1826 increased anti-PrP levels as much as 84% after a single immunization. Thus, ODN 1826 potentiates adaptive immune responses to PrP(Sc) in 139A SAF-immunized mice. These results represent the first characterization of humoral immune responses to nondenatured, infectious PrP(Sc) and suggest methods for optimizing the generation of mAbs to PrP(Sc), many of which could be used for diagnosis and treatment of prion diseases.

  17. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    Directory of Open Access Journals (Sweden)

    Paula Stewart

    Full Text Available Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE during the bovine spongiform encephalopathy (BSE epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD remains an open question. Variation in the host-encoded prion protein (PrP(C largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo and pine marten (Martes martes were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus and mountain lion (Puma concolor from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  18. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    Science.gov (United States)

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A; Arnemo, Jon M; Tryland, Morten; Girling, Simon; Miller, Michael W; Tranulis, Michael A; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrP(C)) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C) protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  19. Role of Lipid Rafts and GM1 in the Segregation and Processing of Prion Protein

    OpenAIRE

    Botto, Laura; Cunati, Diana; Coco, Silvia; Sesana, Silvia; Bulbarelli, Alessandra; Biasini, Emiliano; Colombo, Laura; Negro, Alessandro; Chiesa, Roberto; Masserini, Massimo; Palestini, Paola

    2014-01-01

    The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC bet...

  20. The Functional Role of Prion Protein (PrPC on Autophagy

    Directory of Open Access Journals (Sweden)

    Hae-Young Shin

    2013-06-01

    Full Text Available Cellular prion protein (PrPC plays an important role in the cellular defense against oxidative stress. However, the exact protective mechanism of PrPC is unclear. Autophagy is essential for survival, differentiation, development, and homeostasis in several organisms. Although the role that autophagy plays in neurodegenerative disease has yet to be established, it is clear that autophagy-induced cell death is observed in neurodegenerative disorders that exhibit protein aggregations. Moreover, autophagy can promote cell survival and cell death under various conditions. In this review, we describe the involvement of autophagy in prion disease and the effects of PrPC.

  1. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Theodora Sideri

    2017-01-01

    Full Text Available Prions are protein-based infectious entities associated with fatal brain diseases in animals, but also modify a range of host-cell phenotypes in the budding yeast, Saccharomyces cerevisiae. Many questions remain about the evolution and biology of prions. Although several functionally distinct prion-forming proteins exist in S. cerevisiae, [HET-s] of Podospora anserina is the only other known fungal prion. Here we investigated prion-like, protein-based epigenetic transmission in the fission yeast Schizosaccharomyces pombe. We show that S. pombe cells can support the formation and maintenance of the prion form of the S. cerevisiae Sup35 translation factor [PSI+], and that the formation and propagation of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating commonalities in prion propagation machineries in these evolutionary diverged yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as a putative prion with a predicted prion-like domain. Overexpression of the ctr4 gene resulted in large Ctr4 protein aggregates that were both detergent and proteinase-K resistant. Cells carrying such [CTR+] aggregates showed increased sensitivity to oxidative stress, and this phenotype could be transmitted to aggregate-free [ctr–] cells by transformation with [CTR+] cell extracts. Moreover, this [CTR+] phenotype was inherited in a non-Mendelian manner following mating with naïve [ctr–] cells, but intriguingly the [CTR+] phenotype was not eliminated by guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi.

  2. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe

    Science.gov (United States)

    Sideri, Theodora; Yashiroda, Yoko; Ellis, David A.; Rodríguez-López, María; Yoshida, Minoru; Tuite, Mick F.; Bähler, Jürg

    2017-01-01

    Prions are protein-based infectious entities associated with fatal brain diseases in animals, but also modify a range of host-cell phenotypes in the budding yeast, Saccharomyces cerevisiae. Many questions remain about the evolution and biology of prions. Although several functionally distinct prion-forming proteins exist in S. cerevisiae, [HET-s] of Podospora anserina is the only other known fungal prion. Here we investigated prion-like, protein-based epigenetic transmission in the fission yeast Schizosaccharomyces pombe. We show that S. pombe cells can support the formation and maintenance of the prion form of the S. cerevisiae Sup35 translation factor [PSI+], and that the formation and propagation of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating commonalities in prion propagation machineries in these evolutionary diverged yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as a putative prion with a predicted prion-like domain. Overexpression of the ctr4 gene resulted in large Ctr4 protein aggregates that were both detergent and proteinase-K resistant. Cells carrying such [CTR+] aggregates showed increased sensitivity to oxidative stress, and this phenotype could be transmitted to aggregate-free [ctr-] cells by transformation with [CTR+] cell extracts. Moreover, this [CTR+] phenotype was inherited in a non-Mendelian manner following mating with naïve [ctr-] cells, but intriguingly the [CTR+] phenotype was not eliminated by guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi. PMID:28191457

  3. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Orally administered indomethacin acutely reduces cellular prion protein in the small intestine and modestly increases survival of mice exposed to infectious prions.

    Science.gov (United States)

    Martin, Gary R; Sharkey, Keith A; Jirik, Frank R

    2015-05-01

    The oral uptake of infectious prions represents a common way to acquire a prion disease; thus, host factors, such as gut inflammation and intestinal "leakiness", have the potential to influence infectivity. For example, the ingestion of nonsteroidal anti-inflammatory drugs (NSAIDs) is known to induce intestinal inflammation and increase intestinal permeability. Previously, we reported that normal cellular prion protein (PrP(C)) expression was increased in experimental colitis, and since the level of PrP(C) expressed is a determinant of prion disease propagation, we hypothesized that NSAID administration prior to the oral inoculation of mice with infectious prions would increase intestinal PrP(C) expression and accelerate the onset of neurological disease. In the long-term experiments, one group of mice was gavaged with indomethacin, followed by a second gavage with brain homogenate containing mouse-adapted scrapie (ME7). Control mice received ME7 brain homogenate alone. Brain and splenic tissues were harvested at several time points for immunoblotting, including at the onset of clinical signs of disease. In a second series of experiments, mice were gavaged with indomethacin to assess the acute effects of this treatment on intestinal PrP(C) expression. Acutely, NSAID treatment reduced intestinal PrP(C) expression, and chronically, there was a modest delay in the onset of neurological disease. In contrast to our hypothesis, brief exposure to an NSAID decreased intestinal PrP(C) expression and led to a modest survival advantage following oral ingestion of infectious prions.

  5. The double life of the ribosome: When its protein folding activity supports prion propagation.

    Science.gov (United States)

    Voisset, Cécile; Blondel, Marc; Jones, Gary W; Friocourt, Gaëlle; Stahl, Guillaume; Chédin, Stéphane; Béringue, Vincent; Gillet, Reynald

    2017-03-04

    It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation. In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases.

  6. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    Science.gov (United States)

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  7. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  8. Scrapie prions: a three-dimensional model of an infectious fragment.

    Science.gov (United States)

    Huang, Z; Prusiner, S B; Cohen, F E

    1996-01-01

    A conformational change seems to represent the major difference between the scrapie prion protein (PrPSc) and its normal cellular isoform (PrPC). We recently proposed a set of four helix bundle models for the three-dimensional structure of PrPC that are consistent with a variety of spectroscopic and genetic data. We report a plausible model for the three-dimensional structure of a biologically important fragment of PrPSc. The model of residues 108-218 was constructed by an approach that combines computational techniques and experimental data. The proposed structures of this fragment of PrPSc display a four-stranded beta-sheet covered on one face by two alpha-helices. Residues implicated in the prion species barrier are found to cluster on the solvent-accessible surface of the beta-sheet of one of the models. This interface could provide a structural template that would assist the conversion of PrPC to PrPSc and hence direct prion propagation. Molecular models of the PrP isoforms should prove very useful in developing structural hypotheses about the process by which PrPC is transformed into PrPSc, the mechanisms by which PrP gene mutations give rise to the inherited human prion diseases, and the species barrier that seems to protect humans from animal prions. It seems likely that PrPC represents a kinetically trapped intermediate in PrP folding.

  9. COMPOSITE PEPTIDE COMPOUNDS FOR DIAGNOSIS AND TREATMENT OF DISEASES CAUSED BY PRION PROTEINS

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to diseases caused by prion proteins, Novel composite peptide compounds are disclosed which comprise two or more peptides or peptide fragments optionally linked to a backbone and the peptides or peptide fragments are spatially positioned relative to each other so...... that they together form a non-linear sequence which mimics the tertiary structure of one or more PrPSc-specific epitopes as evidenced by the test described herein. The use of such conjugates as immunogens for the production of antibodies that specifically bind to the pathogenic form of a prion protein is revealed....... Other uses of the composite peptide compounds are also disclosed, such as use in diagnostic assays, production of antibodies and uses as vaccine immunogens for the prophylactic protection and therapeutic treatment of subjects against transmissible prion disease....

  10. Mechanisms of triggering H1 helix in prion proteins unfolding revealed by molecular dynamic simulation

    Science.gov (United States)

    Tseng, Chih-Yuan; Lee, H. C.

    2006-03-01

    In template-assistance model, normal Prion protein (PrP^C), the pathogen to cause several prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrP^Sc) through a transient interaction with PrP^Sc. Furthermore, conventional studies showed S1-H1-S2 region in PrP^C to be the template of S1-S2 β-sheet in PrP^Sc, and Prion protein's conformational conversion may involve an unfolding of H1 and refolding into β-sheet. Here we prepare several mouse prion peptides that contain S1-H1-S2 region with specific different structures, which are corresponding to specific interactions, to investigate possible mechanisms to trigger H1 α-helix unfolding process via molecular dynamic simulation. Three properties, conformational transition, salt-bridge in H1, and hydrophobic solvent accessible surface (SAS) are analyzed. From these studies, we found the interaction that triggers H1 unfolding to be the one that causes dihedral angle at residue Asn^143 changes. Whereas interactions that cause S1 segment's conformational changes play a minor in this process. These studies offers an additional evidence for template-assistance model.

  11. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    Science.gov (United States)

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  12. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    Science.gov (United States)

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  13. Prion Protein Self Interactions; a gateway to novel therapeutic strategies?

    NARCIS (Netherlands)

    Rigter, A.; Langeveld, J.P.M.; Zijderveld, van F.G.; Bossers, A.

    2010-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative disorders and include among others Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy (BSE) in cattle, and scrapie in sheep. The central event in disease development in TSEs is the

  14. PrP glycoforms are associated in a strain-specific ratio in native PrPSc.

    Science.gov (United States)

    Khalili-Shirazi, Azadeh; Summers, Linda; Linehan, Jacqueline; Mallinson, Gary; Anstee, David; Hawke, Simon; Jackson, Graham S; Collinge, John

    2005-09-01

    Prion diseases involve conversion of host-encoded cellular prion protein (PrPC) to a disease-related isoform (PrPSc). Using recombinant human beta-PrP, a panel of monoclonal antibodies was produced that efficiently immunoprecipitated native PrPSc and recognized epitopes between residues 93-105, indicating for the first time that this region is exposed in both human vCJD and mouse RML prions. In contrast, monoclonal antibodies raised to human alpha-PrP were more efficient in immunoprecipitating PrPC than PrPSc, and some of them could also distinguish between different PrP glycoforms. Using these monoclonal antibodies, the physical association of PrP glycoforms was studied in normal brain and in the brains of humans and mice with prion disease. It was shown that while PrPC glycoforms can be selectively immunoprecipitated, the differentially glycosylated molecules of native PrPSc are closely associated and always immunoprecipitate together. Furthermore, the ratio of glycoforms comprising immunoprecipitated native PrPSc from diverse prion strains was similar to those observed on denaturing Western blots. These studies are consistent with the view that the proportion of each glycoform incorporated into PrPSc is probably controlled in a strain-specific manner and that each PrPSc particle contains a mixture of glycoforms.

  15. UV-light exposed prion protein fails to form amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Thakur

    Full Text Available Amyloid fibril formation involves three steps; structural perturbation, nucleation and elongation. We have investigated amyloidogenesis using prion protein as a model system and UV-light as a structural perturbant. We find that UV-exposed prion protein fails to form amyloid fibrils. Interestingly, if provided with pre-formed fibrils as seeds, UV-exposed prion protein formed amyloid fibrils albeit with slightly different morphology. Atomic force microscopy and electron microscopic studies clearly show the formation of fibrils under these conditions. Circular dichroism study shows loss in helicity in UV-exposed protein. UV-exposed prion protein fails to form amyloid fibrils. However, it remains competent for fibril extension, suggesting that UV-exposure results in loss of nucleating capability. This work opens up possibility of segregating nucleation and elongation step of amyloidogenesis, facilitating screening of new drug candidates for specifically inhibiting either of these processes. In addition, the work also highlights the importance of light-induced structural and functional alterations which are important in protein based therapeutics.

  16. Neuroinflammation and common mechanism in Alzheimer's disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration

    NARCIS (Netherlands)

    Rozemuller, A.J.M.; Jansen, C.; Carrano, A.; van Haastert, E.S.; Hondius, D.; van der Vies, S.M.; Hoozemans, J.J.M.

    2012-01-01

    Background: In cases with a long (>1 year) clinical duration of prion disease, the prion protein can form amyloid deposits. These cases do not show accumulation of 4-kDa β-amyloid, which is observed in amyloid deposits in Alzheimer's disease (AD). In AD, amyloid is associated with inflammation and

  17. Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange.

    Science.gov (United States)

    Smirnovas, Vytautas; Kim, Jae-Il; Lu, Xiaojun; Atarashi, Ryuichiro; Caughey, Byron; Surewicz, Witold K

    2009-09-04

    The detailed structures of prion disease-associated, partially protease-resistant forms of prion protein (e.g. PrP(Sc)) are largely unknown. PrP(Sc) appears to propagate itself by autocatalyzing the conformational conversion and oligomerization of normal prion protein (PrP(C)). One manifestation of PrP(Sc) templating activity is its ability, in protein misfolding cyclic amplification reactions, to seed the conversion of recombinant prion protein (rPrP) into aggregates that more closely resemble PrP(Sc) than spontaneously nucleated rPrP amyloids in terms of proteolytic fragmentation and infrared spectra. The absence of posttranslational modifications makes these rPrP aggregates more amenable to detailed structural analyses than bona fide PrP(Sc). Here, we compare the structures of PrP(Sc)-seeded and spontaneously nucleated aggregates of hamster rPrP by using H/D exchange coupled with mass spectrometry. In spontaneously formed fibrils, very slow H/D exchange in region approximately 163-223 represents a systematically H-bonded cross-beta amyloid core structure. PrP(Sc)-seeded aggregates have a subpopulation of molecules in which this core region extends N-terminally as far as to residue approximately 145, and there is a significant degree of order within residues approximately 117-133. The formation of tightly H-bonded structures by these more N-terminal residues may account partially for the generation of longer protease-resistant regions in the PrP(Sc)-seeded rPrP aggregates; however, part of the added protease resistance is dependent on the presence of SDS during proteolysis, emphasizing the multifactorial influences on proteolytic fragmentation patterns. These results demonstrate that PrP(Sc) has a distinct templating activity that induces ordered, systematically H-bonded structure in regions that are dynamic and poorly defined in spontaneously formed aggregates of rPrP.

  18. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Joseph S. Stephan

    2015-06-01

    Full Text Available The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3 is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the importance of CPEB3’s prion formation for CPEB3 function. Interestingly, deletion analysis of the CPEB3 prion domain uncovered a tripartite organization: two aggregation-promoting domains surround a regulatory module that affects interaction with the actin cytoskeleton. In all, our data provide direct evidence that CPEB3 is a functional prion in the mammalian brain and underline the potential importance of an actin/CPEB3 feedback loop for the synaptic plasticity underlying the persistence of long-term memory.

  19. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.

    Science.gov (United States)

    Liu, Shu; Hossinger, André; Göbbels, Sarah; Vorberg, Ina M

    2017-03-04

    Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.

  20. Heterogeneity of the Abnormal Prion Protein (PrPSc) of the Chandler Scrapie Strain.

    Science.gov (United States)

    Kasai, Kazuo; Iwamaru, Yoshifumi; Masujin, Kentaro; Imamura, Morikazu; Mohri, Shirou; Yokoyama, Takashi

    2013-02-18

    The pathological prion protein, PrPSc, displays various sizes of aggregates. In this study, we investigated the conformation, aggregation stability and proteinase K (PK)-sensitivity of small and large PrPSc aggregates of mouse-adapted prion strains. We showed that small PrPSc aggregates, previously thought to be PK-sensitive, are resistant to PK digestion. Furthermore, we showed that small PrPSc aggregates of the Chandler scrapie strain have greater resistance to PK digestion and aggregation-denaturation than large PrPSc aggregates of this strain. We conclude that this strain consists of heterogeneous PrPSc.

  1. Assessing Prion Infectivity of Human Urine in Sporadic Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Notari, Silvio; Qing, Liuting; Pocchiari, Maurizio; Dagdanova, Ayuna; Hatcher, Kristin; Dogterom, Arend; Groisman, Jose F.; Lumholtz, Ib Bo; Puopolo, Maria; Lasmezas, Corinne; Chen, Shu G.; Kong, Qingzhong

    2012-01-01

    Prion diseases are neurodegenerative conditions associated with a misfolded and infectious protein, scrapie prion protein (PrPSc). PrPSc propagate prion diseases within and between species and thus pose risks to public health. Prion infectivity or PrPSc presence has been demonstrated in urine of experimentally infected animals, but there are no recent studies of urine from patients with Creutzfeldt-Jakob disease (CJD). We performed bioassays in transgenic mice expressing human PrP to assess prion infectivity in urine from patients affected by a common subtype of sporadic CJD, sCJDMM1. We tested raw urine and 100-fold concentrated and dialyzed urine and assessed the sensitivity of the bioassay along with the effect of concentration and dialysis on prion infectivity. Intracerebral inoculation of transgenic mice with urine from 3 sCJDMM1 patients failed to demonstrate prion disease transmission, indicating that prion infectivity in urine from sCJDMM1 patients is either not present or is <0.38 infectious units/mL. PMID:22260924

  2. Unraveling the key to the resistance of canids to prion diseases.

    Directory of Open Access Journals (Sweden)

    Natalia Fernández-Borges

    2017-11-01

    Full Text Available One of the characteristics of prions is their ability to infect some species but not others and prion resistant species have been of special interest because of their potential in deciphering the determinants for susceptibility. Previously, we developed different in vitro and in vivo models to assess the susceptibility of species that were erroneously considered resistant to prion infection, such as members of the Leporidae and Equidae families. Here we undertake in vitro and in vivo approaches to understand the unresolved low prion susceptibility of canids. Studies based on the amino acid sequence of the canine prion protein (PrP, together with a structural analysis in silico, identified unique key amino acids whose characteristics could orchestrate its high resistance to prion disease. Cell- and brain-based PMCA studies were performed highlighting the relevance of the D163 amino acid in proneness to protein misfolding. This was also investigated by the generation of a novel transgenic mouse model carrying this substitution and these mice showed complete resistance to disease despite intracerebral challenge with three different mouse prion strains (RML, 22L and 301C known to cause disease in wild-type mice. These findings suggest that dog D163 amino acid is primarily, if not totally, responsible for the prion resistance of canids.

  3. Polymorphisms of the prion protein gene Arabi sheep breed in Iran ...

    African Journals Online (AJOL)

    Ovine scrapie is a neurodegenerative disease caused by polymorphisms of the prion protein gene (Prnp); especially the amino acid residue alterations at codons 136, 154, and 174, in sheep have been found to be associated with susceptibility to scrapie disease. We studied Prnp polymorphisms in local sheep of ...

  4. A new mutation in the prion protein gene: A patient with dementia and white matter changes

    NARCIS (Netherlands)

    Van Harten, B.; Van Gool, W.A.; Van Langen, I.M.; Deekman, J.M.; Meijerink, P.H.S.; Weinstein, H.C.

    2000-01-01

    The authors describe the clinical characteristics, MRI abnormalities, and molecular findings in a patient with a novel variant of a two-octarepeat insertion mutation in the prion protein gene. This patient presented with moderately progressive dementia of presenile onset and gait ataxia. MRI showed

  5. Polymorphisms of the prion protein gene Arabi sheep breed in Iran

    African Journals Online (AJOL)

    Novin

    2011-11-09

    Nov 9, 2011 ... Ovine scrapie is a neurodegenerative disease caused by polymorphisms of the prion protein gene. (Prnp); especially the amino acid residue alterations at codons 136, 154, and 174, in sheep have been found to be associated with susceptibility to scrapie disease. We studied Prnp polymorphisms in local.

  6. Prion Protein Self-Interactions: a gateway to novel therapeutic strategies?

    NARCIS (Netherlands)

    Rigter, A.

    2011-01-01

    Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seems to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders

  7. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    Science.gov (United States)

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  8. A new mutation in the prion protein gene: a patient with dementia and white matter changes

    NARCIS (Netherlands)

    van Harten, B.; van Gool, W. A.; van Langen, I. M.; Deekman, J. M.; Meijerink, P. H.; Weinstein, H. C.

    2000-01-01

    The authors describe the clinical characteristics, MRI abnormalities, and molecular findings in a patient with a novel variant of a two-octarepeat insertion mutation in the prion protein gene. This patient presented with moderately progressive dementia of presenile onset and gait ataxia. MRI showed

  9. Hyperuricemic PRP in Tendon Cells

    Directory of Open Access Journals (Sweden)

    I. Andia

    2014-01-01

    Full Text Available Platelet-rich plasma (PRP is injected within tendons to stimulate healing. Metabolic alterations such as the metabolic syndrome, diabetes, or hyperuricemia could hinder the therapeutic effect of PRP. We hypothesise that tendon cells sense high levels of uric acid and this could modify their response to PRP. Tendon cells were treated with allogeneic PRPs for 96 hours. Hyperuricemic PRP did not hinder the proliferative actions of PRP. The gene expression pattern of inflammatory molecules in response to PRP showed absence of IL-1b and COX1 and modest expression of IL6, IL8, COX2, and TGF-b1. IL8 and IL6 proteins were secreted by tendon cells treated with PRP. The synthesis of IL6 and IL8 proteins induced by PRP is decreased significantly in the presence of hyperuricemia (P = 0.017 and P = 0.012, resp.. Concerning extracellular matrix, PRP-treated tendon cells displayed high type-1 collagen, moderate type-3 collagen, decorin, and hyaluronan synthase-2 expression and modest expression of scleraxis. Hyperuricemia modified the expression pattern of extracellular matrix proteins, upregulating COL1 (P = 0.036 and COMP (P = 0.012 and downregulating HAS2 (P = 0.012. Positive correlations between TGF-b1 and type-1 collagen (R = 0.905, P = 0.002 and aggrecan (R = 0.833, P = 0.010 and negative correlations between TGF-b1 and IL6 synthesis (R = −0.857, P = 0.007 and COX2 (R = −0.810, P = 0.015 were found.

  10. The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo.

    Science.gov (United States)

    Park, Kyung-Won; Eun Kim, Gyoung; Morales, Rodrigo; Moda, Fabio; Moreno-Gonzalez, Ines; Concha-Marambio, Luis; Lee, Amy S; Hetz, Claudio; Soto, Claudio

    2017-03-23

    Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.

  11. The Copper(II) Adduct of the Unstructured Region of the Amyloidogenic Fragment Derived from theHuman Prion Protein is Redox-Active at Physiological pH

    Energy Technology Data Exchange (ETDEWEB)

    Shearer,J.; Soh, P.

    2007-01-01

    Prion diseases are caused by the misfolding and aggregation of the prion protein (PrP). Herein we provide evidence that the Cu{sup II} adduct of the unstructured amyloidogenic fragment of the human PrP (PrP(91-126)) is redox active under physiological conditions. We have identified that the relevant high-affinity Cu{sup II} binding region of PrP(91-126) is contained between residues 106 and 114. Both [Cu{sup II}(PrP(91-126))] and [Cu{sup II}(PrP(106-114))] have Cu{sup II} K{sub d} values of {approx}90 {mu}M. Furthermore, the smaller PrP fragment PrP(106-114) coordinates Cu{sup II} producing an electronic absorption spectrum nearly identical with [Cu{sup II}(PrP(91-126))] ({lambda}{sub max} {approx}610 nm ({var_epsilon} {approx}125 M{sup -1} cm{sup -1})) suggesting a similar coordination environment for Cu{sup II}. Cu K-edge X-ray absorption spectroscopy (XAS) reveals a nearly identical CuN(N/O){sub 2}S coordination environment for these two metallopeptides (2N/O at {approx}1.97 {angstrom}; 1S at {approx}2.30 {angstrom}; 1 imidazole N at {approx}1.95 {angstrom}). Both display quasireversible Cu{sup II}/Cu{sup I} redox couples at {approx}-350 mV vs Ag/AgCl. ESI-MS indicates that both peptides will coordinate Cu{sup I}. However, XAS indicates differential coordination environments between [Cu{sup I}(PrP(91-126))] and [Cu{sup I}(PrP(106-114))]. These data indicate that [Cu{sup I}(PrP(91-126))] contains Cu in a four coordinate (N/O){sub 2}S{sub 2} environment with similar (N/O)-Cu bond distances (Cu-(N/O) r = 2.048(4) {angstrom}), while [Cu{sup I}(PrP(106-114))] contains Cu in a four coordinate (N/O){sub 2}S{sub 2} environment with differential (N/O)-Cu bond distances (Cu-(N/O) r{sub 1} = 2.057(6) {angstrom}; r{sub 2} = 2.159(3) {angstrom}). Despite the differential coordination environments both Cu-metallopeptides will catalytically reduce O{sub 2} to O{sub 2}{sup {sm_bullet}-} at comparable rates.

  12. Development of techniques in magnetic resonance and structural studies of the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, Hans-Marcus L. [Univ. of California, Berkeley, CA (United States)

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

  13. Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier.

    Science.gov (United States)

    Sharma, Aditi; Bruce, Kathryn L; Chen, Buxin; Gyoneva, Stefka; Behrens, Sven H; Bommarius, Andreas S; Chernoff, Yury O

    2016-01-15

    Amyloid propagation requires high levels of sequence specificity so that only molecules with very high sequence identity can form cross-β-sheet structures of sufficient stringency for incorporation into the amyloid fibril. This sequence specificity presents a barrier to the transmission of prions between two species with divergent sequences, termed a species barrier. Here we study the relative effects of protein sequence, seed conformation, and environment on the species barrier strength and specificity for the yeast prion protein Sup35p from three closely related species of the Saccharomyces sensu stricto group; namely, Saccharomyces cerevisiae, Saccharomyces bayanus, and Saccharomyces paradoxus. Through in vivo plasmid shuffle experiments, we show that the major characteristics of the transmission barrier and conformational fidelity are determined by the protein sequence rather than by the cellular environment. In vitro data confirm that the kinetics and structural preferences of aggregation of the S. paradoxus and S. bayanus proteins are influenced by anions in accordance with their positions in the Hofmeister series, as observed previously for S. cerevisiae. However, the specificity of the species barrier is primarily affected by the sequence and the type of anion present during the formation of the initial seed, whereas anions present during the seeded aggregation process typically influence kinetics rather than the specificity of prion conversion. Therefore, our work shows that the protein sequence and the conformation variant (strain) of the prion seed are the primary determinants of cross-species prion specificity both in vivo and in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease.

    Science.gov (United States)

    Pamplona, Reinald; Naudí, Alba; Gavín, Rosalina; Pastrana, Miguel A; Sajnani, Gustavo; Ilieva, Ekaterina V; Del Río, José Antonio; Portero-Otín, Manuel; Ferrer, Isidre; Requena, Jesús R

    2008-10-15

    The basic molecular underpinnings of the pathological changes that unfold in prion disease remain elusive. A key role of increased oxidative stress has been hypothesized. Given the transient nature of most intermediate molecules implicated, increased oxidative stress is better assessed by quantitating the damage it causes to macromolecules. We used mass spectrometry-based methods to measure specific products of protein oxidation, glycoxidation, and lipoxidation in brains from patients suffering from Creutzfeldt-Jakob disease and Syrian hamsters affected by scrapie. In both cases, increased amounts of glutamic and aminoadipic semialdehydes, products of metal-catalyzed oxidation, malondialdehydelysine (a product of lipoxidation), N-epsilon-carboxyethyllysine (a product of glycoxidation), and N-epsilon-carboxymethyllysine (generated by lipoxidation and glycoxidation) were measured. PrP(Sc), the infectious isoform of the prion protein that accumulates in prion disease, was itself shown to be a target of increased oxidative modification. These changes were accompanied by alterations in fatty acid composition and increased phosphorylation of ERK(1/2) and p38, protein kinases known to respond to increased flows of ROS. These data support an important role of oxidative damage in the pathology of prion disease.

  15. Role of lipid rafts and GM1 in the segregation and processing of prion protein.

    Directory of Open Access Journals (Sweden)

    Laura Botto

    Full Text Available The prion protein (PrPC is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical, stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.

  16. Role of lipid rafts and GM1 in the segregation and processing of prion protein.

    Science.gov (United States)

    Botto, Laura; Cunati, Diana; Coco, Silvia; Sesana, Silvia; Bulbarelli, Alessandra; Biasini, Emiliano; Colombo, Laura; Negro, Alessandro; Chiesa, Roberto; Masserini, Massimo; Palestini, Paola

    2014-01-01

    The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.

  17. Structure-Based Drug Discovery for Prion Disease Using a Novel Binding Simulation

    Directory of Open Access Journals (Sweden)

    Daisuke Ishibashi

    2016-07-01

    Full Text Available The accumulation of abnormal prion protein (PrPSc converted from the normal cellular isoform of PrP (PrPC is assumed to induce pathogenesis in prion diseases. Therefore, drug discovery studies for these diseases have focused on the protein conversion process. We used a structure-based drug discovery algorithm (termed Nagasaki University Docking Engine: NUDE that ran on an intensive supercomputer with a graphic-processing unit to identify several compounds with anti-prion effects. Among the candidates showing a high-binding score, the compounds exhibited direct interaction with recombinant PrP in vitro, and drastically reduced PrPSc and protein-aggresomes in the prion-infected cells. The fragment molecular orbital calculation showed that the van der Waals interaction played a key role in PrPC binding as the intermolecular interaction mode. Furthermore, PrPSc accumulation and microgliosis were significantly reduced in the brains of treated mice, suggesting that the drug candidates provided protection from prion disease, although further in vivo tests are needed to confirm these findings. This NUDE-based structure-based drug discovery for normal protein structures is likely useful for the development of drugs to treat other conformational disorders, such as Alzheimer's disease.

  18. ­Classifying prion and prion-like phenomena

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as “prion-like”, “prion-related” or “prion-forming” do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how “prion” can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different “flavors” of prion / prion-like phenomena. PMID:24549098

  19. Development of a bifunctional filter for prion protein and leukoreduction of red blood cell components.

    Science.gov (United States)

    Yokomizo, Tomo; Kai, Takako; Miura, Morikazu; Ohto, Hitoshi

    2015-02-01

    Leukofiltration of blood components is currently implemented worldwide as a precautionary measure against white blood cell-associated adverse effects and the potential transmission of variant Creutzfeldt-Jakob disease (vCJD). A newly developed bifunctional filter (Sepacell Prima, Asahi Kasei Medical) was assessed for prion removal, leukoreduction (LR), and whether the filter significantly affected red blood cells (RBCs). Sepacell Prima's postfiltration effects on RBCs, including hemolysis, complement activation, and RBC chemistry, were compared with those of a conventional LR filter (Sepacell Pure RC). Prion removal was measured by Western blot after spiking RBCs with microsomal fractions derived from scrapie-infected hamster brain homogenate. Serially diluted exogenous prion solutions (0.05 mL), with or without filtration, were injected intracerebrally into Golden Syrian hamsters. LR efficiency of 4.44 log with the Sepacell Prima was comparable to 4.11 log with the conventional LR filter. There were no significant differences between the two filters in hemoglobin loss, hemolysis, complement activation, and RBC biomarkers. In vitro reduction of exogenously spiked prions by the filter exceeded 3 log. The titer, 6.63 (log ID50 /mL), of prefiltration infectivity of healthy hamsters was reduced to 2.52 (log ID50 /mL) after filtration. The reduction factor was calculated as 4.20 (log ID50 ). With confirmed removal efficacy for exogenous prion protein, this new bifunctional prion and LR filter should reduce the residual risk of vCJD transmission through blood transfusion without adding complexity to component processing. © 2014 AABB.

  20. N-terminal helix-cap in α-helix 2 modulates β-state misfolding in rabbit and hamster prion proteins.

    Science.gov (United States)

    Sweeting, Braden; Brown, Eric; Khan, M Qasim; Chakrabartty, Avijit; Pai, Emil F

    2013-01-01

    Susceptibility of a particular species to prion disease is affected by small differences in the sequence of PrP and correlates with the propensity of its PrP to assume the β-state. A helix-cap motif in the β2-α2-loop of native α-helical rabbit PrP, a resistant species, contains sequence differences that influence intra- and interspecies transmission. To determine the effect the helix-cap motif on β-state refolding propensity, we mutated S170N, S174N, and S170N/S174N of the rabbit PrP helix-cap to resemble that of hamster PrP and conversely, N170S, N174S, and N170S/N174S of hamster PrP to resemble the helix-cap of rabbit PrP. High-resolution crystal structures (1.45-1.6 Å) revealed that these mutations ablate hydrogen-bonding interactions within the helix-cap motif in rabbit PrP(C). They also alter the β-state-misfolding propensity of PrP; the serine mutations in hamster PrP decrease the propensity up to 35%, whereas the asparagine mutations in rabbit PrP increase it up to 42%. Rapid dilution of rabbit and hamster into β-state buffer conditions causes quick conversion to β-state monomers. Kinetic monitoring using size-exclusion chromatography showed that the monomer population decreases exponentially mirrored by an increase in an octameric species. The monomer-octamer transition rates are faster for hamster than for rabbit PrP. The N170S/N174S mutant of hamster PrP has a smaller octamer component at the endpoint compared to the wild-type, whereas the kinetics of octamer formation in mutant and wild-type rabbit PrP are comparable. These findings demonstrate that the sequence of the β2-α2 helix-cap affects refolding to the β-state and subsequently, may influence susceptibility to prion disease.

  1. A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers.

    Directory of Open Access Journals (Sweden)

    Geoffrey P Noble

    2015-06-01

    Full Text Available Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure.

  2. A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers

    Science.gov (United States)

    Noble, Geoffrey P.; Wang, Daphne W.; Walsh, Daniel J.; Barone, Justin R.; Miller, Michael B.; Nishina, Koren A.; Li, Sheng; Supattapone, Surachai

    2015-01-01

    Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure. PMID:26125623

  3. Molecular Dynamics Studies on the Structural Stability of Wild-Type Rabbit Prion Protein: Surface Electrostatic Charge Distributions

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    Prion diseases cover a large range of neurodegenerative diseases in humans and animals, which are invariably fatal and highly infectious. By now there have not been some effective therapeutic approaches or medications to treat all prion diseases. Fortunately, numerous experimental experiences have showed that rabbits are resistant to infection from prion diseases isolated from other species, and recently the molecular structures of rabbit prion protein and its mutants were released into protein data bank. Prion diseases are "protein structural conformational" diseases. Thus, in order to reveal some secrets of prion diseases, it is amenable to study rabbits by techniques of the molecular structure and its dynamics. Wen et al. (PLoS One 5(10) e13273 (2010), Journal of Biological Chemistry 285(41) 31682-31693 (2010)) reported the surface of NMR RaPrPC(124-228) molecular snapshot has a large land of continuous positive charge distribution, which contributes to the structural stability of rabbit prion protein. Thi...

  4. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine and cervid prion protein

    Science.gov (United States)

    Identifying transmissible spongiform encephalopathy (TSE) reservoirs that could lead to disease re-emergence is imperative to U.S. scrapie eradication efforts. Transgenic mice expressing the cervid (TgElk) or ovine (Tg338) prion protein have aided characterization of chronic wasting disease (CWD) an...

  5. Lack of Prion Accumulation in Lymphoid Tissues of Scrapie-affected Sheep with the AA136, QR171 Prion Protein Genotype

    Science.gov (United States)

    Background: Sheep scrapie is a transmissible spongiform encephalopathy which can be transmitted horizontally through the shedding of an infectious conformer (PrP**Sc) of the normal cellular prion protein (PrP**c). Genetics profoundly influence the susceptibility of sheep to scrapie. PrP**c amino-aci...

  6. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Jonathan [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  7. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    Science.gov (United States)

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrPC glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrPC species of interest as substrate. Applying the technique to PrPC glycosylation mutants expressing cells revealed that neither PrPC nor PrPSc glycoform stoichiometry was instrumental to PrPSc formation and strainness perpetuation. Our study supports the view that strain properties, including PrPSc glycotype are enciphered within PrPSc structural backbone, not in the attached glycans. PMID:27384922

  8. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies

    Directory of Open Access Journals (Sweden)

    Jorge M. Charco

    2017-12-01

    Full Text Available The misfolding of the cellular prion protein (PrPC into the disease-associated isoform (PrPSc and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs. Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.

  9. Activation of the unfolded protein response and granulovacuolar degeneration are not common features of human prion pathology.

    Science.gov (United States)

    Wiersma, Vera I; van Hecke, Wim; Scheper, Wiep; van Osch, Martijn A J; Hermsen, Will J M; Rozemuller, Annemieke J M; Hoozemans, Jeroen J M

    2016-10-28

    Human prion diseases are fatal neurodegenerative disorders with a genetic, sporadic or infectiously acquired aetiology. Neuropathologically, human prion diseases are characterized by deposition of misfolded prion protein and neuronal loss. In post-mortem brain tissue from patients with other neurodegenerative diseases characterized by protein misfolding, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau pathology (FTLD-tau), increased activation of the unfolded protein response (UPR) has been observed. The UPR is a cellular stress response that copes with the presence of misfolded proteins. Recent studies have indicated that UPR activation is also involved in experimental models of prion disease and have suggested intervention in the UPR as a therapeutic strategy. On the other hand, it was previously shown that the active form of the UPR stress sensor dsRNA-activated protein kinase-like ER kinase (PERK) is not increased in post-mortem brain tissue samples from human prion disease cases. In the present study, we assessed the active form of another UPR stress sensor, inositol-requiring enzyme 1α (IRE1α), in human post-mortem frontal cortex of a large cohort of sporadic, inherited and acquired prion disease patients (n = 47) and non-neurological controls. Immunoreactivity for phosphorylated IRE1α was not increased in prion disease cases compared with non-neurological controls. In addition, immunoreactivity for phosphorylated PERK was unaltered in human prion disease cases included in the current cohort. Moreover, no difference in the extent of granulovacuolar degeneration, a pathological feature associated with the presence of UPR activation markers, was detected. Our data indicate that, in contrast to AD and primary tauopathies, activation of the UPR is not a common feature of human prion pathology.

  10. Coexistence of protease sensitive and resistant prion protein in 129VV homozygous sporadic Creutzfeldt–Jakob disease: a case report

    Directory of Open Access Journals (Sweden)

    Rodríguez-Martínez Ana B

    2012-10-01

    Full Text Available Abstract Introduction The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation A 74-year-old Caucasian woman showed a sporadic Creutzfeldt–Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient’s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt–Jakob disease. This highlights the

  11. Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress.

    Science.gov (United States)

    Chernova, Tatiana A; Kiktev, Denis A; Romanyuk, Andrey V; Shanks, John R; Laur, Oskar; Ali, Moiez; Ghosh, Abheek; Kim, Dami; Yang, Zhen; Mang, Maggie; Chernoff, Yury O; Wilkinson, Keith D

    2017-01-17

    Self-perpetuating ordered protein aggregates (amyloids and prions) are associated with a variety of neurodegenerative disorders. Although environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. We have employed endogenous yeast prions as a model system to study environmental control of amyloid formation. A short-lived actin-associated yeast protein Lsb2 can trigger prion formation by other proteins in a mode regulated by the cytoskeleton and ubiquitin-dependent processes. Here, we show that such a heterologous prion induction is due to the ability of Lsb2 to form a transient prion state, generated in response to thermal stress. Evolutionary acquisition of prion-inducing activity by Lsb2 is traced to a single amino acid change, coinciding with the acquisition of thermotolerance in the Saccharomyces yeast lineage. This raises the intriguing possibility that the transient prion formation could aid in functioning of Lsb2 at higher temperatures. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    Science.gov (United States)

    Johnson, Christopher J.; Morawski, A.R.; Carlson, C.M.; Chang, H.

    2013-01-01

    Background: Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results: We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R 154Q171). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R 154Q171genotype sheep. Conclusions: Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS, including

  13. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available BACKGROUND: Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP gene that are presumed to favor conversion of the cellular isoform of PrP (PrP(C to the pathogenic one (PrP(Sc. The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. METHODOLOGY/PRINCIPAL FINDINGS: To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER, the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL and PrP with three amino acids exchange in transmembrane region (PrP-3AV were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and caspase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K failed. CONCLUSIONS/SIGNIFICANCE: The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them

  14. Strain-Dependent Effect of Macroautophagy on Abnormally Folded Prion Protein Degradation in Infected Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Daisuke Ishibashi

    Full Text Available Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK, derived from a patient with Gerstmann-Sträussler-Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent.

  15. The Role of the Mammalian Prion Protein in the Control of Sleep

    Directory of Open Access Journals (Sweden)

    Amber Roguski

    2017-11-01

    Full Text Available Sleep disruption is a prevalent clinical feature in many neurodegenerative disorders, including human prion diseases where it can be the defining dysfunction, as in the case of the “eponymous” fatal familial insomnia, or an early-stage symptom as in certain types of Creutzfeldt-Jakob disease. It is important to establish the role of the cellular prion protein (PrPC, the key molecule involved in prion pathogenesis, within the sleep-wake system in order to understand fully the mechanisms underlying its contribution to both healthy circadian rhythmicity and sleep dysfunction during disease. Although severe disruption to the circadian rhythm and melatonin release is evident during the pathogenic phases of some prion diseases, untangling whether PrPC plays a role in circadian rhythmicity, as suggested in mice deficient for PrPC expression, is challenging given the lack of basic experimental research. We provide a short review of the small amount of direct literature focused on the role of PrPC in melatonin and circadian rhythm regulation, as well as suggesting mechanisms by which PrPC might exert influence upon noradrenergic and dopaminergic signaling and melatonin synthesis. Future research in this area should focus upon isolating the points of dysfunction within the retino-pineal pathway and further investigate PrPC mediation of pinealocyte GPCR activity.

  16. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy.

    Science.gov (United States)

    Hwang, Soyoun; Greenlee, Justin J; Nicholson, Eric M

    2017-01-01

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.

  17. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology

    Science.gov (United States)

    Nguyen-Phuoc, Kim; Leighton, Patricia L. A.

    2017-01-01

    Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins’ function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrPC, is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas. PMID:29064456

  18. RNA-binding proteins with prion-like domains in health and disease.

    Science.gov (United States)

    Harrison, Alice Ford; Shorter, James

    2017-04-07

    Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  19. Yeast prions: structure, biology, and prion-handling systems.

    Science.gov (United States)

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    Science.gov (United States)

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  1. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    Science.gov (United States)

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-11-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.

  2. Detection of Prion Proteins and TSE Infectivity in the Rendering and Biodiesel Manufacture Processes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.; Keller, B.; Oleschuk, R. [Queen' s University, Kingston, Ontario (Canada)

    2007-03-15

    This paper addresses emerging issues related to monitoring prion proteins and TSE infectivity in the products and waste streams of rendering and biodiesel manufacture processes. Monitoring is critical to addressing the knowledge gaps identified in 'Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction' (IEA's AMF Annex XXX, 2006) that prevent comprehensive risk assessment of TSE infectivity in products and waste. The most important challenge for monitoring TSE risk is the wide variety of sample types, which are generated at different points in the rendering/biodiesel production continuum. Conventional transmissible spongiform encephalopathy (TSE) assays were developed for specified risk material (SRM) and other biological tissues. These, however, are insufficient to address the diverse sample matrices produced in rendering and biodiesel manufacture. This paper examines the sample types expected in rendering and biodiesel manufacture and the implications of applying TSE assay methods to them. The authors then discuss a sample preparation filtration, which has not yet been applied to these sample types, but which has the potential to provide or significantly improve TSE monitoring. The main improvement will come from transfer of the prion proteins from the sample matrix to a matrix compatible with conventional and emerging bioassays. A second improvement will come from preconcentrating the prion proteins, which means transferring proteins from a larger sample volume into a smaller volume for analysis to provide greater detection sensitivity. This filtration method may also be useful for monitoring other samples, including wash waters and other waste streams, which may contain SRM, including those from abattoirs and on-farm operations. Finally, there is a discussion of emerging mass spectrometric methods, which Prusiner and others have shown to be suitable for detection and characterisation of prion proteins (Stahl

  3. Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie

    Science.gov (United States)

    Sarradin, Pierre; Viglietta, Céline; Limouzin, Claude; Andréoletti, Olivier; Daniel-Carlier, Nathalie; Barc, Céline; Leroux-Coyau, Mathieu; Berthon, Patricia; Chapuis, Jérôme; Rossignol, Christelle; Gatti, Jean-Luc; Belghazi, Maya; Labas, Valérie; Vilotte, Jean-Luc; Béringue, Vincent; Lantier, Frédéric; Laude, Hubert; Houdebine, Louis-Marie

    2015-01-01

    Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6–8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background. PMID:26248157

  4. Elucidation of Prion Protein Conformational Changes Associated with Infectivity by Fluorescence Spectroscopy

    Science.gov (United States)

    2006-06-01

    subsituted mutants show the anticipated changes, we will conclude the study by measuring the changes that occur when a seed of normal protein is...conversion. We have improved our productivity by purchaseing an M2e microplate reader with fluorescence capabilities. This will streamline the time...selectively nitrated in the β-oligomeric state. Experimental Procedures Production of recombinant PrP90 Isoforms The codons for residues 90-232 of

  5. Inactivation of Template-Directed Misfolding of Infectious Prion Protein by Ozone

    Science.gov (United States)

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Belosevic, Miodrag

    2012-01-01

    Misfolded prions (PrPSc) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrPSc). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrPSc, as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log10) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter−1 min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater. PMID:22138993

  6. Prion protein gene M129V polymorphism and variability in age at migraine onset.

    Science.gov (United States)

    Palmirotta, Raffaele; Ludovici, Giorgia; Egeo, Gabriella; Ialongo, Cristiano; Aurilia, Cinzia; Fofi, Luisa; De Marchis, Maria Laura; Della-Morte, David; Barbanti, Piero; Guadagni, Fiorella

    2013-03-01

    Prion protein, a sialoglycoprotein with neuroprotective properties on oxidative stress damage, has been related with the mechanisms leading to migraine. In the present case-control study, we investigated the correlation between the common methionine/valine polymorphism at codon 129 within the prion protein gene (PRNP) and migraine. Genotyping of PRNP V129M variant was performed in 384 migraine patients and 185 age-, sex-, and race-ethnicity-matched healthy controls. The frequencies of the PRNP V129M genotype did not differ significantly between migraineurs and controls. The frequencies of 129VV genotype were significantly higher in patients with earlier age at migraine onset. No correlation was found between PRNP 129 genotype and demographics, and other clinical migraine features. Our data suggest that the PRNP 129VV polymorphism is not a direct migraine risk factor but is significantly associated with an earlier onset of the disease. © 2013 American Headache Society.

  7. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  8. Early and Non-Invasive Detection of Chronic Wasting Disease Prions in Elk Feces by Real-Time Quaking Induced Conversion.

    Directory of Open Access Journals (Sweden)

    Yo Ching Cheng

    Full Text Available Chronic wasting disease (CWD is a fatal prion disease of wild and captive cervids in North America. Prions are infectious agents composed of a misfolded version of a host-encoded protein, termed PrPSc. Infected cervids excrete and secrete prions, contributing to lateral transmission. Geographical distribution is expanding and case numbers in wild cervids are increasing. Recently, the first European cases of CWD have been reported in a wild reindeer and two moose from Norway. Therefore, methods to detect the infection early in the incubation time using easily available samples are desirable to facilitate effective disease management. We have adapted the real-time quaking induced conversion (RT-QuIC assay, a sensitive in vitro prion amplification method, for pre-clinical detection of prion seeding activity in elk feces. Testing fecal samples from orally inoculated elk taken at various time points post infection revealed early shedding and detectable prion seeding activity throughout the disease course. Early shedding was also found in two elk encoding a PrP genotype associated with reduced susceptibility for CWD. In summary, we suggest that detection of CWD prions in feces by RT-QuIC may become a useful tool to support CWD surveillance in wild and captive cervids. The finding of early shedding independent of the elk's prion protein genotype raises the question whether prolonged survival is beneficial, considering accumulation of environmental prions and its contribution to CWD transmission upon extended duration of shedding.

  9. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    Science.gov (United States)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  10. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manno, D; Filippo, E; Fiore, R; Serra, A [Dipartimento di Scienza dei Materiali, Universita del Salento, Lecce (Italy); Urso, E; Rizzello, A; Maffia, M [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita del Salento, Lecce (Italy)

    2010-04-23

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP{sup C}. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP{sup C} at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  11. Prions and neuro degenerative diseases | Nair | African Journal of ...

    African Journals Online (AJOL)

    Prion is a disease-causing agent that is neither bacterial nor fungal nor viral and contains no genetic material. A prion is a protein that occurs normally in a harmless form. By folding into an aberrant shape, the normal prion turns into a rogue agent. It then co-opts other normal prions to become rogue prions. Prions have ...

  12. Increased expression and local accumulation of the Prion Protein, Alzheimer Aβ peptides, superoxide dismutase 1, and Nitric oxide synthases 1 & 2 in muscle in a rabbit model of diabetes

    Directory of Open Access Journals (Sweden)

    Bitel Claudine L

    2010-09-01

    Full Text Available Abstract Background Muscle disease associated with different etiologies has been shown to produce localized accumulations of amyloid and oxidative stress-related proteins that are more commonly associated with neurodegeneration in the brain. In this study we examined changes in muscle tissue in a classic model of diabetes and hyperglycemia in rabbits to determine if similar dysregulation of Alzheimer Aβ peptides, the prion protein (PrP, and superoxide dismutase 1 (SOD1, as well as nitric oxide synthases is produced in muscle in diabetic animals. This wild-type rabbit model includes systemic physiological expression of human-like Alzheimer precursor proteins and Aβ peptides that are considered key in Alzheimer protein studies. Results Diabetes was produced in rabbits by injection of the toxic glucose analogue alloxan, which selectively enters pancreatic beta cells and irreversibly decreases insulin production, similar to streptozotocin. Quadriceps muscle from rabbits 16 wks after onset of diabetes and hyperglycemia were analyzed with biochemical and in situ methods. Immunoblots of whole muscle protein samples demonstrated increased PrP, SOD1, as well as neuronal and inducible Nitric oxide synthases (NOS1 and NOS2 in diabetic muscle. In contrast, we detected little change in Alzheimer Aβ precursor protein expression, or BACE1 and Presenilin 1 levels. However, Aβ peptides measured by ELISA increased several fold in diabetic muscle, suggesting a key role for Aβ cleavage in muscle similar to Alzheimer neurodegeneration in this diabetes model. Histological changes in diabetic muscle included localized accumulations of PrP, Aβ, NOS1 and 2, and SOD1, and evidence of increased central nuclei and cell infiltration. Conclusions The present study provides evidence that several classic amyloid and oxidative stress-related disease proteins coordinately increase in overall expression and form localized accumulations in diabetic muscle. The present study

  13. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    Science.gov (United States)

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  14. Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells.

    Science.gov (United States)

    Kumar, Rajeev; McClain, Denise; Young, Rebecca; Carlson, George A

    2008-06-01

    Prion diseases are transmissible neurodegenerative disorders of prion protein (PrP) conformation. Prion replication by conversion of benign PrPC isoforms into disease-specific PrPSc isoforms is intimately involved in prion disease pathogenesis and may be initiated in cholesterol-rich caveolae-like domains (CLD). Concentrations of the cholesterol transporter ATP-binding cassette A1 protein (ABCA1) are elevated in pre-clinical scrapie prion-infected mice and in prion-infected cells in vitro. Elevation of ABCA1 in prion-infected brain is not a direct consequence of local PrPSc accumulation, indeed levels of ABCA1 are comparable in brain regions that differ dramatically in the amount of PrPSc. Similarly, ABCA1 concentrations are identical in normal mice, transgenic mice overexpressing PrP and PrP knockout mice. In contrast, PrPC and PrPSc levels, but not Prnp mRNA, were increased by overexpression of ABCA1 in N2a neuroblastoma cells and scrapie prion-infected N2a cells (ScN2a). Conversely, RNAi-mediated knock down of Abca1 expression decreased the concentrations of PrPC in N2a cells and of PrPSc in ScN2a cells. These results suggest that ABCA1's effects on PrPC levels are post-translational and may reflect an increase in of PrPC stability, mediated either indirectly by increasing membrane cholesterol and CLD formation or by other functions of ABCA1. The increased supply of PrPC available for conversion would lead to increased PrPSc formation.

  15. The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients

    Science.gov (United States)

    Moore, Roger A.; Head, Mark W.; Ironside, James W.; Ritchie, Diane L.; Zanusso, Gianluigi; Pyo Choi, Young; Priola, Suzette A.

    2016-01-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrPSc). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrPC) into infectious PrPSc. By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrPSc. In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrPC allotype to PrPSc in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrPSc with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrPC containing an M or V at residue 129 having a similar propensity to misfold into PrPSc thus causing sCJD. By contrast, PrPSc with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrPSc containing V at residue 129. In both types of CJD, the PrPSc allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrPSc allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD. PMID:26840342

  16. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins.

    Science.gov (United States)

    Baindur-Hudson, Swati; Edkins, Adrienne L; Blatch, Gregory L

    2015-01-01

    The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.

  17. Dissociation of Infectivity from Seeding Ability in Prions with Alternate Docking Mechanism

    Science.gov (United States)

    Miller, Michael B.; Geoghegan, James C.; Supattapone, Surachai

    2011-01-01

    Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrPSc, suggesting that these domains of cellular prion protein (PrPC) serve as docking sites for PrPSc during prion propagation. To examine the role of polybasic domains in the context of full-length PrPC, we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ∼5 rounds of sPMCA, PrPSc molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrPSc prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrPSc molecules. Remarkably, ΔC-PrPSc and other polybasic domain PrPSc molecules displayed diminished or absent biological infectivity relative to wild-type PrPSc, despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrPSc prions interact with PrPC molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrPSc propagation. Furthermore, polybasic domain deficient PrPSc molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrPSc molecules may not depend on a single stereotypic mechanism, but that normal PrPC/PrPSc interaction through polybasic domains may be required to generate prion infectivity. PMID:21779169

  18. Electrochemical aptasensor of cellular prion protein based on modified polypyrrole with redox dendrimers.

    Science.gov (United States)

    Miodek, A; Castillo, G; Hianik, T; Korri-Youssoufi, H

    2014-06-15

    This work consists of the development of an electrochemical aptasensor based on polyprrole modified with redox dendrimers, able to detect human cellular prions PrP(C) with high sensitivity. The gold surface was modified by conductive polypyrrole film coupled to polyamidoamine dendrimers of fourth generation (PAMAM G4) and ferrocenyl group as redox marker. The aptamers were immobilized on the surface via biotin/streptavidin chemistry. Electrochemical signal was detected by ferrocenyl group incorporated between dendrimers and aptamers layers. We demonstrated that the interaction between aptamer and prion protein led to variation in electrochemical signal of the ferrocenyl group. The kinetics parameters (diffusion coefficient D and heterogeneous constant transfer ket) calculated from electrochemical signals demonstrate that the variation in redox signal results from the lower diffusion process of ions during redox reaction after prion interaction due to bulk effect of larger protein. The association of redox dendrimers with conducting polypyrrole leads to high sensitivity of PrP(C) determination with detection limit of 0.8 pM, which is three orders of magnitude lower, compared to flat ferrocene-functionalized polypyrrole. Detection of PrP(C) in spiked blood plasma has been achieved and demonstrated a recovery up to 90%. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nanoimaging for prion related diseases

    OpenAIRE

    Krasnoslobodtsev, Alexey V.; Portillo, Alexander M.; Deckert-Gaudig, Tanja; Deckert, Volker; Lyubchenko, Yuri L.

    2010-01-01

    Misfolding and aggregation of prion proteins is linked to a number of neurodegenerative disorders such as Creutzfeldt-Jacob disease (CJD) and its variants: Kuru, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. In prion diseases, infectious particles are proteins that propagate by transmitting a misfolded state of a protein, leading to the formation of aggregates and ultimately to neurodegeneration. Prion phenomenon is not restricted to humans. There are a number of prion-...

  20. Instability of the octarepeat region of the human prion protein gene.

    Directory of Open Access Journals (Sweden)

    Baiya Li

    Full Text Available Prion diseases are a family of unique fatal transmissible neurodegenerative diseases that affect humans and many animals. Sporadic Creutzfeldt-Jakob disease (sCJD is the most common prion disease in humans, accounting for 85-90% of all human prion cases, and exhibits a high degree of diversity in phenotypes. The etiology of sCJD remains to be elucidated. The human prion protein gene has an octapeptide repeat region (octarepeats that normally contains 5 repeats of 24-27 bp (1 nonapeptide and 4 octapeptide coding sequences. An increase of the octarepeat numbers to six or more or a decrease of the octarepeat number to three is linked to genetic prion diseases with heterogeneous phenotypes in humans. Here we report that the human octarepeat region is prone to either contraction or expansion when subjected to PCR amplification in vitro using Taq or Pwo polymerase and when replicated in wild type E. coli cells. Octarepeat insertion mutants were even less stable, and the mutation rate for the wild type octarepeats was much higher when replicated in DNA mismatch repair-deficient E. coli cells. All observed octarepeat mutants resulting from DNA replication in E. coli were contained in head-to-head plasmid dimers and DNA mfold analysis (http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form indicates that both DNA strands of the octarepeat region would likely form multiple stable hairpin structures, suggesting that the octarepeat sequence may form stable hairpin structures during DNA replication or repair to cause octarepeat instability. These results provide the first evidence supporting a somatic octarepeat mutation-based model for human sCJD etiology: 1 the instability of the octarepeat region leads to accumulation of somatic octarepeat mutations in brain cells during development and aging, 2 this instability is augmented by compromised DNA mismatch repair in aged cells, and 3 eventually some of the octarepeat mutation-containing brain cells start

  1. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc-null mice: evidence for a critical role of the central nervous system

    Directory of Open Access Journals (Sweden)

    Gourdain Pauline

    2012-01-01

    Full Text Available Abstract Background The cellular prion protein (PrPc is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered. Method To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells. Results First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells. Conclusions In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not

  2. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  3. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.

    Science.gov (United States)

    Aslam, Kiran; Tsai, Chai-Jui; Hazbun, Tony R

    2016-11-01

    The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone

  4. Glimepiride reduces the expression of PrPc, prevents PrPSc formation and protects against prion mediated neurotoxicity in cell lines.

    Directory of Open Access Journals (Sweden)

    Clive Bate

    Full Text Available BACKGROUND: A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrP(C into a disease related, alternatively folded isoform (PrP(Sc. The accumulation of PrP(Sc within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases. PRINCIPAL FINDINGS: Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrP(C from the surface of prion-infected neuronal cells. The cell surface is a site where PrP(C molecules may be converted to PrP(Sc and glimepiride treatment reduced PrP(Sc formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells. Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP82-146. Glimepiride treatment significantly reduce both the amount of PrP82-146 that bound to neurones and PrP82-146 induced activation of cytoplasmic phospholipase A(2 (cPLA(2 and the production of prostaglandin E(2 that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI-phospholipase C which reduced PrP(C expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC and were reversed by co-incubation with p-chloromercuriphenylsulphonate, an inhibitor of endogenous GPI-PLC. CONCLUSIONS: Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrP(Sc formation and neuronal damage in prion diseases.

  5. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-02-24

    Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Intraepithelial and interstitial deposition of pathological prion protein in kidneys of scrapie-affected sheep.

    Directory of Open Access Journals (Sweden)

    Ciriaco Ligios

    Full Text Available Prions have been documented in extra-neuronal and extra-lymphatic tissues of humans and various ruminants affected by Transmissible Spongiform Encephalopathy (TSE. The presence of prion infectivity detected in cervid and ovine blood tempted us to reason that kidney, the organ filtrating blood derived proteins, may accumulate disease associated PrP(Sc. We collected and screened kidneys of experimentally, naturally scrapie-affected and control sheep for renal deposition of PrP(Sc from distinct, geographically separated flocks. By performing Western blot, PET blot analysis and immunohistochemistry we found intraepithelial (cortex, medulla and papilla and occasional interstitial (papilla deposition of PrP(Sc in kidneys of scrapie-affected sheep. Interestingly, glomerula lacked detectable signals indicative of PrP(Sc. PrP(Sc was also detected in kidneys of subclinical sheep, but to significantly lower degree. Depending on the stage of the disease the incidence of PrP(Sc in kidney varied from approximately 27% (subclinical to 73.6% (clinical in naturally scrapie-affected sheep. Kidneys from flocks without scrapie outbreak were devoid of PrP(Sc. Here we demonstrate unexpectedly frequent deposition of high levels of PrP(Sc in ovine kidneys of various flocks. Renal deposition of PrP(Sc is likely to be a pre-requisite enabling prionuria, a possible co-factor of horizontal prion-transmission in sheep.

  7. Preclinical deposition of pathological prion protein in muscle of experimentally infected primates.

    Directory of Open Access Journals (Sweden)

    Susanne Krasemann

    Full Text Available Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrP(Sc of the host encoded prion protein (PrP(C in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrP(Sc in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrP(Sc in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD, variant CJD (vCJD and bovine spongiform encephalopathy (BSE in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrP(Sc in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.

  8. A novel protective prion protein variant that colocalizes with kuru exposure.

    Science.gov (United States)

    Mead, Simon; Whitfield, Jerome; Poulter, Mark; Shah, Paresh; Uphill, James; Campbell, Tracy; Al-Dujaily, Huda; Hummerich, Holger; Beck, Jon; Mein, Charles A; Verzilli, Claudio; Whittaker, John; Alpers, Michael P; Collinge, John

    2009-11-19

    Kuru is a devastating epidemic prion disease that affected a highly restricted geographic area of the Papua New Guinea highlands; at its peak, it predominantly affected adult women and children of both sexes. Its incidence has steadily declined since the cessation of its route of transmission, endocannibalism. We performed genetic and selected clinical and genealogic assessments of more than 3000 persons from Eastern Highland populations, including 709 who participated in cannibalistic mortuary feasts, 152 of whom subsequently died of kuru. Persons who were exposed to kuru and survived the epidemic in Papua New Guinea are predominantly heterozygotes at the known resistance factor at codon 129 of the prion protein gene (PRNP). We now report a novel PRNP variant--G127V--that was found exclusively in people who lived in the region in which kuru was prevalent and that was present in half of the otherwise susceptible women from the region of highest exposure who were homozygous for methionine at PRNP codon 129. Although this allele is common in the area with the highest incidence of kuru, it is not found in patients with kuru and in unexposed population groups worldwide. Genealogic analysis reveals a significantly lower incidence of kuru in pedigrees that harbor the protective allele than in geographically matched control families. The 127V polymorphism is an acquired prion disease resistance factor selected during the kuru epidemic, rather than a pathogenic mutation that could have triggered the kuru epidemic. Variants at codons 127 and 129 of PRNP demonstrate the population genetic response to an epidemic of prion disease and represent a powerful episode of recent selection in humans. 2009 Massachusetts Medical Society

  9. The Role of Unfolded Protein Response and Mitogen-Activated Protein Kinase Signaling in Neurodegenerative Diseases with Special Focus on Prion Diseases

    Directory of Open Access Journals (Sweden)

    Lifeng Yang

    2017-05-01

    Full Text Available Prion diseases are neurodegenerative pathologies characterized by the accumulation of a protease-resistant form of the cellular prion protein named prion protein scrapie (PrPSc in the brain. PrPSc accumulation in the endoplasmic reticulum (ER result in a dysregulated calcium (Ca2+ homeostasis and subsequent initiation of unfolded protein response (UPR leading to neuronal dysfunction and apoptosis. The molecular mechanisms for the transition between adaptation to ER stress and ER stress-induced apoptosis are still unclear. Mitogen-activated protein kinases (MAPKs are serine/threonine protein kinases that rule the signaling of many extracellular stimuli from plasma membrane to the nucleus. However the identification of numerous points of cross talk between the UPR and MAPK signaling pathways may contribute to our understanding of the consequences of ER stress in prion diseases. Indeed the MAPK signaling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses including misfolded protein response stress. In this article, we review the UPR signaling in prion diseases and discuss the triad of MAPK signaling pathways. We also describe the role played by MAPK signaling cascades in Alzheimer’s (AD and Parkinson’s disease (PD. We will also overview the mechanisms of cell death and the role of MAPK signaling in prion disease progression and highlight potential avenues for therapeutic intervention.

  10. Accumulation of pathological prion protein PrPSc in the skin of animals with experimental and natural scrapie.

    Directory of Open Access Journals (Sweden)

    Achim Thomzig

    2007-05-01

    Full Text Available Prion infectivity and its molecular marker, the pathological prion protein PrP(Sc, accumulate in the central nervous system and often also in lymphoid tissue of animals or humans affected by transmissible spongiform encephalopathies. Recently, PrP(Sc was found in tissues previously considered not to be invaded by prions (e.g., skeletal muscles. Here, we address the question of whether prions target the skin and show widespread PrP(Sc deposition in this organ in hamsters perorally or parenterally challenged with scrapie. In hamsters fed with scrapie, PrP(Sc was detected before the onset of symptoms, but the bulk of skin-associated PrP(Sc accumulated in the clinical phase. PrP(Sc was localized in nerve fibres within the skin but not in keratinocytes, and the deposition of PrP(Sc in skin showed no dependence from the route of infection and lymphotropic dissemination. The data indicated a neurally mediated centrifugal spread of prions to the skin. Furthermore, in a follow-up study, we examined sheep naturally infected with scrapie and detected PrP(Sc by Western blotting in skin samples from two out of five animals. Our findings point to the skin as a potential reservoir of prions, which should be further investigated in relation to disease transmission.

  11. The human "prion-like" protein Doppel is expressed in both Sertoli cells and spermatozoa.

    Science.gov (United States)

    Peoc'h, Katell; Serres, Catherine; Frobert, Yveline; Martin, Caroline; Lehmann, Sylvain; Chasseigneaux, Stephanie; Sazdovitch, Veronique; Grassi, Jacques; Jouannet, Pierre; Launay, Jean-Marie; Laplanche, Jean-Louis

    2002-11-08

    The prion-like Doppel protein (Dpl) has many biochemical and structural properties in common with the cellular prion protein (PrP(c)), and the physiological role of neither protein is known. Experimental data suggest either direct or indirect interaction between the two proteins. In this study, we investigated the expression pattern and biochemical characteristics of Dpl in human tissues and in Chinese hamster ovary cells transfected with wild-type or variant human Dpl gene constructs. Human Dpl appears to be a glycosylphosphatidylinositol-anchored glycoprotein with N- and O-linked sugars. It was found on Sertoli cells in the testis, on the flagella of epididymal and mature spermatozoa, and in seminal plasma. Dpl coexists only with N-terminally truncated isoforms of PrP(c) on mature spermatozoa. The localization of human Dpl on both Sertoli cells (somatic cells) and spermatozoa (germinal cells) strongly suggests that this protein may play a major role in human male fertility. Finally, our data indicate that spermatozoa are thus an interesting model for studies of the potential interaction between Dpl and PrP(c).

  12. Prion diseases animals

    OpenAIRE

    Sedoshkina K.; Drozdova E.; Nikolayeva S.; Rystsova E.

    2017-01-01

    Priones are an absolutely new class of infectious agents, which basically differs from protozoa, bacterium’s, fungus and viral agents. They can evoke genetic, infectious and sporadic diseases with obligatory disturbance of the brain. The conversion of prione protein because of nature structure disturbance is the fundamental reason for a display of pathogenicity this protein

  13. Variation in Chst8 gene expression level affects PrPC to PrPSc conversion efficiency in prion-infected Mov cells.

    Science.gov (United States)

    Martin, Renaud; Chantepie, Sandrine; Chapuis, Jérôme; Le-Duc, Aurélien; Maftah, Abderrahman; Papy-Garcia, Dulcé; Laude, Hubert; Petit, Jean-Michel; Gallet, Paul-François

    2011-10-28

    The conversion of the endogenous cellular prion protein to an abnormally folded isoform is a hallmark of transmissible spongiform encephalopathies. It occurs when a misfolded prion protein contacts the cellular PrP. Among the molecular partners suggested to be involved in the misfolding process, the glycosaminoglycans seem to be good candidates. The present study was aimed to examine a possible link between PrP conversion efficiency and transcript level of Chst8 gene that encodes the carbohydrate N-acetylgalactosamine 4-O-sulfotransferase 8. Mov cells expressing ovine PrP were transfected with shRNA directed against Chst8 transcripts. Resulting clones were characterized for their Chst8 and Prnp transcript levels, and for their content in sulfated glycosaminoglycans, more particularly sulfated chondroitins. Unexpectedly, the decreased amount of Chst8 transcript induced an increase of the chondroitin sulfate percentage among total GAGs, with an increased amount of 4-O-sulfation of GalNAc residues. Upon to infection by a sheep prion, a slight amount of PrP(Sc) was observed, which rapidly disappeared upon subpassaging. Together, these findings indicate that the Chst8 transcript level affects the glycosaminoglycan environment of the cellular prion protein, and as a consequence its ability for conversion into PrP(Sc). Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrPc for the cytoskeleton

    Science.gov (United States)

    The cellular prion protein (PrPC) is a highly conserved protein, which is anchored to the outer surface of the plasma membrane. Even though its physiological function has already been investigated in different cell or mouse models where PrPC expression is either up-regulated or depleted, its exact p...