WorldWideScience

Sample records for prp deficient mice

  1. Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent.

    OpenAIRE

    Sakaguchi, S; Katamine, S.; Shigematsu, K.; Nakatani, A; Moriuchi, R.; Nishida, N.; Kurokawa, K; Nakaoke, R; Sato, H; Jishage, K

    1995-01-01

    Creutzfeldt-Jakob disease (CJD) is a transmissible neurodegenerative disease of humans caused by an unidentified infectious agent, the prion. To determine whether there was an involvement of the host-encoded prion protein (PrPc) in CJD development and prion propagation, mice heterozygous (PrP+/-) or homozygous (PrP-/-) for a disrupted PrP gene were established and inoculated with the mouse-adapted CJD agent. In keeping with findings of previous studies using other lines of PrP-less mice inocu...

  2. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sabina Eigenbrod

    Full Text Available Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC at octapeptide repeat (OR and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele or at site 5 (composed of residues His-95 and His-110; "H95G" allele and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G at levels comparable to wild-type (wt controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G mice and diffuse PrPSc deposition in (TgPrP(H95G mice, were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.

  3. PrP0\\0 mice show behavioral abnormalities that suggest PrPC has a role in maintaining the cytoskeleton.

    Science.gov (United States)

    Background/Introduction. PrPC is highly conserved among mammals, but its natural function is unclear. Prnp ablated mice (PrP0/0) appear to develop normally and are able to reproduce. These observations seem to indicate that the gene is not essential for viability, in spite of it being highly conse...

  4. Effectiveness of polyene antibiotics in treatment of transmissible spongiform encephalopathy in transgenic mice expressing Syrian hamster PrP only in neurons.

    Science.gov (United States)

    Demaimay, R; Race, R; Chesebro, B

    1999-04-01

    To date very few drugs have favorably influenced the course of transmissible spongiform encephalopathies. In previous studies, the polyene antibiotics amphotericin B (AmB) and MS-8209 prolonged the incubation time in Syrian hamsters of the 263K strain of scrapie, but AmB had no effect against other scrapie strains in Syrian hamsters. In the present experiments using transgenic mice expressing Syrian hamster PrP in neurons only, MS-8209 extended the life spans of animals infected with the 263K strain but not the DY strain. AmB was effective against both 263K and DY and prevented death in 18% of DY-infected animals. The AmB effect against strain 263K was more prominent in mice whose endogenous PrP gene had been inactivated by homologous recombination. It was unclear whether this difference was due to a change in the duration of the disease or to possible interactive effects between the mouse PrP gene and the drugs themselves. The effectiveness of treatment after intracerebral scrapie infection in transgenic mice expressing PrP only in neurons suggested that neurons are important sites of action for these drugs.

  5. Transmissibility of H-Type Bovine Spongiform Encephalopathy to Hamster PrP Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Okada

    Full Text Available Two distinct forms of atypical bovine spongiform encephalopathies (H-BSE and L-BSE can be distinguished from classical (C- BSE found in cattle based on biochemical signatures of disease-associated prion protein (PrPSc. H-BSE is transmissible to wild-type mice-with infected mice showing a long survival period that is close to their normal lifespan-but not to hamsters. Therefore, rodent-adapted H-BSE with a short survival period would be useful for analyzing H-BSE characteristics. In this study, we investigated the transmissibility of H-BSE to hamster prion protein transgenic (TgHaNSE mice with long survival periods. Although none of the TgHaNSE mice manifested the disease during their lifespan, PrPSc accumulation was observed in some areas of the brain after the first passage. With subsequent passages, TgHaNSE mice developed the disease with a mean survival period of 220 days. The molecular characteristics of proteinase K-resistant PrPSc (PrPres in the brain were identical to those observed in first-passage mice. The distribution of immunolabeled PrPSc in the brains of TgHaNSE mice differed between those infected with H-BSE as compared to C-BSE or L-BSE, and the molecular properties of PrPres in TgHaNSE mice infected with H-BSE differed from those of the original isolate. The strain-specific electromobility, glycoform profiles, and proteolytic cleavage sites of H-BSE in TgHaNSE mice were indistinguishable from those of C-BSE, in which the diglycosylated form was predominant. These findings indicate that strain-specific pathogenic characteristics and molecular features of PrPres in the brain are altered during cross-species transmission. Typical H-BSE features were restored after back passage from TgHaNSE to bovinized transgenic mice, indicating that the H-BSE strain was propagated in TgHaNSE mice. This could result from the overexpression of the hamster prion protein.

  6. Peroxiredoxin 6 promotes upregulation of the prion protein (PrP in neuronal cells of prion-infected mice

    Directory of Open Access Journals (Sweden)

    Wagner Wibke

    2012-12-01

    Full Text Available Abstract Background It has been widely established that the conversion of the cellular prion protein (PrPC into its abnormal isoform (PrPSc is responsible for the development of transmissible spongiform encephalopathies (TSEs. However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion pathogenesis. Findings Apolipoprotein E and peroxiredoxin 6 (PRDX6 were identified as upregulated proteins in brains of scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells. Conclusions Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an attractive target molecule in putative pharmacological intervention strategies in the future.

  7. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  8. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...... stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light......-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night....

  9. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions.

    Science.gov (United States)

    Chapuis, Jérôme; Moudjou, Mohammed; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Chapuis, Céline; Quadrio, Isabelle; Boulliat, Jacques; Perret-Liaudet, Armand; Dron, Michel; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2016-02-05

    Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP(Sc), a misfolded isoform of the host-encoded prion protein PrP(C). Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP(Sc) in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP(Sc)), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP(C). In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP(Sc) biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of

  10. Effectiveness of Polyene Antibiotics in Treatment of Transmissible Spongiform Encephalopathy in Transgenic Mice Expressing Syrian Hamster PrP Only in Neurons

    OpenAIRE

    Demaimay, Remi; Race, Richard; Chesebro, Bruce

    1999-01-01

    To date very few drugs have favorably influenced the course of transmissible spongiform encephalopathies. In previous studies, the polyene antibiotics amphotericin B (AmB) and MS-8209 prolonged the incubation time in Syrian hamsters of the 263K strain of scrapie, but AmB had no effect against other scrapie strains in Syrian hamsters. In the present experiments using transgenic mice expressing Syrian hamster PrP in neurons only, MS-8209 extended the life spans of animals infected with the 263K...

  11. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    other studies have demonstrated that the treatment of wounds with M2 macrophages does not benefit wound healing. 15 Given the importance of... Wound healing in Mac-1 deficient mice Lin Chen, MD, PhD 1 ; Sridevi Nagaraja, PhD 2 ; Jian Zhou, BS 1 ; Yan Zhao, BS 1 ; David Fine, BS 1...Alexander Y. Mitrophanov, PhD 2 ; Jaques Reifman, PhD 2 ; Luisa A. DiPietro, DDS, PhD 1 1 Center for Wound Healing and Tissue Regeneration, College of

  12. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  13. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    activation (PA) system and the matrix metalloproteinase (MMP) family. Treatment with the broad spectrum MMP inhibitor, galardin, delays wound healing in wildtype mice and completely arrest wound healing in plasminogen (Plg)-deficient mice, indicating a functional overlap between plasmin- and galardin......During healing of incisional skin wounds, migrating keratinocytes dissect their way under the crust to re-epithelialize the wounded area. The efficiency of this tissue remodelling process depends on the concomitant activity of several extracellular proteases, including members of the plasminogen......-sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...

  14. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...... in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound...

  15. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  16. Gender Affects Skin Wound Healing in Plasminogen Deficient Mice

    Science.gov (United States)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge; Hald, Andreas

    2013-01-01

    The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin thickness and

  17. True Niacin Deficiency in Quinolinic Acid Phosphoribosyltransferase (QPRT) Knockout Mice.

    Science.gov (United States)

    Shibata, Katsumi

    2015-01-01

    Pyridine nucleotide coenzymes (PNCs) are involved in over 500 enzyme reactions. PNCs are biosynthesized from the amino acid L-tryptophan (L-Trp), as well as the vitamin niacin. Hence, "true" niacin-deficient animals cannot be "created" using nutritional techniques. We wanted to establish a truly niacin-deficient model animal using a protocol that did not involve manipulating dietary L-Trp. We generated mice that are missing the quinolinic acid phosphoribosyltransferase (QPRT) gene. QPRT activity was not detected in qprt(-/-)mice. The qprt(+/+), qprt(+/-) or qprt(-/-) mice (8 wk old) were fed a complete diet containing 30 mg nicotinic acid (NiA) and 2.3 g L-Trp/kg diet or an NiA-free diet containing 2.3 g L-Trp/kg diet for 23 d. When qprt(-/-)mice were fed a complete diet, food intake and body weight gain did not differ from those of the qprt(+/+) and the qprt(+/-) mice. On the other hand, in the qprt(-/-) mice fed the NiA-free diet, food intake and body weight were reduced to 60% (pniacin such as blood and liver NAD concentrations were also lower in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice. Urinary excretion of quinolinic acid was greater in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice (pniacin-deficient mice.

  18. Dendritic cell-mediated-immunization with xenogenic PrP and adenoviral vectors breaks tolerance and prolongs mice survival against experimental scrapie.

    Directory of Open Access Journals (Sweden)

    Martine Bruley Rosset

    Full Text Available In prion diseases, PrP(c, a widely expressed protein, is transformed into a pathogenic form called PrP(Sc, which is in itself infectious. Antibodies directed against PrP(c have been shown to inhibit PrP(c to PrP(Sc conversion in vitro and protect in vivo from disease. Other effectors with potential to eliminate PrPSc-producing cells are cytotoxic T cells directed against PrP-derived peptides but their ability to protect or to induce deleterious autoimmune reactions is not known. The natural tolerance to PrP(c makes difficult to raise efficient adaptive responses. To break tolerance, adenovirus (Ad encoding human PrP (hPrP or control Ad were administered to wild-type mice by direct injection or by transfer of Ad-transduced dendritic cells (DCs. Control Ad-transduced DCs from Tg650 mice overexpressing hPrP were also used for immunization. DC-mediated but not direct administration of AdhPrP elicited antibodies that bound to murine native PrP(c. Frequencies of PrP-specific IFNgamma-secreting T cells were low and in vivo lytic activity only targeted cells strongly expressing hPrP. Immunohistochemical analysis revealed that CD3(+ T cell infiltration was similar in the brain of vaccinated and unvaccinated 139A-infected mice suggesting the absence of autoimmune reactions. Early splenic PrP(Sc replication was strongly inhibited ten weeks post infection and mean survival time prolonged from 209 days in untreated 139A-infected mice to 246 days in mice vaccinated with DCs expressing the hPrP. The efficacy appeared to be associated with antibody but not with cytotoxic cell-mediated PrP-specific responses.

  19. The tumor spectrum in FHIT-deficient mice

    Science.gov (United States)

    Zanesi, Nicola; Fidanza, Vincenzo; Fong, Louise Y.; Mancini, Rita; Druck, Teresa; Valtieri, Mauro; Rüdiger, Thomas; McCue, Peter A.; Croce, Carlo M.; Huebner, Kay

    2001-01-01

    Mice carrying one inactivated Fhit allele (Fhit +/− mice) are highly susceptible to tumor induction by N-nitrosomethylbenzylamine, with 100% of Fhit +/− mice exhibiting tumors of the forestomach/squamocolumnar junction vs. 25% of Fhit +/+ controls. In the current study a single N-nitrosomethylbenzylamine dose was administered to Fhit +/+, +/−, and −/− mice to compare carcinogen susceptibility in +/- and −/− Fhit-deficient mice. At 29 weeks after treatment, 7.7% of wild-type mice had tumors. Of the Fhit −/− mice 89.5% exhibited tumors (average 3.3 tumors/mouse) of the forestomach and squamocolumnar junction; half of the −/− mice had medium (2 mm diameter) to large (>2 mm) tumors. Of the Fhit +/− mice 78% exhibited tumors (average 2.4 tumors/mouse) and 22% showed medium to large tumors. Untreated Fhit-deficient mice have been observed for up to 2 years for spontaneous tumors. Fhit +/− mice (average age 21 mo) exhibit an average of 0.94 tumors of different types; Fhit −/− mice (average age 16 mo) also showed an array of tumors (average 0.76 tumor/mouse). The similar spontaneous and induced tumor spectra observed in mice with one or both Fhit alleles inactivated suggests that Fhit may be a one-hit tumor suppressor gene in some tissues. PMID:11517343

  20. Gastrin-deficient mice have disturbed hematopoiesis in response to iron deficiency.

    Science.gov (United States)

    Kovac, Suzana; Anderson, Gregory J; Alexander, Warren S; Shulkes, Arthur; Baldwin, Graham S

    2011-08-01

    Gastrins are peptide hormones important for gastric acid secretion and growth of the gastrointestinal mucosa. We have previously demonstrated that ferric ions bind to gastrins, that the gastrin-ferric ion complex interacts with the iron transport protein transferrin in vitro, and that circulating gastrin concentrations positively correlate with transferrin saturation in vivo. Here we report the effect of long-term dietary iron modification on gastrin-deficient (Gas(-/-)) and hypergastrinemic cholecystokinin receptor 2-deficient (Cck2r(-/-)) mice, both of which have reduced basal gastric acid secretion. Iron homeostasis in both strains appeared normal unless the animals were challenged by iron deficiency. When fed an iron-deficient diet, Gas(-/-) mice, but not Cck2r(-/-) mice, developed severe anemia. In iron-deficient Gas(-/-) mice, massive splenomegaly was also apparent with an increased number of splenic megakaryocytes accompanied by thrombocytosis. The expression of the mRNA encoding the iron-regulatory peptide hepcidin, Hamp, was down-regulated in both Cck2r(-/-) and Gas(-/-) mice on a low-iron diet, but, interestingly, the reduction was greater in Cck2r(-/-) mice and smaller in Gas(-/-) mice than in the corresponding wild-type strains. These data suggest that gastrins play an important direct role, unrelated to their ability to stimulate acid secretion, in hematopoiesis under conditions of iron deficiency.

  1. Gastrin-Deficient Mice Have Disturbed Hematopoiesis in Response to Iron Deficiency

    Science.gov (United States)

    Anderson, Gregory J.; Alexander, Warren S.; Shulkes, Arthur; Baldwin, Graham S.

    2011-01-01

    Gastrins are peptide hormones important for gastric acid secretion and growth of the gastrointestinal mucosa. We have previously demonstrated that ferric ions bind to gastrins, that the gastrin-ferric ion complex interacts with the iron transport protein transferrin in vitro, and that circulating gastrin concentrations positively correlate with transferrin saturation in vivo. Here we report the effect of long-term dietary iron modification on gastrin-deficient (Gas−/−) and hypergastrinemic cholecystokinin receptor 2-deficient (Cck2r−/−) mice, both of which have reduced basal gastric acid secretion. Iron homeostasis in both strains appeared normal unless the animals were challenged by iron deficiency. When fed an iron-deficient diet, Gas−/− mice, but not Cck2r−/−mice, developed severe anemia. In iron-deficient Gas−/−mice, massive splenomegaly was also apparent with an increased number of splenic megakaryocytes accompanied by thrombocytosis. The expression of the mRNA encoding the iron-regulatory peptide hepcidin, Hamp, was down-regulated in both Cck2r−/− and Gas−/−mice on a low-iron diet, but, interestingly, the reduction was greater in Cck2r−/− mice and smaller in Gas−/− mice than in the corresponding wild-type strains. These data suggest that gastrins play an important direct role, unrelated to their ability to stimulate acid secretion, in hematopoiesis under conditions of iron deficiency. PMID:21652729

  2. Essential fatty acid deficiency in mice impairs lactose digestion.

    Science.gov (United States)

    Lukovac, S; Los, E L; Stellaard, F; Rings, E H H M; Verkade, H J

    2008-09-01

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an EFA-deficient or control diet for 8 wk. A 72-h fat balance, the EFA status, and small intestinal histology were determined. Carbohydrate absorptive and digestive capacities were assessed by stable isotope methodology after administration of [U-(13)C]glucose and [1-(13)C]lactose. The mRNA expression and enzyme activity of lactase, and concentrations of the EFA linoleic acid (LA) were measured in small intestinal mucosa. Mice fed the EFA-deficient diet were markedly EFA-deficient with a profound fat malabsorption. EFA deficiency did not affect the histology or proliferative capacity of the small intestine. Blood [13C6]glucose appearance and disappearance were similar in both groups, indicating unaffected monosaccharide absorption. In contrast, blood appearance of [13C]glucose, originating from [1-(13)C]lactose, was delayed in EFA-deficient mice. EFA deficiency profoundly reduced lactase activity (-58%, P<0.01) and mRNA expression (-55%, P<0.01) in mid-small intestine. Both lactase activity and its mRNA expression strongly correlated with mucosal LA concentrations (r=0.77 and 0.79, respectively, P<0.01). EFA deficiency in mice inhibits the capacity to digest lactose but does not affect small intestinal histology. These data underscore the observation that EFA deficiency functionally impairs the small intestine, which in part may be mediated by low LA levels in the enterocytes.

  3. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  4. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    in tumorigenesis and metastatic growth. In this model the stromal expression of MMP-3 mRNA resembles the predominant MMP-3 expression pattern observed in human ductal breast carcinomas. We studied a cohort of 63 PyMT transgenic mice, either deficient for MMP-3 or wild-type controls. The degree of metastasis did...... not differ significantly between the two groups of mice, although the median lung metastasis volume was more than threefold increased in MMTV-PyMT mice deficient in MMP-3. Likewise, primary tumor growth rate and lymph node metastasis were not significantly affected by MMP-3-deficiency. By comparing m......RNA levels in MMP-3-deficient PyMT tumors with PyMT wild-type tumors we excluded compensatory transcriptional changes of other MMPs or their specific inhibitors. Thus, we conclude that genetic ablation of MMP-3 does not significantly affect tumor growth and metastasis in the MMTV-PyMT model....

  5. Lessons from Tau-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yazi D. Ke

    2012-01-01

    Full Text Available Both Alzheimer's disease (AD and frontotemporal dementia (FTD are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term “tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aβ and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo.

  6. Enzyme changes associated with mitochondrial malic enzyme deficiency in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrenweiser, H.W.; Erickson, R.P.

    1979-01-01

    A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c/sup 3H//c/sup 6H/ mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochrondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in solublle malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19 to 21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.

  7. Altered sleep regulation in leptin-deficient mice.

    Science.gov (United States)

    Laposky, Aaron D; Shelton, Jonathan; Bass, Joseph; Dugovic, Christine; Perrino, Nicholas; Turek, Fred W

    2006-04-01

    Recent epidemiological, clinical, and experimental studies have demonstrated important links between sleep duration and architecture, circadian rhythms, and metabolism, although the genetic pathways that interconnect these processes are not well understood. Leptin is a circulating hormone and major adiposity signal involved in long-term energy homeostasis. In this study, we tested the hypothesis that leptin deficiency leads to impairments in sleep-wake regulation. Male ob/ob mice, a genetic model of leptin deficiency, had significantly disrupted sleep architecture with an elevated number of arousals from sleep [wild-type (WT) mice, 108.2 +/- 7.2 vs. ob/ob mice, 148.4 +/- 4.5, P sleep bouts compared with WT mice, indicating impaired sleep consolidation. Interestingly, ob/ob mice showed changes in sleep time, with increased amounts of 24-h non-rapid eye movement (NREM) sleep (WT, 601.5 +/- 10.8 vs. ob/ob, 669.2 +/- 13.4 min, P sleep-wake stages, NREM delta power, and locomotor activity. Following sleep deprivation, ob/ob mice had smaller amounts of NREM and REM recovery sleep, both in terms of the magnitude and the duration of the recovery response. In combination, these results indicate that leptin deficiency disrupts the regulation of sleep architecture and diurnal rhythmicity.

  8. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Polyxeni T Mantani

    Full Text Available IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apoE deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.

  9. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  10. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  11. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  12. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice

    NARCIS (Netherlands)

    van Pelt, A. M.; de rooij, D. G.

    1990-01-01

    The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At

  13. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  14. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Altered hippocampus synaptic function in selenoprotein P deficient mice

    Directory of Open Access Journals (Sweden)

    Peters Melinda M

    2006-09-01

    Full Text Available Abstract Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1 results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/- mice and wild type littermate controls (Sepp1(+/+ fed a high-selenium diet (1 mg Se/kg were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/- mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/- mice on a 1 mg Se/kg diet and Sepp1(+/+ mice fed a selenium-deficient (0 mg Se/kg diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.

  16. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite...... differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules...

  17. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Science.gov (United States)

    Smith, Wanli W; Smith, Megan; Yang, Dejun; Choi, Pique P; Moghadam, Alexander; Li, Tianxia; Moran, Timothy H

    2015-01-01

    Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  18. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice.

    Science.gov (United States)

    Djukic, Marija; Sostmann, Nadine; Bertsch, Thomas; Mecke, Marianne; Nessler, Stefan; Manig, Anja; Hanisch, Uwe-Karsten; Triebel, Jakob; Bollheimer, L Cornelius; Sieber, Cornel; Nau, Roland

    2015-01-07

    Meningoencephalitis caused by Escherichia coli is associated with high rates of mortality and risk of neurological sequelae in newborns and infants and in older or immunocompromised adults. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. In vivo, we studied the effects of vitamin D3 on survival and the host's immune response in experimental bacterial meningoencephalitis in mice after intracerebral E. coli infection. To produce different systemic vitamin D3 concentrations, mice received a low, standard, or high dietary vitamin D3 supplementation. Bacterial titers in blood, spleen, and brain homogenates were determined. Leukocyte infiltration was assessed by histological scores, and tissue cytokine or chemokine concentrations were measured. Mice fed a diet with low vitamin D3 concentration died earlier than control animals after intracerebral infection. Vitamin D deficiency did not inhibit leukocyte recruitment into the subarachnoid space and did not lead to an increased density of bacteria in blood, spleen, or brain homogenates. The release of proinflammatory interleukin (IL)-6 was decreased and the release of anti-inflammatory IL-10 was increased in mice fed a diet with high vitamin D3 supplementation. Our observations suggest a detrimental role of vitamin D deficiency in bacterial central nervous system infections. Vitamin D may exert immune regulatory functions.

  19. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  20. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  1. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe clin...

  2. Altered pupillary light reflex in PACAP receptor 1-deficient mice

    DEFF Research Database (Denmark)

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian Paul

    2012-01-01

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN......), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP......) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN...

  3. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  4. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  5. Sun1 deficiency leads to cerebellar ataxia in mice

    Directory of Open Access Journals (Sweden)

    Jing-Ya Wang

    2015-08-01

    Full Text Available Migration and organization of the nucleus are essential for the proliferation and differentiation of cells, including neurons. However, the relationship between the positioning of the nucleus and cellular morphogenesis remains poorly understood. Inherited recessive cerebellar ataxia has been attributed to mutations in SYNE1, a component of the linker of nucleoskeleton and cytoskeleton (LINC complex. Regardless, Syne1-mutant mice present with normal cerebellar development. The Sad1-Unc-84 homology (SUN-domain proteins are located at the inner nuclear membrane and recruit Syne proteins through the KASH domain to the outer nuclear membrane. Here, we report an unrecognized contribution of Sun1 and Sun2 to the postnatal development of murine cerebellum. Mice depleted of Sun1 showed a marked reduction in the cerebellar volume, and this phenotype is exacerbated with additional loss of a Sun2 allele. Consistent with these histological changes, Sun1−/− and Sun1−/−Sun2+/− mice exhibited defective motor coordination. Results of immunohistochemical analyses suggested that Sun1 is highly expressed in Purkinje cells and recruits Syne2 to the periphery of the nucleus. Approximately 33% of Purkinje cells in Sun1−/− mice and 66% of Purkinje cells in Sun1−/−Sun2+/− mice were absent from the surface of the internal granule layer (IGL, whereas the proliferation and migration of granule neurons were unaffected. Furthermore, the Sun1−/−Sun2+/− Purkinje cells exhibited retarded primary dendrite specification, reduced dendritic complexity and aberrant patterning of synapses. Our findings reveal a cell-type-specific role for Sun1 and Sun2 in nucleokinesis during cerebellar development, and we propose the use of Sun-deficient mice as a model for studying cerebellar ataxia that is associated with mutation of human SYNE genes or loss of Purkinje cells.

  6. Helicobacter cinaedi induced typhlocolitis in Rag-2-deficient mice.

    Science.gov (United States)

    Shen, Zeli; Feng, Yan; Rickman, Barry; Fox, James G

    2015-04-01

    Helicobacter cinaedi, an enterohepatic helicobacter species (EHS), is an important human pathogen and is associated with a wide range of diseases, especially in immunocompromised patients. It has been convincingly demonstrated that innate immune response to certain pathogenic enteric bacteria is sufficient to initiate colitis and colon carcinogenesis in recombinase-activating gene (Rag)-2-deficient mice model. To better understand the mechanisms of human IBD and its association with development of colon cancer, we investigated whether H. cinaedi could induce pathological changes noted with murine enterohepatic helicobacter infections in the Rag2(-/-) mouse model. Sixty 129SvEv Rag2(-/-) mice mouse were experimentally or sham infected orally with H. cinaedi strain CCUG 18818. Gastrointestinal pathology and immune responses in infected and control mice were analyzed at 3, 6 and 9 months postinfection (MPI). H. cinaedi colonized the cecum, colon, and stomach in infected mice. H. cinaedi induced typhlocolitis in Rag2(-/-) mice by 3 MPI and intestinal lesions became more severe by 9 MPI. H. cinaedi was also associated with the elevation of proinflammatory cytokines, interferon-γ, tumor-necrosis factor-α, IL-1β, IL-10; iNOS mRNA levels were also upregulated in the cecum of infected mice. However, changes in IL-4, IL-6, Cox-2, and c-myc mRNA expressions were not detected. Our results indicated that the Rag2(-/-) mouse model will be useful to continue investigating the pathogenicity of H. cinaedi, and to study the association of host immune responses in IBD caused by EHS. © 2014 John Wiley & Sons Ltd.

  7. Sun1 deficiency leads to cerebellar ataxia in mice.

    Science.gov (United States)

    Wang, Jing-Ya; Yu, I-Shing; Huang, Chien-Chi; Chen, Chia-Yen; Wang, Wan-Ping; Lin, Shu-Wha; Jeang, Kuan-Teh; Chi, Ya-Hui

    2015-08-01

    Migration and organization of the nucleus are essential for the proliferation and differentiation of cells, including neurons. However, the relationship between the positioning of the nucleus and cellular morphogenesis remains poorly understood. Inherited recessive cerebellar ataxia has been attributed to mutations in SYNE1, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Regardless, Syne1-mutant mice present with normal cerebellar development. The Sad1-Unc-84 homology (SUN)-domain proteins are located at the inner nuclear membrane and recruit Syne proteins through the KASH domain to the outer nuclear membrane. Here, we report an unrecognized contribution of Sun1 and Sun2 to the postnatal development of murine cerebellum. Mice depleted of Sun1 showed a marked reduction in the cerebellar volume, and this phenotype is exacerbated with additional loss of a Sun2 allele. Consistent with these histological changes, Sun1(-/-) and Sun1(-/-)Sun2(+/-) mice exhibited defective motor coordination. Results of immunohistochemical analyses suggested that Sun1 is highly expressed in Purkinje cells and recruits Syne2 to the periphery of the nucleus. Approximately 33% of Purkinje cells in Sun1(-/-) mice and 66% of Purkinje cells in Sun1(-/-)Sun2(+/-) mice were absent from the surface of the internal granule layer (IGL), whereas the proliferation and migration of granule neurons were unaffected. Furthermore, the Sun1(-/-)Sun2(+/-) Purkinje cells exhibited retarded primary dendrite specification, reduced dendritic complexity and aberrant patterning of synapses. Our findings reveal a cell-type-specific role for Sun1 and Sun2 in nucleokinesis during cerebellar development, and we propose the use of Sun-deficient mice as a model for studying cerebellar ataxia that is associated with mutation of human SYNE genes or loss of Purkinje cells. © 2015. Published by The Company of Biologists Ltd.

  8. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice

    OpenAIRE

    Dubrovsky, Yuliya V.; Samsa, William E.; Kondratov, Roman V.

    2010-01-01

    Circadian clock is implicated in the regulation of aging. The transcription factor CLOCK, a core component of the circadian system, operates in complex with another circadian clock protein BMAL1. Recently it was demonstrated that BMAL1 deficiency results in premature aging in mice. Here we investigate the aging of mice deficient for CLOCK protein. Deficiency of the CLOCK protein significantly affects longevity: the average lifespan of Clock−/− mice is reduced by 15% compared with wild type mi...

  9. Correction of lysosomal enzyme deficiency in various organs of beta-glucuronidase-deficient mice by allogeneic bone marrow transplantation

    NARCIS (Netherlands)

    Hoogerbrugge, P. M.; Poorthuis, B. J.; Mulder, A. H.; Wagemaker, G.; Dooren, L. J.; Vossen, J. M.; van Bekkum, D. W.

    1987-01-01

    The correction of lysosomal enzyme deficiency was investigated for various organs of beta-glucuronidase-deficient C3H/Rij mice after allogeneic bone marrow transplantation from an enzymatically normal donor strain (C57BL/Rij). In the hemopoietic organs, the enzyme level increased to levels found in

  10. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  11. Timp3 deficient mice show resistance to developing breast cancer.

    Directory of Open Access Journals (Sweden)

    Hartland W Jackson

    Full Text Available Timp3 is commonly silenced in breast cancer, but mechanistic studies have identified both tumor promotion and suppression effects of this gene. We have taken a genetic approach to determine the impact of Timp3 loss on two mouse models of breast cancer. Interestingly, MMTV-PyMT Timp3-⁄- mice have delayed tumor onset and 36% of MMTV-Neu Timp3-⁄- mice remain tumor free. TIMP3 is a regulator of TNF signaling and similar to Timp3, Tnf or Tnfr1 loss delays early tumorigenesis. The tumor suppression in Timp3 null mice requires Tnfr1, but does not result in alterations in the local immune compartment. In the mammary gland, Timps are highly expressed in the stroma and through the transplantation of tumor cells we observe that Timp3 deficiency in the host is sufficient to delay the growth of early, but not advanced tumor cells. Together our data is the first to identify a tumor promoting role of endogenous Timp3 in vivo, the spatial and temporal windows of this effect, and its dependence on Tnfr1.

  12. Lactoferrin Deficiency Promotes Colitis-Associated Colorectal Dysplasia in Mice

    Science.gov (United States)

    Ye, Qiurong; Zheng, Ying; Fan, Songqing; Qin, Zailong; Li, Nan; Tang, Anliu; Ai, Feiyan; Zhang, Xuemei; Bian, Yanhui; Dang, Wei; Huang, Jing; Zhou, Ming; Zhou, Yanhong; Xiong, Wei; Yan, Qun; Ma, Jian; Li, Guiyuan

    2014-01-01

    Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane–dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult. PMID:25057912

  13. Normal Thyroid Structure and Function in Rhophilin 2-Deficient Mice

    Science.gov (United States)

    Behrends, Jens; Clément, Serge; Pajak, Bernard; Pohl, Viviane; Maenhaut, Carine; Dumont, Jacques E.; Schurmans, Stéphane

    2005-01-01

    Rhophilin 2 is a Rho GTPase binding protein initially isolated by differential screening of a chronically thyrotropin (TSH)-stimulated dog thyroid cDNA library. In thyroid cell culture, expression of rhophilin 2 mRNA and protein is enhanced following TSH stimulation of the cyclic AMP (cAMP) transduction cascade. Yeast two-hybrid screening and coimmunoprecipitation have revealed that the GTP-bound form of RhoB and components of the cytoskeleton are protein partners of rhophilin 2. These results led us to suggest that rhophilin 2 could play an important role downstream of RhoB in the control of endocytosis during the thyroid secretory process which follows stimulation of the TSH/cAMP pathway. To validate this hypothesis, we generated rhophilin 2-deficient mice and analyzed their thyroid structure and function. Mice lacking rhophilin 2 develop normally, have normal life spans, and are fertile. They have no visible goiter and no obvious clinical signs of hyper- or hypothyroidism. The morphology of thyroid cells and follicles in these mice were normal, as were the different biological tests performed to investigate thyroid function. Our results indicate that rhophilin 2 does not play an essential role in thyroid physiology. PMID:15767687

  14. Lipoprotein lipase gene-deficient mice with hypertriglyceridaemia associated with acute pancreatitis.

    Science.gov (United States)

    Tang, Maochun; Zong, Pengfei; Zhang, Ting; Wang, Dongyan; Wang, Yuhui; Zhao, Yan

    2016-10-01

    To investigate the severity of pancreatitis in lipoprotein lipase (LPL)-deficient hypertriglyceridaemic (HTG) heterozygous mice and to establish an experimental animal model for HTG pancreatitis study. LPL-deficient HTG heterozygous mice were rescued by somatic gene transfer and mated with wild-type mice. The plasma amylase, triglyceride, and pathologic changes in the pancreas of the LPL-deficient HTG heterozygous mice were compared with those of wild-type mice to assess the severity of pancreatitis. In addition, acute pancreatitis (AP) was induced by caerulein (50 µg/kg) for further assessment. The levels of plasma amylase and triglyceride were significantly higher in the LPL-deficient HTG heterozygous mice. According to the pancreatic histopathologic scores, the LPL-deficient HTG heterozygous mice showed more severe pathologic damage than the wild-type mice. Lipoprotein lipase deficient heterozygous mice developed severe caerulein-induced pancreatitis. In addition, their high triglyceride levels were stable. Therefore, LPL-deficient HTG heterozygous mice are a useful experimental model for studying HTG pancreatitis.

  15. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  16. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Caravaggio, Justin W; Hasu, Mirela; MacLaren, Robin; Thabet, Mohamed; Raizman, Joshua E; Veinot, John P; Marcel, Yves L; Milne, Ross W; Whitman, Stewart C

    2013-01-01

    Insulin-degrading enzyme (IDE), a protease implicated in several chronic diseases, associates with the cytoplasmic domain of the macrophage Type A scavenger receptor (SR-A). Our goal was to investigate the effect of IDE deficiency (Ide(-/-)) on diet-induced atherosclerosis in low density lipoprotein-deficient (Ldlr(-/-)) mice and on SR-A function. Irradiated Ldlr(-/-) or Ide(-/-)Ldlr(-/-) mice were reconstituted with wild-type or Ide(-/-) bone marrow and, 6 weeks later, were placed on a high-fat diet for 8 weeks. After 8 weeks on a high-fat diet, male Ldlr(-/-) recipients of Ide(-/-) bone marrow had more atherosclerosis, higher serum cholesterol and increased lesion-associated β-amyloid, an IDE substrate, and receptor for advanced glycation end products (RAGE), a proinflammatory receptor for β-amyloid, compared to male Ldlr(-/-) recipients of wild-type bone marrow. IDE deficiency in male Ldlr(-/-) recipient mice did not affect atherosclerosis or cholesterol levels and moderated the effects of IDE deficiency of bone marrow-derived cells. No differences were seen between Ldlr(-/-) and Ide(-/-)Ldlr(-/-) female mice reconstituted with Ide(-/-) or wild-type bone marrow. IDE deficiency in macrophages did not alter SR-A levels, cell surface SR-A, or foam cell formation. IDE deficiency in bone marrow-derived cells results in larger atherosclerotic lesions, increased lesion-associated Aβ and RAGE, and higher serum cholesterol in male, Ldlr(-/-) mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Platlet Rich Plasma (PRP) Improves Fat Grafting Outcomes.

    Science.gov (United States)

    Modarressi, Ali

    2013-01-01

    Autologous fat transfer offers many qualities of a ideal soft tissue filler. Main advantages of fat grafting ensue from the fact that the lipoaspirate tissue is an abundant source of regenerative pluripotential cells. However, the reported rates of fat cell survival vary greatly in the medical literature (10-90%). Different techniques of harvesting, processing, and reinjecting the fat cells are so claimed to be responsible for these differences, without any agreement concerning the best way to process. To address this important disadvantage, we propose the addition of autologous platelet rich plasma (PRP) which is known as a natural reservoir of growth factors stimulating tissue repair and regeneration. This approach is completely autologous and immediately employed without any type of preconditioning. Platelets rich plasma (PRP) preparation included bleeding of 8 ml of blood from patient's peripheral vein in Regen Lab© tubes containing sodium citrate anticoagulant. The whole blood was centrifugated at 1500 g during 3 min. As Regen-tubes contained a special gel separator, 99 % of red blood cells were discarded from the plasma at the bottom of the gel, and >90% of platelets were harvested in 4 ml of plasma on the top of the gel, called the platelet-rich plasma (PRP). The purified fat prepared by Coleman technique was mixed with different amount of PRP for in vitro, in vivo (mice) and clinical experiments: >50% of PRP for skin rejuvenation, superficial scars correction, infraorbital region, ..., and for 20% of PRP with 80% of purified fat for deep filler indication (nasolabial folds, lips, or soft tissue defect). In vitro studies demonstrated that PRP increased fat cells survival rate and stem cells differentiation. Animal models showed that fat graft survival rate was significantly increased by addition of PRP. Several clinical cases confirmed the improvement of wound healing and fat grafting survival in facial reconstruction and aesthetic cases by association of

  18. Complex seizure disorder caused by Brunol4 deficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2007-07-01

    Full Text Available Idiopathic epilepsy is a common human disorder with a strong genetic component, usually exhibiting complex inheritance. We describe a new mouse mutation in C57BL/6J mice, called frequent-flyer (Ff, in which disruption of the gene encoding RNA-binding protein Bruno-like 4 (Brunol4 leads to limbic and severe tonic-clonic seizures in heterozygous mutants beginning in their third month. Younger heterozygous adults have a reduced seizure threshold. Although homozygotes do not survive well on the C57BL/6J background, on mixed backgrounds homozygotes and some heterozygotes also display spike-wave discharges, the electroencephalographic manifestation of absence epilepsy. Brunol4 is widely expressed in the brain with enrichment in the hippocampus. Gene expression profiling and subsequent analysis revealed the down-regulation of at least four RNA molecules encoding proteins known to be involved in neuroexcitability, particularly in mutant hippocampus. Genetic and phenotypic assessment suggests that Brunol4 deficiency in mice results in a complex seizure phenotype, likely due to the coordinate dysregulation of several molecules, providing a unique new animal model of epilepsy that mimics the complex genetic architecture of common disease.

  19. Impaired brain development and reduced cognitive function in phospholipase D-deficient mice.

    Science.gov (United States)

    Burkhardt, Ute; Stegner, David; Hattingen, Elke; Beyer, Sandra; Nieswandt, Bernhard; Klein, Jochen

    2014-06-20

    The phospholipases D (PLD1 and 2) are signaling enzymes that catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid, a lipid second messenger involved in cell proliferation, and choline, a precursor of acetylcholine (ACh). In the present study, we investigated development and cognitive function in mice that were deficient for PLD1, or PLD2, or both. We found that PLD-deficient mice had reduced brain growth at 14-27 days post partum when compared to wild-type mice. In adult PLD-deficient mice, cognitive function was impaired in social and object recognition tasks. Using brain microdialysis, we found that wild-type mice responded with a 4-fold increase of hippocampal ACh release upon behavioral stimulation in the open field, while PLD-deficient mice released significantly less ACh. These results may be relevant for cognitive dysfunctions observed in fetal alcohol syndrome and in Alzheimer' disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtual...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  1. Isoliquiritigenin Attenuates Atherogenesis in Apolipoprotein E-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Fen Du

    2016-11-01

    Full Text Available Isoliquiritigenin (ISL exhibits antioxidation and anti-inflammation activity. We sought to investigate the effects and mechanism of ISL on the development of atherosclerotic lesions in apolipoprotein E-deficient (apoE−/− mice. Firstly, we determined that ISL reduced the mRNA levels of inflammatory factors interleukin 6 (IL-6, tumor necrosis factor α (TNF-α, and monocyte chemotactic protein-1 (MCP-1, while it increased the expression of several lipoprotein-related genes in peritoneal macrophages treated with lipopolysaccharide (LPS. ISL also enhanced peroxisome proliferator-activated receptor gamma (PPARγ protein levels and reversed the changes of ATP-binding cassette transporter A (ABCA1 and cluster of differentiation 36 (CD36 in macrophages treated with oxidative low-density lipoprotein (ox-LDL. Then, in an in vivo study, female apoE−/− mice were fed a Western diet with ISL (0, 20, 100 mg/kg/day added for 12 weeks. We found that ISL decreased the plasma cholesterol levels of very low-density lipoprotein (VLDL/LDL, promoted plasma superoxide dismutase (SOD and paraoxonase-1 (PON1 activities, and decreased plasma IL-6, TNF-α, and MCP-1 levels. Moreover, ISL significantly reduced the atherosclerotic lesions and hepatic steatosis in apoE−/− mice. In the liver, ISL altered the expression of several key genes (such as SRBI, ABCA1, ABCG8, PPARγ, and FASN involving cholesterol-selective uptake and excretion into bile, triglyceride (TG biosynthesis, and inflammation. These results suggest that the atheroprotective effects of ISL are due to the improvement of lipid metabolism, antioxidation, and anti-inflammation, which involve PPARγ-dependent signaling.

  2. STAT4 deficiency reduces the development of atherosclerosis in mice.

    Science.gov (United States)

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V

    2015-11-01

    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. CD36 deficiency in mice impairs lipoprotein lipase-mediated triglyceride clearance

    NARCIS (Netherlands)

    Goudriaan, J.R.; oer, M.A.M. den; Rensen, P.C.N.; Febbraio, M.; Kuipers, F.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J.

    2005-01-01

    CD36 is involved in high-affinity peripheral FFA uptake. CD36-deficient (cd36-/-) mice exhibit increased plasma FFA and triglyceride (TG) levels. The aim of the present study was to elucidate the cause of the increased plasma TG levels in cd36-/- mice. cd36-/- mice showed no differences in hepatic

  4. Hyperuricemic PRP in Tendon Cells

    Directory of Open Access Journals (Sweden)

    I. Andia

    2014-01-01

    Full Text Available Platelet-rich plasma (PRP is injected within tendons to stimulate healing. Metabolic alterations such as the metabolic syndrome, diabetes, or hyperuricemia could hinder the therapeutic effect of PRP. We hypothesise that tendon cells sense high levels of uric acid and this could modify their response to PRP. Tendon cells were treated with allogeneic PRPs for 96 hours. Hyperuricemic PRP did not hinder the proliferative actions of PRP. The gene expression pattern of inflammatory molecules in response to PRP showed absence of IL-1b and COX1 and modest expression of IL6, IL8, COX2, and TGF-b1. IL8 and IL6 proteins were secreted by tendon cells treated with PRP. The synthesis of IL6 and IL8 proteins induced by PRP is decreased significantly in the presence of hyperuricemia (P = 0.017 and P = 0.012, resp.. Concerning extracellular matrix, PRP-treated tendon cells displayed high type-1 collagen, moderate type-3 collagen, decorin, and hyaluronan synthase-2 expression and modest expression of scleraxis. Hyperuricemia modified the expression pattern of extracellular matrix proteins, upregulating COL1 (P = 0.036 and COMP (P = 0.012 and downregulating HAS2 (P = 0.012. Positive correlations between TGF-b1 and type-1 collagen (R = 0.905, P = 0.002 and aggrecan (R = 0.833, P = 0.010 and negative correlations between TGF-b1 and IL6 synthesis (R = −0.857, P = 0.007 and COX2 (R = −0.810, P = 0.015 were found.

  5. The Pathogenesis of Alcohol-Induced Airflow Limitation in Acetaldehyde Dehydrogenase 2-Deficient Mice.

    Science.gov (United States)

    Shimoda, Terufumi; Obase, Yasushi; Matsuse, Hiroto; Asai, Sadahiro; Iwanaga, Tomoaki

    2016-01-01

    In Japanese patients, alcohol-induced asthma is attributed to elevated plasma concentrations of acetaldehyde following alcohol consumption because of an acetaldehyde dehydrogenase 2 gene (ALDH2) polymorphism. The resulting increase in plasma histamine concentrations seems to trigger the onset of asthma symptoms. However, the specific pathogenic mechanism underlying this response remains unclear. ALDH2-deficient mice were therefore generated to investigate the pathogenesis of alcohol-induced asthma. ALDH2-deficient mice were generated using embryonic stem cells that were derived from C57BL/6 mice. The resulting mice were backcrossed into the BALB/c mice background. Exon 1 of ALDH2 was replaced with the Neo cassette. Pure ethanol was orally administered to ALDH2-deficient and wild-type mice, and the plasma concentrations of ethanol, acetaldehyde, and histamine, in addition to enhanced pause (Penh) values, were determined and compared between the 2 groups. We established an ALDH2-deficient mouse line to compare responses between wild-type and ALDH2-deficient mice receiving orally administered ethanol. The results showed that the plasma concentrations of acetaldehyde (p alcohol-induced asthma using ALDH2-deficient mice. The results demonstrated that alcohol intake resulted in an increase in acetaldehyde levels, and a subsequent increase in histamine levels, which induced airway constriction. Alcohol consumption is known to be an important factor that exacerbates bronchial asthma, and studies investigating this factor are useful for the treatment of patients with alcohol-induced asthma. © 2017 S. Karger AG, Basel.

  6. Toxicity of teriflunomide in aryl hydrocarbon receptor deficient mice.

    Science.gov (United States)

    Redaelli, Chiara; Gaffarogullari, Ece Cazibe; Brune, Maik; Pilz, Caroline; Becker, Simon; Sonner, Jana; Jäschke, Andres; Gröne, Hermann-Josef; Wick, Wolfgang; Platten, Michael; Lanz, Tobias Volker

    2015-12-01

    The intracellular transcription factor aryl hydrocarbon receptor (AHR) is bound and activated by xenobiotics, thereby promoting their catabolism by inducing expression of cytochrome P450 oxidase (CYP) genes through binding xenobiotic response elements (XRE) in their promoter region. In addition, it is involved in several cellular pathways like cell proliferation, differentiation, regeneration, tumor invasiveness and immune responses. Several pharmaceutical compounds like benzimidazoles activate the AHR and induce their own metabolic degradation. Using newly generated XRE-reporter mice, which allow in vivo bioluminescence imaging of AHR activation, we show here that the AHR is activated in vivo by teriflunomide (TER), which has recently been approved for the treatment of multiple sclerosis. While we did not find any evidence that the AHR mediates the immunomodulatory effects of TER, AHR activation led to metabolism and detoxification of teriflunomide, most likely via CYP. Mice deficient for the AHR show higher blood levels of teriflunomide, suffer from enhanced thrombo- and leukopenia and elevated liver enzymes as well as from severe gastrointestinal ulcers and bleeding which are lethal after 8-11 days of treatment. Leukopenia, acute liver damage and diarrhea have also been described as common side effects in human trials with TER. These data suggest that the AHR is relevant for detoxification not only of environmental toxins but also of drugs in clinical use, with potential implications for the application of AHR-modifying therapies in conjunction to TER in humans. The XRE-reporter mouse is a useful novel tool for monitoring AHR activation using in vivo imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Host selenium deficiency increases the severity of chronic inflammatory myopathy in Trypanosoma cruzi-inoculated mice.

    Science.gov (United States)

    Gomez, Ricardo M; Solana, Maria E; Levander, Orville A

    2002-06-01

    Weanling C3H/HeN mice were fed either a torula yeast-based diet deficient in selenium (Se) or the same diet supplemented with 0.2 ppm Se as sodium selenite. After 4 wk of feeding, the mice were inoculated intraperitoneally with the CA-I strain (clone K98) of Trypanosoma cruzi (TC). Before inoculation, mean serum Se levels were 430 versus 61 ng/ml in adequate and deficient mice, respectively. During the ascending phase of parasitemia, the Se-deficient mice exhibited significantly higher levels of parasites at 22-34 days postinfection (PI). However, no difference was found in the subsequent descending phase. As judged by visual examination at 2-mo-PI, some Se-deficient infected mice presented clinical signs of motor dysfunction. At 3-mo-PI, the end of the observation period, this chronic disease developed into a hind limb flaccid paralysis affecting 5 of 8 infected deficient mice. No signs of paralysis were seen in noninfected mice fed either diet or in infected mice fed the Se-adequate diet. At the histological level, both Se-adequate and Se-deficient infected mice showed mild myocarditis and moderate to severe myositis, with increasing intensity from 1- to 3-mo-PI in both groups. However, the severity of myositis was always more intense in the Se-deficient mice so that prominent areas of skeletal muscle replaced by fibrotic tissue were frequently observed. Thus, it can be concluded that Se deficiency in the murine host increases the severity of TC-induced myositis.

  8. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  9. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma.

    Science.gov (United States)

    Arikkatt, Jaisy; Ullah, Md Ashik; Short, Kirsty Renfree; Zhang, Vivan; Gan, Wan Jun; Loh, Zhixuan; Werder, Rhiannon B; Simpson, Jennifer; Sly, Peter D; Mazzone, Stuart B; Spann, Kirsten M; Ferreira, Manuel Ar; Upham, John W; Sukkar, Maria B; Phipps, Simon

    2017-01-18

    Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target.

  10. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma

    Science.gov (United States)

    Arikkatt, Jaisy; Ullah, Md Ashik; Short, Kirsty Renfree; Zhang, Vivan; Gan, Wan Jun; Loh, Zhixuan; Werder, Rhiannon B; Simpson, Jennifer; Sly, Peter D; Mazzone, Stuart B; Spann, Kirsten M; Ferreira, Manuel AR; Upham, John W; Sukkar, Maria B; Phipps, Simon

    2017-01-01

    Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.21199.001 PMID:28099113

  11. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  12. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    Science.gov (United States)

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Depletion of cells of the B lineage in the bone marrow of zinc-deficient mice.

    Science.gov (United States)

    King, L E; Osati-Ashtiani, F; Fraker, P J

    1995-05-01

    Though lymphopenia is often noted in malnourished humans and rodents, little is known about the effects of suboptimal nutriture on lymphopoietic processes. Focusing primarily on cells of the B lineage in the marrow of young adult mice, a moderate degree of zinc deficiency (MZD) caused a 43% decline in the proportion of nucleated cells bearing B220 with a 91% decline noted among more severely zinc deficient mice (SZD). Early B cells (B220+Ig-) were highly sensitive to the deficiency, being barely detectable in SZD mice and reduced by almost 60% in MZD mice. Immature B cells (B220+IgM+IgD-) were similarly affected, declining 35% to 80% depending on the degree of the deficiency. In MZD mice, mature B cells (IgM+IgD+) exhibited moderate losses, being somewhat resistant. A more profound loss in this population was noted for SZD mice. Flow cytometric (FACS) scatter profiles indicated that zinc deficiency caused a sharp decline in the proportion of small nucleated cells which in the marrow are thought to contain a high proportion of developing lymphoid cells. There was a concomitant increase in large granular cells that paralleled a substantial increase in the proportion of nucleated cells bearing Mac-1 for both MZD and SZD mice. Given the dramatic depletion of cells of the B lineage in the marrow created by a deficiency in zinc, it is probable that disruptions in lymphopoietic processes in the marrow play a key role in the resulting lymphopenia observed in many types of malnutrition.

  14. Can PRP effectively treat injured tendons?

    Science.gov (United States)

    Wang, James H-C

    2014-01-01

    PRP is widely used to treat tendon and other tissue injuries in orthopaedics and sports medicine; however, the efficacy of PRP treatment on injured tendons is highly controversial. In this commentary, I reason that there are many PRP- and patient-related factors that influence the outcomes of PRP treatment on injured tendons. Therefore, more basic science studies are needed to understand the mechanism of PRP on injured tendons. Finally, I suggest that better understanding of the PRP action mechanism will lead to better use of PRP for the effective treatment of tendon injuries in clinics.

  15. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  16. B-Vitamin Deficiency Causes Hyperhomocysteinemia and Vascular Cognitive Impairment in Mice

    National Research Council Canada - National Science Library

    Aron M. Troen; Melissa Shea-Budgell; Barbara Shukitt-Hale; Donald E. Smith; Jacob Selhub; Irwin H. Rosenberg

    2008-01-01

    .... We report here that feeding male C57BL6/J mice a B-vitamin-deficient diet for 10 weeks induced hyperhomocysteinemia, significantly impaired spatial learning and memory, and caused a significant...

  17. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  18. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia.

    OpenAIRE

    Dalrymple, S A; Lucian, L A; Slattery, R; McNeil, T; Aud, D M; Fuchino, S; Lee, F; Murray, R

    1995-01-01

    We have produced interleukin-6 (IL-6)-deficient mice to examine, in vivo, the wide variety of biological activities attributed to this multifunctional cytokine. To investigate the role of IL-6 during infectious disease, IL-6-deficient mice were challenged with sublethal doses of Listeria monocytogenes, a facultative intracellular bacterium. While normal control animals were able to clear the infection, mutant animals exhibited a high mortality rate and showed uncontrolled replication of the b...

  19. Increased vascular sympathetic modulation in mice with Mas receptor deficiency.

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200-250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg(2)), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg(2)). The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1-7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1-7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. © The Author(s) 2016.

  20. Marginal Biotin Deficiency Is Teratogenic in ICR Mice1,2

    OpenAIRE

    Mock, Donald M.; Mock, Nell I.; Stewart, Christopher W.; LaBorde, James B.; Hansen, Deborah K.

    2003-01-01

    The incidence of marginal biotin deficiency in normal human gestation is approximately one in three. In ICR mice, maternal biotin deficiency results in cleft palate, micrognathia, microglossia and limb hypoplasia. However, the relationships among the severity of maternal biotin deficiency, fetal biotin status and malformations have not been reported. This study utilized validated indices of biotin status to investigate the relationships among maternal biotin status, fetal biotin status and th...

  1. Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity

    Directory of Open Access Journals (Sweden)

    Palmiter Richard D

    2005-12-01

    Full Text Available Abstract Background Autosomal recessive juvenile parkinsonism (AR-JP is caused by mutations in the parkin gene which encodes an E3 ubiquitin-protein ligase. Parkin is thought to be critical for protecting dopaminergic neurons from toxic insults by targeting misfolded or oxidatively damaged proteins for proteasomal degradation. Surprisingly, mice with targeted deletions of parkin do not recapitulate robust behavioral or pathological signs of parkinsonism. Since Parkin is thought to protect against neurotoxic insults, we hypothesized that the reason Parkin-deficient mice do not develop parkinsonism is because they are not exposed to appropriate environmental triggers. To test this possibility, we challenged Parkin-deficient mice with neurotoxic regimens of either methamphetamine (METH or 6-hydroxydopamine (6-OHDA. Because Parkin function has been linked to many of the pathways involved in METH and 6-OHDA toxicity, we predicted that Parkin-deficient mice would be more sensitive to the neurotoxic effects of these agents. Results We found no signs consistent with oxidative stress, ubiquitin dysfunction, or degeneration of striatal dopamine neuron terminals in aged Parkin-deficient mice. Moreover, results from behavioral, neurochemical, and immunoblot analyses indicate that Parkin-deficient mice are not more sensitive to dopaminergic neurotoxicity following treatment with METH or 6-OHDA. Conclusion Our results suggest that the absence of a robust parkinsonian phenotype in Parkin-deficient mice is not due to the lack of exposure to environmental triggers with mechanisms of action similar to METH or 6-OHDA. Nevertheless, Parkin-deficient mice could be more sensitive to other neurotoxins, such as rotenone or MPTP, which have different mechanisms of action; therefore, identifying conditions that precipitate parkinsonism specifically in Parkin-deficient mice would increase the utility of this model and could provide insight into the mechanism of AR

  2. TCF1 deficiency ameliorates autoimmune lymphoproliferative syndrome (ALPS)-like phenotypes of lpr/lpr mice.

    Science.gov (United States)

    Xu, X; Yu, B; Cai, W; Huang, Z

    2017-06-01

    Autoimmune lymphoproliferative syndrome (ALPS) is an incurable disease, which is characterized by non-malignant autoimmune lymphoproliferation. TCF1 is a key effector in the canonical Wnt/β-catenin pathway, regulating the development, activation and function of T cells. In this study, we aimed to explore the potential role of TCF1 in the development of ALPS-like phenotypes of lpr/lpr mice. We acquired TCF1-/- lpr/lpr double mutant mice by crossing TCF1 deficiency mice with lpr/lpr mice. Splenocyte compositions, serum cytokines levels, antidsDNA antibody production and kidney pathology were examined in the TCF1-/- lpr/lpr mice. With these examinations, we revealed that TCF1 deficiency relieved most manifestations of ALPS-like phenotype, which were caused by Fas mutation in TCF1-/- lpr/lpr mice. Splenocyte total numbers and compositions were downregulated to the similar levels with wildtype mice. TE and TEM cells were decreased in TCF1-/- lpr/lpr compared with lpr/lpr mice. The levels of autoantibodies and proinflammatory factors in serum, and the histopathology changes and the relative mRNA levels of proinflammatory factors in kidney all displayed parallel tendency in TCF1-/- lpr/lpr mice. Our study demonstrated that TCF1 deficiency ameliorated the ALPS-like phenotypes of TCF1-/- lpr/lpr mice, which might indicate a potential therapeutic direction for ALPS. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  3. Different Susceptibilities between Apoe- and Ldlr-Deficient Mice to Inflammation-Associated Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2016-10-01

    Full Text Available Hypercholesterolemia resulting in atherosclerosis is associated with an increased risk of ischemic heart disease and colorectal cancer (CRC. However, the roles of apoliprotein (Apo E (Apoe and low-density lipoprotein (Ldl receptor (Ldlr in colorectal carcinogenesis have not yet been investigated. In this study, we examined the susceptibility of Apoe-deficient and Ldlr-deficient mice, which are genetic animal models of atherosclerosis to azoxymethane (AOM/dextran sodium sulfate (DSS-induced colorectal carcinogenesis. In Experiment 1, male Apoe-deficient (n = 20 and wild type (WT mice (C57BL/6J, n = 21 were treated with a single intraperitoneal (i.p. injection of AOM (10 mg/kg body weight and then given 1.5% DSS in drinking water for seven days. They were maintained up to week 20 and sacrificed for the histopathological examination of colorectal tumors. The mRNA expression of cyclooxygenase (Cox-2, inducible nitric oxide synthase (Nos2, tumor necrosis factor (Tnf-α interleukin (Il-1β, and Il-6 was assayed in the colorectal mucosa. In Experiment 2, male Ldlr-deficient (n = 14 and WT mice (C57BL/6J, n = 10 were given a single i.p. injection of AOM (10 mg/kg body weight and then given 2% DSS in drinking water for seven days. They were sacrificed at week 20 to evaluate their colorectum histopathologically. In Experiment 1, the multiplicity of CRCs was significantly higher in the Apoe-deficient mice (2.75 ± 1.48 than in the WT mice (0.62 ± 0.67. The serum lipoprotein levels in the Apoe-deficient mice were also significantly higher than in the WT mice. In Experiment 2, the incidence (29% and multiplicity (0.50 ± 0.94 of CRCs in the Ldlr mice were significantly lower than in the WT mice (80% incidence and 3.10 ± 2.38 multiplicity. The mRNA expression of two inducible enzymes and certain pro-inflammatory cytokines in the colorectum of each genotype was greater than in the respective WT mice. The values in the Apoe-deficient mice were much greater

  4. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    Science.gov (United States)

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Increased susceptibility to Yersinia enterocolitica Infection of Tff2 deficient mice.

    Science.gov (United States)

    Shah, Aftab A; Mihalj, Martina; Ratkay, Ivana; Lubka-Pathak, Maria; Balogh, Peter; Klingel, Karin; Bohn, Erwin; Blin, Nikolaus; Baus-Loncar, Mirela

    2012-01-01

    TFF2 is one of the members of the trefoil factor family, known for its role in protection of gastrointestinal epithelia upon injury; however, recent studies suggest that TFF2 could also play an important role in the immune system. In the present study Tff2 deficient and wild type mice were infected by Y. enterocolitica which resulted in a lethal outcome in all Tff2 deficient mice, but not in WT animals. Yersinia invaded Peyer's patches more efficiently as shown by high bacterial titers in the KO mice while wild type mice displayed lower titers and a visible bacterial accumulation in the intestine. Bacterial accumulation in Peyer's patches of Tff2 deficient mice was accompanied by increased recruitment of macrophages. While an increased level of MAC-1 positive cells was observed in the spleens of both Tff2 deficient and WT mice at third day post infection, bacterial dissemination to liver, lung and kidneys was observed only in Tff2 knock-out mice. Analysis of the cellular composition of spleen did not reveal any substantial alteration to WT animals, suggesting possible disregulation of hemopoietic cells involved in immune response to Y. enterocolitica. These new data indicate that Tff2 plays an important role in immune response by protecting the organism from consequences of infection and that Tff2 knock-out mice react adversely to bacterial infections, in this case specifically to Y. enterocolitica. Copyright © 2012 S. Karger AG, Basel.

  6. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  7. Marginal Maternal Zinc Deficiency in Lactating Mice Reduces Secretory Capacity and Alters Milk Composition12

    OpenAIRE

    Dempsey, Colleen; McCormick, Nicholas H.; Croxford, Thomas P.; Seo, Young Ah; Grider, Arthur; Kelleher, Shannon L.

    2012-01-01

    Dietary analysis predicts that marginal Zn deficiency is common in women of reproductive age. The lack of reliable biomarkers limits the capacity to assess Zn status and consequently understand effects of maternal Zn deficiency. We determined effects of marginal maternal Zn deficiency on mammary gland function, milk secretion, and milk composition in mice. Mice (n = 12/diet) were fed marginal (ZD; 15 mg Zn/kg diet) or adequate (ZA; 30 mg Zn/kg diet) Zn diets for 30 d prior to conception throu...

  8. Severe cognitive and motor coordination deficits in tenascin-R-deficient mice.

    Science.gov (United States)

    Montag-Sallaz, M; Montag, D

    2003-02-01

    The extracellular matrix molecule tenascin-R (TN-R), predominantly expressed in the central nervous system, has been implied in a variety of functions, e.g. during myelination, cerebellar neurite fasciculation and hippocampal long-term potentiation. In this study, we investigated in detail the impact of TN-R deficiency on the living animal by analyzing the behavior of TN-R-deficient mice. The general state, gross sensory functions, reflexes and motoric capabilities appeared normal. In contrast, motor coordination on the rota-rod was compromised in these mice, indicating a deficit in cerebellar functions. In the open field and the hole board, the mutants interact differently with their environment, probably due to differences in their exploratory behavior. TN-R-deficient mice were able to learn a reference memory task in the Morris water maze. In contrast to wild-type mice, the mutants displayed an alternative strategy; swimming around the pool using a stereotypical circling pattern, crossing all possible platform positions after relocation of the escape platform (reversal). These results, confirmed by relocating the platform in the center of the pool, suggest that TN-R-deficient mice may be impaired in constructing a goal-independent representation of space. In addition, a two-way active avoidance test (shuttle box) revealed a severe deficit in associative learning in TN-R-deficient mice. Our results support important functions of TN-R in vivo in the central nervous system, in particular in the cerebellum and the hippocampus.

  9. Stabilization of tooth movement by administration of reveromycin A to osteoprotegerin-deficient knockout mice.

    Science.gov (United States)

    Yabumoto, Takahiro; Miyazawa, Ken; Tabuchi, Masako; Shoji, Satsuki; Tanaka, Miyuki; Kadota, Manami; Yoshizako, Mamoru; Kawatani, Makoto; Osada, Hiroyuki; Maeda, Hatsuhiko; Goto, Shigemi

    2013-09-01

    In this study, mechanical stress in the form of tooth movement was applied to osteoprotegerin-deficient knockout mice, which served as an animal model for juvenile Paget's disease. To compare and evaluate bone turnover and response of the surrounding bony tissue, we administered reveromycin A. We also investigated the ability of reveromycin A to control osteoclastic activity in juvenile Paget's disease. Eight-week-old male osteoprotegerin-deficient knockout and wild-type mice were injected with reveromycin A (15 mg/kg of body weight) intraperitoneally twice daily. An elastic module was inserted interproximally between the maxillary left first and second molars. Administration of reveromycin A to osteoprotegerin-deficient knockout mice reduced tooth movement distances, increased bone volumes at the interradicular septum, decreased osteoclast counts, and reduced serum alkaline phosphatase and tartrate resistant acid phosphatase. Reveromycin A administration also caused a temporal shift in peak Runx2 staining in osteoprotegerin-deficient knockout mice so that the overall staining time course was similar to that observed for wild-type mice. Reveromycin A administration in osteoprotegerin-deficient knockout mice inhibited bone resorption and normalized bone formation. As a result, normal bone turnover was obtained. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Arsenic urinary speciation in Mthfr deficient mice injected with sodium arsenate.

    Science.gov (United States)

    Wlodarczyk, Bogdan; Spiegelstein, Ofer; Hill, Denise; Le, X Chris; Finnell, Richard H

    2012-12-17

    In most mammalian species, arsenic biotransformation occurs primarily by biomethylation and reduction reactions, with dimethylarsinic acid being the predominant metabolite excreted in the urine. Methylenetetrahydrofolate reductase (Mthfr) plays a key role in folate metabolism by channeling one-carbon units between nucleotide synthesis and methylation reactions. In the study on transgenic Mtfhr knockout mice we investigated: (1) whether Mthfr is an important determinant in arsenic biotransformation by performing urinary arsenic speciation, and (2) whether dietary folate deficiency alters arsenic biotransformation in these mice. The Mthfr mice fed folate replete or folate deficient diet were injected with sodium arsenate 1mg/kg, and placed in metabolic cages for a urine collection. The urine was analyzed for arsenic species. Additionally, folate and homocysteine plasma level was analyzed in Mthfr mice. When fed a folate control diet, the Mthfr(-/-) mice excreted significantly less of the total arsenic in urine than did the Mthfr(+/+) and Mthfr(+/-) mice. The Mthfr(-/-) had significantly lower levels of pentavalent arsenic in their urine than did the Mthfr(+/+)mice. The wild type mice excreted significantly less pentavalent arsenic when they were fed folate deficient diet comparing to control diet. The current data suggest that both the Mthfr status and food folate level modulate in a significant manner excretion of arsenic in mice, following intraperitoneal administration of sodium arsenate. Published by Elsevier Ireland Ltd.

  11. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet.

    Science.gov (United States)

    Hikone, Kumiko; Hasegawa, Tomoka; Tsuchiya, Erika; Hongo, Hiromi; Sasaki, Muneteru; Yamamoto, Tomomaya; Kudo, Ai; Oda, Kimimitsu; Haraguchi, Mai; de Freitas, Paulo Henrique Luiz; Li, Minqi; Iida, Junichiro; Amizuka, Norio

    2017-04-01

    To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.

  12. Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zaccharias Glahn; Nielsen, Mogens Møller; Blagoev, Blagoy

    2004-01-01

    -induced mitogenesis in cell lines. To further investigate the role of Odin in growth factor receptor signaling and to elucidate its biological function in vivo, we have generated mice deficient in Odin by gene targeting. Odin-deficient mice do not display any obvious phenotype, and histological examination...... of the kidney, lung and liver does not show any major abnormalities as compared to wild-type controls. However, mouse embryonic fibroblasts (MEFs) generated from Odin-deficient mice exhibit a hyperproliferative phenotype compared to wild-type-derived MEFs, consistent with its role as a negative regulator...... of growth factor receptor signaling. Our results confirm that although Odin expression in mice is not essential for any major developmental pathway, it could play a significant functional role to negatively regulate growth factor receptor signaling pathways....

  13. Helicobacter infection decreases reproductive performance of IL10-deficient mice.

    Science.gov (United States)

    Sharp, Julie M; Vanderford, Deborah A; Chichlowski, Maciej; Myles, Matthew H; Hale, Laura P

    2008-10-01

    Infections with a variety of Helicobacter species have been documented in rodent research facilities, with variable effects on rodent health. Helicobacter typhlonius has been reported to cause enteric disease in immunodeficient and IL10(-/-) mice, whereas H. rodentium has only been reported to cause disease in immunodeficient mice coinfected with other Helicobacter species. The effect of Helicobacter infections on murine reproduction has not been well studied. The reproductive performance of C57BL/6 IL10(-/-) female mice intentionally infected with H. typhlonius, H. rodentium, or both was compared with that of age-matched uninfected controls or similarly infected mice that received antihelicobacter therapy. The presence of Helicobacter organisms in stool and relevant tissues was detected by PCR assays. Helicobacter infection of IL10(-/-) female mice markedly decreased pregnancy rates and pup survival. The number of pups surviving to weaning was greatest in noninfected mice and decreased for H. rodentium > H. typhlonius > H. rodentium and H. typhlonius coinfected mice. Helicobacter organisms were detected by semiquantitative real-time PCR in the reproductive organs of a subset of infected mice. Treatment of infected mice with a 4-drug regimen consisting of amoxicillin, clarithromycin, metronidazole, and omeprazole increased pregnancy rates, and pup survival and dam fecundity improved. We conclude that infection with H. typhlonius, H. rodentium, or both decreased the reproductive performance of IL10(-/-) mice. In addition, antihelicobacter therapy improved fecundity and enhanced pup survival.

  14. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  15. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  16. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice.

    Science.gov (United States)

    Yiannikouris, Frederique; Gupte, Manisha; Putnam, Kelly; Thatcher, Sean; Charnigo, Richard; Rateri, Debra L; Daugherty, Alan; Cassis, Lisa A

    2012-12-01

    Previous studies demonstrated that diet-induced obesity increased plasma angiotensin II concentrations and elevated systolic blood pressures in male mice. Adipocytes express angiotensinogen and secrete angiotensin peptides. We hypothesize that adipocyte-derived angiotensin II mediates obesity-induced increases in systolic blood pressure in male high fat-fed C57BL/6 mice. Systolic blood pressure was measured by radiotelemetry during week 16 of low-fat or high-fat feeding in Agt(fl/fl) and adipocyte angiotensinogen-deficient mice (Agt(aP2)). Adipocyte angiotensinogen deficiency had no effect on diet-induced obesity. Basal 24-hour systolic blood pressure was not different in low fat-fed Agt(fl/fl) compared with Agt(aP2) mice (124 ± 3 versus 128 ± 3 mm Hg, respectively). In Agt(fl/fl) mice, high-fat feeding significantly increased systolic blood pressure (24 hours; 134 ± 2 mm Hg; Pobesity hypertension.

  17. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  18. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  19. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice.

    Science.gov (United States)

    Weng, Jonathan; Lou, Danwen; Benoit, Stephen C; Coschigano, Natalie; Woods, Stephen C; Tso, Patrick; Lo, Chunmin C

    2017-11-01

    Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 wk of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure. Copyright © 2017 the American Physiological Society.

  20. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  1. Hypogammaglobulinemia in BLT humanized mice--an animal model of primary antibody deficiency.

    Directory of Open Access Journals (Sweden)

    Francisco Martinez-Torres

    Full Text Available Primary antibody deficiencies present clinically as reduced or absent plasma antibodies without another identified disorder that could explain the low immunoglobulin levels. Bone marrow-liver-thymus (BLT humanized mice also exhibit primary antibody deficiency or hypogammaglobulinemia. Comprehensive characterization of B cell development and differentiation in BLT mice revealed other key parallels with primary immunodeficiency patients. We found that B cell ontogeny was normal in the bone marrow of BLT mice but observed an absence of switched memory B cells in the periphery. PC-KLH immunizations led to the presence of switched memory B cells in immunized BLT mice although plasma cells producing PC- or KLH- specific IgG were not detected in tissues. Overall, we have identified the following parallels between the humoral immune systems of primary antibody deficiency patients and those in BLT mice that make this in vivo model a robust and translational experimental platform for gaining a greater understanding of this heterogeneous array of humoral immunodeficiency disorders in humans: (i hypogammaglobulinemia; (ii normal B cell ontogeny in bone marrow; and (iii poor antigen-specific IgG response to immunization. Furthermore, the development of strategies to overcome these humoral immune aberrations in BLT mice may in turn provide insights into the pathogenesis of some primary antibody deficiency patients which could lead to novel clinical interventions for improved humoral immune function.

  2. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.

    Science.gov (United States)

    Palacino, James J; Sagi, Dijana; Goldberg, Matthew S; Krauss, Stefan; Motz, Claudia; Wacker, Maik; Klose, Joachim; Shen, Jie

    2004-04-30

    Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.

  3. Lamellipodin-Deficient Mice: A Model of Rectal Carcinoma.

    Directory of Open Access Journals (Sweden)

    Cassandra L Miller

    Full Text Available During a survey of clinical rectal prolapse (RP cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1tm1Fbg (Lpd-/- was documented. Upon further investigation, the Lpd-/- colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS. Lpd-/- mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd-/- mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd-/- mice with RP compared to EHS-infected, but clinically normal (CN Lpd-/- animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd-/- mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd-/- male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.

  4. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice.

    Science.gov (United States)

    Berrigan, David; Perkins, Susan N; Haines, Diana C; Hursting, Stephen D

    2002-05-01

    Heterozygous p53-deficient (p53(+/-)) mice, a potential model for human Li-Fraumeni Syndrome, have one functional allele of the p53 tumor suppressor gene. These mice are prone to spontaneous neoplasms, most commonly sarcoma and lymphoma; the median time to death of p53+/- mice is 18 months. We have shown previously that juvenile-onset calorie restriction (CR) to 60% of ad libitum (AL) intake delays tumor development in young p53-null (-/-) mice by a p53-independent and insulin-like growth factor 1 (IGF-1)-related mechanism. To determine whether CR is effective when started in adult p53-deficient mice, and to compare chronic CR with an intermittent fasting regimen, male p53+/- mice (7-10 months old, 31-32 mice/group) were randomly assigned to the following regimens: (i) AL (AIN-76A diet), (ii) CR to 60% of AL intake or (iii) 1 day/week fast. Food availability on non-fasting days was controlled to prevent compensatory over feeding. Relative to the AL group, CR significantly delayed (P = 0.001) the onset of tumors in adult mice, whereas the 1 day/week fast caused a moderate delay (P = 0.039). Substantial variation in longevity and maximum body weight within treatments was not correlated with variation in growth characteristics of individual mice. In a separate group of p53+/- mice treated for 4 weeks (n = five mice per treatment), plasma IGF-1 levels in CR versus AL mice were reduced by 20% (P fasted mice had intermediate levels of leptin and IGF-1. Our findings that CR or a 1 day/week fast suppressed carcinogenesis-even when started late in life in mice predestined to develop tumors due to decreased p53 gene dosage-support efforts to identify suitable interventions influencing energy balance in humans as a tool for cancer prevention.

  5. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  6. A medicinal herb Scutellaria lateriflora inhibits PrP replication in vitro and delays the onset of prion disease in mice

    Directory of Open Access Journals (Sweden)

    Martin eEiden

    2012-02-01

    Full Text Available ABSTRACT Transmissible spongiform encephalopathies (TSE are characterized by the misfolding of the host encoded prion protein (PrPC into a pathogenic isoform (PrPSc which leads to the accumulation of -sheet-rich fibrils and subsequent loss of neurons and synaptic functions. Although many compounds have been identified which inhibit accumulation or dissolve fibrils and aggregates in vitro there is no therapeutic treatment to stop these progressive neurodegenerative diseases. Here we describe the effects of the traditional medicinal herb Scutellaria lateriflora (S. lateriflora and its natural compounds, the flavonoids Baicalein and Baicalin, on the development of prion disease using in vitro and in vivo models. S. lateriflora extract as well as both constituents reduced the PrPres accumulation in scrapie-infected cell cultures and cell-free conversion assays and lead to the destabilization of preexisting PrPSc fibrils. Moreover, tea prepared from S. lateriflora, prolonged significantly the incubation time of scrapie infected mice upon oral treatment. Therefore Scutellaria extracts as well as the individual compounds can be considered as promising candidates for the development of new therapeutic drugs against TSEs and other neurodegenerative diseases like Alzheimer’s and Parkinson’s disease.

  7. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice

    DEFF Research Database (Denmark)

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-01-01

    in rodents with suprachiasmatic nucleus lesions. In the present study, we have characterized the circadian rhythmicity of behavior in Wfs1-deficient mice during ad libitum and restricted feeding. Based on the expression of Wfs1 protein in the DMH it was hypothesized that Wfs1-deficient mice will display...... in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding......The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity...

  8. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice

    DEFF Research Database (Denmark)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte

    2017-01-01

    abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic...... as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning....

  9. Shape analysis of the basioccipital bone in Pax7-deficient mice.

    Science.gov (United States)

    Cates, Joshua; Nevell, Lisa; Prajapati, Suresh I; Nelon, Laura D; Chang, Jerry Y; Randolph, Matthew E; Wood, Bernard; Keller, Charles; Whitaker, Ross T

    2017-12-20

    We compared the cranial base of newborn Pax7-deficient and wildtype mice using a computational shape modeling technology called particle-based modeling (PBM). We found systematic differences in the morphology of the basiooccipital bone, including a broadening of the basioccipital bone and an antero-inferior inflection of its posterior edge in the Pax7-deficient mice. We show that the Pax7 cell lineage contributes to the basioccipital bone and that the location of the Pax7 lineage correlates with the morphology most effected by Pax7 deficiency. Our results suggest that the Pax7-deficient mouse may be a suitable model for investigating the genetic control of the location and orientation of the foramen magnum, and changes in the breadth of the basioccipital.

  10. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  11. Arsenic Exposure and Glucose Intolerance/Insulin Resistance in Estrogen-Deficient Female Mice.

    Science.gov (United States)

    Huang, Chun-Fa; Yang, Ching-Yao; Chan, Ding-Cheng; Wang, Ching-Chia; Huang, Kuo-How; Wu, Chin-Ching; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2015-11-01

    Epidemiological studies have reported that the prevalence of diabetes in women > 40 years of age, especially those in the postmenopausal phase, was higher than in men in areas with high levels of arsenic in drinking water. The detailed effect of arsenic on glucose metabolism/homeostasis in the postmenopausal condition is still unclear. We investigated the effects of arsenic at doses relevant to human exposure from drinking water on blood glucose regulation in estrogen-deficient female mice. Adult female mice who underwent ovariectomy or sham surgery were exposed to drinking water contaminated with arsenic trioxide (0.05 or 0.5 ppm) in the presence or absence of 17β-estradiol supplementation for 2-6 weeks. Assays related to glucose metabolism were performed. Exposure of sham mice to arsenic significantly increased blood glucose, decreased plasma insulin, and impaired glucose tolerance, but did not induce insulin resistance. Blood glucose and insulin were higher, and glucose intolerance, insulin intolerance, and insulin resistance were increased in arsenic-treated ovariectomized mice compared with arsenic-treated sham mice. Furthermore, liver phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression was increased and liver glycogen content was decreased in arsenic-treated ovariectomized mice compared with arsenic-treated sham mice. Glucose-stimulated insulin secretion in islets isolated from arsenic-treated ovariectomized mice was also significantly decreased. Arsenic treatment significantly decreased plasma adiponectin levels in sham and ovariectomized mice. Altered glucose metabolism/homeostasis in arsenic-treated ovariectomized mice was reversed by 17β-estradiol supplementation. Our findings suggest that estrogen deficiency plays an important role in arsenic-altered glucose metabolism/homeostasis in females. Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, Tsai KS, Yang RS, Liu SH. 2015. Arsenic exposure and glucose intolerance/insulin resistance in

  12. Muir–Torre-like syndrome in Fhit-deficient mice

    Science.gov (United States)

    Fong, Louise Y. Y.; Fidanza, Vincenzo; Zanesi, Nicola; Lock, Leslie F.; Siracusa, Linda D.; Mancini, Rita; Siprashvili, Zurab; Ottey, Michelle; Martin, S. Eric; Druck, Teresa; McCue, Peter A.; Croce, Carlo M.; Huebner, Kay

    2000-01-01

    To investigate the role of the Fhit gene in carcinogen induction of neoplasia, we have inactivated one Fhit allele in mouse embryonic stem cells and produced (129/SvJ × C57BL/6J) F1 mice with a Fhit allele inactivated (+/−). Fhit +/+ and +/− mice were treated intragastrically with nitrosomethylbenzylamine and observed for 10 wk posttreatment. A total of 25% of the +/+ mice developed adenoma or papilloma of the forestomach, whereas 100% of the +/− mice developed multiple tumors that were a mixture of adenomas, squamous papillomas, invasive carcinomas of the forestomach, as well as tumors of sebaceous glands. The visceral and sebaceous tumors, which lacked Fhit protein, were similar to those characteristic of Muir–Torre familial cancer syndrome. PMID:10758156

  13. Helicobacter Infection Decreases Reproductive Performance of IL10-deficient Mice

    OpenAIRE

    Sharp, Julie M; Vanderford, Deborah A; Chichlowski, Maciej; Myles, Matthew H; Hale, Laura P

    2008-01-01

    Infections with a variety of Helicobacter species have been documented in rodent research facilities, with variable effects on rodent health. Helicobacter typhlonius has been reported to cause enteric disease in immunodeficient and IL10−/− mice, whereas H. rodentium has only been reported to cause disease in immunodeficient mice coinfected with other Helicobacter species. The effect of Helicobacter infections on murine reproduction has not been well studied. The reproductive performance of C5...

  14. Oxytocin Deficiency Mediates Hyperphagic Obesity of Sim1 Haploinsufficient Mice

    OpenAIRE

    Kublaoui, Bassil M.; Gemelli, Terry; Tolson, Kristen P.; Wang, Yu; Zinn, Andrew R.

    2008-01-01

    Single-minded 1 (Sim1) encodes a transcription factor essential for formation of the hypothalamic paraventricular nucleus (PVN). Sim1 haploinsufficiency is associated with hyperphagic obesity and increased linear growth in humans and mice, similar to the phenotype of melanocortin 4 receptor (Mc4r) mutations. PVN neurons in Sim1+/− mice are hyporesponsive to the melanocortin agonist melanotan II. PVN neuropeptides oxytocin (Oxt), TRH and CRH inhibit feeding when administered centrally. Consequ...

  15. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    DEFF Research Database (Denmark)

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice...... than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg......-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds...

  16. Mitochondrial oxidative metabolism during respiratory infection in riboflavin deficient mice.

    Science.gov (United States)

    Brijlal, S; Lakshmi, A V; Bamji, M S

    1999-12-01

    Studies in children and mice have shown that respiratory infection alters riboflavin metabolism, resulting in increased urinary loss of this vitamin. This could be due to mobilization of riboflavin from the liver to blood because liver Flavin adenine dinucleotide (FAD) levels were lowered in the mice during infection. To understand the functional implications of lowered hepatic FAD levels during respiratory infection, flavoprotein functions such as oxidative phosphorylation and beta-oxidation of the liver mitochondria were examined during infection in mice. Weanling mice were fed either riboflavin-restricted or control diet for 18 days and then injected with a sublethal dose of Klebsiella pneumoniae. During infection, the state 3 respiratory rate with palmitoyl-L-carnitine and glutamate were significantly lowered (27-29%) in the riboflavin-restricted group, whereas in the control group 10% reduction was observed with palmitoyl-L-carnitine as substrate. A 22% reduction in the respiratory control ratio with palmitoyl-L-carnitine as substrate was observed during infection in the riboflavin-restricted group. The beta-oxidation of palmitoyl-L-carnitine was significantly lowered (29%) in the riboflavin-restricted infected group. The results of the study suggest that the effects of infection on vital physiologic functions were more pronounced in the riboflavin-restricted mice than in the control mice. (c) Elsevier Science Inc. 1999.

  17. Redistribution of tissue zinc pools during lactation and dyshomeostasis during marginal zinc deficiency in mice.

    Science.gov (United States)

    McCormick, Nicholas H; King, Janet; Krebs, Nancy; Soybel, David I; Kelleher, Shannon L

    2015-01-01

    Zinc (Zn) requirements are increased during lactation. Increased demand is partially met through increased Zn absorption from the diet. It is estimated that 60-80% of women of reproductive age are at risk for Zn deficiency due to low intake of bioavailable Zn and increased demands during pregnancy and lactation. How Zn is redistributed within the body to meet the demands of lactation, and how Zn deficiency affects this process, is not understood. Female C57bl/6J mice were fed a control (ZA; 30mg Zn/kg) or a marginally Zn deficient (ZD; 15mg Zn/kg) diet for 30 days prior to mating through mid-lactation and compared with nulliparous mice fed the same diets. While stomach and plasma Zn concentration increased during lactation in mice fed ZA, mice fed ZD had lower stomach Zn concentration and abrogated plasma Zn levels during lactation. Additionally, femur Zn decreased during lactation in mice fed ZA, while mice fed ZD did not experience this decrease. Furthermore, red blood cell, pancreas, muscle and mammary gland Zn concentration increased, and liver and adrenal gland Zn decreased during lactation, independent of diet, while kidney Zn concentration increased only in mice fed ZD. Finally, maternal Zn deficiency significantly increased the liver Zn concentration in offspring but decreased weight gain and survival. This study provides novel insight into how Zn is redistributed to meet the increased metabolic demands of lactation and how marginal Zn deficiency interferes with these homeostatic adjustments. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair.

    Science.gov (United States)

    Trinh, Binh N; Long, Tiffany I; Nickel, Andrea E; Shibata, Darryl; Laird, Peter W

    2002-05-01

    We have introduced DNA methyltransferase 1 (Dnmt1) mutations into a mouse strain deficient for the Mlh1 protein to study the interaction between DNA mismatch repair deficiency and DNA methylation. Mice harboring hypomorphic Dnmt1 mutations showed diminished RNA expression and DNA hypomethylation but developed normally and were tumor free. When crossed to Mlh1(-/-) homozygosity, they were less likely to develop the intestinal cancers that normally arise in this tumor-predisposed, mismatch repair-deficient background. However, these same mice developed invasive T- and B-cell lymphomas earlier and at a much higher frequency than their Dnmt1 wild-type littermates. Thus, the reduction of Dnmt1 activity has significant but opposing outcomes in the development of two different tumor types. DNA hypomethylation and mismatch repair deficiency interact to exacerbate lymphomagenesis, while hypomethylation protects against intestinal tumors. The increased lymphomagenesis in Dnmt1 hypomorphic, Mlh1(-/-) mice may be due to a combination of several mechanisms, including elevated mutation rates, increased expression of proviral sequences or proto-oncogenes, and/or enhanced genomic instability. We show that CpG island hypermethylation occurs in the normal intestinal mucosa, is increased in intestinal tumors in Mlh1(-/-) mice, and is reduced in the normal mucosa and tumors of Dnmt1 mutant mice, consistent with a role for Dnmt1-mediated CpG island hypermethylation in intestinal tumorigenesis.

  19. FGFR3 deficient mice have accelerated fracture repair

    Science.gov (United States)

    Xie, Yangli; Luo, Fengtao; Xu, Wei; Wang, Zuqiang; Sun, Xianding; Xu, Meng; Huang, Junlan; Zhang, Dali; Tan, Qiaoyan; Chen, Bo; Jiang, Wanling; Du, Xiaolan; Chen, Lin

    2017-01-01

    Bone fracture healing is processed through multiple biological stages that partly recapitulates the skeletal development process. FGFR3 is a negative regulator of chondrogenesis during embryonic stage and plays an important role in both chondrogenesis and osteogenesis. We have investigated the role of FGFR3 in fracture healing using unstabilized fracture model and found that gain-of-function mutation of FGFR3 inhibits the initiation of chondrogenesis during cartilage callus formation. Here, we created closed, stabilized proximal tibia fractures with an intramedullary pin in Fgfr3-/-mice and their littermate wild-type mice. Fracture healing was evaluated by radiography, micro-CT, histology, and real-time polymerase chain reaction (RT-PCR) analysis. The fractured Fgfr3-/- mice had increased formation of cartilaginous callus, more fracture callus, and more rapid endochondral ossification in fracture sites with up-regulated expressions of chondrogenesis related gene. The fractures of Fgfr3-/- mice healed faster with accelerated fracture callus mineralization and up-regulated expression of osteoblastogenic genes. The healing of fractures in Fgfr3-/- mice was accelerated in the stage of formation of cartilage and endochondral ossification. Downregulation of FGFR3 activity can be considered as a potential bio-therapeutic strategy for fracture treatment. PMID:28924384

  20. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  1. Melatonin Efficacy in Obese Leptin-Deficient Mice Heart

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2017-12-01

    Full Text Available Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice, when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life. We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE, a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.

  2. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    BACKGROUND AND AIM: The neurotransmitter histamine is involved in the regulation of appetite and in the development of age-related obesity in mice. Furthermore, histamine is a mediator of the anorexigenic action of leptin. The aim of the present study was to investigate a possible role of histamine...... in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin......-KO mice compared to STD-fed HDC-KO mice was observed, while no such difference was observed in WT mice. CONCLUSION: Based on our results, we conclude that histamine plays a role in the development of HFD-induced obesity....

  3. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development of r...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  4. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling

    OpenAIRE

    van Ommen G-JB; de Meijer EJ; Sterrenburg E; Turk R; den Dunnen JT; 't Hoen PAC

    2005-01-01

    Abstract Background Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is lethal. In contrast, dystrophin-deficient mdx mice recover due to effective regeneration of affected muscle tissue. To characterize the molecular processes associated with regeneration, we compared gene expression levels in hindlimb muscle tissue of mdx and control mice at 9 timepoints, ranging from 1–20 weeks of age. Results Out of 7776 genes, 1735 were differentially expressed between mdx a...

  5. Analysis of metabolic effects of menthol on WFS1-deficient mice.

    Science.gov (United States)

    Ehrlich, Marite; Ivask, Marilin; Raasmaja, Atso; Kõks, Sulev

    2016-01-01

    In this study, we investigated the physiological regulation of energy metabolism in wild-type (WT) and WFS1-deficient (Wfs1KO) mice by measuring the effects of menthol treatment on the O2 consumption, CO2 production, rectal body temperature, and heat production. The basal metabolism and behavior was different between these genotypes as well as TRP family gene expressions. Wfs1KO mice had a shorter life span and weighed less than WT mice. The food and water intake of Wfs1KO mice was lower as well as the body temperature when compared to their WT littermates. Furthermore, Wfs1KO mice had higher basal O2 consumption, and CO2 and heat production than WT mice. In addition, Wfs1KO mice showed a higher response to menthol administration in comparison to WT mice. The strongest menthol effect was seen on different physiological measures 12 h after oral administration. The highest metabolic response of Wfs1KO mice was seen at the menthol dose of 10 mg/kg. Menthol increased O2 consumption, and CO2 and heat production in Wfs1KO mice when compared to their WT littermates. In addition, the expression of Trpm8 gene was increased. In conclusion, our results show that the Wfs1KO mice develop a metabolic phenotype characterized with several physiological dysfunctions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections.

    Directory of Open Access Journals (Sweden)

    Jörn Coers

    2011-06-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-γ (IFNγ plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNγ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs, we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3((-/- mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3((-/- mice is dependent on an exacerbated CD4(+ T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4(+ T cells and prevents the establishment of a persistent infection in mice.

  7. Cardiovascular effects of uremia in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Bro, Susanne

    2009-01-01

    (RAGE) in development of uremic atherosclerosis, uremic mice were treated with a neutralizing RAGE-antibody. This treatment reduced the aortic plaque area fraction by 59% in parallel with reductions of the plasma levels of the oxidized phospholipid epitope EO6, and titers of IgG antibodies against Ox...... degeneration. Furthermore, the studies suggested that vascular inflammation and systemic oxidative stress may explain some of the proatherogenic effects of uremia in mice. Interestingly, the accelerated atherosclerosis could be prevented by RAS inhibition, or markedly reduced by RAGE blockade, probably through...

  8. SGLT1 Deficiency Turns Listeria Infection into a Lethal Disease in Mice

    Directory of Open Access Journals (Sweden)

    Piyush Sharma

    2017-07-01

    Full Text Available Background: Cellular glucose uptake may involve either non-concentrative glucose carriers of the GLUT family or Na+-coupled glucose-carrier SGLT1, which accumulates glucose against glucose gradients and may thus accomplish cellular glucose uptake even at dramatically decreased extracellular glucose concentrations. SGLT1 is not only expressed in epithelia but as well in tumour cells and immune cells. Immune cell functions strongly depend on their metabolism, therefore we hypothesized that deficiency of SGLT1 modulates the defence against bacterial infection. To test this hypothesis, we infected wild type mice and gene targeted mice lacking functional SGLT1 with Listeria monocytogenes. Methods: SGLT1 deficient mice and wild type littermates were infected with 1x104 CFU Listeria monocytogenes intravenously. Bacterial titers were determined by colony forming assay, SGLT1, TNF-α, IL-6 and IL-12a transcript levels were determined by qRT-PCR, as well as SGLT1 protein abundance and localization by immunohistochemistry. Results: Genetic knockout of SGLT1 (Slc5a1–/– mice significantly compromised bacterial clearance following Listeria monocytogenes infection with significantly enhanced bacterial load in liver, spleen, kidney and lung, and significantly augmented hepatic expression of TNF-α and IL-12a. While all wild type mice survived, all SGLT1 deficient mice died from the infection. Conclusions: SGLT1 is required for bacterial clearance and host survival following murine Listeria infection.

  9. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice.

    Science.gov (United States)

    Kirk, E A; Sutherland, P; Wang, S A; Chait, A; LeBoeuf, R C

    1998-06-01

    Susceptibility to atherosclerosis is determined by a combination of genetic and environmental factors, including diet. Consumption of diets rich in soy protein has been claimed to protect against the development of atherosclerosis. Potential mechanisms include cholesterol lowering, inhibition of lipoprotein oxidation and inhibition of cell proliferation by soy proteins or isoflavones, such as genistein, that are present in soy. This study was designed to determine whether soy isoflavones confer protection against atherosclerosis in mice and whether they reduce serum cholesterol levels and lipoprotein oxidation. C57BL/6 and LDL receptor-deficient (LDLr-null) mice were fed soy protein-based, high fat diets with isoflavones present (IF+, 20.85 g/100 g protein, 0.027 g/100 g genistein, 0.009 g/100 g daidzein) or diets from which isoflavones, and possibly other components, had been extracted (IF-, 20.0 g/100 g protein, 0.002 g/100 g genistein, 0.001 g/100 g daidzein). Because LDLr-null mice develop extensive atherosclerosis and hypercholesterolemia after minimal time on a high fat diet, they were fed the diets for 6 wk, whereas C57BL/6 mice were fed the diets for 10 wk. Plasma cholesterol levels did not differ between LDLr-null mice fed IF- and those fed IF+, but were 30% lower in C57BL/6 mice fed the IF+ diet than in those fed the IF- diet. Susceptibility of LDL to oxidative modification, measured as the lag phase of conjugated diene formation in LDLr-null mice, was not altered by isoflavone consumption. All LDLr-null mice developed atherosclerosis, and the presence or deficiency of dietary isoflavones did not influence atherosclerotic lesion area. In contrast, atherosclerotic lesion area was significantly reduced in C57BL/6 mice fed IF+ compared with those fed IF-. Thus, this study demonstrates that although the isoflavone-containing diet resulted in a reduction in cholesterol levels in C57BL/6 mice, it had no effect on cholesterol levels or on susceptibility of LDL

  10. Mammary Gland Ontegeny and Neoplasia in Oxytocin Deficient Mice.

    Science.gov (United States)

    1998-07-01

    be protective. The technical objectives of this proposal as follows. 1) Determine the prevalence of mammary neoplasia in the progeny of MMTV-infected...WT mice to develop mammary neoplasia when exposed in vivo to ovarian steroid hormones. If oxytocin is shown to be an important factor in breast cancer, exogenous oxytocin may be a potential safe, non-toxic measure in its prevention.

  11. Disrupted postnatal lung development in heme oxygenase-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Zhang Huayan

    2010-10-01

    Full Text Available Abstract Background Heme oxygenase (HO degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development. Methods Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex till postnatal 14 days, and evaluated for lung development. Results Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment. Conclusions These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.

  12. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  13. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice.

    Science.gov (United States)

    Naito, Masaki; Fujikura, Junji; Ebihara, Ken; Miyanaga, Fumiko; Yokoi, Hideki; Kusakabe, Toru; Yamamoto, Yuji; Son, Cheol; Mukoyama, Masashi; Hosoda, Kiminori; Nakao, Kazuwa

    2011-09-01

    The aim of the current study was to evaluate the long-term effects of leptin on glucose metabolism, diabetes complications, and life span in an insulin-dependent diabetes model, the Akita mouse. We cross-mated Akita mice with leptin-expressing transgenic (LepTg) mice to produce Akita mice with physiological hyperleptinemia (LepTg:Akita). Metabolic parameters were monitored for 10 months. Pair-fed studies and glucose and insulin tolerance tests were performed. The pancreata and kidneys were analyzed histologically. The plasma levels and pancreatic contents of insulin and glucagon, the plasma levels of lipids and a marker of oxidative stress, and urinary albumin excretion were measured. Survival rates were calculated. Akita mice began to exhibit severe hyperglycemia and hyperphagia as early as weaning. LepTg:Akita mice exhibited normoglycemia after an extended fast even at 10 months of age. The 6-h fasting blood glucose levels in LepTg:Akita mice remained about half the level of Akita mice throughout the study. Food intake in LepTg:Akita mice was suppressed to a level comparable to that in WT mice, but pair feeding did not affect blood glucose levels in Akita mice. LepTg:Akita mice maintained insulin hypersensitivity and displayed better glucose tolerance than did Akita mice throughout the follow-up. LepTg:Akita mice had normal levels of plasma glucagon, a marker of oxidative stress, and urinary albumin excretion rates. All of the LepTg:Akita mice survived for >12 months, the median mortality time of Akita mice. These results indicate that leptin is therapeutically useful in the long-term treatment of insulin-deficient diabetes.

  14. Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.

    Science.gov (United States)

    Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.

    2014-01-01

    Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270

  15. Urokinase-Type Plasminogen Activator Deficiency Promotes Neoplasmatogenesis in the Colon of Mice123

    Science.gov (United States)

    Karamanavi, Elisavet; Angelopoulou, Katerina; Lavrentiadou, Sophia; Tsingotjidou, Anastasia; Abas, Zaphiris; Taitzoglou, Ioannis; Vlemmas, Ioannis; Erdman, Suzan E.; Poutahidis, Theofilos

    2014-01-01

    Urokinase-type plasminogen activator (uPA) participates in cancer-related biologic processes, such as wound healing and inflammation. The present study aimed to investigate the effect of uPA deficiency on the long-term outcome of early life episodes of dextran sodium sulfate (DSS)–induced colitis in mice. Wild-type (WT) and uPA-deficient (uPA−/−) BALB/c mice were treated with DSS or remained untreated. Mice were necropsied either 1 week or 7 months after DSS treatment. Colon samples were analyzed by histopathology, immunohistochemistry, ELISA, and real-time polymerase chain reaction. At 7 months, with no colitis evident, half of the uPA−/− mice had large colonic polypoid adenomas, whereas WT mice did not. One week after DSS treatment, there were typical DSS-induced colitis lesions in both WT and uPA−/− mice. The affected colon of uPA−/− mice, however, had features of delayed ulcer re-epithelialization and dysplastic lesions of higher grade developing on the basis of a significantly altered mucosal inflammatory milieu. The later was characterized by more neutrophils and macrophages, less regulatory T cells (Treg), significantly upregulated cytokines, including interleukin-6 (IL-6), IL-17, tumor necrosis factor-α, and IL-10, and lower levels of active transforming growth factor–β1 (TGF-β1) compared to WT mice. Dysfunctional Treg, more robust protumorigenic inflammatory events, and an inherited inability to produce adequate amounts of extracellular active TGF-β1 due to uPA deficiency are interlinked as probable explanations for the inflammatory-induced neoplasmatogenesis in the colon of uPA−/− mice. PMID:24913672

  16. Angiotensin II blockade causes acute renal failure in eNOS-deficient mice

    Directory of Open Access Journals (Sweden)

    Jürgen Schnermann

    2001-03-01

    Full Text Available Compared with wild-type mice, adult endothelial nitric oxide synthase (eNOS knockout mice (eight months of age have increased blood pressure (BP (126±9 mmHg vs. 100±4 mmHg, and an increased renal vascular resistance (155±16 vs. 65±4 mmHg.min/ml. Renal vascular resistance responses to i.v. administration of noradrenaline were markedly enhanced in eNOS knockout mice. Glomerular filtration rate (GFR of anaesthetised eNOS -/- mice was 324±57 µl/min gKW, significantly lower than the GFR of 761±126 µl/min.gKW in wild-type mice. AT1-receptor blockade with i.v. candesartan (1—1.5 mg/kg reduced arterial blood pressure and renal vascular resistance, and increased renal blood flow (RBF to about the same extent in wild-type and eNOS -/- mice. Candesartan did not alter GFR in wild-type mice (761±126 vs. 720±95 µl/min.gKW, but caused a marked decrease in GFR in eNOS -/- mice (324.5±75.2 vs. 77±18 µl/min.gKW. A similar reduction in GFR of eNOS deficient mice was also caused by angiotensin-converting enzyme (ACE inhibition. Afferent arteriolar granularity, a measure of renal renin expression, was found to be reduced in eNOS -/- compared with wild-type mice. In chronically eNOS-deficient mice, angiotensin II (Ang II is critical for maintaining glomerular filtration pressure and GFR, presumably through its effect on efferent arteriolar tone.

  17. Functional deficiency of splenic adherent cells in New Zealand black mice.

    Science.gov (United States)

    McCombs, C; Hom, J; Talal, N; Mishell, R I

    1975-12-01

    New Zealand Black (NZB) mice hyporespond after in vitro immunization to sheep erythrocytes but not after in vivo immunization. The difference between in vitro and in vivo immunization was found to involve a non-antigen-specific change in the spleen which occurs in vivo soon after priming. Adherent spleen cells from young NZB or control strain mice were compared in their ability to cooperate with nonadherent cells in the induction of a primary immune response to sheep erythrocytes in vitro. The results support the hypothesis that there is a functional deficiency of adherent cells in the spleens of unprimed NZB mice.

  18. Choline Deficiency Attenuates Body Weight Gain and Improves Glucose Tolerance in ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Gengshu Wu

    2012-01-01

    Full Text Available Previous studies demonstrated that choline supply is directly linked to high-fat-diet-induced obesity and insulin resistance in mice. The aim of this study was to evaluate if choline supply could also modulate obesity and insulin resistance caused by a genetic defect. Eight-week-old male ob/ob mice were fed for two months with either choline-deficient or choline-supplemented diet. Tissue weight including fat mass and lean mass was assessed. Intracellular signaling, plasma glucagon and insulin, and glucose and insulin tolerance tests were also investigated. The choline-deficient diet slowed body weight gain and decreased fat mass. Choline deficiency also decreased plasma glucose level and improved glucose and insulin tolerance although fatty liver was exacerbated. Increased adipose lipolytic activity, decreased plasma glucagon and reduced expression of hepatic glucagon receptor were also observed with the choline-deficient diet. Our results demonstrate that a choline-deficient diet can decrease fat mass and improve glucose tolerance in obese and diabetic mice caused by a genetic defect.

  19. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  20. Anxiety- and depression-like phenotype of hph-1 mice deficient in tetrahydrobiopterin

    DEFF Research Database (Denmark)

    Nasser, Arafat; Birk Møller, Lisbeth; Olesen, Jess Have

    2014-01-01

    Decreased tetrahydrobiopterin (BH4) biosynthesis has been implicated in the pathophysiology of anxiety and depression. The aim of this study was therefore to characterise the phenotype of homozygous hph-1 (hph) mice, a model of BH4 deficiency, in behavioural tests of anxiety and depression as well...

  1. β-Sarcoglycan Deficiency Reduces Atherosclerotic Plaque Development in ApoE-Null Mice.

    Science.gov (United States)

    Murugesan, Vignesh; Degerman, Eva; Holmen-Pålbrink, Ann-Kristin; Duner, Pontus; Knutsson, Anki; Hultgårdh-Nilsson, Anna; Rauch, Uwe

    2017-01-01

    Smooth muscle cells are important for atherosclerotic plaque stability. Their proper ability to communicate with the extracellular matrix is crucial for maintaining the correct tissue integrity. In this study, we have investigated the role of β-sarcoglycan within the matrix-binding dystrophin-glycoprotein complex in the development of atherosclerosis. Atherosclerotic plaque development was significantly reduced in ApoE-deficient mice lacking β-sarcoglycan, and their plaques contained an increase in differentiated smooth muscle cells. ApoE-deficient mice lacking β-sarcoglycan showed a reduction in ovarian adipose tissue and adipocyte size, while the total weight of the animals was not significantly different. Western blot analysis of adipose tissues showed a decreased activation of protein kinase B, while that of AMP-activated kinase was increased in mice lacking β-sarcoglycan. Analysis of plasma in β-sarcoglycan-deficient mice revealed reduced levels of leptin, adiponectin, insulin, cholesterol, and triglycerides but increased levels of IL-6, IL-17, and TNF-α. Our results indicate that the dystrophin-glycoprotein complex and β-sarcoglycan can affect the atherosclerotic process. Furthermore, the results show the effects of β-sarcoglycan deficiency on adipose tissue and lipid metabolism, which may also have contributed to the atherosclerotic plaque reduction. © 2017 S. Karger AG, Basel.

  2. Transient impairment of the adaptive response to fasting in FXR-deficient mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, T; Grefhorst, A; Bouchaert, E; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2005-01-01

    The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR-/-) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of

  3. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis.

    NARCIS (Netherlands)

    Zwijnenburg, P.J.G.; Poll, van der T.; Florquin, S; Akira, S; Takeda, K; Roord, J.J.; Furth, van A.M.

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  4. Altered synaptic plasticity in hippocampal CA1 area of apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Krugers, HJ; Mulder, M; Korf, J; Havekes, L; deKloet, ER; Joëls, M

    1997-01-01

    IN mice with a homozygous or heterozygous deficiency for ApoE as well as in wild-type animals we established synaptic responsiveness in the hippocampal CA1 area following stimulation of the SchafFer/commissural fibers. The maximal population spike amplitude was significantly larger in wild-type

  5. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  6. After a cold conditioning swim, UCP2-deficient mice are more able to defend against the cold than wild type mice.

    Science.gov (United States)

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-08-01

    Uncoupling protein 2 (UCP2) is widely distributed throughout the body including the brain, adipose tissue and skeletal muscles. In contrast to UCP1, UCP2 does not influence resting body temperature and UCP2-deficient (-/-) mice have normal thermoregulatory responses to a single exposure to cold ambient temperatures. Instead, UCP2-deficient mice are more anxious, exhibit anhedonia and have higher circulating corticosterone than wild type mice. To test the possible role of UCP2 in depressive behavior we exposed UCP2-deficient and wild type mice to a cold (26°C) forced swim and simultaneously measured rectal temperatures during and after the swim. The time that UCP2-deficient mice spent immobile did not differ from wild type mice and all mice floated more on day 2. However, UCP2-deficient mice were more able to defend against the decrease in body temperature during a second daily swim at 26°C than wild type mice (area under the curve for wild type mice: 247.0±6.4; for UCP2-deficient mice: 284.4±3.8, Pthermoregulation of wild type mice during a second swim at 26°C correlated with their greater immobility whereas defense against the warmth during a swim at 41°C correlated better with greater immobility of UCP2-deficient mice. Together these data indicate that while the lack of UCP2 has no acute effect on body temperature, UCP2 may inhibit rapid improvements in defense against cold, in contrast to UCP1, whose main function is to promote thermogenesis. Copyright © 2014. Published by Elsevier Inc.

  7. STEAROYL-CoA DESATURASE-1 DEFICIENCY ATTENUATES OBESITY AND INSULIN RESISTANCE IN LEPTIN-RESISTANT OBESE MICE

    OpenAIRE

    Miyazaki, Makoto; Sampath, Harini; Liu, Xueqing; Flowers, Matthew T; Chu, Kiki; Dobrzyn, Agnieszka; Ntambi, James M.

    2009-01-01

    Obesity and adiposity greatly increase the risk for secondary conditions such as insulin resistance. Mice deficient in the enzyme stearoyl-CoA desaturase-1 (SCD1) are lean and protected from diet-induced obesity and insulin resistance. In order to determine the effect of SCD1 deficiency on various mouse models of obesity, we introduced a global deletion of the Scd1 gene into leptin-deficient ob/ob mice, leptin-resistant Agouti (Ay/a) mice, and high-fat diet-fed obese (DIO) mice. SCD1 deficien...

  8. Structural and functional analysis of the human spliceosomal DEAD-box helicase Prp28

    Energy Technology Data Exchange (ETDEWEB)

    Möhlmann, Sina [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany); Mathew, Rebecca [Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen (Germany); Neumann, Piotr; Schmitt, Andreas [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany); Lührmann, Reinhard [Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen (Germany); Ficner, Ralf, E-mail: rficner@uni-goettingen.de [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany)

    2014-06-01

    The crystal structure of the helicase domain of the human spliceosomal DEAD-box protein Prp28 was solved by SAD. The binding of ADP and ATP by Prp28 was studied biochemically and analysed with regard to the crystal structure. The DEAD-box protein Prp28 is essential for pre-mRNA splicing as it plays a key role in the formation of an active spliceosome. Prp28 participates in the release of the U1 snRNP from the 5′-splice site during association of the U5·U4/U6 tri-snRNP, which is a crucial step in the transition from a pre-catalytic spliceosome to an activated spliceosome. Here, it is demonstrated that the purified helicase domain of human Prp28 (hPrp28ΔN) binds ADP, whereas binding of ATP and ATPase activity could not be detected. ATP binding could not be observed for purified full-length hPrp28 either, but within an assembled spliceosomal complex hPrp28 gains ATP-binding activity. In order to understand the structural basis for the ATP-binding deficiency of isolated hPrp28, the crystal structure of hPrp28ΔN was determined at 2.0 Å resolution. In the crystal the helicase domain adopts a wide-open conformation, as the two RecA-like domains are extraordinarily displaced from the productive ATPase conformation. Binding of ATP is hindered by a closed conformation of the P-loop, which occupies the space required for the γ-phosphate of ATP.

  9. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  10. T cells exacerbate Lyme borreliosis in TLR2-deficient mice

    Directory of Open Access Journals (Sweden)

    Carrie E. Lasky

    2016-11-01

    Full Text Available Infection of humans with the spirochete, Borrelia burgdorferi, causes Lyme borreliosis and can lead to clinical manifestations such as, arthritis, carditis and neurological conditions. Experimental infection of mice recapitulates many of these symptoms and serves as a model system for the investigation of disease pathogenesis and immunity. Innate immunity is known to drive the development of Lyme arthritis and carditis, but the mechanisms driving this response remain unclear. Innate immune cells recognize B. burgdorferi surface lipoproteins primarily via Toll-like receptor (TLR2; however, previous work has demonstrated TLR2-/- mice had exacerbated disease and increased bacterial burden. We demonstrate increased CD4 and CD8 T cell infiltrates in B. burgdorferi-infected joints and hearts of C3H TLR2-/- mice. In vivo depletion of either CD4 or CD8 T cells reduced Borrelia-induced joint swelling and lowered tissue spirochete burden, while depletion of CD8 T cells alone reduced disease severity scores. Exacerbation of Lyme arthritis correlated with increased production of CXCL9 by synoviocytes and this was reduced with CD8 T cell depletion. These results demonstrate T cells can exacerbate Lyme disease pathogenesis and prolong disease resolution possibly through dysregulation of inflammatory responses and inhibition of bacterial clearance.

  11. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  12. Lipodystrophy, Diabetes and Normal Serum Insulin in PPARγ-Deficient Neonatal Mice.

    Science.gov (United States)

    O'Donnell, Peter E; Ye, Xiu Zhen; DeChellis, Melissa A; Davis, Vannessa M; Duan, Sheng Zhong; Mortensen, Richard M; Milstone, David S

    2016-01-01

    Peroxisome proliferator activated receptor gamma (PPARγ) is a pleiotropic ligand activated transcription factor that acts in several tissues to regulate adipocyte differentiation, lipid metabolism, insulin sensitivity and glucose homeostasis. PPARγ also regulates cardiomyocyte homeostasis and by virtue of its obligate role in placental development is required for embryonic survival. To determine the postnatal functions of PPARγ in vivo we studied globally deficient neonatal mice produced by epiblast-restricted elimination of PPARγ. PPARγ-rescued placentas support development of PPARγ-deficient embryos that are viable and born in near normal numbers. However, PPARγ-deficient neonatal mice show severe lipodystrophy, lipemia, hepatic steatosis with focal hepatitis, relative insulin deficiency and diabetes beginning soon after birth and culminating in failure to thrive and neonatal lethality between 4 and 10 days of age. These abnormalities are not observed with selective PPARγ2 deficiency or with deficiency restricted to hepatocytes, skeletal muscle, adipocytes, cardiomyocytes, endothelium or pancreatic beta cells. These observations suggest important but previously unappreciated functions for PPARγ1 in the neonatal period either alone or in combination with PPARγ2 in lipid metabolism, glucose homeostasis and insulin sensitivity.

  13. Lipodystrophy, Diabetes and Normal Serum Insulin in PPARγ-Deficient Neonatal Mice.

    Directory of Open Access Journals (Sweden)

    Peter E O'Donnell

    Full Text Available Peroxisome proliferator activated receptor gamma (PPARγ is a pleiotropic ligand activated transcription factor that acts in several tissues to regulate adipocyte differentiation, lipid metabolism, insulin sensitivity and glucose homeostasis. PPARγ also regulates cardiomyocyte homeostasis and by virtue of its obligate role in placental development is required for embryonic survival. To determine the postnatal functions of PPARγ in vivo we studied globally deficient neonatal mice produced by epiblast-restricted elimination of PPARγ. PPARγ-rescued placentas support development of PPARγ-deficient embryos that are viable and born in near normal numbers. However, PPARγ-deficient neonatal mice show severe lipodystrophy, lipemia, hepatic steatosis with focal hepatitis, relative insulin deficiency and diabetes beginning soon after birth and culminating in failure to thrive and neonatal lethality between 4 and 10 days of age. These abnormalities are not observed with selective PPARγ2 deficiency or with deficiency restricted to hepatocytes, skeletal muscle, adipocytes, cardiomyocytes, endothelium or pancreatic beta cells. These observations suggest important but previously unappreciated functions for PPARγ1 in the neonatal period either alone or in combination with PPARγ2 in lipid metabolism, glucose homeostasis and insulin sensitivity.

  14. Increased Intimal Hyperplasia After Vascular Injury in Male Androgen Receptor-Deficient Mice

    DEFF Research Database (Denmark)

    Wilhelmson, Anna S; Fagman, Johan B; Johansson, Inger

    2016-01-01

    replacement to castrated male mice increased p27 mRNA in an AR-dependent manner. In conclusion, AR deficiency in male mice increases intimal hyperplasia in response to vascular injury, potentially related to the effects of androgens/AR to inhibit proliferation and migration of smooth muscle cells....... evaluated formation of intimal hyperplasia in male AR knockout (ARKO) mice using a vascular injury model. Two weeks after ligation of the carotid artery, male ARKO mice showed increased intimal area and intimal thickness compared with controls. After endothelial denudation by an in vivo scraping injury......, there was no difference in the reendothelialization in ARKO compared with control mice. Ex vivo, we observed increased outgrowth of vascular smooth muscle cells from ARKO compared with control aortic tissue explants; the number of outgrown cells was almost doubled in ARKO. In vitro, stimulation of human aortic vascular...

  15. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion

    Science.gov (United States)

    Di Cosmo, Caterina; Liao, Xiao-Hui; Dumitrescu, Alexandra M.; Philp, Nancy J.; Weiss, Roy E.; Refetoff, Samuel

    2010-01-01

    The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid–precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients. PMID:20679730

  16. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  17. Deficiency of Circadian Clock Protein BMAL1 in Mice Results in a Low Bone Mass Phenotype

    Science.gov (United States)

    Samsa, William E.; Vasanji, Amit; Midura, Ronald J.; Kondratov, Roman V.

    2016-01-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1−/− mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1−/− mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1−/− mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548

  18. The adaptive intestinal response to massive enterectomy is preserved in c-SRC-deficient mice.

    Science.gov (United States)

    Falcone, R A; Shin, C E; Erwin, C R; Warner, B W

    1999-05-01

    The Src family of protein tyrosine kinases has been implicated in the downstream mitogenic signaling of several ligands including epidermal growth factor (EGF). Because EGF likely plays a role in adaptation after massive small bowel resection (SBR), we tested the hypothesis that c-src is required for this important response. A 50% proximal SBR or sham operation (bowel transection or reanastomosis alone) was performed on c-src-deficient (n = 14) or wild-type (C57bl/6) mice (n = 20). The ileum was harvested on postoperative day 3 and adaptive parameters determined as changes in ileal wet weight, protein and DNA content, proliferation index, villus height, and crypt depth. Comparisons were done using analysis of variance (ANOVA), and a Pvalue less than .05 was considered significant. Values are presented as mean +/- SEM. The activity of c-src was increased in the ileum of wild-type mice after SBR but remained unchanged in c-src-deficient mice. Despite this lack of increase, adaptation occurred after SBR in the c-src-deficient mice as demonstrated by increased ileal wet weight, protein and DNA content, proliferation index, villus height, and crypt depth similar to wild-type mice. The adaptive response of the intestine to massive SBR is preserved despite reduced activity of the c-src protein. The mitogenic signaling that characterizes intestinal adaptation and is associated with receptor activation by EGF or other growth factors probably occurs by mechanisms independent of c-src protein tyrosine kinase.

  19. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  20. Enhanced dendritic morphogenesis of adult hippocampal newborn neurons in central 5-HT-deficient mice

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-03-01

    Full Text Available Serotonin (5-HT plays an important role in regulating adult hippocampal neurogenesis. Chronic administration of selective 5-HT reuptake inhibitors (SSRIs, which up-regulates extracellular 5-HT concentration, accelerates the maturation of adult-born hippocampal neurons. It is unknown, however, about effects of central 5-HT-deficiency on the dendritic morphogenesis of these newborn neurons. Here, we address this question using two central 5-HT-deficient mouse models, Tph2 conditional knockout mice (CKO losing central 5-HT from embryonic stage, and Pet1-Cre;Rosa26-DTR (diphtheria toxin receptor mice lacking central 5-HT neurons exclusively in adulthood. The dendritic length of hippocampal newborn neurons is dramatically increased in these mice. Our findings indicate that reducing central 5-HT can accelerate the dendritic maturation of adult-born neurons, thus revealing a new role of central 5-HT in regulating adult hippocampal neurogenesis.

  1. Properdin Regulation of Complement Activation Affects Colitis in Interleukin 10 Gene-Deficient Mice.

    Science.gov (United States)

    Jain, Umang; Midgen, Craig A; Schwaeble, Wilhelm J; Stover, Cordula M; Stadnyk, Andrew W

    2015-07-01

    Interleukin 10-deficient mice (IL-10(-/-)) are a popular model used to dissect the mechanisms underlying inflammatory bowel diseases. The role of complement, a host defense mechanism that bridges the innate and adaptive immune systems, has not been described in this model. We therefore studied the effect of deficiency of properdin, a positive regulator of complement, on colitis in mice with the IL-10(-/-) background. For acute colitis, IL-10(-/-) and IL-10/properdin double knockout (DKO) or radiation bone marrow-reconstituted chimeric mice, had piroxicam added to their powdered chow for 14 days. For chronic colitis, 2.5% dextran sodium sulfate was added to the animals' water for 4 days then the mice were killed 8 weeks later. Colons were assessed for inflammation, cell infiltration, and cytokine and complement measurements. Bacterial translocation was measured by cultivating bacteria from organs on Luria broth agar plates. C3a and C5a levels and C9 deposition were all increased in piroxicam-fed IL-10(-/-) mice compared with mice not fed piroxicam. Piroxicam-fed DKO mice lacked increased C5a and C9 deposition combined with exacerbated colitis, reduced numbers of infiltrating neutrophils, and markedly higher local and systemic bacterial numbers compared with IL-10(-/-) mice. Bone marrow cells from IL-10(-/-) mice were sufficient to restore protection against the heightened colitis in piroxicam-fed DKO mice. Complement is activated in the IL-10(-/-) mouse mucosa in a properdin-dependent manner. In the absence of terminal complement activation, the inflammation is heightened, likely due to a lack of neutrophil control over microbes escaping from the intestines.

  2. CD47 deficiency ameliorates autoimmune nephritis in Faslpr mice by suppressing IgG autoantibody production

    Science.gov (United States)

    Shi, Lei; Bian, Zhen; Chen, Celia X-J; Guo, Ya-Nan; Lv, Zhiyuan; Zeng, Caihong; Liu, Zhihong; Zen, Ke; Liu, Yuan

    2015-01-01

    CD47, a self-recognition marker, plays an important role in both innate and adaptive immune response. To explore the potential role of CD47 in activation of autoreactive T and B cells and the production of autoantibodies in autoimmune disease, especially systemic lupus erythematosus (SLE), we have generated CD47 knockout Faslpr (CD47−/−–Faslpr) mice and examined histopathologic changes in the kidneys, cumulative survival rates, proteinuria, extent of splenomegaly and autoantibodies, serum chemistry and immunologic parameters. In comparison with Faslpr mice, CD47−/−–Faslpr mice exhibit a prolonged lifespan and delayed autoimmune nephritis including glomerular cell proliferation, basement membrane thickening, acute tubular atrophy and vacuolization. CD47−/−–Faslpr mice have lower levels of proteinuria, associated with reduced deposition of complement C3 and C1q, and IgG but not IgM in the glomeruli, compared to the age-matched Faslpr mice. Serum levels of antinuclear antibodies and anti-double-stranded DNA antibodies are significantly lower in CD47−/−–Faslpr mice than in Faslpr mice. CD47−/−–Faslpr mice also display less pronounced splenomegaly than Faslpr mice. The mechanistic studies further suggest that CD47 deficiency impairs the antigenic challenge-induced production of IgG but not IgM, and that this effect is associated with reduction of T follicular cells and impairment of germinal center development in lymphoid tissues. In conclusion, our results demonstrate that CD47 deficiency ameliorates lupus nephritis in Faslpr mice via suppression of IgG autoantibody production. PMID:26095930

  3. Post-weaning epiphysiolysis causes distal femur dysplasia and foreshortened hindlimbs in fetuin-A-deficient mice

    OpenAIRE

    Brylka, Laura J.; Köppert, Sina; Babler, Anne; Kratz, Beate; Denecke, Bernd; Yorgan, Timur A.; Etich, Julia; Costa, Ivan G.; Brachvogel, Bent; Boor, Peter; Schinke, Thorsten; Jahnen-Dechent, Willi

    2017-01-01

    Fetuin-A / α2-Heremans-Schmid-glycoprotein (gene name Ahsg) is a systemic inhibitor of ectopic calcification. Due to its high affinity for calcium phosphate, fetuin-A is highly abundant in mineralized bone matrix. Foreshortened femora in fetuin-A-deficient Ahsg -/- mice indicated a role for fetuin-A in bone formation. We studied early postnatal bone development in fetuin-A-deficient mice and discovered that femora from Ahsg -/- mice exhibited severely displaced distal epiphyses and deformed g...

  4. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ

    Science.gov (United States)

    Garofalo, Robert S.; Orena, Stephen J.; Rafidi, Kristina; Torchia, Anthony J.; Stock, Jeffrey L.; Hildebrandt, Audrey L.; Coskran, Timothy; Black, Shawn C.; Brees, Dominique J.; Wicks, Joan R.; McNeish, John D.; Coleman, Kevin G.

    2003-01-01

    The serine/threonine kinase Akt/PKB plays key roles in the regulation of cell growth, survival, and metabolism. It remains unclear, however, whether the functions of individual Akt/PKB isoforms are distinct. To investigate the function of Akt2/PKBβ, mice lacking this isoform were generated. Both male and female Akt2/PKBβ-null mice exhibit mild growth deficiency and an age-dependent loss of adipose tissue or lipoatrophy, with all observed adipose depots dramatically reduced by 22 weeks of age. Akt2/PKBβ-deficient mice are insulin resistant with elevated plasma triglycerides. In addition, Akt2/PKBβ-deficient mice exhibit fed and fasting hyperglycemia, hyperinsulinemia, glucose intolerance, and impaired muscle glucose uptake. In males, insulin resistance progresses to a severe form of diabetes accompanied by pancreatic β cell failure. In contrast, female Akt2/PKBβ-deficient mice remain mildly hyperglycemic and hyperinsulinemic until at least one year of age. Thus, Akt2/PKBβ-deficient mice exhibit growth deficiency similar to that reported previously for mice lacking Akt1/PKBα, indicating that both Akt2/PKBβ and Akt1/PKBα participate in the regulation of growth. The marked hyperglycemia and loss of pancreatic β cells and adipose tissue in Akt2/PKBβ-deficient mice suggest that Akt2/PKBβ plays critical roles in glucose metabolism and the development or maintenance of proper adipose tissue and islet mass for which other Akt/PKB isoforms are unable to fully compensate. PMID:12843127

  5. Restraint stress induces and exacerbates intestinal inflammation in interleukin-10 deficient mice

    Science.gov (United States)

    Koh, Seong-Joon; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae; Kim, Joo Sung

    2015-01-01

    AIM: To investigate the effects of restraint stress on chronic colitis in interleukin (IL)-10 deficient (IL-10-/-) mice. METHODS: The first experiment compared the effect of restraint stress on the development of intestinal inflammation in wild-type and IL-10-/- mice. Both wild-type and IL-10-/- mice were physically restrained in a well-ventilated, 50 cm3 conical polypropylene tube for 2 h per day for three consecutive days. The second experiment was performed to assess the effect of restraint stress on exacerbation of colitis induced by piroxicam in IL-10-/- mice. The IL-10-/- mice were exposed to restraint stress for 2 h per day for 3 consecutive days, and then treated with piroxicam for 4 d at a dose of 200 ppm administered in the rodent chow. RESULTS: In the first experiment, none of the wild-type mice with or without restraint stress showed clinical and histopathological abnormality in the gut. However, IL-10-/- mice exposed to restraint stress exhibited histologically significant intestinal inflammation as compared to those without restraint stress. In the second experiment, restraint stress significantly reduced body weight and increased the severity of intestinal inflammation assessed by histopathologic grading in IL-10-/- mice. Colonic IL12p40 mRNA expression was strongly increased in mice exposed to restraint stress. CONCLUSION: This novel animal model could be useful in future study of psychological stress in the pathogenesis of inflammatory bowel disease. PMID:26229400

  6. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  7. Rapamycin Regulates Bleomycin-Induced Lung Damage in SP-C-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Satish K. Madala

    2011-01-01

    Full Text Available Injury to the distal respiratory epithelium has been implicated as an underlying cause of idiopathic lung diseases. Mutations that result in SP-C deficiencies are linked to a small subset of spontaneous and familial cases of interstitial lung disease (ILD and interstitial pulmonary fibrosis (IPF. Gene-targeted mice that lack SP-C (−/− develop an irregular ILD-like disease with age and are a model of the human SP-C related disease. In the current study, we investigated whether rapamycin could ameliorate bleomycin-induced fibrosis in the lungs of −/− mice. +/+ and −/− mice were exposed to bleomycin with either preventative administration of rapamycin or therapeutic administration beginning eight days after the bleomycin injury. Rapamycin-treatment increased weight loss and decreased survival of bleomycin-treated +/+ and −/− mice. Rapamycin did not reduce the fibrotic disease in the prophylactic or rescue experiments of either genotype of mice. Further, rapamycin treatment augmented airway resistance and reduced lung compliance of bleomycin-treated −/− mice. Rapamycin treatment was associated with an increased expression of profibrotic Th2 cytokines and reduced expression of INF-γ. These findings indicate that novel therapeutics will be required to treat individuals with SP-C deficient ILD/IPF.

  8. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  9. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    Science.gov (United States)

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  11. Effects of Mild and Severe Vitamin B Deficiencies on the Meiotic Maturation of Mice Oocytes

    Directory of Open Access Journals (Sweden)

    Ai Tsuji

    2017-03-01

    Full Text Available We investigated the effects of vitamin B 1 deficiency on the meiosis maturation of oocytes. Female Crl:CD1 (ICR mice were fed a 20% casein diet (control group or a vitamin B 1 –free diet (test group. The vitamin B 1 concentration in ovary was approximately 30% lower in the test group than in the control group. Oocyte meiosis was not affected by vitamin B 1 deficiency when the deficiency was not accompanied by body weight loss. On the contrary, frequency of abnormal oocyte was increased by vitamin B 1 deficiency when deficiency was accompanied by body weight loss (referred to as severe vitamin B 1 deficiency; frequency of abnormal oocyte, 13.8% vs 43.7%, P  = .0071. The frequency of abnormal oocytes was decreased by refeeding of a vitamin B 1 –containing diet (13.9% vs 22.9%, P  = .503. These results suggest that severe vitamin B 1 deficiency inhibited meiotic maturation of oocytes but did not damage immature oocytes.

  12. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes.

    Science.gov (United States)

    Li, Binxing; Vachali, Preejith P; Shen, Zhengqing; Gorusupudi, Aruna; Nelson, Kelly; Besch, Brian M; Bartschi, Alexis; Longo, Simone; Mattinson, Ty; Shihab, Saeed; Polyakov, Nikolay E; Suntsova, Lyubov P; Dushkin, Alexander V; Bernstein, Paul S

    2017-06-01

    Carotenoid supplementation can prevent and reduce the risk of age-related macular degeneration (AMD) and other ocular disease, but until now, there has been no validated and well-characterized mouse model which can be employed to investigate the protective mechanism and relevant metabolism of retinal carotenoids. β-Carotene oxygenases 1 and 2 (BCO1 and BCO2) are the only two carotenoid cleavage enzymes found in animals. Mutations of the bco2 gene may cause accumulation of xanthophyll carotenoids in animal tissues, and BCO1 is involved in regulation of the intestinal absorption of carotenoids. To determine whether or not mice deficient in BCO1 and/or BCO2 can serve as a macular pigment mouse model, we investigated the retinal accumulation of carotenoids in these mice when fed with zeaxanthin, lutein, or β-carotene using an optimized carotenoid feeding method. HPLC analysis revealed that all three carotenoids were detected in sera, livers, retinal pigment epithelium (RPE)/choroids, and retinas of all of the mice, except that no carotenoid was detectable in the retinas of wild type (WT) mice. Significantly higher amounts of zeaxanthin and lutein accumulated in the retinas of BCO2 knockout (bco2 -/- ) mice and BCO1/BCO2 double knockout (bco1 -/- /bco2 -/- ) mice relative to BCO1 knockout (bco1 -/- ) mice, while bco1 -/- mice preferred to take up β-carotene. The levels of zeaxanthin and lutein were higher than β-carotene levels in the bco1 -/- /bco2 -/- retina, consistent with preferential uptake of xanthophyll carotenoids by retina. Oxidative metabolites were detected in mice fed with lutein or zeaxanthin but not in mice fed with β-carotene. These results indicate that bco2 -/- and bco1 -/- /bco2 -/- mice could serve as reasonable non-primate models for macular pigment function in the vertebrate eye, while bco1 -/- mice may be more useful for studies related to β-carotene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  14. Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis

    Directory of Open Access Journals (Sweden)

    Hanvit Cha

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a group of chronic, relapsing, immunological, inflammatory disorders of the gastrointestinal tract including ulcerative colitis (UC and Crohn's disease (CD. It has been reported that UC, which is studied using a dextran sodium sulfate (DSS-induced colitis model, is associated with the production of reactive oxygen species (ROS and the apoptosis of intestine epithelial cells (IEC. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2 has been reported as an essential enzyme in the mitochondrial antioxidant system via generation of NADPH. Therefore, we evaluated the role of IDH2 in DSS-induced colitis using IDH2-deficient (IDH2-/- mice. We observed that DSS-induced colitis in IDH2-/- mice was more severe than that in wild-type IDH2+/+ mice. Our results also suggest that IDH2 deficiency exacerbates PUMA-mediated apoptosis, resulting from NF-κB activation regulated by histone deacetylase (HDAC activity. In addition, DSS-induced colitis is ameliorated by an antioxidant N-acetylcysteine (NAC through attenuation of oxidative stress, resulting from deficiency of the IDH2 gene. In conclusion, deficiency of IDH2 leads to increased mitochondrial ROS levels, which inhibits HDAC activity, and the activation of NF-κB via acetylation is enhanced by attenuated HDAC activity, which causes PUMA-mediated apoptosis of IEC in DSS-induced colitis. The present study supported the rationale for targeting IDH2 as an important cancer chemoprevention strategy, particularly in the prevention of colorectal cancer.

  15. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    Science.gov (United States)

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-03

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function.

  16. Characterization of the gut microbiota in leptin deficient obese mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Krych, Lukasz; Hansen, Camilla Hartmann Friis

    2014-01-01

    Gut microbiota have been implicated as a relevant factor in the development of type 2 diabetes mellitus (T2DM), and its diversity might be a cause of variation in animal models of T2DM. In this study, we aimed to characterise the gut microbiota of a T2DM mouse model with a long term vision of being...... able to target the gut microbiota to reduce the number of animals used in experiments. Male B6.V-Lep(ob)/J mice were characterized according to a number of characteristics related to T2DM, inflammation and gut microbiota. All findings were thereafter correlated to one another in a linear regression...... model. The total gut microbiota profile correlated to glycated haemoglobin, and high proportions of Prevotellaceae and Lachnospiraceae correlated to impaired or improved glucose intolerance, respectively. In addition, Akkermansia muciniphila disappeared with age as glucose intolerance worsened. A high...

  17. Midkine-deficiency delays chondrogenesis during the early phase of fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Melanie Haffner-Luntzer

    Full Text Available The growth and differentiation factor midkine (Mdk plays an important role in bone development and remodeling. Mdk-deficient mice display a high bone mass phenotype when aged 12 and 18 months. Furthermore, Mdk has been identified as a negative regulator of mechanically induced bone formation and it induces pro-chondrogenic, pro-angiogenic and pro-inflammatory effects. Together with the finding that Mdk is expressed in chondrocytes during fracture healing, we hypothesized that Mdk could play a complex role in endochondral ossification during the bone healing process. Femoral osteotomies stabilized using an external fixator were created in wildtype and Mdk-deficient mice. Fracture healing was evaluated 4, 10, 21 and 28 days after surgery using 3-point-bending, micro-computed tomography, histology and immunohistology. We demonstrated that Mdk-deficient mice displayed delayed chondrogenesis during the early phase of fracture healing as well as significantly decreased flexural rigidity and moment of inertia of the fracture callus 21 days after fracture. Mdk-deficiency diminished beta-catenin expression in chondrocytes and delayed presence of macrophages during early fracture healing. We also investigated the impact of Mdk knockdown using siRNA on ATDC5 chondroprogenitor cells in vitro. Knockdown of Mdk expression resulted in a decrease of beta-catenin and chondrogenic differentiation-related matrix proteins, suggesting that delayed chondrogenesis during fracture healing in Mdk-deficient mice may be due to a cell-autonomous mechanism involving reduced beta-catenin signaling. Our results demonstrated that Mdk plays a crucial role in the early inflammation phase and during the development of cartilaginous callus in the fracture healing process.

  18. Methamphetamine increases locomotion and dopamine transporter activity in dopamine d5 receptor-deficient mice.

    Directory of Open Access Journals (Sweden)

    Seiji Hayashizaki

    Full Text Available Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.

  19. Deficits in spatial learning and motor coordination in ADAM11-deficient mice

    Directory of Open Access Journals (Sweden)

    Yamazaki Kazuto

    2006-02-01

    Full Text Available Abstract Background ADAM11 is a member of the ADAM gene family and is mainly expressed in the nervous system. It is thought to be an adhesion molecule, since it has a disintegrin-like domain related to cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM11, we generated ADAM11-deficient mice by means of gene targeting. Results ADAM11-deficient mice were apparently normal, and survived more than one year with no major histological abnormalities in the brain or spinal cord. Because ADAM11 is highly expressed in the hippocampus and cerebellum, we have examined ADAM11 mutant mice for learning using visual and hidden water maze tasks, and their motor coordination using a rotating rod task. Our results showed that their visual water maze task results are normal, but the hidden water maze and rotating rod task skills are impaired in ADAM11-deficient mice. Conclusion Our results indicate that ADAM11 mutation does not affect cell migration and differentiation during development, but affects learning and motor coordination. Thus, ADAM11 might play an important signalling or structural role as a cell adhesion molecule at the synapse, and may thus participate in synaptic regulation underlying behavioural changes.

  20. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss On CBA/Ca Mice.

    Directory of Open Access Journals (Sweden)

    Raquel Martinez-Vega

    2016-08-01

    Full Text Available Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after two-months, corroborating the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed the folate-deficient diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.

  1. Differential gene expression between wild-type and Gulo-deficient mice supplied with vitamin C

    Directory of Open Access Journals (Sweden)

    Yan Jiao

    2011-01-01

    Full Text Available The aim of this study was to test the hypothesis that hepatic vitamin C (VC levels in VC deficient mice rescued with high doses of VC supplements still do not reach the optimal levels present in wild-type mice. For this, we used a mouse scurvy model (sfx in which the L-gulonolactone oxidase gene (Gulo is deleted. Six age- (6 weeks old and gender- (female matched wild-type (WT and sfx mice (rescued by administering 500 mg of VC/L were used as the control (WT and treatment (MT groups (n = 3 for each group, respectively. Total hepatic RNA was used in triplicate microarray assays for each group. EDGE software was used to identify differentially expressed genes and transcriptomic analysis was used to assess the potential genetic regulation of Gulo gene expression. Hepatic VC concentrations in MT mice were significantly lower than in WT mice, even though there were no morphological differences between the two groups. In MT mice, 269 differentially expressed transcripts were detected (> twice the difference between MT and WT mice, including 107 up-regulated and 162 down-regulated genes. These differentially expressed genes included stress-related and exclusively/predominantly hepatocyte genes. Transcriptomic analysis identified a major locus on chromosome 18 that regulates Gulo expression. Since three relevant oxidative genes are located within the critical region of this locus we suspect that they are involved in the down-regulation of oxidative activity in sfx mice.

  2. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/-Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  3. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...... limiting for tumor vascularization and metastasis, or that there is a functional redundancy between PAI-1 and other inhibitors of the uPA/plasmin system, masking the effect of PAI-1 deficiency....

  4. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Carrasco, J; Giralt, M

    1999-01-01

    To characterize the physiological role of metallothioneins I and II (MT-I+II) in the brain, we have examined the chronological effects of a freeze injury to the cortex in normal and MT-I+II null mice. In normal mice, microglia/macrophage activation and astrocytosis were observed in the areas....... In contrast to normal mice, at 20 dpl no wound healing had occurred. The rate of apoptosis, as determined by using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, was drastically increased in neurons of ipsilateral cortex of the MT-I+II null mice. Our results demonstrate that MT......-I+II are essential for a normal wound repair in the CNS, and that their deficiency impairs neuronal survival....

  5. Accumulation of glycated proteins suggesting premature ageing in lamin B receptor deficient mice.

    Science.gov (United States)

    Hause, Frank; Schlote, Dietmar; Simm, Andreas; Hoffmann, Katrin; Santos, Alexander Navarrete

    2017-10-28

    Accumulation of advanced glycation end products (AGEs) is accompanied by increased free radical activity which contributes to ageing and the development or worsening of degenerative diseases. Apart from other physiological factors, AGEs are also an important biomarker for premature ageing. Here we report protein modifications (glycation) in a mouse model of lamin B receptor deficient ic J /ic J mice displaying skin defects similar to those of classical progeria. Therefore, we analysed AGE-modifications in protein extracts from various tissues of ic J /ic J mice. Our results demonstrated that pentosidine as well as argpyrimidine were increased in ic J /ic J mice indicating a modification specific increase in biomarkers of ageing, especially derived from glycolysis dependent methylglyoxal. Furthermore, the expression of AGE-preventing enzymes (Glo1, Fn3k) differed between ic J /ic J and control mice. The results indicate that not only lamin A but also the lamin B receptor may be involved in ageing processes.

  6. Inhibition of Interleukin-10 Signaling Induces Microbiota-Dependent Chronic Colitis in Apolipoprotein E Deficient Mice

    Science.gov (United States)

    Singh, Vishal; Kumar, Manish; Yeoh, Beng San; Xiao, Xia; Saha, Piu; Kennett, Mary J.; Vijay-Kumar, Matam

    2015-01-01

    Background Apolipoprotein E (ApoE) mediates potent anti-inflammatory and immunomodulatory properties in addition to its roles in regulating cholesterol transport and metabolism. However, its role in the intestine, specifically during inflammation is largely unknown. Methods Mice [C57BL/6 or ApoE deficient (ApoE-KO) mice] were administered either single or four injections (weekly) of anti-interleukin (IL)-10 receptor monoclonal antibody (1.0 mg/mouse; intraperitoneally) and euthanized one week after the last injection. 16S rRNA sequencing was performed in fecal samples to analyze the gut bacterial load and its composition. Microbiota was ablated by administration of broad-spectrum antibiotics in drinking water. IL-10KO mice were cohoused with ApoE-KO mice or their WT littermates to monitor the colitogenic potential of gut microbiota harbored in ApoE-KO mice. Results ApoE-KO mice developed severe colitis upon neutralization of IL-10 signaling as assessed by every parameter analyzed. 16S rRNA sequencing revealed that the ApoE-KO mice display elevated and altered gut microbiota that were accompanied with impaired production of intestinal antimicrobial peptides. Interestingly, microbiota ablation ameliorates the colitis development in ApoE-KO mice. Exacerbated and accelerated colitis was observed in IL-10KO mice when cohoused with ApoE-KO mice. Conclusions Our study highlights a novel interplay between ApoE and IL-10 in maintaining gut homeostasis and that such cross-talk may play a critical role in inflammatory bowel disease (IBD) pathogenesis. Gut sterilization and cohousing experiment suggests that microbiota play pivotal role in the development of IBD in mice lacking ApoE. PMID:26891260

  7. Maternal Vitamin D Deficiency and Fetal Programming - Lessons Learned from Humans and Mice

    Directory of Open Access Journals (Sweden)

    Christoph Reichetzeder

    2014-09-01

    Full Text Available Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D3 (25OHD during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.

  8. Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice.

    Science.gov (United States)

    Wang, F D; Bian, W; Kong, L W; Zhao, F J; Guo, J S; Jing, N H

    2001-06-01

    Effects of maternal dietary zinc deficiency on prenatal and postnatal brain development were investigated in ICR strain mice. From d 1 of pregnancy (E0) until postnatal d 20 (P20), maternal mice were fed experimental diets that contained 1 mg Zn/kg/day (severe zinc deficient, SZD), 5 mg Zn/kg/day (marginal zinc deficient, MZD), 30 mg Zn/kg/day (zinc adequately supplied, ZA) or 100 mg Zn/kg/day (zinc supplemented, ZS and pair-fed, PF). Brains of offspring from these dietary groups were examined at various developmental stages for expression of nestin, an intermediate filament protein found in neural stem cells and young neurons. Immunocytochemistry showed nestin expression in neural tube 10.5 d post citrus (dpc) as well as in the cerebral cortex and neural tube from 10.5 dpc to postnatal d 10 (P10). Nestin immunoreactivities in both brain and neural tube of those zinc-supplemented control groups (ZA, ZS, PF) were stronger than those in zinc-deficient groups (SZD and MZD). Western blot analysis confirmed that nestin levels in pooled brain extracts from each of the zinc-supplemented groups (ZA, ZS, PF) were much higher than those from the zinc-deficient groups (SZD and MZD) from 10.5 dpc to P10. Immunostaining and Western blots showed no detectable nestin in any of the experimental and control group brains after P20. These observations of an association between maternal zinc deficiency and decreased nestin protein levels in brains of offspring suggest that zinc deficiency suppresses development of neural stem cells, an effect which may lead to neuroanatomical and behavioral abnormalities in adults.

  9. Impaired Erectile Function in CD73-deficient Mice with Reduced Endogenous Penile Adenosine Production

    Science.gov (United States)

    Wen, Jiaming; Dai, Yingbo; Zhang, Yujin; Zhang, Weiru; Kellems, Rodney E.; Xia, Yang

    2012-01-01

    Introduction Adenosine has been implicated in normal and abnormal penile erection. However, a direct role of endogenous adenosine in erectile physiology and pathology has not been established. Aim To determine the functional role of endogenous adenosine production in erectile function. Methods CD73-deficient mice (CD73−/−) and age-matched wild-type (WT) mice were used. Some WT mice were treated with alpha, beta-methylene adenosine diphosphate (ADP) (APCP), a CD73-specific inhibitor. High-performance liquid chromatography was used to measure adenosine levels in mouse penile tissues. In vivo assessment of intracorporal pressure (ICP) normalized to mean arterial pressure (MAP) in response to electrical stimulation (ES) of the cavernous nerve was used. Main Outcome Measurement The main outcome measures of this study were the in vivo assessment of initiation and maintenance of penile erection in WT mice and mice with deficiency in CD73 (ecto-5′-nucleotidase), a key cell-surface enzyme to produce extracellular adenosine. Results Endogenous adenosine levels were elevated in the erected state induced by ES of cavernous nerve compared to the flaccid state in WT mice but not in CD73−/− mice. At cellular levels, we identified that CD73 was highly expressed in the neuronal, endothelial cells, and vascular smooth muscle cells in mouse penis. Functionally, we found that the ratio of ES-induced ICP to MAP in CD73−/− mice was reduced from 0.48 ± 0.03 to 0.33 ± 0.05 and ES-induced slope was reduced from 0.30 ± 0.13 mm Hg/s to 0.15 ± 0.05 mm Hg/s (both P penile erection. PMID:21595838

  10. von Willebrand factor deficiency leads to impaired blood flow recovery after ischaemia in mice.

    Science.gov (United States)

    de Vries, Margreet R; Peters, Erna A B; Quax, Paul H A; Nossent, A Yaël

    2017-06-28

    Neovascularisation, i. e. arteriogenesis and angiogenesis, is an inflammatory process. Therefore attraction and extravasation of leukocytes is essential for effective blood flow recovery after ischaemia. Previous studies have shown that von Willebrand factor (VWF) is a negative regulator of angiogenesis. However, it has also been shown that VWF facilitates leukocyte attraction and extravasation. We aimed to investigate the role of VWF in arteriogenesis and angiogenesis during post-ischaemic neovascularisation. Wild-type (WT) and VWF deficient (VWF -/- ) C57BL/6 mice were subjected to hindlimb ischaemia via double ligation of the left femoral artery, and blood flow recovery was followed over time, using Laser Doppler Perfusion Imaging. Blood flow recovery was impaired in VWF -/- mice. After 10 days, VWF -/- mice showed a 43 ± 5 % recovery versus 68 ± 5 % in WT. Immunohistochemistry revealed that both arteriogenesis in the adductor muscles and angiogenesis in the gastrocnemius muscles were reduced in VWF -/- mice. Furthermore, leukocyte infiltration in the affected adductor muscles was reduced in VWF -/- mice. Residual paw perfusion directly after artery ligation was also reduced in VWF -/- mice, indicating a decrease in pre-existing collateral arteriole density. When we quantified collateral arterioles, we observed a 31 % decrease in the average number of collateral arterioles in the pia mater compared to WT mice (57 ± 3 in WT vs 40 ± 4 pial collaterals in VWF -/- ). We conclude that VWF facilitates blood flow recovery in mice. VWF deficiency hampers both arteriogenesis and angiogenesis in a hindlimb ischaemia model. This is associated with impaired leukocytes recruitment and decreased pre-existing collateral density in the absence of VWF.

  11. Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice.

    Directory of Open Access Journals (Sweden)

    Susan K Grimston

    Full Text Available The gap junction protein, connexin43 (Cx43 is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1 deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain further insights on Cx43 and mechanotransduction, we examined bone formation response at both endocortical and periosteal surfaces in 2-month-old mice with conditional Gja1 ablation driven by the Dermo1 promoter (cKO. Relative to wild type (WT littermates, it requires a larger amount of compressive force to generate the same periosteal strain in cKO mice. Importantly, cKO mice activate periosteal bone formation at a lower strain level than do WT mice, suggesting an increased sensitivity to mechanical load in Cx43 deficiency. Consistently, trabecular bone mass also increases in mutant mice upon load, while it decreases in WT. On the other hand, bone formation actually decreases on the endocortical surface in WT mice upon application of axial mechanical load, and this response is also accentuated in cKO mice. These changes are associated with increase of Cox-2 in both genotypes and further decrease of Sost mRNA in cKO relative to WT bones. Thus, the response of bone forming cells to mechanical load differs between trabecular and cortical components, and remarkably between endocortical and periosteal envelopes. Cx43 deficiency enhances both the periosteal and endocortical response to mechanical load applied as axial compression in growing mice.

  12. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo

    2010-09-01

    Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.

  13. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J

    1999-01-01

    Injury to the central nervous system (CNS) elicits an inflammatory response involving activation of microglia, brain macrophages, and astrocytes, processes likely mediated by the release of proinflammatory cytokines. In order to determine the role of interleukin-6 (IL-6) during the inflammatory...... response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages...

  14. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    The impact of prophylactic vaccination against acute and chronic infection in a Th-deficient host has not been adequately addressed because of difficulties in generating protective immunity in the absence of CD4(+) T cell help. In this study, we demonstrated that a broad CD8(+) T cell immune...... response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...

  15. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity.

    Directory of Open Access Journals (Sweden)

    Takahiko Toyonaga

    Full Text Available Osteopontin (OPN is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD. The role of OPN in the pathophysiology of IBD, however, remains unclear.To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO mice.We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay.OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml.OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity.

  16. Heterozygous L1-deficient mice express an autism-like phenotype.

    Science.gov (United States)

    Sauce, Bruno; Wass, Christopher; Netrakanti, Meera; Saylor, Joshua; Schachner, Melitta; Matzel, Louis D

    2015-10-01

    The L1CAM (L1) gene encodes a cell adhesion molecule that contributes to several important processes in the developing and adult nervous system, including neuronal migration, survival, and plasticity. In humans and mice, mutations in the X chromosome-linked gene L1 cause severe neurological defects in males. L1 heterozygous female mice with one functional copy of the L1 gene show complex morphological features that are different from L1 fully-deficient and wild-type littermate mice. However, almost no information is available on the behavior of L1 heterozygous mice and humans. Here, we investigated the behavior of heterozygous female mice in which the L1 gene is constitutively inactivated. These mice were compared to wild-type littermate females. Animals were assessed in five categories of behavioral tests: five tests for anxiety/stress/exploration, four tests for motor abilities, two tests for spatial learning, three tests for social behavior, and three tests for repetitive behavior. We found that L1 heterozygous mice express an autism-like phenotype, comprised of reduced social behaviors and excessive self-grooming (a repetitive behavior also typical in animal models of autism). L1 heterozygous mice also exhibited an increase in sensitivity to light, assessed by a reluctance to enter the lighted areas of novel environments. However, levels of anxiety, stress, motor abilities, and spatial learning in L1 heterozygous mice were similar to those of wild-type mice. These observations raise the possibility that using molecules known to trigger L1 functions may become valuable in the treatment of autism in humans. Copyright © 2015. Published by Elsevier B.V.

  17. Excessive penile norepinephrine level underlies impaired erectile function in adenosine A1 receptor deficient mice.

    Science.gov (United States)

    Ning, Chen; Qi, Lin; Wen, Jiaming; Zhang, Yujin; Zhang, Weiru; Wang, Wei; Blackburn, Michael; Kellems, Rodney; Xia, Yang

    2012-10-01

    Penile erection is a complex neurovascular physiological event controlled by multiple factors and signaling pathways. A considerable amount of evidence indicates that adenosine plays a significant role in cavernosal smooth muscle relaxation. However, the specific role of adenosine and its receptors in erectile physiology and pathology is not fully understood. To determine the role of the adenosine A1 receptor (ADORA1) in penile erection. Adenosine A1 receptor deficient (Adora1-/-) mice and aged-matched wild-type (WT) mice were utilized. We evaluated the in vivo erectile function by measuring the intracavernosal pressure (ICP) in response to cavernous nerve stimulation (CNS). Enzyme-linked immunosorbent assay was used to measure the norepinephrine (NE) plasma concentration in the corpus cavernosum and systemic circulation. We also evaluated the myosin light chain phosphorylation (p-MLC) in penile tissue pre- and post-CNS. The main outcome measurement of this research was the evaluation of in vivo erectile response to CNS by measuring the ICP in Adora1-/- mice and WT mice and to identify the localization and specific neuron types of ADORA1 expression by dual immunostaining and immunofluorescence co-localization. In vivo, both the ratio of CNS-induced Maximum ICP to mean arterial pressure and CNS-induced slope in Adora1-/- mice were significantly lower than WT mice. At the cellular level in penile tissue, we determined that ADORA1 was highly abundant in neuronal cells. During penile erection, Adora1-/- mice exhibited a higher level of NE plasma concentration in the penis than WT mice. And WT mice had a significantly greater reduction in p-MLC compared to Adora1-/- mice. Our results show that ADORA1 is enriched on neuron cells where it functions to control NE release. Activation of this receptor during penile erection results in reduced NE release and reduced cavernosal smooth muscle contraction, therefore facilitating penile erection. © 2012 International Society for

  18. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice.

    Science.gov (United States)

    Miyazaki, Makoto; Sampath, Harini; Liu, Xueqing; Flowers, Matthew T; Chu, Kiki; Dobrzyn, Agnieszka; Ntambi, James M

    2009-03-20

    Obesity and adiposity greatly increase the risk for secondary conditions such as insulin resistance. Mice deficient in the enzyme stearoyl-CoA desaturase-1 (SCD1) are lean and protected from diet-induced obesity and insulin resistance. In order to determine the effect of SCD1 deficiency on various mouse models of obesity, we introduced a global deletion of the Scd1 gene into leptin-deficient ob/ob mice, leptin-resistant Agouti (A(y)/a) mice, and high-fat diet-fed obese (DIO) mice. SCD1 deficiency lowered body weight, adiposity, hepatic lipid accumulation, and hepatic lipogenic gene expression in all three mouse models. However, glucose tolerance, insulin, and leptin sensitivity were improved by SCD1 deficiency only in A(y)/a and DIO mice, but not ob/ob mice. These data uncouple the effects of SCD1 deficiency on weight loss from those on insulin sensitivity and suggest a beneficial effect of SCD1 inhibition on insulin sensitivity in obese mice that express a functional leptin gene.

  19. The use of monoclonal antibody epitopes for tagging PrP in conversion experiments.

    Science.gov (United States)

    Vorberg, I; Pfaff, E; Groschup, M H

    2000-01-01

    The key event in the pathogenesis of spongiform encephalopathies is a conformational transition of a normal cellular protein, PrPsen, to its pathological isoform, PrPres. The mechanism of PrPres formation is unknown but is likely to involve a direct interaction between PrPsen and PrPres. The molecular basis of PrPres formation has been studied extensively using transgenic mice and scrapie-infected tissue cultures that express heterologous PrP molecules. However, these experiments are dependant on the discrimination of endogenous host PrP and exogenous PrP molecules. Here we give a short review on the PrP-specific epitopes that have been used for tagging exogenous PrP molecules and present a novel PrP-specific epitope that is well suitable for in vivo and in vitro conversion experiments.

  20. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    Science.gov (United States)

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  1. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    Science.gov (United States)

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  2. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  3. Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Bosetti Francesca

    2008-05-01

    Full Text Available Abstract Background Cyclooxygenases (COX -1 and -2 are key mediators of the inflammatory response in the central nervous system. Since COX-2 is inducible by inflammatory stimuli, it has been traditionally considered as the most appropriate target for anti-inflammatory drugs. However, the specific roles of COX-1 and COX-2 in modulating a neuroinflammatory response are unclear. Recently, we demonstrated that COX-1 deficient mice show decreased neuroinflammatory response and neuronal damage in response to lipopolysaccharide (LPS. Methods In this study, we investigated the role of COX-2 in the neuroinflammatory response to intracerebroventricular-injected LPS (5 μg, a model of direct activation of innate immunity, using COX-2 deficient (COX-2-/- and wild type (COX-2+/+ mice, as well as COX-2+/+ mice pretreated for 6 weeks with celecoxib, a COX-2 selective inhibitor. Results Twenty-four hours after LPS injection, COX-2-/- mice showed increased neuronal damage, glial cell activation, mRNA and protein expression of markers of inflammation and oxidative stress, such as cytokines, chemokines, iNOS and NADPH oxidase. Brain protein levels of IL-1β, NADPH oxidase subunit p67phox, and phosphorylated-signal transducer and activator of transcription 3 (STAT3 were higher in COX-2-/- and in celecoxib-treated mice, compared to COX-2+/+ mice. The increased neuroinflammatory response in COX-2-/- mice was likely mediated by the upregulation of STAT3 and suppressor of cytokine signaling 3 (SOCS3. Conclusion These results show that inhibiting COX-2 activity can exacerbate the inflammatory response to LPS, possibly by increasing glial cells activation and upregulating the STAT3 and SOCS3 pathways in the brain.

  4. TRAIL Deficiency Contributes to Diabetic Nephropathy in Fat-Fed ApoE-/- Mice

    Science.gov (United States)

    Cartland, Siân P.; Erlich, Jonathan H.; Kavurma, Mary M.

    2014-01-01

    Background We recently demonstrated that TNF-related apoptosis-inducing ligand (TRAIL) is protective of diet-induced diabetes in mice. While TRAIL has been implicated in chronic kidney disease, its role in vivo in diabetic nephropathy is not clear. The present study investigated the role of TRAIL in the pathogenesis of diabetic nephropathy using TRAIL-/-ApoE-/- mice. Methods TRAIL-/-ApoE-/- and ApoE-/- mice were fed a high fat diet for 20 w. Plasma glucose and insulin levels were assessed over 0, 5, 8 and 20 w. At 20 w, markers of kidney function including creatinine, phosphate, calcium and cystatin C were measured. Changes in mRNA expression of MMPs, TIMP-1, IL-1β and IL-18 were assessed in the kidney. Functional and histological changes in kidneys were examined. Glucose and insulin tolerance tests were performed. Results TRAIL-/-ApoE-/- mice had significantly increased urine protein, urine protein:creatinine ratio, plasma phosphorous, and plasma cystatin C, with accelerated nephropathy. Histologically, increased extracellular matrix, mesangial expansion and mesangial cell proliferation in the glomeruli were observed. Moreover, TRAIL-/-ApoE-/- kidneys displayed loss of the brush border and disorganisation of tubular epithelium, with increased fibrosis. TRAIL-deficient kidneys also had increased expression of MMPs, TIMP-1, PAI-1, IL-1β and IL-18, markers of renal injury and inflammation. Compared with ApoE-/- mice, TRAIL-/-ApoE-/- mice displayed insulin resistance and type-2 diabetic features with reduced renal insulin-receptor expression. Conclusions Here, we show that TRAIL-deficiency in ApoE-/- mice exacerbates nephropathy and insulin resistance. Understanding TRAIL signalling in kidney disease and diabetes, may therefore lead to novel strategies for the treatment of diabetic nephropathy. PMID:24667560

  5. TRAIL deficiency contributes to diabetic nephropathy in fat-fed ApoE-/- mice.

    Directory of Open Access Journals (Sweden)

    Siân P Cartland

    Full Text Available BACKGROUND: We recently demonstrated that TNF-related apoptosis-inducing ligand (TRAIL is protective of diet-induced diabetes in mice. While TRAIL has been implicated in chronic kidney disease, its role in vivo in diabetic nephropathy is not clear. The present study investigated the role of TRAIL in the pathogenesis of diabetic nephropathy using TRAIL(-/-ApoE(-/- mice. METHODS: TRAIL(-/-ApoE(-/- and ApoE(-/- mice were fed a high fat diet for 20 w. Plasma glucose and insulin levels were assessed over 0, 5, 8 and 20 w. At 20 w, markers of kidney function including creatinine, phosphate, calcium and cystatin C were measured. Changes in mRNA expression of MMPs, TIMP-1, IL-1β and IL-18 were assessed in the kidney. Functional and histological changes in kidneys were examined. Glucose and insulin tolerance tests were performed. RESULTS: TRAIL(-/-ApoE(-/- mice had significantly increased urine protein, urine protein:creatinine ratio, plasma phosphorous, and plasma cystatin C, with accelerated nephropathy. Histologically, increased extracellular matrix, mesangial expansion and mesangial cell proliferation in the glomeruli were observed. Moreover, TRAIL(-/-ApoE(-/- kidneys displayed loss of the brush border and disorganisation of tubular epithelium, with increased fibrosis. TRAIL-deficient kidneys also had increased expression of MMPs, TIMP-1, PAI-1, IL-1β and IL-18, markers of renal injury and inflammation. Compared with ApoE(-/- mice, TRAIL-/-ApoE-/- mice displayed insulin resistance and type-2 diabetic features with reduced renal insulin-receptor expression. CONCLUSIONS: Here, we show that TRAIL-deficiency in ApoE(-/- mice exacerbates nephropathy and insulin resistance. Understanding TRAIL signalling in kidney disease and diabetes, may therefore lead to novel strategies for the treatment of diabetic nephropathy.

  6. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Yutong Sun

    Full Text Available Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  7. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Science.gov (United States)

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  8. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  9. ABCG5/G8 deficiency in mice reduces dietary triacylglycerol and cholesterol transport into the lymph.

    Science.gov (United States)

    Zhang, Linda S; Xu, Min; Yang, Qing; Lou, Danwen; Howles, Philip N; Tso, Patrick

    2015-04-01

    The adenosine triphosphate-binding cassette (ABC) transporter G5/G8 is critical in protecting the body from accumulating dietary plant sterols. Expressed in the liver and small intestine, it transports plant sterols into the biliary and intestinal lumens, thus promoting their excretion. The extent to which G5/G8 regulates cholesterol absorption remains unclear. G5/G8 is also implicated in reducing the absorption of dietary triacylglycerols (TAG) by unknown mechanisms. We hypothesized that G5/G8 suppresses the production of chylomicrons, and its deficiency would enhance the absorption of both dietary TAG and cholesterol. The aim of this study was to investigate the effects of G5/G8 deficiency on lipid uptake and secretion into the lymph under steady-state conditions. Surprisingly, compared with wild-type mice (WT) (n = 9), G5/G8 KO (n = 13) lymph fistula mice given a continuous intraduodenal infusion of [3H]-TAG and [14C]-cholesterol showed a significant (P G8 KO mice given a bolus of TAG showed reduced intestinal TAG secretion compared with WT, suggesting an independent role for G5/G8 in facilitating intestinal TAG transport. Our data demonstrate that G5/G8 deficiency reduces the uptake and secretion of both dietary TAG and cholesterol by the intestine, suggesting a novel role for the sterol transporter in the formation and secretion of chylomicrons.

  10. Resident Enteric Bacteria Are Necessary for Development of Spontaneous Colitis and Immune System Activation in Interleukin-10-Deficient Mice

    Science.gov (United States)

    Sellon, Rance K.; Tonkonogy, Susan; Schultz, Michael; Dieleman, Levinus A.; Grenther, Wetonia; Balish, Ed; Rennick, Donna M.; Sartor, R. Balfour

    1998-01-01

    Mice with targeted deletion of the gene for interleukin-10 (IL-10) spontaneously develop enterocolitis when maintained in conventional conditions but develop only colitis when kept in specific-pathogen-free (SPF) environments. This study tested the hypothesis that enteric bacteria are necessary for the development of spontaneous colitis and immune system activation in IL-10-deficient mice. IL-10-deficient mice were maintained in either SPF conditions or germfree conditions or were populated with bacteria known to cause colitis in other rodent models. IL-10-deficient mice kept in SPF conditions developed colitis in all segments of the colon (cecum and proximal and distal colon). These mice exhibited immune system activation as evidenced by increased expression of CD44 on CD4+ T cells; increased mesenteric lymph node cell numbers; and increased production of immunoglobulin A (IgA), IgG1, and IL-12 p40 from colon fragment cultures. Mice populated with bacterial strains, including Bacteroides vulgatus, known to induce colitis in other rodent models had minimal colitis. Germfree IL-10-deficient mice had no evidence of colitis or immune system activation. We conclude therefore that resident enteric bacteria are necessary for the development of spontaneous colitis and immune system activation in IL-10-deficient mice. PMID:9784526

  11. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  12. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    Science.gov (United States)

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  13. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    Full Text Available In humans, variants of the fat mass and obesity associated (FTO gene have recently been associated with obesity. However, the physiological function of FTO is not well defined. Previous investigations in mice have linked FTO deficiency to growth retardation, loss of white adipose tissue, increased energy metabolism and enhanced systemic sympathetic activation. In this study we investigated for the first time the effects of global knockout of the mouse FTO gene on cardiac function and its autonomic neural regulation. ECG recordings were acquired via radiotelemetry in homozygous knockout (n = 12 and wild-type (n = 8 mice during resting and stress conditions, and analyzed by means of time- and frequency-domain indexes of heart rate variability. In the same animals, cardiac electrophysiological properties (assessed by epicardial mapping and structural characteristics were investigated. Our data indicate that FTO knockout mice were characterized by (i higher heart rate values during resting and stress conditions, (ii heart rate variability changes (increased LF to HF ratio, (iii larger vulnerability to stress-induced tachyarrhythmias, (iv altered ventricular repolarization, and (v cardiac hypertrophy compared to wild-type counterparts. We conclude that FTO deficiency in mice leads to an imbalance of the autonomic neural modulation of cardiac function in the sympathetic direction and to a potentially proarrhythmic remodeling of electrical and structural properties of the heart.

  14. ADAMTS18 Deficiency Leads to Visceral Adiposity and Associated Metabolic Syndrome in Mice.

    Science.gov (United States)

    Zhu, Rui; Cheng, Mengting; Lu, Tiantian; Yang, Ning; Ye, Shuai; Pan, Yi-Hsuan; Hong, Tao; Dang, Suying; Zhang, Wei

    2017-11-20

    Visceral adiposity is of greater risk than obesity in subcutaneous adipose tissue for diabetes and cardiovascular disease. Its pathogenesis remains unclear, but it is associated with extracellular matrix (ECM) remodeling. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are a family of secreted Zn-dependent metalloproteinases that play crucial roles in development and various diseases owing to their ECM remodeling activity. ADAMTS18 is an "orphan ADAMTS" whose function and substrate remain unclear. Here, we showed that Adamts18 mRNA was abundantly expressed in visceral (gonadal) white adipose tissue (vWAT) during the early stage of development after birth. Adamts18 knockout (KO) mice showed increased body fat percentage and larger adipocyte size in vWAT relative to WT littermates, which may be partly attributed to ECM remodeling, especially increased expression of laminin1 and adipokine thrombospondin1 in vWAT. Attenuated ERK1/2 activity, along with increased expression of adipocyte-specific transcription factors PPARγ, C/EBPβ, and marker gene Fabp4 were detected in vWAT of Adamts18 KO mice. Furthermore, Adamts18 KO mice showed early metabolic syndrome including hyperlipidemia, blood glucose metabolic disorder, and hypertension. ADAMTS18 deficiency promotes atherosclerosis in apolipoprotein E-deficient (Apoe-/-) mice. These results indicate a novel function of ADAMTS18 in vWAT development and associated metabolic disorders. Copyright © 2017. Published by Elsevier Inc.

  15. Comparison of subcutaneous and intraperitoneal staphylococcal infections in normal and complement-deficient mice.

    Science.gov (United States)

    Easmon, C S; Glynn, A A

    1976-02-01

    From a comparison of the effects produced by injecting different strains of Staphylococcus aureus either subcutaneously or intraperitoneally into normal, complement-deficient, or complement-depleted mice, it was possible to assess the pathogenic significance of various staphylococcal virulence factors and the defensive role of complement components in the two sites of infection. In skin lesions the inflammation-suppressing factor found in the cell walls of strain PS80 played a major role. In contrast, in intraperitoneal infection the antiphagocytic capsule of the Smith diffuse and M strains was more important. All strains used produced alpha-hemolysin, which is the ultimate lethal agent in intraperitoneal infection but is only one factor in the production of dermonecrosis. The severity of the skin lesions was inversely related to the amount of early fluid exudate rather than to the rate of bacterial growth, whereas in the peritoneum increased bacterial growth was associated with increased mortality. Both C3 and C5 were needed in the production of fluid exudate in response to staphylococcal skin infection. C3 appeared to be more important in the increased exudate formed in immune mice. In the peritoneum the opsonic and chemotactic actions for complement were important as shown by the results in cobra venom-treated normal mice and in C5-deficient B10D2 old-line mice.

  16. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...... the human laminin alpha2 chain gene in skeletal muscle. The dy(3K)/dy(3K) experimental mutant mice are completely deficient in laminin alpha2; the dy/dy spontaneous mutant mice have small amounts of apparently normal laminin; and the dy(W)/dy(W) mice express even smaller amounts of a truncated laminin alpha......2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter...

  17. Hepatic S6K1 Partially Regulates Lifespan of Mice with Mitochondrial Complex I Deficiency

    Directory of Open Access Journals (Sweden)

    Takashi K. Ito

    2017-09-01

    Full Text Available The inactivation of ribosomal protein S6 kinase 1 (S6K1 recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of mTORC1 inhibition in the Ndufs4 knockout (NKO mouse model of Leigh Syndrome caused by Complex I deficiency. These NKO mice develop profound neurodegeneration resulting in brain lesions and death around 50–60 days of age. Our results show that liver-specific, as well as whole body, S6K1 deletion modestly prolongs survival and delays onset of neurological symptoms in NKO mice. In contrast, we observed no survival benefit in NKO mice specifically disrupted for S6K1 in neurons or adipocytes. Body weight was reduced in WT mice upon disruption of S6K1 in adipocytes or whole body, but not altered when S6K1 was disrupted only in neurons or liver. Taken together, these data indicate that decreased S6K1 activity in liver is sufficient to delay the neurological and survival defects caused by deficiency of Complex I and suggest that mTOR signaling can modulate mitochondrial disease and metabolism via cell non-autonomous mechanisms.

  18. Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice.

    Science.gov (United States)

    Fang, Yongkang; Huang, Xiaojiang; Wan, Yue; Tian, Hao; Tian, Yeye; Wang, Wei; Zhu, Suiqiang; Xie, Minjie

    2017-04-01

    Spinal cord injury (SCI) involves complex pathological process which can be complicated by secondary injury. TREK-1 is a member of the two-pore domain potassium (K2P) channel family, which can be modulated by a number of physiological and pathological stimuli. Recent studies suggest that TREK-1 plays an active role in depression, pain and neuroprotection. However, its role in the pathological process after SCI remains unclear. In this study, we tested the expression and function of TREK-1 in spinal cord of mice after traumatic SCI. TREK-1 was widely expressed in mice spinal cord, including astrocytes and neurons. Deficiency of TREK-1 significantly exacerbated focal inflammatory responses as indicated by the increased accumulation of microglia/macrophage as well as pro-inflammatory factor interleukin-1 beta (IL-1β) and tumor necrosis factor alpha expression. Meanwhile, TREK-1 knockout mice showed enhanced reactive astrogliosis, chondroitin sulphate proteoglycans (CSPGs) production and decreased glutamate transporter-1 expression compared to the wide-type mice after SCI. Furthermore, TREK-1 deficiency promoted neurons and oligodendrocytes apoptosis, aggravated demyelination, cavity formation and retarded motor recovery. In summary, our findings provide the first in vivo evidence suggesting that TREK-1 may thereby constitute a promising therapeutic target to treat acute SCI. © 2017 International Society for Neurochemistry.

  19. Vitamin A deficiency induces a decrease in EEG delta power during sleep in mice.

    Science.gov (United States)

    Kitaoka, Kazuyoshi; Hattori, Atsushi; Chikahisa, Sachiko; Miyamoto, Ken-Ichi; Nakaya, Yutaka; Sei, Hiroyoshi

    2007-05-30

    Recent report (Maret, S., Franken, P., Dauvilliers, Y., Ghyselinck, N.B., Chambon, P., Tafti, M., 2005. Retinoic acid signaling affects cortical synchrony during sleep. Science 310, 111-113.) has suggested that vitamin A (retinol and its derivatives) is genetically involved in the electroencephalogram (EEG) delta oscillation during sleep. However, this finding has not yet been confirmed by other studies. In this study, we attempted to record the sleep EEG and behavior, and to quantify striatal monoamines in mice fed a vitamin A-deficient (VAD) diet for 4 weeks, in order to clarify the linkage between the delta oscillation and vitamin A. VAD mice demonstrated a significant decrease in the delta power of the EEG. However, 6-h sleep deprivation caused the recovery of the delta power in VAD mice to a level similar to that of the control. VAD also caused the decrease of spontaneous activity throughout 24-h period. Furthermore, dihydroxyphenylacetic acid, a metabolite of dopamine, was decreased significantly in the striatal tissue of VAD mice. Our present results suggest that the deficiency of vitamin A causes the attenuation of delta power in NREM sleep and spontaneous activity. These attenuations may be related to the alteration of striatal dopaminergic function.

  20. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  1. Low sympathetic tone and obese phenotype in oxytocin-deficient mice.

    Science.gov (United States)

    Camerino, Claudia

    2009-05-01

    Oxytocin (Oxt) is secreted both peripherally and centrally and is involved in several functions including parturition, milk let-down reflex, social behavior, and food intake. Recently, it has been shown that mice deficient in Oxt receptor develop late-onset obesity. In this study, we characterized a murin model deficient in Oxt peptide (Oxt(-/-)) to evaluate food intake and body weight, glucose tolerance and insulin tolerance, leptin and adrenaline levels. We found that Oxt(-/-) mice develop late-onset obesity and hyperleptinemia without any alterations in food intake in addition to having a decreased insulin sensitivity and glucose intolerance. The lack of Oxt in our murin model also results in lower adrenalin levels which led us to hypothesize that the metabolic changes observed are associated with a decreased sympathetic nervous tone. It has been shown that Oxt neurons in the paraventricular nucleus (PVN) are a component of a leptin-sensitive signaling circuit between the hypothalamus and caudal brain stem for the regulation of food intake and energy homeostasis. Nevertheless, the lack of Oxt in these mice does not have a direct impact on feeding behavior whose regulation is probably dependent on the complex interplay of several factors. The lack of hyperphagia evident in the Oxt(-/-) mice may, in part, be attributed to the developmental compensation of other satiety factors such as cholecystokinin or bombesin-related peptides which merits further investigation. These findings identify Oxt as an important central regulator of energy homeostasis.

  2. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  3. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling.

    Science.gov (United States)

    Turk, R; Sterrenburg, E; de Meijer, E J; van Ommen, G-J B; den Dunnen, J T; 't Hoen, P A C

    2005-07-13

    Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is lethal. In contrast, dystrophin-deficient mdx mice recover due to effective regeneration of affected muscle tissue. To characterize the molecular processes associated with regeneration, we compared gene expression levels in hindlimb muscle tissue of mdx and control mice at 9 timepoints, ranging from 1-20 weeks of age. Out of 7776 genes, 1735 were differentially expressed between mdx and control muscle at at least one timepoint (p DMD patients, only few of the identified regeneration-associated genes were found activated, indicating less efficient regeneration processes in humans. Based on the observed expression profiles, we describe a model for muscle regeneration in mdx mice, which may provide new leads for development of DMD therapies based on the improvement of muscle regeneration efficacy.

  4. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Membrane Sealant Poloxamer P188 Protects Against Isoproterenol Induced Cardiomyopathy in Dystrophin Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sali Arpana

    2011-05-01

    Full Text Available Abstract Background Cardiomyopathy in Duchenne muscular dystrophy (DMD is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy. Methods Three month old female mdx mice were exposed to the β1 receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188 (460 mg/kg/dose i.p. daily. Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD and picrosirius red staining. Results BL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p Conclusions This model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice.

  6. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  7. Osteoprotegerin deficiency results in disruption of posterofrontal suture closure in mice: implications in nonsyndromic craniosynostosis.

    Science.gov (United States)

    Beederman, Maureen; Kim, Stephanie H; Rogers, M Rose; Lyon, Sarah M; He, Tong-Chuan; Reid, Russell R

    2015-06-01

    Little is known about the role of osteoclasts in cranial suture fusion. Osteoclasts are predominantly regulated by receptor activator of nuclear factor kappa B and receptor activator of nuclear factor kappa B ligand, both of which lead to osteoclast differentiation, activation, and survival; and osteoprotegerin, a soluble inhibitor of receptor activator of nuclear factor kappa B. The authors' work examines the role of osteoprotegerin in this process using knockout technology. Wild-type, osteoprotegerin-heterozygous, and osteoprotegerin-knockout mice were imaged by serial micro-computed tomography at 3, 5, 7, 9, and 16 weeks. Suture density measurements and craniometric analysis were performed at these same time points. Posterofrontal sutures were harvested from mice after the week-16 time point and analyzed by means of histochemistry. Micro-computed tomographic analysis of the posterofrontal suture revealed reduced suture fusion in osteoprotegerin-knockout mice compared with wild-type and heterozygous littermates. Osteoprotegerin deficiency resulted in a statistically significant decrease in suture bone density in knockout mice. There was no reduction in the density of non-suture-containing calvarial bone between wild-type and osteoprotegerin-knockout mice. Histochemistry of suture sections supported these micro-computed tomographic findings. Finally, osteoprotegerin-knockout mice had reduced anteroposterior skull distance at all time points and an increased interorbital distance at the week-16 time point. The authors' data suggest that perturbations in the expression of osteoprotegerin and subsequent changes in osteoclastogenesis lead to alterations in murine cranial and posterofrontal suture morphology.

  8. F-spondin deficient mice have a high bone mass phenotype.

    Directory of Open Access Journals (Sweden)

    Glyn D Palmer

    Full Text Available F-spondin is a pericellular matrix protein upregulated in developing growth plate cartilage and articular cartilage during osteoarthritis. To address its function in bone and cartilage in vivo, we generated mice that were deficient for the F-spondin gene, Spon1. Spon1-/- mice were viable and developed normally to adulthood with no major skeletal abnormalities. At 6 months, femurs and tibiae of Spon1-/- mice exhibited increased bone mass, evidenced by histological staining and micro CT analyses, which persisted up to 12 months. In contrast, no major abnormalities were observed in articular cartilage at any age group. Immunohistochemical staining of femurs and tibiae revealed increased levels of periostin, alkaline phosphate and tartrate resistant acid phosphatase (TRAP activity in the growth plate region of Spon1-/- mice, suggesting elevated bone synthesis and turnover. However, there were no differences in serum levels of TRAP, the bone resorption marker, CTX-1, or osteoclast differentiation potential between genotypes. Knockout mice also exhibited reduced levels of TGF-β1 in serum and cultured costal chondrocytes relative to wild type. This was accompanied by increased levels of the BMP-regulatory SMADs, P-SMAD1/5 in tibiae and chondrocytes. Our findings indicate a previously unrecognized role for Spon1 as a negative regulator of bone mass. We speculate that Spon1 deletion leads to a local and systemic reduction of TGF-β levels resulting in increased BMP signaling and increased bone deposition in adult mice.

  9. R-Ras deficiency does not affect papain-induced IgE production in mice.

    Science.gov (United States)

    Kummola, Laura; Ortutay, Zsuzsanna; Vähätupa, Maria; Prince, Stuart; Uusitalo-Järvinen, Hannele; Järvinen, Tero A H; Junttila, Ilkka S

    2017-09-01

    R-Ras GTPase has recently been implicated in the regulation of immune functions, particularly in dendritic cell (DC) maturation, immune synapse formation, and subsequent T cell responses. Here, we investigated the role of R-Ras in allergen-induced immune response (type 2 immune response) in Rras deficient (R-Ras KO) and wild type (WT) mice. Initially, we found that the number of conventional DC's in the lymph nodes (LNs) was reduced in R-Ras KO mice. The expression of co-stimulatory CD80 and CD86 molecules on these cells was also reduced on DC's from the R-Ras KO mice. However, there was no difference in papain-induced immune response between the R-Ras WT and KO as measured by serum IgE levels after the immunization. Interestingly, neither the DC number nor co-stimulatory molecule expression was different between WT and R-Ras KO animals after the immunization. Taken together, despite having reduced number of conventional DC's in the R-Ras KO mice and low expression of CD80 on DC's, the R-Ras KO mice are capable of mounting papain-induced IgE responses comparable to that of the WT mice. To our knowledge, this is the first report addressing potential differences in in vivo allergen responses regulated by the R-Ras GTPase. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  10. Iron deficiency anaemia in newborn sla mice: a genetic defect of placental iron transport.

    Science.gov (United States)

    Kingston, P J; Bannerman, C E; Bannerman, R M

    1978-10-01

    Newborn mice with X-linked anaemia (gene symbol sla) have lower haemoglobin levels at birth than normal and carrier mice but there is considerable overlap. Serial observations showed that the haemoglobin values of segregating male mice separate into a bimodal distribution of 42 d of age, and 50 d values were used to assign genotypes retrospectively. The anaemia in newborn sla mice is attributable to iron deficiency, since their total body iron is lower than in normal newborn mice, while their birth weights are almost identical. Haemoglobin levels at birth in normal, anaemic and carrier mice are also influenced by the mother's genotype and phenotype, and the haemoglobin value was progressively lower according to the sla gene dose of the mother. Materno-fetal iron transfer was examined by labelling pregnant carrier females with radioiron in various ways. When given as single or intermittent doses by injection no clearcut differences emerged in apparent iron transfer to anaemic as compared to non-anaemic fetuses. However, when radioiron was administered continuously in food a significant reduction in iron transfer to anaemic fetuses was demonstrated. The sla gene is already known to have a major effect in reducing iron transport in the small intestine. The present studies provide evidence of an analogous defect in placental iron transport.

  11. Amygdalin ameliorates the progression of atherosclerosis in LDL receptor‑deficient mice.

    Science.gov (United States)

    Lv, Jianzhen; Xiong, Wen; Lei, Tiantian; Wang, Hailian; Sun, Minghan; Hao, Erwei; Wang, Zhiping; Huang, Xiaoqi; Deng, Shaoping; Deng, Jiagang; Wang, Yi

    2017-12-01

    Previous studies have demonstrated that regulatory T cells (Tregs) are pivotal in the regulation of T cell‑mediated immune responses in atherosclerosis, a chronic autoimmune‑like disease. In the authors' previous studies, it was demonstrated that amygdalin ameliorated atherosclerosis by the regulation of Tregs in apolipoprotein E‑deficient (ApoE‑/‑) mice. Therefore, the aim of the present study was to investigate the therapeutic effect of amygdalin on low‑density lipoprotein (LDL) receptor deficient (LDLR‑/‑) mice, and to examine its immune regulatory function by the stimulation of Tregs. To establish an atherosclerosis mouse model, the LDLR‑/‑ mice were fed a high fat and high cholesterol diet then the total plasma cholesterol, triglyceride, LDL and chemokines levels were measured by an ELISA. Following sacrificing the mice, the upper sections of the aorta were stained by hematoxylin and eosin, and Oil red O to assess the plaque area. Then western blotting and reverse transcription polymerase chain reactions were performed to analysis the expression levels of cluster of differentiation 68, monocyte chemoattractant protein‑1, matrix metalloproteinase (MMP)‑2, MMP‑9 and forkhead box P3 (Foxp3). To further confirm the activation of FOXP3 by amygdalin, lentiviruses carrying Foxp3 shRNA were injected into the mice, and the serum cytokines levels were measured by ELISA. Following feeding of the mice with a high‑fat/high‑cholesterol diet, the LDLR‑/‑ mice demonstrated comparatively higher levels of triglyceride, total cholesterol and LDL, compared with levels in the amygdalin‑treated mice. By comparing the vessel area, lumen area, plaque area, and percentage aortic plaque coverage, the effects of amygdalin on pre‑existing lesions were assessed. In addition, the levels of CD68, monocyte chemoattractant protein‑1, MMP‑2 and MMP‑9 were analyzed, and analysis of the expression of interleukin (IL)‑1β, IL‑6 and tumor necrosis

  12. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  13. Increased GLP-1 response after gavage-administration of glucose in UCP2-deficient mice.

    Science.gov (United States)

    Zhang, H; Li, J; Li, Z; Luo, Y

    2012-02-01

    Although it has been widely reported that endogenous level of GLP-1 can be enhanced by various secretagogues, the mechanism of GLP-1 secretion in vivo is still not fully understood. In the present study, we assessed the possible effect of uncoupling protein 2 (UCP2) on GLP-1 secretion in gut. The levels of plasma GLP-1(7-36) amide/(7-37) in UCP2-deficient mice and wild-type mice were measured by applying ELISA technique. UCP2 mRNA and protein levels were detected in the gastrointestinal tract by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis, respectively. The plasma GLP-1 levels in C57BL/6J mice had significantly increased to 6.9 pM (n=8, p<0.001) at 15 min after gavage-administration of glucose (2 g glucose/kg body weight), approximately 2-fold, compared with control group. Plasma GLP-1 levels were also significantly elevated at 30 min (p<0.001), but nearly returned to baseline levels at 60 min. UCP2-deficient mice had higher level of GLP-1 at various time points after administration of glucose (UCP2-deficient mice vs. wild type littermates, 15 min, 9.3±0.9 vs. 6.9±0.3, p<0.001; 30 min, 7.9±0.3 vs. 5.6±0.4, p<0.001; 60 min, 4.9±0.1 vs. 3.3±0.1, p<0.01). UCP2-deficient mice increased GLP-1 response to gavage-administration of glucose. Plasma GLP-1 level was not significantly altered after gavage-administration of saline. This study showed that plasma GLP-1 level increased after gastric glucose challenge, and UCP2 maybe serve as a negative regulator in glucose-induced GLP-1 secretion in mouse gut tract. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States); Fantuzzi, Giamila, E-mail: giamila@uic.edu [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-08-07

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4{sup +}, CD8{sup +} and CD4{sup +}CD8{sup +} T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  15. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  16. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462+/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462+/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462+/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462+/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462+/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Hiramatsu-Ito, Mizuho; Shibata, Rei; Ohashi, Koji; Uemura, Yusuke; Kanemura, Noriyoshi; Kambara, Takahiro; Enomoto, Takashi; Yuasa, Daisuke; Matsuo, Kazuhiro; Ito, Masanori; Hayakawa, Satoko; Ogawa, Hayato; Otaka, Naoya; Kihara, Shinji; Murohara, Toyoaki; Ouchi, Noriyuki

    2016-05-01

    Obesity is associated with the development of atherosclerosis. We previously demonstrated that omentin is a circulating adipokine that is downregulated in association with atherosclerotic diseases. Here, we examined the impact of omentin on the development of atherosclerosis with gain-of-function genetic manipulations and dissected its potential mechanism. Apolipoprotein E-deficient (apoE-KO) mice were crossed with transgenic mice expressing the human omentin gene (OMT-Tg) mice in fat tissue to generate apoE-KO/OMT-Tg mice. ApoE-KO/OMT-Tg mice exhibited a significant reduction of the atherosclerotic areas in aortic sinus, compared with apoE-KO mice despite similar lipid levels. ApoE-KO/OMT-Tg mice also displayed significant decreases in macrophage accumulation and mRNA expression of proinflammatory mediators including tumour necrosis factor-α, interleukin-6, and monocyte chemotactic protein-1 in aorta when compared with apoE-KO mice. Treatment of human monocyte-derived macrophages with a physiological concentration of human omentin protein led to reduction of lipid droplets and cholesteryl ester content. Treatment with human omentin protein also reduced lipopolysaccharide-induced expression of proinflammatory genes in human macrophages. Treatment of human macrophages with omentin promoted the phosphorylation of Akt. Inhibition of Akt signalling abolished the anti-inflammatory actions of omentin in macrophages. These data document for the first time that omentin reduces the development of atherosclerosis by reducing inflammatory response of macrophages through the Akt-dependent mechanisms. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  18. Lrig2-deficient mice are protected against PDGFB-induced glioma.

    Directory of Open Access Journals (Sweden)

    Veronica Rondahl

    Full Text Available BACKGROUND: The leucine-rich repeats and immunoglobulin-like domains (LRIG proteins constitute an integral membrane protein family that has three members: LRIG1, LRIG2, and LRIG3. LRIG1 negatively regulates growth factor signaling, but little is known regarding the functions of LRIG2 and LRIG3. In oligodendroglial brain tumors, high expression of LRIG2 correlates with poor patient survival. Lrig1 and Lrig3 knockout mice are viable, but there have been no reports on Lrig2-deficient mice to date. METHODOLOGY/PRINCIPAL FINDINGS: Lrig2-deficient mice were generated by the ablation of Lrig2 exon 12 (Lrig2E12. The Lrig2E12-/- mice showed a transiently reduced growth rate and an increased spontaneous mortality rate; 20-25% of these mice died before 130 days of age, with the majority of the deaths occurring before 50 days. Ntv-a transgenic mice with different Lrig2 genotypes were transduced by intracranial injection with platelet-derived growth factor (PDGF B-encoding replication-competent avian retrovirus (RCAS-producing DF-1 cells. All injected Lrig2E12+/+ mice developed Lrig2 expressing oligodendroglial brain tumors of lower grade (82% or glioblastoma-like tumors of higher grade (18%. Lrig2E12-/- mice, in contrast, only developed lower grade tumors (77% or had no detectable tumors (23%. Lrig2E12-/- mouse embryonic fibroblasts (MEF showed altered induction-kinetics of immediate-early genes Fos and Egr2 in response to PDGF-BB stimulation. However, Lrig2E12-/- MEFs showed no changes in Pdgfrα or Pdgfrβ levels or in levels of PDGF-BB-induced phosphorylation of Pdgfrα, Pdgfrβ, Akt, or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. Overexpression of LRIG1, but not of LRIG2, downregulated PDGFRα levels in HEK-293T cells. CONCLUSIONS: The phenotype of Lrig2E12-/- mice showed that Lrig2 was a promoter of PDGFB-induced glioma, and Lrig2 appeared to have important molecular and developmental functions that were distinct from those of Lrig1

  19. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency.

    Science.gov (United States)

    Skelton, Matthew R; Schaefer, Tori L; Graham, Devon L; Degrauw, Ton J; Clark, Joseph F; Williams, Michael T; Vorhees, Charles V

    2011-01-13

    Mutations in the creatine (Cr) transporter (CrT; Slc6a8) gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2-4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT knockout expressing mice. Mice were tested for learning and memory deficits and assayed for Cr and neurotransmitter levels. Male CrT(⁻/y) (affected) mice lack Cr in the brain and muscle with significant reductions of Cr in other tissues including heart and testes. CrT(⁻/y) mice showed increased path length during acquisition and reversal learning in the Morris water maze. During probe trials, CrT(⁻/y) mice showed increased average distance from the platform site. CrT(⁻/y) mice showed reduced novel object recognition and conditioned fear memory compared to CrT(+/y). CrT(⁻/y) mice had increased serotonin and 5-hydroxyindole acetic acid in the hippocampus and prefrontal cortex. Ubiquitous CrT knockout mice have learning and memory deficits resembling human CrT deficiency and this model should be useful in understanding this disorder.

  20. Creatine transporter (CrT; Slc6a8 knockout mice as a model of human CrT deficiency.

    Directory of Open Access Journals (Sweden)

    Matthew R Skelton

    2011-01-01

    Full Text Available Mutations in the creatine (Cr transporter (CrT; Slc6a8 gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2-4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT knockout expressing mice. Mice were tested for learning and memory deficits and assayed for Cr and neurotransmitter levels. Male CrT(⁻/y (affected mice lack Cr in the brain and muscle with significant reductions of Cr in other tissues including heart and testes. CrT(⁻/y mice showed increased path length during acquisition and reversal learning in the Morris water maze. During probe trials, CrT(⁻/y mice showed increased average distance from the platform site. CrT(⁻/y mice showed reduced novel object recognition and conditioned fear memory compared to CrT(+/y. CrT(⁻/y mice had increased serotonin and 5-hydroxyindole acetic acid in the hippocampus and prefrontal cortex. Ubiquitous CrT knockout mice have learning and memory deficits resembling human CrT deficiency and this model should be useful in understanding this disorder.

  1. Cholestasis and hypercholesterolemia in SCD1-deficient mice fed a low-fat, high-carbohydrate diet

    NARCIS (Netherlands)

    Flowers, Matthew T.; Groen, Albert K.; Oler, Angie Tebon; Keller, Mark P.; Choi, YounJeong; Schueler, Kathryn L.; Richards, Oliver C.; Lan, Hong; Miyazaki, Makoto; Kuipers, Folkert; Kendziorski, Christina M.; Ntambi, James M.; Attie, Alan D.

    2006-01-01

    Stearoyl-coenzyme A desaturase 1-deficient (SCD1(-/-)) mice have impaired MUFA synthesis. When maintained on a very low-fat (VLF) diet, SCD1(-/-) mice developed severe hypercholesterolemia, characterized by an increase in apolipoprotein B (apoB)-containing lipoproteins and the appearance of

  2. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  3. DIBENZO[A,L]PYRENE INDUCTION OF ERYTHROCYTE MICRONUCLEI IN A/J AND P53-DEFICIENT MICE

    Science.gov (United States)

    DIBENZO[a,l]PYRENE INDUCTION OF ERYTHROCYTE MICRONUCLEI IN AlJ AND P53-DEFICIENT MICE Male A/J and C57Bl/6 background p53+/+, p53+/- and p53-/- mice were treated with dibenzo[a,l]pyrene (DB[a,l]P), and micronucleus (MN) frequencies were measured in erythrocytes from bone ...

  4. Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection.

    Directory of Open Access Journals (Sweden)

    Maria Shirely Herbas

    Full Text Available The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction.

  5. TRH Action Is Impaired in Pituitaries of Male IGSF1-Deficient Mice.

    Science.gov (United States)

    Turgeon, Marc-Olivier; Silander, Tanya L; Doycheva, Denica; Liao, Xiao-Hui; Rigden, Marc; Ongaro, Luisina; Zhou, Xiang; Joustra, Sjoerd D; Wit, Jan M; Wade, Mike G; Heuer, Heike; Refetoff, Samuel; Bernard, Daniel J

    2017-04-01

    Loss-of-function mutations in the X-linked immunoglobulin superfamily, member 1 (IGSF1) gene cause central hypothyroidism. IGSF1 is a transmembrane glycoprotein of unknown function expressed in thyrotropin (TSH)-producing thyrotrope cells of the anterior pituitary gland. The protein is cotranslationally cleaved, with only its C-terminal domain (CTD) being trafficked to the plasma membrane. Most intragenic IGSF1 mutations in humans map to the CTD. In this study, we used CRISPR-Cas9 to introduce a loss-of-function mutation into the IGSF1-CTD in mice. The modified allele encodes a truncated protein that fails to traffic to the plasma membrane. Under standard laboratory conditions, Igsf1-deficient males exhibit normal serum TSH levels as well as normal numbers of TSH-expressing thyrotropes. However, pituitary expression of the TSH subunit genes and TSH protein content are reduced, as is expression of the receptor for thyrotropin-releasing hormone (TRH). When challenged with exogenous TRH, Igsf1-deficient males release TSH, but to a significantly lesser extent than do their wild-type littermates. The mice show similarly attenuated TSH secretion when rendered profoundly hypothyroid with a low iodine diet supplemented with propylthiouracil. Collectively, these results indicate that impairments in pituitary TRH receptor expression and/or downstream signaling underlie central hypothyroidism in IGSF1 deficiency syndrome. Copyright © 2017 Endocrine Society.

  6. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Xue, Ruyi [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Ji, Lingling [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Shen, Xizhong [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Chen, She, E-mail: shechen@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhang, Si, E-mail: zhangsi@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  7. Effects of soluble epoxide hydrolase deficiency on acute pancreatitis in mice.

    Directory of Open Access Journals (Sweden)

    Ahmed Bettaieb

    Full Text Available Acute pancreatitis (AP is a frequent gastrointestinal disorder that causes significant morbidity, and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored.To investigate whether sEH may have a causal role in AP we utilized Ephx2 knockout (KO mice to determine the effects of sEH deficiency on cerulein- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as enzymatic activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated Ephx2 KO mice compared with controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B and IL-6 were lower in cerulein-treated Ephx2 KO mice compared with controls. Further, Ephx2 KO mice exhibited decreased cerulein- and arginine-induced NF-κB inflammatory response, MAPKs activation and decreased cell death. Conclusions -These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP.

  8. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  9. Partial Hepatectomy in Acetylation-Deficient Mice Corroborates that Chromosome Missegregation Initiates Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yoo-Kyung Lee

    2014-12-01

    Full Text Available BackgroundAneuploidy has been suggested as one of the major causes of cancer from the time of Boveri. In support of this notion, many studies have shown that cancer cells exhibit aneuploidy. However, there are evidences that do not support the aneuploidy hypothesis. We have previously reported that the spindle assembly checkpoint protein BubR1 is acetylated in mitosis and that the acetylation of BubR1 is crucial for checkpoint maintenance and chromosome-spindle attachment. Mice heterozygous for acetylation-deficient BubR1 (K243R/+ spontaneously develop cancer with chromosome instability. As K243R/+ mice develop hepatocellular carcinoma, we set out to test if chromosome mis-segregation was the cause of their liver cancer.MethodsPrimary hepatocytes in the regenerating liver after partial hepatectomy (PH were analyzed and compared for various mitotic parameters.ResultsPrimary hepatocytes isolated from K243R/+ mice after PH displayed a marked increase of chromosome misalignment, accompanied by an increase of micronuclei. In comparison, the number of nuclei per cell and the centrosome numbers were not different between wild-type and K243R/+ mice. Taken together, chromosome mis-segregation provokes tumorigenesis in mouse liver.ConclusionOur results corroborate that PH provides a reliable tool for assessing mitotic infidelity and cancer in mice.

  10. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass.

    Directory of Open Access Journals (Sweden)

    Becky R Simon

    Full Text Available Functional expression of sweet taste receptors (T1R2 and T1R3 has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.

  11. Acinar cell apoptosis in Serpini2-deficient mice models pancreatic insufficiency.

    Directory of Open Access Journals (Sweden)

    Stacie K Loftus

    2005-09-01

    Full Text Available Pancreatic insufficiency (PI when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman-Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq, exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome

  12. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice.

    Science.gov (United States)

    Marshall, Sarah A; Leo, Chen Huei; Senadheera, Sevvandi N; Girling, Jane E; Tare, Marianne; Parry, Laura J

    2016-05-01

    Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient (Rln(-/-)) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant (day 17.5) wild-type (Rln(+/+)) and Rln(-/-) mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln(+/+) mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln(-/-) mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 (Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln(+/+) mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids. Copyright © 2016 the American Physiological Society.

  13. Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Daniel Rial

    Full Text Available There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin-/- to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin-/- mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination, anxiety (elevated plus-maze, depressive-like behavior (forced swimming and tail suspension and motor function (rotarod, grasping strength and pole. However, parkin-/- mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP. These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin-/- mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.

  14. Attenuation of lung inflammation and fibrosis in CD69-deficient mice after intratracheal bleomycin

    Directory of Open Access Journals (Sweden)

    Matsunaga Hirofumi

    2011-10-01

    Full Text Available Abstract Background Cluster of differentiation 69 (CD69, an early activation marker antigen on T and B cells, is also expressed on activated macrophages and neutrophils, suggesting that CD69 may play a role in inflammatory diseases. To determine the effect of CD69 deficiency on bleomycin(BLM-induced lung injury, we evaluated the inflammatory response following intratracheal BLM administration and the subsequent fibrotic changes in wild type (WT and CD69-deficient (CD69-/- mice. Methods The mice received a single dose of 3 mg/kg body weight of BLM and were sacrificed at 7 or 14 days post-instillation (dpi. Lung inflammation in the acute phase (7 dpi was investigated by differential cell counts and cytokine array analyses of bronchoalveolar lavage fluid. In addition, lung fibrotic changes were evaluated at 14 dpi by histopathology and collagen assays. We also used reverse transcription polymerase chain reaction to measure the mRNA expression level of transforming growth factor β1 (TGF-β1 in the lungs of BLM-treated mice. Results CD69-/- mice exhibited less lung damage than WT mice, as shown by reductions in the following indices: (1 loss of body weight, (2 wet/dry ratio of lung, (3 cytokine levels in BALF, (4 histological evidence of lung injury, (5 lung collagen deposition, and (6 TGF-β1 mRNA expression in the lung. Conclusion The present study clearly demonstrates that CD69 plays an important role in the progression of lung injury induced by BLM.

  15. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  16. Impairment of bone remodeling in LIGHT/TNFSF14-deficient mice.

    Science.gov (United States)

    Brunetti, Giacomina; Faienza, Maria Felicia; Colaianni, Graziana; Gigante, Isabella; Oranger, Angela; Pignataro, Paolo; Ingravallo, Giuseppe; Benedetto, Adriana Di; Bortolotti, Sara; Comite, Mariasevera Di; Storlino, Giuseppina; Lippo, Luciana; Ward-Kavanagh, Lindsay; Mori, Giorgio; Reseland, Janne E; Passeri, Giovanni; Schipani, Ernestina; Tamada, Koji; Ware, Carl F; Colucci, Silvia; Grano, Maria

    2017-11-27

    Multiple cytokines produced by immune cells induce remodeling and aid in maintaining bone homeostasis through differentiation of bone forming osteoblasts and bone resorbing osteoclasts. Here, we investigate bone remodeling controlled by the TNF superfamily cytokine LIGHT. LIGHT-deficient mice (Tnfsf14-/- ) exhibit spine deformity, and reduced femoral cancellous bone mass associated with an increase in the osteoclast number and a slight decrease of osteoblasts compared to WT mice. The effect of LIGHT in bone cells can be direct or indirect, mediated by both the low expression of the anti-osteoclastogenic osteoprotegerin (OPG) in B and T cells, and reduced levels of the pro-osteoblastogenic Wnt10b in CD8+ T cells in Tnfsf14-/- . LIGHT stimulation increases OPG levels in B, CD8+ T, and osteoblastic cells, as well as Wnt10b expression in CD8+ T cells. The high bone mass in Light and T and B cell deficient mice (Rag- /Tnfsf14- ) supports the cooperative role of the immune system in bone homeostasis. These results implicate LIGHT as a potential target in bone disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice.

    Science.gov (United States)

    Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean; Racine, Rachael; Wilson-Welder, Jennifer; Sanfilippo, Alan M; Salmon, Sharon L; Metzger, Dennis W

    2017-09-05

    We report that IgA(-/-) mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines (Francisella tularensis LPS and Pneumovax), but not protein vaccines such as Fluzone. This defect further included responses to polysaccharide-protein conjugate vaccines (Prevnar and Haemophilus influenzae type b-tetanus toxoid vaccine). In agreement with these findings, IgA(-/-) mice were protected from pathogen challenge with protein- but not polysaccharide-based vaccines. Interestingly, after immunization with live bacteria, IgA(+/+) and IgA(-/-) mice were both resistant to lethal challenge and their IgG anti-polysaccharide antibody responses were comparable. Immunization with live bacteria, but not purified polysaccharide, induced production of serum B cell-activating factor (BAFF), a cytokine important for IgG class switching; supplementing IgA(-/-) cell cultures with BAFF enhanced in vitro polyclonal IgG production. Taken together, these findings show that IgA deficiency impairs IgG class switching following vaccination with polysaccharide antigens and that live bacterial immunization can overcome this defect. Since IgA deficient patients also often show defects in antibody responses following immunization with polysaccharide vaccines, our findings could have relevance to the clinical management of this population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  19. Effects of Hint1 deficiency on emotional-like behaviors in mice under chronic immobilization stress.

    Science.gov (United States)

    Sun, Liankang; Liu, Peng; Liu, Fei; Zhou, Yuan; Chu, Zheng; Li, Yuqi; Chu, Guang; Zhang, Ying; Wang, Jiabei; Dang, Yong-Hui

    2017-10-01

    Histidine triad nucleotide-binding protein 1 (HINT1) is regarded as a haplo-insufficient tumor suppressor and is closely associated with diverse neuropsychiatric diseases. Moreover, HINT1 is related to gender-specific acute behavior changes in schizophrenia and in response to nicotine. Stress has a range of molecular effects in emotional disorders, which can cause a reduction in brain-derived neurotrophic factor (BDNF) expression in the hippocampus, resulting in hippocampal atrophy and neuronal cell loss. This study examined the role of HINT1 deficiency in anxiety-related and depression-like behaviors and BDNF expression in the hippocampus under chronic immobilization stress, and investigated whether the sex-specific and haplo-insufficient effects exist in emotional-like behaviors under the same condition. In a battery of behavior tests, the results of the control group, not exposed to stress, showed that knockout (KO) and heterozygosity (HT) of Hint1 had anxiolytic-like and antidepression-like effects on the male and female mice. However, both male and female Hint1-KO mice showed elevated anxiety-related and antidepression-like behavior under chronic immobilization stress; moreover, both male and female Hint1-HT mice displayed elevated anxiety-related behavior and increased depression-like behavior under chronic immobilization stress. There were no significant differences in general locomotor activity between Hint1-KO and -HT mice and their wild-type (WT) littermates. Hint1-KO mice under basal and chronic immobilization stress conditions expressed more BDNF in the hippocampus than did Hint1-HT and WT mice; overall, there were no significant sex differences in emotional-like behaviors of Hint1-KO and -HT mice. Additionally, Hint1-HT mice showed haplo-insufficient effects on emotional-like behaviors under basic conditions, rather than under chronic immobilization stress. Both male and female HINT 1 KO and HT mice had a trend of anxiolytic-like behavior and

  20. Fractalkine receptor (CX3CR1 deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2010-12-01

    Full Text Available Abstract Background Interactions between fractalkine (CX3CL1 and fractalkine receptor (CX3CR1 regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS. Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-. Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/- were injected with LPS (0.5 mg/kg i.p. or saline and behavior (i.e., sickness and depression-like behavior, microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO and kynurenine monooxygenase (KMO in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1

  1. Effect of exercise on chemically-induced colitis in adiponectin deficient mice

    Directory of Open Access Journals (Sweden)

    Saxena Arpit

    2012-08-01

    Full Text Available Abstract Background Inflammatory bowel diseases are associated with increased adiponectin (APN levels, which may exert pro-inflammatory effects in these individuals. Since habitual exercise may increase APN, the aim of this study was to determine how exercise training affects mice with acute colitis. Methods Male adiponectin knock out (APNKO and wild type (WT mice (C57BL/6 were randomly assigned to 4 different groups: 1 Sedentary (SED; 2 Exercise trained (ET; 3 Sedentary with dextran sodium sulfate (DSS treatment (SED + DSS; and 4 Exercise trained with DSS (ET + DSS. Exercise-trained mice ran at 18 m/min for 60 min, 5d/wk for 4 weeks. Subsequently, the ET + DSS and the SED + DSS mice received 2% DSS in their drinking water for 5 days (d, followed by 5d of regular water. Results The clinical symptoms of acute colitis (diarrhea, stool haemoccult, and weight loss were unaffected by exercise and there was no difference between the APNKO and WT mice (p > 0.05 except on day 39. However, the clinical symptoms of the DSS-treated APNKO mice were worse than WT mice treated with DSS and had increased susceptibility to intestinal inflammation due to increased local STAT3 activation, higher IL-6, TNF-α, IL-1β and IL-10 levels, and as a result had increased intestinal epithelial cell proliferation (p  Conclusions Exercise training may contribute in alleviating the symptoms of acute colitis and APN deficiency may exacerbate the intestinal inflammation in DSS-induced colitis.

  2. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1.

    Science.gov (United States)

    Namiranian, Khodadad; Lloyd, Eric E; Crossland, Randy F; Marrelli, Sean P; Taffet, George E; Reddy, Anilkumar K; Hartley, Craig J; Bryan, Robert M

    2010-08-01

    We tested the hypothesis that TREK-1, a two-pore domain K channel, is involved with dilations in arteries. Because there are no selective activators or inhibitors of TREK-1, we generated a mouse line deficient in TREK-1. Endothelium-mediated dilations were not different in arteries from wild-type (WT) and TREK-1 knockout (KO) mice. This includes dilations of the middle cerebral artery to ATP, dilations of the basilar artery to ACh, and relaxations of the aorta to carbachol, a cholinergic agonist. The nitric oxide (NO) and endothelium-dependent hyperpolarizing factor components of ATP dilations were identical in the middle cerebral arteries of WT and TREK-1 KO mice. Furthermore, the NO and cyclooxygenase-dependent components were identical in the basilar arteries of the different genotypes. Dilations of the basilar artery to alpha-linolenic acid, an activator of TREK-1, were not affected by the absence of TREK-1. Whole cell currents recorded using patch-clamp techniques were similar in cerebrovascular smooth muscle cells (CVSMCs) from WT and TREK-1 KO mice. alpha-linolenic acid or arachidonic acid increased whole cell currents in CVSMCs from both WT and TREK-1 KO mice. The selective blockers of large-conductance Ca-activated K channels, penitrem A and iberiotoxin, blocked the increased currents elicited by either alpha-linolenic or arachidonic acid. In summary, dilations were similar in arteries from WT and TREK-1 KO mice. There was no sign of TREK-1-like currents in CVSMCs from WT mice, and there were no major differences in currents between the genotypes. We conclude that regulation of arterial diameter is not altered in mice lacking TREK-1.

  3. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    Science.gov (United States)

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. An improved freeze-dried PRP-coated biodegradable material suitable for connective tissue regenerative therapy.

    Science.gov (United States)

    Horimizu, Makoto; Kawase, Tomoyuki; Nakajima, Yu; Okuda, Kazuhiro; Nagata, Masaki; Wolff, Larry F; Yoshie, Hiromasa

    2013-06-01

    We previously published an investigation indicating freeze-dried platelet-rich plasma (PRP)-coated polyglactin mesh was a promising wound-dressing material. However, one of its disadvantages was the inflammatory nature due to degradation of the polyglactin. Therefore, in this study, we investigated the use of a collagen sponge as the carrier for PRP. When implanted subcutaneously in nude mice, the PRP-coated sponge alone rapidly induced angiogenesis and infiltration of surrounding connective tissue without inducing appreciable inflammation. Moreover, addition of periosteal fibroblastic cells substantially augmented the angiogenic response. With in vitro studies, the PRP-coated sponge provided various major growth factors at high levels to stimulate the proliferation of cells cultured on plastic dishes, but did not stimulate the proliferation of cells inoculated into the PRP-coated sponge. Cells were embedded in the fibrin mesh and maintained their spherical shape without stretching. The atomic force microscopic analysis demonstrated that the fibrin gel formed on the PRP-coated sponge was much softer (approx. 22 kPa) than the cross-linked collagen that formed the sponge base (appox. 1.9 MPa). Because insoluble matrices have recently and increasingly been considered important regulatory factors of cellular behavior, as are soluble growth factors, it is suggested that this soft fibrin mesh possibly suppresses cell survival. Overall, our investigation has successfully demonstrated improved wound-healing and regenerative potential of the PRP-coated mesh by combining it with the collagen sponge. In the clinical setting, this PRP-coated collagen sponge is a promising material for connective tissue regenerative therapy, such as periodontal therapy, burn victim treatment and in cosmetic or plastic surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The effect of dietary modulation of sulfur amino acids on cystathionine β synthase-deficient mice.

    Science.gov (United States)

    Kruger, Warren D; Gupta, Sapna

    2016-01-01

    Cystathionine β synthase (CBS) is a key enzyme in the methionine and cysteine metabolic pathway, acting as a metabolic gatekeeper to regulate the flow of fixed sulfur from methionine to cysteine. Mutations in the CBS gene cause clinical CBS deficiency, a disease characterized by elevated plasma total homocysteine (tHcy) and methionine and decreased plasma cysteine. The treatment goal for CBS-deficient patients is to normalize the metabolic values of these three metabolites using a combination of vitamin therapy and dietary manipulation. To better understand the effectiveness of nutritional treatment strategies, we have performed a series of long-term dietary manipulation studies using our previously developed Tg-I278T Cbs(-/-) mouse model of CBS deficiency and sibling Tg-I278T Cbs(+/-) controls. Tg-I278T Cbs(-/-) mice have undetectable levels of CBS activity, extremely elevated plasma tHcy, modestly elevated plasma methionine, and low plasma cysteine. They exhibit several easily assayable phenotypes, including osteoporosis, loss of fat mass, reduced life span, and facial alopecia. The diets used in these studies differed in the amounts of sulfur amino acids or sulfur amino acid precursors. In this review, we will discuss our findings and their relevance to CBS deficiency and the concept of gene-diet interaction. © 2015 New York Academy of Sciences.

  6. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice

    DEFF Research Database (Denmark)

    Jørgensen, Bettina Merete Pyndt; Winther, Gudrun; Kihl, Pernille

    2015-01-01

    OBJECTIVE: Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. METHODS: We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour...... and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. RESULTS: We demonstrated...... that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. CONCLUSION: Magnesium deficiency...

  7. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G; Lussier, Yoann

    2017-10-02

    Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER-associated degradation (ERAD) is responsible for the clearance of misfolded pro-arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

  8. Selenoprotein N deficiency in mice is associated with abnormal lung development

    Science.gov (United States)

    Moghadaszadeh, Behzad; Rider, Branden E.; Lawlor, Michael W.; Childers, Martin K.; Grange, Robert W.; Gupta, Kushagra; Boukedes, Steve S.; Owen, Caroline A.; Beggs, Alan H.

    2013-01-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1−/−) mouse line. Homozygous Sepn1−/− mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1−/− mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1−/− lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles.—Moghadaszadeh, B., Rider B. E., Lawlor, M. W., Childers, M. K., Grange, R. W., Gupta, K., Boukedes, S. S., Owen, C. A., Beggs, A. H. Selenoprotein N deficiency in mice is associated with abnormal lung development. PMID:23325319

  9. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  10. Carney triad, SDH-deficient tumors, and Sdhb+/- mice share abnormal mitochondria.

    Science.gov (United States)

    Szarek, Eva; Ball, Evan R; Imperiale, Alessio; Tsokos, Maria; Faucz, Fabio R; Giubellino, Alessio; Moussallieh, François-Marie; Namer, Izzie-Jacques; Abu-Asab, Mones S; Pacak, Karel; Taïeb, David; Carney, J Aidan; Stratakis, Constantine A

    2015-06-01

    Carney triad (CTr) describes the association of paragangliomas (PGL), pulmonary chondromas, and gastrointestinal (GI) stromal tumors (GISTs) with a variety of other lesions, including pheochromocytomas and adrenocortical tumors. The gene(s) that cause CTr remain(s) unknown. PGL and GISTs may be caused by loss-of-function mutations in succinate dehydrogenase (SDH) (a condition known as Carney-Stratakis syndrome (CSS)). Mitochondrial structure and function are abnormal in tissues that carry SDH defects, but they have not been studied in CTr. For the present study, we examined mitochondrial structure in human tumors and GI tissue (GIT) of mice with SDH deficiency. Tissues from 16 CTr tumors (n=12), those with isolated GIST (n=1), and those with CSS caused by SDHC (n=1) and SDHD (n=2) mutations were studied by electron microscopy (EM). Samples of GIT from mice with a heterozygous deletion in Sdhb (Sdhb(+) (/-), n=4) were also studied by EM. CTr patients presented with mostly epithelioid GISTs that were characterized by plump cells containing a centrally located, round nucleus and prominent nucleoli; these changes were almost identical to those seen in the GISTs of patients with SDH. In tumor cells from patients, regardless of diagnosis or tumor type, cytoplasm contained an increased number of mitochondria with a 'hypoxic' phenotype: mitochondria were devoid of cristae, exhibited structural abnormalities, and were of variable size. Occasionally, mitochondria were small and round; rarely, they were thin and elongated with tubular cristae. Many mitochondria exhibited amorphous fluffy material with membranous whorls or cystic structures. A similar mitochondrial hypoxic phenotype was seen in Sdhb(+) (/-) mice. We concluded that tissues from SDH-deficient tumors, those from mouse GIT, and those from CTr tumors shared identical abnormalities in mitochondrial structure and other features. Thus, the still-elusive CTr defect(s) is(are) likely to affect mitochondrial function

  11. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  12. Incidence of tubulostromal adenoma of the ovary in aged germ cell-deficient mice.

    Science.gov (United States)

    Duncan, M K; Chada, K K

    1993-07-01

    Female mice homozygous for the germ cell-deficient (gcd) mutation enter reproductive senescence prematurely due to a dearth of germ cells arising in embryonic development. The ovaries of young gcd/gcd animals are atrophic, composed of little more than stromal cells in a connective tissue matrix. By one year of age, 56 per cent of homozygotes have developed tubulostromal adenoma of the ovary while 100 per cent wild-type and heterozygous littermates are phenotypically normal. Since these animals develop ovarian tumours more frequently as a consequence of a single autosomal recessive mutation, they will be useful models for the study of ovarian neoplasia.

  13. Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zaccharias Glahn; Nielsen, Mogens Møller; Blagoev, Blagoy

    2004-01-01

    as a KIAA clone (KIAA 0229) from the Kazusa DNA Research Institute which maintains the HUGE protein database--a database devoted to the analysis of long cDNA clones encoding large proteins (>50 kDa). Odin has been demonstrated to cause downregulation of c-Fos promoter activity and to inhibit PDGF...... of the kidney, lung and liver does not show any major abnormalities as compared to wild-type controls. However, mouse embryonic fibroblasts (MEFs) generated from Odin-deficient mice exhibit a hyperproliferative phenotype compared to wild-type-derived MEFs, consistent with its role as a negative regulator...

  14. Post-weaning epiphysiolysis causes distal femur dysplasia and foreshortened hindlimbs in fetuin-A-deficient mice.

    Directory of Open Access Journals (Sweden)

    Laura J Brylka

    Full Text Available Fetuin-A / α2-Heremans-Schmid-glycoprotein (gene name Ahsg is a systemic inhibitor of ectopic calcification. Due to its high affinity for calcium phosphate, fetuin-A is highly abundant in mineralized bone matrix. Foreshortened femora in fetuin-A-deficient Ahsg-/- mice indicated a role for fetuin-A in bone formation. We studied early postnatal bone development in fetuin-A-deficient mice and discovered that femora from Ahsg-/- mice exhibited severely displaced distal epiphyses and deformed growth plates, similar to the human disease slipped capital femoral epiphysis (SCFE. The growth plate slippage occurred in 70% of Ahsg-/- mice of both sexes around three weeks postnatal. At this time point, mice weaned and rapidly gained weight and mobility. Epiphysis slippage never occurred in wildtype and heterozygous Ahsg+/- mice. Homozygous fetuin-A-deficient Ahsg-/- mice and, to a lesser degree, heterozygous Ahsg+/- mice showed lesions separating the proliferative zone from the hypertrophic zone of the growth plate. The hypertrophic growth plate cartilage in long bones from Ahsg-/- mice was significantly elongated and V-shaped until three weeks of age and thus prior to the slippage. Genome-wide transcriptome analysis of laser-dissected distal femoral growth plates from 13-day-old Ahsg-/- mice revealed a JAK-STAT-mediated inflammatory response including a 550-fold induction of the chemokine Cxcl9. At this stage, vascularization of the elongated growth plates was impaired, which was visualized by immunofluorescence staining. Thus, fetuin-A-deficient mice may serve as a rodent model of growth plate pathologies including SCFE and inflammatory cartilage degradation.

  15. Post-weaning epiphysiolysis causes distal femur dysplasia and foreshortened hindlimbs in fetuin-A-deficient mice.

    Science.gov (United States)

    Brylka, Laura J; Köppert, Sina; Babler, Anne; Kratz, Beate; Denecke, Bernd; Yorgan, Timur A; Etich, Julia; Costa, Ivan G; Brachvogel, Bent; Boor, Peter; Schinke, Thorsten; Jahnen-Dechent, Willi

    2017-01-01

    Fetuin-A / α2-Heremans-Schmid-glycoprotein (gene name Ahsg) is a systemic inhibitor of ectopic calcification. Due to its high affinity for calcium phosphate, fetuin-A is highly abundant in mineralized bone matrix. Foreshortened femora in fetuin-A-deficient Ahsg-/- mice indicated a role for fetuin-A in bone formation. We studied early postnatal bone development in fetuin-A-deficient mice and discovered that femora from Ahsg-/- mice exhibited severely displaced distal epiphyses and deformed growth plates, similar to the human disease slipped capital femoral epiphysis (SCFE). The growth plate slippage occurred in 70% of Ahsg-/- mice of both sexes around three weeks postnatal. At this time point, mice weaned and rapidly gained weight and mobility. Epiphysis slippage never occurred in wildtype and heterozygous Ahsg+/- mice. Homozygous fetuin-A-deficient Ahsg-/- mice and, to a lesser degree, heterozygous Ahsg+/- mice showed lesions separating the proliferative zone from the hypertrophic zone of the growth plate. The hypertrophic growth plate cartilage in long bones from Ahsg-/- mice was significantly elongated and V-shaped until three weeks of age and thus prior to the slippage. Genome-wide transcriptome analysis of laser-dissected distal femoral growth plates from 13-day-old Ahsg-/- mice revealed a JAK-STAT-mediated inflammatory response including a 550-fold induction of the chemokine Cxcl9. At this stage, vascularization of the elongated growth plates was impaired, which was visualized by immunofluorescence staining. Thus, fetuin-A-deficient mice may serve as a rodent model of growth plate pathologies including SCFE and inflammatory cartilage degradation.

  16. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  17. Portable Radiation Package (PRP) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R Michael [Remote Measurements and Research Company, Seattle, WA (United States)

    2017-08-03

    The Portable Radiation Package (PRP) was developed to provide basic radiation information in locations such as ships at sea where proper exposure is remote and difficult, the platform is in motion, and azimuth alignment is not fixed. Development of the PRP began at Brookhaven National Laboratory (BNL) in the mid-1990s and versions of it were deployed on ships in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Nauru-99 project. The PRP was deployed on ships in support of the National Aeronautics and Space Administration (NASA) Sensor Intercomparison for Marine Biological and Interdisciplinary Ocean Studies (SIMBIOS) program. Over the years the measurements have remained the same while the post-processing data analysis, especially for the FRSR, has evolved. This document describes the next-generation Portable Radiation Package (PRP2) that was developed for the DOE ARM Facility, under contract no. 9F-31462 from Argonne National Laboratory (ANL). The PRP2 has the same scientific principles that were well validated in prior studies, but has upgraded electronic hardware. The PRP2 approach is completely modular, both in hardware and software. Each sensor input is treated as a separate serial stream into the data collection computer. In this way the operator has complete access to each component of the system for purposes of error checking, calibration, and maintenance. The resulting system is more reliable, easier to install in complex situations, and more amenable to upgrade.

  18. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration

    Directory of Open Access Journals (Sweden)

    Julie C. Williams

    2011-01-01

    Full Text Available Protease activated receptors (PAR have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.

  19. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol.

    Science.gov (United States)

    Kaphalia, Bhupendra S; Bhopale, Kamlesh K; Kondraganti, Shakuntala; Wu, Hai; Boor, Paul J; Ansari, G A Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Preliminary evidence of apathetic-like behavior in aged vesicular monoamine transporter 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Aron Baumann

    2016-11-01

    Full Text Available Apathy is considered to be a core feature of Parkinson’s disease (PD and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction, and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e. 6-OHDA or MPTP claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2. Apathetic-like behavior in VMAT2 deficient (LO mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study of the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.

  1. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    Science.gov (United States)

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  3. The effects of apolipoprotein F deficiency on high density lipoprotein cholesterol metabolism in mice.

    Directory of Open Access Journals (Sweden)

    William R Lagor

    Full Text Available Apolipoprotein F (apoF is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP based on its ability to inhibit cholesteryl ester transfer protein (CETP-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20-25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/-0.9 mg/dl vs. WT: 1.2+/-0.3 mg/dl, p<0.05. No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls.

  4. Tenascin-x deficiency mimics ehlers-danlos syndrome in mice through alteration of collagen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J.R.; Taylor, G.; Dean, W.B.; Wagner, D.R.; Afzal, V.; Lotz, J.C.; Rubin, E.M.; Bristow, J.

    2002-03-01

    Tenascin-X is a large extracellular matrix protein of unknown function1-3. Tenascin-X deficiency in humans is associated with Ehlers-Danlos syndrome4,5, a generalized connective tissue disorder resulting from altered metabolism of the fibrillar collagens6. Because TNXB is the first Ehlers-Danlos syndrome gene that does not encode a fibrillar collagen or collagen-modifying enzyme7-14, we suggested that tenascin-X might regulate collagen synthesis or deposition15. To test this hypothesis, we inactivated Tnxb in mice. Tnxb-/- mice showed progressive skin hyperextensibility, similar to individuals with Ehlers-Danlos syndrome. Biomechanical testing confirmed increased deformability and reduced tensile strength of their skin. The skin of Tnxb-/- mice was histologically normal, but its collagen content was significantly reduced. At the ultrastructural level, collagen fibrils of Tnxb-/- mice were of normal size and shape, but the density of fibrils in their skin was reduced, commensurate with the reduction in collagen content. Studies of cultured dermal fibroblasts showed that although synthesis of collagen I by Tnxb-/- and wildtype cells was similar, Tnxb-/- fibroblasts failed to deposit collagen I into cell-associated matrix. This study confirms a causative role for TNXB in human Ehlers-Danlos syndrome and suggests that tenascin-X is an essential regulator of collagen deposition by dermal fibroblasts.

  5. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice.

    Science.gov (United States)

    Izuo, Naotaka; Nojiri, Hidetoshi; Uchiyama, Satoshi; Noda, Yoshihiro; Kawakami, Satoru; Kojima, Shuji; Sasaki, Toru; Shirasawa, Takuji; Shimizu, Takahiko

    2015-01-01

    Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxide to hydrogen peroxide. To investigate the pathological role of mitochondrial oxidative stress in the central nervous system, we generated brain-specific SOD2-deficient mice (B-Sod2(-/-)) using nestin-Cre-loxp system. B-Sod2(-/-) showed perinatal death, along with severe growth retardation. Interestingly, these mice exhibited spongiform neurodegeneration in motor cortex, hippocampus, and brainstem, accompanied by gliosis. In addition, the mutant mice had markedly decreased mitochondrial complex II activity, but not complex I or IV, in the brain based on enzyme histochemistry. Furthermore, brain lipid peroxidation was significantly increased in the B-Sod2(-/-), without any compensatory alterations of the activities of other antioxidative enzymes, such as catalase or glutathione peroxidase. These results suggest that SOD2 protects the neural system from oxidative stress in the perinatal stage and is essential for infant survival and central neural function in mice.

  6. Emotional response in dopamine D2L receptor-deficient mice.

    Science.gov (United States)

    Hranilovic, Dubravka; Bucan, Maja; Wang, Yanyan

    2008-12-22

    The dopamine D2 receptor (D2R) system has been implicated in emotional processing which is often impaired in neuropsychiatric disorders. The long (D2L) and the short (D2S) isoforms of D2R are generated by alternative splicing of the same gene. To study differential roles of the two D2R isoforms, D2L-deficient mice (D2L-/-) expressing functional D2S were previously generated. In this study the contribution of D2L isoform to emotional response was investigated by examining behaviors that reflect emotionality (exploratory behavior, anxiety-like behavior and learned helplessness) in D2L-/- and (wild-type) WT mice. While the thigmotactic, locomotor and general components of anxiety in zero maze did not differ among the genotypes, D2L-/- mice displayed significantly lower level of exploration in a hole board and zero maze, and significantly higher increase in latency to escape from a foot-shock after the learned helplessness training, compared with WT mice. These results suggest that D2L may play a more prominent role than D2S in mediating emotional response, such as behavioral reactions to novelty and inescapable stress. Our findings contribute to a better understanding of the molecular and cellular mechanisms underlying emotional responses.

  7. Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy.

    Science.gov (United States)

    Cheng, Huifang; Fan, Xiaofeng; Lawson, William E; Paueksakon, Paisit; Harris, Raymond C

    2015-07-01

    The aged population suffers increased morbidity and higher mortality in response to episodes of acute kidney injury (AKI). Aging is associated with telomere shortening, and both telomerase reverse transcriptase (TerT) and RNA (TerC) are essential to maintain telomere length. To define a role of telomerase deficiency in susceptibility to AKI, we used ischemia/reperfusion injury in wild-type mice or mice with either TerC or TerT deletion. Injury induced similar renal impairment at day 1 in each genotype, as assessed by azotemia, proteinuria, acute tubular injury score, and apoptotic tubular epithelial cell index. However, either TerC or TerT knockout significantly delayed recovery compared with wild-type mice. Electron microscopy showed increased autophagosome formation in renal tubular epithelial cells in wild-type mice but a significant delay of their development in TerC and TerT knockout mice. There were also impeded increases in the expression of the autophagosome marker LC3 II, prolonged accumulation of the autophagosome protein P62, an increase of the cell cycle regulator p16, and greater activation of the mammalian target of rapamycin (mTOR) pathway. The mTORC1 inhibitor, rapamycin, partially restored the ischemia/reperfusion-induced autophagy response, without a significant effect on either p16 induction or tubule epithelial cell proliferation. Thus, muting the maintenance of normal telomere length in mice impaired recovery from AKI, owing to an increase in tubule cell senescence and impairment of mTOR-mediated autophagy.

  8. CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice.

    Science.gov (United States)

    Fumagalli, Stefano; Perego, Carlo; Ortolano, Fabrizio; De Simoni, Maria-Grazia

    2013-06-01

    The studies on fractalkine and its unique receptor CX3CR1 in neurological disorders yielded contrasting results. We have explored the consequences of CX3CR1 deletion in ischemic (30' MCAo) mice on: (1) brain infarct size; (2) microglia dynamism and morphology; (3) expression of markers of microglia/macrophages (M/M) activation and polarization. We observed smaller infarcts in cx3cr1(-/-) (26.42 ± 7.41 mm(3) , mean ± sd) compared to wild type (36.29 ± 11.57) and cx3cr1(-/+) (34.49 ± 8.91) mice. We longitudinally analyzed microglia by in vivo two-photon microscopy before, 1 and 24 h after transient ischemia. Microglia were stationary in both cx3cr1(-/-) and cx3cr1(-/+) mice throughout the study. In cx3cr1(-/-) mice, they displayed a significantly higher number of ramifications >10 μm at baseline and at 24 h after ischemia compared to cx3cr1(-/+) mice, indicating that CX3CR1 deficiency impaired the development of microglia hypertrophic/amoeboid morphology. At 24 h after ischemia, we performed post mortem quantitative immunohistochemistry for different M/M markers. In cx3cr1(-/-) immunoreactivity for CD11b (M/M activation) and for CD68 (associated with phagocytosis) were decreased, while that for CD45(high) (macrophage and leukocyte recruitment) was increased. In addition, immunoreactivity for Ym1 (M2 polarization) was enhanced, while that for iNOS (M1) was decreased. Our data show that in cx3cr1(-/-) mice protection from ischemia at early time points after injury is associated with a protective inflammatory milieu, characterized by the promotion of M2 polarization markers. Copyright © 2013 Wiley Periodicals, Inc.

  9. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-08-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage /sup 51/Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed.

  11. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  12. Effect of Lowering Asymmetric Dimethylarginine (ADMA on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass

    Directory of Open Access Journals (Sweden)

    Johannes Jacobi

    2014-03-01

    Full Text Available The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS inhibitor asymmetric dimethylarginine (ADMA and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1, on atherosclerosis in subtotally nephrectomized (SNX ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39 and C57Bl/6J wild-type littermates (WT, n = 27 with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11 served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD in this mouse model.

  13. Rescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation

    Science.gov (United States)

    Lang, Min; Wither, Robert G.; Colic, Sinisa; Wu, Chiping; Monnier, Philippe P.; Bardakjian, Berj L.; Zhang, Liang; Eubanks, James H.

    2014-01-01

    Mutations of the X-linked gene encoding methyl CpG binding protein type 2 (MECP2) are the predominant cause of Rett syndrome, a severe neurodevelopmental condition that affects primarily females. Previous studies have shown that major phenotypic deficits arising from MeCP2-deficiency may be reversible, as the delayed reactivation of the Mecp2 gene in Mecp2-deficient mice improved aspects of their Rett-like phenotype. While encouraging for prospective gene replacement treatments, it remains unclear whether additional Rett syndrome co-morbidities recapitulated in Mecp2-deficient mice will be similarly responsive to the delayed reintroduction of functional Mecp2. Here, we show that the delayed reactivation of Mecp2 in both male and female Mecp2-deficient mice rescues established deficits in motor and anxiety-like behavior, epileptiform activity, cortical and hippocampal electroencephalogram patterning and thermoregulation. These findings indicate that neural circuitry deficits arising from the deficiency in Mecp2 are not engrained, and provide further evidence that delayed restoration of Mecp2 function can improve a wide spectrum of the Rett-like deficits recapitulated by Mecp2-deficient mice. PMID:24009314

  14. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  15. Trim37-deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism

    Directory of Open Access Journals (Sweden)

    Kaisa M. Kettunen

    2016-05-01

    Full Text Available Mulibrey nanism (MUL is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37−/− model for MUL. Trim37−/− mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37−/− mice as compared with wild-type. Both male and female Trim37−/− mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37−/− mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37−/− mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37−/− mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37−/− mice. The most consistently seen phenotypes in Trim37−/− mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37−/− mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis.

  16. Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Robert G Wither

    Full Text Available Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2 have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities.

  17. Expulsion of Hymenolepis nana from mice with congenital deficiencies of IgE production or of mast cell development.

    Science.gov (United States)

    Watanabe, N; Nawa, Y; Okamoto, K; Kobayashi, A

    1994-03-01

    The roles of IgE and mast cells on expulsion of adult Hymenolepis nana from the intestine were examined in mice. IgE-dependency was determined by comparing congenitally IgE-deficient SJA/9 and IgE-producing SJL/J mice infected with 50 H. nana eggs. Anti-H. nana IgE antibody was detected at three weeks post infection (p.i.) in SJL but not in SJA mice. The number of adult worms in the intestines of SJA and of SJL mice were similar at two weeks, but significantly more were found in SJA mice at three weeks p.i. Treatment of mice with anti-epsilon antibody also resulted in an increased worm burden at three weeks, suggesting participation of IgE in expulsion of H. nana. Intestinal mastocytosis was induced by infection regardless of the IgE status of the mice. Mast cell-dependency was tested in mast cell-deficient W/Wv and in normal littermate +/+ mice infected with 100 H. nana eggs. Anti-H. nana antibody was detected in both groups of mice at three weeks p.i. Worm expulsion seemed to be mast cell dependent because expulsion was less complete in W/Wv mice at three weeks p.i. Peripheral blood eosinophilia was comparable at three weeks p.i. in both IgE and mast cell sufficient and deficient mice. These results suggest that IgE and mast cells participate in the expulsion of H. nana adults from intestine in mice.

  18. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1

    Science.gov (United States)

    Lelliott, Patrick M.; McMorran, Brendan J.; Foote, Simon J.

    2015-01-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, TfrcMRI24910, identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria. PMID:26303393

  19. Borrelia-primed and -infected mice deficient of interleukin-17 develop arthritis after neutralization of gamma-interferon.

    Science.gov (United States)

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-03-01

    The immune mechanisms responsible for development of Lyme arthritis are partially understood with interleukin-17 (IL-17) and gamma-interferon (IFN-γ) playing a generally accepted role. Elevated levels of IL-17 and/or IFN-γ have been reported in samples from human Lyme arthritis patients and experimental mice. In addition, IL-17 and IFN-γ have been implicated in the onset of arthritis in Borrelia-primed and -infected C57BL/6 mice. Recently, we showed that IL-17-deficient mice developed swelling and histopathological changes consistent with arthritis in the presence of high levels of IFN-γ. We hypothesized that neutralization of IFN-γ in IL-17-deficient mice would inhibit Borrelia-induced arthritis. Our results, however, showed that swelling of the hind paws and histopathological changes of arthritis did not differ between Borrelia-primed and -infected IL-17-deficient and wild-type mice with or without neutralization of IFN-γ. We also found higher levels of tumor necrosis factor alpha (TNF-α) and IL-6 in the popliteal lymph node cells of Borrelia-primed and -infected IL-17-deficient mice after neutralization of IFN-γ. These results suggest that multiple cytokines interact in the development of Borrelia-induced arthritis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. [Effects of osthol and total-coumarins from Cnidium monnieri on immunological function in kidney yang deficiency mice].

    Science.gov (United States)

    Qin, L P; Wang, H B; Zhang, J Q

    1995-09-01

    Mice were injected intraperitoneally with hydrocortisone acetate to replicate the animal model of Kidney Yang Deficiency (KYD). Osthol and total-coumarins (TCR) from the fruit of Cnidium monnieri were administered orally to model mice. The effects of osthol and TCR on the immunological function of the KYD mice were observed. The results showed that compare with those in normal mice, the percentage of phagocytosis and the index of macrophage phagocytosis, the level of serum hemolysin and the proliferation of lymphocytes lowered significantly (P < 0.01) in model mice. It was shown that administering osthol or TCR could notably (P < 0.01) prevent the above-mentioned lowering in model mice, revealing that osthol and TCR could improve the immunological function of KYD mice.

  1. Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa.

    Science.gov (United States)

    Miao, Guangyan; Zhao, Yan G; Zhao, Hongyu; Ji, Cuicui; Sun, Huayu; Chen, Yingyu; Zhang, Hong

    2016-12-01

    Autophagy helps to maintain cellular homeostasis by removing misfolded proteins and damaged organelles, and generally acts as a cytoprotective mechanism for neuronal survival. Here we showed that mice deficient in the Vici syndrome gene Epg5, which is required for autophagosome maturation, show accumulation of ubiquitin-positive inclusions and SQSTM1 aggregates in various retinal cell types. In epg5-/- retinas, photoreceptor function is greatly impaired, and degenerative features including progressively reduced numbers of photoreceptor cells and increased numbers of apoptotic cells in the outer nuclear layer are observed, while the morphology of other parts of the retina is not severely affected. Downstream targets of the unfolded protein response (UPR), including the death inducer DDIT3/CHOP, and also levels of cleaved CASP3 (caspase 3), are elevated in epg5-/- retinas. Thus, apoptotic photoreceptor cell death in epg5-/- retinas may result from the elevated UPR. Our results reveal that Epg5-deficient mice recapitulate key characteristics of retinitis pigmentosa and thus may provide a valuable model for investigating the molecular mechanism of photoreceptor degeneration.

  2. Apple polyphenols and fibers attenuate atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Auclair, Sylvain; Silberberg, Mathieu; Gueux, Elyett; Morand, Christine; Mazur, Andrzej; Milenkovic, Dragan; Scalbert, Augustin

    2008-07-23

    Atherosclerosis, which is closely linked to nutritional habits, is a major cause of mortality in Western countries. Most of the previous investigations carried out on health effects of apples have been focused on their capacity to lower lipid concentration as well as on their antioxidant effects. The aim of the present study was to investigate the antiatherosclerotic effects of apple polyphenols and fibers. A crude apple polyphenol extract and low-viscosity apple fibers isolated from cider apples were administered separately or in association with the diet of apo E-deficient mice. After 4 months of supplementation, lipemia and oxidative stress biomarkers were measured and atheroslerotic lesions assessed by histomorphometry. Total plasmatic cholesterol and triacylgycerol levels were not affected by supplementation, and hepatic cholesterol level was lower in the group supplemented with both fibers and polyphenols. Uric acid concentrations and antioxidant capacity (FRAP) in plasma were reduced in all groups supplemented with polyphenols or fibers. The mean lesion area was reduced by 17, 38, and 38%, respectively, for the polyphenol, fiber, and polyphenol + fiber groups. Apple constituents supplied at nutritional doses therefore limit the development of atherosclerotic lesions in the aorta of apo E-deficient mice. On the basis of the results, we hypothesize that apple fibers and polyphenols may play a role in preventing atherosclerosis disease by decreasing uric acid plasma level.

  3. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Daniel Komnig

    Full Text Available Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC. Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  4. Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice.

    Science.gov (United States)

    Ikegami, S; Harada, A; Hirokawa, N

    2000-02-04

    Tau, one of the major neuronal microtubule-associated proteins (MAPs), is important for neuronal cell morphogenesis and axonal maintenance. Tau is also known to be a component of the paired helical filaments (PHFs) in Alzheimer's disease patients. Recently, mutations in the tau gene were found in a hereditary neurodegenerative disease called frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) which exhibits various neurological and neuropathological characteristics including PHF-like intracellular tau deposit formation. Currently, the phenotype of the disease is thought to be due to: (1) the toxicity of mutant tau molecules and and/or; (2) the loss of function of normal tau molecules in patients' brains. To test the latter hypothesis, we performed behavioral and neurological tests on tau-deficient mice. Tau-deficient mice showed muscle weakness in the wire-hanging test, hyperactivity in a novel environment, and impairment in the contextual fear conditioning. They also had a tendency to fall more easily in the rod-walking test. These phenotypes parallel some signs and symptoms of FTDP-17 patients. Our results show that the loss of tau protein may itself lead to some of the neurological characteristics observed in FTDP-17 patients.

  5. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Science.gov (United States)

    Komnig, Daniel; Imgrund, Silke; Reich, Arno; Gründer, Stefan; Falkenburger, Björn H

    2016-01-01

    Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  6. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... was similar in HSD1(-/-) and Wt mice. In conclusion, our results suggest that 11betaHSD1 amplification of intracellular GC actions in mice may be required for bone marrow adipocyte formation, but not for bone formation. The clinical relevance of this observation remains to be determined....

  7. Metabolic profiling of vitamin C deficiency in Gulo-/- mice using proton NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Gavin E. [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada); Joan Miller, B.; Jirik, Frank R. [University of Calgary, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health (Canada); Vogel, Hans J., E-mail: vogel@ucalgary.ca [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada)

    2011-04-15

    Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo-/- mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2-3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.

  8. Partial absence of pleuropericardial membranes in Tbx18- and Wt1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Julia Norden

    Full Text Available The pleuropericardial membranes are fibro-serous walls that separate the pericardial and pleural cavities and anchor the heart inside the mediastinum. Partial or complete absence of pleuropericardial membranes is a rare human disease, the etiology of which is poorly understood. As an attempt to better understand these defects, we wished to analyze the cellular and molecular mechanisms directing the separation of pericardial and pleural cavities by pleuropericardial membranes in the mouse. We found by histological analyses that both in Tbx18- and Wt1-deficient mice the pleural and pericardial cavities communicate due to a partial absence of the pleuropericardial membranes in the hilus region. We trace these defects to a persisting embryonic connection between these cavities, the pericardioperitoneal canals. Furthermore, we identify mesenchymal ridges in the sinus venosus region that tether the growing pleuropericardial membranes to the hilus of the lung, and thus, close the pericardioperitoneal canals. In Tbx18-deficient embryos these mesenchymal ridges are not established, whereas in Wt1-deficient embryos the final fusion process between these tissues and the body wall does not occur. We suggest that this fusion is an active rather than a passive process, and discuss the interrelation between closure of the pericardioperitoneal canals, lateral release of the pleuropericardial membranes from the lateral body wall, and sinus horn development.

  9. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    nonalcoholic fatty liver disease (NAFLD) accompanied by ERS. In summary, as a lysosomal membrane protein, Sidt2 plays an important role in the pathogenesis of NAFLD, and ERS may mediate the occurrence and development of this disease in Sdit2 deficiency mice.

  10. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet.

    Directory of Open Access Journals (Sweden)

    Samantha R Weaver

    Full Text Available Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD or low fat (LFD diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-, and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women.

  11. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet.

    Science.gov (United States)

    Weaver, Samantha R; Bohrer, Justin C; Prichard, Allan S; Perez, Paola K; Streckenbach, Liana J; Olson, Jake M; Cook, Mark E; Hernandez, Laura L

    2016-01-01

    Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD) or low fat (LFD) diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-), and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women.

  12. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis.

    Science.gov (United States)

    Medina-Bolívar, Carolina; González-Arnay, Emilio; Talos, Flaminia; González-Gómez, Miriam; Moll, Ute M; Meyer, Gundela

    2014-08-01

    Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma. © 2014 Wiley Periodicals, Inc.

  13. Targeted expression of ornithine decarboxylase antizyme prevents upper aerodigestive tract carcinogenesis in p53-deficient mice.

    Science.gov (United States)

    Feith, David J; Pegg, Anthony E; Fong, Louise Y Y

    2013-03-01

    Upper aerodigestive tract (UADT) cancers of the oral cavity and esophagus are a significant global health burden, and there is an urgent need to develop relevant animal models to identify chemopreventive and therapeutic strategies to combat these diseases. Antizyme (AZ) is a multifunctional negative regulator of cellular polyamine levels, and here, we evaluate the susceptibility of keratin 5 (K5)-AZ transgenic mice to tumor models that combine chemical carcinogenesis with dietary and genetic risk factors known to influence human susceptibility to UADT cancer and promote UADT carcinogenesis in mice. First, p53(+/-) and K5-AZ/p53(+/-) (AZ/p53(+/-)) mice were placed on a zinc-deficient (ZD) or zinc-sufficient (ZS) diet and chronically exposed to 4-nitroquinoline 1-oxide. Tongue tumor incidence, multiplicity and size were substantially reduced in both ZD and ZS AZ/p53(+/-) mice compared with p53(+/-). AZ expression also reduced progression to carcinoma in situ or invasive carcinoma and decreased expression of the squamous cell carcinoma biomarkers K14, cyclooxygenase-2 and metallothionein. Next, AZ-expressing p53(+/-) and p53 null mice were placed on the ZD diet and treated with a single dose of N-nitrosomethylbenzylamine. Regardless of p53 status, forestomach (FST) tumor incidence, multiplicity and size were greatly reduced with AZ expression, which was also associated with a significant decrease in FST epithelial thickness along with reduced proliferation marker K6 and increased differentiation marker loricrin. These studies demonstrate the powerful tumor suppressive effects of targeted AZ expression in two distinct and unique mouse models and validate the polyamine metabolic pathway as a target for chemoprevention of UADT cancers.

  14. Control of cardiovascular variability during undisturbed wake-sleep behavior in hypocretin-deficient mice.

    Science.gov (United States)

    Silvani, Alessandro; Bastianini, Stefano; Berteotti, Chiara; Lo Martire, Viviana; Zoccoli, Giovanna

    2012-04-15

    The central neural mechanisms underlying differences in cardiovascular variability between wakefulness, non-rapid-eye-movement sleep (NREMS), and rapid-eye-movement sleep (REMS) remain poorly understood. These mechanisms may involve hypocretin (HCRT)/orexin signaling. HCRT signaling is linked to wake-sleep states, involved in central autonomic control, and impaired in narcoleptic patients. Thus, we investigated whether HCRT signaling plays a role in controlling cardiovascular variability during spontaneous behavior in HCRT-deficient mice. HCRT-ataxin3 transgenic mice lacking HCRT neurons (TG), knockout mice lacking HCRT peptides (KO), and wild-type controls (WT) were instrumented with electrodes for sleep recordings and a telemetric blood pressure transducer. Fluctuations of systolic blood pressure (SBP) and heart period (HP) during undisturbed wake-sleep behavior were analyzed with the sequence technique, cross-correlation functions, and coherent averaging of SBP surges. During NREMS, all mice had lower SBP variability, greater baroreflex contribution to HP control at low frequencies, and greater amplitude of the central autonomic and baroreflex changes in HP associated with SBP surges than during wakefulness. During REMS, all mice had higher SBP variability and depressed central autonomic and baroreflex HP controls relative to NREMS. HP variability during REMS was higher than during NREMS in WT only. TG and KO also had lower amplitude of the cardiac baroreflex response to SBP surges during REMS than WT. These results indicate that chronic lack of HCRT signaling may cause subtle alterations in the control of HP during spontaneous behavior. Conversely, the integrity of HCRT signaling is not necessary for the occurrence of physiological sleep-dependent changes in SBP variability.

  15. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas.

    Science.gov (United States)

    Imgrund, Silke; Hartmann, Dieter; Farwanah, Hany; Eckhardt, Matthias; Sandhoff, Roger; Degen, Joachim; Gieselmann, Volkmar; Sandhoff, Konrad; Willecke, Klaus

    2009-11-27

    (Dihydro)ceramide synthase 2 (cers2, formerly called lass2) is the most abundantly expressed member of the ceramide synthase gene family, which includes six isoforms in mice. CERS2 activity has been reported to be specific toward very long fatty acid residues (C22-C24). In order to study the biological role of CERS2, we have inactivated its coding region in transgenic mice using gene-trapped embryonic stem cells that express lacZ reporter DNA under control of the cers2 promoter. The resulting mice lack ceramide synthase activity toward C24:1 in the brain as well as the liver and show only very low activity toward C18:0-C22:0 in liver and reduced activity toward C22:0 residues in the brain. In addition, these mice exhibit strongly reduced levels of ceramide species with very long fatty acid residues (>or=C22) in the liver, kidney, and brain. From early adulthood on, myelin stainability is progressively lost, biochemically accompanied by about 50% loss of compacted myelin and 80% loss of myelin basic protein. Starting around 9 months, both the medullary tree and the internal granular layer of the cerebellum show significant signs of degeneration associated with the formation of microcysts. Predominantly in the peripheral nervous system, we observed vesiculation and multifocal detachment of the inner myelin lamellae in about 20% of the axons. Beyond 7 months, the CERS2-deficient mice developed hepatocarcinomas with local destruction of tissue architecture and discrete gaps in renal parenchyma. Our results indicate that CERS2 activity supports different biological functions: maintenance of myelin, stabilization of the cerebellar as well as renal histological architecture, and protection against hepatocarcinomas.

  16. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Kelly J Gauger

    Full Text Available The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1, is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO. Sfrp1(-/- mice fed a high fat diet (HFD exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1 and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3 in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1, and glucose transporters are repressed (Slc2a2 and Slc2a4 in Sfrp1(-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1(-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1(-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.

  17. In vivo neutralization of IL-6 receptors ameliorates gastrointestinal dysfunction in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Manning, J; Buckley, M M; O'Halloran, K D; O'Malley, D

    2016-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease characterized by progressive deterioration and degeneration of striated muscle. A mutation resulting in the loss of dystrophin, a structural protein which protects cells from contraction-induced damage, underlies DMD pathophysiology. Damage to muscle fibers results in chronic inflammation and elevated levels of proinflammatory cytokines such as interleukin-6 (IL-6). However, loss of cellular dystrophin also affects neurons and smooth muscle in the gastrointestinal (GI) tract with complaints such as hypomotility, pseudo-obstruction, and constipation reported in DMD patients. Using dystrophin-deficient mdx mice, studies were carried out to examine colonic morphology and function compared with wild-type mice. Treatment with neutralizing IL-6 receptor antibodies (xIL-6R) and/or the corticotropin-releasing factor (CRF) 2 receptor agonist, urocortin 2 (uro2) was tested to determine if they ameliorated GI dysfunction in mdx mice. Mdx mice exhibited thickening of colonic smooth muscle layers and delayed stress-induced defecation. In organ bath studies, neurally mediated IL-6-evoked contractions were larger in mdx colons. In vivo treatment of mdx mice with xIL-6R normalized defecation rates and colon lengths. Uro2 treatment did not affect motility or morphology. The potentiated colonic contractile response to IL-6 was attenuated by treatment with xIL-6R. These findings confirm the importance of dystrophin in normal GI function and implicate IL-6 as an important regulator of GI motility in the mdx mouse. Inhibition of IL-6 signaling may offer a potential new therapeutic strategy for treating DMD-associated GI symptoms. © 2016 John Wiley & Sons Ltd.

  18. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells.

    Science.gov (United States)

    Jiagang, Deng; Li, Chunyang; Wang, Hailian; Hao, Erwei; Du, Zhengcai; Bao, Chuanhong; Lv, Jianzhen; Wang, Yi

    2011-08-05

    Regulatory T cells (Tregs) play a critical role in the regulation of T cell-mediated immune responses in atherosclerosis, a chronic autoimmune-like disease. Therefore, in this study, we aimed to investigate the therapeutic effect of amygdalin on atherosclerosis of apolipoprotein E deficient (ApoE(-/-)) mice, and to explore its immune regulatory function by stimulation of Tregs. To evaluate the anti-atherosclerotic effect of amygdalin and for in vivo Treg expansion/activation analysis, ApoE(-/-) mice received intraperitoneal injections of amygdalin, and this therapy resulted in a comparatively 2-fold decrease in triglyceride (TG), 1.5-fold decrease in total cholesterol (TC) and low density lipoprotein (LDL). By comparing the vessel areas, lumen areas, plaque areas, and aortic plaque coverage percentage, the effects of amygdalin on pre-existing lesions were assessed. Studies on IL-10 and TGF-β indicated that mice treated with amygdalin had increased expression of Treg-related cytokines. Meanwhile, flow cytometry and real-time PCR data showed that mice treated with amygdalin had higher percentage of CD4(+)CD25(+)Foxp3(+) T cells than untreated mice and increased expression of forkhead box P3 (FOXP3) gene. Our data showed amygdalin could attenuate the development of atherosclerosis by suppressing inflammatory responses and promoting the immunomodulation function of Tregs. The effects of amygdalin ultimately resulted in the enlarged lumen area and the loss of atherosclerotic plaque. All these data indicated the therapeutic potential of amygdalin in preventing and/or treating of atherosclerosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Otitis media in sperm-associated antigen 6 (Spag6-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaofei Li

    Full Text Available Mammalian SPAG6 protein is localized to the axoneme central apparatus, and it is required for normal flagella and cilia motility. Recent studies demonstrated that the protein also regulates ciliogenesis and cilia polarity in the epithelial cells of brain ventricles and trachea. Motile cilia are also present in the epithelial cells of the middle ear and Eustachian tubes, where the ciliary system participates in the movement of serous fluid and mucus in the middle ear. Cilia defects are associated with otitis media (OM, presumably due to an inability to efficiently transport fluid, mucus and particles including microorganisms. We investigated the potential role of SPAG6 in the middle ear and Eustachian tubes by studying mice with a targeted mutation in the Spag6 gene. SPAG6 is expressed in the ciliated cells of middle ear epithelial cells. The orientation of the ciliary basal feet was random in the middle ear epithelial cells of Spag6-deficient mice, and there was an associated disrupted localization of the planar cell polarity (PCP protein, FZD6. These features are associated with disordered cilia orientation, confirmed by scanning electron microscopy, which leads to uncoordinated cilia beating. The Spag6 mutant mice were also prone to develop OM. However, there were no significant differences in bacterial populations, epithelial goblet cell density, mucin expression and Eustachian tube angle between the mutant and wild-type mice, suggesting that OM was due to accumulation of fluid and mucus secondary to the ciliary dysfunction. Our studies demonstrate a role for Spag6 in the pathogenesis of OM in mice, possibly through its role in the regulation of cilia/basal body polarity through the PCP-dependent mechanisms in the middle ear and Eustachian tubes.

  20. Otitis media in sperm-associated antigen 6 (Spag6)-deficient mice.

    Science.gov (United States)

    Li, Xiaofei; Xu, Lei; Li, Jianfeng; Li, Boqin; Bai, Xiaohui; Strauss, Jerome F; Zhang, Zhibing; Wang, Haibo

    2014-01-01

    Mammalian SPAG6 protein is localized to the axoneme central apparatus, and it is required for normal flagella and cilia motility. Recent studies demonstrated that the protein also regulates ciliogenesis and cilia polarity in the epithelial cells of brain ventricles and trachea. Motile cilia are also present in the epithelial cells of the middle ear and Eustachian tubes, where the ciliary system participates in the movement of serous fluid and mucus in the middle ear. Cilia defects are associated with otitis media (OM), presumably due to an inability to efficiently transport fluid, mucus and particles including microorganisms. We investigated the potential role of SPAG6 in the middle ear and Eustachian tubes by studying mice with a targeted mutation in the Spag6 gene. SPAG6 is expressed in the ciliated cells of middle ear epithelial cells. The orientation of the ciliary basal feet was random in the middle ear epithelial cells of Spag6-deficient mice, and there was an associated disrupted localization of the planar cell polarity (PCP) protein, FZD6. These features are associated with disordered cilia orientation, confirmed by scanning electron microscopy, which leads to uncoordinated cilia beating. The Spag6 mutant mice were also prone to develop OM. However, there were no significant differences in bacterial populations, epithelial goblet cell density, mucin expression and Eustachian tube angle between the mutant and wild-type mice, suggesting that OM was due to accumulation of fluid and mucus secondary to the ciliary dysfunction. Our studies demonstrate a role for Spag6 in the pathogenesis of OM in mice, possibly through its role in the regulation of cilia/basal body polarity through the PCP-dependent mechanisms in the middle ear and Eustachian tubes.

  1. Hesperidin prevents androgen deficiency-induced bone loss in male mice.

    Science.gov (United States)

    Chiba, Hiroshige; Kim, Hyounju; Matsumoto, Akiyo; Akiyama, Satoko; Ishimi, Yoshiko; Suzuki, Kazuharu; Uehara, Mariko

    2014-02-01

    The purpose of this study was to examine whether hesperidin inhibits bone loss in androgen-deficient male mice. Male ddY mice aged 7 weeks underwent either a sham operation or orchidectomy (ORX) and were divided into five groups: a sham-operated group fed a control diet (Sham) based on AIN-93G formulation with corn oil instead of soy bean oil, an ORX group fed the control diet (ORX), a group fed the control diet containing 0.5% hesperidin (ORX + H), a group fed the control diet containing 0.7% α-glucosylhesperidin (ORX + αG), and a group fed the control diet containing 0.013% simvastatin (ORX + St). Four weeks after intervention, ORX mice showed a striking decrease in seminal vesicle weight, which was not affected by the administration of hesperidin, α-glucosylhesperidin, or simvastatin. Femoral BMD was significantly reduced by ORX, and bone loss was inhibited by the administration of hesperidin, α-glucosylhesperidin or simvastatin. Histomorphometric analysis showed that the bone volume and trabecular thickness were significantly lower, and the osteoclast number was higher in the distal femoral cancellous bone in the ORX group than in the Sham group, and these were normalized in the ORX + H, ORX + αG and ORX + St groups. These results indicate that hesperidin inhibited bone resorption and hyperlipidemia, in ORX mice, and the preventive effect was stronger than that observed in ovariectomized mice in our previous study. Copyright © 2013 John Wiley & Sons, Ltd.

  2. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology.We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions.Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and

  3. Exacerbation of Facial Motoneuron Loss after Facial Nerve Axotomy in CCR3-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Derek A Wainwright

    2009-11-01

    Full Text Available We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type, a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3–/– mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2 –/– (recombination activating gene-2-deficient mice adoptively transferred CD4+ T-cells isolated from CCR3–/– mice, but not in CCR3–/– mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.

  4. Oats (Avena sativa) reduce atherogenesis in LDL-receptor-deficient mice.

    Science.gov (United States)

    Andersson, K E; Svedberg, K A; Lindholm, M W; Oste, R; Hellstrand, P

    2010-09-01

    The cholesterol-lowering properties of oats, largely ascribed to its contents of soluble fibers, beta-glucans, are well established, whereas effects on atherogenesis are less well elucidated. Oats also contains components with reported antioxidant and anti-inflammatory effects that may affect atherogenesis. In this work we examined effects of oat bran on plasma cholesterol, markers of inflammation, eNOS expression and development of atherosclerosis in LDL-receptor-deficient (LDLr(-/-)) mice. Female LDLr(-/-) mice were fed Western diet+/-oat bran. Two concentrations of oat bran (40 and 27%) were compared regarding effects on plasma lipids. There was a dose-dependent reduction of plasma cholesterol by 42 and 20% with 40 and 27% oat bran, respectively. Both concentrations also lowered plasma triglycerides (by 45 and 33%) and relative levels of plasma LDL+VLDL. The reduction of plasma lipids was accompanied by increased faecal excretion of cholesterol and bile acids. Oat bran (40%) efficiently reduced atherosclerotic lesion area in the descending aorta (-77%) and aortic root (-33%). Plasma levels of fibrinogen and soluble vascular cell adhesion molecule-1 (VCAM-1) were significantly lower, and immunofluorescence of aortic sections revealed a 75% lower expression of VCAM-1 in oat-fed mice. The expression of eNOS protein in the aortic wall was increased in mice fed oat bran. Oat bran supplemented to a Western diet lowers plasma cholesterol, reduces levels of some inflammatory markers, increases eNOS expression and inhibits atherosclerotic lesion development in LDLr(-/-) mice. It remains to be investigated which components in oats contribute to these effects. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    Directory of Open Access Journals (Sweden)

    Bárbara Núñez

    Full Text Available Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2 cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8, in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  6. Genetically driven brain serotonin deficiency facilitates panic-like escape behavior in mice.

    Science.gov (United States)

    Waider, J; Popp, S; Lange, M D; Kern, R; Kolter, J F; Kobler, J; Donner, N C; Lowe, K R; Malzbender, J H; Brazell, C J; Arnold, M R; Aboagye, B; Schmitt-Böhrer, A; Lowry, C A; Pape, H C; Lesch, K P

    2017-10-03

    Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2(-/-)) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph(+/)(-)) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.

  7. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis

    Science.gov (United States)

    Payne, Holly; Ponomaryov, Tatyana

    2017-01-01

    Deep vein thrombosis (DVT) with its major complication, pulmonary embolism, is a global health problem. Mechanisms of DVT remain incompletely understood. Platelets play a role in DVT, but the impact of specific platelet receptors remains unclear. Platelet C–type lectin-like receptor 2 (CLEC-2) is known to maintain the physiological state of blood vasculature under inflammatory conditions. DVT is a thromboinflammatory disorder developing largely as sterile inflammation in the vessel wall. We hypothesized therefore that CLEC-2 might play a role in DVT. Here, using a murine DVT model of inferior vena cava (IVC) stenosis, we demonstrate that mice with general inducible deletion of CLEC-2 or platelet-specific deficiency in CLEC-2 are protected against DVT. No phenotype in the complete stasis model was observed. Transfusion of wild-type platelets into platelet-specific CLEC-2 knockout mice restored thrombosis. Deficiency in CLEC-2 as well as inhibition of podoplanin, a ligand of CLEC-2, was associated with reduced platelet accumulation at the IVC wall after 6 hours of stenosis. Podoplanin was expressed in the IVC wall, where it was localized in the vicinity of the abluminal side of the endothelium. The level of podoplanin in the IVC increased after 48 hours of stenosis to a substantially higher extent in mice with a thrombus vs those without a thrombus. Treatment of animals with an anti–podoplanin neutralizing antibody resulted in development of smaller thrombi. Thus, we propose a novel mechanism of DVT, whereby CLEC-2 and upregulation of podoplanin expression in the venous wall trigger thrombus formation. PMID:28104688

  8. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice.

    Science.gov (United States)

    Yousif, Nasser Ghaly; Al-Amran, Fadhil G

    2011-10-14

    Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin) induced cardiac toxicity. Toll-like receptors (TLRs) are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Seven days after a single injection of herceptin (2 mg/kg; i.p.), left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+) and HeJ mutant (TLR4-/-) treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs) for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α), Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN), in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p < 0.05, attenuation of mononuclear cell infiltration in TLR4 -/-; p < 0.05 vs.TLR-4 competent (HeN), reduced level of cytokines TNF-α, MCP-1 and ICAM-1 expression in TLR4-/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p < 0.05 vs.TLR-4 competent (HeN). Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1), so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  9. Metabolism of leukotriene C4 in gamma-glutamyl transpeptidase-deficient mice.

    Science.gov (United States)

    Carter, B Z; Wiseman, A L; Orkiszewski, R; Ballard, K D; Ou, C N; Lieberman, M W

    1997-05-09

    We have investigated the metabolism of leukotriene C4 (LTC4) in gamma-glutamyl transpeptidase (GGT)-deficient mice (Lieberman, M. W., Wiseman, A. L., Shi, Z-Z., Carter, B. Z., Barrios, R., Ou, C-N., Chevez-Barrios, P., Wang, Y., Habib, G. M., Goodman, J. C., Huang, S. L., Lebovitz, R. M., and Matzuk, M. M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 7923-7926) and have found substantial conversion of LTC4 to leukotriene D4 by high performance liquid chromatography and continuous flow fast atom bombardment-tandem mass spectrometric analyses. LTC4-converting activity has a tissue distribution different from GGT with highest activity in spleen followed by small intestine, kidney, and pancreas and lower activity in liver and lung. The activity is membrane-bound and is inhibited by acivicin, a known inhibitor of GGT. The enzyme was partially purified from the small intestine of GGT-deficient mice by papain treatment and gel filtration chromatography. The partially purified fragment released by papain has an apparent molecular mass of 65-70 kDa and the same substrate specificity as the tissue homogenate. In addition to LTC4, S-decyl-GSH is also cleaved. GSH itself, oxidized GSH, and the synthetic substrates used to analyze GGT activity (gamma-glutamyl-p-nitroanilide and gamma-glutamyl-4-methoxy-2-naphthylamide) are not substrates for this newly discovered enzyme. These data demonstrate that in addition to GGT at least one other enzyme cleaves LTC4 in mice. To reflect this enzyme's preferred substrate, we suggest that it be named gamma-glutamyl leukotrienase.

  10. Liver-specific γ-glutamyl carboxylase-deficient mice display bleeding diathesis and short life span.

    Directory of Open Access Journals (Sweden)

    Kotaro Azuma

    Full Text Available Vitamin K is a fat-soluble vitamin that plays important roles in blood coagulation and bone metabolism. One of its functions is as a co-factor for γ-glutamyl carboxylase (Ggcx. Conventional knockout of Ggcx causes death shortly after birth in homozygous mice. We created Ggcx-floxed mice by inserting loxP sequences at the sites flanking exon 6 of Ggcx. By mating these mice with albumin-Cre mice, we generated Ggcx-deficient mice specifically in hepatocytes (Ggcx(Δliver/Δliver mice. In contrast to conventional Ggcx knockout mice, Ggcx(Δliver/Δliver mice had very low activity of Ggcx in the liver and survived several weeks after birth. Furthermore, compared with heterozygous mice (Ggcx(+/Δliver , Ggcx(Δliver/Δliver mice had shorter life spans. Ggcx(Δliver/Δliver mice displayed bleeding diathesis, which was accompanied by decreased activity of coagulation factors II and IX. Ggcx-floxed mice can prove useful in examining Ggcx functions in vivo.

  11. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    Science.gov (United States)

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  12. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  13. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Laura E Pascal

    Full Text Available ELL-associated factor 2 (EAF2 is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2(-/- mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2(-/- mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2(-/- animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors.

  14. Loss of pericyte smoothened activity in mice with genetic deficiency of leptin.

    Science.gov (United States)

    Xie, Guanhua; Swiderska-Syn, Marzena; Jewell, Mark L; Machado, Mariana Verdelho; Michelotti, Gregory A; Premont, Richard T; Diehl, Anna Mae

    2017-04-20

    Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.

  15. Dendritic cells derived from TBP-2-deficient mice are defective in inducing T cell responses.

    Science.gov (United States)

    Son, Aoi; Nakamura, Hajime; Okuyama, Hiroaki; Oka, Shin-ichi; Yoshihara, Eiji; Liu, Wenrui; Matsuo, Yoshiyuki; Kondo, Norihiko; Masutani, Hiroshi; Ishii, Yasuyuki; Iyoda, Tomonori; Inaba, Kayo; Yodoi, Junji

    2008-05-01

    Thioredoxin-binding protein-2 (TBP-2), also known as vitamin D3-up-regulated protein 1 (VDUP1), was identified as an endogenous molecule interacting with thioredoxin (TRX). Here, we show that dendritic cells (DC) derived from TBP-2-deficient mice are defective in the function of T cell activation. To compare TBP-2(-/-) DC function with wild-type (WT) DC, we stimulated DC with lipopolysaccharide (LPS). Although TBP-2(-/-) DC and WT DC expressed comparable levels of MHC class II and costimulatory molecules such as CD40, CD80 and CD86, the IL-12p40, IL-12p70 and IL-6 productions of TBP-2(-/-) DC were attenuated. In a mixed leukocyte reaction (MLR), the concentrations of IL-2, IFN-gamma, IL-4 and IL-10 in the culture supernatant of MLR with TBP-2(-/-) DC were significantly lower than those in the cultures with WT DC. In MLR also, as with LPS stimulation, IL-12p40 and IL-12p70 production from TBP-2(-/-) DC was less than that from WT DC. Proliferation of T cells cultured with TBP-2(-/-) DC was poorer than that with WT DC. In vivo delayed-type hypersensitivity responses in TBP-2(-/-) mice immunized with ovalbumin were significantly reduced compared to WT mice. These results indicate that TBP-2 plays a crucial role in DC to induce T cell responses.

  16. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase

    Science.gov (United States)

    Elmore, C. Lee; Wu, Xuchu; Leclerc, Daniel; Watson, Erica D.; Bottiglieri, Teodoro; Krupenko, Natalia I.; Krupenko, Sergey A.; Cross, James C.; Rozen, Rima; Gravel, Roy A.; Matthews, Rowena G.

    2007-01-01

    Hyperhomocyst(e)inemia is a metabolic derangement that is linked to the distribution of folate pools, which provide one-carbon units for biosynthesis of purines and thymidylate and for remethylation of homocysteine to form methionine. In humans, methionine synthase deficiency results in the accumulation of methyltetrahydrofolate at the expense of folate derivatives required for purine and thymidylate biosynthesis. Complete ablation of methionine synthase activity in mice results in embryonic lethality. Other mouse models for hyperhomocyst(e)inemia have normal or reduced levels of methyltetrahydrofolate and are not embryonic lethal, although they have decreased ratios of AdoMet/AdoHcy and impaired methylation. We have constructed a mouse model with a gene trap insertion in the Mtrr gene specifying methionine synthase reductase, an enzyme essential for the activity of methionine synthase. This model is a hypomorph, with reduced methionine synthase reductase activity, thus avoiding the lethality associated with the absence of methionine synthase activity. Mtrrgt/gt mice have increased plasma homocyst(e)ine, decreased plasma methionine, and increased tissue methyltetrahydrofolate. Unexpectedly, Mtrrgt/gt mice do not show decreases in the AdoMet/AdoHcy ratio in most tissues. The different metabolite profiles in the various genetic mouse models for hyperhomocysteinemia may be useful in understanding biological effects of elevated homocyst(e)ine. PMID:17369066

  17. Oral tolerance is inefficient in neonatal mice due to a physiological vitamin A deficiency.

    Science.gov (United States)

    Turfkruyer, M; Rekima, A; Macchiaverni, P; Le Bourhis, L; Muncan, V; van den Brink, G R; Tulic, M K; Verhasselt, V

    2016-03-01

    Increased risk of allergy during early life indicates deficient immune regulation in this period of life. To date, the cause for inefficient neonatal immune regulation has never been elucidated. We aimed to define the ontogeny of oral tolerance and to identify necessary conditions specific for this stage of life. Ovalbumin (OVA) was administered orally to mice through breast milk and efficiency of systemic tolerance to OVA was assessed in adulthood using a model of allergic airway inflammation. Oral tolerance induction was fully efficient starting third week of life. Inefficiency in neonates was a consequence of abnormal antigen transfer across the gut barrier and retinaldehyde dehydrogenase expression by mesenteric lymph node CD103(+) neonatal dendritic cells, resulting in inefficient T-cell activation. Neonates' serum retinol levels were three times lower than in adult mice, and vitamin A supplementation was sufficient to rescue neonatal defects and allow tolerance induction from birth. The establishment of oral tolerance required the differentiation of Th1 lymphocytes in both vitamin A-supplemented neonates and 3-week-old unsupplemented mice. This knowledge should guide the design of interventions for allergy prevention that are adapted to the neonatal stage of life such as vitamin A supplementation.

  18. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  19. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling

    Directory of Open Access Journals (Sweden)

    van Ommen G-JB

    2005-07-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene, is lethal. In contrast, dystrophin-deficient mdx mice recover due to effective regeneration of affected muscle tissue. To characterize the molecular processes associated with regeneration, we compared gene expression levels in hindlimb muscle tissue of mdx and control mice at 9 timepoints, ranging from 1–20 weeks of age. Results Out of 7776 genes, 1735 were differentially expressed between mdx and control muscle at at least one timepoint (p mdx mouse. Based on functional characteristics such as membrane localization, signal transduction, and transcriptional activation, 166 differentially expressed genes with possible functions in regeneration were analyzed in more detail. The majority of these genes peak at the age of 8 weeks, where the regeneration activity is maximal. The following pathways are activated, as shown by upregulation of multiple members per signalling pathway: the Notch-Delta pathway that plays a role in the activation of satellite cells, and the Bmp15 and Neuregulin 3 signalling pathways that may regulate proliferation and differentiation of satellite cells. In DMD patients, only few of the identified regeneration-associated genes were found activated, indicating less efficient regeneration processes in humans. Conclusion Based on the observed expression profiles, we describe a model for muscle regeneration in mdx mice, which may provide new leads for development of DMD therapies based on the improvement of muscle regeneration efficacy.

  20. CD47 deficiency improves neurological outcomes of traumatic brain injury in mice.

    Science.gov (United States)

    Zhao, Song; Yu, Zhanyang; Liu, Yu; Bai, Yang; Jiang, Yinghua; van Leyen, Klaus; Yang, Yong-Guang; Lok, Josephine M; Whalen, Michael J; Lo, Eng H; Wang, Xiaoying

    2017-03-16

    CD47 is a receptor for signal-regulatory protein alpha (SIRPα) in self-recognition by the innate immune system, and a receptor of thrombospondin-1 (TSP-1) contributing to vascular impairment in response to stress. However, the roles of CD47 in traumatic brain injury (TBI) have not been investigated. In this study we aimed to test our hypothesis that CD47 mediates early neutrophil brain infiltration and late brain vascular remodeling after TBI. Mice were subjected to TBI using a controlled cortical impact (CCI) device. We examined early phase neutrophil infiltration, and late phase brain vessel density, pro-angiogenic markers VEGF and Ang-1 protein expression, neurological function deficits and lesion volumes for up to three weeks after TBI. Our results show that mice deficient in CD47 (CD47 Knockout) had significantly less brain neutrophil infiltration at 24h, upregulated VEGF expression in peri-lesion cortex at 7 and 14days, and increased blood vessel density at 21days after TBI, compared to wild type (WT) mice. CD47 knockout also significantly decreased sensorimotor function deficits and reduced brain lesion volume at 21days after TBI. We conclude that CD47 may play pathological roles in brain neutrophil infiltration, progression of brain tissue damage, impairment of cerebrovascular remodeling and functional recovery after TBI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Premature mammary gland involution with repeated corticosterone injection in interleukin 10-deficient mice.

    Science.gov (United States)

    Hwang, Woo-Sung; Bae, Ji-Hyun; Yeom, Su-Cheong

    2016-12-01

    Recently, we found that maternal stress could induce premature mammary gland involution in interleukin 10 knock out (IL-10 -/- ) mice. To elucidate correlation between stress, IL-10, and mammary gland involution, corticosterone was injected into the lactating wild type and IL-10-deficient mice and assessed mammary gland phenotype. Repetitive corticosterone injection developed premature mammary gland involution only in B6.IL-10 -/- mice; moreover, it induced alopecia in nursing pups. Corticosterone injection induced several typical changes such as mammary gland epithelial cell apoptosis, macrophage infiltration, fat deposition in adipocyte, STAT3 phosphorylation, and upregulation of tyrosine hydroxylase gene in adrenal gland. Overall incidence of pup alopecia and mammary gland involution was relatively high in corticosterone than control B6.IL-10 -/- group (57% vs. 20%). Our finding demonstrates that IL-10 is important for stress modulation, and B6.Il-10 -/- with corticosterone has several advantage such as simple to establish, well-defined onset of mammary gland involution, high incidence, and inducing pup alopecia.

  2. Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice.

    Science.gov (United States)

    Rossi, Claudia; Marzano, Valeria; Consalvo, Ada; Zucchelli, Mirco; Levi Mortera, Stefano; Casagrande, Viviana; Mavilio, Maria; Sacchetta, Paolo; Federici, Massimo; Menghini, Rossella; Urbani, Andrea; Ciavardelli, Domenico

    2017-11-13

    The tissue inhibitor of metalloproteinase TIMP3 is a stromal protein that restrains the activity of both protease and receptor in the extracellular matrix and has been found to be down-regulated in diabetic nephropathy (DN), the leading cause of end-stage renal disease in developed countries. In order to gain deeper insights on the association of loss of TIMP3 and DN, we performed differential proteomic analysis of kidney and blood metabolic profiling of wild-type and Timp3-knockout mice before and after streptozotocin (STZ) treatment, widely used to induce insulin deficiency and hyperglycemia. Kidney proteomic data and blood metabolic profiles suggest significant alterations of peroxisomal and mitochondrial fatty acids β-oxidation in Timp3-knockout mice compared to wild-type mice under basal condition. These alterations were exacerbated in response to STZ treatment. Proteomic and metabolomic approaches showed that loss of TIMP3 alone or in combination with STZ treatment results in significant alterations of kidney lipid metabolism and peripheral acylcarnitine levels, supporting the idea that loss of TIMP3 may generate a phenotype more prone to DN.

  3. Comparative Gene Expression and Phenotype Analyses of Skeletal Muscle from Aged Wild-Type and PAPP-A-Deficient Mice

    OpenAIRE

    Conover, Cheryl A.; Bale, Laurie K.; Nair, K. Sreekumaran

    2016-01-01

    Mice deficient in pregnancy-associated plasma protein-A (PAPP-A) have extended lifespan associated with decreased incidence and severity of degenerative diseases of age, such as cardiomyopathy and nephropathy. In this study, the effect of PAPP-A deficiency on aging skeletal muscle was investigated. Whole-genome expression profiling was performed on soleus muscles from 18-month-old wild-type (WT) and PAPP-A knock-out (KO) mice of the same sex and from the same litter (?womb-mates?) to identify...

  4. Creatine Transporter (CrT; Slc6a8) Knockout Mice as a Model of Human CrT Deficiency

    OpenAIRE

    Skelton, Matthew R.; Schaefer, Tori L.; Graham, Devon L.; deGrauw, Ton J.; Clark, Joseph F.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Mutations in the creatine (Cr) transporter (CrT; Slc6a8) gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2-4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT kn...

  5. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  6. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Directory of Open Access Journals (Sweden)

    Patricia Pazos

    Full Text Available Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6, which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18 wild-type (WT and Il6 knockout mice (Il6-KO were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy and agouti-related peptide (Agrp; and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc, corticotrophin and thyrotropin-releasing hormone (Crh and Trh mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra, Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the

  7. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F; Diéguez, Carlos; García, María C

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  8. Interleukin 6 Deficiency Modulates the Hypothalamic Expression of Energy Balance Regulating Peptides during Pregnancy in Mice

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F.; Diéguez, Carlos; García, María C.

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  9. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  10. Prefrontal single-unit firing associated with deficient extinction in mice

    Science.gov (United States)

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney; Gunduz-Cinar, Ozge; Kravitz, Alexxai; Singewald, Nicolas; Holmes, Andrew

    2014-01-01

    The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of Sthan B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and

  11. Prefrontal single-unit firing associated with deficient extinction in mice.

    Science.gov (United States)

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney R; Gunduz-Cinar, Ozge; Kravitz, Alexxai V; Singewald, Nicolas; Holmes, Andrew

    2014-09-01

    The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of S1 than B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and

  12. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice.

    Science.gov (United States)

    Uribe, Valeria; Wong, Bibiana K Y; Graham, Rona K; Cusack, Corey L; Skotte, Niels H; Pouladi, Mahmoud A; Xie, Yuanyun; Feinberg, Konstantin; Ou, Yimiao; Ouyang, Yingbin; Deng, Yu; Franciosi, Sonia; Bissada, Nagat; Spreeuw, Amanda; Zhang, Weining; Ehrnhoefer, Dagmar E; Vaid, Kuljeet; Miller, Freda D; Deshmukh, Mohanish; Howland, David; Hayden, Michael R

    2012-05-01

    Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.

  13. Strain-dependent differences in bone development, myeloid hyperplasia, morbidity and mortality in ptpn2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Florian Wiede

    Full Text Available Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2 have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2(ex2-/ex2- mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2(-/- mice (BALB/c-129SJ generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2(ex2-/ex2- mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2(-/- (BALB/c mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea evident in Ptpn2(-/- (BALB/c mice were not detected in Ptpn2(ex2-/ex2- mice. At 14 days of age, bone development was delayed in Ptpn2(-/- (BALB/c mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2(ex2-/ex2- mice. Ptpn2(ex2-/ex2- mice had defects in erythropoiesis and B cell development as evident in Ptpn2(-/- (BALB/c mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2(-/- (BALB/c mice. Moreover, thymic atrophy, another feature of Ptpn2(-/- (BALB/c mice, was delayed in Ptpn2(ex2-/ex2- mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2(-/- (BALB/c mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2(ex2-/ex2- mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent.

  14. Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice

    OpenAIRE

    Conde, Carmen; Mark, Manuel; Oliver, F Javier; Huber, Aline; de Murcia, Gilbert; Ménissier-de Murcia, Josiane

    2001-01-01

    PARP-1-deficient mice display a severe defect in the base excision repair pathway leading to radiosensitivity and genomic instability. They are protected against necrosis induced by massive oxidative stress in various inflammatory processes. Mice lacking p53 are highly predisposed to malignancy resulting from defective cell cycle checkpoints, resistance to DNA damage-induced apoptosis as well as from upregulation of the iNOS gene resulting in chronic oxidative stress. Here, we report the gene...

  15. High-fat Diet Enhances and Plasminogen Activator Inhibitor-1 Deficiency Attenuates Bone Loss in Mice with Lewis Lung Carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2015-07-01

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (Pai1(-/-)) on the bone structure in male C57BL/6 mice bearing Lewis lung carcinoma (LLC) in lungs. Significant reduction in bone volume fraction (BV/TV), trabecular number (Tb.N) and bone mineral density (BMD) in femurs and vertebrae were found in LLC-bearing mice compared to non-tumor-bearing mice. In LLC-bearing mice, the high-fat diet compared to the AIN93G control diet significantly reduced BV/TV, Tb.N and BMD in femurs and BV/TV in vertebrae. The high-fat diet significantly reduced BMD in vertebrae in wild-type mice but not in Pai1(-/-) mice. Compared to wild-type mice, PAI1 deficiency significantly increased BV/TV and Tb.N in femurs. The plasma concentration of osteocalcin was significantly lower and that of tartrate-resistant acid phosphatase 5b (TRAP5b) was significantly higher in LLC-bearing mice. The high-fat diet significantly reduced plasma osteocalcin and increased TRAP5b. Deficiency in PAI1 prevented the high-fat diet-induced increases in plasma TRAP5b. These findings demonstrate that a high-fat diet enhances, whereas PAI1 deficiency, attenuates metastasis-associated bone loss, indicating that a high-fat diet and PAI1 contribute to metastasis-associated bone deterioration. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Lymphotoxin Alpha-Deficient Mice Clear Persistent Rotavirus Infection after Local Generation of Mucosal IgA

    OpenAIRE

    Lopatin, Uri; Blutt, Sarah E.; Conner, Margaret E.; Kelsall, Brian L.

    2013-01-01

    Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα−/−) mice that lack Peyer's patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα−/− and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike w...

  17. Diet-induced lipid accumulation in phospholipid transfer protein-deficient mice: its atherogenicity and potential mechanism[S

    Science.gov (United States)

    Yeang, Calvin; Qin, Shucun; Chen, Kailian; Wang, David Q-H.; Jiang, Xian-Cheng

    2010-01-01

    A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation. PMID:20543142

  18. Phloretin promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice.

    Science.gov (United States)

    Lee, Eun-Jung; Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Kang, Young-Hee

    2014-09-15

    Bone-remodeling imbalance induced by increased osteoclast formation and bone resorption is known to cause skeletal diseases such as osteoporosis. The reduction of estrogen levels at menopause is one of the strongest risk factors developing postmenopausal osteoporosis. This study investigated osteoprotective effects of the dihydrochalcone phloretin found in apple tree leaves on bone loss in ovariectomized (OVX) C57BL/6 female mice as a model for postmenopausal osteoporosis. OVX demoted bone mineral density (BMD) of mouse femurs, reduced serum 17β-estradiol level and enhanced serum receptor activator of NF-κB ligand (RANKL)/osteoprotegerin ratio with uterine atrophy. Oral administration of 10 mg/kg phloretin to OVX mice for 8 weeks improved such effects, compared to sham-operated mice. Phloretin attenuated TRAP activity and cellular expression of β3 integrin and carbonic anhydrase II augmented in femoral bone tissues of OVX mice. This study further examined that osteogenic activity of phloretin in RANKL-differentiated Raw 264.7 macrophages into mature osteoclasts. Phloretin at 1-20 μM stimulated Smac expression and capase-3 activation concurrently with nuclear fragmentation of multi-nucleated osteoclasts, indicating that this compound promoted osteoclast apoptosis. Consistently, phloretin enhanced bcl-2 induction but diminished bax expression. Furthermore, phloretin activated ASK-1-diverged JNK and p38 MAPK signaling pathways in mature osteoclasts, whereas it dose-dependently inhibited the RANKL-stimulated activation of ERK. Therefore, phloretin manipulated ASK-1-MAPK signal transduction leading to transcription of apoptotic genes. Phloretin was effective in preventing estrogen deficiency-induced osteoclastogenic resorption. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hiroyuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Takeya, Motohiro [Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan)

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  20. Relationships linking emotional, motor, cognitive and GABAergic dysfunctions in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Vaillend, Cyrille; Chaussenot, Rémi

    2017-03-15

    Alterations in the Duchenne muscular dystrophy (DMD) gene have been associated with enhanced stress reactivity in vertebrate species, suggesting a role for brain dystrophin in fear-related behavioral and cognitive processes. Because the loss of dystrophin (Dp427) reduces clustering of central γ-aminobutyric acid (GABAA) receptors, it is suspected that local inhibitory tuning and modulation of neuronal excitability are perturbed in a distributed brain circuit that normally controls such critical behavioral functions. In this study, we undertook a large-scale behavioral study to evaluate fear-related behavioral disturbances in dystrophin-deficient mdx mice. We first characterized the behavioral determinants of the enhanced fearfulness displayed by mdx mice following mild acute stress and its association with increased anxiety and altered fear memories. We further demonstrated that this enhanced fearfulness induces long-lasting motor inhibition, suggesting that neurobehavioral dysfunctions significantly influence motor outcome measures in this model. We also found that mdx mice are more sensitive to the sedative and hypnotic effects of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochlorid (THIP), a selective pharmacological activator of extrasynaptic GABAA receptors involved in central tonic inhibition. Our results highlight that information on the emotional aspects of mdx mice are important to better understand the bases of intellectual and neuropsychiatric defects in DMD and to better define valuable functional readouts for preclinical studies. Our data also support the hypothesis that altered spatial localization of GABAA receptors due to Dp427 loss is a pathological mechanism associated with brain dysfunction in DMD, suggesting that extrasynaptic GABAA receptors might be candidate targets for future therapeutic developments. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A simple PCR-based method for the rapid genotyping of inherited fifth complement component (C5)-deficient mice.

    Science.gov (United States)

    Wang, Qingkai; Wang, Na; Zhang, Xin; Hu, Weiguo

    2015-01-01

    The fifth component of complement (C5) is considered to be the center of complement activation and function. However, there are no genetically engineered knockout mice for this gene, and the only commercially available inherited C5-deficient mice, in which a "TA" nucleotide deletion in the coding frame was previously identified, are in theC57BL/10Sn genetic background rather than the commonly used backgrounds C57BL/6 and BALB/c. Therefore, these mice must be backcrossed into the desired genetic background. Here, we developed an ARMS (amplification refractory mutation system) PCR method using a specific primer pair that was able to discriminate between the genotypes when the resulting product was analyzed by agarose gel electrophoresis. These results were supported by quantitative RT-PCR and semi-quantitative PCR and were consistent with the results from sequencing each backcrossed generation. Using ARMS-PCR method, we generated C5-deficient mice in the C57BL/6 background over 9 backcrossed generations and further verified the phenotype using complement-mediated hemolytic assays. In this study, we describe a simple, rapid and reliable PCR-based method for genotyping inherited C5-deficient mice that may be used to backcross C57BL/10Sn mice into other genetic backgrounds.

  2. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype.

    Science.gov (United States)

    Tarantini, Stefano; Valcarcel-Ares, Noa M; Yabluchanskiy, Andriy; Springo, Zsolt; Fulop, Gabor A; Ashpole, Nicole; Gautam, Tripti; Giles, Cory B; Wren, Jonathan D; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-06-01

    Clinical and experimental studies show that aging exacerbates hypertension-induced cerebral microhemorrhages (CMHs), which progressively impair neuronal function. There is growing evidence that aging promotes insulin-like growth factor 1 (IGF-1) deficiency, which compromises multiple aspects of cerebromicrovascular and brain health. To determine the role of IGF-1 deficiency in the pathogenesis of CMHs, we induced hypertension in mice with liver-specific knockdown of IGF-1 (Igf1 f/f  + TBG-Cre-AAV8) and control mice by angiotensin II plus l-NAME treatment. In IGF-1-deficient mice, the same level of hypertension led to significantly earlier onset and increased incidence and neurological consequences of CMHs, as compared to control mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Previous studies showed that in aging, increased oxidative stress-mediated matrix metalloprotease (MMP) activation importantly contributes to the pathogenesis of CMHs. Thus, it is significant that hypertension-induced cerebrovascular oxidative stress and MMP activation were increased in IGF-1-deficient mice. We found that IGF-1 deficiency impaired hypertension-induced adaptive media hypertrophy and extracellular matrix remodeling, which together with the increased MMP activation likely also contributes to increased fragility of intracerebral arterioles. Collectively, IGF-1 deficiency promotes the pathogenesis of CMHs, mimicking the aging phenotype, which likely contribute to its deleterious effect on cognitive function. Therapeutic strategies that upregulate IGF-1 signaling in the cerebral vessels and/or reduce microvascular oxidative stress, and MMP activation may be useful for the prevention of CMHs, protecting cognitive function in high-risk elderly patients. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Estrogen Deficiency Exacerbates Type 1 Diabetes-Induced Bone TNF-α Expression and Osteoporosis in Female Mice.

    Science.gov (United States)

    Raehtz, Sandi; Bierhalter, Hayley; Schoenherr, Daniel; Parameswaran, Narayanan; McCabe, Laura R

    2017-07-01

    Estrogen deficiency after menopause is associated with rapid bone loss, osteoporosis, and increased fracture risk. Type 1 diabetes (T1D), characterized by hypoinsulinemia and hyperglycemia, is also associated with bone loss and increased fracture risk. With better treatment options, T1D patients are living longer; therefore, the number of patients having both T1D and estrogen deficiency is increasing. Little is known about the mechanistic impact of T1D in conjunction with estrogen deficiency on bone physiology and density. To investigate this, 11-week-old mice were ovariectomized (OVX), and T1D was induced by multiple low-dose streptozotocin injection. Microcomputed tomographic analysis indicated a marked reduction in trabecular bone volume fraction (BVF) in T1D-OVX mice (~82%) that was far greater than the reductions (~50%) in BVF in either the OVX and T1D groups. Osteoblast markers, number, and activity were significantly decreased in T1D-OVX mice, to a greater extent than either T1D or OVX mice. Correspondingly, marrow adiposity was significantly increased in T1D-OVX mouse bone. Bone expression analyses revealed that tumor necrosis factor (TNF)-α levels were highest in T1D-OVX mice and correlated with bone loss, and osteoblast and osteocyte death. In vitro studies indicate that estrogen deficiency and high glucose enhance TNF-α expression in response to inflammatory signals. Taken together, T1D combined with estrogen deficiency has a major effect on bone inflammation, which contributes to suppressed bone formation and osteoporosis. Understanding the mechanisms/effects of estrogen deficiency in the presence of T1D on bone health is essential for fracture prevention in this patient population. Copyright © 2017 Endocrine Society.

  4. Isoflurane anesthesia exacerbates learning and memory impairment in zinc-deficient APP/PS1 transgenic mice.

    Science.gov (United States)

    Feng, Chunsheng; Liu, Ya; Yuan, Ye; Cui, Weiwei; Zheng, Feng; Ma, Yuan; Piao, Meihua

    2016-12-01

    Zinc (Zn) is known to play crucial roles in numerous brain functions including learning and memory. Zn deficiency is believed to be widespread throughout the world, particularly in patients with Alzheimer's disease (AD). A number of studies have shown that volatile anesthetics, such as isoflurane, might be potential risk factors for the development of AD. However, whether isoflurane exposure accelerates the process of AD and cognitive impairment in AD patients with Zn deficiency is yet to be documented. The aim of the present study was to explore the effects of 1.4% isoflurane exposure for 2 h on learning and memory function, and neuropathogenesis in 10-month-old Zn-adequate, Zn-deficient, and Zn-treated APP/PS1 mice with the following parameters: behavioral tests, neuronal apoptosis, Aβ, and tau pathology. The results demonstrated that isoflurane exposure showed no impact on learning and memory function, but induced transient elevation of neuroapoptosis in Zn-adequate APP/PS1 mice. Exposure of isoflurane exhibited significant neuroapoptosis, Aβ generation, tau phosphorylation, and learning and memory impairment in APP/PS1 mice in the presence of Zn deficiency. Appropriate Zn treatment improved learning and memory function, and prevented isoflurane-induced neuroapoptosis in APP/PS1 mice. Isoflurane exposure may cause potential neurotoxicity, which is tolerated to some extent in Zn-adequate APP/PS1 mice. When this tolerance is limited, like in AD with Zn deficiency, isoflurane exposure markedly exacerbated learning and memory impairment, and neuropathology, indicating that AD patients with certain conditions such as Zn deficiency may be vulnerable to volatile anesthetic isoflurane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    Directory of Open Access Journals (Sweden)

    Pichon A

    2016-04-01

    Full Text Available Aurélien Pichon,1–3 Florine Jeton,1,2 Raja El Hasnaoui-Saadani,4 Luciana Hagström,5 Thierry Launay,6 Michèle Beaudry,1 Dominique Marchant,1 Patricia Quidu,1 Jose-Luis Macarlupu,7 Fabrice Favret,8 Jean-Paul Richalet,1,2 Nicolas Voituron1,2 1Laboratory “Hypoxia and Lung” EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex, 2Laboratory of Excellence GR-Ex, Paris, 3Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France; 4Research Unit, College of Medicine, Princess Noura University, Riyadh, Saudi Arabia; 5Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil; 6Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole®, University Sorbonne-Paris-Cité, Paris, France; 7High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru; 8Laboratory “Mitochondrie, Stress Oxydant et Protection Musculaire” EA 3072, University of Strasbourg, Strasbourg, France Abstract: Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to

  7. Sost deficiency does not alter bone's lacunar or vascular porosity in mice

    Science.gov (United States)

    Mosey, Henry; Núñez, Juan A.; Goring, Alice; Clarkin, Claire E.; Staines, Katherine A.; Lee, Peter D.; Pitsillides, Andrew A.; Javaheri, Behzad

    2017-09-01

    SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6 /group) were sacrificed at 12 weeks of age. Fixed tibiae were analysed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nanoCT at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We therefore conclude that the significant increases in bone

  8. Abcd2 is a strong modifier of the metabolic impairments in peritoneal macrophages of ABCD1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zahid Muneer

    Full Text Available The inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD, associated with neurodegeneration and inflammatory cerebral demyelination, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC transporter ABCD1 (ALDP. ABCD1 transports CoA-esters of very long-chain fatty acids (VLCFA into peroxisomes for degradation by β-oxidation; thus, ABCD1 deficiency results in VLCFA accumulation. The closest homologue, ABCD2 (ALDRP, when overexpressed, compensates for ABCD1 deficiency in X-ALD fibroblasts and in Abcd1-deficient mice. Microglia/macrophages have emerged as important players in the progression of neuroinflammation. Human monocytes, lacking significant expression of ABCD2, display severely impaired VLCFA metabolism in X-ALD. Here, we used thioglycollate-elicited primary mouse peritoneal macrophages (MPMΦ from Abcd1 and Abcd2 single- and double-deficient mice to establish how these mutations affect VLCFA metabolism. By quantitative RT-PCR, Abcd2 mRNA was about half as abundant as Abcd1 mRNA in wild-type and similarly abundant in Abcd1-deficient MPMΦ. VLCFA (C26∶0 accumulated about twofold in Abcd1-deficient MPMΦ compared with wild-type controls, as measured by gas chromatography-mass spectrometry. In Abcd2-deficient macrophages VLCFA levels were normal. However, upon Abcd1/Abcd2 double-deficiency, VLCFA accumulation was markedly increased (sixfold compared with Abcd1-deficient MPMΦ. Elovl1 mRNA, encoding the rate-limiting enzyme for elongation of VLCFA, was equally abundant across all genotypes. Peroxisomal β-oxidation of C26∶0 amounted to 62% of wild-type activity in Abcd1-deficient MPMΦ and was significantly more impaired (29% residual activity upon Abcd1/Abcd2 double-deficiency. Single Abcd2 deficiency did not significantly compromise β-oxidation of C26∶0. Thus, the striking accumulation of VLCFA in double-deficient MPMΦ compared with single Abcd1 deficiency was due to the loss of

  9. CD8α+ Dendritic Cells Improve Collagen-Induced Arthritis In CC Chemokine Receptor (CCR)-2 Deficient Mice

    Science.gov (United States)

    Ibarra, Jessica M.; Quinones, Marlon P.; Estrada, Carlos A.; Jimenez, Fabio; Martinez, Hernan G.; Ahuja, Seema S.

    2012-01-01

    Objective Dendritic cells (DCs) have long been recognized as potential therapeutic targets of rheumatoid arthritis (RA). Increasing evidence has showed that DCs are capable of suppressing autoimmunity by expanding FoxP3+ regulatory T cells (Treg), which in turn exert immunosuppression by increasing TGFβ-1. In the SKG mice, activated DC prime autoreactive T cells causing autoantibody production and an inflammatory arthritic response. Recently, we reported that CC-chemokine receptor-2 deficient (Ccr2−/−) mice had impaired DCs migration and reduced CD8α+ DCs in the C57Bl/6J mice strain and that these mice were more susceptible to collagen antibody-induced arthritis (CAIA), compared to wild type mice. To examine the mechanism by which DCs contribute to the increased susceptibility of arthritis in Ccr2−/− mice, we tested the hypothesis that CD8α+ DCs are protective (tolerogenic) against autoimmune arthritis by examining the role of CD8α+ DCs in Ccr2−/− and SKG mice. Methods To examine the mechanism by which DCs defects lead to the development of arthritis, we used two murine models of experimental arthritis: collagen-induced arthritis (CIA) in DBA1/J mice and zymosan-induced arthritis in SKG mice. DBA1/J mice received recombinant Flt3L-injections to expand endogenous DCs populations or adoptive transfers of CD8α+ DCs. Results Flt3L-mediated expansion of endogenous CD8α+ DCs resulted in heightened susceptibility of CIA. In contrast, supplementation with exogenous CD8α+ DCs ameliorated arthritis in Ccr2−/− mice and enhanced TGFβ1 production by T cells. Furthermore, SKG mice with genetic inactivation of CCR2 did not affect the numbers of DCs nor improve the arthritis phenotype. Conclusion CD8α+ DCs were tolerogenic to the development of arthritis. CD8α+ DCs deficiency heightened the sensitivity to arthritis in Ccr2−/− mice. Ccr2 deficiency did not alter the arthritic phenotype in SKG mice suggesting the arthritis in Ccr2−/− mice was T cell

  10. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2009-05-01

    Full Text Available Ovarian cancer G protein-coupled receptor 1 (OGR1 has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK activation and nitric oxide (NO production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.

  11. Hypermutation of Immunoglobulin Genes in Memory B Cells of DNA Repair–deficient Mice

    Science.gov (United States)

    Jacobs, Heinz; Fukita, Yosho; van der Horst, Gijsbertus T.J.; de Boer, Jan; Weeda, Geert; Essers, Jeroen; de Wind, Niels; Engelward, Bevin P.; Samson, Leona; Verbeek, Sjef; de Murcia, Josiane Ménissier; de Murcia, Gilbert; e Riele, Hein t; Rajewsky, Klaus

    1998-01-01

    To investigate the possible involvement of DNA repair in the process of somatic hypermutation of rearranged immunoglobulin variable (V) region genes, we have analyzed the occurrence, frequency, distribution, and pattern of mutations in rearranged Vλ1 light chain genes from naive and memory B cells in DNA repair–deficient mutant mouse strains. Hypermutation was found unaffected in mice carrying mutations in either of the following DNA repair genes: xeroderma pigmentosum complementation group (XP)A and XPD, Cockayne syndrome complementation group B (CSB), mutS homologue 2 (MSH2), radiation sensitivity 54 (RAD54), poly (ADP-ribose) polymerase (PARP), and 3-alkyladenine DNA-glycosylase (AAG). These results indicate that both subpathways of nucleotide excision repair, global genome repair, and transcription-coupled repair are not required for somatic hypermutation. This appears also to be true for mismatch repair, RAD54-dependent double-strand–break repair, and AAG-mediated base excision repair. PMID:9607915

  12. Investigating B Cell Development, Natural and Primary Antibody Responses in Ly-6A/Sca-1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Morgan A Jones

    Full Text Available Ly-6A/Stem cell antigen-1 (Ly-6A/Sca-1 is a glycosylphosphatidylinositol-anchored protein expressed on many cell types including hematopoietic stem cells (HSCs and early lymphoid-specific progenitors. Ly-6A/Sca-1 is expressed on CD4+ T cells and plays a role in regulating cellular responses to foreign antigens. The role of Ly-6A/Sca-1 in primary antibody responses has not been defined. To investigate whether Ly-6A/Sca-1 functions in humoral immunity, we first injected Ly-6A/Sca-1-deficient and wild-type control mice with chicken ovalbumin (c-Ova protein mixed with an adjuvant. We then assessed the ability of the mice to generate a primary antibody response against cOva. We further examined the development of B cells and circulating antibody isotypes in non-immunized Ly-6A/Sca-1deficient mice to determine if Ly6A/Sca-1 functions in development irrespective of antigen-specific immune activation. Ly-6A/Sca-1/Sca-1-deficient mice did not show any significant changes in the number of B lymphocytes in the bone marrow and peripheral lymphoid tissues. Interestingly, Ly-6A/Sca-1/Sca-1-/- mice have significantly elevated serum levels of IgA with λ light chains compared to wild type controls. B cell clusters with high reactivity to anti-IgA λ monoclonal antibody were detected in the lamina propria of the gut, though this was not observed in the bone marrow and peripheral lymphoid tissues. Despite these differences, the Ly-6A/Sca-1deficient mice generated a similar primary antibody response when compared to the wild-type mice. In summary, we conclude that the primary antibody response to cOva antigen is similar in Ly-6A/Sca-1deficient and sufficient mice. In addition, we report significantly higher expression of the immunoglobulin λ light chain by B cells in lamina propria of Ly-6A/Sca-1deficient mice when compared to the wild-type control.

  13. Uterine dysfunction in biglycan and decorin deficient mice leads to dystocia during parturition.

    Directory of Open Access Journals (Sweden)

    Zhiping Wu

    Full Text Available Cesarean birth rates are rising. Uterine dysfunction, the exact mechanism of which is unknown, is a common indication for Cesarean delivery. Biglycan and decorin are two small leucine-rich proteoglycans expressed in the extracellular matrix of reproductive tissues and muscle. Mice deficient in biglycan display a mild muscular dystrophy, and, along with mice deficient in decorin, are models of Ehlers-Danlos Syndrome, a connective tissue anomaly associated with uterine rupture. As a variant of Ehlers-Danlos Syndrome is caused by a genetic mutation resulting in abnormal biglycan and decorin secretion, we hypothesized that biglycan and decorin play a role in uterine function. Thus, we assessed wild-type, biglycan, decorin and double knockout pregnancies for timing of birth and uterine function. Uteri were harvested at embryonic days 12, 15 and 18. Nonpregnant uterine samples of the same genotypes were assessed for tissue failure rate and spontaneous and oxytocin-induced contractility. We discovered that biglycan/decorin mixed double-knockout dams displayed dystocia, were at increased risk of delayed labor onset, and showed increased tissue failure in a predominantly decorin-dependent manner. In vitro spontaneous uterine contractile amplitude and oxytocin-induced contractile force were decreased in all biglycan and decorin knockout genotypes compared to wild-type. Notably, we found no significant compensation between biglycan and decorin using quantitative real time PCR or immunohistochemistry. We conclude that the biglycan/decorin mixed double knockout mouse is a model of dystocia and delayed labor onset. Moreover, decorin is necessary for uterine function in a dose-dependent manner, while biglycan exhibits partial compensatory mechanisms in vivo. Thus, this model is poised for use as a model for testing novel targets for preventive or therapeutic manipulation of uterine dysfunction.

  14. Xin-deficient mice display myopathy, impaired contractility, attenuated muscle repair and altered satellite cell functionality.

    Science.gov (United States)

    Al-Sajee, D; Nissar, A A; Coleman, S K; Rebalka, I A; Chiang, A; Wathra, R; van der Ven, P F M; Orfanos, Z; Hawke, T J

    2015-06-01

    Xin is an F-actin-binding protein expressed during development of cardiac and skeletal muscle. We used Xin-/- mice to determine the impact of Xin deficiency on different aspects of skeletal muscle health, including functionality and regeneration. Xin-/- skeletal muscles and their satellite cell (SC) population were investigated for the presence of myopathic changes by a series of histological and immunofluorescent stains on resting uninjured muscles. To further understand the effect of Xin loss on muscle health and its SCs, we studied SCs responses following cardiotoxin-induced muscle injury. Functional data were determined using in situ muscle stimulation protocol. Compared to age-matched wild-type (WT), Xin-/- muscles exhibited generalized myopathy and increased fatigability with a significantly decreased force recovery post-fatiguing contractions. Muscle regeneration was attenuated in Xin-/- mice. This impaired regeneration prompted an investigation into SC content and functionality. Although SC content was not different, significantly more activated SCs were present in Xin-/- vs. WT muscles. Primary Xin-/- myoblasts displayed significant reductions (approx. 50%) in proliferative capacity vs. WT; a finding corroborated by significantly decreased MyoD-positive nuclei in 3 days post-injury Xin-/- muscle vs. WT. As more activated SCs did not translate to more proliferating myoblasts, we investigated whether Xin-/- SCs displayed an exaggerated loss by apoptosis. More apoptotic SCs (TUNEL+/Pax7+) were present in Xin-/- muscle vs. WT. Furthermore, more Xin-/- myoblasts were expressing nuclear caspase-3 compared to WT at 3 days post-injury. Xin deficiency leads to a myopathic condition characterized by increased muscle fatigability, impaired regeneration and SC dysfunction. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    Directory of Open Access Journals (Sweden)

    Charles E Bane

    Full Text Available Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/- mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

  16. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.

    Science.gov (United States)

    Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian

    2014-08-21

    Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.

  17. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice

    Directory of Open Access Journals (Sweden)

    Estela Maldonado

    2017-12-01

    Full Text Available It is widely accepted that maternal folic acid (FA deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD diet was administered to eight-week-old C57/BL/6J mouse females for 2–16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17. The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802 with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3% and microglossia (7.6%, always accompanied by agnathia (5.6% or micrognathia (5.2%. This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes.

  18. Vitamin D-deficient mice have more invasive urinary tract infection.

    Directory of Open Access Journals (Sweden)

    Olof Hertting

    Full Text Available Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.

  19. Vitamin D-deficient mice have more invasive urinary tract infection.

    Science.gov (United States)

    Hertting, Olof; Lüthje, Petra; Sullivan, Devin; Aspenström, Pontus; Brauner, Annelie

    2017-01-01

    Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.

  20. Eradication of Helicobacter spp. by Using Medicated Diet in Mice Deficient in Functional Natural Killer Cells and Complement Factor D

    OpenAIRE

    del Carmen Martino-Cardona, Maria; Beck, Sarah E; Brayton, Cory; Watson, Julie

    2010-01-01

    A commercial 4-drug diet has shown promise in eradicating Helicobacter spp. from rodents; however, its effectiveness in immunocompromised mice is unknown. This study evaluated the efficacy of this treatment in eradicating Helicobacter spp. from mice deficient in functional natural killer cells (Cd1−/−) or complement factor D (Df −/−). Cd1−/− mice naturally infected with H. hepaticus with or without H. rodentium were fed either control or medicated diet for 8 wk followed by 4 wk on control die...

  1. Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice

    DEFF Research Database (Denmark)

    Carrasco, J; Penkowa, M; Hadberg, H

    2000-01-01

    Metallothioneins (MTs) are major zinc binding proteins in the CNS that could be involved in the control of zinc metabolism as well as in protection against oxidative stress. Mice lacking MT-I and MT-II (MT-I + II deficient) because of targeted gene inactivation were injected with kainic acid (KA)...

  2. Impaired inflammatory response to glial cell death in genetically metallothionein-I- and -II-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Moos, T

    1999-01-01

    Metallothionein I+II (MT-I+II) are acute-phase proteins which are upregulated during pathological conditions in the brain. To elucidate the neuropathological importance of MT-I+II, we have examined MT-I+II-deficient mice following ip injection with 6-aminonicotinamide (6-AN). 6-AN is antimetaboli...

  3. Phenacetin acts as a weak genotoxic compound preferentially in the kidney of DNA repair deficient Xpa mice.

    NARCIS (Netherlands)

    Luijten, Mirjam; Speksnijder, Ewoud N; Alphen, Niels van; Westerman, Anja; Heisterkamp, Siem H; Benthem, Jan van; Kreijl, Coen F van; Beems, Rudolf B; Steeg, Harrym van

    2006-01-01

    Chronic use of phenacetin-containing analgesics has been associated with the development of renal cancer. To establish genotoxicity as a possible cause for the carcinogenic effect of phenacetin, we exposed wild type and DNA repair deficient Xpa-/- and Xpa-/-/Trp53+/- mice (further referred as Xpa

  4. Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice

    NARCIS (Netherlands)

    Voshol, P. J.; Havinga, R.; Wolters, H.; Ottenhoff, R.; Princen, H. M.; Oude Elferink, R. P.; Groen, A. K.; Kuipers, F.

    1998-01-01

    BACKGROUND & AIMS: mdr2 P-glycoprotein (Pgp) deficiency in mice leads to the absence of biliary phospholipids and cholesterol in the presence of normal bile salt secretion. The aim of this study was to evaluate the importance of the biliary pathway in cholesterol homeostasis by determining the

  5. Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice

    NARCIS (Netherlands)

    Voshol, PJ; Havinga, R; Wolters, H; Ottenhoff, R; Princen, HMG; Elferink, RPJO; Groen, AK; Kuipers, F

    Background & Aims: mdr2 P-glycoprotein (Pgp) deficiency in mice leads to the absence of biliary phospholipids and cholesterol in the presence of normal bile salt secretion. The aim of this study was to evaluate the importance of the biliary pathway in cholesterol homeostasis by determining the

  6. Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice

    DEFF Research Database (Denmark)

    Storm, Tina; Heegaard, Steffen; Christensen, Erik I

    2014-01-01

    of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed...

  7. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    Science.gov (United States)

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  8. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat

  9. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  10. IL-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance

    NARCIS (Netherlands)

    Sewnath, M. E.; Olszyna, D. P.; Birjmohun, R.; ten Kate, F. J.; Gouma, D. J.; van der Poll, T.

    2001-01-01

    To determine the role of endogenous IL-10 in local antibacterial host defense and in the development of a systemic inflammatory response syndrome during abdominal sepsis, IL-10 gene-deficient (IL-10(-/-)) and wild-type (IL-10(+/+)) mice received an i.p. injection with Escherichia coli. Peritonitis

  11. Role of Serotonin in MODS: Deficiency of Serotonin Protects Against Zymosan-Induced Multiple Organ Failure in Mice.

    Science.gov (United States)

    Zhang, Jingyao; Pang, Qing; Song, Sidong; Zhang, Ruiyao; Liu, Sushun; Huang, Zichao; Wu, Qifei; Liu, Yang; Liu, Chang

    2015-03-01

    Zymosan-induced multiple organ dysfunction syndrome (MODS) is a multifactorial pathology that involves the deterioration of function of several organs. 5-Hydroxytryptamine (5-HT) is a small monoamine molecule that is primarily known for its role as a neurotransmitter. Previous studies have shown that 5-HT could serve as an important inflammatory mediator in the peripheral immune system. In the present study, we investigated the effect of 5-HT on the development of non-septic shock caused by zymosan in mice. Tryptophan hydroxylase 1-knockout mice (TPH1, leading to the absence of 5-HT), TPH1 + 5-hydroxytryptophan (precursor of 5-HT) treatment mice, wild-type (TPH1) mice, and wild-type plus p-chlorophenylalanine (PCPA, TPH1 inhibitor) treatment mice received zymosan intraperitoneally at a dose of 500 mg/kg. Organ failure and systemic inflammation in the mice were assessed 18 h after the administration of zymosan. Deficiency of 5-HT caused a significant reduction of the 1) peritoneal exudate formation, 2) neutrophil infiltration, 3) MODS, 4) nitrosative stress, and 5) cytokine formation. In addition, at the end of the observation period (7 days), deficiency of 5-HT in the mice was shown to be able to alleviate the severe illness characterized as systemic toxicity, significant loss of body weight, and high mortality caused by zymosan. In conclusion, the lack of 5-HT by genetic knockout or by pharmacologic inhibition of the TPH1 enzyme significantly attenuated zymosan-induced MODS.

  12. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice.

    Science.gov (United States)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte; Pauling, Josch K; Færgeman, Nils J; Ejsing, Christer S

    2017-02-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic cholesteryl esters, and that lipids featuring an 18:1 fatty acid moiety are increased in Acbp depleted mice across all tissues investigated. Our results also show that the perturbation of systemic lipid metabolism in Acbp knockout mice is transient and becomes normalized and similar to that of wild type as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Directory of Open Access Journals (Sweden)

    Marc S. Stieglitz

    2018-01-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/− mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.

  14. Citreoviridin Enhances Atherogenesis in Hypercholesterolemic ApoE-Deficient Mice via Upregulating Inflammation and Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Hai-Feng Hou

    Full Text Available Vascular endothelial dysfunction and inflammatory response are early events during initiation and progression of atherosclerosis. In vitro studies have described that CIT markedly upregulates expressions of ICAM-1 and VCAM-1 of endothelial cells, which result from NF-κB activation induced by CIT. In order to determine whether it plays a role in atherogenesis in vivo, we conducted the study to investigate the effects of CIT on atherosclerotic plaque development and inflammatory response in apolipoprotein E deficient (apoE-/- mice. Five-week-old apoE-/- mice were fed high-fat diets and treated with CIT for 15 weeks, followed by assay of atherosclerotic lesions. Nitric oxide (NO, vascular endothelial growth factor (VEGF and endothelin-1 (ET-1 were detected in serum. Levels of intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, VEGF, and ET-1 in plaque areas of artery walls were examined. NF-κB p65 expression and NF-κB activation in aorta also were assessed. CIT treatment significantly augmented atherosclerotic plaques and increased expressions of ICAM-1, VCAM-1, VEGF and ET-1 in aorta. Mechanistic studies showed that activation of NF-κB was significantly elevated by CIT treatment, indicating the effect of CIT on atherosclerosis may be regulated by activation of NF-κB.

  15. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice

    Science.gov (United States)

    Randall, Katrina L.; Chan, Stephanie S.-Y.; Ma, Cindy S.; Fung, Ivan; Mei, Yan; Yabas, Mehmet; Tan, Andy; Arkwright, Peter D.; Al Suwairi, Wafaa; Lugo Reyes, Saul Oswaldo; Yamazaki-Nakashimada, Marco A.; de la Luz Garcia-Cruz, Maria; Smart, Joanne M.; Picard, Capucine; Okada, Satoshi; Jouanguy, Emmanuelle; Casanova, Jean-Laurent; Lambe, Teresa; Cornall, Richard J.; Russell, Sarah; Oliaro, Jane; Tangye, Stuart G.; Bertram, Edward M.

    2011-01-01

    In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7− phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion after primary infection with recombinant influenza virus in vivo, they showed greatly reduced memory cell persistence and recall. These findings highlight a key role for DOCK8 in the survival and function of human and mouse CD8 T cells. PMID:22006977

  16. Hematopoietic stem cell gene therapy for IFNγR1 deficiency protects mice from mycobacterial infections.

    Science.gov (United States)

    Hetzel, Miriam; Mucci, Adele; Blank, Patrick; Nguyen, Ariane Hai Ha; Schiller, Jan; Halle, Olga; Kühnel, Mark-Philipp; Billig, Sandra; Meineke, Robert; Brand, Daniel; Herder, Vanessa; Baumgärtner, Wolfgang; Bange, Franz-Christoph; Goethe, Ralph; Jonigk, Danny; Förster, Reinhold; Gentner, Bernhard; Casanova, Jean-Laurent; Bustamante, Jacinta; Schambach, Axel; Kalinke, Ulrich; Lachmann, Nico

    2017-12-12

    Mendelian Susceptibility to Mycobacterial Disease (MSMD) is a rare primary immunodeficiency, characterized by severe infections caused by weakly virulent mycobacteria. Bi-allelic null mutations in genes encoding interferon gamma (IFNγ) receptor 1 or -2 (IFNGR1, IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant IFNγ therapy is inefficient and hematopoietic stem cell transplantation (HSCT) has a poor prognosis. Thus, we developed a HSC gene therapy approach using lentiviral vectors expressing Ifnγr1 either constitutively or myeloid-specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFNγ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored anti-mycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacillus-Calmette-Guérin (BCG) in vitro Transplantation of genetically corrected HSC into Ifnγr1-/- mice prior BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival of transplanted animals. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in the corresponding human patients. Copyright © 2017 American Society of Hematology.

  17. Di-(2-ethylhexyl) phthalate accelerates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Zhao, Jin-Feng; Hsiao, Sheng-Huang; Hsu, Ming-Hua; Pao, Kuan-Chuan; Kou, Yu Ru; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2016-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is associated with atherosclerosis-related cardiovascular disease complications, but we lack direct evidence of its unfavorable effect on atherogenesis. In this study, we aimed to clarify in vivo and in vitro the contribution of DEHP to the development of atherosclerosis and its underlying mechanisms. Apolipoprotein E-deficient (apoE(-/-)) mice chronically treated with DEHP for 4 weeks showed exacerbated hyperlipidemia, systemic inflammation, and atherosclerosis. In addition, DEHP promoted low-density lipoprotein (LDL) oxidation, which led to inflammation in endothelial cells as evidenced by increased protein expression of pro-inflammatory mediators. Furthermore, chronic DEHP treatment increased hepatic cholesterol accumulation by downregulating the protein expression of key regulators in cholesterol clearance including LDL receptor, cholesterol 7α-hydrolase, ATP-binding cassette transporter G5 and G8, and liver X receptor α. Moreover, the adiposity and inflammation of white adipose tissues were promoted in DEHP-treated apoE(-/-) mice. In conclusion, DEHP may disturb cholesterol homeostasis and deregulate the inflammatory response, thus leading to accelerated atherosclerosis.

  18. Wallerian degeneration and axonal regeneration after sciatic nerve crush are altered in ICAM-1-deficient mice.

    Science.gov (United States)

    Kirsch, Matthias; Campos Friz, Marianella; Vougioukas, Vassilios I; Hofmann, Hans-Dieter

    2009-10-01

    The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1(-/-) mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75(NTR)) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.

  19. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  20. ADAMTS5 Deficiency Protects Mice From Chronic Tobacco Smoking-induced Intervertebral Disc Degeneration.

    Science.gov (United States)

    Ngo, Kevin; Pohl, Pedro; Wang, Dong; Leme, Adriana S; Lee, Joon; Di, Peter; Roughley, Peter; Robbins, Paul D; Niedernhofer, Laura J; Sowa, Gwendolyn; Kang, James D; Shapiro, Steven S; Vo, Nam V

    2017-10-15

    ADAMTS5-deficient and wild type (WT) mice were chronically exposed to tobacco smoke to investigate effects on intervertebral disc degeneration (IDD). The aim of this study was to demonstrate a role for ADAMTS5 in mediating tobacco smoking-induced IDD. We previously demonstrated that chronic tobacco smoking causes IDD in mice because, in part, of proteolytic destruction of disc aggrecan. However, it was unknown which matrix proteinase(s) drive these detrimental effects. Three-month-old WT (C57BL/6) and ADAMTS5 mice were chronically exposed to tobacco smoke (four cigarettes/day, 5 day/week for 6 months). ADAMTS-mediated cleavage of disc aggrecan was analyzed by Western blot. Disc total glycosaminoglycan (GAG) content was assessed by dimethyl methylene blue assay and safranin O/fast green histology. Vertebral osteoporosity was measured by microcomputed tomography. Human nucleus pulposus (hNP) cell cultures were also exposed directly to tobacco smoke extract (TSE), a condensate containing the water-soluble compounds inhaled by smokers, to measure ADAMTS5 expression and ADAMTS-mediated cleavage of aggrecan. Activation of nuclear factor (NF)-κB, a family of transcription factors essential for modulating the cellular response to stress, was measured by immunofluorescence assay. Genetic depletion of ADAMTS5 prevented vertebral bone loss, substantially reduced loss of disc GAG content, and completely obviated ADAMTS-mediated proteolysis of disc aggrecan within its interglobular domain (IGD) in mice following exposure to tobacco smoke. hNP cell cultures exposed to TSE also resulted in upregulation of ADAMTS5 protein expression and a concomitant increase in ADAMTS-mediated cleavage within aggrecan IGD. Activation of NF-κB, known to be required for ADAMTS5 gene expression, was observed in both TSE-treated hNP cell cultures and disc tissue of tobacco smoke-exposed mice. The findings demonstrate that ADAMTS5 is the primary aggrecanase mediating smoking-induced disc

  1. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  2. Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet.

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A; Wargent, Edward T; Powell, Nick; Canavan, James B; Lord, Graham M; Howard, Jane K

    2013-04-02

    Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet(-/-) mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet(-/-) mice also lacking adaptive immunity (T-bet(-/-)xRag2(-/-)), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4(+) T cells to Rag2(-/-) mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Manyu Li

    Full Text Available Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR, and receptor activity-modifying protein 1 (RAMP1. RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR

  4. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ radiation.

    Directory of Open Access Journals (Sweden)

    Prem Kumarathasan

    Full Text Available BACKGROUND: There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. METHODS AND RESULTS: B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body to Co60 (γ (single dose 0, 0.5, and 2 Gy at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05 in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05 after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008 relative to controls. Percent lesion area increased (p = 0.005 with age of animal, but not with radiation treatment. CONCLUSIONS: Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  5. tPA deficiency in mice leads to rearrangement in the cerebrovascular tree and cerebroventricular malformations

    Directory of Open Access Journals (Sweden)

    Christina eStefanitsch

    2015-11-01

    Full Text Available The serine protease tissue-type plasminogen activator (tPA is used as a thrombolytic agent in the management of ischemic stroke, but concerns for hemorrhagic conversion greatly limits the number of patients that receive this treatment. It has been suggested that the bleeding complications associated with thrombolytic tPA may be due to unanticipated roles of tPA in the brain. Recent work has suggested tPA regulation of neurovascular barrier integrity, mediated via platelet derived growth factor (PDGF-C/ PDGF receptor-α (PDGFRα signaling, as a possible molecular mechanism affecting the outcome of stroke. To better understand the role of tPA in neurovascular regulation we conducted a detailed analysis of the cerebrovasculature in brains from adult tPA deficient (tPA-/- mice. Our analysis demonstrates that life-long deficiency of tPA is associated with rearrangements in the cerebrovascular tree, including a reduction in the number of vascular smooth-muscle cell covered, large diameter, vessels and a decrease in vessel-associated PDGFRα expression as compared to wild-type littermate controls. In addition, we found that ablation of tPA results in an increased number of ERG (ETS related gene positive endothelial cells and increased junctional localization of the tight junction protein ZO1. This is intriguing since ERG is an endothelial transcription factor implicated in regulation of vascular integrity. Based on these results we propose that the protection of barrier properties seen utilizing these tPA-/- mice might be due, at least in part, to these cerebrovascular rearrangements. In addition, we found that tPA-/- mice displayed mild cerebral ventricular malformations, a feature previously associated with ablation of PDGF-C, thereby providing an in vivo link between tPA and PDGF signaling in CNS development. Taken together, the data presented here will advance our understanding of the role of tPA within the CNS and in regulation of cerebrovascular

  6. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    Science.gov (United States)

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  7. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior...

  8. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior...

  9. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... of a large number of proinflammatory genes involved in osteoclast (OC) differentiation. Consistently, serum obtained from Terc(-/-) mice enhanced OC formation of wild-type bone marrow cultures. Our data demonstrate two mechanisms for age-related bone loss caused by telomerase deficiency: intrinsic...... osteoblastic defects and creation of a proinflammatory osteoclast-activating microenvironment. Thus telonnerization of MSCs may provide a novel approach for abolishing age-related bone loss. (C) 2011 American Society for Bone and Mineral Research....

  10. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased Basal endotoxemia

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Khorooshi, Reza; Rahbek, Martin K U

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese....... However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood...... pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight...

  11. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  12. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice.

    Science.gov (United States)

    Hamrick, Mark W; Della-Fera, Mary Anne; Choi, Yang-Ho; Pennington, Catherine; Hartzell, Diane; Baile, Clifton A

    2005-06-01

    Normal mice and leptin-deficient ob/ob mice were treated with leptin to study effects on osteogenesis and adipogenesis in bone marrow. Leptin treatment significantly decreased bone marrow adipocyte size and number in ob/ob mice while increasing bone formation, BMC, and BMD. The results suggest that, in leptin-sensitive animals, the reduction in marrow adipocytes has positive effects on bone formation. Adipocytes, osteoblasts, and osteoclasts have leptin receptors, and leptin can also affect bone metabolism indirectly through its receptors in the hypothalamus. We examined the effects of leptin treatment on bone formation, BMD, and marrow adipocyte population in normal mice and leptin-deficient ob/ob mice. At the age of 15 weeks, mice were implanted with Alzet osmotic pumps for subcutaneous delivery of treatment solutions (saline, 2.5 microg leptin/day, or 10 microg leptin/day) for 14 days at a delivery rate of 0.25 microl/h. Bone formation was assessed using fluorochrome labels, cell populations were quantified using histomorphometry, and bone densitometry was measured using DXA. We also used a Luminex Beadlyte assay system to quantify cell survival markers in bone marrow samples. Results indicate that both doses of leptin decreased the number of marrow adipocytes in ob/ob mice by >20% (p adipocyte number with leptin treatment is accompanied by an increase in concentration of the apoptosis marker caspase-3 in bone marrow adipocytes and hematopoietic cells. Both leptin doses also significantly (p 30% compared with PBS-treated ob/ob mice. Leptin treatment increased whole body BMC by >30% in the ob/ob mice receiving the highest leptin dose. Leptin treatment provided no increase in bone formation, BMC, or BMD in normal, leptin-replete mice.

  13. Progressive volume loss and white matter degeneration in cstb-deficient mice: a diffusion tensor and longitudinal volumetry MRI study.

    Science.gov (United States)

    Manninen, Otto; Laitinen, Teemu; Lehtimäki, Kimmo K; Tegelberg, Saara; Lehesjoki, Anna-Elina; Gröhn, Olli; Kopra, Outi

    2014-01-01

    Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 patients and in 6-month-old cystatin B-deficient mice, a mouse model for the EPM1 disease. In order to elucidate the spatiotemporal dynamics of the brain atrophy and white matter changes in EPM1, we conducted longitudinal in vivo magnetic resonance imaging and ex vivo diffusion tensor imaging accompanied with tract-based spatial statistics analysis to compare volumetric changes and fractional anisotropy in the brains of 1 to 6 months of age cystatin B-deficient and control mice. The results reveal progressive but non-uniform volume loss of the cystatin B-deficient mouse brains, indicating that different neuronal populations possess distinct sensitivity to the damage caused by cystatin B deficiency. The diffusion tensor imaging data reveal early and progressive white matter alterations in cystatin B-deficient mice affecting all major tracts. The results also indicate that the white matter damage in the cystatin B-deficient brain is most likely secondary to glial activation and neurodegenerative events rather than a primary result of CSTB deficiency. The data also show that diffusion tensor imaging combined with TBSS analysis provides a feasible approach not only to follow white matter damage in neurodegenerative mouse models but also to detect fractional anisotropy changes related to normal white matter maturation and reorganisation.

  14. Eradication of Helicobacter spp. by using medicated diet in mice deficient in functional natural killer cells and complement factor D.

    Science.gov (United States)

    Del Carmen Martino-Cardona, Maria; Beck, Sarah E; Brayton, Cory; Watson, Julie

    2010-05-01

    A commercial 4-drug diet has shown promise in eradicating Helicobacter spp. from rodents; however, its effectiveness in immunocompromised mice is unknown. This study evaluated the efficacy of this treatment in eradicating Helicobacter spp. from mice deficient in functional natural killer cells (Cd1(-/-)) or complement factor D (Df(-/-)). Cd1(-/-) mice naturally infected with H. hepaticus with or without H. rodentium were fed either control or medicated diet for 8 wk followed by 4 wk on control diet. Fecal samples were PCR-evaluated for Helicobacter spp. before mice began treatment and then every 2 wk thereafter for 12 wk. The same experimental design was repeated for eighteen 9- to 21-wk-old Df(-/-) mice naturally infected with H. bilis with or without H. rodentium. All Df(-/-) mice and 8- to 21-wk-old Cd1(-/-) mice ceased shedding Helicobacter spp. after 2 wk of treatment and remained negative throughout the study. In contrast, the Cd1(-/-) mice that were 24 wk or older shed Helicobacter spp. for the first 8 wk but tested negative at 10 and 12 wk. All treated animals had enlarged ceca and gained less weight than control untreated mice, and 6 of 7 treated Cd1(-/-) male mice developed mild portal fibrosis. These findings show that within 2 wk of treatment, the 4-drug diet eradicated H. hepaticus and H. rodentium from young Cd1(-/-) mice and H. bilis and H. rodentium from Df(-/-) mice, but eradication of established infections in Cd1(-/-) mice required 8 wk of treatment.

  15. Spontaneous Staphylococcus xylosus Infection in Mice Deficient in NADPH Oxidase and Comparison with Other Laboratory Mouse Strains

    Science.gov (United States)

    Gozalo, Alfonso S; Hoffmann, Victoria J; Brinster, Lauren R; Elkins, William R; Ding, Li; Holland, Steven M

    2010-01-01

    Staphylococcus xylosus typically is described as a nonpathogenic common inhabitant of rodent skin. Reports of S. xylosus as a primary pathogen in human and veterinary medicine are scarce. Here we report 37 cases, affecting 12 strains of laboratory mice, of spontaneous infections in which S. xylosus was isolated and considered to be the primary pathogen contributing to the death or need for euthanasia of the animal. Infection with S. xylosus was the major cause of death or euthanasia in 3 strains of mice deficient in the production of phagocyte superoxide due to defects in NADPH oxidase. NADPH-oxidase–deficient mice (n = 21) were most susceptible to spontaneous S. xylosus infections. The infections were characterized by abscesses and granulomas in soft tissues, with bacterial migration to internal organs (primarily regional lymph nodes and lungs and, to a lesser degree, muscle, bone, and meninges). In contrast, 9 strains of phagocyte-superoxide–producing mice (n = 16) also had S. xylosus infections, but these were largely confined to eyelids, ocular conjunctiva, and skin and rarely involved other tissues or organs. Because exhaustive bacterial culture and isolation may not be performed routinely from mouse abscesses, S. xylosus infections may be underdiagnosed. S. xylosus should be considered in the differential diagnosis in laboratory mice with abscesses and other skin lesions. This report expands the range of mouse strains and tissues and organs susceptible to spontaneous S. xylosus infection and compares the pathology among various mice strains. PMID:20819397

  16. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Science.gov (United States)

    Resaz, Roberta; Vanni, Cristina; Segalerba, Daniela; Sementa, Angela R.; Mastracci, Luca; Grillo, Federica; Murgia, Daniele; Bosco, Maria Carla; Chou, Janice Y.; Barbieri, Ottavia; Varesio, Luigi; Eva, Alessandra

    2014-01-01

    Glycogen storage disease type 1a (GSD-1a) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α), and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs). A globally G6Pase-α-deficient (G6pc−/−) mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/−) mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC). In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a. PMID:25147298

  17. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  18. Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis.

    Science.gov (United States)

    Raval-Fernandes, Sujna; Kickhoefer, Valerie A; Kitchen, Christina; Rome, Leonard H

    2005-10-01

    Vault poly(ADP-ribose) polymerase (VPARP) and telomerase-associated protein 1 (TEP1) are components of the vault ribonucleoprotein complex. Vaults have been implicated in multidrug resistance of human tumors and are thought to be involved in macromolecular assembly and/or transport. Previous studies showed that VPARP-deficient mice were viable, fertile, and did not display any vault-related or telomerase-related phenotype, whereas disruption of telomerase-associated protein 1 in mice led to reduced stability of the vault RNA and affected its stable association with vaults, although there were no telomerase-related changes. In this study, we evaluated the susceptibility of Vparp-/- and Tep1-/- mice to dimethylhydrazine-induced colon tumorigenesis and urethane-induced lung tumorigenesis. Mice received i.p. injections of either 1 g/kg body weight of urethane twice a week for 2 weeks or 20 mg/kg body weight of dimethylhydrazine once a week for 10 weeks and were analyzed after 10 and 60 weeks, respectively. The colon tumor incidence and multiplicity were significantly higher and colon tumor latency was significantly shorter in Vparp-/- mice compared with wild-type mice. Increased colon tumor incidence, multiplicity, and reduced tumor latency were also seen in Tep1-/- mice, however, these results were statistically not significant. Lung tumor multiplicities were increased in both Vparp-/- and Tep1-/- mice but were not significant. The increase in carcinogen-induced tumors in VPARP-deficient mice is the only phenotype observed to date, and suggests a possible role for VPARP, directly or indirectly, in chemically induced neoplasia.

  19. Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Astrid Liedert

    Full Text Available The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1, are the low-density lipoprotein receptor related protein 5 (Lrp5 and Kremen 2 (Krm2. Lrp 5 deficiency (Lrp5-/- as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2 result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5-/- mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5-/- mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3 and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.

  20. Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia.

    Science.gov (United States)

    Markand, Shanu; Saul, Alan; Roon, Penny; Prasad, Puttur; Martin, Pamela; Rozen, Rima; Ganapathy, Vadivel; Smith, Sylvia B

    2015-04-01

    Methylenetetrahydrofolate reductase (Mthfr) is a key enzyme in homocysteine-methionine metabolism. We investigated Mthfr expression in retina and asked whether mild hyperhomocysteinemia, due to Mthfr deficiency, alters retinal neurovascular structure and function. Expression of Mthfr was investigated at the gene and protein level using quantitative (q) RT-PCR, in situ hybridization, immunoblotting, and immunohistochemistry (IHC). The Mthfr+/+ and Mthfr+/- mice were subjected to comprehensive evaluation using ERG, funduscopy, fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), HPLC, and morphometric and IHC analysis of glial fibrillary acidic protein (GFAP) at 8 to 24 weeks. Gene and protein analyses disclosed widespread retinal expression of Mthfr. Electroretinography (ERG) revealed a significant decrease in positive scotopic threshold response in retinas of Mthfr+/- mice at 24 weeks. Fundus examination in mice from both groups was normal; FA revealed areas of focal vascular leakage in 20% of Mthfr+/- mice at 12 to 16 weeks and 60% by 24 weeks. The SD-OCT revealed a significant decrease in nerve fiber layer (NFL) thickness at 24 weeks in Mthfr+/- compared to Mthfr+/+ mice. There was a 2-fold elevation in retinal hcy at 24 weeks in Mthfr+/- mice by HPLC and IHC. Morphometric analysis revealed an approximately 20% reduction in cells in the ganglion cell layer of Mthfr+/- mice at 24 weeks. The IHC indicated significantly increased GFAP labeling suggestive of Müller cell activation. Mildly hyperhomocysteinemic Mthfr+/- mice demonstrate reduced ganglion cell function, thinner NFL, and mild vasculopathy by 24 weeks. The retinal phenotype is similar to that of hyperhomocysteinemic mice with deficiency of cystathionine-β-synthase (Cbs) reported earlier. The data support the hypothesis that hyperhomocysteinemia may be causative in certain retinal neurovasculopathies.

  1. CD47 deficiency ameliorates autoimmune nephritis in Fas(lpr) mice by suppressing IgG autoantibody production.

    Science.gov (United States)

    Shi, Lei; Bian, Zhen; Chen, Celia X J; Guo, Ya-Nan; Lv, Zhiyuan; Zeng, Caihong; Liu, Zhihong; Zen, Ke; Liu, Yuan

    2015-11-01

    CD47, a self-recognition marker, plays an important role in both innate and adaptive immune responses. To explore the potential role of CD47 in activation of autoreactive T and B cells and the production of autoantibodies in autoimmune disease, especially systemic lupus erythematosus (SLE), we have generated CD47 knockout Fas(lpr) (CD47(-/-) -Fas(lpr) ) mice and examined histopathological changes in the kidneys, cumulative survival rates, proteinuria, extent of splenomegaly and autoantibodies, serum chemistry and immunological parameters. In comparison with Fas(lpr) mice, CD47(-/-) -Fas(lpr) mice exhibit a prolonged lifespan and delayed autoimmune nephritis, including glomerular cell proliferation, basement membrane thickening, acute tubular atrophy and vacuolization. CD47(-/-) -Fas(lpr) mice have lower levels of proteinuria, associated with reduced deposition of complement C3 and C1q, and IgG but not IgM in the glomeruli, compared to age-matched Fas(lpr) mice. Serum levels of antinuclear antibodies and anti-double-stranded DNA antibodies are significantly lower in CD47(-/-) -Fas(lpr) than in Fas(lpr) mice. CD47(-/-) -Fas(lpr) mice also display less pronounced splenomegaly than Fas(lpr) mice. The mechanistic studies further suggest that CD47 deficiency impairs the antigenic challenge-induced production of IgG but not IgM, and that this effect is associated with reduction of T follicular cells and impairment of germinal centre development in lymphoid tissues. In conclusion, our results demonstrate that CD47 deficiency ameliorates lupus nephritis in Fas(lpr) mice via suppression of IgG autoantibody production. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Male Infertility and DNA Damage in Doppel Knockout and Prion Protein/Doppel Double-Knockout Mice

    OpenAIRE

    Paisley, Derek; Banks, Stephen; Selfridge, Jim; McLennan, Neil F; Ritchie, Ann-Marie; McEwan, Carolanne; Irvine, D Stewart; Philippa T K Saunders; Jean C. Manson; Melton, David

    2004-01-01

    The prion protein (PrP) and Doppel (Dpl) have many structural and biochemical properties in common, leading to the suggestion that the lack of an obvious phenotype in PrP-deficient mice maybe because of compensation by Dpl. To test this hypothesis and also investigate the function of Dpl we have generated Prnd(-/-) and Prnp(-/-)/Prnd(-/-) mouse lines. Both develop normally and display an identical male sterility phenotype that differs from that reported for another Prnd(-/-) mouse line. Sperm...

  3. Bleomycin-Treated Chimeric Thy1-Deficient Mice with Thy1-Deficient Myofibroblasts and Thy-Positive Lymphocytes Resolve Inflammation without Affecting the Fibrotic Response

    Directory of Open Access Journals (Sweden)

    Pazit Y. Cohen

    2015-01-01

    Full Text Available Lung fibrosis is characterized by abnormal accumulation of fibroblasts in the interstitium of the alveolar space. Two populations of myofibroblasts, distinguished by Thy1 expression, are detected in human and murine lungs. Accumulation of Thy1-negative (Thy1− myofibroblasts was shown in the lungs of humans with idiopathic pulmonary fibrosis (IPF and of bleomycin-treated mice. We aimed to identify genetic changes in lung myofibroblasts following Thy1 crosslinking and assess the impact of specific lung myofibroblast Thy1-deficiency, in vivo, in bleomycin-injured mouse lungs. Thy1 increased in mouse lung lymphocytes following bleomycin injury but decreased in myofibroblasts when fibrosis was at the highest point (14 days, as assessed by immunohistochemistry. Using gene chip analysis, we detected that myofibroblast Thy1 crosslinking mediates downregulation of genes promoting cell proliferation, survival, and differentiation, and reduces production of extracellular matrix (ECM components, while concurrently mediating the upregulation of genes known to foster inflammation and immunological functions. Chimeric Thy1-deficient mice with Thy1+ lymphocytes and Thy1− myofibroblasts showed fibrosis similar to wild-type mice and an increased number of CD4/CD25 regulatory T cells, with a concomitant decrease in inflammation. Lung myofibroblasts downregulate Thy1 expression to increase their proliferation but to diminish the in vivo inflammatory milieu. Inflammation is not essential for evolution of fibrosis as was previously stated.

  4. RAGE deficiency alleviates aortic valve calcification in ApoE-/-mice via the inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Wang, Bo; Cai, Zhejun; Liu, Baoqing; Liu, Zongtao; Zhou, Xianming; Dong, Nianguo; Li, Fei

    2017-03-01

    Receptor for advanced glycation end products (RAGE) and endoplasmic reticulum (ER) stress have been shown to be involved in calcific aortic valve disease (CAVD). However, the association between RAGE and ER stress remains unknown in the pathogenesis of CAVD. The current study aims to test the hypothesis that RAGE deficiency alleviates aortic valve calcification via the inhibition of ER stress. Up-regulation of RAGE and ER stress markers in calcified human aortic valves were confirmed by immunoblotting. Aortic valve calcification was evaluated in atherosclerotic prone ApoE -/- mice or in mice with dual deficiencies of ApoE and RAGE (ApoE -/- RAGE -/- ) fed with high cholesterol diet for 24weeks. Echocardiography and histological examination show that genetic deficiency of RAGE attenuates aortic valve calcification in ApoE -/- mice. Meanwhile, RAGE deficiency inhibited the osteogenic signaling and ER stress activation as well as suppressed macrophage infiltration in vivo. Cultured human aortic valve interstitial cells (AVICs) were treated with high molecular group box 1 protein (HMGB1) as in vitro model. We found that HMGB1 induced osteoblastic differentiation and calcification through RAGE/ER stress. Furthermore, Sox9 up-regulation and intranuclear translocation mediated the pro-osteogenic effect of HMGB1 on AVICs. RAGE or ER stress knockdown reduced the up-regulation of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in human AVICs exposed to HMGB1.These novel findings demonstrate that RAGE deficiency protects against aortic valve calcification in high cholesterol diet-fed ApoE -/- mice via inhibition of ER stress. HMGB1 induces AVIC osteoblastic differentiation and calcification through RAGE/ER stress/Sox9 pathway. Copyright © 2016. Published by Elsevier B.V.

  5. Influence of dietary iodine deficiency on the thyroid gland in Slc26a4-null mutant mice

    Directory of Open Access Journals (Sweden)

    Iwata Tomoyuki

    2011-06-01

    Full Text Available Abstract Background Pendred syndrome (PDS is an autosomal recessive disorder characterized by sensorineural hearing impairment and variable degree of goitrous enlargement of the thyroid gland with a partial defect in iodine organification. The thyroid function phenotype can range from normal function to overt hypothyroidism. It is caused by loss-of-function mutations in the SLC26A4 (PDS gene. The severity of the goiter has been postulated to depend on the amount of dietary iodine intake. However, direct evidence has not been shown to support this hypothesis. Because Slc26a4-null mice have deafness but do not develop goiter, we fed the mutant mice a control diet or an iodine-deficient diet to evaluate whether iodine deficiency is a causative environmental factor for goiter development in PDS. Methods We evaluated the thyroid volume in histological sections with the use of three-dimensional reconstitution software, we measured serum levels of total tri-iodothyronine (TT3 and total thyroxine (TT4 levels, and we studied the thyroid gland morphology by transmission electron microscopy. Results TT4 levels became low but TT3 levels did not change significantly after eight weeks of an iodine-deficient diet compared to levels in the control diet animals. Even in Slc26a4-null mice fed an iodine-deficient diet, the volume of the thyroid gland did not increase although the size of each epithelial cell increased with a concomitant decrease of thyroid colloidal area. Conclusions An iodine-deficient diet did not induce goiter in Slc26a4-null mice, suggesting that other environmental, epigenetic or genetic factors are involved in goiter development in PDS.

  6. Autonomic cardiovascular control in methyl-CpG-binding protein 2 (Mecp2) deficient mice.

    Science.gov (United States)

    Bissonnette, John M; Knopp, Sharon J; Maylie, James; Thong, Tran

    2007-10-30

    Methyl-CpG-binding protein 2 is a transcription factor that is involved in gene silencing. It is mutated in the majority of cases of Rett syndrome. This X-linked neurodevelopmental disorder is reported to involve abnormalities in autonomic cardiovascular regulation. As an initial step in understanding the basis for these abnormalities we have characterized autonomic cardiovascular function in Mecp2 deficient mice. Arterial pressure waves were recorded in freely moving animals using telemetry. Baseline blood pressure and pulse interval (PI) as well as indices of heart rate variability (HRV): standard deviation of PI (SDNN), range encompassing 90% of PIs (PI90) and standard deviation of adjacent PIs (SDSD) were similar in Mecp2(+/+) and Mecp2(+/-) animals. Spectral analysis of mean arterial pressure (MAP) and PI in the frequency domain showed similar relative power in low frequency 1 (LF1, 08-0.4 Hz), low frequency 2 (LF2, 0.4-1.0 Hz), middle frequency (MF, 1-3 Hz) and high frequency (HF, 3.0-10.0 Hz) bands. Autonomic blockade with atropine or propranolol as well as elevation in ambient temperature to 32 degrees C resulted in changes in blood pressure, PI and HRV that did not differ between the strains. Atropine, propranolol and elevated temperature resulted in similar changes in both MAP and PI spectral power. Baroreceptor function was tested using intravenous injections of nitroprusside followed by phenylephrine. Maximum gain was not different. These results do reveal any disturbance of autonomic cardiovascular regulation in the Mecp2 deficient mouse genotype.

  7. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice.

    Science.gov (United States)

    Sharara-Chami, Rana I; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A

    2012-06-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Deficiency in type 1 insulin-like growth factor receptor in mice protects against oxygen-induced lung injury

    Directory of Open Access Journals (Sweden)

    Flejou Jean-François

    2005-04-01

    Full Text Available Abstract Background Cellular responses to aging and oxidative stress are regulated by type 1 insulin-like growth factor receptor (IGF-1R. Oxidant injury, which is implicated in the pathophysiology of a number of respiratory diseases, acutely upregulates IGF-1R expression in the lung. This led us to suspect that reduction of IGF-1R levels in lung tissue could prevent deleterious effects of oxygen exposure. Methods Since IGF-1R null mutant mice die at birth from respiratory failure, we generated compound heterozygous mice harboring a hypomorphic (Igf-1rneo and a knockout (Igf-1r- receptor allele. These IGF-1Rneo/- mice, strongly deficient in IGF-1R, were subjected to hyperoxia and analyzed for survival time, ventilatory control, pulmonary histopathology, morphometry, lung edema and vascular permeability. Results Strikingly, after 72 h of exposure to 90% O2, IGF-1Rneo/- mice had a significantly better survival rate during recovery than IGF-1R+/+ mice (77% versus 53%, P neo/- mice which developed conspicuously less edema and vascular extravasation than controls. Also, hyperoxia-induced abnormal pattern of breathing which precipitated respiratory failure was elicited less frequently in the IGF-1Rneo/- mice. Conclusion Together, these data demonstrate that a decrease in IGF-1R signaling in mice protects against oxidant-induced lung injury.

  9. Role of leptin in conditioned place preference to high-fat diet in leptin-deficient ob/ob mice.

    Science.gov (United States)

    Shimizu, Yoshiyuki; Son, Cheol; Aotani, Daisuke; Nomura, Hidenari; Hikida, Takatoshi; Hosoda, Kiminori; Nakao, Kazuwa

    2017-02-15

    Leptin is an adipocyte-derived anorexic hormone that exerts its effects via the hypothalamus and other brain regions, including the reward system. Leptin-deficient ob/ob mice that present morbid obesity, hyperphagia, insulin resistance, and infertility are one of the most investigated mouse models of obesity. Conditioned place preference (CPP) paradigm is a standard behavioral model to evaluate the rewarding value of substrates. While leptin is reported to decrease the CPP of lean mice for high fat diet (HFD), it is unknown how CPP toward HFD is affected by leptin replacement in the pathophysiological condition of ob/ob mice. In the present study, we performed the CPP test in order to clarify the effect of leptin on the preference of ob/ob mice for HFD. Ob/ob mice had a significantly higher HFD preference in CPP test when compared with wild-type (WT) mice and this preference was suppressed to the levels comparable to the WT mice by leptin replacement with or without normalization of body weight. These results demonstrate that leptin decreases the reward value of HFD independently of obesity, suggesting that leptin reduces food intake by suppressing the hedonic feeding pathway in ob/ob mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice.

    Science.gov (United States)

    Brandewiede, Joerg; Jakovcevski, Mira; Stork, Oliver; Schachner, Melitta

    2013-11-01

    The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.

  11. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity.

    Science.gov (United States)

    Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E

    2010-07-16

    Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.

  12. Gender-specific metabolomic profiling of obesity in leptin-deficient ob/ob mice by 1H NMR spectroscopy.

    Science.gov (United States)

    Won, Eun-Young; Yoon, Mi-Kyung; Kim, Sang-Woo; Jung, Youngae; Bae, Hyun-Whee; Lee, Daeyoup; Park, Sung Goo; Lee, Chul-Ho; Hwang, Geum-Sook; Chi, Seung-Wook

    2013-01-01

    Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the (1)H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.

  13. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Yupeng Chen

    Full Text Available Matrilin-1 (Matn1, a cartilage-specific peri-cellular and extracellular matrix (ECM protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/- mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+ mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment.

  14. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.

    Science.gov (United States)

    Holmes, Andrew P; Wong, Shi Quan; Pulix, Michela; Johnson, Kirsty; Horton, Niamh S; Thomas, Patricia; de Magalhães, João Pedro; Plagge, Antonius

    2016-04-14

    Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap

  15. Phenotypic and transcriptional fidelity of patient-derived colon cancer xenografts in immune-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey Chou

    Full Text Available Xenografts of human colorectal cancer (CRC in immune-deficient mice have great potential for accelerating the study of tumor biology and therapy. We evaluated xenografts established in NOD/scid/IL2Rγ-null mice from the primary or metastatic tumors of 27 patients with CRC to estimate their capacity for expanding tumor cells for in vitro studies and to assess how faithful