WorldWideScience

Sample records for proxy climate indicators

  1. Inferring climate variability from skewed proxy records

    Science.gov (United States)

    Emile-Geay, J.; Tingley, M.

    2013-12-01

    Many paleoclimate analyses assume a linear relationship between the proxy and the target climate variable, and that both the climate quantity and the errors follow normal distributions. An ever-increasing number of proxy records, however, are better modeled using distributions that are heavy-tailed, skewed, or otherwise non-normal, on account of the proxies reflecting non-normally distributed climate variables, or having non-linear relationships with a normally distributed climate variable. The analysis of such proxies requires a different set of tools, and this work serves as a cautionary tale on the danger of making conclusions about the underlying climate from applications of classic statistical procedures to heavily skewed proxy records. Inspired by runoff proxies, we consider an idealized proxy characterized by a nonlinear, thresholded relationship with climate, and describe three approaches to using such a record to infer past climate: (i) applying standard methods commonly used in the paleoclimate literature, without considering the non-linearities inherent to the proxy record; (ii) applying a power transform prior to using these standard methods; (iii) constructing a Bayesian model to invert the mechanistic relationship between the climate and the proxy. We find that neglecting the skewness in the proxy leads to erroneous conclusions and often exaggerates changes in climate variability between different time intervals. In contrast, an explicit treatment of the skewness, using either power transforms or a Bayesian inversion of the mechanistic model for the proxy, yields significantly better estimates of past climate variations. We apply these insights in two paleoclimate settings: (1) a classical sedimentary record from Laguna Pallcacocha, Ecuador (Moy et al., 2002). Our results agree with the qualitative aspects of previous analyses of this record, but quantitative departures are evident and hold implications for how such records are interpreted, and

  2. Ecological response to climate change and human activities indicated by n-alkane proxy during the mid- to late Holocene: a case study from an alpine lake

    Science.gov (United States)

    Zhang, C.; Zhao, C.

    2017-12-01

    Paleolimonological records provide long-term dynamics information of past climate, environment, human activities and ecological variations and give evolutionary perspectives to understand responses process of ecological shift to internal or external trigger. In this study, a powerful biomarkers, n-alkanes, was used to reconstruct the past 5000 years organic matter sources and ecological evolution history of Beilianchi Lake in the southwestern of Loess Plateau after preliminary investigation of modern samples. Climate-environment change and human activities were also traced by total organic matter (TOC), magnetic susceptibility (MS) and relevant proxies. The results showed that the ecosystem related to organic matter composition in Beilianchi Lake might be mainly controlled by climate change before 1400 cal B.P., whereas after that, it was significantly influenced by soil erosion induced by increasing population and enhanced human activities. Lake ecosystem experienced periodical change from relatively stable stage with combination of allochthonous-autochthonous organic sources prior to 1400 cal B.P. to extremely instability and final return to steady state with allochthonous-dominant organic source since 300 cal B.P.. During the period of instability, organic matter composition during 1400-800 cal B.P. indicated a obvious bimodal distribution based on probability density distribution analysis, which reflected the lake ecosystem might stay at bistable state and switched repeatedly from more-macrophytes state (regime A with low ACL) towards less-macrophytes state (regime B with high ACL) controlled by disturbance of soil erosion. The flickering during this period could serve as the early warning signal of transition towards more-macrophytes state or less-macrophytes state in lake ecosystems.

  3. Climate proxy data as groundwater tracers in regional flow systems

    Science.gov (United States)

    Clark, J. F.; Morrissey, S. K.; Stute, M.

    2008-05-01

    The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.

  4. Proxy indicators as measure of local economic dispositions in South ...

    African Journals Online (AJOL)

    in international markets. The proxy is a coincidental and pro-cyclic indicator, with a correlation of 0.86. Key similarities exist between the economy and the profitability of hardware stores, although the proxy is not as accurate as the volume of sales in hardware stores. The correlation is measured at 0.85. The profitability of the ...

  5. The Proxy Challenge: Why bespoke proxy indicators can help solve the anti-corruption measurement problem

    OpenAIRE

    Johnsøn, Jesper; Mason, Phil

    2013-01-01

    Practitioners working in anti-corruption face perennial challenges in measuring changes in corruption levels and evaluating whether anti-corruption efforts are successful. These two challenges are linked but not inseparable. To make progress on the latter front, that is, evaluating whether anti-corruption efforts are having an impact, the U4 Anti-Corruption Resource Centre and the UK Department for International Development are launching an exploration into the use of proxy indicators. Proxy ...

  6. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  7. Short-term indicators. Intensities as a proxy for savings

    Energy Technology Data Exchange (ETDEWEB)

    Boonekamp, P.G.M.; Gerdes, J. [ECN Policy Studies, Petten (Netherlands); Faberi, S. [Institute of Studies for the Integration of Systems ISIS, Rome (Italy)

    2013-12-15

    The ODYSSEE database on energy efficiency indicators (www.odyssee-indicators.org) has been set up to enable the monitoring and evaluation of realised energy efficiency improvements and related energy savings. The database covers the 27 EU countries as well as Norway and Croatia and data are available from 1990 on. This work contributes to the growing need for quantitative monitoring and evaluation of the impacts of energy policies and measures, both at the EU and national level, e.g. due to the Energy Services Directive and the proposed Energy Efficiency Directive. Because the underlying data become available only after some time, the savings figures are not always timely available. This is especially true for the ODEX efficiency indices per sector that rely on a number of indicators. Therefore, there is a need for so-called short-term indicators that become available shortly after the year has passed for which data are needed. The short term indicators do not replace the savings indicators but function as a proxy for the savings in the most recent year. This proxy value is faster available, but will be less accurate than the saving indicators themselves. The short term indicators have to be checked regularly with the ODEX indicators in order to see whether they can function still as a proxy.

  8. Identification of climatic state with limited proxy data

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2012-07-01

    Full Text Available We investigate the identifiability of the climate by limited proxy data. We test a data assimilation approach through perfect model pseudoproxy experiments, using a simple likelihood-based weighting based on the particle filtering process. Our experimental set-up enables us to create a massive 10 000-member ensemble at modest computational cost, thus enabling us to generate statistically robust results. We find that the method works well when data are sparse and imprecise, but in this case the reconstruction has a rather low accuracy as indicated by residual RMS errors. Conversely, when data are relatively plentiful and accurate, the estimate tracks the target closely, at least when considering the hemispheric mean. However, in this case, our prior ensemble size of 10 000 appears to be inadequate to correctly represent the true posterior, and the regional performance is poor. Using correlations to assess performance gives a more encouraging picture, with significant correlations ranging from about 0.3 when data are sparse to values over 0.7 when data are plentiful, but the residual RMS errors are substantial in all cases. Our results imply that caution is required in interpreting climate reconstructions, especially when considering the regional scale, as skill on this basis is markedly lower than on the large scale of hemispheric mean temperature.

  9. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    Energy Technology Data Exchange (ETDEWEB)

    Hetzinger, S. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); Halfar, J. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Mecking, J.V.; Keenlyside, N.S. [Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); University of Bergen, Geophysical Institute and Bjerknes Centre for Climate Research, Bergen (Norway); Kronz, A. [University of Goettingen, Geowissenschaftliches Zentrum, Goettingen (Germany); Steneck, R.S. [University of Maine, Darling Marine Center, Walpole, ME (United States); Adey, W.H. [Smithsonian Institution, Department of Botany, Washington, DC (United States); Lebednik, P.A. [ARCADIS U.S. Inc., Walnut Creek, CA (United States)

    2012-09-15

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data. (orig.)

  10. Multiscale combination of climate model simulations and proxy records over the last millennium

    Science.gov (United States)

    Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Tian, Qinhua

    2018-05-01

    To highlight the compatibility of climate model simulation and proxy reconstruction at different timescales, a timescale separation merging method combining proxy records and climate model simulations is presented. Annual mean surface temperature anomalies for the last millennium (851-2005 AD) at various scales over the land of the Northern Hemisphere were reconstructed with 2° × 2° spatial resolution, using an optimal interpolation (OI) algorithm. All target series were decomposed using an ensemble empirical mode decomposition method followed by power spectral analysis. Four typical components were obtained at inter-annual, decadal, multidecadal, and centennial timescales. A total of 323 temperature-sensitive proxy chronologies were incorporated after screening for each component. By scaling the proxy components using variance matching and applying a localized OI algorithm to all four components point by point, we obtained merged surface temperatures. Independent validation indicates that the most significant improvement was for components at the inter-annual scale, but this became less evident with increasing timescales. In mid-latitude land areas, 10-30% of grids were significantly corrected at the inter-annual scale. By assimilating the proxy records, the merged results reduced the gap in response to volcanic forcing between a pure reconstruction and simulation. Difficulty remained in verifying the centennial information and quantifying corresponding uncertainties, so additional effort should be devoted to this aspect in future research.

  11. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe.

    Science.gov (United States)

    Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H

    2002-04-15

    This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.

  12. Climate in Sweden during the past millennium - Evidence from proxy data, instrumental data and model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, Anders; Gouirand, Isabelle; Schoning, Kristian; Wohlfarth, Barbara [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology; Kjellstroem, Erik; Rummukainen, Markku [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden). Rossby Centre; Jong, Rixt de [Lund Univ. (Sweden). Dept. of Quaternary Geology; Linderholm, Hans [Goeteborg Univ. (Sweden). Dept. of Earth Sciences; Zorita, Eduardo [GKSS Research Centre, Geesthacht (Germany)

    2006-12-15

    last millennium. Models, however, cannot be used to deduce the exact time evolution of climate variations, but they can provide relevant information in a statistical sense, for example by defining the limits within which climate naturally has varied. Uncertainties - and also advantages - of both empirical climate data and model simulations are discussed. A main conclusion is that there have been both relatively warm and cold past periods, as well as some relatively wet and dry periods during the past 1,000 to 2,000 years. It appears that the last 70-year period in Sweden was the warmest period over at least the last 500 years. Exactly how unusual the past few decades were can, however, not yet be established due to limitations of the proxy data. There are also indications that significant past changes in precipitation, river runoff and storminess have occurred, although available proxy data do not yet allow accurate quantitative estimations. The results of the present report will be used by SKB, along with other information, in the process of defining and describing future climate scenarios. They will also be used in evaluating the impact of climate on various processes related to repository safety, for example biosphere processes. To increase knowledge of past climate variations in Sweden for the last millennium, it seems necessary to develop additional climate proxy records with annual or at least decadal resolution. Long simulations with climate models may also be used in this context.

  13. Climate in Sweden during the past millennium - Evidence from proxy data, instrumental data and model simulations

    International Nuclear Information System (INIS)

    Moberg, Anders; Gouirand, Isabelle; Schoning, Kristian; Wohlfarth, Barbara

    2006-12-01

    last millennium. Models, however, cannot be used to deduce the exact time evolution of climate variations, but they can provide relevant information in a statistical sense, for example by defining the limits within which climate naturally has varied. Uncertainties - and also advantages - of both empirical climate data and model simulations are discussed. A main conclusion is that there have been both relatively warm and cold past periods, as well as some relatively wet and dry periods during the past 1,000 to 2,000 years. It appears that the last 70-year period in Sweden was the warmest period over at least the last 500 years. Exactly how unusual the past few decades were can, however, not yet be established due to limitations of the proxy data. There are also indications that significant past changes in precipitation, river runoff and storminess have occurred, although available proxy data do not yet allow accurate quantitative estimations. The results of the present report will be used by SKB, along with other information, in the process of defining and describing future climate scenarios. They will also be used in evaluating the impact of climate on various processes related to repository safety, for example biosphere processes. To increase knowledge of past climate variations in Sweden for the last millennium, it seems necessary to develop additional climate proxy records with annual or at least decadal resolution. Long simulations with climate models may also be used in this context

  14. Magnetic record associated with tree ring density: Possible climate proxy

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Pruner, Petr; Venhodová, Daniela; Kadlec, Jaroslav

    2007-01-01

    Roč. 8, - (2007), s. 1-11 ISSN 1467-4866 Institutional research plan: CEZ:AV0Z3013912 Keywords : palaeo-climatic indicator * sequoia tree * magnetic properties Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.842, year: 2007

  15. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    Science.gov (United States)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been

  16. Climate indices for vulnerability assessments

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gunn; Baerring, Lars; Kjellstroem, Erik; Strandberg, Gustav; Rummuk ainen, Markku

    2007-08-15

    The demand is growing for practical information on climate projections and the impacts expected in different geographical regions and different sectors. It is a challenge to transform the vast amount of data produced in climate models into relevant information for climate change impact studies. Climate indices based on climate model data can be used as means to communicate climate change impact relations. In this report a vast amount of results is presented from a multitude of indices based on different regional climate scenarios. The regional climate scenarios described in this report show many similarities with previous scenarios in terms of general evolution and amplitude of future European climate change. The broad features are manifested in increases in warm and decreases in cold indices. Likewise are presented increases in wet indices in the north and dry indices in the south. Despite the extensive nature of the material presented, it does not cover the full range of possible climate change. We foresee a continued interactive process with stakeholders as well as continued efforts and updates of the results presented in the report.

  17. Indications of climatic change

    International Nuclear Information System (INIS)

    2005-04-01

    The earth's annual mean global temperature increased by around 0,6 C during the 20 century, with wide regional differences. Even if solar activity has played some part in the mean temperature rise and some greenhouse gases are present naturally in the atmosphere, enhancing of the greenhouse effect due to the human activities is responsible for a large and increasing part of the observed warming. The work of the Intergovernmental Panel on Climate Change confirms the future increase under all scenarios. Depending on the efforts made by mankind to limit greenhouse gases emissions, the global mean temperature in 2100 could be between 1,4 and 5,8 C higher than in 2000. (A.L.B.)

  18. Pseudo-proxy evaluation of climate field reconstruction methods of North Atlantic climate based on an annually resolved marine proxy network

    Directory of Open Access Journals (Sweden)

    M. Pyrina

    2017-10-01

    Full Text Available Two statistical methods are tested to reconstruct the interannual variations in past sea surface temperatures (SSTs of the North Atlantic (NA Ocean over the past millennium based on annually resolved and absolutely dated marine proxy records of the bivalve mollusk Arctica islandica. The methods are tested in a pseudo-proxy experiment (PPE setup using state-of-the-art climate models (CMIP5 Earth system models and reanalysis data from the COBE2 SST data set. The methods were applied in the virtual reality provided by global climate simulations and reanalysis data to reconstruct the past NA SSTs using pseudo-proxy records that mimic the statistical characteristics and network of Arctica islandica. The multivariate linear regression methods evaluated here are principal component regression and canonical correlation analysis. Differences in the skill of the climate field reconstruction (CFR are assessed according to different calibration periods and different proxy locations within the NA basin. The choice of the climate model used as a surrogate reality in the PPE has a more profound effect on the CFR skill than the calibration period and the statistical reconstruction method. The differences between the two methods are clearer for the MPI-ESM model due to its higher spatial resolution in the NA basin. The pseudo-proxy results of the CCSM4 model are closer to the pseudo-proxy results based on the reanalysis data set COBE2. Conducting PPEs using noise-contaminated pseudo-proxies instead of noise-free pseudo-proxies is important for the evaluation of the methods, as more spatial differences in the reconstruction skill are revealed. Both methods are appropriate for the reconstruction of the temporal evolution of the NA SSTs, even though they lead to a great loss of variance away from the proxy sites. Under reasonable assumptions about the characteristics of the non-climate noise in the proxy records, our results show that the marine network of Arctica

  19. Technical Note: Correcting for signal attenuation from noisy proxy data in climate reconstructions

    KAUST Repository

    Ammann, C. M.; Genton, M. G.; Li, B.

    2010-01-01

    regression parameter estimation can lead to substantial amplitude attenuation if the predictors carry significant amounts of noise. This issue is known as "Measurement Error" (Fuller, 1987; Carroll et al., 2006). Climate proxies derived from tree-rings, ice

  20. Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison

    Directory of Open Access Journals (Sweden)

    F. S. R. Pausata

    2009-09-01

    Full Text Available Using four different climate models, we investigate sea level pressure variability in the extratropical North Atlantic in the preindustrial climate (1750 AD and at the Last Glacial Maximum (LGM, 21 kyrs before present in order to understand how changes in atmospheric circulation can affect signals recorded in climate proxies.

    In general, the models exhibit a significant reduction in interannual variance of sea level pressure at the LGM compared to pre-industrial simulations and this reduction is concentrated in winter. For the preindustrial climate, all models feature a similar leading mode of sea level pressure variability that resembles the leading mode of variability in the instrumental record: the North Atlantic Oscillation (NAO. In contrast, the leading mode of sea level pressure variability at the LGM is model dependent, but in each model different from that in the preindustrial climate. In each model, the leading (NAO-like mode of variability explains a smaller fraction of the variance and also less absolute variance at the LGM than in the preindustrial climate.

    The models show that the relationship between atmospheric variability and surface climate (temperature and precipitation variability change in different climates. Results are model-specific, but indicate that proxy signals at the LGM may be misinterpreted if changes in the spatial pattern and seasonality of surface climate variability are not taken into account.

  1. Pleistocene climate change inferred from multi-proxy analyses of a loess-paleosol sequence in China

    Science.gov (United States)

    Wu, Yi; Qiu, Shifan; Fu, Shuqing; Rao, Zhiguo; Zhu, Zhaoyu

    2018-04-01

    The aeolian loess blanketing the Chinese Loess Plateau (CLP) is sensitive to climate change in monsoonal East Asia. Here, we present a multi-proxy climatic record from a Pleistocene loess-paleosol sequence from the Lantian Basin on the southern margin of the CLP. The measurements include magnetic susceptibility and related magnetic properties, bulk median grain-size, color reflectance, and the color-inferred hematite versus goethite ratio (Hm/Gt). A long-term aridification and cooling trend during the interval from ca 2.22-0.43 Ma is indicated by two magnetic grain-size proxies, corresponding to the global climatic cooling of the late Cenozoic. In addition, at least four intervals of climatic extremes are evident in the record of Hm/Gt ratio: at 1.71-1.65 Ma, 1.26-1.24 Ma, 0.94-0.86 Ma, and 0.62-0.48 Ma. These intervals are characterized by distinct regional climates, which contrast with the global climatic conditions represented in marine sediments. For example, a relatively arid climate is documented from 1.71 to 1.65 Ma, which was rapidly succeeded by a relatively humid climate which is associated with the earliest hominin (with an age of ca 1.63 Ma) in the Lantian Basin.

  2. Understanding north-western Mediterranean climate variability: a multi-proxy and multi-sequence approach based on wavelet analysis.

    Science.gov (United States)

    Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie

    2017-04-01

    Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years

  3. Modified climate with long term memory in tree ring proxies

    Czech Academy of Sciences Publication Activity Database

    Zhang, H.; Yuan, N.; Esper, J.; Werner, J. P.; Xoplaki, E.; Büntgen, Ulf; Treydte, K.; Luterbacher, J.

    2015-01-01

    Roč. 10, č. 8 (2015), č. článku 084020. ISSN 1748-9326 Institutional support: RVO:67179843 Keywords : surface-temperature * northern-hemisphere * china * variability * persistence * precipitation * fluctuations * millennium * rainfall * model * climate reconstructions * tree-ring width * maximum latewood density * frequency domains Subject RIV: EH - Ecology, Behaviour Impact factor: 4.134, year: 2015

  4. Climate indices of Iran under climate change

    OpenAIRE

    alireza kochaki; mehdi nasiry; gholamali kamali

    2009-01-01

    Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the e...

  5. Latest Holocene Climate Variability revealed by a high-resolution multiple Proxy Record off Lisbon (Portugal)

    Science.gov (United States)

    Abrantes, F.; Lebreiro, S.; Ferreira, A.; Gil, I.; Jonsdottir, H.; Rodrigues, T.; Kissel, C.; Grimalt, J.

    2003-04-01

    The North Atlantic Oscillation (NAO) is known to have a major influence on the wintertime climate of the Atlantic basin and surrounding countries, determining precipitation and wind conditions at mid-latitudes. A comparison of Hurrel's NAO index to the mean winter (January-March) discharge of the Iberian Tagus River reveals a good negative correlation to negative NAO, while the years of largest upwelling anomalies, as referred in the literature, appear to be in good agreement with positive NAO. On this basis, a better understanding of the long-term variability of the NAO and Atlantic climate variability can be gained from high-resolution climate records from the Lisbon area. Climate variability of the last 2,000 years is assessed through a multiple proxy study of sedimentary sequences recovered from the Tagus prodelta deposition center, off Lisbon (Western Iberia). Physical properties, XRF and magnetic properties from core logging, grain size, δ18O, TOC, CaCO3, total alkenones, n-alkanes, alkenone SST, diatoms, benthic and planktonic foraminiferal assemblage compositions and fluxes are the proxies employed. The age model for site D13902 is based on AMS C-14 dates from mollusc and planktonic foraminifera shells, the reservoir correction for which was obtained by dating 3 pre-bomb, mollusc shells from the study area. Preliminary results indicate a Little Ice Age (LIA - 1300 - 1600 AD) alkenone derived SSTs around 15 degC followed by a sharp and rapid increase towards 19 degC. In spite the strong variability observed for most records, this low temperature interval is marked by a general increase in organic carbon, total alkenone concentration, diatom and foraminiferal abundances, as well as an increase in the sediment fine fraction and XRF determined Fe content, pointing to important river input and higher productivity. The Medieval Warm Period (1080 - 1300 AD) is characterized by 17-18 degC SSTs, increased mean grain size, but lower magnetic susceptibility and Fe

  6. Technical Note: Correcting for signal attenuation from noisy proxy data in climate reconstructions

    KAUST Repository

    Ammann, C. M.

    2010-04-20

    Regression-based climate reconstructions scale one or more noisy proxy records against a (generally) short instrumental data series. Based on that relationship, the indirect information is then used to estimate that particular measure of climate back in time. A well-calibrated proxy record(s), if stationary in its relationship to the target, should faithfully preserve the mean amplitude of the climatic variable. However, it is well established in the statistical literature that traditional regression parameter estimation can lead to substantial amplitude attenuation if the predictors carry significant amounts of noise. This issue is known as "Measurement Error" (Fuller, 1987; Carroll et al., 2006). Climate proxies derived from tree-rings, ice cores, lake sediments, etc., are inherently noisy and thus all regression-based reconstructions could suffer from this problem. Some recent applications attempt to ward off amplitude attenuation, but implementations are often complex (Lee et al., 2008) or require additional information, e.g. from climate models (Hegerl et al., 2006, 2007). Here we explain the cause of the problem and propose an easy, generally applicable, data-driven strategy to effectively correct for attenuation (Fuller, 1987; Carroll et al., 2006), even at annual resolution. The impact is illustrated in the context of a Northern Hemisphere mean temperature reconstruction. An inescapable trade-off for achieving an unbiased reconstruction is an increase in variance, but for many climate applications the change in mean is a core interest.

  7. Technical Note: Correcting for signal attenuation from noisy proxy data in climate reconstructions

    Directory of Open Access Journals (Sweden)

    C. M. Ammann

    2010-04-01

    Full Text Available Regression-based climate reconstructions scale one or more noisy proxy records against a (generally short instrumental data series. Based on that relationship, the indirect information is then used to estimate that particular measure of climate back in time. A well-calibrated proxy record(s, if stationary in its relationship to the target, should faithfully preserve the mean amplitude of the climatic variable. However, it is well established in the statistical literature that traditional regression parameter estimation can lead to substantial amplitude attenuation if the predictors carry significant amounts of noise. This issue is known as "Measurement Error" (Fuller, 1987; Carroll et al., 2006. Climate proxies derived from tree-rings, ice cores, lake sediments, etc., are inherently noisy and thus all regression-based reconstructions could suffer from this problem. Some recent applications attempt to ward off amplitude attenuation, but implementations are often complex (Lee et al., 2008 or require additional information, e.g. from climate models (Hegerl et al., 2006, 2007. Here we explain the cause of the problem and propose an easy, generally applicable, data-driven strategy to effectively correct for attenuation (Fuller, 1987; Carroll et al., 2006, even at annual resolution. The impact is illustrated in the context of a Northern Hemisphere mean temperature reconstruction. An inescapable trade-off for achieving an unbiased reconstruction is an increase in variance, but for many climate applications the change in mean is a core interest.

  8. Climate change indicators in the United States

    Science.gov (United States)

    2010-04-01

    The U.S. Environmental Protection Agency (EPA) has published this report, Climate Change Indicators in the United States, to help readers interpret a set of important indicators to better understand climate change. The report presents 24 indicators, ...

  9. Climate Proxies: An Inquiry-Based Approach to Discovering Climate Change on Antarctica

    Science.gov (United States)

    Wishart, D. N.

    2016-12-01

    An attractive way to advance climate literacy in higher education is to emphasize its relevance while teaching climate change across the curriculum to science majors and non-science majors. An inquiry-based pedagogical approach was used to engage five groups of students on a "Polar Discovery Project" aimed at interpreting the paleoclimate history of ice cores from Antarctica. Learning objectives and student learning outcomes were clearly defined. Students were assigned several exercises ranging from examination of Antarctic topography to the application of physical and chemical measurements as proxies for climate change. Required materials included base and topographic maps of Antarctica; graph sheets for construction of topographic cross-sectional profiles from profile lines of the Western Antarctica Ice Sheet (WAIS) Divide and East Antarctica; high-resolution photographs of Antarctic ice cores; stratigraphic columns of ice cores; borehole and glaciochemical data (i.e. anions, actions, δ18O, δD etc.); and isotope data on greenhouse gases (CH4, O2, N2) extracted from gas bubbles in ice cores. The methodology was to engage students in (2) construction of topographic profiles; (2) suggest directions for ice flow based on simple physics; (3) formulate decisions on suitable locations for drilling ice cores; (4) visual ice stratigraphy including ice layer counting; (5) observation of any insoluble particles (i.e. meteoritic and volcanic material); (6) analysis of borehole temperature profiles; and (7) the interpretation of several datasets to derive a paleoclimate history of these areas of the continent. The overall goal of the project was to improve the students analytical and quantitative skills; their ability to evaluate relationships between physical and chemical properties in ice cores, and to advance the understanding the impending consequences of climate change while engaging science, technology, engineering and mathematics (STEM). Student learning outcomes

  10. How Hot was Africa during the Mid-Holocene? Reexamining Africa's Thermal History via integrated Climate and Proxy System Modeling

    Science.gov (United States)

    Dee, S.; Russell, J. M.; Morrill, C.

    2017-12-01

    Climate models predict Africa will warm by up to 5°C in the coming century. Reconstructions of African temperature since the Last Glacial Maximum (LGM) have made fundamental contributions to our understanding of past, present, and future climate and can help constrain predictions from general circulation models (GCMs). However, many of these reconstructions are based on proxies of lake temperature, so the confounding influences of lacustrine processes may complicate our interpretations of past changes in tropical climate. These proxy-specific uncertainties require robust methodology for data-model comparison. We develop a new proxy system model (PSM) for paleolimnology to facilitate data-model comparison and to fully characterize uncertainties in climate reconstructions. Output from GCMs are used to force the PSM to simulate lake temperature, hydrology, and associated proxy uncertainties. We compare reconstructed East African lake and air temperatures in individual records and in a stack of 9 lake records to those predicted by our PSM forced with Paleoclimate Model Intercomparison Project (PMIP3) simulations, focusing on the mid-Holocene (6 kyr BP). We additionally employ single-forcing transient climate simulations from TraCE (10 kyr to 4 kyr B.P. and historical), as well as 200-yr time slice simulations from CESM1.0 to run the lake PSM. We test the sensitivity of African climate change during the mid-Holocene to orbital, greenhouse gas, and ice-sheet forcing in single-forcing simulations, and investigate dynamical hypotheses for these changes. Reconstructions of tropical African temperature indicate 1-2ºC warming during the mid-Holocene relative to the present, similar to changes predicted in the coming decades. However, most climate models underestimate the warming observed in these paleoclimate data (Fig. 1, 6kyr B.P.). We investigate this discrepancy using the new lake PSM and climate model simulations, with attention to the (potentially non

  11. Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison

    Science.gov (United States)

    Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang

    2017-12-01

    The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.

  12. Hospital stay as a proxy indicator for severe injury in earthquakes: a retrospective analysis.

    Science.gov (United States)

    Zhao, Lu-Ping; Gerdin, Martin; Westman, Lina; Rodriguez-Llanes, Jose Manuel; Wu, Qi; van den Oever, Barbara; Pan, Liang; Albela, Manuel; Chen, Gao; Zhang, De-Sheng; Guha-Sapir, Debarati; von Schreeb, Johan

    2013-01-01

    Earthquakes are the most violent type of natural disasters and injuries are the dominant medical problem in the early phases after earthquakes. However, likely because of poor data availability, high-quality research on injuries after earthquakes is lacking. Length of hospital stay (LOS) has been validated as a proxy indicator for injury severity in high-income settings and could potentially be used in retrospective research of injuries after earthquakes. In this study, we assessed LOS as an adequate proxy indicator for severe injury in trauma survivors of an earthquake. A retrospective analysis was conducted using a database of 1,878 injured patients from the 2008 Wenchuan earthquake. Our primary outcome was severe injury, defined as a composite measure of serious injury or resource use. Secondary outcomes were serious injury and resource use, analysed separately. Non-parametric receiver operating characteristics (ROC) and area under the curve (AUC) analysis was used to test the discriminatory accuracy of LOS when used to identify severe injury. An 0.7earthquake survivors. However, LOS was found to be a proxy for major nonorthopaedic surgery and blood transfusion. These findings can be useful for retrospective research on earthquake-injured patients when detailed hospital records are not available.

  13. Climate indices of Iran under climate change

    Directory of Open Access Journals (Sweden)

    alireza kochaki

    2009-06-01

    Full Text Available Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the effects of climate change on these variables based on pre-determined scenarios was evaluated. The results showed that averaged over all stations, mean temperature increase for spring in the year 2025 and 2050 will be 3.1 and 3.9, for summer 3.8 and 4.7, for autumn 2.3 and 3 and for winter 2.0 and 2.4 ºC, respectively. This increase will be more pronounced from North to the South and from East to the West parts of the country. Mean decrease in autumn rainfall for the target years of 2025 and 2050 will be 8 and 11 percent, respectively. This decrease is negligible for summer months. Length of dry season for the years 2025 and 2050 will be increased, respectively up to 214 and 223 days due to combined effects of increased temperature and decreased rainfall.

  14. Climate Proxy Signals in the Plio-Pleistocene Chemeron and Miocene Lukeino Formations, Baringo Basin, Kenya

    Science.gov (United States)

    Deino, A. L.; Kingston, J.; Hill, A.; Wilson, K. E.; Edgar, R.; Goble, E.

    2009-12-01

    The Chemeron Formation is a hominin-bearing, highly fossiliferous sequence of dominantly alluvial fan and fluvial sedimentary rocks, with climatically significant lacustrine intercalations, exposed within the Tugen Hills of the central Kenya Rift. As we have previously documented (Deino et al., 2006; Kingston et al., 2007), the formation contains a sequence of five 3-7 m thick diatomites in the interval 2.7-2.5 Ma that record, at precessional intervals, the repeated occurrence of deep-lake conditions in the Baringo Basin. These lakes appear abruptly, persist for only about 8,000 years of the ~23,000 year precessional cycle, and recede quickly. The oscillations have been tied to marine core and Mediterranean sapropel sections based on high-precision 40Ar/39Ar dating of K-feldspar in tuffs interspersed through the sequence, and paleomagnetic reversal stratigraphy. Ongoing paleontological investigations in the Tugen Hills are addressing the dynamics of high-resolution faunal and ecological change directly related to the fluctuating climatic background, including its effect on hominin evolution. This specific interval in the Baringo Basin/Tugen Hills has been identified by the Hominid Sites and Paleolakes Drilling Project Steering Committee as one of five target areas in East Africa for high-resolution coring studies. The drilling project is currently moving forward to the funding agency proposal development phase. Further exploration in the Tugen Hills has revealed a similar, older sequence of rhythmic alternating diatomites and non-lacustrine sediments in nearby drainages. These beds may represent a precessionally driven climate response possibly associated with the next older orbital eccentricity maximum from ~3.2-2.9 Ma. Characterization of the lithostratigraphy of this area is in progress, and samples of intercalated tuff beds suitable for high-precision single-crystal 40Ar/39Ar dating have been acquired. We have also extended our search for climate proxy records

  15. A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany

    Science.gov (United States)

    Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus Peter; Marwan, Norbert

    2016-04-01

    Although Holocene climate dynamics were relatively stable compared to glacial conditions, climatic changes had significant impact on ecosystems and human society on various timescales (Mayewski et al. 2004, Donges et al. 2015, Tan et al. 2015). Precious few high-resolution records on Holocene temperature and precipitation conditions in Central Europe are available (e.g., von Grafenstein et al. 1999, Fohlmeister et al. 2012). Here we present a speleothem-based reconstruction of past climate dynamics from Blessberg Cave, Thuringia, central Germany. Three calcitic stalagmites were recovered when the cave was discovered during tunneling operations in 2008. Samples BB-1, -2 and -3 were precisely dated by the 230Th/U-method, with errors between 10 and 160 years (2σ). The combined record covers large parts of the Holocene (10 - 0.4 ka BP). δ13C and δ18O were analysed at 100 μm resolution. To gain additional insights in infiltration conditions, Sr/Ca and S/Ca were measured on BB-1 and BB-3 using an Röntgenanalytik Eagle XXL μXRF scanner. Differences to other central European records (e.g., von Grafenstein et al. 1999, Fohlmeister et al. 2012) suggest complex interaction between multiple factors influencing speleothem δ18O in Blessberg Cave. Furthermore, no clear influence of the North Atlantic Oscillation on our proxies is found. However, a link across the N Atlantic realm is indicated by a centennial-scale correlation between Blessberg δ18O values and minerogenic input into lake SS1220 in Greenland over the last 5 ka (Olsen et al. 2012). In addition, recurrence analysis indicates an imprint of Atlantic Bond events on Blessberg δ18O values (Marwan et al. 2014), corroborating the suggested link with high northern latitudes. Larger runoff into the Greenland lake seems to be associated with lower δ18O, higher δ13C and S/Ca ratios, as well as lower Sr/Ca ratios in Blessberg Cave speleothems. This might be linked to lower local temperature and/or changes in

  16. New Proxies for Climate change parameters: Foram Culturing and Pteropod Potentials

    Science.gov (United States)

    Keul, N.; Schneider, R. R.; Langer, G.; Bijma, J.; Peijnenburg, K. T.

    2017-12-01

    Global climate change is one of the most pressing challenges our society is currently facing and strong efforts are made to simulate future climate conditions. To better validate models that aim at predicting global temperature rise as a consequence of anthropogenic CO2 emissions, accurate atmospheric paleo-CO2 estimates in combination with temperature reconstructions are necessary. Consequently there is a strong need for reliable proxies, allowing reconstruction of climate change. With respect to foraminifera a combination of laboratory experiments and modeling is presented, to show the isolated impact of the different parameters of the carbonate system on trace element composition of their shells. We focus on U/Ca and Sr/Ca ratios, which have recently been established as new proxies reflecting changes in the carbonate system of seawater. While U/Ca correlates with carbonate ion concentration, Sr/Ca is primarily influenced by DIC. The latter is particularly promising since the impact of additional parameters is relatively well constrained and hence, Sr/Ca ratios may allow higher accuracy in carbonate system parameter reconstructions. Furthermore, our results will be discussed on how to advance our knowledge about foraminiferal biomineralization. Pteropods, among the first responders to ocean acidification and warming, are explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, pteropod shells were collected along a latitudinal transect in the Atlantic Ocean. By comparing shell oxygen isotopic composition to depth changes of the calculated aragonite equilibrium oxygen isotope values, we infer shallow calcification depths for Heliconoides inflatus (75 m), rendering this species a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we demonstrate that indeed, pteropod shells are

  17. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices

    Directory of Open Access Journals (Sweden)

    Youngjoo Kwak

    2015-11-01

    Full Text Available Flood mapping, particularly hazard and risk mapping, is an imperative process and a fundamental part of emergency response and risk management. This paper aims to produce a flood risk proxy map of damaged rice fields over the whole of Bangladesh, where monsoon river floods are dominant and frequent, affecting over 80% of the total population. This proxy risk map was developed to meet the request of the government on a national level. This study represents a rapid, straightforward methodology for estimating rice-crop damage in flood areas of Bangladesh during the large flood from July to September 2007, despite the lack of primary data. We improved a water detection algorithm to achieve a better discrimination capacity to discern flood areas by using a modified land surface water index (MLSWI. Then, rice fields were estimated utilizing a hybrid rice field map from land-cover classification and MODIS-derived indices, such as the normalized difference vegetation index (NDVI and enhanced vegetation index (EVI. The results showed that the developed method is capable of providing instant, comprehensive, nationwide mapping of flood risks, such as rice field damage. The detected flood areas and damaged rice fields during the 2007 flood were verified by comparing them with the Advanced Land Observing Satellite (ALOS AVNIR-2 images (a 10 m spatial resolution and in situ field survey data with moderate agreement (K = 0.57.

  18. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing

    Directory of Open Access Journals (Sweden)

    A. Hind

    2012-08-01

    Full Text Available The statistical framework of Part 1 (Sundberg et al., 2012, for comparing ensemble simulation surface temperature output with temperature proxy and instrumental records, is implemented in a pseudo-proxy experiment. A set of previously published millennial forced simulations (Max Planck Institute – COSMOS, including both "low" and "high" solar radiative forcing histories together with other important forcings, was used to define "true" target temperatures as well as pseudo-proxy and pseudo-instrumental series. In a global land-only experiment, using annual mean temperatures at a 30-yr time resolution with realistic proxy noise levels, it was found that the low and high solar full-forcing simulations could be distinguished. In an additional experiment, where pseudo-proxies were created to reflect a current set of proxy locations and noise levels, the low and high solar forcing simulations could only be distinguished when the latter served as targets. To improve detectability of the low solar simulations, increasing the signal-to-noise ratio in local temperature proxies was more efficient than increasing the spatial coverage of the proxy network. The experiences gained here will be of guidance when these methods are applied to real proxy and instrumental data, for example when the aim is to distinguish which of the alternative solar forcing histories is most compatible with the observed/reconstructed climate.

  19. Late Holocene monsoon climate as evidenced by proxy records from a lacustrine sediment sequence in western Guangdong, South China

    Science.gov (United States)

    Zhong, Wei; Cao, jiayuan; Xue, Jibin; Ouyang, Jun; Tang, Xiaohong; Yin, Huanling; Liao, Congyun; Long, Kun

    2014-02-01

    The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (˜3300-3000 cal yr BP, ˜2600-1600 cal yr BP, and ˜900-600 cal yr BP), and three weakened ASM intervals (˜4000-3300 cal yr BP, ˜3000-2600 cal yr BP, and ˜1600-900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ˜1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic-atmospheric circulation probably have influenced the late Holocene climate variability in the study region.

  20. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments.

    Science.gov (United States)

    Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens

    2012-10-01

    Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium - Part 1: Theory

    Science.gov (United States)

    Sundberg, R.; Moberg, A.; Hind, A.

    2012-08-01

    A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.

  2. Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae).

    Science.gov (United States)

    Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G; González-Martínez, Santiago C

    2015-03-01

    Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. Copyright © 2015 by the Genetics Society of America.

  3. Climate indicators for Italy: calculation and dissemination

    Science.gov (United States)

    Desiato, F.; Fioravanti, G.; Fraschetti, P.; Perconti, W.; Toreti, A.

    2011-05-01

    In Italy, meteorological data necessary and useful for climate studies are collected, processed and archived by a wide range of national and regional institutions. As a result, the density of the stations, the length and frequency of the observations, the quality control procedures and the database structure vary from one dataset to another. In order to maximize the use of those data for climate knowledge and climate change assessments, a computerized system for the collection, quality control, calculation, regular update and rapid dissemination of climate indicators was developed. The products publicly available through a dedicated web site are described, as well as an example of climate trends estimates over Italy, based on the application of statistical models on climate indicators from quality-checked and homogenised time series.

  4. Indicators of climate impacts for forests: recommendations for the US National Climate Assessment indicators system

    Science.gov (United States)

    Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart

    2015-01-01

    The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...

  5. Mobile phone call data as a regional socio-economic proxy indicator.

    Directory of Open Access Journals (Sweden)

    Sanja Šćepanović

    Full Text Available The advent of publishing anonymized call detail records opens the door for temporal and spatial human dynamics studies. Such studies, besides being useful for creating universal models for mobility patterns, could be also used for creating new socio-economic proxy indicators that will not rely only on the local or state institutions. In this paper, from the frequency of calls at different times of the day, in different small regional units (sub-prefectures in Côte d'Ivoire, we infer users' home and work sub-prefectures. This division of users enables us to analyze different mobility and calling patterns for the different regions. We then compare how those patterns correlate to the data from other sources, such as: news for particular events in the given period, census data, economic activity, poverty index, power plants and energy grid data. Our results show high correlation in many of the cases revealing the diversity of socio-economic insights that can be inferred using only mobile phone call data. The methods and the results may be particularly relevant to policy-makers engaged in poverty reduction initiatives as they can provide an affordable tool in the context of resource-constrained developing economies, such as Côte d'Ivoire's.

  6. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life.

    Science.gov (United States)

    Horrocks, Nicholas P C; Hegemann, Arne; Ostrowski, Stéphane; Ndithia, Henry; Shobrak, Mohammed; Williams, Joseph B; Matson, Kevin D; Tieleman, B I

    2015-01-01

    Investment in immune defences is predicted to covary with a variety of ecologically and evolutionarily relevant axes, with pace of life and environmental antigen exposure being two examples. These axes may themselves covary directly or inversely, and such relationships can lead to conflicting predictions regarding immune investment. If pace of life shapes immune investment then, following life history theory, slow-living, arid zone and tropical species should invest more in immunity than fast-living temperate species. Alternatively, if antigen exposure drives immune investment, then species in antigen-rich tropical and temperate environments are predicted to exhibit higher immune indices than species from antigen-poor arid locations. To test these contrasting predictions we investigated how variation in pace of life and antigen exposure influence immune investment in related lark species (Alaudidae) with differing life histories and predicted risks of exposure to environmental microbes and parasites. We used clutch size and total number of eggs laid per year as indicators of pace of life, and aridity, and the climatic variables that influence aridity, as correlates of antigen abundance. We quantified immune investment by measuring four indices of innate immunity. Pace of life explained little of the variation in immune investment, and only one immune measure correlated significantly with pace of life, but not in the predicted direction. Conversely, aridity, our proxy for environmental antigen exposure, was predictive of immune investment, and larks in more mesic environments had higher immune indices than those living in arid, low-risk locations. Our study suggests that abiotic environmental variables with strong ties to environmental antigen exposure can be important correlates of immunological variation.

  7. Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence

    Science.gov (United States)

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C.G.; McKay, Nicolas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng

    2016-01-01

    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7–8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest

  8. Investigating Forest Inventory and Analysis-collected tree-ring data from Utah as a proxy for historical climate

    Science.gov (United States)

    R. Justin DeRose; W. Shih-Yu (Simon) Wang; John D. Shaw

    2012-01-01

    Increment cores collected as part of the periodic inventory in the Intermountain West were examined for their potential to represent growth and be a proxy for climate (precipitation) over a large region (Utah). Standardized and crossdated time-series created from pinyon pine (n=249) and Douglas-fir (n=274) increment cores displayed spatiotemporal patterns in growth...

  9. Climatic and anthropogenic controls on Mississippi River floods: a multi-proxy palaeoflood approach

    Science.gov (United States)

    Munoz, S. E.; Therrell, M. D.; Remo, J. W.; Giosan, L.; Donnelly, J. P.

    2017-12-01

    Over the last century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation, and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment budget and channel morphology, but the influence of these modifications on flood risk is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability prior to the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood risk on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), but that artificial channelization has greatly amplified flood magnitudes over the last century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the last five hundred years that combines sedimentary, tree-ring, and instrumental records, reveal that the magnitude of the 100-year flood has increased by 20% over the period of record, with 75% of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood risk to levels that are unprecedented within the last five centuries.

  10. Reliability and usability of tourism climate indices

    Directory of Open Access Journals (Sweden)

    Ghislain Dubois

    2016-04-01

    Full Text Available Abstract Tourism climate indices (TCI are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc. and users’ needs, from the climate services perspective.

  11. CCME Climate Change Indicators -- Workshop Report

    International Nuclear Information System (INIS)

    2000-01-01

    In an effort to give Canadians a better understanding of the climate change issue, in 1999 the Canadian Council of Ministers of the Environment (CCME) established a Project Working Group to identify and assemble a set of climate change indicators that is scientifically valid, useful and meaningful to the public. To ensure the widest possible participation of experts from all parts of the country the Project Working Group convened a two-day workshop in Toronto to take place on the 6th and 7th of November 2000. The outcome of the workshop, summarized in this report, resulted in a 'Made in Canada' framework of indicators for climate change impacts, divided into five categories: physical environment, personal health and safety, jobs and economic well-being, social and community well-being, and eco-system health. The report contains highlights of the discussions. There are seven appendices containing, respectively, a series of pre-workshop suggestions for indicators (Appendix A), the workshop agenda and backgrounder (Appendix B), a list of participants (Appendix C), presentation slides on the Canada country study (Appendix D), existing and proposed climate change indicators (Appendix E), presentation slides on communication issues (Appendix F), and notes summarizing small group discussions, including assessment of the level of interest demonstrated and opinions expressed by group members about the utility and value of each of the proposed indicators (Appendix G)

  12. The conceptualization and measurement of cognitive reserve using common proxy indicators: Testing some tenable reflective and formative models.

    Science.gov (United States)

    Ikanga, Jean; Hill, Elizabeth M; MacDonald, Douglas A

    2017-02-01

    The examination of cognitive reserve (CR) literature reveals a lack of consensus regarding conceptualization and pervasive problems with its measurement. This study aimed at examining the conceptual nature of CR through the analysis of reflective and formative models using eight proxies commonly employed in the CR literature. We hypothesized that all CR proxies would significantly contribute to a one-factor reflective model and that educational and occupational attainment would produce the strongest loadings on a single CR factor. The sample consisted of 149 participants (82 male/67 female), with 18.1 average years of education and ages of 45-99 years. Participants were assessed for eight proxies of CR (parent socioeconomic status, intellectual functioning, level of education, health literacy, occupational prestige, life leisure activities, physical activities, and spiritual and religious activities). Primary statistical analyses consisted of confirmatory factor analysis (CFA) to test reflective models and structural equation modeling (SEM) to evaluate multiple indicators multiple causes (MIMIC) models. CFA did not produce compelling support for a unitary CR construct when using all eight of our CR proxy variables in a reflective model but fairly cogent evidence for a one-factor model with four variable proxies. A second three-factor reflective model based upon an exploratory principal components analysis of the eight proxies was tested using CFA. Though all eight indicators significantly loaded on their assigned factors, evidence in support of overall model fit was mixed. Based upon the results involving the three-factor reflective model, two alternative formative models were developed and evaluated. While some support was obtained for both, the model in which the formative influences were specified as latent variables appeared to best account for the contributions of all eight proxies to the CR construct. While the findings provide partial support for our

  13. Decade to centennial resolution hydrogen isotopic record of climate change from southern New England for the past 16 kyr: proxy validation and multi-proxy comparisons

    Science.gov (United States)

    Huang, Y.; Gao, L.; Hou, J.; Shuman, B. N.; Oswald, W.; Foster, D.

    2009-12-01

    Open system lakes in New England offer excellent archives of precipitation isotopic ratios that yield quantitative paleoclimate information. We have demonstrated previously from a lake sediment transect that hydrogen isotopic ratios of a middle-chain length fatty acid, behenic acid (BA), faithfully record precipitation isotopic ratios. We hypothesized that mid-chain n-alkyl lipids in these small lakes were primarily derived from aquatic plants that record lake water isotopic ratios. To test this hypothesis, we conducted systematic and extensive sampling of both terrestrial and aquatic plants over the past two years at two typical kettle hole lakes, Blood Pond and Rocky Pond, MA, and used a linear algebra approach to delineate percentage inputs of aquatic and terrestrial plant contributions to mid-chain n-alkyl lipids. Our results demonstrate that >92 % of the mid-chain n-alkyl lipids is derived from submerged and floating aquatic macrophytes. Our new data provide a solid basis for the application of behenic hydrogen isotopic ratios as a paleoclimate proxy from small lakes. We will present a decadal to centennial scale 16 kyr record of BA hydrogen isotopic ratios from Blood Pond, and will discuss the results in light of published pollen and lake level data. Overall, our hydrogen isotopic record is fully consistent with regional climate scenarios, including the distinctive warming at B-A events, abrupt cooling at YD event, and transition from glacial to Holcoene climate conditions. However, our high-solution isotopic data provides important new insights concerning abrupt regional climate variability. We demonstrate that the New England climate is exceptionally senstive to AMOC changes and solar forcing and that many of the abrupt climate fluctuations exert major impacts on terrestrial ecosystems, hydrology and lake levels.

  14. The potential of the baobab (Adansonia digitata L.) as a proxy climate archive

    International Nuclear Information System (INIS)

    Robertson, I.; Loader, N.J.; Froyd, C.A.; Zambatis, N.; Whyte, I.; Woodborne, S.

    2006-01-01

    The large girth and immense size of the baobab has caused many to speculate about its age. Unfortunately reliable age estimates cannot be determined from growth rates as the girth varies in response to different moisture regimes. In a similar way, ages cannot be determined from ring-width measurements or X-ray densitometry as the absorbent nature of the soft fibrous wood and distortion upon drying prevent the application of these techniques. The Southern Hemisphere bomb radiocarbon curve was used to demonstrate that the rings of a recently-fallen baobab (Adansonia digitata L.) from Kruger National Park appear to be annual. The detrended C isotope values of finely-ground wholewood from another baobab specimen were found to be highly associated with January precipitation (r = 0.72; p < 0.01). This study demonstrates that high resolution information about past climates may be obtained by analysing the C isotope values from baobab samples even if distortion of ring-widths has occurred during drying. However, this relationship must be replicated before the baobab can be demonstrated to be a reliable palaeoclimatic proxy

  15. Reconstructing Tropical Southwest Pacific Climate Variability and Mean State Changes at Vanuatu during the Medieval Climate Anomaly using Geochemical Proxies from Corals

    Science.gov (United States)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2017-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when

  16. Wood anatomical parameters of lowland European oak and Scots pine as proxies for climate reconstructions

    Science.gov (United States)

    Balanzategui, Daniel; Heußner, Karl-Uwe; Wazny, Tomasz; Helle, Gerd; Heinrich, Ingo

    2017-04-01

    Tree-ring based temperature reconstructions from the temperate lowlands worldwide are largely missing due to diffuse climate signals so far found in tree-ring widths. This motivated us to concentrate our efforts on the wood anatomies of two common European tree species, the European oak (Quercus robur) and Scots pine (Pinus sylvestris). We combined core samples of living trees with archaeological wood from northern Germany and Poland. We measured approx. 46,000 earlywood oak vessels of 34 trees covering the period AD 1500 to 2016 and approx. 7.5 million pine tracheid cells of 41 trees covering the period AD 1300 to 2010. First climate growth analyses indicate that both oak earlywood vessel and pine tracheid parameters contain climate signals which are different and more significant than those found in tree-ring widths. Preliminary results will be presented and discussed at EGU for the first time.

  17. A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees

    NARCIS (Netherlands)

    Morellón, M.; Pérez-Sanz, A.; Corella, J.P.; Büntgen, U.; Catalán, J.; González-Samprizé, P.; González-Trueba, J.J.; López-Sáez, J.A.; Moreno, A.; Pla-Rabes, S.; Saz-Sánchez, M.Á.; Scussolini, P.; Serrano, E.; Steinhilber, F.; Stefanova, V.; Vegas-Vilarrúbia, T.; Valero-Garcés, B.

    2012-01-01

    This paper reviews multi-proxy paleoclimatic reconstructions with robust age-control derived from lacustrine, dendrochronological and geomorphological records and characterizes the main environmental changes that occurred in the Southern Pyrenees during the last millennium. Warmer and relatively

  18. Surface area changes of Himalayan ponds as a proxy of hydrological climate-driven fluctuations

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Guyennon, Nicolas; Viviano, Gaetano; Tartari, Gianni

    2016-04-01

    (glacial lake outburst floods). Whereas the lake surface areas variations of these lakes are strictly connected with the ablation processes and glacier velocities, variation related to unconnected glacial lakes are possibly influenced by only the resulting glacier melting. This difference with the other lake types makes unconnected glacial lakes potential indicators of changes of the main water balance components of high-elevated lake basins as: precipitation, glacier melting, and evapotranspiration. An evaluable opportunity for a fine-scale investigation on climate-driven fluctuations in lake surface area is particularly evident on the south slopes of Mt. Everest (Nepal), which is one of the most heavily glacierized parts of Himalaya, at same time, the region that is most characterized by glacial lakes in the overall Hindu-Kush-Himalaya range, and in which a twenty years series of temperature and precipitation has been recently reconstructed for high-elevations (5000 m a.s.l.). This contribution examines the surface area changes of unconnected glacial ponds, i.e., that are not directly connected with glaciers, on the south side of Mt. Everest in the last fifty years as part of an effort to evaluate if they can be considered potential indicators useful to detect how the climate is changed at high-elevations of the Himalayan range.

  19. Climate change scenarios and key climate indices in the Swiss Alpine region

    Science.gov (United States)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  20. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    Science.gov (United States)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  1. Potential climatic mechanisms associated with the mega drought at 4200 cal yr BP: linking proxy data with modern climate analogues

    Science.gov (United States)

    Carter, V.; Shinker, J. J.

    2017-12-01

    Roughly 4200 years ago, a 150-year long mega drought occurred in the central Rocky Mountains, as indicated by pollen evidence from lake sediments from Long Lake, south-eastern Wyoming. However, pollen evidence does not record the climate mechanisms that caused the drought; they only provide evidence that the drought occurred. A modern climate analogue technique using North American Regional Reanalysis data was applied to the sedimentary data in order to identify possible synoptic and dynamic patterns that may have caused the mega drought at 4200 cal yr BP. Our results suggest warm and dry conditions were a result of anomalously higher-than-normal geopotential heights that were centred over the Great Plains beginning in the spring and persisting through the fall. Drought conditions during the growing seasons was the result of the anomalous high-pressure ridge, which suppressed moisture transport via the low level jet from the Gulf of Mexico, as well as brought in dry continental air from in the interior region of North America. The conditions associated with modern analogues offer a potential climate mechanism that caused the mega drought 4200 years ago, and likely led to the changes in vegetation composition as evidenced by the pollen record from Long Lake, Wyoming.

  2. Detecting the Spectrum of the Atlantic's Thermo-haline Circulation: Deconvolved Climate Proxies Show How Polar Climates Communicate

    Science.gov (United States)

    Reischmann, Elizabeth; Yang, Xiao; Rial, José

    2014-05-01

    Deconvolution is widely used in a wide variety of scientific fields, including its significant use in seismology, as a tool to recover real input from a system's impulse response and output. Our research uses spectral division deconvolution in the context of studying the impulse response of the possible relationship between the nonlinear climates of the Polar Regions by using select δ18O ice cores from both poles. This is feasible in spite of the fact that the records may be the result of nonlinear processes because the two polar climates are synchronized for the period studied, forming a Hilbert transform pair. In order to perform this analysis, the age models of three Greenland and four Antarctica records have been matched using a Monte Carlo method with the methane-matched pair GRIP and BYRD as a basis of calculations. For all of the twelve resulting pairs, various deconvolutions schemes (Weiner, Damped Least Squares, Tikhonov, Truncated Singular Value Decomposition) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis then demonstrates strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. However, these results are directionally dependent, with the transfer function from north to south differing from that of south north. High amplitude power peaks at 5,000 to 1,7000 years characterize the former, while the latter contains peaks at 2,500 to 1,700 years. These predominant periodicities are also found in the data, some of which have been identified as solar forcing, but others of which may indicate internal oscillations of the climate system (1.6-1.4ky). The approximately 1,500 year period transfer function, which does not have a corresponding solar forcing, may indicate one of these internal periodicities of the system, perhaps even indicating the long-term presence of the Deep Water circulation, also known as the thermo-haline circulation (THC). Simplified models of

  3. Tree thermometers and commodities: historic climate indicators

    International Nuclear Information System (INIS)

    Libby, L.M.; Pandolfi, L.J.

    1979-01-01

    In four modern trees, hydrogen and oxygen isotope ratios track the modern temperature records. In a 2000-yr sequence of a Japanese cedar, there are the same periodicities of variation of D/H and O 18 /O 16 as have been found in O 18 /O 16 in a Greenland ice well. The same periodicities are found in uranium and organic carbon concentrations versus depth in a sea core from the Santa Barbara Channel, and in carbon-14 variations in a sequence of Bristlecone pine from southern California. In a 2000-yr sequence of Japanese cedar and in a 1000-yr sequence of European oak D/H and O 18 /O 16 are related to each other by a slope of 8, just as they are in world-wide precipitation. In a 72-yr sequence of Sequoia gigantea, measured year by year for its oxygen isotope ratios, the 10.5-yr cycle of sunspot numbers found, but not the 21-yr cycle of sunspot magnetism; this we believe indicates that the sun is affecting the earth's climate with non-magnetic particles, probably photons. All these phenomena are related to periodic changes in sea surface temperature caused by periodic changes in the sun. (author)

  4. Climate Change Indicators: Health and Society

    Science.gov (United States)

    ... chapter looks at some of the ways that climate change is affecting human health and society, including changes in Lyme disease, West ... health effects. Why does it matter? Changes in climate affect the ... to human health and welfare. Warmer average temperatures will likely lead ...

  5. A 481-year chronology of oak earlywood vessels as an age-independent climatic proxy in NW Iberia

    Science.gov (United States)

    Souto-Herrero, Manuel; Rozas, Vicente; García-González, Ignacio

    2017-08-01

    The earlywood vessels of ring-porous trees can be analyzed dendrochronologically and used as a proxy for environmental information. However, most works deal with the analysis of contemporary climate-growth relationships and do not evaluate their long-term variation. We obtained a 481-year chronology of earlywood vessel size of oak (Quercus robur L.) in the northwestern Iberian Peninsula, investigated its behavior through time, and compared it to a chronology of younger trees developed at the same site. We expressed earlywood vessel size as the hydraulically-weighted diameter (DH) and discriminated between vessels in the first row (r1) and the rest of the vessels (nr1); radial increment was assessed from latewood width (LW). Climate-growth relationships were strong and nearly identical for both age classes. Spring temperature positively affected vessel size, but only for the first row, probably mediating the onset of cambial activity. The chronology of old trees showed an almost flat age trend, except for the first decades, and series were not affected by stand dynamics. In contrast, LW had a weak response to climate, probably because of the high impact of abrupt growth changes. There was a high negative correlation between DH and the winter North Atlantic Oscillation Index (NAO), which was unstable during the 20th century. To our knowledge, this is the longest chronology of earlywood vessel size obtained to date, and offers promising results, as this proxy is shown to be independent of age and forest disturbances, and was strongly correlated to climate across long time spans.

  6. Advances in Alkenone Paleotemperature Proxies: Analytical Methods, Novel Structures and Haptophyte Species, Biosynthesis, New indices and Ecological Aspects

    Science.gov (United States)

    Huang, Y.; Longo, W. M.; Zheng, Y.; Richter, N.; Dillon, J. T.; Theroux, S.; D'Andrea, W. J.; Toney, J. L.; Wang, L.; Amaral-Zettler, L. A.

    2017-12-01

    Alkenones are mature, well-established paleo-sea surface temperature proxies that have been widely applied for more than three decades. However, recent advances across a broad range of alkenone-related topics at Brown University are inviting new paleoclimate and paleo-environmental applications for these classic biomarkers. In this presentation, I will summarize our progress in the following areas: (1) Discovery of a freshwater alkenone-producing haptophyte species and structural elucidation of novel alkenone structures unique to the species, performing in-situ temperature calibrations, and classifying alkenone-producing haptophytes into three groups based on molecular ecological approaches (with the new species belonging to Group I Isochrysidales); (2) A global survey of Group I haptophyte distributions and environmental conditions favoring the presence of this alga, as well as examples of using Group I alkenones for paleotemperature reconstructions; (3) New gas chromatographic columns that allow unprecedented resolution of alkenones and alkenoates and associated structural isomers, and development of a new suite of paleotemperature and paleoenvironmental proxies; (4) A new liquid chromatographic separation technique that allows efficient cleanup of alkenones and alkenoates (without the need for saponification) for subsequent coelution-free gas chromatographic analysis; (5) Novel structural features revealed by new analytical methods that now allow a comprehensive re-assessment of taxonomic features of various haptophyte species, with principal component analysis capable of fully resolving species biomarker distributions; (6) Development of UK37 double prime (UK37'') for Group II haptophytes (e.g., those occurring in saline lakes and estuaries), that differs from the traditional unsaturation indices used for SST reconstructions; (7) New assessment of how mixed inputs from different alkenone groups may affect SST reconstructions in marginal ocean environments and

  7. Are optical indices good proxies of seasonal changes in carbon fluxes and stress-related physiological status in a beech forest?

    Science.gov (United States)

    Nestola, E; Scartazza, A; Di Baccio, D; Castagna, A; Ranieri, A; Cammarano, M; Mazzenga, F; Matteucci, G; Calfapietra, C

    2018-01-15

    This study investigates the functionality of a Mediterranean-mountain beech forest in Central Italy using simultaneous determinations of optical measurements, carbon (C) fluxes, leaf eco-physiological and biochemical traits during two growing seasons (2014-2015). Meteorological variables showed significant differences between the two growing seasons, highlighting a heat stress coupled with a reduced water availability in mid-summer 2015. As a result, a different C sink capacity of the forest was observed between the two years of study, due to the differences in stressful conditions and the related plant physiological status. Spectral indices related to vegetation (VIs, classified in structural, chlorophyll and carotenoid indices) were computed at top canopy level and used to track CO 2 fluxes and physiological changes. Optical indices related to structure (EVI 2, RDVI, DVI and MCARI 1) were found to better track Net Ecosystem Exchange (NEE) variations for 2014, while indices related to chlorophylls (SR red edge, CL red edge, MTCI and DR) provided better results for 2015. This suggests that when environmental conditions are not limiting for forest sink capacity, structural parameters are more strictly connected to C uptake, while under stress conditions indices related to functional features (e.g., chlorophyll content) become more relevant. Chlorophyll indices calculated with red edge bands (SR red edge, NDVI red edge, DR, CL red edge) resulted to be highly correlated with leaf nitrogen content (R 2 >0.70), while weaker, although significant, correlations were found with chlorophyll content. Carotenoid indices (PRI and PSRI) were strongly correlated with both chlorophylls and carotenoids content, suggesting that these indices are good proxies of the shifting pigment composition related to changes in soil moisture, heat stress and senescence. Our work suggests the importance of integrating different methods as a successful approach to understand how changing climatic

  8. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea

    Science.gov (United States)

    Bunzel, Dorothea; Schmiedl, Gerhard; Lindhorst, Sebastian; Mackensen, Andreas; Reolid, Jesús; Romahn, Sarah; Betzler, Christian

    2017-12-01

    As a natural sediment trap, the marine sediments of the sheltered central part of the Maldives Inner Sea represent an exceptional archive for paleoenvironmental and climate changes in the equatorial Indian Ocean. To evaluate the complex interplay between high-latitude and monsoonal climate variability, related dust fluxes, and regional oceanographic responses, we focused on Fe / Al, Ti / Al and Si / Ca ratios as proxies for terrigenous sediment delivery and total organic carbon (TOC) and Br XRF counts as proxies for marine productivity. Benthic foraminiferal fauna distributions, grain size and stable δ18O and δ13C data were used for evaluating changes in the benthic ecosystem and changes in the intermediate water circulation, bottom water current velocity and oxygenation. Our multi-proxy data record reveals an enhanced dust supply during the glacial intervals, causing elevated Fe / Al and Si / Ca ratios, an overall coarsening of the sediment and an increasing amount of agglutinated benthic foraminifera. The enhanced dust fluxes can be attributed to higher dust availability in the Asian desert and loess areas and its transport by intensified winter monsoon winds during glacial conditions. These combined effects of wind-induced mixing of surface waters and dust fertilization during the cold phases resulted in an increased surface water productivity and related organic carbon fluxes. Thus, the development of highly diverse benthic foraminiferal faunas with certain detritus and suspension feeders was fostered. The difference in the δ13C signal between epifaunal and deep infaunal benthic foraminifera reveals intermediate water oxygen concentrations between approximately 40 and 100 µmol kg-1 during this time. The precessional fluctuation pattern of oxygen changes resembles that from the deep Arabian Sea, suggesting an expansion of the oxygen minimum zone (OMZ) from the Arabian Sea into the tropical Indian Ocean with a probable regional signal of strengthened winter

  9. Climate Prediction Center (CPC) Palmer Drought and Crop Moisture Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Prediction Center (CPC) Palmer Drought Severity and Crop Moisture Indices are computed for the 344 U.S. Climate Divisions on a weekly basis based on a...

  10. Development of DEMQOL-U and DEMQOL-PROXY-U: generation of preference-based indices from DEMQOL and DEMQOL-PROXY for use in economic evaluation.

    Science.gov (United States)

    Mulhern, B; Rowen, D; Brazier, J; Smith, S; Romeo, R; Tait, R; Watchurst, C; Chua, K-C; Loftus, V; Young, T; Lamping, D; Knapp, M; Howard, R; Banerjee, S

    2013-02-01

    Dementia is one of the most common and serious disorders in later life and the economic and personal cost of caring for people with dementia is immense. There is a need to be able to evaluate interventions in dementia using cost-effectiveness analyses, but the generic preference-based measures typically used to measure effectiveness do not work well in dementia. Existing dementia-specific measures can effectively measure health-related quality of life but in their current form cannot be used directly to inform cost-effectiveness analysis using quality-adjusted life-years as the measure of effectiveness. The aim was to develop two brief health-state classifications, one from DEMQOL and one from DEMQOL-Proxy, to generate health states amenable to valuation. These classification systems consisted of items taken from DEMQOL and DEMQOL-Proxy so they can be derived from any study that has used these instruments. In the first stage of the study we used a large, clinically representative sample aggregated from two sources: a sample of patients and carers attending a memory service in south London and a sample of patients and carers from other community services in south London. This included 644 people with a diagnosis of mild/moderate dementia and 689 carers of those with mild/moderate dementia. For the valuation study, the general population sample of 600 respondents was drawn to be representative of the UK general population. Households were sampled in urban and rural areas in northern England and balanced to the UK population according to geodemographic profiles. In the patient/carer valuation study we interviewed a sample of 71 people with mild dementia and 71 family carers drawn from a memory service in south London. Finally, the instruments derived were applied to data from the HTA-SADD (Study of Antidepressants for Depression in Dementia) trial. This was a complex multiphase study with four linked phases: phase 1 - derivation of the health-state classification

  11. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences

    NARCIS (Netherlands)

    Bokhorst, M.P.; Beets, C.J.; Markovic, S.B.; Gerasimenko, N.P.; Matviishina, Z.N.; Frechen, M.

    2009-01-01

    The last glacial-interglacial loess-paleosol sequences of Serbia and Ukraine provide a good climate reconstruction potential for this part of Europe. Four loess sections distributed over an area with present-day moist to semi-arid climates were studied. In addition to traditional paleoclimate

  12. Proxy indicators for identifying iron deficiency among anemic vegetarians in an area prevalent for thalassemia and hemoglobinopathies.

    Science.gov (United States)

    Wongprachum, Kasama; Sanchaisuriya, Kanokwan; Sanchaisuriya, Pattara; Siridamrongvattana, Sirivara; Manpeun, Suwanna; Schlep, Frank P

    2012-01-01

    The study aimed to determine the proportion of iron deficiency (ID) anemia (IDA) among vegans in northeast Thailand and to explore whether mathematical formulas derived from red blood cell (RBC) indices are applicable for IDA screening in the study population. Blood samples from 234 individuals (age 6-45 years) living in a vegan community were taken. Complete blood cell count, serum ferritin, hemoglobin profiles and DNA analysis for α-thalassemia were determined. Anemia was defined using the WHO criteria adjusted for age and sex. Serum ferritin thalassemia and hemoglobinopathies was 56.4% (95% CI = 49.8-62.9%). Of the anemic participants, 45.4% had ID. Based on the receiver-operating characteristic curve analysis, 4 formulas were applicable for predicting ID among anemic individuals (highest sensitivity of 86.4%). The proposed formulas might be used as proxy indicators for the identification of ID among anemic children and adult vegans if more sophisticated laboratory determinations are not available due to limited financial resources. Copyright © 2012 S. Karger AG, Basel.

  13. The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: insights from climate chamber and climate transect calibrations

    Directory of Open Access Journals (Sweden)

    A. Alexandre

    2018-05-01

    Full Text Available Continental atmospheric relative humidity (RH is a key climate parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor, which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility of making model–data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess  =  ln (δ17O + 1 – 0.528  ×  ln (δ18O + 1, in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 % in a growth chamber experiment where transpiration reached a steady state. Decreasing RH from 80 to 40 % decreases the 17O-excess of phytoliths by 4.1 per meg/% as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and

  14. SOILS AS INDICATORS OF CLIMATIC CHANGES

    Directory of Open Access Journals (Sweden)

    Yury Chendev

    2012-01-01

    Full Text Available A number of examples for the reaction of chernozems in the center of the East European Plain and their relation to different periodical climatic changes are examined. According to unequal-age chernozems properties, the transition from the Middle Holocene arid conditions to the Late Holocene wet conditions occurred at 4000 yr BP. Using data on changes of soil properties, the position of boundary between steppe and forest-steppe and the annual amount of precipitation at approximately 4000 yr BP were reconstructed. The change from warm-dry to cool-moist climatic phases, which occurred at the end of the XX century as a reflection of intra-age-long climatic cyclic recurrence, led to the strengthening of dehumification over the profile of automorphic chernozems and to the reduction of its content in the upper meter of the soils. The leaching of carbonates and of readily soluble salts contributed to the decrease in soil areas occupied by typical and solonetzic chernozems, and to the increase in areas occupied by leached chernozems.

  15. Indexes of leading climate indicators for impact assessment

    International Nuclear Information System (INIS)

    Easterling, W.E.; Kates, R.W.

    1995-01-01

    Could users of climate information for impact assessment be overlooking an important source of information in climate indicators? We argue that indexes of leading climate indicators of impacts may be usable knowledge for consumers and may provide guidance to the global climate observing community concerning the types of data and information that users need. Five classes of indexes are suggested: Climate Extremes Index (CEI) and Greenhouse Climate Response Index (GCRI) - such are already available from scientists at the US National Climatic Data Center - plus proposed indexes of Hazard Warning, Ecosystem Health, and Energy Demand and Renewable Natural Resources. We conclude that the CEI and GCRI posses several necessary attributes to become usable knowledge; the other indexes have the potential to become usable knowledge, but remain to be implemented with climate data and fully evaluated. 34 refs

  16. Multi-proxy evidence of millennial climate variability from multiple Bahamian speleothems

    Science.gov (United States)

    Arienzo, Monica M.; Swart, Peter K.; Broad, Kenneth; Clement, Amy C.; Pourmand, Ali; Kakuk, Brian

    2017-04-01

    Northern Hemisphere tropical paleoclimate records support significant changes associated with Dansgaard Oeschger (D/O) events and Heinrich stadials 1 to 6 during the last 64,000 years. However, few absolutely dated terrestrial records from the western Atlantic span the last six Heinrich stadials. Here we present geochemical results from three new stalagmites collected from a cave in the Bahamas which encompass Heinrich stadials 1 to 6. We build on a previous study of the δ13C and δ18O values of the calcite and δ18O value of fluid inclusions from a single stalagmite from the same cave spanning the last three Heinrich stadials. Absolute geochronometry using U-Th equilibrium series demonstrates that the stalagmites formed between 63.8 and 13.8 kyr BP. The δ13C and δ18O values of the calcite show higher values associated with Heinrich stadials 1-6, and lower values during the D/O interstadial events. The Sr/Ca ratios of the calcite are shown to be relatively invariant, while in two of the samples the Mg/Ca ratios track the δ13C values. Increases in the δ18O values across Heinrich stadials 1-6 are interpreted as being driven by lower temperatures. The two deeper occurring stalagmites demonstrate increased Mg/Ca ratios and δ13C values during Heinrich stadials 1 and 2 which are interpreted as a signal of reduced flow rates in the epikarst and increased water/rock interactions as a result of increased aridity which potentially occurred across all six Heinrich stadials. The observed reductions in mean annual temperature and amount of precipitation across Heinrich stadials are proposed to be driven by a reduction in sea surface temperatures in the North Atlantic and an expanded Bermuda High. During D/O interstadials, the Bahamas cave records likely indicate warmer and/or wetter climate; however the isotopic shifts are not as significant as the isotopic excursions associated with Heinrich stadials.

  17. Generating and Visualizing Climate Indices using Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Guentchev, G.; Rood, R. B.

    2017-12-01

    Climate change is expected to have largest impacts on regional and local scales. Relevant and credible climate information is needed to support the planning and adaptation efforts in our communities. The volume of climate projections of temperature and precipitation is steadily increasing, as datasets are being generated on finer spatial and temporal grids with an increasing number of ensembles to characterize uncertainty. Despite advancements in tools for querying and retrieving subsets of these large, multi-dimensional datasets, ease of access remains a barrier for many existing and potential users who want to derive useful information from these data, particularly for those outside of the climate modelling research community. Climate indices, that can be derived from daily temperature and precipitation data, such as annual number of frost days or growing season length, can provide useful information to practitioners and stakeholders. For this work the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was loaded into Google Earth Engine, a cloud-based geospatial processing platform. Algorithms that use the Earth Engine API to generate several climate indices were written. The indices were chosen from the set developed by the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). Simple user interfaces were created that allow users to query, produce maps and graphs of the indices, as well as download results for additional analyses. These browser-based interfaces could allow users in low-bandwidth environments to access climate information. This research shows that calculating climate indices from global downscaled climate projection datasets and sharing them widely using cloud computing technologies is feasible. Further development will focus on exposing the climate indices to existing applications via the Earth Engine API, and building custom user interfaces for presenting climate indices to a diverse set of

  18. Methodology for qualitative uncertainty assessment of climate impact indicators

    Science.gov (United States)

    Otto, Juliane; Keup-Thiel, Elke; Rechid, Diana; Hänsler, Andreas; Pfeifer, Susanne; Roth, Ellinor; Jacob, Daniela

    2016-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing an integrated platform of climate data services to provide a single point of access for authoritative scientific information on climate change and climate change impacts. In this project, the Climate Service Center Germany (GERICS) has been in charge of the development of a methodology on how to assess the uncertainties related to climate impact indicators. Existing climate data portals mainly treat the uncertainties in two ways: Either they provide generic guidance and/or express with statistical measures the quantifiable fraction of the uncertainty. However, none of the climate data portals give the users a qualitative guidance how confident they can be in the validity of the displayed data. The need for such guidance was identified in CLIPC user consultations. Therefore, we aim to provide an uncertainty assessment that provides the users with climate impact indicator-specific guidance on the degree to which they can trust the outcome. We will present an approach that provides information on the importance of different sources of uncertainties associated with a specific climate impact indicator and how these sources affect the overall 'degree of confidence' of this respective indicator. To meet users requirements in the effective communication of uncertainties, their feedback has been involved during the development process of the methodology. Assessing and visualising the quantitative component of uncertainty is part of the qualitative guidance. As visual analysis method, we apply the Climate Signal Maps (Pfeifer et al. 2015), which highlight only those areas with robust climate change signals. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Reference Pfeifer, S., Bülow, K., Gobiet, A., Hänsler, A., Mudelsee, M., Otto, J., Rechid, D., Teichmann, C. and Jacob, D.: Robustness of Ensemble Climate Projections

  19. Reconstructing Holocene (sub)tropical climate and cyclone variability using geochemical proxies

    OpenAIRE

    van Soelen, E.E.

    2012-01-01

    Anthropogenic greenhouse gas emissions are responsible for a warming trend that cannot easily be reversed. This warming trend is expected to have a large impact on global weather patterns and local environmental conditions, for example by changing precipitation patterns, sea level rise and increasing tropical cyclone activity. Therefore, (sub)tropical coastal regions are expected to be heavily impacted by future climate change. To improve our understanding of the possible consequences of futu...

  20. Climate and demography in early prehistory: using calibrated (14)C dates as population proxies.

    Science.gov (United States)

    Riede, Felix

    2009-04-01

    Although difficult to estimate for prehistoric hunter-gatherer populations, demographic variables-population size, density, and the connectedness of demes-are critical for a better understanding of the processes of material culture change, especially in deep prehistory. Demography is the middle-range link between climatic changes and both biological and cultural evolutionary trajectories of human populations. Much of human material culture functions as a buffer against climatic changes, and the study of prehistoric population dynamics, estimated through changing frequencies of calibrated radiocarbon dates, therefore affords insights into how effectively such buffers operated and when they failed. In reviewing a number of case studies (Mesolithic Ireland, the origin of the Bromme culture, and the earliest late glacial human recolonization of southern Scandinavia), I suggest that a greater awareness of demographic processes, and in particular of demographic declines, provides many fresh insights into what structured the archaeological record. I argue that we cannot sideline climatic and environmental factors or extreme geophysical events in our reconstructions of prehistoric culture change. The implications of accepting demographic variability as a departure point for evaluating the archaeological record are discussed.

  1. Mid- to Late Holocene climate development in Central Asia as revealed from multi-proxy analyses of sediments from Lake Son Kol (Kyrgyzstan)

    Science.gov (United States)

    Lauterbach, Stefan; Dulski, Peter; Gleixner, Gerd; Hettler-Riedel, Sabine; Mingram, Jens; Plessen, Birgit; Prasad, Sushma; Schwalb, Antje; Schwarz, Anja; Stebich, Martina; Witt, Roman

    2013-04-01

    A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41° 48'N, 75° 12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point

  2. Wildlife as biological indicators for assessing impacts of climate change

    International Nuclear Information System (INIS)

    Diamond, A.W.

    1990-01-01

    Estimates of the impacts of climate change on wildlife are necessarily constrained by knowledge of the effects of climate on wildlife. A review is presented of the better-known impacts of climate on wildlife, examining their utility as ecological indicators. The most obvious feature of any species is its geographic distribution, or range. Climate may affect distribution indirectly through effects on habitat, directly through physiological effects, or most probably, through both. Impacts can include changes in distribution of habitat, changes in distribution of species, and changes in migration routes. Direct effects of climate include timing and success of breeding, timing and success of migration, winter survival, and extreme events. Distribution changes are powerful integrators of ecosystem-level events, but poor indicators of particular changes. Changes in the timing of migration, and the phenology of breeding, are more directly determined by weather events and hence will be better indicators of changing climate. Detailed knowledge of effects of climate on timing and success of breeding is available for only a few species, and has not been carefully synthesized with a view to using such variables as climatic indicators. Temperature maxima and minima, frost-free and degree days, and estimates of precipitation on finer scales, both temporal and geographic, are needed to predict the effects of climate change on wildlife. 48 refs

  3. A forward looking, actor based, indicator for climate gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Torgeir; Randers, Joergen

    2011-04-15

    The most commonly used Norwegian indicator for climate change displays historical emissions and compare with Norway's Kyoto target. This indicator says little about future emissions, about the ongoing Norwegian effort to reduce climate gas emissions, or about its effect on sustainability. In this paper we propose an indicator that improves on these weaknesses. We present a forward looking climate indicator that in addition to historic data includes business as usual scenarios, different proposals for future domestic emissions, and national or international commitments and agreements. This indicator presents - in one graph - a broad diversity of views on how the climate challenge should be handled from now and into the future. This indicator-graph may contribute to a more transparent discussion of available policy options. (Author)

  4. Communicating global climate change using simple indices: an update

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Frank; Karoly, David [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Braganza, Karl [National Climate Centre, Bureau of Meteorology, Melbourne, VIC (Australia)

    2012-08-15

    Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature. (orig.)

  5. National Climate Assessment Indicators: Background, Development, & Examples

    Energy Technology Data Exchange (ETDEWEB)

    Janetos, Anthony C.; Chen, Robert; Arndt, Deke; Kenney, Melissa A.; Abbasi, Daniel; Armstrong, Tom; Bartuska, Ann; Blair, Maria; Buizer, Jim; Dietz, Tom; Easterling, Dave; Kaye, Jack; Kolian, Michael; McGeehin, Michael; O' Connor, Robert; Pulwarty, Roger; Running, Steve; Schmalensee, Dick; Webb, Robert; Weltzin, Jake; Baptista, Sandra; Enquist, Carolyn A.; Janetos, Anthony C.; Chen, Robert; Arndt, Deke; Hatfield, Jerry; Hayes, Mark L.; Jones, K. Burce; McNutt, Chad; Meier, Wayne R.; Schwartz, Mark D.; Svoboda, Mark

    2012-02-28

    Indicators are usually thought of as measurements or calculations that represent important features of the status, trend, or performance of a system of interest (e.g. the economy, agriculture, air quality). They are often used for the most practical of reasons – one cannot measure everything important about systems of interest, so there is a practical need to identify major features that can be reported periodically and used to guide both research and decisions (NRC 2000).

  6. Silver and lead in high-altitude lake sediments: Proxies for climate changes and human activities

    International Nuclear Information System (INIS)

    Garçon, Marion; Chauvel, Catherine; Chapron, Emmanuel; Faïn, Xavier; Lin, Mingfang; Campillo, Sylvain; Bureau, Sarah; Desmet, Marc; Bailly-Maître, Marie-Christine; Charlet, Laurent

    2012-01-01

    High-altitude lake sediments are often used as archives for environmental changes and their chemical and isotopic compositions provide significant constraints on natural and anthropogenic long-term changes that have occurred in their catchment area. Here, trace-element concentrations and Pb isotopes are presented for two sedimentary cores from Lake Blanc Huez in the French Alps, to trace the impact of climate changes and human activities over the Holocene. Lead and Ag contents are very high and clearly dominated by input from a Pb–Ag vein located a few meters from the lakeshore, a vein that also buffers the Pb isotopes. Mining of this vein in medieval times is recorded in the corresponding lake sediments with high Ag content coupled with high Pb/U ratio. These chemical characteristics can be used to constrain the major Holocene climate changes. Significant advances of glaciers next to the lake produced sediments with Ag and Pb concentration peaks and high Pb/U ratios due to accelerated erosion of the Pb–Ag vein, similar to the effects of the medieval mining. In contrast, reduced glacier activity led to the formation of organic-rich sediments with high U and As contents and low Pb/U ratios. More generally, the observed combination of chemical changes could be used elsewhere to decipher environmental changes over long periods of time.

  7. A 25 ky BP record of Himalayan aridity using muscovite and clays as proxy climate indicators

    Digital Repository Service at National Institute of Oceanography (India)

    Gujar, A.R.; Chauhan, O.S.

    - Holocene, the geology and the morpho-tectonic characters of the Indian subcontinent had not undersonc significant changes (Chauhan ct at., t9935. Delivery and supply of clays and muscovite from a source rock, during this span, therefore, were mostly...

  8. Exploring Connections between Global Climate Indices and African Vegetation Phenology

    Science.gov (United States)

    Brown, Molly E.; deBeurs, Kirsten; Vrieling, Anton

    2009-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.

  9. Past climate variability between 97 and 7 ka reconstructed from a multi proxy speleothem record from Western Cuba

    Science.gov (United States)

    Winterhalder, Sophie; Scholz, Denis; Mangini, Augusto; Spötl, Christoph; Jochum, Klaus Peter; Pajón, Jesús M.

    2016-04-01

    The tropical hydrological cycle plays a key role in regulating global climate, mainly through the export of heat and moisture to higher latitudes, and is highly sensitive to climate change, for instance due to changes in the position of the Intertropical Convergence Zone (ITCZ). Previous work on Caribbean stalagmites suggests a strong connection of precipitation variability to North Atlantic (NA) sea surface temperatures on multidecadal to millenial timescales (Fensterer et al., 2012; Fensterer et al., 2013; Winter et al., 2011). Cold phases in the NA potentially lead to a southward shift of the ITCZ and thus drier conditions in Cuba. On orbital timescales, Cuban stalagmites suggest a relation of speleothem δ18O values with the δ18O value of Caribbean surface waters (Fensterer et al., 2013). Here we present an expansion of the Cuban speleothem record covering the whole last glacial period from the end of MIS5c (97 ka BP) until 7 ka with hiatuses between 93-80 ka, 37-35 ka and 13-10 ka. Stalagmite Cuba medio (CM) has been precisely dated with 60 230Th/U-ages, mainly performed by the MC-ICPMS technique. The δ18O and δ13C records are completed by a continuous, high resolution LA-ICPMS trace element profile. These data allow for the first time to establish a multi-proxy climate reconstruction for the North Western Caribbean at decadal to centennial resolution for this period. The long-term variability of the δ18O values probably reflects rainfall amount in Cuba. The response to some Dansgaard/Oeschger and Heinrich stadials confirms the previously observed correlation between Caribbean and NA climate variability. However, this connection is not clearly imprinted throughout the record. Furthermore, trace elements, such as Mg, do not proof without ambiguity drier conditions in Cuba during NA cold events, such as the Heinrich stadials. This suggests that climate variability in Cuba was more complex during the last 100ka, and that the NA was not the only driving factor

  10. A proxy late Holocene climatic record deduced from northwest Alaskan beach ridges

    International Nuclear Information System (INIS)

    Mason, O.K.; Jordan, J.W.

    1991-01-01

    A climatically-sensitive, oscillatory pattern of progradation and erosion is revealed in late Holocene accretionary sand ridge and barrier island complexes of Seward Peninsula, northwest Alaska. Archaeological and geological radiocarbon dates constrain the authors chronology for the Cape Espenberg beach ridge plain and the Shishmaref barrier islands, 50 km to the southwest. Cape Espenberg, acts as the depositional sink for the northeastward longshore transport system and contains the oldest sedimentary deposits: based on 3700±90 B.P. (β-23170) old grass from a paleosol capping a low dune facies. The oldest date on the Shishmaref barrier islands is 1550±70 B.P. (β-23183) and implies that the modem barrier is a comparatively recent phenomenon. Late Holocene sedimentation varies between intervals of erosion and rapid progradation. During erosional periods higher dunes are built atop beach ridges: as between 3000-2000 yrs. BP and intermittently from 1000 BP to the present. At other times, rapid progradation predominated, generating wide swales and low beach ridges without dunes. Tentatively, dune formation is correlative with the Neo-glacial and Little Ice Age glacial advances and increased alluviation in north Alaska. Rapid progradation is contemporaneous with warmer intervals of soil and peat formation atop alluvial terraces, dated to ca. 4000-3500 and 2000-1000 yrs. B.P. In the record of the last 1000 years, dune building is correlative with heightened storminess, as reflected in northwest Alaska tree-ring chronologies and weather anomalies such as spring dust storms and winter thunderstorms in East Asian locations

  11. A Kantian approach to a sustainable development indicator for climate

    Energy Technology Data Exchange (ETDEWEB)

    Greaker, Mads; Stoknes, Per Espen; Alfsen, Knut H.; Ericson, Torgeir

    2012-11-01

    How can the informed citizen know if the government is implementing a good-enough climate change policy? Most developed democracies have their own set of indicators for sustainable development, including indicators for climate change. These include yearly national emissions of greenhouse gasses (GHGs), global concentration of GHGs in the atmosphere and time series for global temperatures. However, without some kind of benchmark neither national emissions of GHGs nor global concentration of GHGs or temperatures, make it possible for the general public to evaluate the current climate policy of a nation state. In this paper we propose a benchmark for national climate policy based on a remaining Co2 budget allocated by egalitarian principles. Moreover, based on Kantian ethics we argue that this benchmark should be used as a sustainable development indicator for climate change. One way of interpreting Kantian ethics is to demand that each nation state should act as if a just global treaty on climate change were in place. We discuss possible important elements in a global treaty, and show how the different elements can be integrated in a forward-looking indicator of national climate policy.(auth)

  12. Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria: validation of a conceptual model by multi proxy studies

    Directory of Open Access Journals (Sweden)

    Jens MÜLLER

    2002-02-01

    Full Text Available Selected pigments, diatoms and diatom-inferred phosphorus (Di-TP concentrations of a late glacial sediment core section of the meromictic Längsee, Austria, were compared with tephra- and varve-dated pollen stratigraphic and geochemical results. A conceptual model was adopted for Längsee and evaluated using multi proxy data. During the unforested late Pleniglacial, a holomictic lake stage with low primary productivity prevailed. Subsequent to the Lateglacial Betula expansion, at about 14,300 cal. y BP, okenone and isorenieratene, pigments from purple and green sulphur bacteria, indicate the onset of anoxic conditions in the hypolimnion. The formation of laminae coincides with this anoxic, meromictic period with high, though fluctuating, amounts of okenone that persisted throughout the Lateglacial interstadial. The occurrence of unlaminated sediment sections of allochthonous origin, and concurrent low concentrations of okenone, were related to cool and wet climate fluctuations during this period, probably coupled with a complete mixing of the water column. Two of these oscillations of the Lateglacial interstadial have been correlated tentatively with the Aegelsee and Gerzensee oscillations in the Alps. The latter climate fluctuation divides a period of enhanced anoxia and primary productivity, correlated with the Alleröd chronozone. Continental climate conditions were assumed to be the main driving forces for meromictic stability during Alleröd times. In addition, calcite dissolution due to severe hypolimnetic anoxia, appear to have supported meromictic stability. Increased pigment concentrations, which are in contrast to low diatom-inferred total phosphorus (Di- TP, indicate the formation of a productive metalimnion during this period, probably due to a clear-water phase (low catchment erosion, increased temperatures, and a steep gradient between the phosphorus enriched hypolimnion and the oligotrophic epilimnion. Meltwater impacts from an

  13. Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium

    Energy Technology Data Exchange (ETDEWEB)

    Goosse, Hugues [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique G. Lemaitre, Chemin du Cyclotron, 2, 1348, Louvain-la-Neuve (Belgium); Renssen, Hans [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam, HV (Netherlands); Timmermann, Axel [University of Hawaii, IPRC, SOEST, Honolulu, HI (United States); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Masschusetts, MA (United States); Mann, Michael E. [Pennsylvania State University, Department of Meteorology and Earth and Environmental Systems Institute (EESI), Pennsylvania, PA (United States)

    2006-08-15

    We present and describe in detail the advantages and limitations of a technique that combines in an optimal way model results and proxy-data time series in order to obtain states of the climate system consistent with model physics, reconstruction of past radiative forcing and proxy records. To achieve this goal, we select among an ensemble of simulations covering the last millennium performed with a low-resolution 3-D climate model the ones that minimise a cost function. This cost function measures the misfit between model results and proxy records. In the framework of the tests performed here, an ensemble of 30 to 40 simulations appears sufficient to reach reasonable correlations between model results and reconstructions, in configurations for which a small amount of data is available as well as in data-rich areas. Preliminary applications of the technique show that it can be used to provide reconstructions of past large-scale temperature changes, complementary to the ones obtained by statistical methods. Furthermore, as model results include a representation of atmospheric and oceanic circulations, it can be used to provide insights into some amplification mechanisms responsible for past temperature changes. On the other hand, if the number of proxy records is too low, it could not be used to provide reconstructions of past changes at a regional scale. (orig.)

  14. Utilizing the social media data to validate 'climate change' indices

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.; Stepchenkova, S.

    2013-12-01

    Reporting the observed and modeled changes in climate to public requires the measures understandable by the general audience. E.g., the NASA GISS Common Sense Climate Index (Hansen et al., 1998) reports the change in climate based on six practically observable parameters such as the air temperature exceeding the norm by one standard deviation. The utility of the constructed indices for reporting climate change depends, however, on an assumption that the selected parameters are felt and connected with the changing climate by a non-expert, which needs to be validated. Dynamic discussion of climate change issues in social media may provide data for this validation. We connected the intensity of public discussion of climate change in social networks with regional weather variations for the territory of the USA. We collected the entire 2012 population of Twitter microblogging activity on climate change topic, accumulating over 1.8 million separate records (tweets) globally. We identified the geographic location of the tweets and associated the daily and weekly intensity of twitting with the following parameters of weather for these locations: temperature anomalies, 'hot' temperature anomalies, 'cold' temperature anomalies, heavy rain/snow events. To account for non-weather related events we included the articles on climate change from the 'prestige press', a collection of major newspapers. We found that the regional changes in parameters of weather significantly affect the number of tweets published on climate change. This effect, however, is short-lived and varies throughout the country. We found that in different locations different weather parameters had the most significant effect on climate change microblogging activity. Overall 'hot' temperature anomalies had significant influence on climate change twitting intensity.

  15. Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study

    NARCIS (Netherlands)

    A. Mairesse; H. Goosse; P. Mathiot; H. Wanner; S. Dubinkina (Svetlana)

    2013-01-01

    htmlabstractThe mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of

  16. Evidence of late Quaternary wet/dry climate episodes derived from paleoclimatic proxy data recovered from the paleoenvironmental record of the Great Basin of western North America: Paleobotanical studies

    International Nuclear Information System (INIS)

    1998-01-01

    Through the integration of several avenues of paleoclimatic proxy data, the authors intend to arrive a definite conclusions regarding the frequency of periods of wetter climate, and to drive information regarding the magnitudes of these episodes, rates of their onset and demise, and the climatic conditions under which wetter climate can occur. These will in turn lead to rough estimates of: (1) the amounts of rainfall available for recharge during past periods of effectively wetter climate; and (2) the durations and spacing of such events that provide an indication of the amount of time that the area was subjected to these inputs. To accomplish these goals the paleobotanical record over a broad region is being examined to identify periods of greater effective precipitation. Although the project focus is on a region a of about 200 km around Yucca Mountain, they have collected data in other areas of the Great Basin in order to be able to identify large-scale climatic patterns. Once identified and described these climatic patterns can be separated from purely local climatic phenomena that might hinder the understanding of the Pliestocene climates of southern Nevada and the Yucca Mountain area in particular

  17. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila

    2011-01-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of

  18. National, ready-to-use climate indicators calculation and dissemination

    Science.gov (United States)

    Desiato, F.; Fioravanti, G.; Fraschetti, P.; Perconti, W.; Toreti, A.

    2010-09-01

    In Italy, meteorological data necessary and useful for climate studies are collected, processed and archived by a wide range of national and regional institutions. As a result, the density of the stations, the length and frequency of the observations, the quality control procedures and the database structure vary from one dataset to the other. In order to maximize the use of those data for climate knowledge and climate change assessments, a computerized system for the collection, quality control, calculation, regular update and rapid dissemination of climate indicators (denominated SCIA) was developed. Along with the pieces of information provided by complete metadata, climate indicators consist of statistics (mean, extremes, date of occurrence, standard deviation) over ten-days, monthly and yearly time periods of meteorological variables, including temperature, precipitation, humidity, wind, water balance, evapotranspitaton, degree-days, cloud cover, sea level pressure, solar radiation. In addition, normal values over thirty-year reference climatological periods and yearly anomalies are calculated and made available. All climate indicators, as well as their time series at a single location or spatial distribution at a selected time, are available through a dedicated web site (www.scia.sinanet.apat.it). In addition, secondary products like high resolution temperature maps obtained by kriging spatial interpolation, are made available. Over the last three years, about 40000 visitors accessed to the SCIA web site, with an average of 45 visitors per day. Most frequent visitors belong to categories like universities and research institutes; private companies and general public are present as well. Apart from research purposes, climate indicators disseminated through SCIA may be used in several socio-economic sectors like energy consumption, water management, agriculture, tourism and health. With regards to our activity, we base on these indicators for the estimation of

  19. Greenhouse gas emissions considered responsible for climate change: Environmental indicators

    International Nuclear Information System (INIS)

    Vialetto, G.; Venanzi, M.; Gaudioso, D.

    1993-09-01

    This paper concerns the more significant environmental indicators related to the emissions of radiatively and chemically/photochemically active trace gases. Reference is made to the preliminary work of the Intergovernmental Panel on Climate Change (IPCC) and to the proposals made in the framework of the international negotiation on climate change. Aiming to contribute to the definition of a national strategy for the reduction of greenhouse gases emissions, this paper proposes a possible application of the indicators. The calculation of the indicators is based on the emission estimate performed by ENEA (Italian National Agency for Energy, New Technologies and the Environment) for the Report on the State of the Environment edited by the Italian Ministry of the Environment. Finally, the paper suggests an application of such indicators for the international negotiation, in the framework of the Italian proposal for the Convention on climate change

  20. Chapter 7 - Climate effects on lichen indicators for nitrogen

    Science.gov (United States)

    Sarah Jovan

    2014-01-01

    The Lichen Communities Indicator is a sensitive indicator of forest health changes caused by air quality, climate change, and other stressors. To date, more than 8,000 epiphytic lichen surveys have been collected across the Nation by the Forest Inventory Analysis (FIA) and Forest Health Monitoring (FHM) Programs and their partners (table 7.1; Phelan and others 2012)....

  1. Developing novel peat isotope proxies from vascular plant-dominated peatlands of New Zealand to reconstruct Southern Hemisphere climate dynamics

    Science.gov (United States)

    Roland, T.; Amesbury, M. J.; Charman, D.; Newnham, R.; Royles, J.; Griffiths, H.; Ratcliffe, J.; Rees, A.; Campbell, D.; Baisden, T.; Keller, E. D.

    2017-12-01

    The Southern Annular Mode (SAM) is a key control on the strength and position of the southern westerly winds (SWW), which are a major influence on Southern Hemisphere (SH) mid- to high-latitude climate. A shift towards a more positive SAM has occurred since the 1950s, driven by ozone layer thinning and enhanced by greenhouse gas driven warming. Although these recent changes are thought to be unprecedented over the last 1000 years, the longer-term behaviour of the SAM is poorly understood. We are developing stable isotope proxies from plant cellulose in vascular plant-dominated (Empodisma spp.) peatlands in New Zealand that we hypothesise are related to changes in past temperature (δ13C) and precipitation moisture source (δ18O). The moisture source signal is driven by the balance between Southern Ocean sources (depleted δ18O) and sub-tropical sources (enriched δ18O), reflecting the relative states of SAM and the El Niño-Southern Oscillation. We aim to provide palaeoclimatic context for the recent positive trend in the SAM, and explore the long-term relationship between the SAM and ENSO, testing the contention that tropical Pacific variability is a key influence on past and future SAM variability. Terrestrial palaeoclimate records in the Southern Hemisphere are often spatially isolated and temporally fragmented. However, New Zealand is ideally placed to test such hypotheses as it registers strong correlations between SAM, temperature and precipitation, and it straddles the zone of interaction between the SWW and sub-tropical moisture sources, reflected in a strong precipitation δ18O gradient. We report data from surface samples across New Zealand and explore the spatial and temporal patterns in stable isotopes in cellulose and water that we will use to interpret the palaeoenvironmental data. Preliminary downcore data will be used to demonstrate the efficacy of this approach to reconstructing moisture sources and temperature linked to moisture source variability.

  2. Methods for extracting climate indicator data from social media.

    Science.gov (United States)

    Fuka, M. Z.; Fuka, D. R.

    2011-12-01

    This paper shows how we've used the R software suite to extract climate indicator data from Twitter. In the course of this research we've collected extensive data sets of unsolicited observations ("tweets") for hundreds of climate-related phenological, biological, epidemiological and meteorological effects. R has proved itself in our work as a useful tool for manipulating those large data sets. Our experience from this effort has yielded a variety of insights on using R to extract geophysics-specific information from publicly accessible social media sources. We illustrate our methodology by mapping tweeted US armadillo sightings to explore the impact of climate variability on the extent of the animal's range. This example usefully demonstrates R's technical capabilities in collecting, time-stamping, geolocating, analyzing, visualizing and otherwise processing climate-related data derived from unsolicited social media postings. We also "mash-up" the data sets with those acquired by more traditional means, for example, temperature and precipitation data across the armadillo's US range. Our data-handling practice is extendable to social sharing services other than Twitter, providing the environmental modeling community an opportunity to access largely untapped resources of non-traditional climate indicator data to better understand the effects of climate change at local, regional and global scales.

  3. Climate and desertification: indicators for an assessment methodology

    International Nuclear Information System (INIS)

    Sciortino, M.; Caiaffa, E.; Fattoruso, G.; Donolo, R.; Salvetti, G.

    2009-01-01

    This work aims to define a methodology that, on the basis of commonly available surface climate records, assesses indicators of the increase or decrease of the extension of territories vulnerable to desertification and land degradation. The definition and quantification of environmental policy relevant indicators aims to improve the understanding and the decision making processes in dry lands. the results of this study show that since 1931 changes of climate involved 90% of the territory of the Sicilian region, with stronger intensity in the internal areas of Enna, Caltanissetta and Palermo provinces. (Author) 9 refs.

  4. Comparison of Flood Vulnerability Assessments to Climate Change by Construction Frameworks for a Composite Indicator

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2018-03-01

    Full Text Available As extreme weather conditions due to climate change can cause deadly flood damages all around the world, a role of the flood vulnerability assessment has become recognized as one of the preemptive measures in nonstructural flood mitigation strategies. Although the flood vulnerability is most commonly assessed by a composite indicator compiled from multidimensional phenomena and multiple conflicting criteria associated with floods, directly or indirectly, it has been often overlooked that the construction frameworks and processes can have a significant influence on the flood vulnerability indicator outcomes. This study has, therefore, compared the flood vulnerability ranking orders for the 54 administrative districts in the Nakdong River Watershed of the Korean Peninsula, ranked from composite indicators by different frameworks and multi-attribute utility functions for combining the three assessment components, such as exposure, sensitivity, and coping, presented in the IPCC Third Assessment Report. The results show that the different aggregation components and utility functions under the same proxy variable system can lead to larger volatility of flood vulnerability rankings than expected. It is concluded that the vulnerability indicator needs to be derived from all three assessment components by a multiplicative utility function for a desirable flood vulnerability assessment to climate change.

  5. Drought forecasting in Luanhe River basin involving climatic indices

    Science.gov (United States)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the

  6. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  7. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    Science.gov (United States)

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.

  8. Assessment of weather indicators for possible climate change

    International Nuclear Information System (INIS)

    Maqssood, H.; Ahmed, S.I.

    2014-01-01

    From 20 century onwards, a great concern has been expressed regarding global climate change. This study attempts to perform detailed analysis of temperature and precipitation for Karachi city of Pakistan, to assess the possible climate change, using two data sets (51-year data: 1961-2012 and 31-year data: 1981-2012) for different parameters. Trends were generated using linear regression (LR) and Mann-Kendall (MK), which depicted that daily and annual temperatures were increasing, with changes in minimum temperature being more significant than maximum temperature. Analyses also showed increase in extreme temperature at night and during winter, showing that urbanization was a major factor, as the heat from buildings trapped in between dissipates at nights. The daily and monthly precipitation levels increased in contrast to annual precipitation trend, which is justified by the averaged monthly analysis showing that decreasing trends were much more significant than increasing trends. In addition, monthly precipitation showed an increase of 4.3 mm, using LR and MK test. It can be noticed that two extreme winter months (December and January) and two extreme hot months (May and October) received increased rainfall. However, statistical analyses showed overall annual decrease in rainfall. Furthermore, decadal analysis indicated sinusoidal behaviour of change in climate indicators; making climatic change evident but cyclic in nature. (author)

  9. Epiphytes as an Indicator of Climate Change in Hawaii

    Science.gov (United States)

    Kettwich, S. K.

    2013-12-01

    Although climate change threatens many ecosystems, current research in this field suggests tropical vegetation lags in response. Epiphytes, or arboreal vegetation, occupy tight, climate-defined niches compared with co-occurring life forms such as trees, yet there have been few studies of Hawaii's epiphyte communities. Because of Hawaii Island's natural climatic diversity, it is an ideal location to understand how these intrinsically climate sensitive plants interact with the atmosphere and evaluate how they may serve as a near-term indicator of climate change. Here we establish a baseline from which changes in corticolous epiphyte communities can be monitored as a leading indicator of likely forest changes by 1) investigating patterns of epiphyte abundance and species composition across elevation and precipitation gradients on windward Hawaii Island, and 2) using physiological measurements to investigate the relative importance of rain vs. fog in epiphyte-atmosphere interactions. The precipitation gradient keeps elevation constant at 1000m, while varying precipitation between 2,400 and 6,400 mm/year. The elevation gradient keeps rainfall constant at 3000mm/year, and varies elevation between 200 and 1750 m. Forest sites are dominated by Ohia Lehua (Metrosideros polymorpha) across broad geographic and climatological ranges thus allowing examination of epiphytes on this single host. We quantified bryophytes and vascular plants growing on Ohia trunks with standardized diameter and branching characteristics. Overall, epiphyte communities showed much finer scale responses to climate variation when compared with structurally dominant vegetation (which was broadly similar at all sites). The precipitation gradient exhibits a clear increase in abundance of all epiphyte groups and a definable increase in diversity with increasing rainfall. Results across the elevation gradient show a higher abundance of filmy ferns and bryophytes above the lifting condensation level (about

  10. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  11. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  12. Radiolarian abundance - A monsoon proxy responding to the Earth`s orbital forcing: Inferences on the mid-Brunhes climate shift

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    stream_size 32348 stream_content_type text/plain stream_name Earth_Sci_India_2_1.pdf.txt stream_source_info Earth_Sci_India_2_1.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Gupta http://www....earthscienceindia.info/Gupta.htm 1 of 8 1/28/2009 3:14 PM Earth Science India Vol.2 (I),January, 2009, pp. 1-20 http://www.earthscienceindia.info/ Radiolarian abundance - a monsoon proxy responding to the Earth’s orbital forcing: Inferences on the mid-Brunhes climate shift Shyam...

  13. Can the possibility of some linkage of monsoonal precipitation with solar variability be ignored? Indications from foraminiferal proxy records

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Nigam, R

    of monsoonal precipitation by the sunspot minima has been explored in the past through var i ous studies across the world 11 ? 14 . Several important and inte r- esting papers on the role of solar variability over climatic cha nges have prompted renewed... inte r vals up to 80 cm (representing the last ~720 years). All samples were i m- mediately transferred to polythene bags and sealed. A po r tion of these core samples from different levels was dried at 60 ?C and washed through a 230 mesh (63...

  14. Estimating daily climatologies for climate indices derived from climate model data and observations

    Science.gov (United States)

    Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof

    2015-01-01

    Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192

  15. Impact of climate change in Switzerland on socioeconomic snow indices

    Science.gov (United States)

    Schmucki, Edgar; Marty, Christoph; Fierz, Charles; Weingartner, Rolf; Lehning, Michael

    2017-02-01

    Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000-1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

  16. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems.

    Science.gov (United States)

    Taelman, Sue Ellen; Schaubroeck, Thomas; De Meester, Steven; Boone, Lieselot; Dewulf, Jo

    2016-04-15

    Terrestrial land and its resources are finite, though, for economic and socio-cultural needs of humans, these natural resources are further exploited. It highlights the need to quantify the impact humans possibly have on the environment due to occupation and transformation of land. As a starting point of this paper (1(st) objective), the land use activities, which may be mainly socio-culturally or economically oriented, are identified in addition to the natural land-based processes and stocks and funds that can be altered due to land use. To quantify the possible impact anthropogenic land use can have on the natural environment, linked to a certain product or service, life cycle assessment (LCA) is a tool commonly used. During the last decades, many indicators are developed within the LCA framework in an attempt to evaluate certain environmental impacts of land use. A second objective of this study is to briefly review these indicators and to categorize them according to whether they assess a change in the asset of natural resources for production and consumption or a disturbance of certain ecosystem processes, i.e. ecosystem health. Based on these findings, two enhanced proxy indicators are proposed (3(rd) objective). Both indicators use net primary production (NPP) loss (potential NPP in the absence of humans minus remaining NPP after land use) as a relevant proxy to primarily assess the impact of land use on ecosystem health. As there are two approaches to account for the natural and productive value of the NPP remaining after land use, namely the Human Appropriation of NPP (HANPP) and hemeroby (or naturalness) concepts, two indicators are introduced and the advantages and limitations compared to state-of-the-art NPP-based land use indicators are discussed. Exergy-based spatially differentiated characterization factors (CFs) are calculated for several types of land use (e.g., pasture land, urban land). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Regional projection of climate impact indices over the Mediterranean region

    Science.gov (United States)

    Casanueva, Ana; Frías, M.; Dolores; Herrera, Sixto; Bedia, Joaquín; San Martín, Daniel; Gutiérrez, José Manuel; Zaninovic, Ksenija

    2014-05-01

    Climate Impact Indices (CIIs) are being increasingly used in different socioeconomic sectors to transfer information about climate change impacts and risks to stakeholders. CIIs are typically based on different weather variables such as temperature, wind speed, precipitation or humidity and comprise, in a single index, the relevant meteorological information for the particular impact sector (in this study wildfires and tourism). This dependence on several climate variables poses important limitations to the application of statistical downscaling techniques, since physical consistency among variables is required in most cases to obtain reliable local projections. The present study assesses the suitability of the "direct" downscaling approach, in which the downscaling method is directly applied to the CII. In particular, for illustrative purposes, we consider two popular indices used in the wildfire and tourism sectors, the Fire Weather Index (FWI) and the Physiological Equivalent Temperature (PET), respectively. As an example, two case studies are analysed over two representative Mediterranean regions of interest for the EU CLIM-RUN project: continental Spain for the FWI and Croatia for the PET. Results obtained with this "direct" downscaling approach are similar to those found from the application of the statistical downscaling to the individual meteorological drivers prior to the index calculation ("component" downscaling) thus, a wider range of statistical downscaling methods could be used. As an illustration, future changes in both indices are projected by applying two direct statistical downscaling methods, analogs and linear regression, to the ECHAM5 model. Larger differences were found between the two direct statistical downscaling approaches than between the direct and the component approaches with a single downscaling method. While these examples focus on particular indices and Mediterranean regions of interest for CLIM-RUN stakeholders, the same study

  18. Initial validation of a proxy indicator of functioning as a potential tool for establishing a clinically meaningful cocaine use outcome.

    Science.gov (United States)

    Kiluk, Brian D; Babuscio, Theresa A; Nich, Charla; Carroll, Kathleen M

    2017-10-01

    Establishing a non-abstinence cocaine use outcome as clinically meaningful has been elusive, in part due to the lack of association between cocaine use outcomes and meaningful indicators of long-term functioning. Using data pooled across 7 clinical trials evaluating treatments for cocaine (N=718), a dichotomous indicator of functioning was created to represent a meaningful outcome ('problem-free functioning' - PFF), defined as the absence of problems across non-substance-related domains on the Addiction Severity Index. Its validity was evaluated at multiple time points (baseline, end-of-treatment, terminal follow-up) and used to explore associations with cocaine use. The percentage of participants meeting PFF criteria increased over time (baseline=18%; end-of-treatment=32%; terminal follow-up=37%). At each time point, ANOVAs indicated those who met PFF criteria reported significantly less distress on the Brief Symptom Inventory and less perceived stress on the Perceived Stress Scale. Generalized linear models indicated categorical indices of self-reported cocaine use at the end of treatment were predictive of the probability of meeting PFF criteria during follow-up (β=-0.01, pcocaine use in the final month of treatment was associated with PFF during follow-up, with strongest associations between PFF and abstinence or 'occasional' use. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development and application of multi-proxy indices of land use change for riparian soils in southern New England, USA.

    Science.gov (United States)

    Ricker, M C; Donohue, S W; Stolt, M H; Zavada, M S

    2012-03-01

    Understanding the effects of land use on riparian systems is dependent upon the development of methodologies to recognize changes in sedimentation related to shifts in land use. Land use trends in southern New England consist of shifts from forested precolonial conditions, to colonial and agrarian land uses, and toward modern industrial-urban landscapes. The goals of this study were to develop a set of stratigraphic indices that reflect these land use periods and to illustrate their applications. Twenty-four riparian sites from first- and second-order watersheds were chosen for study. Soil morphological features, such as buried surface horizons (layers), were useful to identify periods of watershed instability. The presence of human artifacts and increases in heavy metal concentration above background levels, were also effective indicators of industrial-urban land use periods. Increases and peak abundance of non-arboreal weed pollen (Ambrosia) were identified as stratigraphic markers indicative of agricultural land uses. Twelve 14C dates from riparian soils indicated that the rise in non-arboreal pollen corresponds to the start of regional deforestation (AD 1749 +/- 56 cal yr; mean +/- 2 SD) and peak non-arboreal pollen concentration corresponds to maximum agricultural land use (AD 1820 +/- 51 cal yr). These indices were applied to elucidate the impact of land use on riparian sedimentation and soil carbon (C) dynamics. This analysis indicated that the majority of sediment and soil organic carbon (SOC) stored in regional riparian soils is of postcolonial origins. Mean net sedimentation rates increased -100-fold during postcolonial time periods, and net SOC sequestration rates showed an approximate 200-fold increase since precolonial times. These results suggest that headwater riparian zones have acted as an effective sink for alluvial sediment and SOC associated with postcolonial land use.

  20. Relationship between viticultural climatic indices and grape maturity in Australia

    Science.gov (United States)

    Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I.

    2017-10-01

    Historical temperature data and maturity records were analyzed for 45 vineyard blocks in 15 winegrowing regions across Australia in order to evaluate the suitability of common viticultural indices to estimate date of grape maturity. Five temperature-based viticultural indices (mean January temperature, mean growing season temperature, growing degree days, biologically effective degree days, Huglin Index) along with four springtime temperature indices (mean and maximum temperature summations for September, October, and November; growing degree days and biologically effective degree days modified to include September) were compared to maturity data in order to investigate index relationship to observed maturity timing. Daily heat summations for the months of September, October, and November showed the best correlation to day of year of maturity, suggesting that springtime temperatures are important relative to the timing of grape maturity. Mean January temperature, a commonly used index, had the poorest correlation with day of year of maturity of all the indices included in this study. Indices that included the month of April had poorer correlation than indices that shifted the months included in the growing season to be from September to March inclusive. Calculated index values for the past 30 years for every region included in this study showed increasing temporal trends to various degrees, indicating that all regions studied are experiencing warming temperatures during the growing season. These results emphasize the need to reevaluate viticultural indices in the context of a changing climate.

  1. Proxy comparisons for Paleogene sea water temperature reconstructions

    Science.gov (United States)

    de Bar, Marijke; de Nooijer, Lennart; Schouten, Stefan; Ziegler, Martin; Sluijs, Appy; Reichart, Gert-Jan

    2017-04-01

    , indicates that the fundamental mechanisms responsible for the proxy relation to temperature remained constant. de Bar, M. W., et al. (2016), Constraints on the application of long chain diol proxies in the Iberian Atlantic margin, Org. Geochem., 101, 184-195. Hollis, C. J., et al. (2012), Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models, Earth Planet. Sci. Lett., 349, 53-66. Sluijs, A., et al. (2011), Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum, Climate of the Past, 7(1), 47-61.

  2. Update of indicators for climate change mitigation in Greece

    International Nuclear Information System (INIS)

    Dimitroulopoulou, C.; Ziomas, I.

    2011-01-01

    This paper analyses the factors affecting greenhouse gas (GHG) emissions in Greece, (i.e. the drivers of pressures on climate change), using environmental indicators related to energy, demographics and economic growth. The analysis is based on the data of 2008 and considers types of fuel and sectors. The Kaya identity is used to identify the relationship between drivers and pressures, using annual time series data of National GHG emissions, population, energy consumption and gross domestic product. The analysis shows that over the period 2000-2008, GHG emissions show a slight variation, but they are almost stabilised, with a total increase of 1.6%. Despite the economic growth over that period, this stabilisation may be considered as a combination of reductions in the energy intensity of GDP and the carbon intensity of energy, which are affected by improvements in energy efficiency and introduction of 'cleaner' fuels, such as natural gas and renewables in the energy mixture of the country. - Highlights: → We analyse drivers affecting GHG emissions (pressures on climate) in Greece, using indicators. → Indicators relate to energy, demographics and economic growth. → Kaya identity identifies the relationship between drivers and pressures. → GHG emissions are almost stable due to reductions in energy intensity and carbon intensity of energy. → Improvements in energy efficiency and introduction of clean fuels in energy mix reduce emissions.

  3. Mountains as early warning indicators of climate change

    Science.gov (United States)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  4. Global Wildfire Forecasts Using Large Scale Climate Indices

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  5. New directions in hydro-climatic histories: observational data recovery, proxy records and the atmospheric circulation reconstructions over the earth (ACRE) initiative in Southeast Asia

    Science.gov (United States)

    Williamson, Fiona; Allan, Rob; Switzer, Adam D.; Chan, Johnny C. L.; Wasson, Robert James; D'Arrigo, Rosanne; Gartner, Richard

    2015-12-01

    The value of historic observational weather data for reconstructing long-term climate patterns and the detailed analysis of extreme weather events has long been recognized (Le Roy Ladurie, 1972; Lamb, 1977). In some regions however, observational data has not been kept regularly over time, or its preservation and archiving has not been considered a priority by governmental agencies. This has been a particular problem in Southeast Asia where there has been no systematic country-by-country method of keeping or preserving such data, the keeping of data only reaches back a few decades, or where instability has threatened the survival of historic records. As a result, past observational data are fragmentary, scattered, or even absent altogether. The further we go back in time, the more obvious the gaps. Observational data can be complimented however by historical documentary or proxy records of extreme events such as floods, droughts and other climatic anomalies. This review article highlights recent initiatives in sourcing, recovering, and preserving historical weather data and the potential for integrating the same with proxy (and other) records. In so doing, it focuses on regional initiatives for data research and recovery - particularly the work of the international Atmospheric Circulation Reconstructions over the Earth's (ACRE) Southeast Asian regional arm (ACRE SEA) - and the latter's role in bringing together disparate, but interrelated, projects working within this region. The overarching goal of the ACRE SEA initiative is to connect regional efforts and to build capacity within Southeast Asian institutions, agencies and National Meteorological and Hydrological Services (NMHS) to improve and extend historical instrumental, documentary and proxy databases of Southeast Asian hydroclimate, in order to contribute to the generation of high-quality, high-resolution historical hydroclimatic reconstructions (reanalyses) and, to build linkages with humanities researchers

  6. Climatic indicators over Catalonia during the last century

    Science.gov (United States)

    Busto, M.; Prohom, M.

    2010-09-01

    The Meteorological Service of Catalonia releases a yearly bulletin whose main objective is to try to detect climate trends over Catalonia during the last decades. Climate indicators are obtained from the analysis of historical daily air temperature, sea temperature and rainfall series. Those series have been first completed, analyzed for quality control and homogenized to ensure its final reliability. Regarding homogenization, monthly air temperature series have been tested and corrected according to the methodology proposed by Caussinus and Mestre (2004). For the two longest air temperature series, the calculated correction factors have been transferred to the daily values following Vincent et al. (2002) recommendations, while no significant inhomogeneities have been detected for precipitation series. The analysis of temperature trends, for the period 1950-2010, of 17 selected climatic series spread across the territory shows a common temperature increase between +0.19 to +0.24 °C/decade. This warming trend is uniform and no specific sub-regional trends are detected. Furthermore, the seasonal approach reveals that mean maximum temperature increases at a higher rate than mean minimum temperature. The summer temperature rise is the most significant, between +0.32 and +0.44 °C/decade, while autumn is the only season showing no significant positive trend. The summer maximum temperature shows the highest increase, exceeding +0.39 °C/decade in all the 17 series. The climatic extremes analysis of the longest Catalan series (Ebre Observatory in Roquetes, Tarragona, since 1905 and Fabra Observatory in Barcelona since 1913) reveals an increase in the number of summer days, tropical nights, minimum of maximum temperature, warm days and warm nights, and a decrease in the number of frost days, cold nights, cold days and cold spell duration indicator. Concerning precipitation, the only significant trend is the reduction of snow days. These trends were calculated according to

  7. BUSINESS CLIMATE INDICATOR AS A PREDICTOR OF CROATIAN INDUSTRIAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Mirjana Čižmešija

    2010-12-01

    Full Text Available Business and Consumer Surveys (BCS are one of the most frequently used tools to assess economy’s cyclical behavior. Croatia has been conducting the surveys continually since 1995. Nevertheless, there is still a research niche in the Croatian BCS framework that has not been adequately represented. The Joint Harmonised EU Programme of Business and Consumer Surveys suggests Business Climate Indicator (BCI as a composite leading indicator of the economy as a whole. In accordance to the EU methodology, this paper examines managers’ qualitative assessments on five important variables related to their economic environment. Using factor analysis one factor was extracted from those five variables, representing the BCI. It’s predictive properties were analyzed with regards to Croatian industrial production using Granger causality test, impulse response and variance decomposition analysis. Results strongly confirm the precedence of BCI to the changes of Croatian industrial production, validating the importance of its introduction and utilization in Croatian economic cycles analysis.

  8. Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction

    Directory of Open Access Journals (Sweden)

    F. Fernandoy

    2012-03-01

    Full Text Available In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent. Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The δ18O-air temperature relationship is complicated and significant only at a (multiseasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.

  9. Changes in biochemical proxy indicators for nutritional stress resilience from Boran and Nguni cows reared in dry arid rangeland.

    Science.gov (United States)

    Mapfumo, Lizwell; Muchenje, Voster; Mupangwa, John F; Scholtz, Michiel M

    2017-10-01

    The objective of this study was to determine the changes in biochemical indicators for nutritional stress from a herd of Boran and Nguni cows. A total of 40 cows (20 from each herd) were randomly selected for the study. The animals were identified according to their parities as follows: parity 1 (n = 8), parity 2 (n = 16), parity 3 (n = 8) and parity 4 (n = 8). Serum chemistry levels of glucose, total cholesterol, urea, creatinine, albumin, globulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutylaminotransferase (GGT), leukocytes, erythrocytes, haemoglobin, packed cell volume (PCV) and platelet counts were determined for 12 consecutive months spanning across the wet and dry seasons. The Boran cows had different creatinine concentration levels at different parities. The Boran cows in parity 1 had the highest (P cows in different parities within the herd. There were significant differences in enzymes such as AST, ALP and ALT among the herd and parities. Boran cows in parity 3 had the lowest (P cows in parity 4 had the highest concentration of ALP of 161.3 ± 8.10 U/L while Nguni cows in parity 1 had the highest concentration level of ALT 55.1 ± 1.56 U/L than all the cows within the same herd. The Nguni herd had significantly higher (P Cows from the Nguni herd maintained significantly higher amount of urea, creatinine, albumin and total protein in both the wet and dry seasons as compared with cows from the Boran herd. Cows from the Nguni herd maintained significantly higher amount of urea, creatinine, albumin and total protein in both the wet and dry seasons as compared with those from the Boran herd.

  10. Water Isotope Proxy-Proxy and Proxy-Model Convergence for Late Pleistocene East Asian Monsoon Rainfall Reconstructions

    Science.gov (United States)

    Clemens, S. C.; Holbourn, A.; Kubota, Y.; Lee, K. E.; Liu, Z.; Chen, G.

    2017-12-01

    Confidence in reconstruction of East Asian paleomonsoon rainfall using precipitation isotope proxies is a matter of considerable debate, largely due to the lack of correlation between precipitation amount and isotopic composition in the present climate. We present four new, very highly resolved records spanning the past 300,000 years ( 200 year sample spacing) from IODP Site U1429 in the East China Sea. We demonstrate that all the orbital- and millennial-scale variance in the onshore Yangtze River Valley speleothem δ18O record1 is also embedded in the offshore Site U1429 seawater δ18O record (derived from the planktonic foraminifer Globigerinoides ruber and sea surface temperature reconstructions). Signal replication in these two independent terrestrial and marine archives, both controlled by the same monsoon system, uniquely identifies δ18O of precipitation as the primary driver of the precession-band variance in both records. This proxy-proxy convergence also eliminates a wide array of other drivers that have been called upon as potential contaminants to the precipitation δ18O signal recorded by these proxies. We compare East Asian precipitation isotope proxy records to precipitation amount from a CCSM3 transient climate model simulation of the past 300,000 years using realistic insolation, ice volume, greenhouse gasses, and sea level boundary conditions. This model-proxy comparison suggests that both Yangtze River Valley precipitation isotope proxies (seawater and speleothem δ18O) track changes in summer-monsoon rainfall amount at orbital time scales, as do precipitation isotope records from the Pearl River Valley2 (leaf wax δ2H) and Borneo3 (speleothem δ18O). Notably, these proxy records all have significantly different spectral structure indicating strongly regional rainfall patterns that are also consistent with model results. Transient, isotope-enabled model simulations will be necessary to more thoroughly evaluate these promising results, and to

  11. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  12. Pyrolytic indices of diagenetic transformation of lignin as biogeochemical proxies for soil organic matter quality and C storage potential

    Science.gov (United States)

    Jiménez-González, Marco A.; Almendros, Gonzalo; Álvarez, Ana M.; Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.

    2017-04-01

    The environmental factors involved in soil organic carbon sequestration remain unclear. The functional relationships between the macromolecular structure of the soil organic matter (SOM) and its resilience has been a constant in classical biogeochemical models. Other more recent hypotheses have postulated that preservation by soil minerals may play a chief role in the accumulation of stable SOM forms. However, additional experimental data are required to demonstrate a cause-to-effect relationship between preservation and stabilization. Some authors might consider that models neglecting the role of macromolecular structure are swapping cause and effect i.e., that SOM structurally flexible, weakly condensed and having 'open' structures is the one with high potential to interact with the soil mineral matrix, leading to stable microaggregates. In this study up to 35 topsoil samples (0-5 cm) were collected from different Spanish soils with contrasted values of organic C (the dependent variable), geological substrate and vegetation type. A wide array of uni- and multivariate chemometric models were applied to independent variables consisting of total abundances of the major aromatic compounds, i.e., alkylbenzenes and methoxyphenols released from whole soil samples using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). These two families of compounds were selected since they are classically considered to inform on the degree of microbial reworking of lignins, which is an important precursor of the aromatic moiety of the SOM. A series of pyrolytic surrogate indices (aiming to express SOM diagenetic transformation in relation to the original biogenic molecular composition) were especially successful in forecasting SOC, viz: a) ratio between alkylbenzenes and methoxyphenols, b) ratio between short-chain (C0-C4) and long-chain (>C4) alkylbenzenes, c) ratio between methoxyphenols and short-chain alkylbenzenes, and d) ratios between methoxyphenols with different side

  13. Middle to Late Pleistocene multi-proxy record of environmental response to climate change from the Vienna Basin, Central Europe (Austria)

    Science.gov (United States)

    Salcher, Bernhard C.; Frank-Fellner, Christa; Lomax, Johanna; Preusser, Frank; Ottner, Franz; Scholger, Robert; Wagreich, Michael

    2017-10-01

    Tectonic basins can represent valuable archives of the environmental history. Presented here are the stratigraphy and multi-proxy analyses of two adjacent alluvial fans in the Quaternary active parts of the Vienna Basin, situated at the interface of the Atlantic, European continental and Mediterranean climate. Deposits comprise a sequence of coarse-grained fluvial deposits intercalated by laterally extensive horizons of pedogenically altered fine sediments. To establish palaeoenvironmental reconstructions, fine-grained sequences from a drill core and outcrop data were analysed according to its malacofauna, palaeopedology, susceptibility and sedimentology. The chronological framework is provided by 38 luminescence ages and supported by geomagnetic polarity investigations. Distinct warm periods each associated with a geomagnetic excursion, are recorded in three pedocomplexes formed during the Last Interglacial and two earlier interglacial periods, indicted to correlate with Marine Isotope Stage (MIS) 9 and MIS 11, respectively. Environmental conditions during the early last glacial period (MIS 5, c. 100-70 ka) are reconstructed from mollusc-shell rich overbank fines deposited along a former channel belt, covered by massive sheetflood deposits during MIS 2. Analysed warm phases suggest strong variations in humidity, ranging from steppe to forest dominated environments. The study presents one of the few numerically dated Middle Pleistocene multi-proxy records and one of the most comprehensive malacological datasets covering the early phases of last glacial period of continental Europe.

  14. Handwashing in 51 Countries: Analysis of Proxy Measures of Handwashing Behavior in Multiple Indicator Cluster Surveys and Demographic and Health Surveys, 2010–2013

    Science.gov (United States)

    Kumar, Swapna; Loughnan, Libbet; Luyendijk, Rolf; Hernandez, Orlando; Weinger, Merri; Arnold, Fred; Ram, Pavani K.

    2017-01-01

    Abstract. In 2009, a common set of questions addressing handwashing behavior was introduced into nationally representative Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS), providing large amounts of comparable data from numerous countries worldwide. The objective of this analysis is to describe global handwashing patterns using two proxy indicators for handwashing behavior from 51 DHS and MICS surveys conducted in 2010–2013: availability of soap anywhere in the dwelling and access to a handwashing place with soap and water. Data were also examined across geographic regions, wealth quintiles, and rural versus urban settings. We found large disparities for both indicators across regions, and even among countries within the same World Health Organization region. Within countries, households in lower wealth quintiles and in rural areas were less likely to have soap anywhere in the dwelling and at designated handwashing locations than households in higher wealth quintiles and urban areas. In addition, disparities existed among various geographic regions within countries. This analysis demonstrates the need to promote access to handwashing materials and placement at handwashing locations in the dwelling, particularly in poorer, rural areas where children are more vulnerable to handwashing-preventable syndromes such as pneumonia and diarrhea. PMID:28722572

  15. Handwashing in 51 Countries: Analysis of Proxy Measures of Handwashing Behavior in Multiple Indicator Cluster Surveys and Demographic and Health Surveys, 2010-2013.

    Science.gov (United States)

    Kumar, Swapna; Loughnan, Libbet; Luyendijk, Rolf; Hernandez, Orlando; Weinger, Merri; Arnold, Fred; Ram, Pavani K

    2017-08-01

    In 2009, a common set of questions addressing handwashing behavior was introduced into nationally representative Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS), providing large amounts of comparable data from numerous countries worldwide. The objective of this analysis is to describe global handwashing patterns using two proxy indicators for handwashing behavior from 51 DHS and MICS surveys conducted in 2010-2013: availability of soap anywhere in the dwelling and access to a handwashing place with soap and water. Data were also examined across geographic regions, wealth quintiles, and rural versus urban settings. We found large disparities for both indicators across regions, and even among countries within the same World Health Organization region. Within countries, households in lower wealth quintiles and in rural areas were less likely to have soap anywhere in the dwelling and at designated handwashing locations than households in higher wealth quintiles and urban areas. In addition, disparities existed among various geographic regions within countries. This analysis demonstrates the need to promote access to handwashing materials and placement at handwashing locations in the dwelling, particularly in poorer, rural areas where children are more vulnerable to handwashing-preventable syndromes such as pneumonia and diarrhea.

  16. Analysis of nucleation events in the European boundary layer using the regional aerosol–climate model REMO-HAM with a solar radiation-driven OH-proxy

    Directory of Open Access Journals (Sweden)

    J.-P. Pietikäinen

    2014-11-01

    Full Text Available This work describes improvements in the regional aerosol–climate model REMO-HAM in order to simulate more realistically the process of atmospheric new particle formation (NPF. A new scheme was implemented to simulate OH radical concentrations using a proxy approach based on observations and also accounting for the effects of clouds upon OH concentrations. Second, the nucleation rate calculation was modified to directly simulate the formation rates of 3 nm particles, which removes some unnecessary steps in the formation rate calculations used earlier in the model. Using the updated model version, NPF over Europe was simulated for the periods 2003–2004 and 2008–2009. The statistics of the simulated particle formation events were subsequently compared to observations from 13 ground-based measurement sites. The new model shows improved agreement with the observed NPF rates compared to former versions and can simulate the event statistics realistically for most parts of Europe.

  17. High-Arctic climate conditions for the last 7000 years inferred from multi-proxy analysis of the Bliss Lake record, North Greenland

    DEFF Research Database (Denmark)

    Olsen, Jesper; Kjær, Kurt H.; Funder, Svend Visby

    2012-01-01

    , Peary Land, Greenland. The early Holocene (10 850–10 480 cal. a BP) is characterized by increased erosion and gradually more marine conditions. Full marine conditions developed from 10 480 cal. a BP until the lake was isolated at 7220 cal. a BP. From its marine isolation at 7220 cal. a BP Bliss Lake...... becomes a lacustrine environment. Evidence from geochemical proxies (δ13C and total organic carbon) suggests that warmer conditions prevailed between 7220 and 6500 cal. a BP, corresponding to the Holocene thermal maximum, and from 3300 until 910 cal. a BP. From 850 to 500 cal. a BP colder climate...

  18. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    Science.gov (United States)

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Register of the last 1000 years of environmental, climatic and anthropogenic change in Isla Grande de Chiloé, inferred through a multi-proxy approach: Lake Pastahué, Chile-South Center (42°S)

    Science.gov (United States)

    Troncoso, Jose; Alvarez, Denisse; Díaz, Gustavo; Fierro, Pablo; Araneda, Alberto; Torrejón, Fernando; Rondanelli, Mauricio; Fagel, Nathalie; Urrutia, Roberto

    2017-04-01

    Knowledge of the past environmental and climatic conditions of the lake ecosystems of the Isla Grande de Chiloé and its relationship with the anthropic effect, on a high temporal resolution scale, is scarcely known. Specifically, multi-proxy studies provide a better understanding of the context in which changes occurred in the past. This insular region is particularly interesting because environmental conditions (pre and post-Hispanic) and knowledge about the impacts generated in the ecosystems during the Spanish colonization process have so far been little studied, compared to the rest of Chile continental. This research is a new contribution to the scarce information existing for the last millennium of the Isla Grande de Chiloé. The objective of this work was to reconstruct the environmental and climatic history of the last 1000 years, from the Lake Pastahué, in the Isla Grande de Chiloé through a multi-proxy analysis and compare them with other records for the region. The core sediment was sub-sampled to perform sedimentological analysis (organic matter, carbonates, magnetic susceptibility and granulometry) and biological indicators (pollen, chironomids). The age model was constructed from the activity of 210Pb,137Cs and 14C. The pollen results reveal a composition of nordpatagónico forest represented by Nothofagus, Weinmannia, Drimys, Tepualia, Myrtaceae, Poaceae and Pteridophyta, while the anthropic effect for the last cm of the profile is represented by Rumex and Pinus. The results show a significant increase in magnetic susceptibility since the middle of the 20th century, suggesting an increase in allochthonous material to the lake. The sedimentological parameters and the chironomid assembly show similar variations along the profile, which also shows changes in the trophic state of the lake. The changes recorded in lake Pastahue are directly related to past climatic phenomena occurring in the last millennium, such as the medieval climatic anomaly (MCA

  20. Spring Indices (SI): National (and Global) Indicators of Climate Impacts on Ecosystems and Society

    Science.gov (United States)

    Betancourt, J. L.; Schwartz, M. D.; Ault, T. R.; McCabe, G. J.; Macalady, A. K.; Pederson, G. T.; Cook, B. P.; Henebry, G. M.; Moore, D. J.; Enquist, C.

    2011-12-01

    Indicators are vital in everyday life, such as tracking blood pressure to assess your health or monitoring the nation's economy using unemployment rates. Tracking the state of the environment in a uniform and integrated manner requires simple and broadly-applicable indicators of year-to-year variability and change. For example, indices such as the Start of Season (SOS) in remotely-sensed land surface phenology, Center of Mass (CM) in the hydrology of snowfed inland waters, and other biogeophysical metrics are being widely used as metrics of global change in seasonal timing. Here, we present a new, standardized spring index (SSI) that uses only daily minimum and maximum temperatures as input. This builds on an earlier version of the spring indices (SI) for lilac and honeysuckle phenology (first leaf and first flower) that required plant chilling to be satisfied over winter. The SSI tracks the transition from winter to spring by tallying phenologically relevant variables, (such as the number and intensity of warm days and total hours of sunlight) from January 1st onward, while ignoring the chilling requirement. This adjustment allows determination of first leaf and first bloom dates across the entire USA, including southernmost latitudes. Outputs from the new SSI is highly correlated with the earlier version, and both models process weather data into indices directly related to growth and development of many plants. Spatially averaged anomalies of SSI are well correlated with remotely sensed data and phenological observations from a wide variety of trees and shrubs in Europe, China, and North America. An advantage of SSI is that it only "sees" the atmosphere, meaning that it is free of local biological effects. Therefore, it can enhance the ability to identify important relationships between the large-scale climate modes of variability and the index itself, an advantage over other plant-based indices (such as SOS). If the state of these atmospheric modes can be

  1. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies

    Science.gov (United States)

    Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William

    2018-04-01

    Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.

  2. Global impact of a climate treaty if the Human Development Index replaces GDP as a welfare proxy

    NARCIS (Netherlands)

    van den Bergh, Jeroen; Botzen, W.J.W.

    2018-01-01

    This study explores the implications of shifting the narrative of climate policy evaluation from one of costs/benefits or economic growth to a message of improving social welfare. Focusing on the costs of mitigation and the associated impacts on gross domestic product (GDP) may translate into a

  3. Evenness and species abundance in graptolite communities: a new proxy for climate change during the end ordovician mass extinction

    Czech Academy of Sciences Publication Activity Database

    Hawkins, A. D.; Mitchell, C. E.; Sheets, H. D.; Loxton, J.; Belscher, K.; Melchin, M. J.; Finney, S.; Štorch, Petr

    2011-01-01

    Roč. 43, č. 5 (2011), s. 83-83 ISSN 0016-7592. [2011 GSA Annual Meeting and Exposition. 09.10.2011-12.10.2011, Minneapolis] Institutional research plan: CEZ:AV0Z30130516 Keywords : graptolites * Ordovician * climate change Subject RIV: DB - Geology ; Mineralogy http://gsa.confex.com/gsa/2011AM/finalprogram/abstract_196574.htm

  4. Ground surface warming history in northern Canada inferred from inversions of temperature logs and comparison with other proxy climate reconstructions

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J. A.; Skinner, W. R.; Šafanda, Jan

    2005-01-01

    Roč. 162, č. 2 (2005), s. 109-128 ISSN 0033-4553 Institutional research plan: CEZ:AV0Z30120515 Keywords : global warming * regional climate variability and change * borehole temperatures Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2005

  5. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy

    Science.gov (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter

    2012-01-01

    Background and Aims Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Methods Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Key Results Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May–June. Conclusions Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world. PMID:22210848

  6. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy.

    Science.gov (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter

    2012-03-01

    Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May-June. Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.

  7. Weather and Climate Indicators for Coffee Rust Disease

    Science.gov (United States)

    Georgiou, S.; Imbach, P. A.; Avelino, J.; Anzueto, F.; del Carmen Calderón, G.

    2014-12-01

    Coffee rust is a disease that has significant impacts on the livelihoods of those who are dependent on the Central American coffee sector. Our investigation has focussed on the weather and climate indicators that favoured the high incidence of coffee rust disease in Central America in 2012 by assessing daily temperature and precipitation data available from 81 weather stations in the INSIVUMEH and ANACAFE networks located in Guatemala. The temperature data were interpolated to determine the corresponding daily data at 1250 farms located across Guatemala, between 400 and 1800 m elevation. Additionally, CHIRPS five day (pentad) data has been used to assess the anomalies between the 2012 and the climatological average precipitation data at farm locations. The weather conditions in 2012 displayed considerable variations from the climatological data. In general the minimum daily temperatures were higher than the corresponding climatology while the maximum temperatures were lower. As a result, the daily diurnal temperature range was generally lower than the corresponding climatological range, leading to an increased number of days where the temperatures fell within the optimal range for either influencing the susceptibility of the coffee plants to coffee rust development during the dry season, or for the development of lesions on the coffee leaves during the wet season. The coffee rust latency period was probably shortened as a result, and farms at high altitudes were impacted due to these increases in minimum temperature. Factors taken into consideration in developing indicators for coffee rust development include: the diurnal temperature range, altitude, the environmental lapse rate and the phenology. We will present the results of our study and discuss the potential for each of the derived weather and climatological indicators to be used within risk assessments and to eventually be considered for use within an early warning system for coffee rust disease.

  8. Environmental health indicators of climate change for the United States: findings from the State Environmental Health Indicator Collaborative.

    Science.gov (United States)

    English, Paul B; Sinclair, Amber H; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin

    2009-11-01

    To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity.

  9. Millennial-scale climate variations in western Mediterranean during late Pleistocene-early Holocene: multi-proxy analyses from Padul peatbog (southern Iberian Peninsula)

    Science.gov (United States)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Toney, Jaime L.; Anderson, R. Scott; Kaufman, Darrell; Bright, Jordon; Sachse, Dirk

    2017-04-01

    Padul peatbog, located in southern Iberian Peninsula (western Mediterranean region) is a unique area for palaeoenvironmental studies due to its location, between arid and temperate climates. Previous studies showed that the Padul peatbog contains a continuous record of the last ca. 0.8-1 Ma, so it is an extraordinary site to identify glacial-interglacial phases as well as Heinrich and D-O events, linked to orbital- and suborbital-scale variations. In 2015, a new 42 m long core was taken from this area, providing an excellent sediment record probably for the last ca. 300,000 years. This study is focused on the paleoenvironmental and climatic reconstruction of the late Pleistocene and the early Holocene (ca. from 50,000 to 9,500 cal. yrs BP), using AMS 14C and AAR dating, high-resolution pollen analysis, lithology, continuous XRF-scanning, X-ray diffraction, magnetic susceptibility and organic geochemistry. These different proxies provide information not only about the regional environment change but also about local changes in the conditions of the Padul lake/peatbog due to variations in water temperature, pH or nutrients.

  10. Trends in global vegetation activity and climatic drivers indicate a decoupled response to climate change

    DEFF Research Database (Denmark)

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G.

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty...... in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS......-NPP) and TBWper biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land...

  11. A 13000-year, high-resolution multi-proxy record of climate variability with episodes of enhanced atmospheric dust in Western Asia: Evidence from Neor peat complex in NW Iran

    Science.gov (United States)

    Sharifi, O.; Pourmand, A.; Canuel, E. A.; Peterson, L. C.

    2011-12-01

    The regional climate over West Asia, extending between Iran and the Arabian Peninsula to the eastern Mediterranean Sea, is governed by interactions between three major synoptic systems; mid-latitude Westerlies, the Siberian Anticyclone and the Indian Ocean Summer Monsoon. In recent years, a number of paleoclimate studies have drawn potential links between episodes of abrupt climate change during the Holocene, and the rise and fall of human civilizations across the "Fertile Crescent" of West Asia. High-resolution archives of climate variability from this region, however, are scarce, and at times contradicting. For example, while pollen and planktonic data from lakes in Turkey and Iran suggest that dry, continental conditions prevailed during the early-middle Holocene, oxygen isotope records indicate that relatively wet conditions dominated during this interval over West Asia. We present interannual to decadal multi-proxy records of climate variability from a peat complex in NW Iran to reconstruct changes in moisture and atmospheric dust content during the last 13000 years. Radiocarbon dating on 20 samples from a 775-cm peat core show a nearly constant rate of accumulation (1.7 mm yr-1, R2=0.99) since 13356 ± 116 cal yr B.P. Down-core X-ray fluorescence measurements of conservative lithogenic elements (e.g., Al, Zr, Ti) as well as redox-sensitive elements (e.g., Fe, K, Rb, Zn, Cu, and Co) at 2 mm intervals reveal several periods of elevated dust input to this region since the early Holocene. Down-core variations of total organic carbon and total nitrogen co-vary closely and are inversely correlated with conservative lithogenic elements (Al, Si, Ti), indicating a potential link between climate change and accumulation of organic carbon in the Neor peat mire. Major episodes of enhanced dust deposition (13000-12000, 11700-11200, 9200-8800, 7000-6000, 4200-3200, 2800-2200 and 1500-600 cal yr B.P) are in good agreement with other proxy records that document more arid

  12. Reliability of shell carbon isotope composition of different land snail species as a climate proxy: A case study in the monsoon region of China

    Science.gov (United States)

    Bao, Rui; Sheng, Xuefen; Teng, Henry H.; Ji, Junfeng

    2018-05-01

    Carbon isotope compositions of land snail shells (δ13Cshell) are shown to be indicative of local climate conditions. However, it is largely unknown how the responses of δ13Cshell to climatic factors changes amongst different species. In this study, we collected 3 species of land snail shells across the East Asian monsoon region of China to explore the overall relationship between δ13Cshell as well as the response of individual species to the regional climate. Results show that, whereas all species collectively can provide a consensus relation between δ13Cshell and local climatic factors such as temperature and precipitation; the response of individual species to the fluctuations of these factors is not uniform. Specifically, while the southerly species Bradybaena similaris exhibits robust δ13Cshell - mean precipitation correlation in both linearity and sensitivity, a common northerly species, Cathaica fasciola, only finds limited utility as a climate indicator, particularly for precipitation. Meanwhile, the south-central species Acusta ravida appears to be able to faithfully record past climate conditions despite showing a wider distribution and a broader habitat. Such species-dependent nature in the relations between δ13Cshell and local climatic factors can be attributed to the effect of ingested carbonate and variations in eco-physiological factors of different species, and is expected to be widespread, suggesting the need to be taken into consideration for future studies.

  13. Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region

    Science.gov (United States)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García, Abelardo; Honorio, Fulgencio

    2016-05-01

    Different climatic indices have been proposed to determine the wine suitability in a region. Some of them are related to the air temperature, but the hydric component of climate should also be considered which, in turn, is influenced by the precipitation during the different stages of the grapevine growing and ripening periods. In this study, we propose using the information obtained from ten climatic indices [heliothermal index (HI), cool night index (CI), dryness index (DI), growing season temperature (GST), the Winkler index (WI), September mean thermal amplitude (MTA), annual precipitation (AP), precipitation during flowering (PDF), precipitation before flowering (PBF), and summer precipitation (SP)] as inputs in an objective and probabilistic model, the Rasch model, with the aim of integrating the individual effects of them, obtaining the climate data that summarize all main climatic indices, which could influence on wine suitability from a climate viewpoint, and utilizing the Rasch measures to generate homogeneous climatic zones. The use of the Rasch model to estimate viticultural climatic suitability constitutes a new application of great practical importance, enabling to rationally determine locations in a region where high viticultural potential exists and establishing a ranking of the climatic indices which exerts an important influence on wine suitability in a region. Furthermore, from the measures of viticultural climatic suitability at some locations, estimates can be computed using a geostatistical algorithm, and these estimates can be utilized to map viticultural climatic zones in a region. To illustrate the process, an application to Extremadura, southwestern Spain, is shown.

  14. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  15. The Climate and Human Impacts of Major Explosive Volcanism AD670-730, A Multi-proxy Assessment

    Science.gov (United States)

    Gao, C.; Ludlow, F.

    2013-12-01

    Chronologically secure volcanic events can provide an important tool to improve ice core dating as well as our understanding of volcano-climate responses. However, there is a substantial lack of reference horizons for ice-core dating during the first millennium, excepting the Taupo (New Zealand, AD186×10) and Vesuvius (Italy, AD 79) eruptions. In this exploratory case-study, we use a total of 20 ice core records, 9 from the Arctic and 11 from the Antarctic, together with historical records to examine the occurrence and climatic impact of explosive volcanism, AD 670-730. Sulfate signals comparable in magnitude to the sizeable 1815 Tambora eruption are detected in all of the ice-core time series, with different cores attributing the timing of eruptions to AD 676×2, 688×2, or 700×2, respectively. Historical records of widespread frost damage, anomalously warm winters, drought, famine and mortality from Chinese, European and Middle Eastern chronicles suggest substantial climate and social perturbations during AD 677-685 and AD 699-709. The distinctive double-peak feature seen in the majority of the volcanic signals from both poles at AD 676×2 and AD 688×2 suggests that these signals may belong to the same eruption, with those cores dating the signals to c.AD 676 generally considered to have a more precise chronology. Combining the evidence from natural and historical anthropogenic records and taking into account uncertainties (e.g. resolution, dating accuracy) associated with individual ice cores, we propose that a (most-likely) low-latitude eruption took place around AD676, followed by another possible eruption around AD700, identifiable by the significant acidity in polar ice-caps and historical documents. Unique historical observations of 'blood rain' in Ireland (often associated with Saharan sand deposition, but also plausibly with iron and manganese-rich tephra falls) also suggest a high-latitude eruption (possibly Icelandic) at AD693, corresponding to a

  16. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010 derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  17. Development of key indicators to quantify the health impacts of climate change on Canadians

    OpenAIRE

    Cheng, June J.; Berry, Peter

    2013-01-01

    Objectives This study aimed at developing a list of key human health indicators for quantifying the health impacts of climate change in Canada. Methods A literature review was conducted in OVID Medline to identify health morbidity and mortality indicators currently used to quantify climate change impacts. Public health frameworks and other studies of climate change indicators were reviewed to identify criteria with which to evaluate the list of proposed key indicators and a rating scale was d...

  18. Centennial-scale vegetation and climate changes in the Middle Atlas, Morocco: new insights from multi-proxy investigations at Lake Sidi Ali

    Science.gov (United States)

    Fletcher, William; Campbell, Jennifer; Joannin, Sebastien; Mischke, Steffen; Zielhofer, Christoph; de Batist, Marc; Mikdad, Abdes

    2016-04-01

    The karstic lakes of the Middle Atlas, Morocco, represent a valuable archive of environmental and climatic change for Northwest Africa. Here we present the results of centennial-scale palynological and charcoal analyses as part of a multiproxy palaeolimnological study of sediment cores from Lake Sidi Ali in the Middle Atlas, Morocco (33° 03 N, 05° 00 W; 2,080 m a.s.l.). Supported by absolute dating including 23 more than twenty AMS 14C dates on pollen concentrates, the record covers the entire Holocene and offers insights into vegetation and climate change at a regionally unprecedented centennial-scale. Pollen assemblages are dominated by steppic herbs, evergreen oaks (Quercus), junipers (Cupressaceae) and Atlantic cedar (Cedrus atlantica). A long-term evolution of the montane vegetation is recorded, reflecting progressive changes in the dominant arboreal taxa and leading to the full establishment of the emblematic cedar forests of the area during the mid-Holocene by 6000 cal BP. Orbital-scale changes in seasonality and growing season moisture availability linked to declining summer insolation are implicated, with a transition from (a) warm, dry summers associated with summer drought tolerant taxa especially evergreen Quercus, high algal productivity in the lake, and high background levels of microcharcoal reflecting distant fire activity during the early Holocene, to (b) cool, relatively humid summers with dominance of montane conifers, declining algal productivity in the lake, and episodic local fire activity during the mid- to late Holocene. Superimposed on the long-term environmental changes are recurrent centennial-scale fluctuations in vegetation composition, reflecting competitive dynamics between the major taxa, initially between steppic and arboreal elements, and later between the major tree taxa. Parallels with hydrological proxies including stable O and C isotopes suggest common responses to climatic drivers (fluctuations in moisture sources and

  19. Holocene environmental and parasequence development of the St. Jones Estuary, Delaware (USA): Foraminiferal proxies of natural climatic and anthropogenic change

    Science.gov (United States)

    Leorri, E.; Martin, R.; McLaughlin, P.

    2006-01-01

    The benthic foraminiferal record of marshes located along western Delaware Bay (St. Jones Estuary, USA) reflects the response of estuaries to sea-level and paleoclimate change during the Holocene. System tracts are recognized and within them parasequences based on sedimentological and foraminiferal assemblages identification. The parasequences defined by foraminiferal assemblages appear correlative with rapid Holocene climate changes that are of worldwide significance: 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600??cal years BP. Following postglacial sea-level rise, modern subestuaries and marshes in the region began to develop between 6000 and 4000??years BP, depending on their proximity to the mouth of Delaware Bay and coastal geomorphology. Initial sediments were fluvial in origin, with freshwater marshes established around 4000??years BP. The subsequent sea-level transgression occurred sufficiently slowly that freshwater marshes alternated with salt marshes at the same sites to around 3000??years BP. Locally another two transgressions are identified at 1800 and 1000??years BP respectively. Marine influence increased in the estuaries until 600??years BP (Little Ice Age), when regression occurred. Sea-level began to rise again during the mid-19th Century at the end of the Little Ice Age, when marshes became established. The presence of a sand lens in the upper and middle estuary and the reduction in the number of tests in the top samples in cores from the same area also suggest an anthropogenic influence. The estuary infill resulted in a sharp transgressive sequence, represented by salt marsh foraminiferal assemblages in the upper part of the cores. The increase in marsh foraminifera in both areas suggests an increase in marine influence that might be due to the transgression beginning at the end of the Little Ice Age about 150-180??years ago coupled with anthropogenic straightening of the channel in 1913. ?? 2006 Elsevier B.V. All rights reserved.

  20. Small Mammals as Indicators of Climate, Biodiversity, and Ecosystem Change

    Science.gov (United States)

    Hope, Andrew G.; Waltari, Eric; Morse, Nathan R.; Flamme, M.J.; Cook, Joseph A.; Talbot, Sandra L.

    2017-01-01

    Climate is a driving evolutionary force for biodiversity in high-latitude Alaska. This region is complex and dynamic with high annual variation in temperature and light. Through deeper time, Alaska has experienced major climate extremes over much longer periodicity. For example, the Quaternary Period (the last ~2.5 million years), commonly known as the Ice Age, was punctuated by more than 20 major glacial-interglacial cycles. During glacial phases, water was locked up in ice sheets that covered much of North America, and the resulting lower sea levels exposed a land connection between Alaska and Siberia, a combined region known as Beringia (Figure 1). This isthmus provided vast expanses of land for species to inhabit, provided they could withstand potentially harsh polar conditions. Each extended glacial phase periodically transitioned into a shorter interglacial warm phase. These climate reversals melted continental ice sheets to expose corridors for reinvasion of terrestrial species, particularly those associated with forested habitats further south. Those species that survived at northern latitudes through repeated glacial-interglacial cycles formed the Arctic tundra communities that persist today. At present, Alaska supports diverse communities associated with both tundra and forests (Figure 2). These communities often interact with one another across latitudinal and elevational gradients, with tundra species generally found further north or higher in elevation. Alaska’s climate is continuing to change today, strongly influencing local environments and the distribution and dynamics of wildlife species.

  1. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA

    Science.gov (United States)

    Heather T. Root; Bruce. McCune; Sarah. Jovan

    2014-01-01

    Because of their unique physiology, lichen communities are highly sensitive to climatic conditions,making them ideal bioindicators for climate change. Southeast and south-central Alaska host diverse and abundant lichen communities and are faced with a more rapidly changing climate than many more southerly latitudes. We develop sensitive lichen-based indicators for...

  2. The Last Millennium Reanalysis: Improvements to proxies and proxy modeling

    Science.gov (United States)

    Tardif, R.; Hakim, G. J.; Emile-Geay, J.; Noone, D.; Anderson, D. M.

    2017-12-01

    The Last Millennium Reanalysis (LMR) employs a paleoclimate data assimilation (PDA) approach to produce climate field reconstructions (CFRs). Here, we focus on two key factors in PDA generated CFRs: the set of assimilated proxy records and forward models (FMs) used to estimate proxies from climate model output. In the initial configuration of the LMR [Hakim et al., 2016], the proxy dataset of [PAGES2k Consortium, 2013] was used, along with univariate linear FMs calibrated against annually-averaged 20th century temperature datasets. In an updated configuration, proxy records from the recent dataset [PAGES2k Consortium, 2017] are used, while a hierarchy of statistical FMs are tested: (1) univariate calibrated on annual temperature as in the initial configuration, (2) univariate against temperature as in (1) but calibration performed using expert-derived seasonality for individual proxy records, (3) as in (2) but expert proxy seasonality replaced by seasonal averaging determined objectively as part of the calibration process, (4) linear objective seasonal FMs as in (3) but objectively selecting relationships calibrated either on temperature or precipitation, and (5) bivariate linear models calibrated on temperature and precipitation with objectively-derived seasonality. (4) and (5) specifically aim at better representing the physical drivers of tree ring width proxies. Reconstructions generated using the CCSM4 Last Millennium simulation as an uninformed prior are evaluated against various 20th century data products. Results show the benefits of using the new proxy collection, particularly on the detrended global mean temperature and spatial patterns. The positive impact of using proper seasonality and temperature/moisture sensitivities for tree ring width records is also notable. This updated configuration will be used for the first generation of LMR-generated CFRs to be publicly released. These also provide a benchmark for future efforts aimed at evaluating the

  3. Pacific Islands Regional Climate Assessment: Building a Framework to Track Physical and Social Indicators of Climate Change Across Pacific Islands

    Science.gov (United States)

    Grecni, Z. N.; Keener, V. W.

    2016-12-01

    Assessments inform regional and local climate change governance and provide the critical scientific basis for U.S. climate policy. Despite the centrality of scientific information to public discourse and decision making, comprehensive assessments of climate change drivers, impacts, and the vulnerability of human and ecological systems at regional or local scales are often conducted on an ad hoc basis. Methods for sustained assessment and communication of scientific information are diverse and nascent. The Pacific Islands Regional Climate Assessment (PIRCA) is a collaborative effort to assess climate change indicators, impacts, and adaptive capacity of the Hawaiian archipelago and the US-Affiliated Pacific Islands (USAPI). In 2012, PIRCA released the first comprehensive report summarizing the state of scientific knowledge about climate change in the region as a technical input to the U.S. National Climate Assessment. A multi-method evaluation of PIRCA outputs and delivery revealed that the vast majority of key stakeholders view the report as extremely credible and use it as a resource. The current study will present PIRCA's approach to establishing physical and social indicators to track on an ongoing basis, starting with the Republic of the Marshall Islands as an initial location of focus for providing a cross-sectoral indicators framework. Identifying and tracking useful indicators is aimed at sustaining the process of knowledge coproduction with decision makers who seek to better understand the climate variability and change and its impacts on Pacific Island communities.

  4. Bridging long proxy data time series and instrumental observation in the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA

    Science.gov (United States)

    Schwab, Markus J.; Brauer, Achim; Błaszkiewicz, Mirosław; Raab, Thomas; Wilmking, Martin

    2015-04-01

    climate and landscape evolution in an historical cultural landscape extending from northeastern Germany into northwestern Poland. The northern-central European lowlands will be facilitated as a natural laboratory providing an ideal case for utilizing a systematic and holistic approach. In ICLEA five complementary work packages (WP) are established according to the key research aspects. WP 1 focused on monitoring mainly hydrology and soil moisture as well as meteorological parameters. WP 2 is linking present day and future monitoring data with the most recent past through analyzing satellite images. This WP will further provide larger spatial scales. WP 3-5 focus on different natural archives to obtain a broad variety of high quality proxy data. Tree rings provide sub-seasonal data for the last centuries up to few millennia, varved lake sediments cover the entire research time interval at seasonal to decadal resolution and palaeosoils and geomorphological features also cover the entire period but not continuously and with lower resolution. Complementary information, like climate, tree ecophysiological and limnological data etc., are provided by cooperation with associated partners. Further information about ICLEA: www.iclea.de

  5. Sensitivity of health sector indicators' response to climate change in Ghana.

    Science.gov (United States)

    Dovie, Delali B K; Dzodzomenyo, Mawuli; Ogunseitan, Oladele A

    2017-01-01

    There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in

  6. A Survey of the Relationship between Climatic Heat Stress Indices and Fundamental Milk Components Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Marami Milani

    2015-11-01

    Full Text Available The main purpose of this study is to assess the relationship between four bioclimatic indices for cattle (environmental stress, heat load, modified heat load, and respiratory rate predictor indices and three main milk components (fat, protein, and milk yield considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when the cows use the natural pasture. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty information in the confidence intervals. The main results identify an interesting relationship between the milk compounds and climate indices under all climate conditions. During spring, there are reasonably high correlations between the fat and protein concentrations vs. the climate indices, whereas there are insignificant dependencies between the milk yield and climate indices. During summer, the correlation between the fat and protein concentrations with the climate indices decreased in comparison with the spring results, whereas the correlation for the milk yield increased. This methodology is suggested for studies investigating the impacts of climate variability/change on food and agriculture using short term data considering uncertainty.

  7. Using large-scale climate indices in climate change ecology studies

    DEFF Research Database (Denmark)

    Forchhammer, Mads Cedergreen; Post, Eric

    2004-01-01

    Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns......Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns...

  8. Using Visualization Science to Evaluate Effective Communication of Climate Indicators

    Science.gov (United States)

    Gerst, M.; Kenney, M. A.; Wolfinger, F.; Lloyd, A.

    2015-12-01

    Indicators are observations or calculations that are used to track social and environmental conditions over time. For a large coupled system such as the economy and environment, the choice of indicators requires a structured process that involves co-production among facilitators, subject-matter experts, decision-makers, and the general public. This co-production is needed in part because such indicators serve a duel role of scientifically tracking change and of communicating to non-scientists important changes and information that may be useful in decision contexts. Because the goal is to communicate and inform decisions it is critical that indicators be understood by non-scientific audiences, which may require different visualization techniques than for scientific audiences. Here we describe a process of rigorously evaluating visual communication efficacy by using a simplified taxonomy of visualization design problems and trade-offs to assess existing and redesigned indicator images. The experimental design is three-part. It involves testing non-scientific audiences' understandability of scientific images found in the literature along with similar information shaped by a partial co-production process that informed the U.S. Global Change Research Program prototype indicators system, released in Spring 2015. These recommendations for physical, natural, and societal indicators of changes and impacts involved input from over 200 subject-matter experts, organized into 13 technical teams. Using results from the first two parts, we then explore visualization design improvements that may increase understandability to non-scientific audiences. We anticipate that this work will highlight important trade-offs in visualization design when moving between audiences that will be of great use to scientists who wish to communicate their results broader audiences.

  9. Variation of a Lightning NOx Indicator for National Climate Assessment

    Science.gov (United States)

    Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).

  10. Ecoclimatic indicators to study climate suitability of areas for the cultivation of specific crops

    Science.gov (United States)

    Caubel, J.; Garcia de Cortazar Atauri, I.; Cufi, J.; Huard, F.; Launay, M.; Ripoche, D.; Graux, A.; deNoblet, N.

    2013-12-01

    Climatic conditions play a fundamental role in the suitability of geographical areas for cropping. In the context of climate change, we could expect changes in overall climatic conditions and so, on the suitability for cropping. Therefore, assessing the future climate suitability of areas for cropping is decisive for anticipating agriculture in a given area. Moreover, it is crucial to have access to the split up information concerning the effect of climate on the achievement of the main ecophysiological processes and cultural practices taking place during the crop cycle. In this way, stakeholders can envisage land use adaptations under climate change conditions, such as changes in cultural practices or development of new varieties for example. We proposed an aggregation tool of ecoclimatic indicators to design evaluation trees of climate suitability of areas for cropping, GETARI (Generic Evaluation Tool of Ecoclimatic Indicators). It calculates an overall climate suitability index at the annual scale, from a designed evaluation tree. This aggregation tool allows to characterize climate suitability according to crop ecophysiology, grain/fruit quality or crop management. GETARI proposes the major ecophysiological processes and cultural practices taking place during phenological periods, together with the climatic effects that are known to affect their achievement. The climatic effects on the ecophysiological processes (or cultural practices) during phenological periods are captured by the ecoclimatic indicators, which are agroclimatic indicators calculated over phenological periods. They give information about crop response to climate through ecophysiological or agronomic thresholds. Those indices of suitability are normalized and aggregated according to aggregation rules in order to compute an overall climate index. In order to illustrate how GETARI can be used, we designed evaluation trees in order to study the climate suitability for maize cropping regarding

  11. An indicator of the impact of climatic change on European bird populations.

    Directory of Open Access Journals (Sweden)

    Richard D Gregory

    Full Text Available Rapid climatic change poses a threat to global biodiversity. There is extensive evidence that recent climatic change has affected animal and plant populations, but no indicators exist that summarise impacts over many species and large areas. We use data on long-term population trends of European birds to develop such an indicator. We find a significant relationship between interspecific variation in population trend and the change in potential range extent between the late 20(th and late 21(st centuries, forecasted by climatic envelope models. Our indicator measures divergence in population trend between bird species predicted by climatic envelope models to be favourably affected by climatic change and those adversely affected. The indicator shows a rapid increase in the past twenty years, coinciding with a period of rapid warming.

  12. Here be web proxies

    DEFF Research Database (Denmark)

    Weaver, Nicholas; Kreibich, Christian; Dam, Martin

    2014-01-01

    ,000 clients that include a novel proxy location technique based on traceroutes of the responses to TCP connection establishment requests, which provides additional clues regarding the purpose of the identified web proxies. Overall, we see 14% of Netalyzr-analyzed clients with results that suggest the presence...... of web proxies....

  13. Regional climate change trends and uncertainty analysis using extreme indices: A case study of Hamilton, Canada

    OpenAIRE

    Razavi, Tara; Switzman, Harris; Arain, Altaf; Coulibaly, Paulin

    2016-01-01

    This study aims to provide a deeper understanding of the level of uncertainty associated with the development of extreme weather frequency and intensity indices at the local scale. Several different global climate models, downscaling methods, and emission scenarios were used to develop extreme temperature and precipitation indices at the local scale in the Hamilton region, Ontario, Canada. Uncertainty associated with historical and future trends in extreme indices and future climate projectio...

  14. Development of ecological indicators of climate change based on lichen functional diversity

    OpenAIRE

    Matos, Paula Sofia Antunes

    2016-01-01

    Growing evidence shows us that climate has changed in the recent decades, and the scenario for the future will most likely worsen. A set of climate variables is being developed to monitor climate change, but this is not enough to keep track its effects on ecosystems. It’s imperative to understand and quantify how ecosystems functioning are affected by and respond to these changes, and ecological indicators based on biodiversity metrics are one of the tools to do this. The...

  15. Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations

    Science.gov (United States)

    2014-09-30

    associated with the ice - albedo feedback and the seasonal melt and growth of sea ice , as well as horizontal climate variations on a global domain. (2...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Indicators of Arctic Sea Ice Bistability in Climate...possibility that the climate system supports multiple Arctic sea ice states that are relevant for the evolution of sea ice during the next several

  16. Climate index for Belgium - Methodology; Indice climatique Belgique - Methodologie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the calculation methodology of average, minimum and maximum weather indexes with the winter and summer regression equations for the different economical regions of Belgium. (J.S.)

  17. Climate index for Spain - Methodology; Indice climatique Espagne methodologie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the calculation methodology of average, minimum and maximum weather indexes with the winter and summer regression equations for the different economical regions of Spain. (J.S.)

  18. Climate index for France - Methodology; Indice climatique France - Methodologie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the calculation methodology of average, minimum and maximum weather indexes with the winter and summer regression equations for the different economical regions of France. (J.S.)

  19. Decadal to millennial time scale climate variability in the Central Mediterranean during the Holocene: a reconstruction based on geochemical proxies from high resolution sedimentary records

    NARCIS (Netherlands)

    Goudeau, M.S.

    2014-01-01

    To assess potential anthropogenic contributions to future climate change it is necessary to understand natural climate variability. This can be achieved by studying climate variability during the Holocene, when similar basic climate boundary conditions persisted as today. During this period climate

  20. Lichen communities as climate indicators in the U.S. Pacific States.

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2017-01-01

    Epiphytic lichens are bioindicators of climate, air quality, and other forest conditions and may reveal how forests will respond to global changes in the U.S. Pacific States of Alaska, Washington, Oregon, and California. We explored climate indication with lichen communities surveyed by using both the USDA Forest Service Forest Inventory and Analysis (FIA) and Alaska...

  1. Indicators of climate change in Idaho: An assessment framework for coupling biophysical change and social perception

    Science.gov (United States)

    Climate change is well documented at the global scale, but local and regional changes are not as well understood. Finer, local-to-regional scale information is needed for creating specific, place-based planning and adaption efforts. Here we detail the development of an indicator-focused climate chan...

  2. Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators

    DEFF Research Database (Denmark)

    Owsianiak, Mikołaj; Brooks, Jennifer; Renz, Michael

    2017-01-01

    beet, fava bean, onion and lucerne) and two different countries (Spain and Germany), and used three different indicators of climate change: global warming potential (GWP), global temperature change potential (GTP), and climate tipping potential (CTP). We found that although climate change benefits (GWP......) from just sequestration and temporary storage of carbon are sufficient to outweigh impacts stemming from hydrochar production and transportation to the field, even greater benefits stem from replacing climate-inefficient biowaste management treatment options, like composting in Spain. By contrast...

  3. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    Science.gov (United States)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  4. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    Science.gov (United States)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate

  5. Development of key indicators to quantify the health impacts of climate change on Canadians.

    Science.gov (United States)

    Cheng, June J; Berry, Peter

    2013-10-01

    This study aimed at developing a list of key human health indicators for quantifying the health impacts of climate change in Canada. A literature review was conducted in OVID Medline to identify health morbidity and mortality indicators currently used to quantify climate change impacts. Public health frameworks and other studies of climate change indicators were reviewed to identify criteria with which to evaluate the list of proposed key indicators and a rating scale was developed. Total scores for each indicator were calculated based on the rating scale. A total of 77 health indicators were identified from the literature. After evaluation using the chosen criteria, 8 indicators were identified as the best for use. They include excess daily all-cause mortality due to heat, premature deaths due to air pollution (ozone and particulate matter 2.5), preventable deaths from climate change, disability-adjusted life years lost from climate change, daily all-cause mortality, daily non-accidental mortality, West Nile Disease incidence, and Lyme borreliosis incidence. There is need for further data and research related to health effect quantification in the area of climate change.

  6. Assessing the influence of climate model uncertanty on EU-wide climate impact indicators

    NARCIS (Netherlands)

    Lung, T.; Dosio, A.; Becker, W.; Lavalle, C.; Bouwer, L.M.

    2013-01-01

    Despite an increasing understanding of potential climate change impacts in Europe, the associated uncertainties remain a key challenge. In many impact studies, the assessment of uncertainties is underemphasised, or is not performed quantitatively. A key source of uncertainty is the variability of

  7. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    Science.gov (United States)

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  8. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change

    NARCIS (Netherlands)

    Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M.

    2013-01-01

    To better prioritise adaptation strategies to a changing climate that are currently being developed, there is a need for quantitative regional level assessments that are systematic and comparable across multiple weather hazards. This study presents an indicator-based impact assessment framework at

  9. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    Science.gov (United States)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg

  10. Ecoclimatic indicators to study crop suitability in present and future climatic conditions

    Science.gov (United States)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  11. Ecoclimatic indicators to study crop suitability in present and future climatic conditionsTIC CONDITIONS

    Science.gov (United States)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  12. A multi-proxy record from the Quaternary Vienna Basin: Chronology, climate and environmental change at the Alpine-Carpathian transition during the last 250,000 years

    Science.gov (United States)

    Salcher, Bernhard; Lomax, Johanna; Frank, Christa; Preusser, Frank; Scholger, Robert; Ottner, Franz; Wagreich, Michael

    2016-04-01

    Dated multi-proxy records of terrestrial sequences in the Quaternary of the circum-Alpine realm are sparse. This is especially true for those exceeding the time span of the last glacial maximum as extensive glaciers eroded substantial parts of potential records. Outside formerly glaciated regions, preservation space is low in the absence of tectonic subsidence. Foreland terraces forming as a consequence of mountain range uplift may partly account for this gap but are typically dominated by coarse-grained fluvial sediments commonly reflecting only short pulses during cold stage periods. Here we analyze a terrestrial record in the Vienna Basin in order to derive regional climatic and environmental changes of the last c. 250 ka. The Vienna Basin forms as a classical pull-apart feature showing a length of almost 200 km and a width of c. 55 km. Quaternary subsidence is focused along the active Vienna Basin Transfer Fault leading to the formation of a series of narrow strike-slip (sub-) basins and grabens with the Mitterndorf sub-basin being the largest (c. 270 km²) and deepest (c.175 m). The southern part of the basin is confined by the alpine mountain front and fed by two alluvial fans highlighting up to several tens of meters thick coarse grained, massive sediments intercalated by up to few meters thick fine clastic sediments. We investigated the fan's sequence development through core and outcrop sampling applying luminescence dating, magnetostratigraphy, soil and lithofacies classification as well as malacological analysis. The latter comprise the determination and distribution of species and individuals as well as coenological analysis. Data suggest a distinct sequence development with coarse-grained massive sediments abundantly deposited during cold periods (MIS 2 and 6) and fine, overbank sediments and soils, dominantly forming during warmer, Interstadial or Interglacial periods (MIS 5 and 7). Overbanks and soils are generally rich in terrestrial mollusk

  13. Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis

    Directory of Open Access Journals (Sweden)

    C. Franzke

    2009-02-01

    Full Text Available The multi-scale nature and climate noise properties of teleconnection indices are examined by using the Empirical Mode Decomposition (EMD procedure. The EMD procedure allows for the analysis of non-stationary time series to extract physically meaningful intrinsic mode functions (IMF and nonlinear trends. The climatologically relevant monthly mean teleconnection indices of the North Atlantic Oscillation (NAO, the North Pacific index (NP and the Southern Annular Mode (SAM are analyzed.

    The significance of IMFs and trends are tested against the null hypothesis of climate noise. The analysis of surrogate monthly mean time series from a red noise process shows that the EMD procedure is effectively a dyadic filter bank and the IMFs (except the first IMF are nearly Gaussian distributed. The distribution of the variance contained in IMFs of an ensemble of AR(1 simulations is nearly χ2 distributed. To test the statistical significance of the IMFs of the teleconnection indices and their nonlinear trends we utilize an ensemble of corresponding monthly averaged AR(1 processes, which we refer to as climate noise. Our results indicate that most of the interannual and decadal variability of the analysed teleconnection indices cannot be distinguished from climate noise. The NP and SAM indices have significant nonlinear trends, while the NAO has no significant trend when tested against a climate noise hypothesis.

  14. Are fish outside their usual ranges early indicators of climate-driven range shifts?

    Science.gov (United States)

    Fogarty, Hannah E; Burrows, Michael T; Pecl, Gretta T; Robinson, Lucy M; Poloczanska, Elvira S

    2017-05-01

    Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range

  15. Jemen - the Proxy War

    Directory of Open Access Journals (Sweden)

    Magdalena El Ghamari

    2015-12-01

    Full Text Available The military operation in Yemen is significant departure from Saudi Arabia's foreign policy tradition and customs. Riyadh has always relied on three strategies to pursue its interests abroad: wealth, establish a global network and muslim education and diplomacy and meadiation. The term "proxy war" has experienced a new popularity in stories on the Middle East. A proxy war is two opposing countries avoiding direct war, and instead supporting combatants that serve their interests. In some occasions, one country is a direct combatant whilst the other supporting its enemy. Various news sources began using the term to describe the conflict in Yemen immediately, as if on cue, after Saudi Arabia launched its bombing campaign against Houthi targets in Yemen on 25 March 2015. This is the reason, why author try to answer for following questions: Is the Yemen Conflict Devolves into Proxy War? and Who's fighting whom in Yemen's proxy war?" Research area includes the problem of proxy war in the Middle East. For sure, the real problem of proxy war must begin with the fact that the United States and its NATO allies opened the floodgates for regional proxy wars by the two major wars for regime change: in Iraq and Libya. Those two destabilising wars provided opportunities and motives for Sunni states across the Middle East to pursue their own sectarian and political power objectives through "proxy war".

  16. A possible indication of anthropogenic climate change in the wave climate in the central North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Pfizenmayer, A.; Storch, H. von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2000-07-01

    In the central North Sea we observe an increase in the frequency of eastward propagating waves in the recent four decades. To assess the significance of this change the wave statistic for this century was reconstructed with a statistical model. With a linear multivariate technique (redundancy analysis) monthly mean air pressure fields over the North Atlantic and Western Europe were downscaled on the intramonthly frequency of directional wave propagation. When compared against this reference, the recent change appears significant at the 5% level. In order to investigate the reason for this local climatic change, reconstruction was compared with the downscaled results of a transient GCM scenario (ECHAMA-OPYC3) and with results obtained in a high resolution time slice experiment with increased concentrations of greenhouse gases and aerosols. Both estimates are qualitatively consistent with the changes observed in the last decades. We suggest that the recent increase of eastward propagation is a local manifestation of anthropogenic global climate change. (orig.) [German] In den letzten Jahrzehnten konnte in der zentralen Nordsee eine Zunahme der Haeufigkeit ostwaerts laufender Wellen beobachtet werden. Mit Hilfe eines statistischen Modells wurde die Wellenstatistik des 20. Jahrhunderts rekonstruiert. Der monatliche mittlere Bodenluftdruck ueber dem Nordatlantik und Westeuropa wurde mit einer linearen multivariaten Technik auf die monatliche Verteilung der Wellenrichtungen regionalisiert. Der Vergleich der juengsten Aenderungen mit dem gesamten Jahrhundert zeigt, dass diese Aenderung im Wellenklima signifikant ist (5-%-Grenze). Zur Untersuchung der Ursachen dieser Veraenderung wurden diese mit den regionalisierten Ergebnissen aus einem transienten Klimaszenario und einem hochaufgeloesten Zeitscheibenexperiment verglichen. Beide Szenarien produzieren bei ansteigenden Treibhausgasen und Aerosolen eine qualitativ konsistente Aenderung. Die Zunahme der oestlich laufenden

  17. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    Science.gov (United States)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales

  18. Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA

    Science.gov (United States)

    Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid

    2018-06-01

    There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971-2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).

  19. A Review of Frameworks for Developing Environmental Health Indicators for Climate Change and Health

    Science.gov (United States)

    Hambling, Tammy; Weinstein, Philip; Slaney, David

    2011-01-01

    The role climate change may play in altering human health, particularly in the emergence and spread of diseases, is an evolving area of research. It is important to understand this relationship because it will compound the already significant burden of diseases on national economies and public health. Authorities need to be able to assess, anticipate, and monitor human health vulnerability to climate change, in order to plan for, or implement action to avoid these eventualities. Environmental health indicators (EHIs) provide a tool to assess, monitor, and quantify human health vulnerability, to aid in the design and targeting of interventions, and measure the effectiveness of climate change adaptation and mitigation activities. Our aim was to identify the most suitable framework for developing EHIs to measure and monitor the impacts of climate change on human health and inform the development of interventions. Using published literature we reviewed the attributes of 11 frameworks. We identified the Driving force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework as the most suitable one for developing EHIs for climate change and health. We propose the use of EHIs as a valuable tool to assess, quantify, and monitor human health vulnerability, design and target interventions, and measure the effectiveness of climate change adaptation and mitigation activities. In this paper, we lay the groundwork for the future development of EHIs as a multidisciplinary approach to link existing environmental and epidemiological data and networks. Analysis of such data will contribute to an enhanced understanding of the relationship between climate change and human health. PMID:21845162

  20. Developing Health-Related Indicators of Climate Change: Australian Stakeholder Perspectives.

    Science.gov (United States)

    Navi, Maryam; Hansen, Alana; Nitschke, Monika; Hanson-Easey, Scott; Pisaniello, Dino

    2017-05-22

    Climate-related health indicators are potentially useful for tracking and predicting the adverse public health effects of climate change, identifying vulnerable populations, and monitoring interventions. However, there is a need to understand stakeholders' perspectives on the identification, development, and utility of such indicators. A qualitative approach was used, comprising semi-structured interviews with key informants and service providers from government and non-government stakeholder organizations in South Australia. Stakeholders saw a need for indicators that could enable the monitoring of health impacts and time trends, vulnerability to climate change, and those which could also be used as communication tools. Four key criteria for utility were identified, namely robust and credible indicators, specificity, data availability, and being able to be spatially represented. The variability of risk factors in different regions, lack of resources, and data and methodological issues were identified as the main barriers to indicator development. This study demonstrates a high level of stakeholder awareness of the health impacts of climate change, and the need for indicators that can inform policy makers regarding interventions.

  1. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the

  2. The use of Sphagnum cellulose oxygen isotope ratios in ombrotrophic peatlands as a proxy for paleoclimate.

    Science.gov (United States)

    Taylor, M.; Pendall, E.; Jackson, S.; Booth, R. K.; Nichols, J. E.; Huang, Y.

    2006-12-01

    Developing proxies for discerning paleoclimate that are independent of the pollen record can provide insight into various aspects of climate variability and improve confidence in the interpretation of climate-vegetation interactions. To date, proxies including plant macrofossils, humification indices, testate amoebae, and ratios of n-alkane abundances have been used to infer past climate variability from temperate ombrotrophic peatlands in upper Midwestern North America. These proxies are used to infer past changes in surface-moisture conditions, which in ombrotrophic peatlands is primarily a function of precipitation and temperature. This study investigates the potential uses of stable oxygen isotopes to complement hydrologic proxies. δ18O of surface water and Sphagnum moss cellulose from bogs throughout North America indicates a correlation between average growing season temperatures and δ18O-values. The existence of a modern temperature signal in moss cellulose suggests that δ18O-derived records will not only complement paleohydrological records, but also help assess relative changes in precipitation and temperature. Humification and testate amoebae data from two cores taken from Minden and Irwin Smith Bogs in central and northeastern Michigan have recorded several extreme drought events during the Holocene, including one at 1000 YBP. Comparison of δ18O-values of picked Sphagnum remains to down-core humification and testate amoebae data suggest good temporal correspondence, with the δ18O-values around 1000 YBP indicating a warmer growing season.

  3. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  4. Delta and fan morphologies on Mars as climate indicators (Utrecht Studies in Geosciences 042)

    NARCIS (Netherlands)

    de Villiers, G.

    2013-01-01

    The presence, duration and quantity of water on Mars remains an important research topic in planetary science. Large valley networks, regional outflow channels, and small-scale gullies indicate the presence of water on the surface at certain points in the past. However, the climatic history and

  5. Linear trend and abrupt changes of climate indices in the arid region of northwestern China

    Science.gov (United States)

    Wang, Huaijun; Pan, Yingping; Chen, Yaning; Ye, Zhengwei

    2017-11-01

    In recent years, climate extreme events have caused increasing direct economic and social losses in the arid region of northwestern China. Based on daily temperature and precipitation data from 1960 to 2010, this paper discussed the linear trend and abrupt changes of climate indices. The general evolution was obtained by the empirical orthogonal function (EOF), the Mann-Kendall test, and the distribution-free cumulative sum chart (CUSUM) test. The results are as follows: (1) climate showed a warming trend at annual and seasonal scale, with all temperature indices exhibiting statistically significant changes. The warm indices have increased, with 1.37%days/decade of warm days (TX90p), 0.17 °C/decade of warmest days (TXx) and 1.97 days/decade of warm spell duration indicator (WSDI), respectively. The cold indices have decreased, with - 1.89%days/decade, 0.65 °C/decade and - 0.66 days/decade for cold nights (TN10p), coldest nights (TNn) and cold spell duration indicator (CSDI), respectively. The precipitation indices have also increased significantly, coupled with the changes of magnitude (max 1-day precipitation amount (RX1day)), frequency (rain day (R0.1)), and duration (consecutive dry days (CDD)). (2) Abrupt changes of the annual regional precipitation indices and the minimum temperature indices were observed around 1986, and that of the maximum temperature indices were observed in 1996. (3) The EOF1 indicated the overall coherent distribution for the whole study area, and its principal component (PC1) was also observed, showing a significant linear trend with an abrupt change, which were in accordance with the regional observation results. EOF2 and EOF3 show contrasts between the southern and northern study areas, and between the eastern and western study areas, respectively, whereas no significant tendency was observed for their PCs. Hence, the climate indices have changed significantly, with linear trends and abrupt changes noted for all climate indices

  6. Effects of climate change on agroclimatic indices in rainfed wheat production areas of Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2009-06-01

    Full Text Available Despite the importance of all climatic parameters for crop growth and productivity, temperature and rainfall are more crucial compared to others and almost all climatic and agroclimatic indices are based on these two variables. Climate change will lead to variation in agroclimatic indices and evaluation of this variation is a key to study crop response to future climatic conditions. Length of growing period (LGP and rainfall deficit index could be used as indictors for assessment of potential impact of climate change of rainfed systems. To study this impact long-term weather data of main rainfed wheat production areas of Iran were collected. UKMO general circulation model was used for perdiction of climatic parameters of selected stations for years 2025 and 2050 based on pre defined scenarios of IPCC for this target years. LGP, length of dry season and rainfall deficit index were calculated from present data and the generated data for target years. The results showed that LGP based on temperature would be increased in all rainfed areas of country. However, including the water availability in the calculation was led to a lowered LGP. Reduction of LGP for the studied stations was in the range of 8-36 and 19-55 days for years 2025 and 2050, respectively. Rainfall deficit index for 2025 and 2050 was varied, respectively at 8.3-17.7 and 21.1-32.3 mm. It was estimated that under climatic condition of years 2025 and 2050 the cultivated areas in the main rainfed production regions of the country would be reduced by 16-25 and 23-33%, respectively.

  7. Comparison of several climate indices as inputs in modelling of the Baltic Sea runoff

    Energy Technology Data Exchange (ETDEWEB)

    Hanninen, J.; Vuorinen, I. [Turku Univ. (Finland). Archipelaco Research Inst.], e-mail: jari.hanninen@utu.fi

    2012-11-01

    Using Transfer function (TF) models, we have earlier presented a chain of events between changes in the North Atlantic Oscillation (NAO) and their oceanographical and ecological consequences in the Baltic Sea. Here we tested whether other climate indices as inputs would improve TF models, and our understanding of the Baltic Sea ecosystem. Besides NAO, the predictors were the Arctic Oscillation (AO), sea-level air pressures at Iceland (SLP), and wind speeds at Hoburg (Gotland). All indices produced good TF models when the total riverine runoff to the Baltic Sea was used as a modelling basis. AO was not applicable in all study areas, showing a delay of about half a year between climate and runoff events, connected with freezing and melting time of ice and snow in the northern catchment area of the Baltic Sea. NAO appeared to be most useful modelling tool as its area of applicability was the widest of the tested indices, and the time lag between climate and runoff events was the shortest. SLP and Hoburg wind speeds showed largely same results as NAO, but with smaller areal applicability. Thus AO and NAO were both mostly contributing to the general understanding of climate control of runoff events in the Baltic Sea ecosystem. (orig.)

  8. The coralline red alga Lithophyllum kotschyanum f. affine as proxy of climate variability in the Yemen coast, Gulf of Aden (NW Indian Ocean)

    Science.gov (United States)

    Caragnano, A.; Basso, D.; Jacob, D. E.; Storz, D.; Rodondi, G.; Benzoni, F.; Dutrieux, E.

    2014-01-01

    Recent investigations have shown the potential of red coralline algae as paleoclimatic archive. A previously unexplored subfamily of coralline algae, the Lithophylloideae, was investigated from the Gulf of Aden (Balhaf, Yemen). Seasonal changes in Mg/Ca, Li/Ca and Ba/Ca composition of Lithophyllum kotschyanum f. affine were investigated by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). For the first time in coralline algae, the Li/Ca composition was analyzed and showed a highly significant and positive correlation with Mg/Ca and SST. Monthly algal Mg/Ca and Li/Ca variations indicate a positive correlation with sea surface temperature (SST), and sea surface salinity (SSS), although low growth rates decrease the resolution of the algal record. Albeit no or weak positive correlation between monthly algal Ba/Ca and local SST was found, fluctuations in Ba/Ca suggest the seasonal influence of nutrient-rich deep waters introduced by upwelling, and record an increase of sedimentation at the sampling site likely due to an intensified land use in the area. The Mg/Ca age model shows an average algal extension rate of 1.15 mm yr-1, and reveals multiple intra-annual banding (previously unreported in the genus Lithophyllum) together with carposporangia formation in late February-early March, when temperature begins to increase. The concentration of MgCO3 in the thallus of L. kotschyanum f. affine is 20 mol% (1 SE), confirming that within the genus, the species sampled in warmer regions contain higher mol% MgCO3. The concentrations of LiCO3 and BaCO3 are 8 μmol% (0.7 SE) and 0.5 μmol% (0.03 SE), respectively. Despite the limitations from low-growth rate and species-specific vital effect, coralline algae confirm their utility in climate and oceanographic reconstruction.

  9. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products.

    Science.gov (United States)

    Anyah, R O; Forootan, E; Awange, J L; Khaki, M

    2018-09-01

    Africa, a continent endowed with huge water resources that sustain its agricultural activities is increasingly coming under threat from impacts of climate extremes (droughts and floods), which puts the very precious water resource into jeopardy. Understanding the relationship between climate variability and water storage over the continent, therefore, is paramount in order to inform future water management strategies. This study employs Gravity Recovery And Climate Experiment (GRACE) satellite data and the higher order (fourth order cumulant) statistical independent component analysis (ICA) method to study the relationship between terrestrial water storage (TWS) changes and five global climate-teleconnection indices; El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Madden-Julian Oscillation (MJO), Quasi-Biennial Oscillation (QBO) and the Indian Ocean Dipole (IOD) over Africa for the period 2003-2014. Pearson correlation analysis is applied to extract the connections between these climate indices (CIs) and TWS, from which some known strong CI-rainfall relationships (e.g., over equatorial eastern Africa) are found. Results indicate unique linear-relationships and regions that exhibit strong linkages between CIs and TWS. Moreover, unique regions having strong CI-TWS connections that are completely different from the typical ENSO-rainfall connections over eastern and southern Africa are also identified. Furthermore, the results indicate that the first dominant independent components (IC) of the CIs are linked to NAO, and are characterized by significant reductions of TWS over southern Africa. The second dominant ICs are associated with IOD and are characterized by significant increases in TWS over equatorial eastern Africa, while the combined ENSO and MJO are apparently linked to the third ICs, which are also associated with significant increase in TWS changes over both southern Africa, as well as equatorial eastern Africa. Copyright © 2018

  10. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  11. Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages

    Science.gov (United States)

    Licciardi, Joseph M.; Schaefer, Joerg M.; Taggart, Jean R.; Lund, David C.

    2009-09-01

    The role of the tropics in triggering, transmitting, and amplifying interhemispheric climate signals remains a key debate in paleoclimatology. Tropical glacier fluctuations provide important insight on regional paleoclimatic trends and forcings, but robust chronologies are scarce. Here, we report precise moraine ages from the Cordillera Vilcabamba (13°20‧S) of southern Peru that indicate prominent glacial events and associated climatic shifts in the outer tropics during the early Holocene and late in the “Little Ice Age” period. Our glacier chronologies differ from the New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region.

  12. Establishment of an indicator concept for the German strategy on adaptation to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Schoenthaler, Konstanze; Andrian-Werburg, Stefan von; Wulfert, Katrin [Bosch und Partner GmbH, Muenchen (Germany); Luthardt, Vera; Kreinsen, Beatrice; Schultz-Sternberg, R.; Hommel, Robert [Hochschule fuer Nachhaltige Entwicklung Eberswalde (Germany)

    2010-11-15

    Even if we succeed in achieving the EU target of reducing global warming to 2 C, it will be absolutely essential to adapt to changing climatic conditions. The greenhouse gases currently present in the atmosphere will influence the climate in coming decades. The day on which it is quite clear which climatic scenario prevails, so that it is possible to model all relevant processes down to regional level, will be the day on which it is too late to adapt to the actual scenario. Our endeavours to adapt to climate change do not mean, however, that we can neglect to take measures in order to reduce the output of greenhouse gases. It is important to remember that on their own, neither adaptation nor mitigation can prevent the grave impacts resulting from climate change. In fact, they complement each other meaningfully thus helping to alleviate the risks of climate change. On 17th December 2008 the German Federal Cabinet adopted the DAS (German Strategy for the Adaptation to Climate Change), (Bundesregierung 2008). The DAS has created the framework for adapting to the consequences of climate change in Germany. First and fore-most, the DAS contributes its guidelines at Federal level, to provide a guideline for agents at other levels. The Strategy lays the foundation for a medium-term process. In conjunction with the individual Federal States and other groups representing various sectors of society, the Strategy provides a step-by-step assessment of the risks of climate change. Furthermore, it states the potential requirements for action, and defines the appropriate goals and potential adaptation measures to be developed and implemented in this process. In due course, the Federal Environment Agency (UBA) will design a comprehensive set of tools to support and advance the DAS. An integral part of this will be the Special Information System 'Adaptation' (FISKA) and an Indicator System to aid adaptation. The latter is one of the key tasks identified for the DAS. As far

  13. Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change

    Directory of Open Access Journals (Sweden)

    Jonathan E. Suk

    2014-02-01

    Full Text Available A wide range of infectious diseases may change their geographic range, seasonality and incidence due to climate change, but there is limited research exploring health vulnerabilities to climate change. In order to address this gap, pan-European vulnerability indices were developed for 2035 and 2055, based upon the definition vulnerability = impact/adaptive capacity. Future impacts were projected based upon changes in temperature and precipitation patterns, whilst adaptive capacity was developed from the results of a previous pan-European study. The results were plotted via ArcGISTM to EU regional (NUTS2 levels for 2035 and 2055 and ranked according to quintiles. The models demonstrate regional variations with respect to projected climate-related infectious disease challenges that they will face, and with respect to projected vulnerabilities after accounting for regional adaptive capacities. Regions with higher adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to offset any climate change impacts and are thus generally less vulnerable than areas with lower adaptive capacities. The indices developed here provide public health planners with information to guide prioritisation of activities aimed at strengthening regional preparedness for the health impacts of climate change. There are, however, many limitations and uncertainties when modeling health vulnerabilities. To further advance the field, the importance of variables such as coping capacity and governance should be better accounted for, and there is the need to systematically collect and analyse the interlinkages between the numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic datasets so as to promote the public health capacity to detect, forecast, and prepare for the health threats due to climate change.

  14. Indicators for tracking European vulnerabilities to the risks of infectious disease transmission due to climate change.

    Science.gov (United States)

    Suk, Jonathan E; Ebi, Kristie L; Vose, David; Wint, Willy; Alexander, Neil; Mintiens, Koen; Semenza, Jan C

    2014-02-21

    A wide range of infectious diseases may change their geographic range, seasonality and incidence due to climate change, but there is limited research exploring health vulnerabilities to climate change. In order to address this gap, pan-European vulnerability indices were developed for 2035 and 2055, based upon the definition vulnerability = impact/adaptive capacity. Future impacts were projected based upon changes in temperature and precipitation patterns, whilst adaptive capacity was developed from the results of a previous pan-European study. The results were plotted via ArcGISTM to EU regional (NUTS2) levels for 2035 and 2055 and ranked according to quintiles. The models demonstrate regional variations with respect to projected climate-related infectious disease challenges that they will face, and with respect to projected vulnerabilities after accounting for regional adaptive capacities. Regions with higher adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to offset any climate change impacts and are thus generally less vulnerable than areas with lower adaptive capacities. The indices developed here provide public health planners with information to guide prioritisation of activities aimed at strengthening regional preparedness for the health impacts of climate change. There are, however, many limitations and uncertainties when modeling health vulnerabilities. To further advance the field, the importance of variables such as coping capacity and governance should be better accounted for, and there is the need to systematically collect and analyse the interlinkages between the numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic datasets so as to promote the public health capacity to detect, forecast, and prepare for the health threats due to climate change.

  15. A climate profile indicator based comparative analysis of climate change scenarios with regard to maize (Zea mays L.) cultures

    Energy Technology Data Exchange (ETDEWEB)

    Dios, N.; Szenteleki, K.; Ferenczy, A.; Petranyl, G. [Corvinus Univ. of Budapest (Hungary). Dept. of Mathematics and Informatics; Hufnagel, L. [Hungarian Academy of Sciences, Budapest (Hungary). Adaptation to Climate Change Research Group

    2009-07-01

    Recent research results let us conclude that climate change might have a significant effect on the yield of wheat, barley, rye, potato and maize, and the borderlines of their area of cultivation might shift 100--150 kilometers to the north. The possible mass occurrence of new aggressive pest, pathogen and weed species in Hungary might also create a problem from plant protection. Maize is one of the most important fodder-plants. Hungary has close to the largest total cultivating area in Europe. Maize is used in many ways, thus being of outstanding economic importance. In Hungary the conditions of maize cultivation are -- except for dry years -- quite favorable in most cultural regions and complex cultivating technologies are available. It also might gain a significant role in the line of new environment-friendly alternative sources of energy. For these reasons, it is important to examine the influence of meteorological factors on maize ecosystems and this examination should include as many climate change scenarios and as long a time series as possible. Using ecological data compiled from scientific literature on pest, pathogen and weed species characteristic in maize cultures in Hungary, we defined monthly climate profile indicators and applied them to complete a comparative analysis of the historical and modelled climate change scenario meteorological data of the city of Debrecen. Our results call attention to a drastic decline of the competitive ability of maize as compared to several C{sub 4} and especially C{sub 3} plants. According to the stricter scenarios, the frequency of potential pest and pathogen damage emergency situations will grow significantly by the end of the century.

  16. Deriving evaluation indicators for knowledge transfer and dialogue processes in the context of climate research

    Science.gov (United States)

    Treffeisen, Renate; Grosfeld, Klaus; Kuhlmann, Franziska

    2017-12-01

    Knowledge transfer and dialogue processes in the field of climate science have captured intensive attention in recent years as being an important part of research activities. Therefore, the demand and pressure to develop a set of indicators for the evaluation of different activities in this field have increased, too. Research institutes are being asked more and more to build up structures in order to map these activities and, thus, are obliged to demonstrate the success of these efforts. This paper aims to serve as an input to stimulate further reflection on the field of evaluation of knowledge transfer and dialogue processes in the context of climate sciences. The work performed in this paper is embedded in the efforts of the German Helmholtz Association in the research field of earth and environment and is driven by the need to apply suitable indicators for knowledge transfer and dialogue processes in climate research center evaluations. We carry out a comparative analysis of three long-term activities and derive a set of indicators for measuring their output and outcome by balancing the wide diversity and range of activity contents as well as the different tools to realize them. The case examples are based on activities which are part of the regional Helmholtz Climate Initiative Regional Climate Change (REKLIM) and the Climate Office for Polar Regions and Sea Level Rise at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Both institutional units have been working on a wide range of different knowledge transfer and dialogue processes since 2008/2009. We demonstrate that indicators for the evaluation must be based on the unique objectives of the individual activities and the framework they are embedded in (e.g., research foci which provide the background for the performed knowledge transfer and dialogue processes) but can partly be classified in a principle two-dimensional scheme. This scheme might serve as a usable basis for climate

  17. Benthic Foraminiferal Stable Isotope and Dinocyst Assemblages in Sediments of the Trondheimfjord Area (Mid-Norway): Proxies for Regional Oceanographic and Climate Changes?

    Science.gov (United States)

    Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Schmidt, S.; Rühlemann, C.

    2012-04-01

    The Trondheimfjord is located at the west coast of Mid-Norway and is characterized by local environmental and hydrological changes that are linked to regional oceanographic and atmospheric processes in the Norwegian Sea. The North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC), two major northward flowing sea surface/intermediate currents, strongly contribute to the oceanography of the Norwegian Sea and thus, to the hydrological settings of the fjord. Instrumental records indicate that the renewal of the fjord water by Atlantic-derived water masses occurs twice a year and that bottom water temperature and salinity changes reflect NAC variability. Sedimentation rates in the fjord basin exceed several mm/yr. Hence, the Trondheimfjord is an ideal location for high resolution studies of important climate-sensitive parameters such as characteristics of Atlantic-derived waters, freshwater discharge and sedimentary patterns. We measured stable isotope ratios in tests of the benthic foraminifera Melonis barleanus from surface sediments of the Trondheimfjord; δ18O ratios vary according to circulation and stratification patterns in the fjord which are linked to the topography. Based on these surface sediment measurements, as well as previous sediment core studies (Milzer et al, unpublished), we assume that benthic δ18O ratios in sedimentary archives from the Trondheimfjord reflect ocean circulation changes in the Norwegian Sea. In order to examine to which extent physico-chemical characteristics of the prevailing water masses are affecting the benthic signal in the Trondheimfjord, and how these findings can be related to oceanographic changes in the Norwegian Sea, we analyze benthic δ18O ratios from three multi-cores distributed along the fjord axis. According to 210Pb and 137Cs chronology these multi-cores contain undisturbed sedimentary records for the last 10 to 50 years, with sedimentation rates ranging from 2.5 to 7 mm/yr. We perform this analysis by

  18. Geomorphic features as indicators of climatic fluctuations in a periglacial environment, northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, R; Lindh, L [Lund Univ. (SE). Dept. of Physical Geography

    1990-01-01

    Goemorphic responses to climatic fluctuations in the periglacial mountain environment of northern Sweden, especially the Abisko mountains, are discussed. Although the frequency and magnitude of rapid mass movements are related to climatic conditions, the depositional patterns of the processes and the variable availability of source material complicate their use as climatic indicators. Possibly, debris flows and slushflows were frequent during the Little Ice Age, according to lichenometric dating of old deposits. Field observations suggest a fairly high frequency also during the last few decades. Boulder pavements, moraine-like ridges and glacial striae in front of major snowfields indicate these were previously larger and in some cases active as small glaciers perhaps in the cold beginning of the 1900's. During the warm 1920-30's snowpatches and glaciers, as well as permafrost mounds were affected by a general degeneration. Climatic inferences made from the mentioned features are still very crude. Tentatively, it is suggested that they are presently beginning to respond to the cooling trend affecting northern Scandinavia since about 1940. The anticipated impact of a greenhouse warming of the atmosphere has thus so far not been noticeable in this high latitude area. (authors).

  19. Towards a Comparative Index of Seaport Climate-Risk: Development of Indicators from Open Data

    Science.gov (United States)

    McIntosh, R. D.; Becker, A.

    2016-02-01

    Seaports represent an example of coastal infrastructure that is at once critical to global trade, constrained to the land-sea interface, and exposed to weather and climate hazards. Seaports face impacts associated with projected changes in sea level, sedimentation, ocean chemistry, wave dynamics, temperature, precipitation, and storm frequency and intensity. Port decision-makers have the responsibility to enhance resilience against these impacts. At the multi-port (regional or national) scale, policy-makers must prioritize adaptation efforts to maximize the efficiency of limited physical and financial resources. Prioritization requires comparing across seaports, and comparison requires a standardized assessment method, but efforts to date have either been limited in scope to exposure-only assessments or limited in scale to evaluate one port in isolation from a system of ports. In order to better understand the distribution of risk across ports and to inform transportation resilience policy, we are developing a comparative assessment method to measure the relative climate-risk faced by a sample of ports. Our mixed-methods approach combines a quantitative, data-driven, indicator-based assessment with qualitative data collected via expert-elicitation. In this presentation, we identify and synthesize over 120 potential risk indicators from open data sources. Indicators represent exposure, sensitivity, and adaptive capacity for a pilot sample of 20 ports. Our exploratory data analysis, including Principal Component Analysis, uncovered sources of variance between individual ports and between indicators. Next steps include convening an expert panel representing the perspectives of multiple transportation system agencies to find consensus on a suite of robust indicators and metrics for maritime freight node climate risk assessment. The index will be refined based on expert feedback, the sample size expanded, and additional indicators sought from closed data sources

  20. Trends in Middle East climate extreme indices from 1950 to 2003

    Science.gov (United States)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  1. Lake ecosystem response to climate change 8200 years ago. A multi-proxy study at Lake Højby Sø, Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Hede, Mikkel Ulfeldt; Noe-Nygaard, Nanna

    2009-01-01

    of climate and the effects of human activities. These problems also complicate the prediction of possible future climate influence on lake ecology. A way of circumventing these problems is the use of lake sediment records which contain a wealth of information about past lake history over long time scales...... productivity as reflected by high algal pigment accumulation rates in the period c. 8400–7950 cal yr BP. After c. 7950 cal yr BP algal productivity declined somewhat but the lake did not return to its pre-8400 cal yr BP conditions remaining a more productive and nutrient rich lake than before the climate...... was of more importance for lake ecosystem process than the change in air temperature....

  2. Quercus macrocarpa annual, early- and latewood widths as hydroclimatic proxies, southeastern Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Vanstone, Jessica R; Sauchyn, David J

    2010-01-01

    Fluctuations in size of annual ring-widths of Quercus species suggest that environmental factors influence the size and density of vessels within the ring, either by acting as a limiting factor for growth or through fine tuning of the wood structure to environmental factors. The purpose of this study is to assess the potential of Q. macrocarpa to provide multiple dendroclimatic proxies for the Canadian Prairies, by investigating growth responses of annual, early- and latewood widths to regional climate variability. Results indicate that ring width chronologies, from southeastern Saskatchewan capture regional signals related to moisture and drought conditions. Correlations suggest that late-wood widths are more representative of annual ring-widths, than are early-wood widths, and are the best proxy of seasonal fluctuations in climate. Thus regression models that include latewood widths were able to account for more variance in the Palmer Drought Severity Index (PDSI) than when annual ring-widths are used as the only proxy. This study demonstrates that Q. macrocarpa can provide multiple dendroclimatic proxies for investigating large scale climatic fluctuations at annual and sub-annual time scales. It is novel in terms of sub-annual analysis of tree-rings in a region that previously lacked dendrochronological research.

  3. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Trnka, M.; Holman, I. P.; Svobodová, E.; Harrison, P. A.

    2015-01-01

    Roč. 128, 3-4 (2015), s. 169-186 ISSN 0165-0009 R&D Projects: GA MŠk LD12029 Institutional support: RVO:68378289 Keywords : global Climate Model * ensemble of models * climate change * climate change scenarios * climate change impact indices * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.344, year: 2015 http://link.springer.com/article/10.1007%2Fs10584-014-1297-7

  4. Witnessing entanglement by proxy

    International Nuclear Information System (INIS)

    Bäuml, Stefan; Bruß, Dagmar; Kampermann, Hermann; Huber, Marcus; Winter, Andreas

    2016-01-01

    Entanglement is a ubiquitous feature of low temperature systems and believed to be highly relevant for the dynamics of condensed matter properties and quantum computation even at higher temperatures. The experimental certification of this paradigmatic quantum effect in macroscopic high temperature systems is constrained by the limited access to the quantum state of the system. In this paper we show how macroscopic observables beyond the mean energy of the system can be exploited as proxy witnesses for entanglement detection. Using linear and semi-definite relaxations we show that all previous approaches to this problem can be outperformed by our proxies, i.e. entanglement can be certified at higher temperatures without access to any local observable. For an efficient computation of proxy witnesses one can resort to a generalised grand canonical ensemble, enabling entanglement certification even in complex systems with macroscopic particle numbers. (paper)

  5. Reliability of flipper-banded penguins as indicators of climate change.

    Science.gov (United States)

    Saraux, Claire; Le Bohec, Céline; Durant, Joël M; Viblanc, Vincent A; Gauthier-Clerc, Michel; Beaune, David; Park, Young-Hyang; Yoccoz, Nigel G; Stenseth, Nils C; Le Maho, Yvon

    2011-01-13

    In 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems. Yet most available information on penguin population dynamics is based on the controversial use of flipper banding. Although some reports have found the effects of flipper bands to be deleterious, some short-term (one-year) studies have concluded otherwise, resulting in the continuation of extensive banding schemes and the use of data sets thus collected to predict climate impact on natural populations. Here we show that banding of free-ranging king penguins (Aptenodytes patagonicus) impairs both survival and reproduction, ultimately affecting population growth rate. Over the course of a 10-year longitudinal study, banded birds produced 41% [corrected] fewer chicks and had a survival rate 16 percentage points [corrected] lower than non-banded birds, demonstrating a massive long-term impact of banding and thus refuting the assumption that birds will ultimately adapt to being banded. Indeed, banded birds still arrived later for breeding at the study site and had longer foraging trips even after 10 years. One of our major findings is that responses of flipper-banded penguins to climate variability (that is, changes in sea surface temperature and in the Southern Oscillation index) differ from those of non-banded birds. We show that only long-term investigations may allow an evaluation of the impact of flipper bands and that every major life-history trait can be affected, calling into question the banding schemes still going on. In addition, our understanding of the effects of climate change on marine ecosystems based on flipper

  6. Effect of climate change on environmental flow indicators in the narew basin, poland.

    Science.gov (United States)

    Piniewski, Mikołaj; Laizé, Cédric L R; Acreman, Michael C; Okruszko, Tomasz; Schneider, Christof

    2014-01-01

    Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local

  7. Climatic trends and anomalies in Europe 1675-1715. High resolution spatio-temporal reconstructions from direct meteorological observations and proxy data: Methods and results

    International Nuclear Information System (INIS)

    Frenzel, B.; Pfister, C.; Glaeser, B.

    1994-01-01

    This volume contains the proceedings of a conference held at the University of Bern in Switzerland on 2-4 September 1992 by a group of historical geographers, historians, palaeobotanists and meteorologists originating from fifteen European nations as well as from China and Japan. It was the first international symposium of this kind for which the participants had previously submitted various kinds of palaeoclimatic data - early instrumental series, documentary data, dendroclimatic data - in a standardized form to a common data base in order to have this evidence ready to include in a pan-European multi-proxy mapping scheme at the time of the meeting. A team of meteorological experts worked on interpreting some of these data in terms of rough monthly synoptic weather situations in order to test the suitability of the evidence for this purpose. This volume includes both the regional contributions of the individual partners presented at the Bern workshop, as well as the two hundred monthly synoptic weather maps which resulted from the common effort of the group of meteorologists at the Copenhagen meeting. (orig.)

  8. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin.

    Science.gov (United States)

    Tian, Ye; Xu, Yue-Ping; Wang, Guoqing

    2018-05-01

    Drought can have a substantial impact on the ecosystem and agriculture of the affected region and does harm to local economy. This study aims to analyze the relation between soil moisture and drought and predict agricultural drought in Xiangjiang River basin. The agriculture droughts are presented with the Precipitation-Evapotranspiration Index (SPEI). The Support Vector Regression (SVR) model incorporating climate indices is developed to predict the agricultural droughts. Analysis of climate forcing including El Niño Southern Oscillation and western Pacific subtropical high (WPSH) are carried out to select climate indices. The results show that SPEI of six months time scales (SPEI-6) represents the soil moisture better than that of three and one month time scale on drought duration, severity and peaks. The key factor that influences the agriculture drought is the Ridge Point of WPSH, which mainly controls regional temperature. The SVR model incorporating climate indices, especially ridge point of WPSH, could improve the prediction accuracy compared to that solely using drought index by 4.4% in training and 5.1% in testing measured by Nash Sutcliffe efficiency coefficient (NSE) for three month lead time. The improvement is more significant for the prediction with one month lead (15.8% in training and 27.0% in testing) than that with three months lead time. However, it needs to be cautious in selection of the input parameters, since adding redundant information could have a counter effect in attaining a better prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Soils and climate: redness and weathering as indicators of mean annual precipitation

    Science.gov (United States)

    Lucke, Bernhard

    2016-04-01

    Paleosols can be used as archives of past changes of climate and landscapes, but their interpretation has to be based on modern analogies such as Budyko's law of soil zonality. These can be very useful if the respective processes of soil formation are sufficiently well understood. However, some soils such as the Terra Rossa or Red Mediterranean Soils, that are widespread at the fringes of the steppes and deserts, are still disputed with regard to their genesis and environmental significance. In particular, there is no agreement whether they resemble current environmental conditions, or are inherited from climates or sediments of the past. In this context, a remarkable change of the color of surface soils can be observed when driving from the city of Irbid in Jordan towards the east. Soil color apparently changes slowly, but steadily from dark red to yellow colors. However, attempting to express these color changes in numerical form is challenging, and it seemed questionable whether color is indeed connected with soil weathering intensity, or an optical illusion. However, a systematic comparison of different approaches of calculating soil redness found that the CIELAB-color system is suited for numerical expressions of soil redness and performs better than the Munsell charts. Along the investigated transect in Jordan, soil color seems strongly connected with weathering intensity, since various weathering indicators point to a steady increase of soil development with moisture. This suggests that such indices can well be used in semi-arid areas of 250-600 mm of mean annual precipitation. A very strong correlation of magnetic enhancement and rainfall indicates that the investigated soils are forming in equilibrium with current climatic conditions, and regressions based on this gradient might be suited for estimating paleorainfalls recorded by buried paelosols. It seems therefore that surface Terra Rossa soils in Jordan can be in equilibrium with current climate

  10. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  11. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition

    Science.gov (United States)

    Kim, Taereem; Shin, Ju-Young; Kim, Sunghun; Heo, Jun-Haeng

    2018-02-01

    Climate indices characterize climate systems and may identify important indicators for long-term precipitation, which are driven by climate interactions in atmosphere-ocean circulation. In this study, we investigated the climate indices that are effective indicators of long-term precipitation in South Korea, and examined their relationships based on statistical methods. Monthly total precipitation was collected from a total of 60 meteorological stations, and they were decomposed by ensemble empirical mode decomposition (EEMD) to identify the inherent oscillating patterns or cycles. Cross-correlation analysis and stepwise variable selection were employed to select the significant climate indices at each station. The climate indices that affect the monthly precipitation in South Korea were identified based on the selection frequencies of the selected indices at all stations. The NINO12 indices with four- and ten-month lags and AMO index with no lag were identified as indicators of monthly precipitation in South Korea. Moreover, they indicate meaningful physical information (e.g. periodic oscillations and long-term trend) inherent in the monthly precipitation. The NINO12 indices with four- and ten- month lags was a strong indicator representing periodic oscillations in monthly precipitation. In addition, the long-term trend of the monthly precipitation could be explained by the AMO index. A multiple linear regression model was constructed to investigate the influences of the identified climate indices on the prediction of monthly precipitation. Three identified climate indices successfully explained the monthly precipitation in the winter dry season. Compared to the monthly precipitation in coastal areas, the monthly precipitation in inland areas showed stronger correlation to the identified climate indices.

  12. Operationalizing Principle-Based Standards for Animal Welfare-Indicators for Climate Problems in Pig Houses.

    Science.gov (United States)

    Vermeer, Herman M; Hopster, Hans

    2018-03-23

    The Dutch animal welfare law includes so-called principle-based standards. This means that the objective is described in abstract terms, enabling farmers to comply with the law in their own way. Principle-based standards are, however, difficult for the inspection agency to enforce because strict limits are missing. This pilot project aimed at developing indicators (measurements) to assess the climate in pig houses, thus enabling the enforcement of principle-based standards. In total, 64 farms with weaners and 32 farms with growing-finishing pigs were visited. On each farm, a set of climate-related measurements was collected in six pens. For each of these measurements, a threshold value was set, and exceeding this threshold indicated a welfare risk. Farm inspections were carried out during winter and spring, thus excluding situations with heat stress. Assessment of the variation and correlation between measurements reduced the dataset from 39 to 12 measurements. Using a principal components analysis helped to select five major measurements as warning signals. The number of exceeded thresholds per pen and per farm was calculated for both the large (12) and small (five) sets of measurements. CO₂ and NH₃ concentrations were related to the outside temperature. On colder days, there was less ventilation, and thus CO₂ and NH₃ concentrations increased. Air quality, reflected in the CO₂ and NH₃ concentrations, was associated with respiratory problems. Eye scores were positively correlated with both pig and pen fouling, and pig and pen fouling were closely related. We selected five signal indicators: CO₂, NH₃, and tail and eye score for weaners and finishers, and added ear score for weaners and pig fouling for growing-finishing pigs. The results indicate that pig farms can be ranked based on five signal indicators related to reduced animal welfare caused by climatic conditions. This approach could be adopted to other principle-based standards for pigs as well

  13. Testing the Value of Information of Climate Change Indicators that use Earth Observations

    Science.gov (United States)

    Kenney, M. A.

    2012-12-01

    Indicators are usually thought of as measurements or calculations that represent important features of the status, trend, or performance of a system of interest (e.g. the economy, agriculture, air quality). They are often used for the most practical of reasons - one cannot measure everything important about systems of interest, so there is a practical need to identify major features that can be reported periodically and used to guide both research and decisions (National Research Council (NRC). 2000. Ecological Indicators for the Nation. National Academy Press. Washington, DC). The use of indicators to track the status and trends of many features of environmental or economic performance, quality of life, and a host of other social concerns is embedded in the fabric of our everyday lives. Businesses, governments, and consumers regularly use the common economic indices - e.g. the unemployment index or consumer price index - as guides for decision-making on investments and hiring. There is an analogous demand for indicators of environmental conditions and performance - everything from agricultural yields to air and water quality to weather and climate - that are currently less publicly visible than the common economic indicators, but that can have critically important uses in such areas as natural resource management, improvement of environmental quality, emergency planning, and infrastructure development. A number of these environmental indicators, be it physical or ecological, use a range of data sources including earth observations. Despite the extensive development and use of indicators, there is little testing of these indicators to assure that they indeed provide the assumed positive information benefit. This is particularly concerning because if these indicators are systematically misunderstood by the intended audience or a sub-group of that audience, such individuals could make decisions that are consistent with their incorrect understanding of the indicator

  14. Munchausen by Proxy Syndrome

    Science.gov (United States)

    ... the Child Getting Help for the Parent or Caregiver Print Munchausen by proxy syndrome (MBPS) is a relatively rare form of child abuse that involves the exaggeration or fabrication of illnesses or symptoms by a primary caretaker. Also known as "medical child abuse," MBPS ...

  15. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator

    Directory of Open Access Journals (Sweden)

    Kruczyk Michał

    2015-12-01

    Full Text Available This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method. Author applied two modes: sinusoidal and composite (two or more oscillations. Even simple sinusoidal seasonal model (of daily IPW values series clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.

  16. Bringing indices of species vulnerability to climate change into geographic space: an assessment across the Coronado national forest

    Science.gov (United States)

    Jennifer E. Davison; Sharon Coe; Deborah Finch; Erika Rowland; Megan Friggens; Lisa J. Graumlich

    2012-01-01

    Indices that rate the vulnerability of species to climate change in a given area are increasingly used to inform conservation and climate change adaptation strategies. These species vulnerability indices (SVI) are not commonly associated with landscape features that may affect local-scale vulnerability. To do so would increase their utility by allowing managers to...

  17. Climate, Environment and Early Human Innovation: Stable Isotope and Faunal Proxy Evidence from Archaeological Sites (98-59ka in the Southern Cape, South Africa.

    Directory of Open Access Journals (Sweden)

    Patrick Roberts

    Full Text Available The Middle Stone Age (MSA of southern Africa, and in particular its Still Bay and Howiesons Poort lithic traditions, represents a period of dramatic subsistence, cultural, and technological innovation by our species, Homo sapiens. Climate change has frequently been postulated as a primary driver of the appearance of these innovative behaviours, with researchers invoking either climate instability as a reason for the development of buffering mechanisms, or environmentally stable refugia as providing a stable setting for experimentation. Testing these alternative models has proved intractable, however, as existing regional palaeoclimatic and palaeoenvironmental records remain spatially, stratigraphically, and chronologically disconnected from the archaeological record. Here we report high-resolution records of environmental shifts based on stable carbon and oxygen isotopes in ostrich eggshell (OES fragments, faunal remains, and shellfish assemblages excavated from two key MSA archaeological sequences, Blombos Cave and Klipdrift Shelter. We compare these records with archaeological material remains in the same strata. The results from both sites, spanning the periods 98-73 ka and 72-59 ka, respectively, show significant changes in vegetation, aridity, rainfall seasonality, and sea temperature in the vicinity of the sites during periods of human occupation. While these changes clearly influenced human subsistence strategies, we find that the remarkable cultural and technological innovations seen in the sites cannot be linked directly to climate shifts. Our results demonstrate the need for scale-appropriate, on-site testing of behavioural-environmental links, rather than broader, regional comparisons.

  18. Climate, Environment and Early Human Innovation: Stable Isotope and Faunal Proxy Evidence from Archaeological Sites (98-59ka) in the Southern Cape, South Africa.

    Science.gov (United States)

    Roberts, Patrick; Henshilwood, Christopher S; van Niekerk, Karen L; Keene, Petro; Gledhill, Andrew; Reynard, Jerome; Badenhorst, Shaw; Lee-Thorp, Julia

    2016-01-01

    The Middle Stone Age (MSA) of southern Africa, and in particular its Still Bay and Howiesons Poort lithic traditions, represents a period of dramatic subsistence, cultural, and technological innovation by our species, Homo sapiens. Climate change has frequently been postulated as a primary driver of the appearance of these innovative behaviours, with researchers invoking either climate instability as a reason for the development of buffering mechanisms, or environmentally stable refugia as providing a stable setting for experimentation. Testing these alternative models has proved intractable, however, as existing regional palaeoclimatic and palaeoenvironmental records remain spatially, stratigraphically, and chronologically disconnected from the archaeological record. Here we report high-resolution records of environmental shifts based on stable carbon and oxygen isotopes in ostrich eggshell (OES) fragments, faunal remains, and shellfish assemblages excavated from two key MSA archaeological sequences, Blombos Cave and Klipdrift Shelter. We compare these records with archaeological material remains in the same strata. The results from both sites, spanning the periods 98-73 ka and 72-59 ka, respectively, show significant changes in vegetation, aridity, rainfall seasonality, and sea temperature in the vicinity of the sites during periods of human occupation. While these changes clearly influenced human subsistence strategies, we find that the remarkable cultural and technological innovations seen in the sites cannot be linked directly to climate shifts. Our results demonstrate the need for scale-appropriate, on-site testing of behavioural-environmental links, rather than broader, regional comparisons.

  19. Using reanalysis and drought indices to study portfolio-level climate risk in the industry sector

    Science.gov (United States)

    Bonnafous, L.

    2017-12-01

    Water-related hazards including flooding due to extreme rainfall, persistent drought and pollution, either due to industrial operations themselves, or to the failure of infrastructure have emerged as a potential risk for industrial operations. Most companies have risk management plans at each operational location to address these risks to a certain design level. The residual risk may or may not be managed, and is typically not quantified at a portfolio scale, i.e. across many sites. Given that climate is the driver of many of these extreme events, and there is evidence of quasi-periodic climate regimes at inter-annual and decadal timescales, it is possible that a portfolio is subject to persistent, multi-year exceedances of the design level. It is thus likely that there is correlation in the climate-induced portfolio water risk across its operational sites as multiple sites may experience a hazard beyond the design level in a given year. Therefore, a need exists for water risk indexes that allow for an exploration of the possible space and/or time clustering in exposure across many sites contained in a portfolio. Focusing on extreme daily rainfall amounts and monthly to yearly drought, and using examples from major mining companies, we illustrate how such indexes can be developed using reanalysis products as well as gridded datasets of drought indices based on climate data records. For the examples of mining companies provided, we note that the actual exposure is substantially higher than would be expected in the absence of space and time correlation of risk as is often tacitly assumed within the industry. We also find evidence for the increasing exposure to climate-induced risk, and for decadal variability in exposure. The relative vulnerability of different portfolios to multiple extreme events in a given year is also demonstrated.

  20. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    Science.gov (United States)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  1. Variations in the width of the Indo-Pacific tropical rain belt over the last millennium: synthesis of stalagmite proxy records and climate model simulations

    Science.gov (United States)

    Ummenhofer, Caroline; Denniston, Rhawn

    2017-04-01

    The seasonal north-south migration of the intertropical convergence zone defines the tropical rain belt (TRB), a region of enormous terrestrial biodiversity and home to 40% of the world's population. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the Little Ice Age, the largest centennial-scale cool period of the last millennium. Using state-of-the-art climate model simulations conducted as part of the Last Millennium Ensemble with the Community Earth System Model (CESM), we evaluate variations in the width of the Indo-Pacific TRB, as well as movements in the position of its northward and southward edges, across a range of timescales over the pre-Industrial portion of the last millennium (AD 850-1850). The climate model results complement a recent reconstruction of late Holocene variability of the Indo-Pacific TRB, based on a precisely-dated, monsoon-sensitive stalagmite reconstruction from northern Australia (cave KNI-51), located at the southern edge of the TRB and thus highly sensitive to variations at its southern edge. Integrating KNI-51 with a record from Dongge Cave in southern China allows a stalagmite-based TRB reconstruction. Our results reveal that rather than shifting meridionally, the Indo-Pacific TRB expanded and contracted over multidecadal/centennial time scales during the late Holocene, with symmetric weakening/strengthening of summer monsoons in the Northern and Southern Hemispheres of the Indo-Pacific (the East Asian summer monsoon in China and the Australian summer monsoon in northern Australia). Links to large-scale climatic conditions across the Indo-Pacific region

  2. Unraveling past impacts of climate change and land management on historic peatland development using proxy-based reconstruction, monitoring data and process modeling.

    Science.gov (United States)

    Heinemeyer, Andreas; Swindles, Graeme T

    2018-05-08

    Peatlands represent globally significant soil carbon stores that have been accumulating for millennia under water-logged conditions. However, deepening water-table depths (WTD) from climate change or human-induced drainage could stimulate decomposition resulting in peatlands turning from carbon sinks to carbon sources. Contemporary WTD ranges of testate amoebae (TA) are commonly used to predict past WTD in peatlands using quantitative transfer function models. Here we present, for the first time, a study comparing TA-based WTD reconstructions to instrumentally monitored WTD and hydrological model predictions using the MILLENNIA peatland model to examine past peatland responses to climate change and land management. Although there was very good agreement between monitored and modeled WTD, TA-reconstructed water table was consistently deeper. Predictions from a larger European TA transfer function data set were wetter, but the overall directional fit to observed WTD was better for a TA transfer function based on data from northern England. We applied a regression-based offset correction to the reconstructed WTD for the validation period (1931-2010). We then predicted WTD using available climate records as MILLENNIA model input and compared the offset-corrected TA reconstruction to MILLENNIA WTD predictions over an extended period (1750-1931) with available climate reconstructions. Although the comparison revealed striking similarities in predicted overall WTD patterns, particularly for a recent drier period (1965-1995), there were clear periods when TA-based WTD predictions underestimated (i.e. drier during 1830-1930) and overestimated (i.e. wetter during 1760-1830) past WTD compared to MILLENNIA model predictions. Importantly, simulated grouse moor management scenarios may explain the drier TA WTD predictions, resulting in considerable model predicted carbon losses and reduced methane emissions, mainly due to drainage. This study demonstrates the value of a site

  3. Global Climatic Indices Influence on Rainfall Spatiotemporal Distribution : A Case Study from Morocco

    Science.gov (United States)

    Elkadiri, R.; Zemzami, M.; Phillips, J.

    2017-12-01

    The climate of Morocco is affected by the Mediterranean Sea, the Atlantic Ocean the Sahara and the Atlas mountains, creating a highly variable spatial and temporal distribution. In this study, we aim to decompose the rainfall in Morocco into global and local signals and understand the contribution of the climatic indices (CIs) on rainfall. These analyses will contribute in understanding the Moroccan climate that is typical of other Mediterranean and North African climatic zones. In addition, it will contribute in a long-term prediction of climate. The constructed database ranges from 1950 to 2013 and consists of monthly data from 147 rainfall stations and 37 CIs data provided mostly by the NOAA Climate Prediction Center. The next general steps were followed: (1) the study area was divided into 9 homogenous climatic regions and weighted precipitation was calculated for each region to reduce the local effects. (2) Each CI was decomposed into nine components of different frequencies (D1 to D9) using wavelet multiresolution analysis. The four lowest frequencies of each CI were selected. (3) Each of the original and resulting signals were shifted from one to six months to account for the effect of the global patterns. The application of steps two and three resulted in the creation of 1225 variables from the original 37 CIs. (4) The final 1225 variables were used to identify links between the global and regional CIs and precipitation in each of the nine homogenous regions using stepwise regression and decision tree. The preliminary analyses and results were focused on the north Atlantic zone and have shown that the North Atlantic Oscillation (PC-based) from NCAR (NAOPC), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Western Mediterranean Oscillation (WMO) and the Extreme Eastern Tropical Pacific Sea Surface Temperature (NINO12) have the highest correlation with rainfall (33%, 30%, 27%, 21% and -20%, respectively). In addition the 4-months lagged

  4. Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality

    Science.gov (United States)

    Benson, Roger B. J.; Rich, Thomas H.; Vickers-Rich, Patricia; Hall, Mike

    2012-01-01

    The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the

  5. Collective behaviour of climate indices in the North Pacific air-sea system and its potential relationships with decadal climate changes

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009.In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift,the synchronization behaviour and the coupling behaviour of these indices are investigated.Results indicate that climate network synchronization happened around the beginning of the 1960s,in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately.These synchronization states were always followed by the decrease of the coupling coefficient.Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal vaiues of North Pacific sea-surface temperature and 500-hPa height,among which the one that happened in the middle of the 1970s is the most noticeable climate shift.We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices.That is to say,abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices,but also night be indicated by the synchronizing and the coupling of climate indices.Furthermore,at the turning point of 1975,there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific,which further proves the probability of climate index synchronization and coupling shift in air-sea systems.

  6. Collective behaviour of climate indices in the North Pacific air—sea system and its potential relationships with decadal climate changes

    International Nuclear Information System (INIS)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air—sea system is constructed during the period of 1948–2009. In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift, the synchronization behaviour and the coupling behaviour of these indices are investigated. Results indicate that climate network synchronization happened around the beginning of the 1960s, in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately. These synchronization states were always followed by the decrease of the coupling coefficient. Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal values of North Pacific sea-surface temperature and 500-hPa height, among which the one that happened in the middle of the 1970s is the most noticeable climate shift. We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices. That is to say, abrupt climate shift in North Pacific air—sea system is not only shown by the phase or trend changes of climate indices, but also might be indicated by the synchronizing and the coupling of climate indices. Furthermore, at the turning point of 1975, there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific, which further proves the probability of climate index synchronization and coupling shift in air—sea systems. (geophysics, astronomy, and astrophysics)

  7. Analysis of long-term changes in extreme climatic indices: a case study of the Mediterranean climate, Marmara Region, Turkey

    Science.gov (United States)

    Abbasnia, Mohsen; Toros, Hüseyin

    2018-05-01

    This study aimed to analyze extreme temperature and precipitation indices at seven stations in the Marmara Region of Turkey for the period 1961-2016. The trend of temperature indices showed that the warm-spell duration and the numbers of summer days, tropical nights, warm nights, and warm days have increased, while the cold-spell duration and number of ice days, cool nights, and cool days have decreased across the Marmara Region. Additionally, the diurnal temperature range has slightly increased at most of the stations. A majority of stations have shown significant warming trends for warm days and warm nights throughout the study area, whereas warm extremes and night-time based temperature indices have shown stronger trends compared to cold extremes and day-time indices. The analysis of precipitation indices has mostly shown increasing trends in consecutive dry days and increasing trends in annual rainfall, rainfall intensity for inland and urban stations, especially for stations in Sariyer and Edirne, which are affected by a fast rate of urbanization. Overall, a large proportion of study stations have experienced an increase in annual precipitation and heavy precipitation events, although there was a low percentage of results that was significant. Therefore, it is expected that the rainfall events will tend to become shorter and more intense, the occurrence of temperature extremes will become more pronounced in favor of hotter events, and there will be an increase in the atmospheric moisture content over the Marmara Region. This provides regional evidence for the importance of ongoing research on climate change.

  8. Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae

    Science.gov (United States)

    Gałka, Mariusz; Tobolski, Kazimierz; Lamentowicz, Łukasz; Ersek, Vasile; Jassey, Vincent E. J.; van der Knaap, Willem O.; Lamentowicz, Mariusz

    2017-01-01

    We present the results of high-resolution, multi-proxy palaeoecological investigations of two parallel peat cores from the Baltic raised bog Mechacz Wielki in NE Poland. We aim to evaluate the role of regional climate and autogenic processes of the raised bog itself in driving the vegetation and hydrology dynamics. Based on partly synchronous changes in Sphagnum communities in the two study cores we suggest that extrinsic factors (climate) played an important role as a driver in mire development during the bog stage (500-2012 CE). Using a testate amoebae transfer function, we found exceptionally stable hydrological conditions during the last 2000 years with a relatively high water table and lack of local fire events that allowed for rapid peat accumulation (2.75 mm/year) in the bog. Further, the strong correlation between pH and community-weighted mean of testate amoeba traits suggests that other variables than water-table depth play a role in driving microbial properties under stable hydrological conditions. There is a difference in hydrological dynamics in bogs between NW and NE Poland until ca 1500 CE, after which the water table reconstructions show more similarities. Our results illustrate how various functional traits relate to different environmental variables in a range of trophic and hydrological scenarios on long time scales. Moreover, our data suggest a common regional climatic forcing in Mechacz Wielki, Gązwa and Kontolanrahka. Though it may still be too early to attempt a regional summary of wetness change in the southern Baltic region, this study is a next step to better understand the long-term peatland palaeohydrology in NE Europe.

  9. Correlation of Ice-Rafted Detritus in South Atlantic Sediments with Climate Proxies in Polar Ice over the Last Glacial Period

    Directory of Open Access Journals (Sweden)

    Sharon L. Kanfoush

    2013-03-01

    Full Text Available Previous study identified 6–7 millennial-scale episodes of South Atlantic ice-rafted sediment deposition (SA events during the glaciation. Questions remain, however, regarding their origin, significance for sea-ice and/or Antarctic ice-sheet dynamics, and relationship to climate. Here I correlate sediment core (TTN057–21 SA events to Greenland and Antarctic ice using two independent methods, stable isotopes and geomagnetic paleointensity, placing SA events in the context of polar climate change in both hemispheres. Marine isotopic stage (MIS 3 SA events generally coincided with Greenland interstadials and with cooling following Antarctic warm events (A1-A4. This anti-phase behavior is best illustrated when SA0 coincided with both the Antarctic Cold Reversal and Bolling-Allerod warming in Greenland. Moreover, SA events coincide with sea-level rises during the deglaciation (mwp1A and MIS 3 (30.4, 38.3, 43.7, 51.5 ka, implying unpinning of grounded Weddell Sea region ice masses discharged debris-laden bergs that had a chilling effect on South Atlantic surface temperatures.

  10. Attempt of absolute dating and reconstitutions of climate changes in the Caribbean Sea: multi-proxy approaches to planktonic foraminifera and fine aragonitic fraction

    International Nuclear Information System (INIS)

    Sepulcre, S.

    2008-06-01

    Absolute dating of climate archives is essential to better understand climate mechanisms. A marine sediment core from the Caribbean Sea enriched in fine-grained aragonite (suitable to U/Th dating) has been studied for both planktonic foraminifera tests (≥150 μm) and fine fraction (≤63 μm) over the last one million years using mineralogical and geochemical approaches. This study aims at i) examining lead/lag of δ 18 O and radiometric ages of the different-size fractions and ii) reconstructing paleo-environment in the area. The fine fraction mineralogy is strongly influenced by glacial-interglacial sea level changes. The offset of δ 18 O and 14 C ages between the fine and foraminifera fractions during Termination I is partly explained by a bioturbation model. Attempt of U/Th dating to Termination II and V reveals that the fine fraction contains non-radiogenic Th, which needs further analytical development. Reconstructed surface water δ 18 O changes suggest a decrease in surface water salinity at the end of Mid-Pleistocene Transition related to ITCZ position over the Caribbean Sea. (author)

  11. An automated system for access to derived climate indices in support of ecological impacts assessments and resource management

    Science.gov (United States)

    Walker, J.; Morisette, J. T.; Talbert, C.; Blodgett, D. L.; Kunicki, T.

    2012-12-01

    A U.S. Geological Survey team is working with several providers to establish standard data services for the climate projection data they host. To meet the needs of climate adaptation science and landscape management communities, the team is establishing a set of climate index calculation algorithms that will consume data from various providers and provide directly useful data derivatives. Climate projections coming from various scenarios, modeling centers, and downscaling methods are increasing in number and size. Global change impact modeling and assessment, generally, requires inputs in the form of climate indices or values derived from raw climate projections. This requirement puts a large burden on a community not familiar with climate data formats, semantics, and processing techniques and requires storage capacity and computing resources out of the reach of most. In order to fully understand the implications of our best available climate projections, assessments must take into account an ensemble of climate projections and potentially a range of parameters for calculation of climate indices. These requirements around data access and processing are not unique from project to project, or even among projected climate data sets, pointing to the need for a reusable tool to generate climate indices. The U.S. Geological Survey has developed a pilot application and supporting web service framework that automates the generation of climate indices. The web service framework consists of standards-based data servers and a data integration broker. The resulting system allows data producers to publish and maintain ownership of their data and data consumers to access climate derivatives via a simple to use "data product ordering" workflow. Data access and processing is completed on enterprise "cloud" computing resources and only the relatively small, derived climate indices are delivered to the scientist or land manager. These services will assist the scientific and land

  12. Reliability of temperature signal in various climate indicators from northern Europe.

    Directory of Open Access Journals (Sweden)

    Pertti Hari

    Full Text Available We collected relevant observational and measured annual-resolution time series dealing with climate in northern Europe, focusing in Finland. We analysed these series for the reliability of their temperature signal at annual and seasonal resolutions. Importantly, we analysed all of the indicators within the same statistical framework, which allows for their meaningful comparison. In this framework, we employed a cross-validation procedure designed to reduce the adverse effects of estimation bias that may inflate the reliability of various temperature indicators, especially when several indicators are used in a multiple regression model. In our data sets, timing of phenological observations and ice break-up were connected with spring, tree ring characteristics (width, density, carbon isotopic composition with summer and ice formation with autumn temperatures. Baltic Sea ice extent and the duration of ice cover in different watercourses were good indicators of winter temperatures. Using combinations of various temperature indicator series resulted in reliable temperature signals for each of the four seasons, as well as a reliable annual temperature signal. The results hence demonstrated that we can obtain reliable temperature information over different seasons, using a careful selection of indicators, combining the results with regression analysis, and by determining the reliability of the obtained indicator.

  13. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    Science.gov (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  14. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era

    Science.gov (United States)

    Hydro2k Consortium, Pages

    2017-12-01

    Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited because of a paucity of modern instrumental observations that are distributed unevenly across the globe and only span parts of the 20th and 21st centuries. Such data coverage is insufficient for characterizing hydroclimate and its associated dynamics because of its multidecadal to centennial variability and highly regionalized spatial signature. High-resolution (seasonal to decadal) hydroclimatic proxies that span all or parts of the Common Era (CE) and paleoclimate simulations from climate models are therefore important tools for augmenting our understanding of hydroclimate variability. In particular, the comparison of the two sources of information is critical for addressing the uncertainties and limitations of both while enriching each of their interpretations. We review the principal proxy data available for hydroclimatic reconstructions over the CE and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE. A specific review of simulated hydroclimatic changes forced by volcanic events is provided, as is a discussion of expected improvements in estimated radiative forcings, models, and their implementation in the future. Our review of hydroclimatic proxies and last-millennium model simulations is used as the basis for articulating a variety of considerations and best practices for how to perform proxy-model comparisons of CE hydroclimate. This discussion provides a framework for how best to evaluate hydroclimate variability and its associated dynamics using these comparisons and how they can better inform

  15. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    Science.gov (United States)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  16. Application of Social Vulnerability Indicators to Climate Change for the Southwest Coastal Areas of Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Wu

    2016-12-01

    Full Text Available The impact of climate change on the coastal zones of Taiwan not only affects the marine environment, ecology, and human communities whose economies rely heavily on marine activities, but also the sustainable development of national economics. The southwest coast is known as the area most vulnerable to climate change; therefore, this study aims to develop indicators to assess social vulnerability in this area of Taiwan using the three dimensions of susceptibility, resistance, and resilience. The modified Delphi method was used to develop nine criteria and 26 indexes in the evaluation, and the analytic hierarchy process method was employed to evaluate the weight of each indicator based on the perspectives of experts collected through questionnaire surveys. The results provide important information pertaining to the vulnerability of the most susceptive regions, the lowest-resistance areas, and the least resilient townships on the southwest coast. The most socially vulnerable areas are plotted based on the present analysis. Experts can consider the vulnerability map provided here when developing adaptation policies. It should be kept in mind that improving the capacities of resistance and resilience is more important than reducing susceptibility in Taiwan.

  17. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  18. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal

    Directory of Open Access Journals (Sweden)

    A. A. Paulo

    2012-05-01

    Full Text Available Distinction between drought and aridity is crucial to understand water scarcity processes. Drought indices are used for drought identification and drought severity characterisation. The Standardised Precipitation Index (SPI and the Palmer Drought Severity Index (PDSI are the most known drought indices. In this study, they are compared with the modified PDSI for Mediterranean conditions (MedPDSI and the Standardised Precipitation Evapotranspiration Index (SPEI. MedPDSI results from the soil water balance of an olive crop, thus real evapotranspiration is considered, while SPEI uses potential (climatic evapotranspiration. Similarly to the SPI, SPEI can be computed at various time scales. Aiming at understanding possible impacts of climate change, prior to compare the drought indices, a trend analysis relative to precipitation and temperature in 27 weather stations of Portugal was performed for the period 1941 to 2006. A trend for temperature increase was observed for some weather stations and trends for decreasing precipitation in March and increasing in October were also observed for some locations. Comparisons of the SPI and SPEI at 9- and 12-month time scales, the PDSI and MedPDSI were performed for the same stations and period. SPI and SPEI produce similar results for the same time scales concerning drought occurrence and severity. PDSI and MedPDSI correlate well between them and the same happened for SPI and SPEI. PDSI and MedPDSI identify more severe droughts than SPI or SPEI and identify drought occurrence earlier than these indices. This behaviour is likely to be related with the fact that a water balance is performed with PDSI and MedPDSI, which better approaches the supply-demand balance.

  19. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    Science.gov (United States)

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse

  20. Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa

    NARCIS (Netherlands)

    Amjath-Babu, T.S.; Krupnik, Timothy J.; Aravindakshan, Sreejith; Arshad, Muhammad; Kaechele, Harald

    2016-01-01

    Several studies estimate the immediate impact of climate change on agricultural societies in terms of changes in crop yields or farm income, though few studies concentrate on the immediate secondary consequences of climate change. This synthetic analysis uses a set of indicators to assess the

  1. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    Science.gov (United States)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  2. A multi-proxy approach to understanding complex responses of salt-lake catchments to climate variability and human pressure: A Late Quaternary case study from south-eastern, Spain

    Science.gov (United States)

    Jones, Samantha Elsie; Burjachs, Francesc; Ferrer-García, Carlos; Giralt, Santiago; Schulte, Lothar; Fernández-López de Pablo, Javier

    2018-03-01

    This article focuses on a former salt lake in the upper Vinalopó Valley in south-eastern Spain. The study spans the Late Pleistocene through to the Late Holocene, although with particular focus on the period between 11 ka cal BP and 3000 ka cal BP (which spans the Mesolithic and part of the Bronze Age). High resolution multi-proxy analysis (including pollen, non pollen palynomorphs, grain size, X-ray fluorescence and X-ray diffraction) was undertaken on the lake sediments. The results show strong sensitivity to both long term and small changes in the evaporation/precipitation ratio, affecting the surrounding vegetation composition, lake-biota and sediment geochemistry. To summarise the key findings the main general trends identified include: 1) Hyper-saline conditions and low lake levels at the end of the Late Glacial 2) Increasing wetness and temperatures which witnessed an expansion of mesophilic woodland taxa, lake infilling and the establishment of a more perennial lake system at the onset of the Holocene 3) An increase in solar insolation after 9 ka cal BP which saw the re-establishment of pine forests 4) A continued trend towards increasing dryness (climatic optimum) at 7 ka cal BP but with continued freshwater input 5) An increase in sclerophyllous open woody vegetation (anthropogenic?), and increasing wetness (climatic?) is represented in the lake record between 5.9 and 3 ka cal BP 6) The Holocene was also punctuated by several aridity pulses, the most prominent corresponding to the 8.2 ka cal BP event. These events, despite a paucity of well dated archaeological sites in the surrounding area, likely altered the carrying capacity of this area both regionally and locally, particularly during the Mesolithic-Neolithic transition, in terms of fresh water supply for human/animal consumption, wild plant food reserves and suitable land for crop growth.

  3. The Effect of Body Weight on Heat Strain Indices in Hot and Dry Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-03-01

    Full Text Available Background Being overweight is a characteristic that may influence a person’s heat exchange. Objectives The purpose of this study was to assess the effect of body weight on heat strain indices in hot and dry climatic conditions. Materials and Methods This study was completed with a sample of 30 participants with normal weights, as well as 25 participants who were overweight. The participants were physically inactive for a period of 120 minutes in a climatic chamber with hot and dry conditions (22 - 32°C and with 40% relative humidity (RH.The physiological strain index (PSI and heat strain score index (HSSI questionnaires were used. Simultaneous measurements were completed during heat exposure for periods of five minutes. The resting periods acted as the initial measurements for 15 minutes. Results In both groups, oral temperature, heart rate, and thermal perceptual responses increased during heat exposure. The means and standard deviations of heart rate and oral temperature were gathered when participants were in hot and dry climatic conditions and were not physically active. The heart rates and oral temperatures were 79.21 ± 5.93 bpm and 36.70 ± 0.45°C, respectively, for those with normal weights. For overweight individuals, the measurements for heart rate and oral temperature reached 82.21 ± 8.9 bpm and 37.84 ± 0.37°C, respectively. Conclusions The results showed that, compared to participants with normal weights, physiological and thermal perceptual responses were higher in overweight participants. Therefore, overweight individuals should avoid hot/dry weather conditions to decrease the amount of heat strain.

  4. TEX86 paleothermometry : proxy validation and application in marine sediments

    NARCIS (Netherlands)

    Huguet, C.

    2007-01-01

    Determination of past sea surface temperature (SST) is of primary importance for the reconstruction of natural climatic changes, modelling of climate and reconstruction of ocean circulation. Recently, a new SST proxy was introduced, the TetraEther indeX of lipids with 86 carbons (TEX86), which is

  5. Munchausen syndrome by proxy

    Directory of Open Access Journals (Sweden)

    Jovanović Aleksandar A.

    2005-01-01

    Full Text Available This review deals with bibliography on Munchausen syndrome by proxy (MSbP. The name of this disorder was introduced by English psychiatrist Roy Meadow who pointed to diagnostic difficulties as well as to serious medical and legal connotations of MSbP. MSbP was classified in DSM-IV among criteria sets provided for further study as "factitious disorder by proxy", while in ICD-10, though not explicitly cited, MSbP might be classified as "factitious disorders" F68.1. MSbP is a special form of abuse where the perpetrator induces somatic or mental symptoms of illness in the victim under his/her care and then persistently presents the victims for medical examinations and care. The victim is usually a preschool child and the perpetrator is the child's mother. Motivation for such pathological behavior of perpetrator is considered to be unconscious need to assume sick role by proxy while external incentives such as economic gain are absent. Conceptualization of MSbP development is still in the domain of psychodynamic speculation, its course is chronic and the prognosis is poor considering lack of consistent, efficient and specific treatment. The authors also present the case report of thirty-three year-old mother who had been abusing her nine year-old son both emotionally and physically over the last several years forcing him to, together with her, report to the police, medical and educational institutions that he had been the victim of rape, poisoning and beating by various individuals, especially teaching and medical staff. Mother manifested psychosis and her child presented with impaired cognitive development, emotional problems and conduct disorder.

  6. THE USE OF CATEGORIES AS INDICATORS OF ORGANIZATIONAL CLIMATE IN BRAZILIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Joel Souza Dutra

    2012-04-01

    Full Text Available In order to analyze employees’ perception of the work environment, companies with a well-established people management structure periodically conduct organizational climate surveys. These surveys are meant to offer an understanding of how employees view the quality of the relationships they experience in the company. One of the characteristics of this type of survey, identified both in the relevant literature and empirically in practice, is the use of categories or indicators to direct development of the research instrument, data analysis, and later intervention as needed according to the results of the survey. This article seeks to propose a categorization of organizational climate dimensions directed at the Brazilian corporate reality, analysing its internal consistency and its construct validity. To that end, we used the results of a wide-ranging data sample collected from 123,445 respondents of 491 organizations in various regions of Brazil. The proposed analysis categories – identity, satisfaction and motivation, learning and development, and leadership – were reviewed based on theories of organizational behavior and then submitted to a focus group composed of human resources professionals employed by prominent Brazilian corporations.

  7. Lichen-based indices to quantify responses to climate and air pollution across northeastern U.S.A

    Science.gov (United States)

    Susan Will-Wolf; Sarah Jovan; Peter Neitlich; JeriLynn E. Peck; Roger Rosentreter

    2015-01-01

    Lichens are known to be indicators for air quality; they also respond to climate. We developed indices for lichen response to climate and air quality in forests across the northeastern United States of America (U.S.A.), using 218–250 plot surveys with 145–161 macrolichen taxa from the Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture,...

  8. Open access to Water Indicators for Climate Change Adaptation: proof-of-concept for the Copernicus Climate Change Service (C3S)

    Science.gov (United States)

    Lottle, Lorna; Arheimer, Berit; Gyllensvärd, Frida; Dejong, Fokke; Ludwig, Fulco; Hutjes, Ronald; Martinez, Bernat

    2017-04-01

    Copernicus Climate Change Service (C3S) is still in the development phase and will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate and climate dependent sectors in Europe and worldwide. C3S will provide key indicators on climate change drivers and selected sectorial impacts. The aim of these indicators will be to support adaptation and mitigation. This presentation will show one service already operational as a proof-of-concept of this future climate service. The project "Service for Water Indicators in Climate Change Adaptation" (SWICCA) has developed a sectorial information service for water management. It offers readily available climate-impact data, for open access from the web-site http://swicca.climate.copernicus.eu/. The development is user-driven with the overall goal to speed up the workflow in climate-change adaptation of water management across Europe. The service is co-designed by consultant engineers and agencies in 15 case-studies spread out over the continent. SWICCA has an interactive user-interface, which shows maps and graphs, and facilitates data download in user-friendly formats. In total, more than 900 open dataset are given for various hydrometeorological (and a few socioeconomical) variables, model ensembles, resolutions, time-periods and RCPs. The service offers more than 40 precomputed climate impact indicators (CIIs) and transient time-series of 4 essential climate variables ECVs) with high spatial and temporal resolution. To facilitate both near future and far future assessments, SWICCA provides the indicators for different time ranges; normally, absolute values are given for a reference period (e.g. 1971-2000) and the expected future changes for different 30-year periods, such as early century (2011-2040), mid-century (2041-2070) and end-century (2071-2100). An ensemble of model results is always given to

  9. Ocean climate indicators: A monitoring inventory and plan for tracking climate change in the north-central California coast and ocean region

    Science.gov (United States)

    Duncan, Benet; Higgason, Kelley; Suchanek, Tom; Largier, John; Stachowicz, Jay; Allen, Sarah; Bograd, Steven; Breen, R.; Gellerman, Holly; Hill, Tessa; Jahncke, Jaime; Johnson, Rebecca L.; Lonhart, Steve I.; Morgan, Steven; Wilkerson, Frances; Roletto, Jan

    2013-01-01

    The impacts of climate change, defined as increasing atmospheric and oceanic carbon dioxide and associated increases in average global temperature and oceanic acidity, have been observed both globally and on regional scales, such as in the North-central California coast and ocean, a region that extends from Point Arena to Point Año Nuevo and includes the Pacific coastline of the San Francisco Bay Area. Because of the high economic and ecological value of the region’s marine environment, the Gulf of the Farallones National Marine Sanctuary (GFNMS) and other agencies and organizations have recognized the need to evaluate and plan for climate change impacts. Climate change indicators can be developed on global, regional, and site-specific spatial scales, and they provide information about the presence and potential impacts of climate change. While indicators exist for the nation and for the state of California as a whole, no system of ocean climate indicators exist that specifically consider the unique characteristics of the California coast and ocean region. To that end, GFNMS collaborated with over 50 regional, federal, and state natural resource managers, research scientists, and other partners to develop a set of 2 ocean climate indicators specific to this region. A smaller working group of 13 regional partners developed monitoring goals, objectives, strategies, and activities for the indicators and recommended selected species for biological indicators, resulting in the Ocean Climate Indicators Monitoring Inventory and Plan. The working group considered current knowledge of ongoing monitoring, feasibility of monitoring, costs, and logistics in selecting monitoring activities and selected species.

  10. Some climatic indicators in the period A.D. 1200-1400 in New Mexico

    Science.gov (United States)

    Leopold, Luna Bergere; Leopold, Estella B.; Wendorf, F.

    1963-01-01

    Three centuries before Columbus landed in America, the alluvial valleys of the south-western United States teemed with activity. The indigenous peoples had been building for 300 years a culture centred around community life based on flood-water farming and on hunting. A large number of pueblos had developed on sites earlier occupied by pit-house people. Community organization had brought advances in the ceramic and decorative arts, and changes in these artistic activities were sufficiently rapid that accurate chronologies have become available through the work of archaeologists during the twentieth century. These chronologies were at first unrelated to absolute dates, but the excavations of the 1920s at Chaco Canyon (New Mexico) provided the materials through which absolute dates could be established. This was accomplished by matching the changes in tree-ring width backward in time from living trees through successively older samples. Trees overlapping in age provided, by unique successions of distinctive tree-ring widths, a calendar by which individual logs could be dated. Beams found in the excavations at Chaco Canyon gave the first material by which the cultural developments culminating about A.D. 1300 could be dated.As a result of the time sequence provided by the tree-ring calendar, the dates within which different pottery types were developed could be accurately established. The dates of pottery types have been checked at a sufficiently large number of sites throughout the south-western United States that absolute dating of a large number of distinctive patterns can be considered unassailable. The sequence of tree-ring widths gives some climatic indications of great interest both to archaeologists and to climatologists. A relatively large number of logs spanning the period from A.D. 1200 to 1300 and, in particular, the years between 1276 and 1299, indicate that this period was generally characterized by smaller tree-ring widths than in the centuries

  11. Mapping the Holocene forest formations with the use of key climate indicators – heat and moisture

    Directory of Open Access Journals (Sweden)

    S. K. Farber

    2017-12-01

    Full Text Available The article deals with the methodology of mapping the Holocene forest formations on the basis of the DEM and the key indicators of the climate – heat and moisture. The work is carried out by means of GIS. The test site is located within the boundaries of the axial West Sayan district of mountain taiga forests, which ensures homogeneity of natural and climatic conditions. Stages of the method: creation of rasters on groups of absolute heights, exposures and inclinations with their subsequent combination into a single Combine raster; obtaining the regularities of spatial distribution of heat and moisture and their representation in the form of rasters (digital models; and interactive mapping of the Holocene forests with various combinations of heat and moisture. The use of Combine raster makes it possible to refuse to use any other contours as – landscape, geomorphological, forest inventory. To determine parameters of climatic boundaries of forest formations, the types of forests are linked to the heat and moisture indicators. As a result of linking, a graphic image is produced, where forest formations and their productivity are located in a certain order. The mapping technique involves creating a dBASE table with a field containing information about forest formations. The row-wise change in the records of forest formations as they move to other values of heat and moisture is performed interactively. Each next combination of heat and moisture on maps corresponds to a certain distribution of forest formations and site productivity (bonitet classes. (1900 ± 65 years ago the river valleys were treeless, flat meadows occupied meadows, and the slopes were steppes. As the hypsometric level increases, larch stands, spruce-Siberian stone pine with an admixture of larch, Siberian stone pine-larch with an admixture of fir, and the Siberian stone pine formations appear. (2200 ± 100 years ago the tundra prevailed. Larch forests of V–Va classes of

  12. Similarity indices of meteo-climatic gauging stations: definition and comparison.

    Science.gov (United States)

    Barca, Emanuele; Bruno, Delia Evelina; Passarella, Giuseppe

    2016-07-01

    Space-time dependencies among monitoring network stations have been investigated to detect and quantify similarity relationships among gauging stations. In this work, besides the well-known rank correlation index, two new similarity indices have been defined and applied to compute the similarity matrix related to the Apulian meteo-climatic monitoring network. The similarity matrices can be applied to address reliably the issue of missing data in space-time series. In order to establish the effectiveness of the similarity indices, a simulation test was then designed and performed with the aim of estimating missing monthly rainfall rates in a suitably selected gauging station. The results of the simulation allowed us to evaluate the effectiveness of the proposed similarity indices. Finally, the multiple imputation by chained equations method was used as a benchmark to have an absolute yardstick for comparing the outcomes of the test. In conclusion, the new proposed multiplicative similarity index resulted at least as reliable as the selected benchmark.

  13. Simple climatic indices for the tropical Atlantic Ocean and some applications

    Science.gov (United States)

    Servain, Jacques

    1991-08-01

    Two indices related to the sea surface temperature (SST) variability in the tropical Atlantic are proposed. One index describes the SST averaged over the whole basin (30°N to 20°S, 60°W to 15°E), and the other illustrates a meridional dipole between the northern and southern hemispheres. The computational method for obtaining these indices is intentionally kept simple, the objective being to reproduce the signature of the main results previously provided from more complicated statistical analyses. Monthly time series for both indices are produced from 1964 up to the present time. The whole basin index exhibits principally a sustained warming which has intensified since about 1975, and it has a significant periodicity close to that of the quasi-biennial oscillation. The dipole index exhibits a decadal-scale variation, and its building up seems to be related to other worldwide climatic changes, as for instance El Niño / Southern Oscillation extreme episodes, rainfall variabilities over the Brazilian Nordeste and African Sahel.

  14. Validity of proxies and correction for proxy use when evaluating social determinants of health in stroke patients.

    Science.gov (United States)

    Skolarus, Lesli E; Sánchez, Brisa N; Morgenstern, Lewis B; Garcia, Nelda M; Smith, Melinda A; Brown, Devin L; Lisabeth, Lynda D

    2010-03-01

    The purpose of this study was to evaluate stroke patient-proxy agreement with respect to social determinants of health, including depression, optimism, and spirituality, and to explore approaches to minimize proxy-introduced bias. Stroke patient-proxy pairs from the Brain Attack Surveillance in Corpus Christi Project were interviewed (n=34). Evaluation of agreement between patient-proxy pairs included calculation of intraclass correlation coefficients, linear regression models (ProxyResponse=alpha(0)+alpha(1)PatientResponse+delta, where alpha(0)=0 and alpha(1)=1 denotes no bias) and kappa statistics. Bias introduced by proxies was quantified with simulation studies. In the simulated data, we applied 4 approaches to estimate regression coefficients of stroke outcome social determinants of health associations when only proxy data were available for some patients: (1) substituting proxy responses in place of patient responses; (2) including an indicator variable for proxy use; (3) using regression calibration with external validation; and (4) internal validation. Agreement was fair for depression (intraclass correlation coefficient, 0.41) and optimism (intraclass correlation coefficient, 0.48) and moderate for spirituality (kappa, 0.48 to 0.53). Responses of proxies were a biased measure of the patients' responses for depression, with alpha(0)=4.88 (CI, 2.24 to 7.52) and alpha(1)=0.39 (CI, 0.09 to 0.69), and for optimism, with alpha(0)=3.82 (CI, -1.04 to 8.69) and alpha(1)=0.81 (CI, 0.41 to 1.22). Regression calibration with internal validation was the most accurate method to correct for proxy-induced bias. Fair/moderate patient-proxy agreement was observed for social determinants of health. Stroke researchers who plan to study social determinants of health may consider performing validation studies so corrections for proxy use can be made.

  15. Climate change, impacts and vulnerability in Europe 2012. An indicator-based report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    This European Environment Agency (EEA) report presents information on past and projected climate change and related impacts in Europe, based on a range of indicators. The report also assesses the vulnerability of society, human health and ecosystems in Europe and identifies those regions in Europe most at risk from climate change. Furthermore, the report discusses the principle sources of uncertainty for the indicators and notes how monitoring and scenario development can improve our understanding of climate change, its impacts and related vulnerabilities. Some key findings: The last decade (2002-2011) was the warmest on record in Europe, with European land temperature 1.3 deg. C warmer than the pre-industrial average. Various model projections show that Europe could be 2.5-4 deg. C warmer in the later part of the 21st Century, compared to the 1961-1990 average. Heat waves have increased in frequency and length, causing tens of thousands of deaths over the last decade. The projected increase in heat waves could increase the number of related deaths over the next decades, unless societies adapt, the report says. However, cold-related deaths are projected to decrease in many countries. While precipitation is decreasing in southern regions, it is increasing in northern Europe, the report says. These trends are projected to continue. Climate change is projected to increase river flooding, particularly in northern Europe, as higher temperatures intensify the water cycle. However, it is difficult to discern the influence of climate change in flooding data records for the past. River flow droughts appear to have become more severe and frequent in southern Europe. Minimum river flows are projected to decrease significantly in summer in southern Europe but also in many other parts of Europe to varying degrees. The Arctic is warming faster than other regions. Record low sea ice was observed in the Arctic in 2007, 2011 and 2012, falling to roughly half the minimum extent seen

  16. Indicative effects of climate change on groundwater levels in Estonian raised bogs over 50 years

    Directory of Open Access Journals (Sweden)

    E. Lode

    2017-08-01

    Full Text Available Analyses of 50-year (1962–2011 monthly air temperature and precipitation data indicated substantial climate change in the locations of two raised bogs (Linnusaare and Männikjärve in central-east Estonia. During recent years the cross-year winter air temperature increased by 1.7 ºC, while the cold-season precipitation increased by 4 mm. The fluctuation amplitude of temperature and precipitation values decreased. Snow depth proved to be the most sensitive variable to winter warming, followed by groundwater levels together with mean and maximum soil frosts. Long-term groundwater levels on the domes of the bogs and in the forested/treed lagg areas were 0.3−0.4 m and 0.4−0.8 m below the soil surface, respectively. Warming caused changes in groundwater level amplitude of 3−22 cm in the bog domes and 3−14 cm in the forested lagg zones. The lowest groundwater levels in ridge-pool ecotopes at Männikjärve rose by 6−10 cm (i.e. these ecotopes became wetter; but the incidence of low groundwater levels increased in most ecotopes, indicating a more general trend towards drier conditions in the bog.

  17. Carbohydrates and phenols as quantitative molecular vegetation proxies in peats

    Science.gov (United States)

    Kaiser, K.; Benner, R. H.

    2012-12-01

    Vegetation in peatlands is intricately linked to local environmental conditions and climate. Here we use chemical analyses of carbohydrates and phenols to reconstruct paleovegetation in peat cores collected from 56.8°N (SIB04), 58.4°N (SIB06), 63.8°N (G137) and 66.5°N (E113) in the Western Siberian Lowland. Lignin phenols (vanillyl and syringyl phenols) were sensitive biomarkers for vascular plant contributions and provided additional information on the relative contributions of angiosperm and gymnosperm plants. Specific neutral sugar compositions allowed identification of sphagnum mosses, sedges (Cyperaceae) and lichens. Hydroxyphenols released by CuO oxidation were useful tracers of sphagnum moss contributions. The three independent molecular proxies were calibrated with a diverse group of peat-forming plants to yield quantitative estimates (%C) of vascular plant, sphagnum moss and lichen contributions in peat core samples. Correlation analysis indicated the three molecular proxies produced fairly similar results for paleovegetation compositions, generally within the error interval of each approach (≤26%). The lignin-based method generally lead to higher estimates of vascular plant vegetation. Several significant deviations were also observed due to different reactivities of carbohydrate and phenolic polymers during peat decomposition. Rapid vegetation changes on timescales of 50-200 years were observed in the southern cores SIB04 and SIB06 over the last 2000 years. Vanillyl and syringyl phenol ratios indicated these vegetation changes were largely due to varying inputs of angiosperm and gymnosperm plants. The northern permafrost cores G137 and E113 showed a more stable development. Lichens briefly replaced sphagnum mosses and vascular plants in both of these cores. Shifts in vegetation did not correlate well with Northern hemisphere climate variability over the last 2000 years. This suggested that direct climate forcing of peatland dynamics was overridden

  18. DETERMINATION THE MOST IMPORTANT OF HSE CLIMATE ASSESSMENT INDICATORS CASE STUDY: HSE CLIMATE ASSESSMENT OF COMBINED CYCLE POWER PLANT STAFFS

    Directory of Open Access Journals (Sweden)

    Reza

    2017-11-01

    Full Text Available Doubtlessly, noting the growth of industry and the criticality of the environment at the present time and the significance of protecting and preserving the resources to achieve the sustainable development, establishing the appropriate cultural mechanisms which can be able to confront the probable problems rationally besides understanding the biological and human resources for achieving the goals of sustainable development and establish matching with the conditions is so necessary. Today, the subject of HSE in the industry and creating its relevant cultural context in the developing countries is significant and it is necessary to assess its position at the organizational level in several sessions. Assessing the climate of HSE in an organization can depict a realistic picture of the staff understanding of the subject of HSE and their duties. The purpose of carrying out this study is to identify the main assessing factors of the climate of HSE in an organization and studying one of the industrial units in order to determine the position of them with a view to HSE. This descriptive-analytical study is being carried out based on the review of the literature and its results to identify the factors of HSE climate and then assessing the climate of HSE among the staff of a combined cycle power plant. The survey (questionnaire contains forty-three questions and is adjusted based on the 9- point Likert Scale Eight factors are being determined by means of an appropriate correlation for assessing the HSE climate. The validity of the questionnaire was achieved by means of Cronbach’s Alpha coefficient of 0.727 and the final result of the questionnaire evaluates an intermediate climate of HSE in the organization.

  19. Effect of motivational climate profiles on motivational indices in team sport.

    Science.gov (United States)

    Ommundsen, Y; Roberts, G C

    1999-12-01

    Contemporary perspectives of achievement motivation have been based on social cognitive theories which give motivational climate a central place in the regulation of subsequent affective states, cognitions and behaviour in achievement contexts. This study examined the relationship between different profiles of the motivational climate in teamsport and achievement, and socially related cognitions among Norwegian team sport athletes. Players (N= 148) assessed their perception of the motivational climate using the Norwegian version of the Motivational climate in sport questionnaire, sources of satisfaction in team sport, achievement strategies, perceived purposes of sport, and conceptions of ability. Multivariate analysis of variance (2x2) showed both main effects for profiles of the motivational climate and an interaction effect. Athletes perceiving the climate as high in mastery and high in performance oriented criteria reported psychological responses that were more adaptative than those perceiving the climate as low in mastery and high in performance criteria. With one exception, the findings showed that those high in mastery and low in performance were more likely to emphasise self-referenced criteria when judging perceived ability in team sport. For both social responsibility and lifetime skills as purposes in sport, it was the high performance and low mastery athletes who were least likely to endorse these purposes. And importantly, the high mastery climate seemed to moderate the impact of being in a high performance climate. The pattern of findings suggests that perceiving the motivational climate as performance oriented may not be motivationally maladaptive when accompanied by mastery oriented situational cues.

  20. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    Science.gov (United States)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to

  1. Analysis of climate change indices in relation to wine production: A case study in the Douro region (Portugal

    Directory of Open Access Journals (Sweden)

    Blanco-Ward Daniel

    2017-01-01

    Full Text Available Climate change is of major relevance to wine production as most of the wine-growing regions of the world, in particular the Douro region, are located within relatively narrow latitudinal bands with average growing season temperatures limited to 13–21°C. This study focuses on the incidence of climate variables and indices that are relevant both for climate change detection and for grape production with particular emphasis on extreme events (e.g. cold waves, storms, heat waves. Dynamical downscaling of MPI-ESM-LR global data forced with RCP8.5 climatic scenario is performed with the Weather Research and Forecast (WRF model to a regional scale including the Douro valley of Portugal for recent-past (1986–2005 and future periods (2046–2065; 2081–2100. The number, duration and intensity of events are superimposed over critical phenological phases of the vine (dormancy, bud burst, flowering, véraison, and maturity in order to assess their positive or negative implications on wine production in the region. An assessment on the statistical significance of climatic indices, their differences between the recent-past and the future scenarios and the potential impact on wine production is performed. Preliminary results indicate increased climatic stress on the Douro region wine production and increased vulnerability of its vine varieties. These results will provide evidence for future strategies aimed to preserve the high-quality wines in the region and their typicality in a sustainable way.

  2. Support for global climate reorganization during the ''Medieval Climate Anomaly''

    Energy Technology Data Exchange (ETDEWEB)

    Graham, N.E. [Hydrologic Research Center, San Diego, CA (United States); Scripps Institution of Oceanography, La Jolla, CA (United States); Ammann, C.M. [National Center for Atmospheric Research, Boulder, CO (United States); Fleitmann, D. [University of Bern, Institute of Geological Sciences, Bern (Switzerland); University of Bern, Oeschger Centre for Climatic Change Research, Bern (Switzerland); Cobb, K.M. [Georgia Institute of Technology, Atlanta, GA (United States); Luterbacher, J. [Justus-Liebig-University, Giessen (Germany)

    2011-09-15

    Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; {proportional_to}900-1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations - especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA

  3. Climate Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Paleoclimatology Program archives reconstructions of past climatic conditions derived from paleoclimate proxies, in addition to the Program's large holdings...

  4. Normalized difference vegetation index for the South American continent used as a climatic variability indicator

    International Nuclear Information System (INIS)

    Liu, W.T.; Massambani, O.; Festa, M.

    1992-01-01

    The NOAA AVHRR GAC data set was used to produce Normalized Difference Vegetation Index (NDVI) maps for the South American Continent covering the period from August 1, 1981 to June 30, 1987. A 15-day maximum value composite procedure was used to partially eliminate the cloud contamination and atmospheric attenuation. Monthly evolution of NDVI for a dry and a wet year within the period studied was used to estimate the area covered by NDVI value less than 0.223, This value was used as an indicator of the drought area and the delineation of the Low rainfall areas in the continent. It was observed a well defined regional dependence of the drought area variability for the Northeast, Southwest and Northwest continent and also for the Amazon region. It is shown a relative estimation of the area coverage with NDVI less than 0.223 for the years 1982/83 and 1984/85. The dynamics of the drought area evolution in the continent is discussed. It is also presented a diagnosis of regional variability of the continental distribution of drought area from 1981 to 1987 for the months of May and September. This information is also used to discuss its relationship with the EL-Nino-Southern Oscillation (ENSO) and the South American Precipitation patterns during this period. It is suggested that the use of NDVI image to identify the dynamics of the drought induced by low rainfall may provide us valuable information to study the large scale climatic variation

  5. Flood/Typhoon vulnerability indicators of nuclear power plant in South Korea considering climate change impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyu Min; Jun, Kyung Soo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Chung, Eun Sung [Seoul National Univ of Science and technology, Seoul (Korea, Republic of); Min, Byung Il; Suh, Kyung Suk [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Republic of Korea lies in the principal course of the typhoon that is occurred to the Pacific Northwest. It has distinct monsoon wind, a rainy period from the East Asian Monsoon locally called 'Changma', typhoon, and while often heavy snowfalls in winter. It belongs to a relatively wet region due to much more precipitation than that of the world average. In the last 10 years, there frequently was a lot of damage due to flooding with typhoon. In particular, the damage was estimated at up to 5,000 billion KRW by the USA in 2002. Lately, after the 9.0 magnitude earthquake and resultant tsunami hit Japan on March 11, 2011, consecutively approached Typhoon Ro ke made a larger threat. Although it fortunately passed without significant impact. That is, not only typhoon and flood are one of a threat to nuclear power plant but also it could lead to overwhelming damage when it overlapped the other accident. Therefore, flood/typhoon vulnerability assessment could provide important information for the safety management of nuclear power plants. This study derived all the feasible indicators and their corresponding weights for a Flood/Typhoon Vulnerability Index (FTVI) to nuclear power plant considering climate change. In addition selection of the candidates and determination of their weights were estimated using a Delphi process, which is an advanced method for opinion measurement.

  6. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios with Ecosystem Services Indicators

    Science.gov (United States)

    While discussions of global climate change tend to center on greenhouse gases and seal level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasi...

  7. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios and Ecosystem ServicesIndicators

    Science.gov (United States)

    While discussions of global climate change tend to center on greenhouse gases and sea level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasin...

  8. Description of Changes in Climatic Indices in USA over 25 Years (1989 – 2013)

    Science.gov (United States)

    The spatial distribution of long-term changes in climatic factors and its relation with vegetation cover, human health, hydrology and many other ecosystem processes help to identify the consequences of climatic factors changes. In recent studies, the significant changes of select...

  9. How well are the climate indices related to the GRACE-observed total water storage changes in China?

    Science.gov (United States)

    Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.

    2017-12-01

    The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.

  10. Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens

    International Nuclear Information System (INIS)

    Geiser, Linda H.; Neitlich, Peter N.

    2007-01-01

    Human activity is changing air quality and climate in the US Pacific Northwest. In a first application of non-metric multidimensional scaling to a large-scale, framework dataset, we modeled lichen community response to air quality and climate gradients at 1416 forested 0.4 ha plots. Model development balanced polluted plots across elevation, forest type and precipitation ranges to isolate pollution response. Air and climate scores were fitted for remaining plots, classed by lichen bioeffects, and mapped. Projected 2040 temperatures would create climate zones with no current analogue. Worst air scores occurred in urban-industrial and agricultural valleys and represented 24% of the landscape. They were correlated with: absence of sensitive lichens, enhancement of nitrophilous lichens, mean wet deposition of ammonium >0.06 mg l -1 , lichen nitrogen and sulfur concentrations >0.6% and 0.07%, and SO 2 levels harmful to sensitive lichens. The model can detect changes in air quality and climate by scoring re-measurements. - Lichen-based air quality and climate gradients in western Oregon and Washington are responsive to regionally increasing nitrogen availability and to temperature changes predicted by climate models

  11. Climatic Changes Effects On Spectral Vegetation Indices For Forested Areas Analysis From Satellite Data

    International Nuclear Information System (INIS)

    Zoran, M.; Stefan, S.

    2007-01-01

    Climate-induced changes at the land surface may in turn feed back on the climate itself through changes in soil moisture, vegetation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote . sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classification accuracies are function of the class, comparison method and season of the year. The aim of the paper is forest biomass assessment and land-cover changes analysis due to climatic effects

  12. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing

    NARCIS (Netherlands)

    Roman-Cuesta, R.M.; Carmona-Moreno, C.; Lizcano, G.; New, M.; Silman, M.R.; Knoke, T.; Malhi, Y.; Oliveras Menor, I.; Asbjornsen, H.; Vuille, M.

    2014-01-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in

  13. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Hayes, M.; Duce, P.; Trnka, Miroslav; Svoboda, M.; Zara, P.

    2014-01-01

    Roč. 14, č. 5 (2014), s. 1907-1919 ISSN 1436-3798 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : climate change * mediteranean * global climate models * temperature * precipitation * drought * palmer drought severity index * weather generator Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.628, year: 2014

  14. Multi-proxy reconstructions and the power of integration across marine, terrestrial, and freshwater ecosystems. (Invited)

    Science.gov (United States)

    Black, B.

    2013-12-01

    Over the past decade, dendrochronology (tree-ring analysis) techniques have been increasingly applied to growth increments of various bivalve, fish, and coral species. In particular, the use of crossdating ensures that all increments in a dataset have assigned the correct calendar year of formation and that the resulting chronology is exactly placed in time. Such temporal alignment facilitates direct comparisons among chronologies that span diverse taxa and ecosystems, illustrating the pervasive, synchronizing influence of climate from alpine forests to the continental slope. Such an approach can be particularly beneficial to reconstructions in that each species captures climate signals from its unique 'perspective' of life history and habitat. For example, combinations of tree-ring data and chronologies for the long-lived bivalve Pacific geoduck (Panopea generosa) capture substantially more variance in regional sea surface temperatures than either proxy could explain alone. Just as importantly, networks of chronologies spanning multiple trophic levels can help identify climate variables critical to ecosystem functioning, which can then be targeted to generate most biologically relevant reconstructions possible. Along the west coast of North America, fish and bivalve chronologies in combination with records of seabird reproductive success indicate that winter sea-level pressure is closely associated with California Current productivity, which can be hind-cast over the past six centuries using coastal tree-ring chronologies. Thus, multiple proxies not only increase reconstruction skill, but also help isolate climate variables most closely linked to ecosystem structure and functioning.

  15. Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Yao, Peng, E-mail: yaopeng@mail.ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100 (China); Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100 (China); Institute of Marine Organic Geochemistry, Ocean University of China, Qingdao 266100 (China); Bianchi, Thomas S. [Department of Geological Sciences, University of Florida, Gainesville, FL 32611-2120 (United States); Li, Dong; Zhao, Bin; Xu, Bochao [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Yu, Zhigang [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100 (China); Institute of Marine Organic Geochemistry, Ocean University of China, Qingdao 266100 (China)

    2015-06-01

    In this study, sediment grain size (MGS), specific surface area (SSA), total organic carbon (TOC) contents, C/N molar ratios, stable carbon isotope, and P species in a sediment core, collected from the East China Sea (ECS) inner-shelf were measured to explore the applicability of detrital phosphorus (De-P) as a potential indicator of past flooding events in the Changjiang River Basin (CRB). In particular, we examined the linkages between the evolution of floods with regional climate changes and anthropogenic activities in the CRB. Peaks of De-P concentrations in sediments corresponded well with the worst flooding events of the CRB over the past two centuries (e.g., 1850s, 1860s, 1900s, 1920s, 1950s, 1980s, and 2000s). Moreover, De-P also corresponded well with the extreme hypoxic events in 1981 and 1998 in the Changjiang Estuary as indicated by Mo/Al ratios, indicating potential linkages between De-P as a flooding proxy to flood-induced hypoxia events in this region. In addition, a robust relationship was found among De-P, the floods in 1950s, 1980s, and 2000s of the CRB, the intensive El Niño-Southern Oscillation (ENSO), the abnormally weak East Asian Summer Monsoon (EASM) and the warm phase of Pacific Decadal Oscillation (PDO), suggesting that De-P also provided insights to linkages between regional climate change and flooding events in this region. - Highlights: • De-P was used to track past floods in the Changjiang River Basin (CRB). • De-P may serve as a proxy for flood-induced hypoxia events in the Changjiang Estuary. • De-P may be a proxy for examining linkages between floods and climatic drivers.

  16. Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin

    International Nuclear Information System (INIS)

    Meng, Jia; Yao, Peng; Bianchi, Thomas S.; Li, Dong; Zhao, Bin; Xu, Bochao; Yu, Zhigang

    2015-01-01

    In this study, sediment grain size (MGS), specific surface area (SSA), total organic carbon (TOC) contents, C/N molar ratios, stable carbon isotope, and P species in a sediment core, collected from the East China Sea (ECS) inner-shelf were measured to explore the applicability of detrital phosphorus (De-P) as a potential indicator of past flooding events in the Changjiang River Basin (CRB). In particular, we examined the linkages between the evolution of floods with regional climate changes and anthropogenic activities in the CRB. Peaks of De-P concentrations in sediments corresponded well with the worst flooding events of the CRB over the past two centuries (e.g., 1850s, 1860s, 1900s, 1920s, 1950s, 1980s, and 2000s). Moreover, De-P also corresponded well with the extreme hypoxic events in 1981 and 1998 in the Changjiang Estuary as indicated by Mo/Al ratios, indicating potential linkages between De-P as a flooding proxy to flood-induced hypoxia events in this region. In addition, a robust relationship was found among De-P, the floods in 1950s, 1980s, and 2000s of the CRB, the intensive El Niño-Southern Oscillation (ENSO), the abnormally weak East Asian Summer Monsoon (EASM) and the warm phase of Pacific Decadal Oscillation (PDO), suggesting that De-P also provided insights to linkages between regional climate change and flooding events in this region. - Highlights: • De-P was used to track past floods in the Changjiang River Basin (CRB). • De-P may serve as a proxy for flood-induced hypoxia events in the Changjiang Estuary. • De-P may be a proxy for examining linkages between floods and climatic drivers

  17. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.

    Science.gov (United States)

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-28

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  18. Assessing the Role of Energy in Development and Climate Policies - Conceptual Approach and Key Indicators

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit

    2011-01-01

    The paper discusses a number of key conceptual issues related to the role of energy in development and its potential synergies and tradeoffs with climate change. The relationship between economic development and energy over time is discussed and illustrated by data from China, India and South...... Africa, and some other countries. It concludes that energy plays an important role as a productivity enhancing factor in economic development and in human well being. Several policy goals related to sustainable development, energy, and climate can be integrated. However, meeting all these policy goals...

  19. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zara, P.

    2014-01-01

    Roč. 14, č. 5 (2014), s. 1907-1919 ISSN 1436-3798 R&D Projects: GA AV ČR IAA300420806; GA MŠk LD12029 Institutional support: RVO:68378289 Keywords : mediterranean * climate change * global climate models * temperature * precipitation * drought * Palmer drought severity index * weather generator Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.628, year: 2014 http://link.springer.com/article/10.1007%2Fs10113-013-0562-z/fulltext.html

  20. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer

    2009-01-01

    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  1. Key indicators of air pollution and climate change impacts at forest supersites

    NARCIS (Netherlands)

    Paoletti, E.; Vries, de W.; Mikkelsen, T.N.; Ibrom, A.; Larsen, K.S.; Tuovinen, J.P.; Serengil, Y.; Yurtseven, I.; Wieser, G.; Matyssek, R.

    2013-01-01

    Untangling the complex effects that different air pollution and climate change factors cause to forest ecosystems is challenging. Supersites, that is, comprehensive measurement sites where research and monitoring of the whole soil–plant–atmosphere system can be carried out, are suggested as a

  2. Teacher Self-Regulatory Climate: Conceptualizing an Indicator of Leader Support for Teacher Learning and Development

    Science.gov (United States)

    Ford, Timothy G.; Ware, Jordan K.

    2018-01-01

    Few studies that examine organizational conditions conducive to teacher learning utilize social-psychological theory to explain how leader actions specifically support teachers' psychological needs as learners. We apply self-determination theory to the conceptualization of a new construct, Teacher Self-Regulatory Climate (TSRC), defined as a set…

  3. California forests show early indications of both range shifts and local persistence under climate change

    Science.gov (United States)

    Josep M. Serra-Diaz; Janet Franklin; Whalen W. Dillon; Alexandra D. Syphard; Frank W. Davis; Ross K. Meentemeyer

    2015-01-01

    Aim Forest regeneration data provide an early signal of the persistence and migration of tree species, so we investigated whether species shifts due to climate change exhibit a common signal of response or whether changes vary by species. Location California Floristic Province, United...

  4. Climate in France during the 21. century - Regionalized scenarios - Reference indices for the metropolitan region - Evolution at sea level

    International Nuclear Information System (INIS)

    Peings, Yannick; Planton, Serge; Deque, Michel; Jamous, Marc; Le Treut, Herve; Gallee, Hubert; Li, Laurent; Jouzel, J.

    2011-01-01

    After some comments on climate modelling (models, scenarios, uncertainties, regional predictions), the first part reports the study of several temperature indices (minimum, average and maximum daily temperature, number of days with abnormally high or low temperature, number of days of heat wave, number of days with negative temperatures, and so on.), precipitation indices (daily and extreme precipitations, dry periods, snow falls). It also discusses soil humidity index, strong wind index, river flow rate, and sea level. The second part reports simulation results for indices in metropolitan France according to the French Aladin-Climat, LMDZ and MAR models. The third volume reports evolutions and predictions of average sea level at the planet scale and along the French coasts, and discusses impacts related to sea level change (coast erosion, submersion, salt intrusion)

  5. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    Science.gov (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  6. Evaluation of the sea ice proxy IP against observational and diatom proxy data in the SW Labrador Sea

    DEFF Research Database (Denmark)

    Weckström, K.; Andersen, M.L.; Kuijpers, A.

    2013-01-01

    The recent rapid decline in Arctic sea ice cover has increased the need to improve the accuracy of the sea ice component in climate models and to provide detailed long-term sea ice concentration records, which are only available via proxy data. Recently, the highly branched isoprenoid IP25...

  7. Future weather types and their influence on mean and extreme climate indices for precipitation and temperature in Central Europe

    Directory of Open Access Journals (Sweden)

    Ulf Riediger

    2014-09-01

    Full Text Available In Central Europe, the spatial and temporal distributions of precipitation and temperature are determined by the occurrence of major weather types. In this paper, we examine climate indices (i.e. mean values or hot, cold, wet and dry days for different weather types in a recent (1971–2000 and future climate (2070–2099. The weather types are classified objectively for the control run and for the A1B scenario with an ensemble of eight global climate simulations (GCM to be compared with different reanalyses. To derive climate indices, the high-resolution, regionalized reference dataset HYRAS and an ensemble of nine regional climate simulations (RCM are used. Firstly, the reliability of simulated weather patterns and their climate indices are tested in the control period. The reanalyses circulation climatology can be reproduced well by the GCM ensemble mean. For temperature and precipitation, each climate index is characterized and evaluated in terms of defined weather patterns. The comparison of HYRAS and RCM data show reliable mean temperature values with differences between weather classes by +2$+2$ to -6$-6$ °C during winter (13 to 19 °C in summer. The analysis of observed and simulated precipitation reveal that mean winter precipitation is significantly influenced by the direction of air flow, while in summer, mesoscale atmospheric patterns of cyclonic rotation play a larger role. Secondly, the analysis of potential future changes simulated by the RCM ensemble were able to demonstrate that weather type changes, superior climate trends (such as mean warming and their interaction lead to major changes for precipitation and temperature in Central Europe. While temperature differences between cold and warm weather types are nearly stable over time, the ensemble temperature changes (with a range of +2$+2$ to +4$+4$ °C reinforce warm/hot conditions in the future winter and summer. Milder, wetter winters can be explained by an increased

  8. Climate variability in the SW Indian Ocean from an 8000-yr long multi-proxy record in the Mauritian lowlands shows a middle to late Holocene shift from negative IOD-state to ENSO-state

    NARCIS (Netherlands)

    de Boer, E.J.; Tjallingii, R.; Vélez, M.I.; Rijsdijk, K.F.; Vlug, A.; Reichart, G.J.; Prendergast, A.L.; de Louw, P.G.B.; Vincent Florens, F.B.; Baider, C.; Hooghiemstra, H.

    2014-01-01

    A multi-proxy reconstruction of a sediment core from the Tatos basin in the Mauritian lowlands reveals a dynamic environmental history during the last 8000 years. Under influence of sea level rise, the basin progressed from a wetland to a shallow lake between 8000 and 2500 cal yr BP and it slowly

  9. Climate variability in the SW Indian Ocean from an 8000-yr long multi-proxy record in the Mauritian lowlands shows a middle to late Holocene shift from negative IOD-state to ENSO-state

    NARCIS (Netherlands)

    De Boer, Erik J.; Tjallingii, Rik; Vélez, Maria I.; Rijsdijk, Kenneth F.; Vlug, Anouk; Reichart, Gert-Jan; Prendergast, Amy L.; de Louw, Perry G B; Florens, F. B Vincent; Baider, Cláudia; Hooghiemstra, Henry

    2014-01-01

    A multi-proxy reconstruction of a sediment core from the Tatos basin in the Mauritian lowlands reveals a dynamic environmental history during the last 8000 years. Under influence of sea level rise, the basin progressed from a wetland to a shallow lake between 8000 and 2500cal yr BP and it slowly

  10. Perceptions of the motivational climate, need satisfaction, and indices of well- and ill-being among hip hop dancers.

    Science.gov (United States)

    Quested, Eleanor; Duda, Joan L

    2009-01-01

    Grounded in the self-determination theoretical framework (SDT) formulated by Deci and Ryan, and specifically the basic needs mini-theory (BNT), this study examined the relationship between perceptions of the motivational climate manifested in hip hop environments, satisfaction of the three basic needs, and indicators of well- and ill-being among hip hop dancers. Fifty-nine hip hop dancers (mean age: 20.29 years) completed a questionnaire assessing the variables of interest in the study. Perceptions of a task-involving climate were positively associated with satisfaction of the needs for autonomy, competence, and relatedness. Perceptions of an ego-involving climate negatively predicted relatedness. Satisfaction of the need for competence was positively associated with positive affect, and negatively linked to negative affect. Competence need satisfaction significantly mediated the relationship between a perceived task-involving climate and positive and negative affective states. In sum, the findings provided partial support for the facets of SDT and BNT. The results also indicated that promoting the task-involving features of dance learning environments may be beneficial to dancers' well-being.

  11. Use of two indicators for the socio-environmental risk analysis of Northern Mexico under three climate change scenarios.

    Science.gov (United States)

    López-Santos, Armando; Martínez-Santiago, Santos

    The aims of this study were to (1) find critical areas susceptible to the degradation of natural resources according to local erosion rates and aridity levels, which were used as environmental quality indicators, and (2) identify areas of risk associated with the presence of natural hazards according to three climate change scenarios defined for Mexico. The focus was the municipality of Lerdo, Durango (25.166° to 25.783° N and 103.333° to 103.983° W), which has dry temperate and very dry climates (BSohw and BWhw). From the Global Circulation Models, downscaling techniques for the dynamic modeling of environmental processes using climate data, historical information, and three regionalized climate change scenarios were applied to determine the impacts from laminar wind erosion rates (LWER) and aridity indices (AI). From the historic period to scenario A2 (ScA2, 2010-2039), regarding greenhouse gas emissions, the LWER was predicted to reach 147.2 t ha -1  year -1 , representing a 0.5 m thickness over nearly 30 years and a change in the AI from 9.3 to 8.7. This trend represents an increase in drought for 70.8 % of the study area and could affect 90 % of the agricultural activities and approximately 80 % of the population living in the southeastern Lerdense territory.

  12. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    Science.gov (United States)

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, Alisa L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  13. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Svoboda, M. D.; Trnka, M.; Hayes, M. J.; Wilhite, D. A.; Žalud, Z.; Hlavinka, P.

    2009-01-01

    Roč. 96, 1-2 (2009), s. 155-171 ISSN 0177-798X R&D Projects: GA ČR GA205/05/2265 Institutional research plan: CEZ:AV0Z30420517 Keywords : climate change * drought * GCM scenarios Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.776, year: 2009 http://www.springerlink.com/content/u564082872111877/fulltext.pdf

  14. Changes of benthic fauna in the Kattegat - An indication of climate change at mid-latitudes?

    Science.gov (United States)

    Göransson, Peter

    2017-07-01

    Several predictions point to changes in the marine benthic macrofauna associated with climate change, but so far only a few and minor changes have been reported. This study relates observed changes in the species composition to climate change by looking on the past decades in the Kattegat between Denmark and Sweden. A reduction of the total number species and a reduction of species with a northern range parallel to an increase of species with a southern range have been observed. The most likely explanation of the changes is the increase in temperature of the bottom water. Increased temperature could change the species distributions but also decrease primary production which impacts recruitment and growth. Hypoxia and bottom trawling could also act synergistic in this process. A sparse occurrence of previously encountered Arctic-Boreal species and critical foundation species, which gives the area its special character, suggests a change in biodiversity and might therefore be designated as early warning signals of a warmer climate. The northern fauna below the halocline with limited capacity of dispersal and low reproduction potential, can be considered as sensitive with low adaptive capacity to climate change. Therefore, not only tropical and high-latitude species, but also benthos on deep bottoms at mid-latitudes, could be vulnerable to warming. As many species live at the edge of their range in the Kattegat, and also are dependent of distant recruitment, large scale changes will probably be detected here at an early stage. It is important to protect relatively undisturbed reference areas in the Kattegat for future studies, but also for preserving a large number of ecosystem services, biotopes, habitats, and fish species.

  15. Prioritizing key resilience indicators to support coral reef management in a changing climate.

    Science.gov (United States)

    McClanahan, Tim R; Donner, Simon D; Maynard, Jeffrey A; MacNeil, M Aaron; Graham, Nicholas A J; Maina, Joseph; Baker, Andrew C; Alemu I, Jahson B; Beger, Maria; Campbell, Stuart J; Darling, Emily S; Eakin, C Mark; Heron, Scott F; Jupiter, Stacy D; Lundquist, Carolyn J; McLeod, Elizabeth; Mumby, Peter J; Paddack, Michelle J; Selig, Elizabeth R; van Woesik, Robert

    2012-01-01

    Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant) coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will increase the feasibility

  16. Prioritizing key resilience indicators to support coral reef management in a changing climate.

    Directory of Open Access Journals (Sweden)

    Tim R McClanahan

    Full Text Available Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will

  17. Changes of Some Indices of Low Flow affected by Climate Change in the Tang Panj Sezar Basin

    Directory of Open Access Journals (Sweden)

    M. Mozayyan

    2016-10-01

    Full Text Available Introduction: Due to the effects of climate change on water resources and hydrology, Changes in low flow as an important part of the water cycle, is of interest to researchers, water managers and users in various fields. Changes in characteristics of low flows affected by climate change may have important effects on various aspects of socioeconomic , environmental, water resources and governmental planning. There are several indices to assess the low flows. The used low flow indices in this research for assessing climate change impacts, is include the extracted indices from flow duration curve (Q70, Q90 and Q95, due to the importance of these indices in understanding and assessing the status of river flow in dry seasons that was investigated in Tang Panj Sezar basin in the west of Iran. Materials and methods: In this paper, the Tang Panj Sezar basin with an area of 9410 km2 was divided into 6 smaller sub catchments and the changes of low flow indices were studied in each of the sub catchments. In order to consider the effects of climate change on low flow, scenarios of temperature and precipitation using 10 atmospheric general circulation models (to investigate the uncertainty of GCMs for both the baseline (1971-2000 and future (2011-2040 under A2 emission scenario was prepared. These scenarios, due to large spatial scale need to downscaling. Therefore, LARS-WG stochastic weather generator model was used. In order to consider the effects of climate change on low flows in the future, a hydrologic model is required to simulate daily flow for 2011-2040. The IHACRES rainfall-runoff model was used for this purpose . After simulation of daily flow using IHACRES, with two time series of daily flow for the observation and future period in each of the sub catchment, the low flow indices were compared. Results Discussion: According to results, across the whole year, the monthly temperature in the future period has increased while rainfall scenarios show

  18. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    Science.gov (United States)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  19. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    Science.gov (United States)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify

  20. Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean

    Science.gov (United States)

    Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.

    2015-10-01

    The existance of a large Martian cryolitozone consisting of different cryogenic formations both on the surface- polar caps ice and in subsurface layer (and probably overcooled salt solutions in lower horizons) is conditioned mostly by the planet's geological history and atmosphere evolution. The very structure of the cryolitozone with its strongly pronounced zone character owing to drying up of 0 to 200 m thick surface layer in the equatorial latitudes ranging from + 30 to - 300 was formed in the course of long-periodic climatic variations and at present is distincly heterogeneous both depthward and in latitudinal and longtudinal dimensions. The dryed up region of Martian frozen rocks is estimated to have been developing during more than 3.5 bln years, so the upper layer boundary of permafrost can serve as a sort of indicator reflecting the course of Martian climatic evolution. Since the emount of surface moisture and its distribition character are conditioned by the cryolitozone scale structure its investigation is considered to be an important aspect of the forthcoming Martian projects. In order to create Martian climate and atmosphere circulation models the whole complex information on surface provided by optical and infrared ranges observations, regional albedo surface measurements, ground layer thermal flow investigations, etc. must be carefully studed. The investigation of permafrost formation global distribution and their appearance in h ≤1 m thick subsurface layer may be provided successfully by using active-passive microwave remote sensing techniques [1]. Along with optical and infrared observations the method of orbital panoramic microwave radiometry in centi- and decimeter ranges would contribute to the mapping of the cryolitozone global surface distribution. This proposal discusses methodical and experimental possibilities of this global observation of Martian cryolitozone as the additional way for investigation subsurface of Mars. The main idea of

  1. Evaluation of skill at simulating heatwave and heat-humidity indices in Global and Regional Climate Models

    Science.gov (United States)

    Goldie, J. K.; Alexander, L. V.; Lewis, S. C.; Sherwood, S. C.

    2017-12-01

    A wide body of literature now establishes the harm of extreme heat on human health, and work is now emerging on the projection of future health impacts. However, heat-health relationships vary across different populations (Gasparrini et al. 2015), so accurate simulation of regional climate is an important component of joint health impact projection. Here, we evaluate the ability of nine Global Climate Models (GCMs) from CMIP5 and the NARCliM Regional Climate Model to reproduce a selection of 15 health-relevant heatwave and heat-humidity indices over the historical period (1990-2005) using the Perkins skill score (Perkins et al. 2007) in five Australian cities. We explore the reasons for poor model skill, comparing these modelled distributions to both weather station observations and gridded reanalysis data. Finally, we show changes in the modelled distributions from the highest-performing models under RCP4.5 and RCP8.5 greenhouse gas scenarios and discuss the implications of simulated heat stress for future climate change adaptation. ReferencesGasparrini, Antonio, Yuming Guo, Masahiro Hashizume, Eric Lavigne, Antonella Zanobetti, Joel Schwartz, Aurelio Tobias, et al. "Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study." The Lancet 386, no. 9991 (July 31, 2015): 369-75. doi:10.1016/S0140-6736(14)62114-0. Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney. "Evaluation of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions." Journal of Climate 20, no. 17 (September 1, 2007): 4356-76. doi:10.1175/JCLI4253.1.

  2. Drastic shifts in the Levant hydroclimate during the last interglacial indicate changes in the tropical climate and winter storm tracks

    Science.gov (United States)

    Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.

    2017-12-01

    Marine Isotope Stage (MIS) 5e was a warm interglacial with where with significantly varying insolation and hence varied significantly throughout this time suggesting highly variable climate. The ICDP Dead Sea Deep Drilling Project recovered a 460m record of the past 220ka, reflecting the variable climate along MIS 5e. This time interval is reflected by alternating halite and detritus sequences, including 20m of halite-free detritus during the peak insolation at 125 ka. The Dead Sea salt budget indicates that the Levant climate was extremely arid when halite formed, reaching 20% of the present runoff. The halite-free detritus layer reflects increased precipitation to levels similar to present day, assuming similar spatial and temporal rainfall patterns. However, the 234U/238U activity ratio in the lake, reflected by authigenic minerals (aragonite, gypsum and halite), shifts from values of 1.5 (reflecting the Jordan River, the present main water source) down to 1.3 at 125-122ka during the MIS5e insolation peak and 1.0 at 118-116ka. The low 234U/238U reflects increased flash floods and eastern water sources (234U/238U 1.05-1.2) from the drier part of the watershed in the desert belt. The intermediate 234U/238U of 1.3 suggests that the Jordan River, fed from Mediterranean-sourced storm tracks, continued to flow along with an increase in southern and eastern water sources. NCAR CCSM3 climate model runs for 125ka indicate increases in both Summer and Winter precipitation. The drastic decrease to 234U/238U 1.0 occurs during the driest period, indicating a near shutdown of Jordan River flow, and water input only through flash floods and southern and eastern sources. The 120ka climate model runs shows a decrease in Winter and increase in Fall precipitation as a result of an increased precipitation in the tropics. The extreme aridity, associated with increased flooding is similar to patterns expected due to future warming. The increase in aridity is the result of expansion

  3. Insights from a synthesis of old and new climate-proxy data from the Pyramid and Winnemucca lake basins for the period 48 to 11.5 cal ka

    Science.gov (United States)

    Benson, Larry; Smoot, J.P.; Lund, S.P.; Mensing, S.A.; Foit, F.F.; Rye, R.O.

    2013-01-01

    A synthesis of old and new paleoclimatic data from the Pyramid and Winnemucca lake basins indicates that, between 48.0 and 11.5·103 calibrated years BP (hereafter ka), the climate of the western Great Basin was, to a degree, linked with the climate of the North Atlantic. Paleomagnetic secular variation (PSV) records from Pyramid Lake core PLC08-1 were tied to the GISP2 ice-core record via PSV matches to North Atlantic sediment cores whose isotopic and(or) carbonate records could be linked to the GISP2 δ18O record. Relatively dry intervals in the western Great Basin were associated with cold Heinrich events and relatively wet intervals were associated with warm Dansgaard-Oeschger (DO) oscillations. The association of western Great Basin dry events with North Atlantic cold events (and vice versa) switched sometime after the Laurentide Ice Sheet (LIS) reached its maximum extent. For example, the Lahontan highstand, which culminated at 15.5 ka, and a period of elevated lake level between 13.1 and 11.7 ka were associated with cold North Atlantic conditions, the latter period with the Youngest Dryas event. Relatively dry periods were associated with the Bølling and Allerød warm events. A large percentage of the LIS may have been lost to the North Atlantic during Heinrich events 1 and 2 and may have resulted in the repositioning of the Polar Jet Stream over North America. The Trego Hot Springs, Wono, Carson Sink, and Marble Bluff tephras found in core PLC08-1 have been assigned GISP2 calendar ages of respectively, 29.9, 33.7, 34.1, and 43.2 ka. Given its unique trace-element chemistry, the Carson Sink Bed is the same as Wilson Creek Ash 15 in the Mono Lake Basin. This implies that the Mono Lake magnetic excursion occurred at approximately 34 ka and it is not the Laschamp magnetic excursion. The entrance of the First Americans into the northern Great Basin is dated to approximately 14.4 ka, a time when the climate was relatively dry. Evidence for human occupation of

  4. Performance evaluation of Iranian cooling vest on the physiological indices in hot climatic chamber.

    Science.gov (United States)

    Dehghan, Habibollah; Gharehbaei, Somayeh; Mahaki, Behzad

    2016-01-01

    Heat stress is a threat to those who work in high temperatures. The purpose in this study was an examination of the cooling ability of Iranian phase change material (PCM) cold vest in hot and dry conditions in a climatic chamber. This experimental study was implemented on 12 male students (age 23.7 ± 2.8 years, weight 66.1 ± 11.4 kg, and VO2 max 2.53 L/min) in 2013. The heat strain score index (HSSI), skin temperature and oral temperature, and heartbeat in two phases with and without cooling vest was measured during 30 min in a climatic chamber (temperature 38.8 ± 1.3°C humidity ratio 32.9 ± 2.3%) and in two activity intensity of 2.4 and 4.8 km/h speed on the treadmill, and the data differences between groups "with" and "without" vest were tested by t-test and repeated measurement. The level of significance was considered as 0.05. The change in heartbeat at two activities, the oral temperature and heat strain score at 4.8 km/h, did not differ significantly between groups (with and without vest), as expected (P > 0.05). However, the change in skin temperature at two activities, oral temperature and heat strain score at 2.4 km/h, was significant between groups, as expected (P climate can affect the reduction of skin temperature, oral temperature, and HSSI in light activities.

  5. Multi-proxy studies in palaeolimnology

    OpenAIRE

    Birks, Hilary H.; Birks, Harry John Betteley

    2006-01-01

    Multi-proxy studies are becoming increasingly common in palaeolimnology. Eight basic requirements and challenges for a multi-proxy study are outlined in this essay – definition of research questions, leadership, site selection and coring, data storage, chronology, presentation of results, numerical tools, and data interpretation. The nature of proxy data is discussed in terms of physical proxies and biotic proxies. Loss-on-ignition changes and the use of transfer functions are reviewed as exa...

  6. Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Chishtie, Farrukh

    2018-03-01

    Assessment of future water availability from the Himalayan watersheds of Indus Basin (Jhelum, Kabul and upper Indus basin—UIB) is a growing concern for safeguarding the sustainable socioeconomic wellbeing downstream. This requires, before all, robust climate change information from the present-day state-of-the-art climate models. However, the robustness of climate change projections highly depends upon the fidelity of climate modeling experiments. Hence, this study assesses the fidelity of seven dynamically refined (0.44° ) experiments, performed under the framework of the coordinated regional climate downscaling experiment for South Asia (CX-SA), and additionally, their six coarse-resolution driving datasets participating in the coupled model intercomparison project phase 5 (CMIP5). We assess fidelity in terms of reproducibility of the observed climatology of temperature and precipitation, and the seasonality of the latter for the historical period (1971-2005). Based on the model fidelity results, we further assess the robustness or uncertainty of the far future climate (2061-2095), as projected under the extreme-end warming scenario of the representative concentration pathway (RCP) 8.5. Our results show that the CX-SA and their driving CMIP5 experiments consistently feature low fidelity in terms of the chosen skill metrics, suggesting substantial cold (6-10 ° C) and wet (up to 80%) biases and underestimation of observed precipitation seasonality. Surprisingly, the CX-SA are unable to outperform their driving datasets. Further, the biases of CX-SA and of their driving CMIP5 datasets are higher in magnitude than their projected changes under RCP8.5—and hence under less extreme RCPs—by the end of 21st century, indicating uncertain future climates for the Indus Basin watersheds. Higher inter-dataset disagreements of both CMIP5 and CX-SA for their simulated historical precipitation and for its projected changes reinforce uncertain future wet/dry conditions

  7. Climate-Driven or Human-Induced: Indicating Severe Water Scarcity in the Moulouya River Basin (Morocco

    Directory of Open Access Journals (Sweden)

    Vera Tekken

    2012-12-01

    Full Text Available Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m3 per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.

  8. Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales)

    Science.gov (United States)

    Bussi, Gianbattista; Whitehead, Paul G.; Thomas, Amy R. C.; Masante, Dario; Jones, Laurence; Jack Cosby, B.; Emmett, Bridget A.; Malham, Shelagh K.; Prudhomme, Christel; Prosser, Havard

    2017-10-01

    Water-borne pathogen contamination from untreated sewage effluent and runoff from farms is a serious threat to the use of river water for drinking and commercial purposes, such as downstream estuarine shellfish industries. In this study, the impact of climate change and land-use change on the presence of faecal indicator bacteria in freshwater was evaluated, through the use of a recently-developed catchment-scale pathogen model. The River Conwy in Wales has been used as a case-study, because of the large presence of livestock in the catchment and the importance of the shellfish harvesting activities in its estuary. The INCA-Pathogens catchment model has been calibrated through the use of a Monte-Carlo-based technique, based on faecal indicator bacteria measurements, and then driven by an ensemble of climate projections obtained from the HadRM3-PPE model (Future Flow Climate) plus four land-use scenarios (current land use, managed ecosystem, abandonment and agricultural intensification). The results show that climate change is not expected to have a very large impact on average river flow, although it might alter its seasonality. The abundance of faecal indicator bacteria is expected to decrease in response to climate change, especially during the summer months, due to reduced precipitation, causing reduced runoff, and increased temperature, which enhances the bacterial die-off processes. Land-use change can also have a potentially large impact on pathogens. The "managed ecosystems" scenario proposed in this study can cause a reduction of 15% in average water faecal indicator bacteria and up to 30% in the 90th percentile of water faecal indicator bacteria, mainly due to the conversion of pasture land into grassland and the expansion of forest land. This study provides an example of how to assess the impacts of human interventions on the landscape, and what may be the extent of their effects, for other catchments where the human use of the natural resources in the

  9. Cladocera from bottom deposits as an indicator of changes in climate and ecological conditions

    Science.gov (United States)

    Frolova, L. A.

    2018-01-01

    Diatoms, pollen, and remains of higher vegetation are used as indicator groups in paleoecological studies. Using certain groups of zoological indicators such as planktonic and benthic organisms (Ostracoda, Cladocera, Chironomidae) has recently become popular in paleolimnology and paleoecology. This study aims to estimate the possibilities, benefits, problems and prospects of Cladocera use in the composition of zoothanatocoenosis of lakes’ sediments as one of the biological indicators in paleoenvironmental studies and paleoreconstructions of abiotic conditions of the past.

  10. Recommendations for the regionalizing of coffee cultivation in Colombia: a methodological proposal based on agro-climatic indices.

    Science.gov (United States)

    García L, Juan Carlos; Posada-Suárez, Húver; Läderach, Peter

    2014-01-01

    The Colombian National Federation of Coffee Growers (FNC) conducted an agro-ecological zoning study based on climate, soil, and terrain of the Colombian coffee-growing regions (CCGR) located in the tropics, between 1° and 11.5° N, in areas of complex topography. To support this study, a climate baseline was constructed at a spatial resolution of 5 km. Twenty-one bioclimatic indicators were drawn from this baseline data and from yield data for different coffee genotypes evaluated under conditions at eight experimental stations (ESs) belonging to the National Center for Coffee Research (CENICAFÉ). Three topographic indicators were obtained from a digital elevation model (DEM). Zoning at a national level resulted in the differentiation of 12 agro-climatic zones. Altitude notably influenced zone differentiation, however other factors such as large air currents, low-pressure atmospheric systems, valleys of the great rivers, and physiography also played an important role. The strategy of zoning according to coffee-growing conditions will enable areas with the greatest potential for the development of coffee cultivation to be identified, criteria for future research to be generated, and the level of technology implementation to be assessed.

  11. Soil organic matter status in forest soils - possible indicators for climate change induced site shifts

    Science.gov (United States)

    Koch, Nadine; Thiele-Bruhn, Sören

    2010-05-01

    The quantity and quality of soil organic matter (SOM) and SOM pools and thus the soil properties related to carbon sequestration and water retention are not constant but exhibit considerable variation through changing climate. In total changes in soil fertility and an increase in plant stress are expected. This is relevant for northwest Europe as well and may have economic and social impacts since functions of forests for wood production, groundwater recharge, soil protection and recreation might be affected. The study is done by comparative investigation of selected sites at four watersheds that represent typical forest stands in the region of Luxembourg and South West Germany. The aim is to identify SOM storage and stability in forest soils and its dependence on site properties and interaction with tree stand conditions. According to state of the art fractionation schemes functional C pools in forest soils and their stabilization mechanisms are investigated. In particular, distribution patterns are determined depending on location, tree stand and climatic conditions. Aim is to identify characteristics of SOM stability through fractionation of SOM according to density, particle size and chemical extractability and their subsequent analytical characterization. So far, reasons about the origin, composition and stabilization mechanisms underlying the different SOM pools are not fully understood. Presented are different patterns of distribution of SOM in relation to land use and site conditions, as well as similarities and differences between the different forest soils and results in addition to passive OM pool, which is mainly responsible for long-term stabilization of carbon in soils. These are aligned with selected general' soil properties such as pH, CEC and texture.

  12. Qualitative and Quantitative Sentiment Proxies

    DEFF Research Database (Denmark)

    Zhao, Zeyan; Ahmad, Khurshid

    2015-01-01

    Sentiment analysis is a content-analytic investigative framework for researchers, traders and the general public involved in financial markets. This analysis is based on carefully sourced and elaborately constructed proxies for market sentiment and has emerged as a basis for analysing movements...

  13. Satellite Altimeters and Gravimeters as Proxy of the Indonesian Throughflow

    Science.gov (United States)

    Susanto, R. D.; Song, Y. T.

    2014-12-01

    The Indonesian Throughflow (ITF), the only pathway for interocean exchange between the Pacific to the Indian Ocean, plays an important role in global ocean circulation and climate. Yet, continuous ITF measurement is difficult and expensive. We demonstrate a plausible approach to derive the ITF transport proxy using satellite altimetry sea surface height (SSH), gravimetry ocean bottom pressure (OBP) data, in situ measurements from the Makassar Strait from 1996-1998 and 2004-2009, and a theoretical formulation. We first identified the optimal locations in the Pacific and Indian Ocean based on the optimal correlation between the ITF transport through the Makassar Strait and the pressure gradients, represented by the SSH and OBP differences between the Pacific and Indian Oceans at a 1° x 1° horizontal resolution. These geographical locations (centred at off-equatorial in the western Pacific Ocean and centred at along the equator in the eastern Indian Ocean) that control the strength and variability of the ITF transport in the Makassar Strait differ from early studies. The proxy time series follow the observation time series quite well, resolving the intraseasonal, monsoonal, and interannual signals with the 1993-2011 annual mean proxy transport of 11.6 ± 3.2 Sv. Our formulation provides a continuous approach to derive the ITF proxy as long as the satellite data are available. Such a continuous record would be difficult to achieve by in situ measurements alone due to logistical and financial challenges. Ideally, the proxy can be used to complement or fill in the gaps of the observations for a continuous ITF proxy for better understanding the ocean climate and validating ocean circulation models.

  14. A healthy turn in urban climate change policies; European city workshop proposes health indicators as policy integrators.

    Science.gov (United States)

    Keune, Hans; Ludlow, David; van den Hazel, Peter; Randall, Scott; Bartonova, Alena

    2012-06-28

    The EU FP6 HENVINET project reviewed the potential relevance of a focus on climate change related health effects for climate change policies at the city region level. This was undertaken by means of a workshop with both scientists, city representatives from several EU-countries, representatives of EU city networks and EU-experts. In this paper we introduce some important health related climate change issues, and discuss the current city policies of the participating cities. The workshop used a backcasting format to analyse the future relevance of a health perspective, and the main benefits and challenges this would bring to urban policy making. It was concluded that health issues have an important function as indicators of success for urban climate change policies, given the extent to which climate change policies contribute to public health and as such to quality of life. Simultaneously the health perspective may function as a policy integrator in that it can combine several related policy objectives, such as environmental policies, health policies, urban planning and economic development policies, in one framework for action. Furthermore, the participants to the workshop considered public health to be of strategic importance in organizing public support for climate change policies. One important conclusion of the workshop was the view that the connection of science and policy at the city level is inadequate, and that the integration of scientific knowledge on climate change related health effects and local policy practice is in need of more attention. In conclusion, the workshop was viewed as a constructive advance in the process of integration which hopefully will lead to ongoing cooperation. The workshop had the ambition to bring together a diversity of actor perspectives for exchange of knowledge and experiences, and joint understanding as a basis for future cooperation. Next to the complementarities in experience and knowledge, the mutual critical reflection

  15. Nonstationarity in the occurrence rate of floods in the Tarim River basin, China, and related impacts of climate indices

    Science.gov (United States)

    Gu, Xihui; Zhang, Qiang; Singh, Vijay P.; Chen, Xi; Liu, Lin

    2016-07-01

    Amplification of floods in the Xinjiang, China, has been observed, but reports on their changing properties and underlying mechanisms are not available. In this study, occurrence rates of floods in the Tarim River basin, the largest inland arid river basin in China, were analyzed using the Kernel density estimation technique and bootstrap resampling method. Also analyzed were the occurrence rates of precipitation extremes using the POT (Peak over Threshold)-based sampling method. Both stationary and non-stationary models were developed using GAMLSS (Generalized Additive Models for Location, Scale and Shape) to model flood frequency with time, climate index, precipitation and temperature as major predictors. Results indicated: (1) two periods with increasing occurrence of floods, i.e., the late 1960s and the late 1990s with considerable fluctuations around 2-3 flood events during time intervals between the late 1960s and the late 1990s; (2) changes in the occurrence rates of floods were subject to nonstationarity. A persistent increase of flood frequency and magnitude was observed during the 1990s and reached a peak value; (3) AMO (Atlantic Multidecadal Oscillation) and AO (Atlantic Oscillation) in winter were the key influencing climate indices impacting the occurrence rates of floods. However, NAO (North Atlantic Oscillation) and SOI (South Oscillation Index) are two principle factors that influence the occurrence rates of regional floods. The AIC (Akaike Information Criterion) values indicated that compared to the influence of climate indices, occurrence rates of floods seemed to be more sensitive to temperature and precipitation changes. Results of this study are important for flood management and development of mitigation measures.

  16. Stable carbon isotope fractionation in pollen of Atlas cedar: first steps towards a new palaeoecological proxy for Northwest Africa

    Science.gov (United States)

    Bell, Benjamin; Fletcher, William; Ryan, Peter; Grant, Helen; Ilmen, Rachid

    2016-04-01

    Analysis of stable carbon isotopes can provide information on climate and the environmental conditions at different growth stages of the plant, both past and present. Carbon isotope discrimination in plant tissue is already well understood, and can be used as a drought stress indicator for semi-arid regions. Stable carbon isotope ratios measured directly on pollen provides the potential for the development of long-term environmental proxies (spanning thousands of years), as pollen is well preserved in the environment. Atlas Cedar (Cedrus atlantica Endl. Manetti ex Carrière), is an ideal test case to develop a pollen stable carbon isotope proxy. The tree grows across a wide altitudinal and climatic range and is extremely sensitive to moisture availability. The pollen is abundant, and easily identifiable to the species level in pollen analysis because different cedar species are geographically confined to different regions of the world. In 2015 we sampled 76 individual cedar trees across latitudinal, altitudinal and environmental gradients, highly focused on the Middle Atlas region of Morocco, with 25 additional samples from botanical gardens across Europe and the US to extend these gradients. Here, we report new stable carbon isotope data from pollen, leaf and stem wood from these samples with a view to assessing and quantifying species-specific fractionation effects associated with pollen production. The isotopic response of individual trees at local and wider geographical scales to altitude and climatic conditions is presented. This research forms part of an ongoing PhD project working to develop and calibrate a modern carbon isotope proxy in Atlas cedar pollen, which can ultimately be applied to fossil sequences and complement existing multi-proxy records (e.g. pollen analysis in lake sediments, tree-rings).

  17. New Climatic Indicators for Improving Urban Sprawl: A Case Study of Tehran City

    Directory of Open Access Journals (Sweden)

    Ángel M. Costa

    2013-03-01

    Full Text Available In the modern world, the fine balance and delicate relationship between human society and the environment in which we exist has been affected by the phenomena of urbanisation and urban development. Today, various environmental factors give rise to horizontal dispersion, spread and growth of cities. One of the most important results of this is climatic change which is directly affected by the urban sprawl of every metropolis. The aim of this study is to identify the relationship between the various horizontally distributed components of Tehran city and changes in essential microclimate clusters, by means of the humidex index. Results showed that, when the humidex was calculated for each of the obtained clusters, it was evident that it had increased with time, in parallel with Shannon’s entropy, as a consequence of the average temperature and relative humidity of each cluster. At the same time, results have shown that both temperature and relative humidity of the study area are related with urban sprawl, urbanisation and development, as defined by Shannon’s entropy and, in consequence, with humidex. In consequence, this new concept must be considered in future research works to predict and control urban sprawl and microclimate conditions in cities.

  18. On the use of Standardized Drought Indices under decadal climate variability: Critical assessment and drought policy implications

    Science.gov (United States)

    Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J. L.

    2014-09-01

    Since the recent High Level Meeting on National Drought Policy held in Geneva in 2013, a greater concern about the creation and adaptation of national drought monitoring systems is expected. Consequently, backed by international recommendations, the use of Standardized Drought Indices (SDI), such as the Standardized Precipitation Index (SPI), as an operational basis of drought monitoring systems has been increasing in many parts of the world. Recommendations for the use of the SPI, and consequently, those indices that share its properties, do not take into account the limitations that this type of index can exhibit under the influence of multidecadal climate variability. These limitations are fundamentally related to the lack of consistency among the operational definition expressed by this type of index, the conceptual definition with which it is associated and the political definition it supports. Furthermore, the limitations found are not overcome by the recommendations for their application. This conclusion is supported by the long-term study of the Standardized Streamflow Index (SSI) in the arid north-central region of Chile, under the influence of multidecadal climate variability. The implications of the findings of the study are discussed with regard to their link to aspects of drought policy in the cases of Australia, the United States and Chile.

  19. Remotely-Sensed Urban Wet-Landscapes AN Indicator of Coupled Effects of Human Impact and Climate Change

    Science.gov (United States)

    Ji, Wei

    2016-06-01

    This study proposes the concept of urban wet-landscapes (loosely-defined wetlands) as against dry-landscapes (mainly impervious surfaces). The study is to examine whether the dynamics of urban wet-landscapes is a sensitive indicator of the coupled effects of the two major driving forces of urban landscape change - human built-up impact and climate (precipitation) variation. Using a series of satellite images, the study was conducted in the Kansas City metropolitan area of the United States. A rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. The spatial analyses of wetland changes were implemented at the scales of metropolitan, watershed, and sub-watershed as well as based on the size of surface water bodies in order to reveal urban wetland change trends in relation to the driving forces. The study identified that wet-landscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while smaller wetlands decreased mainly due to human development activities. These findings suggest that wet-landscapes, as against the dry-landscapes, can be a more effective indicator of the coupled effects of human impact and climate change.

  20. REMOTELY-SENSED URBAN WET-LANDSCAPES: AN INDICATOR OF COUPLED EFFECTS OF HUMAN IMPACT AND CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    W. Ji

    2016-06-01

    Full Text Available This study proposes the concept of urban wet-landscapes (loosely-defined wetlands as against dry-landscapes (mainly impervious surfaces. The study is to examine whether the dynamics of urban wet-landscapes is a sensitive indicator of the coupled effects of the two major driving forces of urban landscape change – human built-up impact and climate (precipitation variation. Using a series of satellite images, the study was conducted in the Kansas City metropolitan area of the United States. A rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. The spatial analyses of wetland changes were implemented at the scales of metropolitan, watershed, and sub-watershed as well as based on the size of surface water bodies in order to reveal urban wetland change trends in relation to the driving forces. The study identified that wet-landscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while smaller wetlands decreased mainly due to human development activities. These findings suggest that wet-landscapes, as against the dry-landscapes, can be a more effective indicator of the coupled effects of human impact and climate change.

  1. Inter-annual climate variability and zooplankton: applying teleconnection indices to two deep subalpine lakes in Italy

    Directory of Open Access Journals (Sweden)

    Marina Manca

    2014-08-01

    Full Text Available Investigating relation between meteo-climatic indices and between-year variation in Daphnia population density and phenology is crucial for e.g. predicting impact of climate change on lake ecosystem structure and functioning. We tested whether and how two teleconnection indices calculated for the winter period, namely the East Atlantic pattern (EADJF and the Eastern Mediterranean Pattern (EMPDJF were correlated with Daphnia population growth in two Italian subalpine lakes, Garda and Maggiore. We investigated between-lake temporal coherence in: i water temperature within the water layer in which Daphnia is distributed; ii timing of Daphnia initial and spring maximum population density peak and iii the level of Daphnia spring maximum population density peak over an eleven-year period (1998-2008 of unchanged predation pressure by fish and invertebrates, and of common oligotrophy. Between-lake temporal coherence was high for an earlier start, an earlier, and lower, Daphnia population spring density peak after milder winters. Peak density level was coherently, positively correlated with soluble reactive phosphorus (SRP concentration. We hypothesized that Daphnia peak densities were related to atmospheric modes of variability in winter and to the degree of late winter mixing promoting replenishment of algal nutrients into upper water layers and phytoplankton growth, enhancing food availability and Daphnia fecundity, promoting Daphnia peak. 

  2. Shareholder Activism through the Proxy Process

    NARCIS (Netherlands)

    Renneboog, L.D.R.; Szilagyi, P.G.

    2009-01-01

    This paper provides evidence on the corporate governance role of shareholderinitiated proxy proposals. Previous studies debate over whether activists use proxy proposals to discipline firms or to simply advance their self-serving agendas, and whether proxy proposals are effective at all in

  3. Shareholder Activism Through the Proxy Process

    NARCIS (Netherlands)

    Renneboog, L.D.R.; Szilagyi, P.G.

    2009-01-01

    This paper provides evidence on the corporate governance role of shareholder-initiated proxy proposals. Previous studies debate over whether activists use proxy proposals to discipline firms or to simply advance their self-serving agendas, and whether proxy proposals are effective at all in

  4. Tertiary climate records from arid areas as indicated by isotopic signature of alunite

    International Nuclear Information System (INIS)

    Arehart, G.B.

    1997-01-01

    Alunite (ideally KAl 3 (SO 4 ) 2 (OH) 6 ] is a relatively common mineral in some hydrothermal systems as well as in the weathering environment in arid regions. Because of its composition, alunite is an ideal mineral for use in stable isotopic studies of all types. In particular, there is little or no hydrogen isotope fractionation between alunite formed at surficial temperatures and water from which it forms. Therefore, the isotopic composition (delta D) of this mineral reflect the isotopic composition of meteoric waters at the time of deposition, which can in turn be utilised to infer paleoclimatic information. In addition, the presence of K (and its decay products) allows simple and accurate determination of absolute ages for mineral deposition making alunite one of very few paleoclimate indicators that is directly datable. (author)

  5. Trends in Extreme Climate Indices for Pará State, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa dos Santos

    Full Text Available Abstract The present study aimed to analyze trends in air temperature and rainfall for 13 locations in the state of Pará using nonparametric tests. Daily data of maximum and minimum air temperatures and precipitation covering the period 1970-2006, collected by the Instituto Nacional de Meteorologia (INMET have been used. From the results obtained it was observed that the number of warm days and nights per year has increased, thereby providing a significant reduction in the number of cool days and nights in the state. Due to the high space-time variability of precipitation, few localities showed statistically significant trends for indices of extremes dependent on this variable. The days and nights in Belém have been hotter in the last two decades. Therefore, these results are important for future planning of public health and energy for the state of Para, which must adapt to future warming scenarios sectors.

  6. Millennial-scale climate variability recorded by gamma logging curve in Chaidam Basin

    International Nuclear Information System (INIS)

    Yuan Linwang; Chen Ye; Liu Zechun

    2000-01-01

    Using a natural gamma-ray logging curve of Dacan-1 core to inverse paleo-climate changes in Chaidam Basin, the process of environmental change of the past 150,000 years has been revealed. He in rich events and D-O cycles were identified, and can be matched well with those recorded in Greedland ice core. It suggests that the GR curve can identify tectonic and climatic events, is a sensitive proxy indicator of environmental and climatic changes

  7. Detecting instabilities in tree-ring proxy calibration

    Directory of Open Access Journals (Sweden)

    H. Visser

    2010-06-01

    Full Text Available Evidence has been found for reduced sensitivity of tree growth to temperature in a number of forests at high northern latitudes and alpine locations. Furthermore, at some of these sites, emergent subpopulations of trees show negative growth trends with rising temperature. These findings are typically referred to as the "Divergence Problem" (DP. Given the high relevance of paleoclimatic reconstructions for policy-related studies, it is important for dendrochronologists to address this issue of potential model uncertainties associated with the DP. Here we address this issue by proposing a calibration technique, termed "stochastic response function" (SRF, which allows the presence or absence of any instabilities in growth response of trees (or any other climate proxy to their calibration target to be visualized and detected. Since this framework estimates confidence limits and subsequently provides statistical significance tests, the approach is also very well suited for proxy screening prior to the generation of a climate-reconstruction network.

    Two examples of tree growth/climate relationships are provided, one from the North American Arctic treeline and the other from the upper treeline in the European Alps. Instabilities were found to be present where stabilities were reported in the literature, and vice versa, stabilities were found where instabilities were reported. We advise to apply SRFs in future proxy-screening schemes, next to the use of correlations and RE/CE statistics. It will improve the strength of reconstruction hindcasts.

  8. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Science.gov (United States)

    López, J.; Francés, F.

    2013-08-01

    Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS). Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation) and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  9. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Directory of Open Access Journals (Sweden)

    J. López

    2013-08-01

    Full Text Available Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS. Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  10. Climate risk index for Italy

    Science.gov (United States)

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  11. Developing a proxy version of the Adult social care outcome toolkit (ASCOT).

    Science.gov (United States)

    Rand, Stacey; Caiels, James; Collins, Grace; Forder, Julien

    2017-05-19

    Social care-related quality of life is a key outcome indicator used in the evaluation of social care interventions and policy. It is not, however, always possible to collect quality of life data by self-report even with adaptations for people with cognitive or communication impairments. A new proxy-report version of the Adult Social Care Outcomes Toolkit (ASCOT) measure of social care-related quality of life was developed to address the issues of wider inclusion of people with cognitive or communication difficulties who may otherwise be systematically excluded. The development of the proxy-report ASCOT questionnaire was informed by literature review and earlier work that identified the key issues and challenges associated with proxy-reported outcomes. To evaluate the acceptability and content validity of the ASCOT-Proxy, qualitative cognitive interviews were conducted with unpaid carers or care workers of people with cognitive or communication impairments. The proxy respondents were invited to 'think aloud' while completing the questionnaire. Follow-up probes were asked to elicit further detail of the respondent's comprehension of the format, layout and content of each item and also how they weighed up the options to formulate a response. A total of 25 unpaid carers and care workers participated in three iterative rounds of cognitive interviews. The findings indicate that the items were well-understood and the concepts were consistent with the item definitions for the standard self-completion version of ASCOT with minor modifications to the draft ASCOT-Proxy. The ASCOT-Proxy allows respondents to rate the proxy-proxy and proxy-patient perspectives, which improved the acceptability of proxy report. A new proxy-report version of ASCOT was developed with evidence of its qualitative content validity and acceptability. The ASCOT-Proxy is ready for empirical testing of its suitability for data collection as a self-completion and/or interview questionnaire, and also

  12. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  13. TEX₈₆ paleothermometry : proxy validation and application in marine sediments

    NARCIS (Netherlands)

    Huguet, Carme

    2007-01-01

    Determination of past sea surface temperature (SST) is of primary importance for the reconstruction of natural climatic changes, modelling of climate and reconstruction of ocean circulation. Recently, a new SST proxy was introduced, the TetraEther indeX of lipids with 86 carbons (TEX₈₆), which is

  14. Measuring SIP proxy server performance

    CERN Document Server

    Subramanian, Sureshkumar V

    2013-01-01

    Internet Protocol (IP) telephony is an alternative to the traditional Public Switched Telephone Networks (PSTN), and the Session Initiation Protocol (SIP) is quickly becoming a popular signaling protocol for VoIP-based applications. SIP is a peer-to-peer multimedia signaling protocol standardized by the Internet Engineering Task Force (IETF), and it plays a vital role in providing IP telephony services through its use of the SIP Proxy Server (SPS), a software application that provides call routing services by parsing and forwarding all the incoming SIP packets in an IP telephony network.SIP Pr

  15. Appraising timing response of paleoenvironmental proxies to the Bond cycle in the western Mediterranean over the last 20 kyr

    Science.gov (United States)

    Rodrigo-Gámiz, Marta; Martínez-Ruiz, Francisca; Rodríguez-Tovar, Francisco J.; Pardo-Igúzquiza, Eulogio; Ortega-Huertas, Miguel

    2018-04-01

    The timing of climate responses to the Bond cycle is investigated in the western Mediterranean. Periodicities had been previously reported in a marine sediment record from this region spanning the last 20 kyr, and registered by diverse paleoenvironmental proxies, in particular those associated with terrigenous input, redox conditions, productivity, sea surface temperature (SST) and salinity. Further cross-spectral analyses on these time series reveal leads-lags in the 1400 year climate cycle. Considering as reference a terrigenous input proxy (the K/Al ratio), all the paleoenvironmental proxies displayed time shifts varying from ca. 700 year to ca. 350 year. SST and salinity variations show a first leaded response with the inflow of cold and less salty Atlantic waters. Followed by a time lead of 525 year, progresively arid conditions with an increase of eolian dust transport to the area, given by the Zr/Al signal, are observed. The intensification of dust transport could have triggered a latest biological response, lead by 350 year, with an increase of productivity, as suggested by the Ba/Al ratio. Lastly changes in the Mediterranean thermohaline circulation, indicated by a selected redox proxy (the U/Th ratio), are observed. These results support that the oceanic response triggered the atmospheric response to the Bond cycle in the western Mediterranean. Changes in the North Atlantic Oscillation mode and in the Inter-Tropical Convergence Zone migrations with variations in the monsoon activity or Saharan winds system, are considered as main forcing mechanisms, with a complex relationship of the involved phenomena.

  16. Using paleoclimate proxy-data to select an optimal realisation in an ensemble of simulations of the past millennium.

    NARCIS (Netherlands)

    Goosse, H.; Renssen, H.; Timmermann, A.; Bradley, R.S.; Mann, M.E.

    2006-01-01

    We present and describe in detail the advantages and limitations of a technique that combines in an optimal way model results and proxy-data time series in order to obtain states of the climate system consistent with model physics, reconstruction of past radiative forcing and proxy records. To

  17. Climate-related Indicators and Data Provenance: Evaluating Coupled Boundary Objects for Science, Innovation, and Decision-Making

    Science.gov (United States)

    Wiggins, A.; Young, A.; Brody, C.; Gerst, M.; Kenney, M. A.; Lamoureux, A.; Rice, A.; Wolfinger, F.

    2015-12-01

    Boundary object theory focuses on the role of artifacts, such as indicator images, in translation and communication across the boundaries of social groups. We use this framework for understanding how data can communicate across contexts to answer the question: Can coupling climate-related indicators with data provenance support scientific innovation and science translation? To address this question we conducted a study to understand the features and capabilities necessary for indicators and data provenance for scientific uses, using the recently online-released U.S. Global Change Research Program (USGCRP) Indicators and Global Change Information System (GCIS) as linked boundary objects. We conducted semi-structured interviews with professional researchers in which we asked the researchers to explore and describe what they observed that was useful or frustrating for a subset of the USGCRP Indicators, related GCIS content, and other similar indicator and metadata websites. Participants found these sites' navigation and the labeling and description of their assets frustrating and confusing, but were able to clearly articulate the metadata and provenance information they needed to both understand and trust the indicators. In addition to identifying desired features that are likely to be specific to this audience (e.g., references or citations for indicators), scientists wanted clear, easier-to-access provenance information of the type usually recommended for documenting research data. Notably, they felt the information would be best presented in a fashion accessible to a broader audience, as those with more technical expertise should be able to infer additional contextual details given the provenance information that they had identified as key. Such results are useful for the improvement of indicator systems, such as the prototype released by USGCRP. We note in particular that the consistency of responses across the multi-disciplinary sample, which included scholars in

  18. Understanding Climate Change Impacts in a Cholera Endemic Megacity: Disease Trends, Hydroclimatic Indicators and Near Future-Term Projections

    Science.gov (United States)

    Akanda, A. S. S.; Hasan, M. A.; Serman, E. A.; Jutla, A.; Huq, A.; Colwell, R. R.

    2015-12-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. While an endemic trend is getting stronger in the dry season, the post-monsoon season shows increased variability and is epidemic in nature. The pre-monsoon dry season is becoming the dominant cholera season of the year, followed by monsoon flood related propagation in later months of the year. Although the heavily populated and rapidly urbanizing Dhaka region has experienced noticeable shifts in pre monsoon temperature and precipitation patterns and subsequent monsoon variations, to date, there has not been any systematic study on linking the long-term disease trends with observed changes in hydroclimatic indicators. Here, we focus on the past 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings to develop projections for the next 30-year period. We focus on the dry and the wet season indicators individually, and develop trends of maximum rainfall intensity, lowest rainfall totals in the pre-monsoon period, number of consecutive dry days, number of wet days, and number of rainy days with greater than 500mm rainfall using a recently developed gridded data product - and compare with regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, and frequency of natural disasters. We then use a bias correction method to develop the next 30 years projections of CMIP5 Regional Climate Model outputs and impacts on cholera prevalence using a probabilistic forecasting approach.

  19. Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene

    Science.gov (United States)

    Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.

    2005-01-01

    Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.

  20. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  1. Framework for Probabilistic Projections of Energy-Relevant Streamflow Indicators under Climate Change Scenarios for the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, Thorsten [Univ. of Bristol (United Kingdom); Mann, Michael [Pennsylvania State Univ., State College, PA (United States); Crane, Robert [Pennsylvania State Univ., State College, PA (United States)

    2014-04-29

    This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach to establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.

  2. Evaluation of proxy-based millennial reconstruction methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Terry C.K.; Tsao, Min [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada); Zwiers, Francis W. [Environment Canada, Climate Research Division, Toronto, ON (Canada)

    2008-08-15

    A range of existing statistical approaches for reconstructing historical temperature variations from proxy data are compared using both climate model data and real-world paleoclimate proxy data. We also propose a new method for reconstruction that is based on a state-space time series model and Kalman filter algorithm. The state-space modelling approach and the recently developed RegEM method generally perform better than their competitors when reconstructing interannual variations in Northern Hemispheric mean surface air temperature. On the other hand, a variety of methods are seen to perform well when reconstructing surface air temperature variability on decadal time scales. An advantage of the new method is that it can incorporate additional, non-temperature, information into the reconstruction, such as the estimated response to external forcing, thereby permitting a simultaneous reconstruction and detection analysis as well as future projection. An application of these extensions is also demonstrated in the paper. (orig.)

  3. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    Science.gov (United States)

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  4. Drought Forecasting Using Adaptive Neuro-Fuzzy Inference Systems (ANFIS, Drought Time Series and Climate Indices For Next Coming Year, (Case Study: Zahedan

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinpour Niknam

    2012-07-01

    Full Text Available In this research in order to forecast drought for the next coming year in Zahedan, using previous Standardized Precipitation Index (SPI data and 19 other climate indices were used.  For this purpose Adaptive Neuro-Fuzzy Inference System (ANFIS was applied to build the predicting model and SPI drought index for drought quantity.  At first calculating correlation approach for analysis between droughts and climate indices was used and the most suitable indices were selected. In the next stage drought prediction for period of 12 months was done. Different combinations among input variables in ANFIS models were entered. SPI drought index was the output of the model.  The results showed that just using time series like the previous year drought SPI index in forecasting the 12 month drought was effective. However among all climate indices that were used, Nino4 showed the most suitable results.

  5. Skilled Health Personnel Attended Delivery as a Proxy Indicator for ...

    African Journals Online (AJOL)

    BACKGROUND: Several demographic and health surveys in Africa have shown the high prevalence of home delivery, but little is known how strongly skilled person unattended deliveries are associated with maternal and perinatal mortality. The aim of this review was to assess the gross correlation of maternal mortality ...

  6. Skilled Health Personnel Attended Delivery as a Proxy Indicator for ...

    African Journals Online (AJOL)

    for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality. 521 African Journals. Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free To Read Titles This Journal is Open Access. Featuring journals from 32 Countries: Algeria (5); Benin (2); Botswana ...

  7. Proxy indicators as measure of local economic dispositions in South ...

    African Journals Online (AJOL)

    for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality. 521 African Journals. Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free To Read Titles This Journal is Open Access. Featuring journals from 32 Countries: Algeria (5); Benin (2); Botswana ...

  8. WOOD CELLULAR DENDROCLIMATOLOGY: TESTING NEW PROXIES IN GREAT BASIN BRISTLECONE PINE

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2016-10-01

    Full Text Available Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013 time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g. lumen area; lumen diameter for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g. tracheid lumen area and radial lumen diameter showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell-wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e. lumen and cell diameter with monthly (i.e. March and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological

  9. To what extent are African Countries Vulnerable to climate change? Lessons from a new indicator of Physical Vulnerability to Climate Change

    OpenAIRE

    Patrick GUILLAUMONT; Catherine SIMONET

    2011-01-01

    This paper examines the vulnerability of African countries to climate change, for which they are not responsible. It is based on an index of structural or physical vulnerability to climate change at the country level, denominated below by the acronym PVCCI. This index has been created recently by the authors, and has been made available on the FERDI website. The design of this index draws both on the environmental literature, and some principles used by the United Nations to measure structura...

  10. Large increase in nest size linked to climate change: an indicator of life history, senescence and condition.

    Science.gov (United States)

    Møller, Anders Pape; Nielsen, Jan Tøttrup

    2015-11-01

    Many animals build extravagant nests that exceed the size required for successful reproduction. Large nests may signal the parenting ability of nest builders suggesting that nests may have a signaling function. In particular, many raptors build very large nests for their body size. We studied nest size in the goshawk Accipiter gentilis, which is a top predator throughout most of the Nearctic. Both males and females build nests, and males provision their females and offspring with food. Nest volume in the goshawk is almost three-fold larger than predicted from their body size. Nest size in the goshawk is highly variable and may reach more than 600 kg for a bird that weighs ca. 1 kg. While 8.5% of nests fell down, smaller nests fell down more often than large nests. There was a hump-shaped relationship between nest volume and female age, with a decline in nest volume late in life, as expected for senescence. Clutch size increased with nest volume. Nest volume increased during 1977-2014 in an accelerating fashion, linked to increasing spring temperature during April, when goshawks build and start reproduction. These findings are consistent with nest size being a reliable signal of parental ability, with large nest size signaling superior parenting ability and senescence, and also indicating climate warming.

  11. Psychosocial safety climate as a lead indicator of workplace bullying and harassment, job resources, psychological health and employee engagement.

    Science.gov (United States)

    Law, Rebecca; Dollard, Maureen F; Tuckey, Michelle R; Dormann, Christian

    2011-09-01

    Psychosocial safety climate (PSC) is defined as shared perceptions of organizational policies, practices and procedures for the protection of worker psychological health and safety, that stem largely from management practices. PSC theory extends the Job Demands-Resources (JD-R) framework and proposes that organizational level PSC determines work conditions and subsequently, psychological health problems and work engagement. Our sample was derived from the Australian Workplace Barometer project and comprised 30 organizations, and 220 employees. As expected, hierarchical linear modeling showed that organizational PSC was negatively associated with workplace bullying and harassment (demands) and in turn psychological health problems (health impairment path). PSC was also positively associated with work rewards (resources) and in turn work engagement (motivational path). Accordingly, we found that PSC triggered both the health impairment and motivational pathways, thus justifying extending the JD-R model in a multilevel way. Further we found that PSC, as an organization-based resource, moderated the positive relationship between bullying/harassment and psychological health problems, and the negative relationship between bullying/harassment and engagement. The findings provide evidence for a multilevel model of PSC as a lead indicator of workplace psychosocial hazards (high demands, low resources), psychological health and employee engagement, and as a potential moderator of psychosocial hazard effects. PSC is therefore an efficient target for primary and secondary intervention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Increasing Carbon Loss from Snow-Scoured Alpine Tundra in the Colorado Rocky Mountains: An Indicator of Climate Change?

    Science.gov (United States)

    Knowles, J. F.; Blanken, P.; Williams, M. W.; Lawrence, C. R.

    2015-12-01

    We used the eddy covariance method to continuously measure the net ecosystem exchange of carbon dioxide for seven years from a snow-scoured alpine tundra meadow on Niwot Ridge in Colorado, USA that may be underlain by sporadic permafrost. On average, the alpine tundra was a net annual source of 232 g C m-2 to the atmosphere, and the source strength of this ecosystem increased over the length of the seven year period due to both reduced carbon uptake during the growing season and increased respiration throughout the winter. To constrain the contribution of permafrost degradation to observed carbon emissions, we also measured the radiocarbon content of actively cycling, occluded, and mineral soil carbon pools across a meso-scale soil moisture and (possible) permafrost gradient within this meadow, as well as the seasonal radiocarbon content of soil respiration. These data suggest that wintertime soil respiration is limited to patches of wet meadow tundra that may be associated with permafrost. Furthermore, soil respiration from one of these locations indicates preferential turnover of a relatively slow cycling carbon pool during the winter. Given that summer air temperatures and positive degree days have been increasing on Niwot Ridge since the middle of the 20th century, this research suggests that an alpine tundra permafrost-respiration feedback to climate change, similar to that observed in arctic tundra ecosystems, may be currently underway.

  13. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  14. Climate Change Indicator for Hazard Identification of Indian North West Coast Marine Environment Using Synthetic Aperture Radar (sar)

    Science.gov (United States)

    Gambheer, Phani Raj

    2012-07-01

    Stormwater runoff, Petroleum Hydrocarbon plumes are found abundantly near coastal cities, coastal population settlements especially in developing nations as more than half the world's human population. Ever increasing coastal populations and development in coastal areas have led to increased loading of toxic substances, nutrients and pathogens. These hazards cause deleterious effects on the population in many ways directly or indirectly which lead to algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Hence these pollution hazards are important and the coastal administrations and people need to be aware of such a danger lurking very close to them. These hazards due to their small size, dynamic and episodic in nature are difficult to be visualized or to sample using in-situ traditional scientific methods. Natural obstructions like cloud cover and complex coastal circulations can hinder to detect and monitor such occurrences in the selected areas chosen for observations. This study takes recourse to Synthetic Aperture Radar (SAR) imagery because the pollution hazards are easily detectable as surfactants are deposited on the sea surface, along with nutrients and pathogens, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with surrounding ocean. These black spots can be termed as `Ecologic Indicator' and formed probably due to stronger thermal stratification, a deepening event of thermocline. SAR imagery that delivers useful data better than others regardless of darkness or cloud cover, should be made as an important observational tool for assessment and monitoring marine pollution hazards in the areas close to coastal regions. Till now the effects of climate change, sea level rise and global warming seems to have not affected the coastal populace of India in intrusions of sea water but it takes significance to the human health as the tides dominate these latitudes with bringing these polluted waters. KEY

  15. Clay Mineralogy and Crystallinity as a Climatic Indicator: Evidence for Both Cold and Temperate Conditions on Early Mars

    Science.gov (United States)

    Horgan, B.; Rutledge, A.; Rampe, E. B.

    2015-01-01

    Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.

  16. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Trnka, Miroslav; Holman, I. P.; Svobodová, Eva; Harrison, P. A.

    2015-01-01

    Roč. 128, 3-4 (2015), s. 169-186 ISSN 0165-0009 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : adaptation * design * climate change * Europe * global climate models Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.344, year: 2015

  17. A long-term multi-proxy record of varved sediments highlights climate-induced mixing-regime shift in a large hard-water lake ~5000 years ago

    Directory of Open Access Journals (Sweden)

    Walter Finsinger

    2014-06-01

    Full Text Available The long-term terrestrial and aquatic ecosystem dynamics spanning between approximately 6200 and 4800 cal BP were investigated using pollen, diatoms, pigments, charcoal, and geochemistry from varved sediments collected in a large stratified perialpine lake, Lago Grande di Avigliana, in the Italian Alps. Marked changes were detected in diatom and pigment assemblages and in sediment composition at ~4900 cal BP. Organic matter rapidly increased and diatom assemblages shifted from oligotrophic to oligo-mesotrophic planktonic assemblages suggesting that nutrients increased at that time. Because land cover, erosion, and fire frequency did not change significantly, external nutrient sources were possibly not essential in controlling the lake-ecosystem dynamics. This is also supported by redundancy analysis, which showed that variables explaining significant amounts of variance in the diatom data were not the ones related to changes in the catchment. Instead, the broad coincidence between the phytoplankton dynamics and rising lake-levels, cooler temperatures, and stronger spring winds in the northern Mediterranean borderlands possibly points to the effects of climate change on the nutrient recycling in the lake by means of the control that climate can exert on mixing depth. We hypothesize that the increased P-release rates and higher organic-matter accumulation rates, proceeded by enhanced precipitation of iron sulphides, were possibly caused by deeper and stronger mixing leading to enhanced input of nutrients from the anoxic hypolimnion into the epilimnion. Although we cannot completely rule out the influence of minor land-cover changes due to human activities, it may be hypothesized that climate-induced cumulative effects related to mixing regime and P-recycling from sediments influenced the aquatic-ecosystem dynamics.

  18. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    Science.gov (United States)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation

  19. A Multi-Proxy Paradigm in the Pursuit of Ocean Paleoredox

    Science.gov (United States)

    Anbar, A. D.; Duan, Y.; Kendall, B.; Reinhard, C.; Severmann, S.; Lyons, T. W.

    2011-12-01

    The geologic record provides abundant evidence for variations in ocean oxygenation throughout Earth history. Expansion of ocean anoxic zones is expected in the future as a consequence of global climate change, with attendant effects on global nutrient inventories, carbon cycling and fluxes of trace greenhouse gases to the atmosphere. Therefore, studying ancient ocean redox variations not only teaches us about the history of the Earth system, but also provides insights into how the system may respond to analogous human perturbations. However, the extent, duration, causes, and consequences of most past variations are poorly understood. This problem motivates the development of paleoredox proxies, including novel stable isotope systems such as Mo, Fe, U and Tl. Experience with these emerging isotope systems demonstrates great promise but also many challenges. The Mo isotope system is illustrative. To first order, the geochemical cycling and isotope systematics of this element are straightforward, making it a useful proxy. However, critical unresolved issues include: (a) uncertainties in the ocean inputs through time; (b) ambiguities about fractionation mechanisms; (c) inadequate understanding of how modern analogs map to ancient systems. Similar challenges confront all the novel isotope systems. The way forward requires integration of multiple isotopic proxies, as well as information gleaned from careful analyses of element concentrations. For example, an episode of Mo enrichment in the 2.5 Ga Mt. McRae Shale is generally interpreted as resulting from buildup of Mo in seawater due to oxidative weathering. This enrichment is therefore thought to indicate a "whiff" of O2 in the environment prior to the Great Oxidation Event that began at 2.4 Ga. Molybdenum isotopes are consistent with this interpretation. However, Mo enrichment due to enhanced input from low-T hydrothermal sources in an anoxic regime cannot be completely excluded given the current state of knowledge of

  20. Establishing a multi-proxy approach to alpine blockfield evolution in south-central Norway

    Directory of Open Access Journals (Sweden)

    Philipp Marr

    2017-11-01

    Full Text Available Blockfields in high latitude mountain areas are a wide spread proxy for glaciation history. Their origin is debated since decades, especially in south-central Norway, where glaciation had a major global climate implication. Some authors explain old blockfield features by protection of cold-based ice, others claim they persisted as nunataks during the LGM (~20 kyr, or were formed throughout the Holocene. In order to clarify the origin of alpine blockfields we established a multi-method approach to combining lichenometry, stratigraphy, granulometry, and geochemistry (XRD, XRF. Our lichenometric dating results in conjunction with our factors indicate landscape stability for at least ~12.5 kyr. Frequent climatic shifts are evident in our profiles by varying color, LOI content and grain sizes. On the basis of geochemical analyses we were able to identify a long-term (chemical weathering history and in situ blockfield formation. The field evidences and the climatic setting of the study area leave the possibility that our location was not covered by cold-based ice during the Late-Quaternary.

  1. 12 CFR 569.4 - Proxy soliciting material.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Proxy soliciting material. 569.4 Section 569.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY PROXIES § 569.4 Proxy soliciting material. No solicitation of a proxy shall be made by means of any statement, form of proxy...

  2. 12 CFR 569.2 - Form of proxies.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Form of proxies. 569.2 Section 569.2 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY PROXIES § 569.2 Form of proxies. Every form of proxy shall conform to the following requirements: (a) The proxy shall be revocable at will by...

  3. Heinrich event 4 characterized by terrestrial proxies in southwestern Europe

    Directory of Open Access Journals (Sweden)

    J. M. López-García

    2013-05-01

    Full Text Available Heinrich event 4 (H4 is well documented in the North Atlantic Ocean as a cooling event that occurred between 39 and 40 Ka. Deep-sea cores around the Iberian Peninsula coastline have been analysed to characterize the H4 event, but there are no data on the terrestrial response to this event. Here we present for the first time an analysis of terrestrial proxies for characterizing the H4 event, using the small-vertebrate assemblage (comprising small mammals, squamates and amphibians from Terrassa Riera dels Canyars, an archaeo-palaeontological deposit located on the seaboard of the northeastern Iberian Peninsula. This assemblage shows that the H4 event is characterized in northeastern Iberia by harsher and drier terrestrial conditions than today. Our results were compared with other proxies such as pollen, charcoal, phytolith, avifauna and large-mammal data available for this site, as well as with the general H4 event fluctuations and with other sites where H4 and the previous and subsequent Heinrich events (H5 and H3 have been detected in the Mediterranean and Atlantic regions of the Iberian Peninsula. We conclude that the terrestrial proxies follow the same patterns as the climatic and environmental conditions detected by the deep-sea cores at the Iberian margins.

  4. Modification of input datasets for the Ensemble Streamflow Prediction based on large scale climatic indices and weather generator

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Daňhelka, J.

    2015-01-01

    Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : seasonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015

  5. Simulating the Incorporation of Geochemical Proxies into Scleractinian Coral Skeletons: Effects of Different Environmental and Biological Factors and Implications for Paleo-reconstruction

    Science.gov (United States)

    Guo, W.

    2017-12-01

    Chemical and isotopic compositions of scleractinian coral skeletons reflect the physicochemical condition of the seawater in which corals grow. This makes coral skeleton one of the best archives of ocean climate and biogeochemical changes. A number of coral-based geochemical proxies have been developed and applied to reconstruct past seawater conditions, such as temperature, pH, carbonate chemistry and nutrient concentrations. Detailed laboratory and field-based studies of these proxies, however, indicate interpretation of the geochemistry of coral skeletons is not straightforward, due to the presence of `vital effects' and the variations of empirical proxy calibrations among and within different species. This poses challenges for the broad application of many geochemical proxies in corals, and highlights the need to better understand the fundamental processes governing the incorporation of different proxies. Here I present a numerical model that simulates the incorporation of a suite of geochemical proxies into coral skeletons, including δ11B, Mg/Ca, Sr/Ca, U/Ca, B/Ca and Ba/Ca. This model, building on previous theoretical studies of coral calcification, combines our current understanding of coral calcification mechanism with experimental constraints on the isotope and element partition during carbonate precipitation. It enables quantitative evaluation of the effects of different environmental and biological factors on each proxy. Specifically, this model shows that (1) the incorporation of every proxy is affected by multiple seawater parameters (e.g. temperature, pH, DIC) as opposed to one single parameter, and (2) biological factors, particularly the interplay between enzymatic alkalinity pumping and the exchange of coral calcifying fluid with external seawater, also exert significant controls. Based on these findings, I propose an inverse method for simultaneously reconstructing multiple seawater physicochemical parameters, and compare the performance of this

  6. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia.

    Science.gov (United States)

    Xu, Chongyang; Liu, Hongyan; Anenkhonov, Oleg A; Korolyuk, Andrey Yu; Sandanov, Denis V; Balsanova, Larisa D; Naidanov, Bulat B; Wu, Xiuchen

    2017-06-01

    Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long-term resilience of semiarid forests against climate change are limited. In this study, long-term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long-term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900-2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests. © 2016 John Wiley & Sons Ltd.

  7. Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene

    Science.gov (United States)

    Jacobs, P.; Dowsett, H. J.; de Mutsert, K.

    2017-12-01

    Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.

  8. Reconstructing Holocene climate using a climate model: Model strategy and preliminary results

    Science.gov (United States)

    Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.

    2009-04-01

    An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.

  9. Limiting exercise options: depending on a proxy may inhibit exercise self-management.

    Science.gov (United States)

    Shields, Christopher A; Brawley, Lawrence R

    2007-07-01

    We examined the influence of proxy-assistance on exercisers' social cognitions and behavior. Fifty-six fitness class participants reported preference for proxy-assistance and reacted to exercising in different contexts. A 2 (proxy-led vs self-managed exercise context) by 2 (preferred assistance) MANOVA revealed significant assistance by context interactions for self-regulatory efficacy (SRE) and difficulty. Regarding self-managed exercise, high-assistance individuals expressed lower SRE and higher difficulty. Chi-square analysis revealed that significantly fewer high-assistance participants chose self-managed exercise. A one-way MANOVA on preferred assistance indicated that high-assistance participants were less confident, satisfied and perceived their self-managed exercise as more difficult. Results support Bandura's theorizing that use of a proxy can limit SRE of those preferring the proxy's control of their behavior.

  10. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  11. Transparent Proxy for Secure E-Mail

    Science.gov (United States)

    Michalák, Juraj; Hudec, Ladislav

    2010-05-01

    The paper deals with the security of e-mail messages and e-mail server implementation by means of a transparent SMTP proxy. The security features include encryption and signing of transported messages. The goal is to design and implement a software proxy for secure e-mail including its monitoring, administration, encryption and signing keys administration. In particular, we focus on automatic public key on-the-fly encryption and signing of e-mail messages according to S/MIME standard by means of an embedded computer system whose function can be briefly described as a brouter with transparent SMTP proxy.

  12. Tropical Hydroclimate Change during Heinrich Stadial 1: An Integrative Proxy-Model Synthesis

    Science.gov (United States)

    Lawman, A. E.; Sun, T.; Shanahan, T. M.; Di Nezio, P. N.; Gomez, K.; Piatrunia, N.; Sun, C.; Wu, X.; Kageyama, M.; Merkel, U.; Otto-Bliesner, B. L.; Abe-Ouchi, A.; Lohmann, G.; Singarayer, J. S.

    2017-12-01

    We explore the response of tropical climate to abrupt cooling of the North Atlantic (NA) during Heinrich Stadial 1 (HS1) combining paleoclimate proxies with model simulations. A total of 146 published paleoclimate records from tropical locations are used to categorize whether HS1 was wetter, drier, or unchanged relative to a deglacial baseline state. Only records with sufficient resolution to resolve HS1 and sufficient length to characterize the deglacial trend are considered. This synthesis reveals large-scale patterns of hydroclimate change relative to glacial conditions, confirming previously reported weaker Indian summer monsoon, a wetter southern Africa, and drying over the Caribbean. Our synthesis also reveals large-scale drying over the Maritime continent as well as wetter conditions in northern Australia and southern tropical South America. Our reinterpretation of the available proxy data reveals far more complexity and uncertainties for equatorial East Africa, a region that appears to straddle a pattern of dryer conditions to the north and wetter conditions to the south. Overall, these patterns of hydroclimate change depart from a southward shift of the Inter Tropical Convergence Zone (ITCZ), particularly outside the tropical Atlantic. We explore mechanisms driving these changes using a multi-model ensemble of "hosing" simulations performed relative to glacial conditions. The models show robust weakening of the Afro-Asian Monsoon, which we attribute to ventilation of colder mid-latitude air. Not all models simulate the remaining patterns inferred from the proxy data. The best-agreeing models indicate that cooling over the tropical NA and the Caribbean may be essential to communicate the response to the global tropics. This response can induce warming over the tropical South Atlantic via the wind-evaporation-SST feedback, driving wetter conditions in South Africa and tropical South America. Cooling over the Caribbean is communicated to the Pacific over the

  13. Vertebrates population response to the climatic change - pertinence of the environmental indicators and influence of the demographic strategies and consequences for the biodiversity dynamic

    International Nuclear Information System (INIS)

    Weimerskirch, H.

    2007-01-01

    There is a growing interest and major challenge to understand the way environmental variability and climatic change have affected and will affect ecosystems and populations. Long-term records of population parameters of vertebrates are rare, but invaluable to address this challenge. The network CLIMPOP brings together French researchers working with long term data collected on individually marked animals to study the effects of climate change on a range of vertebrate populations (reptiles, birds and mammals) and standardised methods to link climatic factors and demographic parameters. The funding from GICC-IFB has allowed the CLIMPOP group to hire a post doc bridging methodologists and ecologists, organize a workshop and support field studies. Several analyses on a series of vertebrates have been carried out on the link between large-scale and small-scale climatic factors and population dynamics. In addition the CLIMPOP group has carried out a major methodological paper reviewing statistical models and procedures to study the influence of climate on vital rates based on the analysis of individual monitoring data, to identify potential pitfalls in the utilization of these models and procedures, to review published papers in which the influence of climatic variation on survival probability in vertebrate populations has been addressed, to evaluate whether the results from these studies are relevant and to draw practical recommendations to efficiently address effects of climate effects on vital rates in natural vertebrate populations. This evaluation raised six potential methodological issues and indicates that so far most of the studies found in the ecological literature can be considered as being useful for the purpose of generating hypothesis rather than for that of obtaining solid evidence for the impact of climatic factors on vital rates. (author)

  14. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    Science.gov (United States)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  15. Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium

    Science.gov (United States)

    Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.

    2008-12-01

    The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.

  16. RESPONSE OF THREE PALEO-PRIMARY PRODUCTION PROXY MEASURES TO DEVELOPMENT OF AN URBAN ESTUARY

    Science.gov (United States)

    In this study we present a novel comparison of three proxy indicators of paleoproductivity, pigments, biogenic silica (BSi), and cysts of autotrophic dinoflagellates measured in cored sediments from New Bedford Harbor, Massachusetts. In addition to detailed historical reports we ...

  17. 350 Year Cloud Reconstruction Deduced from Northeast Caribbean Coral Proxies

    Science.gov (United States)

    Winter, A.; Sammarco, P. W.; Mikolajewicz, U.; Jury, M.; Zanchettin, D.

    2014-12-01

    Clouds are a major factor influencing the global climate and its response to external forcing through their implications for the global hydrological cycle, and hence for the planetary radiative budget. Clouds also contribute to regional climates and their variability through, e.g., the changes they induce in regional precipitation patterns. There have been very few studies of decadal and longer-term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data are too short to unambiguously discern any temporal trends in cloud cover. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Skeletons of scleractinian corals are considered to provide among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, d13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover for the northeastern Caribbean region. Using this proxy we have been able to

  18. Robotic Vehicle Proxy Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes the development of a digital simulation that can replace robotic vehicles in field studies. This proxy simulation will model the...

  19. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    OpenAIRE

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index ( ) with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS...

  20. Geology and climatic indicators in the Westphalian A New Glasgow formation, Nova Scotia, Canada: implications for the genesis of coal and of sandstone-hosted lead deposits

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, F.W. [Geological Survey of Canada, Ottawa, ON (Canada)

    1998-03-01

    Disagreement exists on whether the early Pennsylvanian climate of the Euramerican coal province was everwet or seasonal. Abundant paleopedological evidence, including calcrete-bearing vertisols, shows that during formation of Westphalian C to Stephanian coals in Nova Scotia, the climate was tropical and seasonal with a pronounced by dry season; but interpretation of Westphalian A-B coal-bearing sequences lacks this form of evidence. Development of calcrete-bearing vertisols in alluvial fan deposits of the Westphalian A New Glasgow formation indicate that a tropical climate with a pronounced dry season was already in force by early Westphalian time. During the dry season, the coal swamps of the early Westphalian Joggins and Springhill Mines formations were fed by groundwater from coeval alluvial fan deposits of the Polly Brook Formation at the basin margin. Sedimentological evidence indicates that, similarly, groundwater flowed northward from the toe of the New Glasgow alluvial fan, but correlative palustrine sediments have not been found on land in the New Glasgow area. The possibility remains of an early Westphalian coalfield associated with the New Glasgow formation to the north under the Northumberland Strait and Gulf of St. Lawrence. Formation of the Yava sandstone-hosted lead deposit in the fluvial Silver Mine Formation of Cape Breton Island, a stratigraphic equivalent of the Cumberland Basin coal swamps, indicates that such deposits can form in fluvial strata deposited under a tropical seasonal climate with a pronounced dry season.

  1. Calibration and application of the branched GDGT temperature proxy on East African lake sediments

    NARCIS (Netherlands)

    Loomis, S.E.; Russell, J.M.; Ladd, B.; Street-Perrott, F.A.; Sinninghe Damsté, J.S.

    2012-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a novel proxy for mean annual air temperature (MAAT) and have the potential to be broadly applicable to climate reconstruction using lacustrine sediments. Several calibrations have been put forth relating brGDGT distributions to MAAT using

  2. Calibration and application of the branched GDGT proxy on East African lake sediments

    NARCIS (Netherlands)

    Loomis, S.E.; Russell, J.M.; Ladd, B.; Street-Perrott, F.A.; Sinninghe Damsté, J.S.

    2012-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a novel proxy for mean annual air temperature (MAAT) and have the potential to be broadly applicable to climate reconstruction using lacustrine sediments. Several calibrations have been put forth relating brGDGT distributions to MAAT using

  3. Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar

    NARCIS (Netherlands)

    Grove, C.A.; Zinke, J.; Scheufen, T.; Maina, J.; Epping, E.; Boer, W.; Randriamanantsoa, B.; Brummer, G.-J.A.

    2012-01-01

    Coral cores provide vital climate reconstructions for site-specific temporal variability in river flow and sediment load. Yet, their ability to record spatial differences across multiple catchments is relatively unknown. Here, we investigate spatial linkages between four coral proxies of terrestrial

  4. Web proxy auto discovery for the WLCG

    CERN Document Server

    Dykstra, D; Blumenfeld, B; De Salvo, A; Dewhurst, A; Verguilov, V

    2017-01-01

    All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily support that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids regis...

  5. Modification of input datasets for the Ensemble Streamflow Prediction based on large scale climatic indices and weather generator

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Daňhelka, J.

    2015-01-01

    Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : sea sonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015

  6. Comparison and statistical analysis of long-term overheating indices applied on energy renovated dwellings in temperate climates

    DEFF Research Database (Denmark)

    Psomas, Theofanis Ch.; Heiselberg, Per Kvols; Duer, Karsten

    2018-01-01

    -running’ representative dwellings and characteristic climatic conditions of central Europe (Denmark, United Kingdom, Austria and France). Different renovation steps and passive cooling strategies were applied on these case studies creating 66 variants for comfort assessment. The analyses were conducted with the use...

  7. Ethnographic context and spatial coherence of climate indicators for farming communities – A multi-regional comparative assessment

    Directory of Open Access Journals (Sweden)

    Vincent Moron

    2015-01-01

    The ethnographic surveys, as well as yield–climate functions, emphasized the role played by various intra-seasonal characteristics of the rainy seasons beyond the seasonal rainfall amounts, in both actual yields and people’s representations and/or crop management strategies. For instance, the onset of the rainy season in East Africa and North Cameroon, the season duration in the driest district of the eastern slopes of Mount Kenya, or rains at the core (August and at the end of the rainy season in North Cameroon have been highlighted. The dynamics of farming systems (i.e. soybeanization in Central Argentina, increasing popularity of maize in East Africa, recent decline of cotton in North Cameroon were also emphasized as active drivers; these slow changes could increase climatic vulnerability (i.e. soybean is far more sensitive to rainfall variations than wheat, maize is less drought-resistant than sorghum or millet, at least for the least flexible actors (such as the non-capitalized farmers in Central Argentina. The cross between ethnographic surveys and climatic analyses enabled us to identify climate variables that are both useful to farmers and potentially predictable. These variables do not appear to be common across the surveyed fields. The best example is the rainy season onset date whose variations, depending on regions, crop species and farming practices may either have a major/minor role in crop performance and/or crop management, or may have a high/low potential predictability.

  8. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    Science.gov (United States)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-01-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300–500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in

  9. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    Science.gov (United States)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-02-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300-500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and

  10. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  11. Validation and application of a death proxy in adult cancer patients.

    Science.gov (United States)

    Mealing, Nicole M; Dobbins, Timothy A; Pearson, Sallie-Anne

    2012-07-01

    PURPOSE: Fact of death is not always available on data sets used for pharmacoepidemiological research. Proxies may be an appropriate substitute in the absence of death data. The purposes of this study were to validate a proxy for death in adult cancer patients and to assess its performance when estimating survival in two cohorts of cancer patients. METHODS: We evaluated 30-, 60-, 90- and 180-day proxies overall and by cancer type using data from 12 394 Australian veterans with lung, colorectal, breast or prostate cancer. The proxy indicated death if the difference between the last dispensing record and the end of the observational period exceeded the proxy cutoff. We then compared actual survival to 90-day proxy estimates in a subset of 4090 veterans with 'full entitlements' for pharmaceutical items and in 3704 Australian women receiving trastuzumab for HER2+ metastatic breast cancer. RESULTS: The 90-day proxy was optimal with an overall sensitivity of 99.3% (95%CI: 98.4-99.7) and a specificity of 97.6% (95%CI: 91.8-99.4). These measures remained high when evaluated by cancer type and spread of disease. The application of the proxy using the most conservative date of death estimate (date of last dispensing) generally underestimated survival, with estimates up to 3 months shorter than survival based on fact of death. CONCLUSIONS: A 90-day death proxy is a robust substitute to identify death in a chronic population when fact of death is not available. The proxy is likely to be valid across a range of chronic diseases as it relies on the presence of 'regular' dispensing records for individual patients. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Understanding the Cognitive and Affective Mechanisms that Underlie Proxy Risk Perceptions among Caregivers of Asthmatic Children.

    Science.gov (United States)

    Shepperd, James A; Lipsey, Nikolette P; Pachur, Thorsten; Waters, Erika A

    2018-07-01

    Medical decisions made on behalf of another person-particularly those made by adult caregivers for their minor children-are often informed by the decision maker's beliefs about the treatment's risks and benefits. However, we know little about the cognitive and affective mechanisms influencing such "proxy" risk perceptions and about how proxy risk perceptions are related to prominent judgment phenomena. Adult caregivers of minor children with asthma ( N = 132) completed an online, cross-sectional survey assessing 1) cognitions and affects that form the basis of the availability, representativeness, and affect heuristics; 2) endorsement of the absent-exempt and the better-than-average effect; and 3) proxy perceived risk and unrealistic comparative optimism of an asthma exacerbation. We used the Pediatric Asthma Control and Communication Instrument (PACCI) to assess asthma severity. Respondents with higher scores on availability, representativeness, and negative affect indicated higher proxy risk perceptions and (for representativeness only) lower unrealistic optimism, irrespective of asthma severity. Conversely, respondents who showed a stronger display of the better-than-average effect indicated lower proxy risk perceptions but did not differ in unrealistic optimism. The absent-exempt effect was unrelated to proxy risk perceptions and unrealistic optimism. Heuristic judgment processes appear to contribute to caregivers' proxy risk perceptions of their child's asthma exacerbation risk. Moreover, the display of other, possibly erroneous, judgment phenomena is associated with lower caregiver risk perceptions. Designing interventions that target these mechanisms may help caregivers work with their children to reduce exacerbation risk.

  13. [Establishment of policy indicators of adaptation to the impact of climate change on the transmission of schistosomiasis and malaria in China].

    Science.gov (United States)

    Qian, Ying-Jun; Li, Shi-Zhu; Xu, Jun-Fang; Zhang, Li; Fu, Qing; Zhou, Xiao-Nong

    2013-12-01

    To set up a framework of indicators for schistosomiasis and malaria to guide the formulation and evaluation of vector-borne disease control policies focusing on adaptation to the negative impact of climate change. A 2-level indicator framework was set up on the basis of literature review, and Delphi method was applied to a total of 22 and 19 experts working on schistosomiasis and malaria, respectively. The result was analyzed to calculate the weight of various indicators. A total of 41 questionnaires was delivered, and 38 with valid response (92.7%). The system included 4 indicators at first level, i.e. surveillance, scientific research, disease control and intervention, and adaptation capacity building, with 25 indicators for schistosomiasis and 21 for malaria at the second level. Among indicators at the first level, disease surveillance ranked first with a weight of 0.32. Among the indicators at the second level, vector monitoring scored the highest in terms of both schistosomiasis and malaria. The indicators set up by Delphi method are practical,universal and effective ones using in the field, which is also useful to technically support the establishment of adaptation to climate change in the field of public health.

  14. Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region

    Science.gov (United States)

    Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin

    2018-05-01

    Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.

  15. Reconstruction of late Quaternary marine and terrestrial environmental conditions of Northwest Africa and Southeast Australia : a multiple organic proxy study using marine sediments

    NARCIS (Netherlands)

    Alfama Lopes dos Santos, R.

    2012-01-01

    NW Africa and SE Australia are regions which are particularly vulnerable to climate change. In this thesis, organic proxies are used from marine sediment cores to reconstruct past environmental conditions from these areas. In sediments from NW Africa, the UK'37 showed an efficient proxy for sea

  16. New insights into deglacial climate variability in tropical South America from molecular fossil and isotopic indicators in Lake Titicaca

    Science.gov (United States)

    Shanahan, T. M.; Hughen, K. A.; Fornace, K.; Baker, P. A.; Fritz, S. C.

    2010-12-01

    As one of the main centers of tropical convection, the South American Altiplano plays a crucial role in the long-term climate variability of South America. However, both the timing and the drivers of climate variability on orbital to millennial timescales remain poorly understood for this region. New data from molecular fossil (e.g., TEX86) and compound specific hydrogen isotope (D/H) analyses provide new insights into the climate evolution of this region over the last ~50 kyr. TEX86 temperature reconstructions suggest that the Altiplano warmed as early as 19- 21 kyr ago and proceeded rapidly, consistent with published evidence for an early retreat of LGM glaciers at this time at some locations. The early warming signal observed at Lake Titicaca also appears to be synchronous with continental temperature reconstructions at some sites in tropical Africa, but leads tropical SST changes by several thousands of years. Although the initiation of warming coincided with the peak in southern hemisphere summer insolation, subsequent temperature increases were accompanied by decreases in southern hemisphere insolation, suggesting a northern hemisphere driver for temperature changes in tropical South America. Preliminary D/H ratios from leaf waxes appear to support existing data suggesting that wet conditions prevailed until the late glacial/early Holocene and are broadly consistent with local southern hemisphere summer insolation forcing of the summer monsoon. These data suggest that temperature and precipitation changes during the last deglaciation were decoupled and that both local and extratropical drivers are important for controlling climate change in this region on orbital timescales.

  17. Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects

    Science.gov (United States)

    C.W. Woodall; G.C. Liknes

    2008-01-01

    Coarse and fine woody materials (CWD and FWD) are substantial forest ecosystem carbon (C) stocks. There is a lack of understanding how these detritus C stocks may respond to climate change. This study used a nation-wide inventory of CWD and FWD in the United States to examine how these C stocks vary by latitude. Results indicate that the highest CWD and FWD C stocks...

  18. Reconstructing palaeo-environmental conditions in the Baltic: A multi-proxy comparison from IODP Site M0059 (Little Belt)

    Science.gov (United States)

    Kotthoff, Ulrich; Andrén, Thomas; Bauersachs, Thorsten; Fanget, Anne-Sophie; Granoszewski, Wojciech; Groeneveld, Jeroen; Krupinski, Nadine; Peyron, Odile; Stepanova, Anna; Cotterill, Carol

    2015-04-01

    Some of the largest marine environmental impacts from ongoing global climate change are occurring in continental shelf seas and enclosed basins, including severe oxygen depletion, intensifying stratification, and increasing temperatures. In order to predict future changes in water mass conditions, it is essential to reconstruct how these conditions have changed in the past. The brackish Baltic Sea is one of the largest semi-enclosed basins worldwide, and hence provides a unique opportunity to analyse past changes. IODP Expedition 347 recovered a unique set of long sediment cores from the Baltic Sea Basin which allow new high-resolution reconstructions. The application of existing and development of new proxies in such a setting is complicated, as environmental changes often occur on much faster time scales with much larger variations. Therefore, we present a comparison of commonly used proxies to reconstruct palaeoecosystems, -temperatures, and -salinity from IODP Site M0059 in the Little Belt. The age model for Site M0059 is based on 14C dating and biostratigraphic correlation with neighbouring terrestrial pollen records. The aim of our study is to reconstruct the development of the terrestrial and marine ecosystems in the research area and the related environmental conditions, and to identify potential limitations for specific proxies. Pollen is used as proxy for vegetation development in the hinterland of the southern Baltic Sea and as land/air-temperature proxies. By comparison with dinoflagellate cysts and green algae remains from the same samples, a direct land-sea comparison is provided. The application of the modern analogues technique to pollen assemblages has previously yielded precise results for late Pleistocene and Holocene datasets including specific information on seasonality, but pollen-based reconstructions for Northern Europe may be hampered by plant migration effects. Chironomid remains are used where possible as indicators for surface water

  19. 12 CFR 569.3 - Holders of proxies.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Holders of proxies. 569.3 Section 569.3 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY PROXIES § 569.3 Holders of proxies. No proxy of a mutual savings association with a term greater than eleven months or solicited at...

  20. Simulated Extreme Prepitation Indices over Northeast Brasil in Current Climate and Future Scenarios RCP4.5 and RCP8.5

    Science.gov (United States)

    Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco

    2013-04-01

    In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends

  1. Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies

    Directory of Open Access Journals (Sweden)

    K. Grosfeld

    2007-01-01

    Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.

  2. Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies

    Directory of Open Access Journals (Sweden)

    L. Jonkers

    2017-06-01

    Full Text Available The composition of planktonic foraminiferal (PF calcite is routinely used to reconstruct climate variability. However, PF ecology leaves a large imprint on the proxy signal: seasonal and vertical habitats of PF species vary spatially, causing variable offsets from annual mean surface conditions recorded by sedimentary assemblages. PF seasonality changes with temperature in a way that minimises the environmental change that individual species experience and it is not unlikely that changes in depth habitat also result from such habitat tracking. While this behaviour could lead to an underestimation of spatial or temporal trends as well as of variability in proxy records, most palaeoceanographic studies are (implicitly based on the assumption of a constant habitat. Up to now, the effect of habitat tracking on foraminifera proxy records has not yet been formally quantified on a global scale. Here we attempt to characterise this effect on the amplitude of environmental change recorded in sedimentary PF using core top δ18O data from six species. We find that the offset from mean annual near-surface δ18O values varies with temperature, with PF δ18O indicating warmer than mean conditions in colder waters (on average by −0.1 ‰ (equivalent to 0.4 °C per °C, thus providing a first-order quantification of the degree of underestimation due to habitat tracking. We use an empirical model to estimate the contribution of seasonality to the observed difference between PF and annual mean δ18O and use the residual Δδ18O to assess trends in calcification depth. Our analysis indicates that given an observation-based model parametrisation calcification depth increases with temperature in all species and sensitivity analysis suggests that a temperature-related seasonal habitat adjustment is essential to explain the observed isotope signal. Habitat tracking can thus lead to a significant reduction in the amplitude of recorded environmental change

  3. Spatial and temporal Teleconnections of Sea Surface Temperature and Ocean Indices to regional Climate Variations across Thailand - a Pathway to understanding the Impact of Climate Change on Water Resources

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred

    2010-05-01

    Thailand has a long coastline with the Pacific Ocean, as part of the Gulf of Thailand, as well as with the Indian Ocean, as part of the Andaman Sea. Because of this peculiar location, Thailand's local climate and, in particular, its water resources are strongly influenced by the mix of tropical wet, tropical dry and tropical monsoon seasons. Because of the large seasonal and interannual variations and irregularities of these, mainly ocean-driven weather patterns, particularly in recent times, large-scale water storage in huge river-fed reservoirs has a long tradition in Thailand, providing water for urban, industrial and agricultural use during long dry seasonal periods. These reservoirs which are located all over Thailand gather water primarily from monsoon-driven rainfall during the wet season which, usually, lasts from May to October. During the dry season, November to April, when the monsoon winds move northward, the air masses are drier in central and northern Thailand, with rain falling here only a few days in a month. Southern Thailand, on the other hand, which is constituted mostly by the isthmus between the two oceans, stays even hot and humid during that time period. Because of this tropical climate pattern, the surface water resources in most of Thailand strongly hinge on the monsoon movements which, in turn, depend themselves upon the thermal states of the Pacific and Indian Oceans. Therefore, the understanding of the recent strong seasonal and interannual climate variations with their detrimental effects on the availability of hydrological water resources in most parts of Thailand, must include the analysis of changes of various sea-state indices in the adjacent oceans and of their possible teleconnections with regional climate indices across this country. With the modern coupled atmospheric-ocean models being able to predict the variations of many ocean indices over a period of several months, namely, those driven by El Nino- Southern Oscillations

  4. Applying Least Absolute Shrinkage Selection Operator and Akaike Information Criterion Analysis to Find the Best Multiple Linear Regression Models between Climate Indices and Components of Cow's Milk.

    Science.gov (United States)

    Marami Milani, Mohammad Reza; Hense, Andreas; Rahmani, Elham; Ploeger, Angelika

    2016-07-23

    This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new ), and respiratory rate predictor RRP) with three main components of cow's milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p -value < 0.001 and R ² (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation ( p -value < 0.001) with R ² (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.

  5. Fighting terrorism in Africa by proxy

    DEFF Research Database (Denmark)

    Olsen, Gorm Rye

    2014-01-01

    The French intervention in Mali in early 2013 emphasizes that the decision-makers in Paris, Brussels, and Washington considered the establishment of the radical Islamist regime in Northern Mali a threat to their security interests. The widespread instability including the rise of radical Islamist...... groups in Somalia was perceived as a threat to western interests. It is the core argument of the paper if western powers decide to provide security in Africa, they will be inclined to use proxy instead of deploying own troops. Security provision by proxy in African means that African troops are doing...

  6. Web Proxy Auto Discovery for the WLCG

    Science.gov (United States)

    Dykstra, D.; Blomer, J.; Blumenfeld, B.; De Salvo, A.; Dewhurst, A.; Verguilov, V.

    2017-10-01

    All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily support that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids registered in the ATLAS Grid Information System (AGIS) and CMS SITECONF files, cross-checked with squids registered by sites in the Grid Configuration Database (GOCDB) and the OSG Information Management (OIM) system, and combined with some exceptions manually configured by people from ATLAS and CMS who operate WLCG Squid monitoring. WPAD servers at CERN respond to http requests from grid nodes all over the world with a PAC file that lists available web proxies, based on IP addresses matched from a database that contains the IP address ranges registered to organizations. Large grid sites are encouraged to supply their own WPAD web servers for more flexibility, to avoid being affected by short term long distance network outages, and to offload the WLCG WPAD servers at CERN. The CERN WPAD servers additionally support requests from jobs running at non-grid sites (particularly for LHC@Home) which they direct to the nearest publicly accessible web proxy servers. The responses

  7. Similar speleothem δ18O signals indicating diverging climate variations in inland central Asia and monsoonal south Asia during the Holocene

    Science.gov (United States)

    Jin, Liya; Zhang, Xiaojian

    2017-04-01

    High-resolution and precisely dated speleothem oxygen isotope (δ18O) records from Asia have provided key evidence for past monsoonal changes. It is found that δ18O records of stalagmites from Kesang Cave (42°52'N, 81°45'E, Xinjiang, China) in inland central Asia were very similar to those from Qunf Cave (17°10'N, 54°18'E, southern Oman) in South Asia, shifting from light to heavy throughout the Holocene, which was regarded as a signal that strong Asian summer monsoon (ASM) may have intruded into the Kesang Cave site and/or adjacent areas in inland central Asia to produce heavy rainfall during the high insolation times (e.g. the early Holocene). However, this is in contrast to conclusions based on other Holocene proxy records and modeling simulations, showing a persistent wetting trend in arid central Asia during the Holocene with a dryer condition in the early Holocene and the wettest condition in the late Holocene. With an analysis of model-proxy data comparison, we revealed a possible physical mechanism responsible for the Holocene evolution of moisture/precipitation in Asian summer monsoon (ASM)-dominated regions and that in the inland central Asia. It is revealed that a recurrent circumglobal teleconnection (CGT) pattern in the summertime mid-latitude circulation of the Northern Hemisphere was closely related to the ASM and the climate of inland central Asia, acting as a bridge linking the ASM to insolation, high-latitude forcing (North Atlantic sea surface temperature (SST)), and low-latitude forcing (tropical Ocean SST). Also, the CGT influence speleothem δ18O values in South Asia via its effect on the amount of precipitation. In addition, the moisture source from the Indian Ocean is associated with relatively high δ18O values compared with that from the North Atlantic Ocean, leading to increased precipitation δ18O values. Hence, the CGT has probably been the key factor responsible for the in-phase relationship in speleothem δ18O values (Kesang Cave

  8. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  9. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  10. Improved end-member characterization of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies

    Science.gov (United States)

    Holtvoeth, J.; Rushworth, D.; Imeri, A.; Cara, M.; Vogel, H.; Wagner, T.; Wolff, G. A.

    2015-08-01

    We present elemental, lipid biomarker and compound-specific isotope (δ13C, δ2H) data for soils and leaf litter collected in the catchment of Lake Ohrid (Albania, Macedonia), as well as macrophytes, particulate organic matter and sediments from the lake itself. Lake Ohrid provides an outstanding archive of continental environmental change of at least 1.2 M years and the purpose of our study is to ground truth organic geochemical proxies that we developed in order to study past changes in the terrestrial biome. We show that soils dominate the lipid signal of the lake sediments rather than the vegetation or aquatic biomass, while compound-specific isotopes (δ13C, δ2H) determined for n-alkanoic acids confirm a dominant terrestrial source of organic matter to the lake. There is a strong imprint of suberin monomers on the composition of total lipid extracts and chain-length distributions of n-alkanoic acids, n-alcohols, ω-hydroxy acids and α,ω-dicarboxylic acids. Our end-member survey identifies that ratios of mid-chain length suberin-derived to long-chain length cuticular-derived alkyl compounds as well as their average chain length distributions can be used as new molecular proxies of organic matter sources to the lake. We tested these for the 8.2 ka event, a pronounced and widespread Holocene climate fluctuation. In SE Europe climate became drier and cooler in response to the event, as is clearly recognizable in the carbonate and organic carbon records of Lake Ohrid sediments. Our new proxies indicate biome modification in response to hydrological changes, identifying two phases of increased soil OM supply, first from topsoils and then from mineral soils. Our study demonstrates that geochemical fingerprinting of terrestrial OM should focus on the main lipid sources, rather than the living biomass. Both can exhibit climate-controlled variability, but are generally not identical.

  11. Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies

    Science.gov (United States)

    Holtvoeth, J.; Rushworth, D.; Copsey, H.; Imeri, A.; Cara, M.; Vogel, H.; Wagner, T.; Wolff, G. A.

    2016-02-01

    We present elemental, lipid biomarker and, in the supplement, compound-specific isotope (δ13C, δ2H) data for soils and leaf litter collected in the catchment of Lake Ohrid (Albania, Macedonia), as well as macrophytes, particulate organic matter and sediments from the lake itself. Lake Ohrid provides an outstanding archive of continental environmental change of at least 1.2 million years and the purpose of our study is to ground truth organic geochemical proxies that we developed in order to study past changes in the terrestrial biome. We show that soils dominate the lipid signal of the lake sediments rather than the vegetation or aquatic biomass. There is a strong imprint of suberin monomers on the composition of total lipid extracts and chain-length distributions of n-alkanoic acids, n-alcohols, ω-hydroxy acids and α, ω-dicarboxylic acids. Our end-member survey identifies that ratios of mid-chain length suberin-derived to long-chain length cuticular-derived alkyl compounds as well as their average chain length distributions can be used as new molecular proxies of organic matter sources to the lake. We tested these for the 8.2 ka event, a pronounced and widespread Holocene climate fluctuation. In SE Europe climate became drier and cooler in response to the event, as is clearly recognisable in the carbonate and organic carbon records of Lake Ohrid sediments. Our new proxies indicate biome modification in response to hydrological changes, identifying two phases of increased soil organic matter (OM) supply, first from soils with moderately degraded OM and then from more degraded soils. Our study demonstrates that geochemical fingerprinting of terrestrial OM should focus on the main lipid sources, rather than the living biomass. Both can exhibit climate-controlled variability, but are generally not identical.

  12. Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean (southwest Sicily)

    Science.gov (United States)

    Plancq, Julien; Grossi, Vincent; Pittet, Bernard; Huguet, Carme; Rosell-Melé, Antoni; Mattioli, Emanuela

    2015-06-01

    The late Pliocene (Piacenzian) in the Mediterranean region was punctuated by short-lived episodes of widespread deposition of organic-rich sedimentary layers known as sapropels. The causes of their formation remain a long-standing debate in the science community, and require disentangling the roles of climatic/oceanographic processes that triggered higher primary productivity or enhanced organic matter preservation. The lack of data, especially of sea temperatures at sufficient temporal resolution, is one of the main challenges to solve this debate. Here, we present new organic geochemistry and micropaleontological data from the late Pliocene at Punta Grande/Punta Piccola sections (southwest Sicily) that allow untangling the mechanisms that favored the formation of two sapropel series (noted S and A) in the central Mediterranean area during this period. Sea surface (SSTs) and subsurface temperatures were estimated using three distinct organic geochemical proxies namely the alkenone unsaturation index (UK‧37), the long-chain diol index (LDI) and the tetraether index (TEX86). Reconstructed SSTs are relatively stable throughout the late Pliocene and ∼4 °C higher than modern Mediterranean SSTs, which is consistent with the climatic conditions inferred for this period from paleoclimate modeling. An increase in SST is, however, recorded by UK‧37 and LDI proxies across each sapropel horizon, supporting that the two sapropel series S and A were formed during warmer climate conditions. The comparison of SST data with variations in accumulation rates of total organic carbon and lipid-biomarkers (alkenones, long-chain alkyl diols, archaeal and bacterial tetraethers), and with changes in calcareous nannofossil assemblages, indicates that the studied sapropels might have formed under different environmental conditions. The first series of sapropels (S), deposited between 3.1 and 2.8 Ma, is likely due to a better preservation of organic matter, induced by the development

  13. Nitrogen isotopes from terrestrial organic matter as a new paleoclimatic proxy for pre-quaternary time

    Science.gov (United States)

    Tramoy, romain; Schnyder, johann; thuy Nguyen Tu, thanh; Yans, johan; Storme, jean yves; Sebilo, mathieu; Derenne, sylvie; Jacob, jérémy; Baudin, françois

    2014-05-01

    Taskomirsay, Kazakhstan. This succession is rich in dispersed OM and wood fragments allowing accurate N isotopes measurements. Preliminary results on δ13Corg and palynology suggest that the Pliensbachian/Toarcian transition is recorded at the top of the sedimentary succession. This transition has been studied for a long time since it is characterized by one of the most important global environmental and climatic change of the Phanerozoic time ( Jenkyns, 1988; Hermoso et al., 2012). We are therefore testing the paleoclimatic "proxy" potential of δ15Norg for this time interval by comparing the δ15Norg signal with other indicators more classically used for paleoclimate studies. We have also investigated the influence of differences in organic sources and of early diagenesis on the δ15Norg variations.

  14. Generalized indices of a typical individual water-heating solar plant in the climatic conditions of Russia different regions

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.

    2003-01-01

    By the example of the typical solar water-heating plant (SWP), designed for daily consumption of 100 l of heated water the calculation of the number of days in the year is accomplished, during which such a plant could provide for heating the water not below the assigned control level of 37, 45 and 55 deg C for various ratios between the solar collector square and tank-accumulator volume. The generalized dependences are obtained on the basis of processing the results of the SWP dynamic modeling with application of the typical meteoyears, generated for the climatic conditions of more than 40 populated localities in Russia both in its European and Asian part. The efficiency of the SWP operation in different regions of the country may be determined through their application [ru

  15. Are fixed grain size ratios useful proxies for loess sedimentation dynamics? Experiences from Remizovka, Kazakhstan

    Science.gov (United States)

    Schulte, Philipp; Sprafke, Tobias; Rodrigues, Leonor; Fitzsimmons, Kathryn E.

    2018-04-01

    Loess-paleosol sequences (LPS) are sensitive terrestrial archives of past aeolian dynamics and paleoclimatic changes within the Quaternary. Grain size (GS) analysis is commonly used to interpret aeolian dynamics and climate influences on LPS, based on granulometric parameters such as specific GS classes, ratios of GS classes and statistical manipulation of GS data. However, the GS distribution of a loess sample is not solely a function of aeolian dynamics; rather complex polygenetic depositional and post-depositional processes must be taken into account. This study assesses the reliability of fixed GS ratios as proxies for past sedimentation dynamics using the case study of Remizovka in southeast Kazakhstan. Continuous sampling of the upper 8 m of the profile, which shows extremely weak pedogenic alteration and is therefore dominated by primary aeolian activity, indicates that fixed GS ratios do not adequately serve as proxies for loess sedimentation dynamics. We find through the calculation of single value parameters, that "true" variations within sensitive GS classes are masked by relative changes of the more frequent classes. Heatmap signatures provide the visualization of GS variability within LPS without significant data loss within the measured classes of a sample, or across all measured samples. We also examine the effect of two different commonly used laser diffraction devices on GS ratio calculation by duplicate measurements, the Beckman Coulter (LS13320) and a Malvern Mastersizer Hydro (MM2000), as well as the applicability and significance of the so-called "twin peak ratio" previously developed on samples from the same section. The LS13320 provides higher resolution results than the MM2000, nevertheless the GS ratios related to variations in the silt-sized fraction were comparable. However, we could not detect a twin peak within the coarse silt as detected in the original study using the same device. Our GS measurements differ from previous works at

  16. Differentiation regional climate impact indicators at 1.5°C and 2°C warming above pre-industrial levels

    Science.gov (United States)

    Schleussner, C. F.

    2016-12-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. By establishing 1.5°C as the long term temperature limit for global average temperature increase and inviting a special report of the IPCC on the impacts of 1.5°C, the Paris Agreement has put such assessments high on the post-Paris science agenda. Here I will present recent findings of climate impacts at 1.5°C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. In particular, I will present findings from a recent study that attempts to differentiate between such impacts at warming levels of 1.5°¸C and 2°C above pre-industrial (Schleussner et al., 2016). By analyzing changes in indicators for 26 world regions as applicable, the study found regional dependent differences between a 1.5°C and 2°C warming. Regional hot-spots of change emerge with tropical regions bearing the brunt of the impacts of an additional 0.5°C warming. These findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. Building on that analysis, I will discuss limitations of existing approaches to differentiate between warming levels and outline opportunities for future work on refining our understanding of the difference between impacts at 1.5°C and 2°C warming. ReferencesSchleussner, C.-F. et al. Differential climate impacts for policy relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dyn. 7, 327-351 (2016).

  17. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    Directory of Open Access Journals (Sweden)

    Nadja Kabisch

    2016-06-01

    Full Text Available Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.

  18. Pollen and phytoliths from fired ancient potsherds as potential indicators for deciphering past vegetation and climate in Turpan, Xinjiang, NW China.

    Science.gov (United States)

    Yao, Yi-Feng; Li, Xiao; Jiang, Hong-En; Ferguson, David K; Hueber, Francis; Ghosh, Ruby; Bera, Subir; Li, Cheng-Sen

    2012-01-01

    It is demonstrated that palynomorphs can occur in fired ancient potsherds when the firing temperature was under 350°C. Pollen and phytoliths recovered from incompletely fired and fully fired potsherds (ca. 2700 yrs BP) from the Yanghai Tombs, Turpan, Xinjiang, NW China can be used as potential indicators for reconstructing past vegetation and corresponding climate in the area. The results show a higher rate of recovery of pollen and phytoliths from incompletely fired potsherds than from fully fired ones. Charred phytoliths recovered from both fully fired and incompletely fired potsherds prove that degree and condition of firing result in a permanent change in phytolith color. The palynological data, together with previous data of macrobotanical remains from the Yanghai Tombs, suggest that temperate vegetation and arid climatic conditions dominated in the area ca. 2700 yrs BP.

  19. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey

    2017-01-01

    Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...... that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...

  20. Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years

    Directory of Open Access Journals (Sweden)

    F. Shi

    2017-12-01

    Full Text Available The dominant modes of variability of precipitation for the whole of China over the past millennium and the mechanism governing their spatial structure remain unclear. This is mainly due to insufficient high-resolution proxy records of precipitation in western China. Numerous tree-ring chronologies have recently been archived in publicly available databases through PAGES2k activities, and these provide an opportunity to refine precipitation field reconstructions for China. Based on 479 proxy records, including 371 tree-ring width chronologies, a tree-ring isotope chronology, and 107 drought/flood indices, we reconstruct the precipitation field for China for the past half millennium using the optimal information extraction method. A total of 3631 of 4189 grid points in the reconstruction field passed the cross-validation process, accounting for 86.68 % of the total number of grid points. The first leading mode of variability of the reconstruction shows coherent variations over most of China. The second mode is a north–south dipole in eastern China characterized by variations of the same sign in western China and northern China (except for Xinjiang province. It is likely controlled by the El Niño–Southern Oscillation (ENSO variability. The third mode is a sandwich triple mode in eastern China including variations of the same sign in western China and central China. The last two modes are reproduced by most of the six coupled climate models' last millennium simulations performed in the framework of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3. In particular, the link of the second mode with ENSO is confirmed by the models. However, there is a mismatch between models and proxy reconstructions in the time development of different modes. This mismatch suggests the important role of internal variability in the reconstructed precipitation mode variations of the past 500 years.

  1. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years

    Science.gov (United States)

    Shi, Feng; Zhao, Sen; Guo, Zhengtang; Goosse, Hugues; Yin, Qiuzhen

    2017-12-01

    The dominant modes of variability of precipitation for the whole of China over the past millennium and the mechanism governing their spatial structure remain unclear. This is mainly due to insufficient high-resolution proxy records of precipitation in western China. Numerous tree-ring chronologies have recently been archived in publicly available databases through PAGES2k activities, and these provide an opportunity to refine precipitation field reconstructions for China. Based on 479 proxy records, including 371 tree-ring width chronologies, a tree-ring isotope chronology, and 107 drought/flood indices, we reconstruct the precipitation field for China for the past half millennium using the optimal information extraction method. A total of 3631 of 4189 grid points in the reconstruction field passed the cross-validation process, accounting for 86.68 % of the total number of grid points. The first leading mode of variability of the reconstruction shows coherent variations over most of China. The second mode is a north-south dipole in eastern China characterized by variations of the same sign in western China and northern China (except for Xinjiang province). It is likely controlled by the El Niño-Southern Oscillation (ENSO) variability. The third mode is a sandwich triple mode in eastern China including variations of the same sign in western China and central China. The last two modes are reproduced by most of the six coupled climate models' last millennium simulations performed in the framework of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3). In particular, the link of the second mode with ENSO is confirmed by the models. However, there is a mismatch between models and proxy reconstructions in the time development of different modes. This mismatch suggests the important role of internal variability in the reconstructed precipitation mode variations of the past 500 years.

  2. A vulnerability driven approach to identify adverse climate and land use change combinations for critical hydrologic indicator thresholds: Application to a watershed in Pennsylvania, USA

    Science.gov (United States)

    Singh, R.; Wagener, T.; Crane, R.; Mann, M. E.; Ning, L.

    2014-04-01

    Large uncertainties in streamflow projections derived from downscaled climate projections of precipitation and temperature can render such simulations of limited value for decision making in the context of water resources management. New approaches are being sought to provide decision makers with robust information in the face of such large uncertainties. We present an alternative approach that starts with the stakeholder's definition of vulnerable ranges for relevant hydrologic indicators. Then the modeled system is analyzed to assess under what conditions these thresholds are exceeded. The space of possible climates and land use combinations for a watershed is explored to isolate subspaces that lead to vulnerability, while considering model parameter uncertainty in the analysis. We implement this concept using classification and regression trees (CART) that separate the input space of climate and land use change into those combinations that lead to vulnerability and those that do not. We test our method in a Pennsylvania watershed for nine ecological and water resources related streamflow indicators for which an increase in temperature between 3°C and 6°C and change in precipitation between -17% and 19% is projected. Our approach provides several new insights, for example, we show that even small decreases in precipitation (˜5%) combined with temperature increases greater than 2.5°C can push the mean annual runoff into a slightly vulnerable regime. Using this impact and stakeholder driven strategy, we explore the decision-relevant space more fully and provide information to the decision maker even if climate change projections are ambiguous.