Phase transition in a modified square Josephson-junction array
Han, J
1999-01-01
We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.
Cavity syncronisation of underdamped Josephson junction arrays
DEFF Research Database (Denmark)
Barbara, P.; Filatrella, G.; Lobb, C.
2003-01-01
Our recent experiments show that arrays of underdamped Josephson junctions radiate coherently only above a threshold number of junctions switched onto the radiating state. For each junction, the radiating state is a resonant step in the current-voltage characteristics due to the interaction between...... the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current......-voltage characteristic. The model also makes quantitative predictions about the degree of coherence of the junctions in the array. However, in this model there is no threshold; the experimental below-threshold region behavior could not be reproduced....
Inhomogeneous parallel arrays of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Caputo, J.-G., E-mail: caputo@insa-rouen.f [Laboratoire de Mathematiques, INSA de Rouen, B.P. 8, Avenue de l' Universite, 76801 Saint-Etienne du Rouvray (France); Loukitch, L., E-mail: lionel.loukitch@insa-rouen.f [Laboratoire de Mathematiques, INSA de Rouen, B.P. 8, Avenue de l' Universite, 76801 Saint-Etienne du Rouvray (France)
2011-06-15
Highlights: {yields} New long wave model of an inhomogeneous parallel array of Josephson junctions. {yields} Adapted spectral problem giving resonances in the current-voltage characteristic. {yields} At resonances solution is described by two ordinary differential equations. {yields} Good agreement with the characteristic curve of a real five junction array. - Abstract: We model new inhomogeneous parallel arrays of small Josephson junctions by taking into account the time and space variations of the field in the cavity and the capacity miss-match at the junctions. The model consists in a wave equation with Dirac delta function sine nonlinearities. We introduce an adapted spectral problem whose spectrum gives the resonances in the current-voltage characteristic curve of any array. It is shown that at the resonances the solution is described by two simple ordinary differential equations. The resonances obtained by this approach are in good agreement with the characteristic curve of a real five junction array. This flexible approach is a first step towards building a device tailored for given purposes.
Huemiller, Erik; Kurter, Cihan; Finck, Aaron; van Harlingen, Dale
2014-03-01
Topological insulators (TI) have drawn a great deal of interest due to their unique surface states protected by time-reversal symmetry and strong spin-orbit coupling. Josephson junctions made by proximity coupling of s-wave superconductors (S) through the surface states of 3D TI have been predicted to produce excitations of Majorana fermions, which modify the usual current-phase relationship (CPR). In this talk, we present simulations of arrays of superconducting islands connected by Josephson junctions with a CPR of the form of I1 sinφ +I2 sin φ / 2 . We calculate the energy of the metastable states of the array and the resistance in dynamical states as a function of external magnetic field, and junction critical current for different array sizes and geometries. The 4 π-periodic component of the CPR lifts the degeneracy to create additional metastable states and a modulation of the energy and resistance that depends on whether the number of vortices per cell is even or odd. We discuss experimental progress towards the fabrication of superconducting islands connected by S/TI/S junctions and their characterization by transport and imaging. Microsoft Station Q provided funding for this research.
Memory cell operation based on small Josephson junctions arrays
Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.
2016-12-01
In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.
Conditions for synchronization in Josephson-junction arrays
Energy Technology Data Exchange (ETDEWEB)
Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)
1995-12-31
An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.
Self-field effects in Josephson junction arrays
DEFF Research Database (Denmark)
Petraglia, Antonio; Filatrella, G.; Rotoli, G.
1996-01-01
The purpose of this work is to compare the dynamics of arrays of Josephson junctions in the presence of a magnetic field in two different frameworks: the so-called XY frustrated model with no self-inductance and an approach that takes into account the self-field generated by the screening current...... (considering self-inductances only). We show that, while for a range of parameters the simpler model is sufficiently accurate, in a region of the parameter space solutions arise that are not contained in the XY model equations.......The purpose of this work is to compare the dynamics of arrays of Josephson junctions in the presence of a magnetic field in two different frameworks: the so-called XY frustrated model with no self-inductance and an approach that takes into account the self-field generated by the screening currents...
Memory states in small arrays of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Braiman, Yehuda [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Neschke, Brendan [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Nair, Niketh S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Science Directorat; Glowinski, R. [Univ. of Houston, TX (United States). Dept. of Mathematics
2017-11-30
Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.
Supersymmetric phase transition in Josephson-tunnel-junction arrays
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1988-08-31
The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.
Dynamics of current driven disordered Josephson junction arrays
Energy Technology Data Exchange (ETDEWEB)
Dominguez, D.; Gronbech-Jensen, N.; Bishop, A.R.
1995-04-01
We present dynamical simulations of disordered Josephson junction arrays with a bias current. We study the IV characteristics and vortex dynamics as a function of integer frustration f = n, weak frustration f = n + {delta} ({delta} {much_lt} 1) and full frustration pairs close to the critical current i{sub c}. We focus on the study of the plastic flow of vortices (f = n + {delta}), of vortex-antivortex pairs (f = n), and the dynamics of domain walls (f = n + 1/2) close to i{sub c}. We analyze the voltage noise and vortex fluctuations in the plastic flow regimes. We obtain the phase diagram for the different dynamical regimes as a function of disorder and applied current. We also study the dynamical critical behavior of depinning close to i{sub c} in the gauge glass limit of the model, f {yields} {infinity}, calculating critical exponents for the voltage onset and voltage fluctuations. We discuss our results within the context of present theories of the non-linear dynamics of disordered media.
Comparative dynamics of two-dimensional shorted arrays and continuous stacked Josephson junctions
DEFF Research Database (Denmark)
Petraglia, Antonio; Pedersen, Niels Falsig; Christiansen, Peter Leth
1997-01-01
Multilayer structures of Josephson junctions are discussed both in the continuous and the discrete case. For the continuous case some recent results are shown. For two-dimensional shorted arrays, which account for the discrete limit, a model is presented. Analytical and numerical calculations show...
On the transmission of binary bits in discrete Josephson-junction arrays
Energy Technology Data Exchange (ETDEWEB)
Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Avenida Universidad 940, Colonia Ciudad Universitaria, Aguascalientes, Ags. 20100 (Mexico)], E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, 2000 Lake Shore Dr., New Orleans, LA 70148 (United States)], E-mail: apuri@uno.edu
2008-07-21
In this work, we use supratransmission and infratransmission in the mathematical modeling of the propagation of digital signals in weakly damped, discrete Josephson-junction arrays, using energy-based detection criteria. Our results show an efficient and reliable transmission of binary information.
Effect of cross-type bias in a two-dimensional array of short Josephson junctions
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
1998-01-01
We investigate numerically the effect of cross-type bias on two-dimensional arrays of short Josephson junctions. We have demonstrated that, for the simplest circuit, this type of bias is able to phase lock the junctions yielding a substantial improvement over ordinary biasing schemes. (C) 1998 Am...... American Institute of Physics....
Two-dimensional Josephson junction arrays coupled through a high-Q cavity
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2001-01-01
The problem of disordered two-dimensional arrays of underdamped Josephson junctions is addressed. Our simulations show that when coupled to a high-Q cavity, the array exhibits synchronized behavior, and the power emitted can be considerably increased once enough junctions are activated to pump...... emission frequency of the junctions and the cavity resonant frequency. We show with a simple argument that we can predict the scaling behavior of disorder with the size of the array. The consequences for the design of microwave oscillators in the Gigahertz region are discussed...
Imaging of the dynamic magnetic structure in a parallel array of shunted Josephson junctions
DEFF Research Database (Denmark)
Doderer, T.; Kaplunenko, V. K.; Mygind, Jesper
1994-01-01
A one-dimensional (1D) parallel array of shunted Josephson junctions is one of the basic elements in the family of rapid single-flux quantum logic circuits. It was found recently that current steps always show up in the current-voltage curve of the generator junction when an additional bias current...... is applied to the edge junction of the array. This effect was found to be due to the self-induced magnetic field produced by the edge current. This nonuniform field divides the array into domains each spanning several unit cells and each containing the same number of flux quanta. We report on experimental...
Multifractal metal in a disordered Josephson junctions array
Pino, M.; Kravtsov, V. E.; Altshuler, B. L.; Ioffe, L. B.
2017-12-01
We report the results of the numerical study of the nondissipative quantum Josephson junction chain with the focus on the statistics of many-body wave functions and local energy spectra. The disorder in this chain is due to the random offset charges. This chain is one of the simplest physical systems to study many-body localization. We show that the system may exhibit three distinct regimes: insulating, characterized by the full localization of many-body wave functions, a fully delocalized (metallic) one characterized by the wave functions that take all the available phase volume, and the intermediate regime in which the volume taken by the wave function scales as a nontrivial power of the full Hilbert-space volume. In the intermediate nonergodic regime the Thouless conductance (generalized to the many-body problem) does not change as a function of the chain length indicating a failure of the conventional single-parameter scaling theory of localization transition. The local spectra in this regime display the fractal structure in the energy space which is related with the fractal structure of wave functions in the Hilbert space. A simple theory of fractality of local spectra is proposed, and a scaling relationship between fractal dimensions in the Hilbert and energy spaces is suggested and numerically tested.
Mishra, Arindam; Saha, Suman; Hens, Chittaranjan; Roy, Prodyot K; Bose, Mridul; Louodop, Patrick; Cerdeira, Hilda A; Dana, Syamal K
2017-01-01
An array of excitable Josephson junctions under a global mean-field interaction and a common periodic forcing shows the emergence of two important classes of coherent dynamics, librational and rotational motion, in the weaker and stronger coupling limits, respectively, with transitions to chimeralike states and clustered states in the intermediate coupling range. In this numerical study, we use the Kuramoto complex order parameter and introduce two measures, a libration index and a clustering index, to characterize the dynamical regimes and their transitions and locate them in a parameter plane.
Josephson Junction Arrays with Positional Disorder: Experiments and Simulations
1988-02-01
Fraunhofer diffraction pattern, which has zeros at 4’=nOo (n*O). In real junctions one frequently has minima rather than zeros at these points, perhaps due to...not. % . --.,, ..-,,, a ’,| ,,,- VPa d, i a . ... ... . 67 shows more clearly the Fraunhofer diffraction pattern discussed earlier, with the...c) Triangular proximity array Fig. 2.2 (a) Distortion of superconducting island to introduce disorder 29 (b) An example of a disordered plaquette Fig
Parameter optimization for transitions between memory states in small arrays of Josephson junctions
Rezac, J. D.; Imam, N.; Braiman, Y.
2017-05-01
Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. In this paper we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilized for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10-100 ps and access energies on the order of 10-19-5×10-18 J. Numerical simulations are validated with approximate analytical results.
Critical current from dynamical boundary instability for fully frustrated Josephson junction arrays
Kim, Beom Jun; Minnhagen, Petter
2000-03-01
We investigate numerically the critical current of two-dimensional fully frustrated arrays of resistively shunted Josephson junctions at zero temperature. It is shown that a domino-type mechanism is responsible for the existence of a critical current lower than the one predicted from the translationally invariant flux lattice. This domino mechanism is demonstrated for uniform-current injection as well as for various busbar conditions. It is also found that inhomogeneities close to the contacts make it harder for the domino propagation to start, which increases the critical current towards the value based on the translational invariance. This domino-type vortex motion can be observed in experiments as voltage pulses propagating from the contacts through the array.
Transport in arrays of submicron Josephson junctions over a ground plane
Energy Technology Data Exchange (ETDEWEB)
Ho, Teressa Rae [Univ. of California, Berkeley, CA (United States)
1997-12-01
One-dimensional (1D) and two-dimensional (2D) arrays of Al islands linked by submicron Al/Al_{x}O_{y}/Al tunnel junctions were fabricated on an insulating layer grown on a ground plane. The arrays were cooled to temperatures as low as 20 mK where the Josephson coupling energy E_{J} of each junction and the charging energy E_{C} of each island were much greater than the thermal energy k_{B}T. The capacitance C_{g} between each island and the ground plane was much greater than the junction capacitance C. Two classes of arrays were studied. In the first class, the normal state tunneling resistance of the junctions was much larger than the resistance quantum for single electrons, R_{N}>> R_{Qe}≡ h/e^{2} ~ 25.8 kΩ, and the islands were driven normal by an applied magnetic field such that E_{J} = 0 and the array was in the Coulomb blockade regime. The arrays were made on degenerately-doped Si, thermally oxidized to a thickness of approximately 100 nm. The current-voltage (I - V) characteristics of a 1D and a 2D array were measured and found to display a threshold voltage V_{T} below which little current flows. In the second class of arrays, the normal state tunneling resistance of the junctions was close to the resistance quantum for Cooper pairs, R_{N}≈R_{Q}≡h/4e^{2}≈6.45kΩ, such that E_{J}/E_{C}≈1. The arrays were made on GaAs/Al_{0.3}Ga_{0.7}As heterostructures with a two-dimensional electron gas approximately 100 nm below the surface. One array displayed superconducting behavior at low temperature. Two arrays displayed insulating behavior at low temperature, and the size of the Coulomb gap increased with increasing R_{g}.
DEFF Research Database (Denmark)
Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper
1994-01-01
The high frequency properties of the one-dimensional transmission line consisting of a parallel array of resistively shunted Josephson tunnel junctions have been studied in the limit of relatively low damping where this nonlinear system exhibits new and interesting phenomena. Here we report...... on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...
Proximity coupling in superconductor-graphene heterostructures.
Lee, Gil-Ho; Lee, Hu-Jong
2018-02-16
This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable two-dimensional platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given. © 2018 IOP Publishing Ltd.
Proximity coupling in superconductor-graphene heterostructures
Lee, Gil-Ho; Lee, Hu-Jong
2017-01-01
This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene...
Wendt, J.R.; Plut, T.A.; Martens, J.S.
1995-05-02
A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.
Nogawa, Tomoaki
2012-05-22
We investigate the ground state of the irrationally frustrated Josephson junction array with a controlling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one-dimensional periodicity whose reciprocal lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the isotropic point λ=1, the so-called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless continuous band of metastable states, which exhibit the same critical behavior as the ground state. © 2012 American Physical Society.
SQIF Arrays as RF Sensors (Briefing Charts)
National Research Council Canada - National Science Library
Yukon, Stanford P
2007-01-01
... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...
Spectral linewidths of Josephson oscillators
DEFF Research Database (Denmark)
Salerno, M; Samuelsen, Mogens Rugholm; Yulin, AV
2001-01-01
We show that the linewidth of a Josephson flux-flow oscillator has the same functional dependence on temperature, static, and dynamic resistances as the ones of Josephson single-fluxon oscillators and small Josephson junctions. This suggests a universal formula for the linewidth of Josephson...... oscillators....
Supersolitons in layered Josephson structures
Energy Technology Data Exchange (ETDEWEB)
Kivshar, Y.S. (Institute for Low Temperature Physics and Engineering, Kharkov (U.S.S.R.)); Soboleva, T.K. (Institute for Physics and Engineering, Donetsk (U.S.S.R))
1990-08-01
It is demonstrated that in a system of parallel-coupled long Josephson junctions forming a layered superconducting structure there are nonlinear excitations of coupled fluxon arrays in the form of dynamical supersolitons'' (A. V. Ustinov, Phys. Lett. A 136, 155 (1989)). The supersolitons in the system may be of two types, dynamical kinks and envelope solitons. The former ones are described by the elliptic-lattice equation which is transformed into the sine-lattice equation in the case of the dense fluxon arrays or the modified Boussinesq equation in the continuum limit. The latter solitons are oscillating ones and are described by the nonlinear Schroedinger equation in the discrete carrier case. These solitons may be important in transport properties of the flux flow in layered superconductors or high-{Tc} superconductors with twins under external magnetic fields. The stability of the nonlinear excitations is briefly discussed.
Kim, Minsoo; Park, Geon-Hyoung; Lee, Jongyun; Lee, Jae Hyeong; Park, Jinho; Lee, Hyunwoo; Lee, Gil-Ho; Lee, Hu-Jong
2017-10-11
A layered two-dimensional superconducting material 2H-NbSe 2 is used to build a van der Waals heterostructure, where a proximity-coupled superconducting order can be induced in the interfacing materials. Vertically stacked NbSe 2 -graphene-NbSe 2 is fabricated using van der Waals interlayer coupling, producing defect-free contacts with a high interfacial transparency. The atomically thin graphene layer allows the formation of a highly coherent proximity Josephson coupling between the two NbSe 2 flakes. The temperature dependence of the junction critical current (I c ) reveals short and ballistic Josephson coupling characteristics that agree with theoretical prediction. The strong Josephson coupling is confirmed by a large junction critical current density of 1.6 × 10 4 A/cm 2 , multiple Andreev reflections in the subgap structure of the differential conductance, and a magnetic-field modulation of I c . This is the first demonstration of strongly proximity-coupled Josephson junctions with extremely clean interfaces in a dry-transfer-stacked van der Waals heterostructure.
Above-gap conductance anomaly studied in superconductor-graphene-superconductor Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Choi, Jae-Hyun; Lee, Hu-Jong [Pohang University of Science and Technology, Pohang (Korea, Republic of); Doh, Yong-Joo [Korea University, Yeongigun (Korea, Republic of)
2010-07-15
We investigated the electrical transport properties of superconductor-graphene-superconductor (SGS) Josephson junctions. At low voltage bias, we observed the conventional proximity-coupled Josephson effect, such as supercurrent flow through graphene, a sub-gap structure of differential conductance due to Andreev reflection, and a periodic modulation of the critical current I{sub c} when a perpendicular magnetic field H is applied to the graphene. For high bias above the superconducting gap voltage, however, we observed an anomalous jump of the differential conductance, the voltage position of which is sensitive to the backgate voltage V{sub g}. Our extensive study with varying V{sub g}, temperature, and H reveals that the above-gap structure takes place at a characteristic power P{sup *}, irrespective of V{sub g}, for a given junction. The temperature and the H dependences of P{sup *} are well explained by an increase in the electron temperature in graphene.
A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems
Directory of Open Access Journals (Sweden)
Giovanni Andrea Casula
2016-01-01
Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.
Fulde-Ferrell states in inverse proximity-coupled magnetically doped topological heterostructures
Park, Moon Jip; Yang, Junyoung; Kim, Youngseok; Gilbert, Matthew J.
2017-08-01
We study the superconducting properties of the thin film BCS superconductor proximity coupled to a magnetically doped time-reversal invariant topological insulator (TI). Using mean-field theory, we show that Fulde-Ferrell (FF) pairing can be induced in the conventional superconductor through the inverse proximity effect (IPE). This occurs when the IPE of the TI to the superconductor is large enough that the normal bands of the superconductor possess a proximity induced spin-orbit coupling and magnetization. We find that the energetics of the different pairings are dependent on the coupling strength between the TI and the BCS superconductor and the thickness of the superconductor film. As the thickness of the superconductor film is increased, we find a crossover from the FF pairing to the BCS pairing phase. This is a consequence of the increased number of the superconducting bands, which favor the BCS pairing, implying that the FF phase can only be observed in the thin film limit. In addition, we also propose transport experiments that show distinct signatures of the FF phase.
Tunable Nitride Josephson Junctions.
Energy Technology Data Exchange (ETDEWEB)
Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We have developed an ambient temperature, SiO_{2}/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the Ta_{x}N barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlO_{x} barriers for low - power, high - performance computing.
Dynamics of coupled Josephson junctions in an asymmetric triangular single plaquette
Directory of Open Access Journals (Sweden)
A R Valizadeh
2009-08-01
Full Text Available We study the origin of subharmonic synchronization in arrays consisting of few over-damped Josephson junctions. We show that for asymmetric arrays, the evolution equations contain second (or higher order derivatives or non-sinusoidal terms, both leading to fractional Shapiro steps in presence of external ac drive .
Vortex dynamics in Josephson ladders with II-junctions
DEFF Research Database (Denmark)
Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.
2004-01-01
current versus applied magnetic field. At temperatures close to the 0-pi transition this dependence shows a doubling of its periodicity frequency that can be explained by 0-pi bistability of the SFS junctions. The change in the array behaviour with number of unit cells has been studied by means......Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critical...
Gravitation at the Josephson Junction
Directory of Open Access Journals (Sweden)
Victor Atanasov
2018-01-01
Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.
Power flow for Josephson elements.
Thompson, E. D.
1973-01-01
General relations are presented for the power flow at the frequencies of interest in a Josephson element. These general power flow relations depend upon whether the autonomous frequency is phase-locked, either harmonically or subharmonically, to a frequency in the system or is unlocked. The results presented generalize those given previously by Russer (1971) for the harmonically locked case.
Josephson tunnel junction microwave attenuator
DEFF Research Database (Denmark)
Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.
1993-01-01
A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...
Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
Directory of Open Access Journals (Sweden)
Muneto Nitta
2015-10-01
Full Text Available A Josephson junction is made of two superconductors sandwiching an insulator, and a Josephson vortex is a magnetic vortex (flux tube absorbed into the Josephson junction, whose dynamics can be described by the sine-Gordon equation. In a field theory framework, a flexible Josephson junction was proposed, in which the Josephson junction is represented by a domain wall separating two condensations and a Josephson vortex is a sine-Gordon soliton in the domain wall effective theory. In this paper, we propose a Josephson junction of non-Abelian color superconductors and show that a non-Abelian vortex (color magnetic flux tube absorbed into it is a non-Abelian Josephson vortex represented as a non-Abelian sine-Gordon soliton in the domain wall effective theory, that is the U(N principal chiral model.
Study of correlation and autocorrelation of supercurrent and charge in stacked Josephson junctions
Directory of Open Access Journals (Sweden)
M Hamdipour
2010-09-01
Full Text Available Charge creation in superconductor layers affects current–voltage characteristics (CVC of the Josephson junction array and creates a breakpoint region in CVC. This charge may oscillate in the form of longitudinal plasma wave, (LPW, or nonregularity. In this paper we intend to distinguish the region with LPW from the nonregular region.
Characterization of Josephson parametric amplifiers
Energy Technology Data Exchange (ETDEWEB)
Pogorzalek, Stefan; Fedorov, Kirill; Zhong, Ling; Bitzenbichler, Martin; Haeberlein, Max; Schwarz, Manuel J.; Eder, Peter; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Baust, Alexander; Marx, Achim; Menzel, Edwin P.; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)
2015-07-01
Propagating quantum microwaves are a promising building block for quantum communication. In particular, such itinerant quantum microwaves can be generated in the form of squeezed photon states using Josephson parametric amplifiers (JPA). A thorough experimental characterization of JPAs is therefore an essential prerequisite for further experiments towards quantum communication. For implementing JPAs we employ an established λ/4 bi-coplanar microwave resonator design where a dc-SQUID is biased by an external flux to tune the resonant frequency. An inductively coupled antenna acts as a pump for the JPA. We characterize several JPAs and evaluate the data within standard Josephson junction theory and the input-output formalism. In particular, we investigate hysteretic and bifurcation behavior of the JPAs in addition to usual non-degenerate JPA gain measurements.
Controlling Josephson dynamics by strong microwave fields
Chesca, B.; Savel'ev, E.; Rakhmanov, A.L.; Smilde, H.J.H.; Hilgenkamp, Johannes W.M.
2008-01-01
We observe several sharp changes in the slope of the current-voltage characteristics (CVCs) of thin-film ramp-edge Josephson junctions between YBa2Cu3O7−delta and Nb when applying strong microwave fields. Such behavior indicates an intriguing Josephson dynamics associated with the switching from a
Ultimately short ballistic vertical graphene Josephson junctions.
Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong
2015-01-30
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.
Josephson junctions with ferromagnetic interlayer
Energy Technology Data Exchange (ETDEWEB)
Wild, Georg Hermann
2012-03-04
We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.
Polaritonic Rabi and Josephson Oscillations.
Rahmani, Amir; Laussy, Fabrice P
2016-07-25
The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.
Energy Technology Data Exchange (ETDEWEB)
Wendt, J.R.; Tigges, C.P.; Hietala, V.M.; Plut, T.A. [Sandia National Labs., Albuquerque, NM (United States); Martens, J.S.; Char, K.; Johansson, M.E. [Conductus, Inc., Sunnyvale, CA (United States)
1994-03-01
A well-controlled, high-yield Josephson junction process in high temperature superconductors (HTS) is necessary for the demonstration of ultra-high-speed devices and circuits which exceed the capabilities of conventional electronics. The authors developed nanobridge Josephson junctions in high quality thin-film YBaCuO with dimensions below 100 nm fabricated using electron-beam nanolithography. They characterized this Josephson junction technology for process yield, junction parameter uniformity, and overall applicability for use in high-performance circuits. To facilitate the determination of junction parameters, they developed a measurement technique based on spectral analysis in the range of 90--160 GHz of phase-locked, oscillating arrays of up to 2,450 Josephson junctions. Because of the excellent yield and uniformity of the nanobridge junctions, they successfully applied the junction technology to a wide variety of circuits. These circuits included transmission-line pulse formers and 32 and 64-bit shift registers. The 32-bit shift register was shown to operate at clock speeds near 100 GHz and is believed to be one of the faster and more complex digital circuit demonstrated to date using high temperature superconductor technology.
Parity measurement in topological Josephson junctions.
Crépin, François; Trauzettel, Björn
2014-02-21
We study the properties of a topological Josephson junction made of both edges of a two-dimensional topological insulator. We show that, due to fermion parity pumping across the bulk, the global parity of the junction has a clear signature in the periodicity and critical value of the Josephson current. In particular, we find that the periodicity with the flux changes from 4π in a junction with an even number of quasiparticles to 2π in the odd sector. In the case of long junctions, we exhibit a rigorous mathematical connection between the spectrum of Andreev bound states and the fermion parity anomaly, through bosonization. Additionally, we discuss the rather quantitative effects of Coulomb interactions on the Josephson current.
Loss models for long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1984-01-01
A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....
Fractional Josephson effect in nonuniformly strained graphene
Lee, Shu-Ping; Nandi, Debaleena; Marsiglio, Frank; Maciejko, Joseph
2017-05-01
Nonuniform strain distributions in a graphene lattice can give rise to uniform pseudomagnetic fields and associated pseudo-Landau levels without breaking time-reversal symmetry. We demonstrate that by inducing superconductivity in a nonuniformly strained graphene sheet, the lowest pseudo-Landau levels split by a pairing gap can be inverted by changing the sign of the pairing potential. As a consequence of this inversion, we predict that a Josephson π junction deposited on top of a strained graphene sheet exhibits one-dimensional gapless modes propagating along the junction. These gapless modes mediate single electron tunneling across the junction, giving rise to the 4 π -periodic fractional Josephson effect.
Field theoretical model of multi-layered Josephson junction and dynamics of Josephson vortices
Fujimori, Toshiaki; Nitta, Muneto
2016-01-01
Multi-layered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel $N-1$ domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The $N-1$ domain walls behave as insulators separating $N$ superconductors. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in the effective theory that we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls. On the other hand, when two neighboring superconductors tend to have the $\\pi$ phase differenc...
Hybrid Josephson-CMOS memory: a solution for the Josephson memory problem
Duzer, T V; Meng Xiao Fan; Whiteley, S R; Yoshikawa, N
2002-01-01
The history of the development of superconductive memory for Josephson digital systems is presented along with the several current proposals. The main focus is on a proposed combination of the highly developed CMOS memory technology with Josephson peripheral circuits to achieve memories of significant size with subnanosecond access time. Background material is presented on the cryogenic operation of CMOS. Simulations and experiments on components of memory with emphasis on the important input interface amplifier are presented.
Hybrid Josephson-CMOS memory: a solution for the Josephson memory problem
Energy Technology Data Exchange (ETDEWEB)
Duzer, Theodore van [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA (United States); Feng Yijun [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA (United States); Meng Xiaofan [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA (United States); Whiteley, Stephen R [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA (United States); Yoshikawa, Nobuyuki [Department of Electrical and Computer Engineering, Yokohama National University (Japan)
2002-12-01
The history of the development of superconductive memory for Josephson digital systems is presented along with the several current proposals. The main focus is on a proposed combination of the highly developed CMOS memory technology with Josephson peripheral circuits to achieve memories of significant size with subnanosecond access time. Background material is presented on the cryogenic operation of CMOS. Simulations and experiments on components of memory with emphasis on the important input interface amplifier are presented.
Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices
Fujimori, Toshiaki; Iida, Hideaki; Nitta, Muneto
2016-09-01
Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel N -1 domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The N -1 domain walls behave as insulators separating N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors separated by two insulators, we find for the former case that the interaction between two Josephson vortices on different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls. In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the domain walls. Our predictions should be verified in multilayered Josephson junctions.
Self-heating in Josephson junction chains. New insight from old circuits
Energy Technology Data Exchange (ETDEWEB)
Cole, Jared [Chemical and Quantum Physics, School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia); Marthaler, Michael [Institute fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Duty, Timothy [Centre for Engineered Quantum Systems (EQuS), School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia)
2016-07-01
The conduction properties of arrays of Josephson junctions are been studied for decades, yet the experimental results never really match the predictions of the idealised theoretical models. Many reasons have been given for this, including imperfections in the measurement, in the fabrication process or in the theoretical models used. Recently, using a combination of systematic numerical and experimental studies, the gap between theory and experiment is closing. As an example of this, we discuss the role of self-heating in the transport properties of one-dimensional Josephson junction chains. We show tantalising experimental measurements and how these can be compared to various theoretical models for the self-heating processes within the chains.
Defect formation in long Josephson junctions
DEFF Research Database (Denmark)
Gordeeva, Anna; Pankratov, Andrey
2010-01-01
We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...
delta-biased Josephson tunnel junctions
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelet, V.
2010-01-01
Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...
Modelling and Analysis of Long Josephson Junctions
Visser, T.P.P.
2002-01-01
For various reasons people have been interested in Josephson junctions. Ranging from "understanding nature" to building quantum computers. In this thesis we focus on a special type of junction (the long junction) and to a special type of problem fluxon dynamics.
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig
1999-01-01
We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high T-c superconductors of the BSCCO type is discussed....
Internal dynamics of long Josephson junction oscillators
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.
1981-01-01
Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numerical...
Holographic Josephson junction from massive gravity
Hu, Ya-Peng; Li, Huai-Fan; Zeng, Hua-Bi; Zhang, H.
2016-01-01
We study the holographic superconductor-normal metal-superconductor (SNS) Josephson junction in de Rham-Gabadadze-Tolley massive gravity. If the boundary theory is independent of spatial directions, i.e., if the chemical potential is homogeneous in spatial directions, we find that the graviton mass
Exponentially tapered Josephson flux-flow oscillator
DEFF Research Database (Denmark)
Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.
1996-01-01
We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train of flu...
Microscopic tunneling theory of long Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm
1992-01-01
We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...
Soliton bunching in annular Josephson junctions
DEFF Research Database (Denmark)
Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter
1996-01-01
By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used to ...
Ferromagnetic Josephson junctions with niobium nitride
Yamashita, Taro; Makise, Kazumasa; Kawakami, Akira; Terai, Hirotaka
Recently, novel physics and device applications in hybrid structures of superconductor (SC) and ferromagnet (FM), e.g., spin injection into SC, long-range Josephson effect, cryogenic memory, have been studied actively. Among various interesting phenomena in SC/FM structures, a π state (π junction) emerged in ferromagnetic Josephson junctions (SC/FM/SC) is attractive as a superconducting phase shifter for superconducting devices. In the present work, we developed the ferromagnetic Josephson junction in order to realize a quiet superconducting flux qubit with a π junction. Contrary to conventional flux qubits, the qubit with a π junction can be operated without an external magnetic field which is a noise source, and thus good coherence characteristics is expected. As a superconducting material, we adopted niobium nitride (NbN) with high superconducting critical temperature of 16 K, which can be grown epitaxially on a magnesium oxide substrate. Regarding the ferromagnetic material we used copper nickel (CuNi), and fabricated the NbN/CuNi/NbN junctions and then evaluated the dependences of the Josephson critical current on the temperature, thickness and so on. This research was supported by JST, PRESTO.
Fluxon density waves in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig
1993-01-01
Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....
Markovian Dynamics of Josephson Parametric Amplification
Directory of Open Access Journals (Sweden)
W. Kaiser
2017-09-01
Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Markovian Dynamics of Josephson Parametric Amplification
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Josephson noise thermometry with high temperature superconducting devices
Peden, D A
2000-01-01
High Temperature Superconducting devices for absolute Noise Thermometry are under development for the measurement of temperature in the 10-50 K range. This Thesis is concerned with two complementary methods which have been developed in parallel. The first technique, Josephson Linewidth Thermometry, uses a HTS Josephson junction shunted by a low resistance noble metal resistor. The conversion of thermal voltage fluctuations via the ac Josephson effect results in thermal broadening of the Josephson oscillation linewidth. Single and double junction HTS R-SQUIDs have been fabricated where a shunt resistance approx 25 mu OMEGA has been achieved. In the double junction R-SQUIDs, where the voltage across the terminals is modulated at the Josephson heterodyne frequency, the first reported observations of Josephson heterodyne oscillations in HTS R-SQUIDs have been made and the linearity of the voltage-frequency relationship established. The second approach, known as the Quantum Roulette Noise Thermometer, uses the the...
Gijsbertsen, J. G.; Houwman, E. P.; Klopman, B. B. G.; Flokstra, J.; Rogalla, H.; Quenter, D.; Lemke, S.
1995-02-01
We investigated the magnetic-field dependence of the Josephson current and Fiske resonances in specially shaped Josephson junctions. In order to be able to use junctions for high-resolution X-ray spectroscopy, a very good suppression of the sidelobes of both the Josephson current and the Fiske resonances must be achieved. In a theoretical argument we show that a properly chosen junction shape leads to the sidelobe suppression of both the critical current and Fiske resonance amplitudes. The Josephson current and Fiske resonance amplitudes were measured as a function of the magnetic field, for junctions fabricated in Nb/Al technology. As expected, a very good sidelobe suppression was obtained for quartic-shaped junctions. For junctions with anodized structures within the tunneling area, the shape of the internal structures is reflected in the field dependence of both the Josephson current and the Fiske resonances. Finally, Fiske modes in these junctions have been imaged with low-temperature scanning electron microscopy, and we conclude that a quartic junction can be approximated by a rectangle, to describe the lower-order Fiske modes, whereas the high-order modes are specific to the exact shape of the junction.
Shot noise in YBCO bicrystal Josephson junctions
DEFF Research Database (Denmark)
Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.
2003-01-01
We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... measurements were carried out within frequency bands of 1-2 GHz and 0.3-300 kHz. At bias voltages 10 less than or equal to V less than or equal to 60 mV a linear voltage dependence of noise power has been registered, while at V less than or equal to 5 mV a noticeable noise rise has been observed. The latter...
Hybrid-free Josephson Parametric Converter
Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.
A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.
Phase-locked Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1991-01-01
Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...
Dynamics of three coupled long Josephson junctions
DEFF Research Database (Denmark)
Hattel, Søren A.; Grunnet-Jepsen, Anders; Samuelsen, Mogens Rugholm
1996-01-01
The dynamics of a system of three long Josephson transmission lines coupled at a common end point is investigated. We report several periodic fluxon states and trace out the corresponding zero field steps. The boundary conditions at the common point lead to a very different stability of steps...... for odd and even numbers of fluxons. In addition we find two ''normal state'' branches for the IV curve, where either two or three of the branches are in their normal state....
Intrinsically shunted Josephson junctions for electronics applications
Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.
2017-07-01
Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.
Solitonic Josephson-based meminductive systems
Guarcello, Claudio; Solinas, Paolo; di Ventra, Massimiliano; Giazotto, Francesco
2017-04-01
Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systems belong to the general class of memelements, few of them combine these important physical features in a single component. Here, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.
An automated 55 GHz cryogenic Josephson sampling oscilloscope
DEFF Research Database (Denmark)
Bodin, P.; Jacobsen, M. L.; Kyhle, Anders
1993-01-01
A computer-automated superconductive 55 GHz sampling oscilloscope based on 4 kA/cm2, Nb/Nb2O5/Pb edge Josephson junctions is presented. The Josephson sampler chip was flip-chip bonded to a carrier chip with a coplanar transmission line by use of a novel flip-chip bonding machine. A 5.6 ps step pu...
Long Josephson Junction Stack Coupled to a Cavity
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.
2007-01-01
A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...
Feynman's and Ohta's Models of a Josephson Junction
De Luca, R.
2012-01-01
The Josephson equations are derived by means of the weakly coupled two-level quantum system model given by Feynman. Adopting a simplified version of Ohta's model, starting from Feynman's model, the strict voltage-frequency Josephson relation is derived. The contribution of Ohta's approach to the comprehension of the additional term given by the…
Dynamic behavior of Josephson-coupled layered structures
DEFF Research Database (Denmark)
Kleiner, R.; Müller, P.; Kohlstedt, H.
1994-01-01
We have investigated Josephson effects in stacks of both artificial and natural Josephson junctions. The measurements have been performed on Nb/Al-AlO(x)/Nb multilayers and on small single crystals of Bi2Sr2CaCu2O8. Both systems exhibit multiple branched I-V characteristics in zero magnetic field...
Modern aspects of Josephson dynamics and superconductivity electronics
Askerzade, Iman; Cantürk, Mehmet
2017-01-01
In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.
REVIEW ARTICLE: A review of Josephson comparison results
Wood, B. M.; Solve, S.
2009-12-01
In March 2009, the Consultative Committee for Electricity and Magnetism (CCEM) reviewed and re-endorsed its recommendations originally proposed during its 25th meeting (April 2007) for changes in the SI electrical units (Recommendation E-1). Among its considerations, the document stated that the representation of the volt using the Josephson effect and the conventional value of the Josephson constant, KJ-90, has provided practical, accessible, reproducible, low noise and highly linear references worldwide since 1990. We summarize the measurement results of comparisons between Josephson voltage standards that help support this statement, especially concerning the accuracy and the simplicity of the Josephson relationship between voltage and frequency. We also detail a list of influence parameters and the ranges over which the Josephson relationship has been tested.
Dynamical Properties of Two-Dimensional Josephson Junction Arrays
1990-05-01
steps. In this regime the step widths are found to be identical to the ac voltage-biased step widths. It can be shown (see Van Duzer and Turner, 1981, p...to the ’washboard’ model for single junctions, where the current term is included in the ’effective’ potential (see Van Duzer and Turner, 1981, pp. 179...Diego, 1989), pp. 91-134. Van Duzer , T., and C. W. Turner, Principles of Superconductive Devices and Circuits (Elsevier North Holland, New York, 1981
Spin superfluid Josephson quantum devices
Takei, So; Tserkovnyak, Yaroslav; Mohseni, Masoud
2017-04-01
A macroscopic spintronic qubit based on spin superfluidity and spin Hall phenomena is proposed. This magnetic quantum information processing device realizes the spin-supercurrent analog of the superconducting phase qubit and allows for full electrical control and readout. We also show that an array of interacting magnetic phase qubits can realize a quantum annealer. These devices can be built through standard solid-state fabrication technology, allowing for scalability. However, the upper bound for the operational temperature can, in principle, be higher than the superconducting counterpart, as it is ultimately governed by the magnetic ordering temperatures, which could be much higher than the critical temperatures of the conventional superconducting devices.
Josephson junctions with ferromagnetic alloy interlayer
Energy Technology Data Exchange (ETDEWEB)
Himmel, Nico
2015-07-23
Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially
Flux interactions on stacked Josephson junctions
DEFF Research Database (Denmark)
Scott, Alwyn C.; A., Petraglia
1996-01-01
Perturbation methods are used to study the dynamics of locked fluxon modes on stacked Josephson junctions and single crystals of certain high-T-c, superconductors. Two limiting cases are considered: (i) The nonlinear diffusion regime in which fluxon dynamics are dominated by energy exchange between...... the bias and loss parameters, and (ii) the propagating regime in which the interplay between magnetic and electric field energies governs the fluxon dynamics. Conditions for stability of locked fluxon modes are shown to be different in these two regimes....
Line width of Josephson flux flow oscillators
DEFF Research Database (Denmark)
Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.
2002-01-01
spacing of about 20 nV and extremely low differential resistance, recently observed in the IVC of the standard rectangular geometry. The obtained results have been compared with existing theories and FFO models in order to understand and possibly eliminate excess noise in the FFO. The intrinsic line width...... increases considerably at voltages above the boundary voltage because of the abrupt increase of the internal damping due to Josephson self-coupling. The influence of FFO parameters, in particular the differential resistances associated both with the bias current and with the applied magnetic field...
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sakai, S
1998-01-01
We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high-T-c superconductors of the Bi2Sr2CaCu2Ox type is discussed. Our approach allows us to give full details of the different plasma resonance excitations, and we also predict the existence of new nonlinear effects, so far only identified in single junctions....
Phase locking between Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1990-01-01
We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...
Fluxon Dynamics in Elliptic Annular Josephson Junctions
DEFF Research Database (Denmark)
Monaco, Roberto; Mygind, Jesper
2016-01-01
We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across...... the tunnel barrier separating the two superconducting electrodes. In the absence of an external magnetic field, the fluxon dynamics in an elliptic annulus does not differ from that of a circular annulus where the stationary fluxon speed merely is determined by the system losses. The interaction between...
A semiconductor nanowire Josephson junction microwave laser
Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo
We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to threshold lasing with a power conversion efficiency > 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.
Energy Technology Data Exchange (ETDEWEB)
Black-Schaffer, Annica M.
2010-04-06
We use a tight-binding Bogoliubov-de Gennes (BdG) formalism to self-consistently calculate the proximity effect, Josephson current, and local density of states in ballistic graphene SNS Josephson junctions. Both short and long junctions, with respect to the superconducting coherence length, are considered, as well as different doping levels of the graphene. We show that self-consistency does not notably change the current-phase relationship derived earlier for short junctions using the non-selfconsistent Dirac-BdG formalism but predict a significantly increased critical current with a stronger junction length dependence. In addition, we show that in junctions with no Fermi level mismatch between the N and S regions superconductivity persists even in the longest junctions we can investigate, indicating a diverging Ginzburg-Landau superconducting coherence length in the normal region.
The Josephson effect in atomic contacts; Effect Josephson dans les contacts atomiques
Energy Technology Data Exchange (ETDEWEB)
Chauvin, M
2005-11-15
The Josephson effect appears when a weak-link establishes phase coherence between two superconductors. A unifying theory of this effect emerged in the 90's within the framework of mesoscopic physics. Based on two cornerstone concepts, conduction channels and Andreev reflection, it predicts the current-phase relation for the most basic weak-link: a single conduction channel of arbitrary transmission. This thesis illustrates this mesoscopic point of view with experiments on superconducting atomic size contacts. In particular, we have focused on the supercurrent peak around zero voltage, put into evidence the ac Josephson currents in a contact under constant bias voltage (Shapiro resonances and photon assisted multiple Andreev reflections), and performed direct measurements of the current-phase relation. (author)
Josephson effects in a Bose–Einstein condensate of magnons
Energy Technology Data Exchange (ETDEWEB)
Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)
2014-07-15
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
Energy Technology Data Exchange (ETDEWEB)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V. [State Research Center, Kiev (Ukraine)
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Josephson junctions loaded by transmission lines: a revisited problem.
Ranfagni, Anedio; Cacciari, Ilaria; Moretti, Paolo
2011-11-01
The problem of evaluating dissipative effects in Josephson junctions loaded by transmission lines is reexamined, for either the symmetric or the asymmetric case, with particular consideration of the time domain in which the interaction between junction and load system occurs.
Numerical simulations of flux flow in stacked Josephson junctions
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig
2005-01-01
We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...... numerical simulations, we are able to clearly distinguish between triangular and square vortex lattices and to identify the parameters leading to an in-phase vortex configuration....
Cryotrons based on a simultaneously distributed Josephson contact
Energy Technology Data Exchange (ETDEWEB)
Bakhtin, P.A.; Lapir, G.M.; Makhov, V.I.; Samus, A.N.; Semenov, V.K.; Tyablikov, A.V.
1982-01-01
The features of the construction of cryotrons based on an evenly distributed Josephson contact are examined. The possibility is demonstrated of producing cryotrons with an assigned form of the controlling characteristic through the spatial isolation of the transport and controlling streams. The theoretical and experimental controlling characteristics of cryotrons based on bridges of variable thickness with connectors of normal metal are cited. The proposed principles of cryotron production are also suitable for other types of Josephson contacts.
Energy Technology Data Exchange (ETDEWEB)
Sprungmann, Dirk
2010-01-28
The combination of the Josephson and the proximity effect is possible by the introduction of a ferromagnetic barrier into a Josephson contact resulting in a so called π coupling. The supra current through these contacts is flowing in the reverse direction. Specific new electronic circuits such as phase shifting devices are possible, for instance for high-speed analog-digital transducers. In the frame of this thesis SIFS Josephson contacts were studied, with a barrier consisting of a thin insulating Al2Ox barrier layer and a ferromagnetic thin film. For the ferromagnetic material weak ferromagnetic Ni(0.6)Cu(0.4), the strong ferromagnetic Fe(0.25)Co(0.75) and the ternary Heusler alloys Co2MnSn and Cu2MnAl were used. Josephson contacts with π coupling were realized with the NiCu alloy, triplet superconductivity seems to appear with the Heusler systems.
Lin, Shi-Zeng; Hu, Xiao
2011-04-01
The nano-scale intrinsic Josephson junctions in highly anisotropic cuprate superconductors have potential for generation of terahertz electromagnetic waves. When the thickness of a superconductor sample is much smaller than the wavelength of electromagnetic waves in vacuum, the superconductor renders itself as a cavity. Unlike conventional lasers, the presence of the cavity does not guarantee a coherent emission because of the internal degree of freedom of the superconductivity phase in long junctions. We study the excitation of terahertz wave by solitons in a stack of intrinsic Josephson junctions, especially for relatively short junctions. Coherent emission requires a rectangular configuration of solitons. However such a configuration is unstable against weak fluctuations, contrarily solitons favor a triangular lattice corresponding to an out-phase oscillation of electromagnetic waves. To utilize the cavity, we propose to use an array of stacks of short intrinsic Josephson junctions to generate powerful terahertz electromagnetic waves. The cavity synchronizes the plasma oscillation in different stacks and the emission intensity is predicted to be proportional to the number of stacks squared.
Vortex Fractionalization in a Josephson Ladder
Stroud, David; Tornes, Ivan
2006-03-01
We show numerically that in a Josephson ladder with periodic boundary conditions and subject to a suitable transverse magnetic field, a vortex excitation can break up into two or more fractional excitations. If the ladder has N plaquettes, and N is divisible by an integer q, then in an applied field of 1/q flux quanta per plaquette, the ground state is a regular lattice of one fluxon every q plaquettes. When an additional fluxon is added, it spontaneously breaks up into q fractional fluxons, each carrying 1/q units of vorticity. The fractional fluxons are basically walls between different domains of the underlying 1/q lattice. The fractional fluxons are all depinned at the same applied current and move as a unit. For certain applied fields and ladder lengths, we show that there are isolated fractional fluxons. The fractional fluxons produce a time-averaged voltage related in a characteristic way to the ac voltage frequency.
Advanced Concepts in Josephson Junction Reflection Amplifiers
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti
2014-06-01
Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.
Simplifying the circuit of Josephson parametric converters
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Josephson tunnel junctions with ferromagnetic interlayer
Energy Technology Data Exchange (ETDEWEB)
Weides, M.P.
2006-07-01
Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)
Analog-to-digital conversion for low-frequency waveforms based on the Josephson voltage standard
Kim, Mun-Seog; Kim, Kyu-Tae; Kim, Wan-Seop; Chong, Yonuk; Kwon, Sung-Won
2010-11-01
A waveform synthesizer adopting a superconductor-normal metal-superconductor junction array has been developed, which can generate arbitrary stepwise waveforms with a number of quantum-voltage steps up to 1 V level amplitude. As an application of the synthesizer, we have built a sampling voltmeter that measures the differential voltages between a sinusoidal waveform produced by a semiconductor-based ac source and the Josephson waveforms. We carried out extensive sampling measurements for a 50 Hz sine wave with 1 V amplitude, applying sampling apertures in the range of 55 µs <=ta <= 130 µs and using Josephson waveforms with 32, 60, 80 and 100 quantum steps. From the measurements, the amplitude of the ac waveform was determined with a type A uncertainty (k = 2) of 0.15 µV. Also, we elucidated how the phase jitter in the ac waveform is reflected in the overall uncertainty for the measurements. The type B uncertainty due to the jitter is at least one order of magnitude smaller than the type A uncertainty.
Dias, R G; Coutinho, B C; Martins, L P
2014-01-01
We present a study of Josephson junctions arrays with two-band superconducting elements in the highcapacitance limit. We consider two particular geometries for these arrays: a single rhombus and a rhombi chain with two-band superconducting elements at the spinal positions. We show that the rhombus shaped JJ circuit and the rhombi chain can be mapped onto a triangular JJ circuit and a JJ two-leg ladder, respectively, with zero effective magnetic flux, but with Josephson couplings that are magnetic flux dependent. If the two-band superconductors are in a sign-reversed pairing state, one observes transitions to or from chiral phase configurations in the mapped superconducting arrays when magnetic flux or temperature are varied. The phase diagram for these chiral configurations is discussed. When half-flux quantum threads each rhombus plaquette, new phase configurations of the rhombi chain appear that are characterized by the doubling of the periodicity of the energy density along the chain, with every other two-...
Towards quantum signatures in a swept-bias Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Losert, Harald; Vogel, Karl; Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitaet Ulm, D-89069 Ulm (Germany)
2016-07-01
Josephson junctions are one of the best examples for the observation of macroscopic quantum tunneling. The phase difference in a current-biased Josephson junction behaves like the position of a particle in a tilted washboard potential. The escape of this phase-particle corresponds to the voltage switching of the associated junction. Quantum mechanically, the escape from the washboard potential can be explained as tunneling from the ground state, or an excited state. However, it has been shown, that in the case of periodic driving the experimental data for quantum mechanical key features, e.g. Rabi oscillations or energy level quantization, can be reproduced by a completely classical description. Motivated by this discussion, we investigate a swept-bias Josephson junction in the case of a large critical current. In particular, we contrast the switching current distributions resulting from a quantum mechanical and classical description of the time evolution.
Cavity QED with a Josephson Phase Qubit
Weig, E. M.; Ansmann, M.; Bialczak, R.; Katz, N.; Lucero, E.; McDermott, R.; Neeley, M.; O'Connell, A. D.; Steffen, M.; Martinis, J. M.; Cleland, A. N.; Geller, M. R.
2007-03-01
A superconducting qubit coupled to a microwave resonator is a solid state implementation of cavity quantum electrodynamics. This system allows a study of the coherent interaction of a macroscopic two-level system with a single photon in the strong coupling limit. We have investigated a Josephson phase qubit capacitively coupled to a superconducting coplanar waveguide resonator (CPW). The phase qubit is tunable over a wide frequency range and can thus be brought in and out of resonance with the CPW. Vacuum Rabi oscillations and cavity quantization can be probed spectroscopically as well as in the time domain. An arbitrary quantum state can be initialized in the phase qubit and transferred to the CPW. Using the qubit as sensitive probe of the resonator the relaxation time T1 as well as the dephasing time T2 of the resonator can be measured directly. With lifetimes of the order of several microseconds, high Q resonators are envisioned to act as storage elements for the quantum state of a qubit or as inter-qubit communication bus.
Experimental observation of subharmonic gap structures in long Josephson junctions
DEFF Research Database (Denmark)
Nordahn, M.A.; Manscher, Martin; Mygind, Jesper
1999-01-01
The subharmonic gap structure (SGS) in long-overlap Nb-AlOx-Nb Josephson tunnel junctions has been investigated. The experimental results show peaks in the differential conductance at both odd and even integer fractions of the gap voltage, VG Furthermore, the conductance peaks at V-G/2 has been...... observed to split into two peaks with different characteristics. At high magnetic fields, the I-V characteristics approach a single curve, while retaining the SGS conductance peaks. The gap structure and the SGS show the same temperature dependence. The SGS can be explained by a Josephson self...
Manipulation of pancake vortices by rotating a Josephson vortex lattice
Energy Technology Data Exchange (ETDEWEB)
Crisan, A [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bending, S J [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Tamegai, T [Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)
2008-01-15
Scanning Hall probe microscopy has been used to demonstrate the manipulation of pancake vortices by rotating the Josephson vortex lattice in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals in the interacting crossing lattices regime. Creation of one-dimensional pancake vortex chains trapped on Josephson vortices, and the subsequent rotation of the chains were realized by independently controlling magnetic fields in three orthogonal directions. The anisotropy parameter determined from the in-plane distances between vortex chains in various in-plane fields is consistent with commonly accepted values.
Josephson junction analog and quasiparticle-pair current
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Pedersen, Niels Falsig
1973-01-01
A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair curren....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...
Planar Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monacoa, R.; Aarøe, Morten; Mygind, Jesper
2007-01-01
demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...
Theory of Josephson transport through spintronics nano-structures
Kawabata, Shiro; Asano, Yasuhiro; Tanaka, Yukio; Kashiwaya, Satoshi
2010-02-01
We study the Josephson transport through ferromagnetic insulators (FIs) by taking into account its band structure explicitly. In the case of the fully polarized FIs (FPFIs), we found the formation of a π-junction and an atomic-scale 0-π transition induced by increasing the FI thickness. More remarkably, in the Josephson junction through spin-filter materials such as Eu chalcogenides, the orbital hybridization between the conduction d and the localized f electron gives rise to the π-junction behavior. Such FI-based π-junctions can be used to implement highly coherent solid-state quantum bits.
Reconfigurable Josephson Circulator/Directional Amplifier
Directory of Open Access Journals (Sweden)
K. M. Sliwa
2015-11-01
Full Text Available Circulators and directional amplifiers are crucial nonreciprocal signal routing and processing components involved in microwave read-out chains for a variety of applications. They are particularly important in the field of superconducting quantum information, where the devices also need to have minimal photon losses to preserve the quantum coherence of signals. Conventional commercial implementations of each device suffer from losses and are built from very different physical principles, which has led to separate strategies for the construction of their quantum-limited versions. However, as recently theoretically, by establishing simultaneous pairwise conversion and/or gain processes between three modes of a Josephson-junction-based superconducting microwave circuit, it is possible to endow the circuit with the functions of either a phase-preserving directional amplifier or a circulator. Here, we experimentally demonstrate these two modes of operation of the same circuit. Furthermore, in the directional amplifier mode, we show that the noise performance is comparable to standard nondirectional superconducting amplifiers, while in the circulator mode, we show that the sense of circulation is fully reversible. Our device is far simpler in both modes of operation than previous proposals and implementations, requiring only three microwave pumps. It offers the advantage of flexibility, as it can dynamically switch between modes of operation as its pump conditions are changed. Moreover, by demonstrating that a single three-wave process yields nonreciprocal devices with reconfigurable functions, our work breaks the ground for the development of future, more complex directional circuits, and has excellent prospects for on-chip integration.
Multiple frequency generation by bunched solitons in Josephson tunnel junctions
DEFF Research Database (Denmark)
Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth
1981-01-01
A detailed numerical study of a long Josephson tunnel junction modeled by a perturbed sine-Gordon equation demonstrates the existence of a variety of bunched soliton configurations. Thus, on the third zero-field step of the V-I characteristic, two simultaneous adjacent frequencies are generated...
Enhanced transparency ramp-type Josephson contacts through interlayer deposition
Smilde, H.J.H.; Hilgenkamp, Johannes W.M.; Rijnders, Augustinus J.H.M.; Rogalla, Horst; Blank, David H.A.
2002-01-01
A thin interlayer is incorporated in ramp-type Josephson junctions to obtain an increased transparency. The interlayer restores the surface damaged by ion milling and has the advantage of an all in situ barrier deposition between two superconductors, leading to clean and well-defined interfaces. The
Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
DEFF Research Database (Denmark)
Miroshnichenko, A. E.; Flach, S.; Fistul, M.
2001-01-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...
Study on chaotic behaviors of RCLSJ model Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Hu, Y-T; Zhou, T-g; Gu, J; Yan, S-l; Fang, L; Zhao, X-J [College of Information Technical Science, Nankai University, Tianjin, 300071 (China)], E-mail: huytnankai@yahoo.com.cn
2008-02-15
Chaotic behaviors of the dc-biased resistively-capacitively-inductively shunted Josephson junctions are studied numerically. The existence of the chaos is proved by the spectrum and strange attractor. We also find out the route to chaos is intermittence. The parameter space in which chaos exits is obtained, and different features of the chaos in different parameter range are also given.
Josephson current through a molecular transistor in a dissipative environment
DEFF Research Database (Denmark)
Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten
2005-01-01
We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find a suppr...
Crises in a driven Josephson junction studied by cell mapping
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Davidson, A.; Pedersen, Niels Falsig
1988-01-01
We use the method of cell-to-cell mapping to locate attractors, basins, and saddle nodes in the phase plane of a driven Josephson junction. The cell-mapping method is discussed in some detail, emphasizing its ability to provide a global view of the phase plane. Our computations confirm the existe...
Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions
golovchanskiy, I.A.; Bol'ginov, V.V.; Stolyarov, V.S.; Abramov, N.N.; Ben Hamida, A.; Emelyanova, O.V.; Stolyarov, B.S.; Kupriyanov, M..Y.; Golubov, Alexandre Avraamovitch; Ryazanov, V.V.
2016-01-01
In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal
Fluxon propagation in long Josephson junctions with external magnetic field
DEFF Research Database (Denmark)
Olsen, O.H.; Samuelsen, Mogens Rugholm
1981-01-01
The reflection of a single fluxon propagating in a Josephson line cavity influenced by an external magnetic field is examined numerically. We find a single reflected fluxon, an antifluxon, collapse of the incident fluxon, fission into a higher number of antifluxons or fluxons, and formation...
Quantum dissipative dynamics in nanostructure d-wave Josephson junctions
Kawabata, S.; Kawabata, Shiro; Golubov, Alexandre Avraamovitch; Tanaka, Yukio; Kashiwaya, Satoshi
2007-01-01
The macroscopic quantum dynamics of nano-scale high-Tc superconductor Josephson junctions is investigated theoretically. We analytically obtained the macroscopic quantum tunneling (MQT) rate and showed that the presence of the zero energy bound states at the interface leads to a strong damping
Josephson supercurrent in a topological insulator without a bulk shunt
Snelder, M.; Snelder, M.; Molenaar, C.G.; Molenaar, C.G.; Pan, Yu; Wu, D.; Huang, Y.; de Visser, A.; Golubov, A.A.; Golubov, Alexandre Avraamovitch; van der Wiel, Wilfred Gerard; Hilgenkamp, H.; Golden, M.S.; Brinkman, Alexander
2014-01-01
A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi Sb Te Se . We show that the transport in Bi Sb Te Se exfoliated flakes is dominated by surface states and that the bulk conductivity can be neglected at the temperatures where we study the proximity induced
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
Control of chaotic patterns in a Josephson junction model
DEFF Research Database (Denmark)
Olsen, Ole Hvilsted; Samuelsen, Mogens Rugholm
2000-01-01
The effect of an applied rf signal on the dynamics of a large-area Josephson junction is examined. The problem of controlling spatiotemporal chaotic patterns induced by the external magnetic field is addressed. Chaos control is conducted by a weak spatially distributed force. (C) 2000 Elsevier...
Magnesium-diboride ramp-type Josephson junctions
Mijatovic, D.; Brinkman, Alexander; Oomen, I.; Rijnders, Augustinus J.H.M.; Hilgenkamp, Johannes W.M.; Rogalla, Horst; Blank, David H.A.
2002-01-01
Josephson junctions have been realized in which two superconducting magnesium-diboride (MgB2) layers are separated by a thin MgO barrier layer, using the ramp-type configuration. Their current–voltage characteristics follow the behavior described by the resistively shunted junction model, with an
Externally pumped millimeter-wave Josephson-junction parametric amplifier
DEFF Research Database (Denmark)
Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole
1980-01-01
A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 d...
Current-Phase Relation of Ballistic Graphene Josephson Junctions
Nanda, G.; Aguilera Servin, J.L.; Rakyta, P.; Kormányos, A.; Kleiner, Reinhold; Koelle, Dieter; Watanabe, K; Taniguchi, T; Vandersypen, L.M.K.; Goswami, S.
2017-01-01
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising
Parametric excitation of plasma oscillations in Josephson Junctions
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Særmark, Knud
1973-01-01
A theory is presented for parametric excitation of plasma oscillations in a Josephson junction biased in the zero voltage mode. A threshold curve for the onset of the parametric excitation is deduced via the stability properties of a Mathieu differential equation obtained by a self-consistent lin...... junctions, but perhaps less likely in point contacts. ©1973 American Institute of Physics...
Parametric excitation of plasma oscillations in a Josephson tunnel junction
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig
1975-01-01
Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite−volt......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Phase locked fluxon-antifluxon states in stacked Josephson junctions
DEFF Research Database (Denmark)
Carapella, Giovanni; Constabile, Giovanni; Petraglia, Antonio
1996-01-01
Measurements were made on a two-stack long Josephson junction with very similar parameters and electrical access to the thin middle electrode. Mutually phase-locked fluxon-antifluxon states were observed. The observed propagation velocity is in agreement with the theoretical prediction. The I-V c...... in the junctions coexist with fluxons. (C) 1996 American Institute of Physics....
Josephson tunnel junctions in a magnetic field gradient
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelets, V.P.
2011-01-01
We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer-like...... be suppressed by an asymmetric magnetic field profile. © 2011 American Institute of Physics....
Aspects of stochastic resonance in Josephson junction, bimodal ...
Indian Academy of Sciences (India)
We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the mechanism ...
Josephson flux-flow oscillator: The microscopic tunneling approach
Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.
2017-07-01
We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.
Switching between dynamic states in intermediate-length Josephson junctions
DEFF Research Database (Denmark)
Pagano, S.; Sørensen, Mads Peter; Parmentier, R. D.
1986-01-01
The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber backgroun...
Negative differential resistance in Josephson junctions coupled to a cavity
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.
2014-01-01
or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find...
Flux flow in high-Tc Josephson junctions
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig
1993-01-01
experimentally. The spatial inhomogeneities considered are on the scale of the Josephson penetration depth (mum). It is demonstrated that the topic is of interest for the construction of amplifiers. Thus when fluxons are generated the resulting flux flow regime proves to be much more sensitive than the uniform...
Phase-locked flux-flow Josephson oscillator
DEFF Research Database (Denmark)
Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.
1992-01-01
. The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...
Nonlinear optical control of Josephson coupling in cuprates
Energy Technology Data Exchange (ETDEWEB)
Casandruc, Eliza
2017-03-15
In High-T{sub C} cuprates superconducting Cu-O planes alternate with insulating layers along the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in series. The most intriguing consequence is that the out-of-plane superconducting transport occurs via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson tunneling equations. Nonlinear interaction between light fields and the superconducting carriers serves as a powerful dynamical probe of cuprates, while offering opportunities for controlling them in an analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this thesis work is to use intense transient light fields to control the interlayer superconducting transport on ultrafast time scales. This was achieved by tuning the wavelength of such light pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in certain cuprates quenches the Josephson tunneling at equilibrium. In a first study, I have utilized strong field terahertz transients with frequencies tuned to the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were excited with narrow-band multi-cycle pulses in La{sub 1.84}Sr{sub 0.16}CuO{sub 4} while broad-band half-cycle pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in La{sub 1.905}Ba{sub 0.095}CuO{sub 4}. These experiments are supported by extensive modeling, showing exceptional agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects near the JPR frequency. Then, I turned to investigate the competition between
Effect of nonequilibrium quasiparticle flow on SNS Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Kaplunenko, V.K.; Ryazanov, V.V.; Shmidt, V.V.
1985-10-01
Experiments have been carried out on the effect of a nonequilibrium flow of quasiparticles on the Josephson properties of a Ta-Cu-Ta SNS junction. A nonequilibrium quasiparticle flow can be set up at the junction because the thickness of the superconducting banks of the SNS sandwich is on the order of the depth to which the longitudinal electric field penetrates into the superconductor, and the sandwich is bracketed by thick plates of a normal metal. During the injection of quasiparticles into one of the superconducting banks of the SNS junction, Josephson generation is excited at the junction; the total current flowing across the junction is zero. The nonequilibrium quasiparticle current which flows across the SNS junction is several times the critical current I/sub c/ and has no direct effect on its Josephson characteristics. The appearance of a difference in the electrochemical potentials of the pairs and of Josephson generation at the junction is due exclusively to the flow of the superconducting current. The experimental results are analyzed on the basis of an equivalent circuit proposed for the junction by Kadin, Smith, and Skocpol (J. Low Temp. Phys. 38, 497 (1980)), simplified somewhat for the case at hand. A study of the temperature dependence of the effects shows that at T> or =0.97T/sub c/ the nonequilibrium quasiparticle current in the normal Josephson intermediate layer of the junction does not depend on Andreev reflection processes at the NS interfaces. The scale time for electron-phonon energy relaxation in the tantalum used as the superconductor is estimated to be tau/sub Epsilon/roughly-equal 4.0 x 10/sup -1/ s.
Single-Shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator
2016-01-11
Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator Philip Kranz1, Andreas Bengtsson1, Michaël Simoen1, Simon...Josephson Parametric Oscillator Philip Krantz1, Andreas Bengtsson1, Michaël Simoen1, Simon Gustavsson2, Vitaly Shumeiko1, W. D. Oliver2,3, C. M...2016) We propose and demonstrate a new read-out technique for a superconducting qubit by dispersively coupling it to a Josephson parametric
Direct detection of the Josephson radiation emitted from superconducting thin-film microbridges
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper
1976-01-01
We report direct measurements of the Josephson radiation emitted in X band from a superconducting thin-film microbridge coupled to a resonance cavity. Power is emitted if one of the harmonics of the Josephson frequency is in the bandwidth of the receiver. The maximum power emitted during our expe...... experiment was 10−13 W. The Josephson radiation could easily be detected at frequencies off resonance. Applied Physics Letters is copyrighted by The American Institute of Physics....
Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant
Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.
2017-11-01
We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.
The 0 and pi contact array model of bicrystal junctions and interferometers
DEFF Research Database (Denmark)
Kornev, Victor K.; Soloviev, Igor I.; Klenov, Nikolai V.
2003-01-01
The array model of the faceted bicrystal Josephson junctions has been developed more comprehensively. The facet size and the facet critical current dependence on. magnetic field are taken in to consideration. The model can be successfully used with high-performance software meant for numerical si...
Fluxon interaction with external rf radiation in Josephson junctions
DEFF Research Database (Denmark)
Kivshar, Yuri S.; Olsen, Ole H.; Samuelsen, Mogens Rugholm
1993-01-01
Interaction of a fluxon with an rf radiation emitted into a long Josephson junction is investigated analytically and numerically. We use a model based on the sine-Gordon equation driven by a periodic force at the boundary with the frequency larger than the plasma frquency of the junction. It is s......Interaction of a fluxon with an rf radiation emitted into a long Josephson junction is investigated analytically and numerically. We use a model based on the sine-Gordon equation driven by a periodic force at the boundary with the frequency larger than the plasma frquency of the junction...... drive is applied, so that the fluxon always moves to the active boundary. We calculate the fluxon parameters and confirm our analytical predictions by direct numerical simulations....
Josephson radiation and shot noise of a semiconductor nanowire junction
van Woerkom, David J.; Proutski, Alex; van Gulik, Ruben J. J.; Kriváchy, Tamás; Car, Diana; Plissard, Sébastian R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.; Geresdi, Attila
2017-09-01
We measured the Josephson radiation emitted by an InSb semiconductor nanowire junction utilizing photon-assisted quasiparticle tunneling in an ac-coupled superconducting tunnel junction. We quantify the action of the local microwave environment by evaluating the frequency dependence of the inelastic Cooper-pair tunneling of the nanowire junction and find the zero-frequency impedance Z (0 )=492 Ω with a cutoff frequency of f0=33.1 GHz . We extract a circuit coupling efficiency of η ≈0.1 and a detector quantum efficiency approaching unity in the high-frequency limit. In addition to the Josephson radiation, we identify a shot noise contribution with a Fano factor F ≈1 , consistently with the presence of single electron states in the nanowire channel.
Low frequency noise in resonant Josephson soliton oscillators
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.
1991-01-01
to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where......The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... RS is the static resistance. The origin of the different behavior is not known...
Non-equilibrium Josephson current through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Pala, M.G. [IMEP-MINATEC (UMR CNRS/INPG/UJF), Grenoble (France); Governale, M.; Koenig, J. [Inst. fuer Theoretische Physik III, Ruhr-Univ. Bochum (Germany)
2007-07-01
We study transport through a quantum dot weakly coupled to both normal and superconducting leads. To this aim, we generalize a diagrammatic real-time transport theory to account for superconductivity in the leads. In particular, we consider a system consisting of a quantum dot tunnel coupled to one normal and two superconducting leads. A finite voltage can be applied between the normal and the superconducting leads to drive the dot out of equilibrium. The dot is described by a single, spin-degenerate level, with arbitrary Coulomb repulsion U. The tunnel coupling to the superconducting leads induces a coherent superposition of the empty and doubly occupied dot states (proximity effect). In turn, this may mediate a Josephson current between the two superconductors. We find a situation in which the Josephson current is switched on due to the interplay of Coulomb interaction and non-equilibrium in the dot. (orig.)
Power-dependent internal loss in Josephson bifurcation amplifiers
Watanabe, Michio; Inomata, Kunihiro; Yamamoto, Tsuyoshi; Tsai, Jaw-Shen
2009-11-01
We have studied nonlinear superconducting resonators: λ/2 coplanar-waveguide (CPW) resonators with Josephson junctions (JJs) placed in the middle and λ/4 CPW resonators terminated by JJs, which can be used for the qubit readout as “bifurcation amplifiers.” The nonlinearity of the resonators arises from the Josephson junctions, and because of the nonlinearity, the resonators with appropriate parameters are expected to show a hysteretic response to the frequency sweep, or “bifurcation,” when they are driven with a sufficiently large power. We designed and fabricated resonators whose resonant frequencies were around 10 GHz. We characterized the resonators at low temperatures, Tresonators with increasing drive power in the relevant power range. As a possible origin of the power-dependent loss, the quasiparticle channel of conductance of the JJs is discussed.
Quantum and thermal phase escape in extended Josephson systems
Energy Technology Data Exchange (ETDEWEB)
Kemp, A.
2006-07-12
In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)
Josephson supercurrent in a graphene-superconductor junction
Energy Technology Data Exchange (ETDEWEB)
Sarvestani, Esmaeel [Institute for Advanced Simulation, Forschungszentrum Juelich, 52425 Juelich (Germany); Jafari, Seyed Akbar [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of)
2013-07-01
Within the tunneling Hamiltonian formulation for the eight-component spinors, the Josephson critical supercurrent has been calculated in a planar superconductor-normal graphene-superconductor junction. Coupling between superconductor regions and graphene is taken into account by a tunneling Hamiltonian which contains two types of tunneling, intravalley and intervalley tunneling. Within the present tunneling approach, we find that the contributions of two kinds of tunneling to the critical supercurrent are completely separable. Therefore, it is possible to consider the effect of the intervalley tunnelings in the critical supercurrent. The incorporation of these type of processes into the tunneling Hamiltonian exposes a special feature of the graphene Josephson junctions. The effect of intervalley tunneling appears in the length dependence plot of critical current in the form of oscillations. We also present the results for temperature dependence of critical supercurrent and compare with experimental results and other theoretical calculations.
Dissipation in microwave quantum circuits with hybrid nanowire Josephson elements
Mugnai, D.; Ranfagni, A.; Agresti, A.
2017-04-01
Recent experiments on hybrid Josephson junctions have made the argument a topical subject. However, a quantity which remains still unknown is the tunneling (or response) time, which is strictly connected to the role that dissipation plays in the dynamics of the complete system. A simple way for evaluating dissipation in microwave circuits, previously developed for describing the dynamics of conventional Josephson junctions, is now presented as suitable for application even to non-conventional junctions. The method is based on a stochastic model, as derived from the telegrapher's equation, and is particularly devoted to the case of junctions loaded by real transmission lines. When the load is constituted by lumped-constant circuits, a connection with the stochastic model is also maintained. The theoretical model demonstrated its ability to analyze both classically-allowed and forbidden processes, and has found a wide field of applicability, namely in all cases in which dissipative effects cannot be ignored.
Microwave phase locking of Josephson-junction fluxon oscillators
DEFF Research Database (Denmark)
Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.
1990-01-01
Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...... are qualitatively very similar. The map predicts significantly different behaviors for locking at odd and even subharmonic frequencies and at superharmonic frequencies. It also gives indications regarding hysteresis in the current-voltage characteristic, the existence of zero-crossing steps, and a description...
Coexistence of tunneling magnetoresistance and Josephson effects in SFIFS junctions
Directory of Open Access Journals (Sweden)
O. Vávra
2017-02-01
Full Text Available We demonstrate an integration of tunneling magnetoresistance and the Josephson effects within one tunneling junction. Several sets of Nb-Fe-Al-Al2O3-Fe-Nb wafers with varying Al and Fe layers thickness were prepared to systematically explore the competition of TMR and Josephson effects. A coexistence of the critical current IC(dFe and the tunneling magnetoresistance ratio T M R(dFe is observed for iron layer dFe thickness range 1.9 and 2.9 nm. Further optimization such as thinner Al2O3 layer leads to an enhancement of the critical current and thus to an extension of the coexistence regime up to dFe≃3.9 nm Fe.
Fluxon bunching in supercurrent-coupled Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm
1993-01-01
We investigate analytically and numerically the interaction between fluxons of different Josephson junctions coupled through Cooper-pair tunneling. We find that the supercurrent interaction gives rise to attraction between fluxons regardless of their polarity, although fluxons of different polarity...... in interaction between fluxons of equal and opposite polarity are discussed. Numerical simulations of coupled sine-Gordon equations agree very well with the analytical predictions....
Stability of bunched fluxons in magnetically coupled Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Cai, David; Samuelsen, Mogens Rugholm
1993-01-01
The stability of bunched fluxon states in inductively coupled Josephson junctions is analyzed for fluxons of both equal and opposite polarity. We demonstrate that unipolar fluxons may form stable bunched states if the velocity is above a given threshold. The stability of these bunched states is b...... is based on the existence of two characteristic velocities in the coupled system. The result of analytical stability analysis is in excellent agreement with the results of numerical simulations....
Josephson flux-flow oscillators in nonuniform microwave fields
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
2000-01-01
We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by on...... even harmonics of the rf frequency. This result is found to be in good agreement with our numerical results and with experiments....
Effect of surface losses on soliton propagation in Josephson junctions
DEFF Research Database (Denmark)
Davidson, A.; Pedersen, Niels Falsig; Pagano, S.
1986-01-01
We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term plays...... the dominant role in determining the shape and stability of the soliton at high velocity. Applied Physics Letters is copyrighted by The American Institute of Physics....
Spin Orbit coupling and Anomalous Josephson effect in Nanowires
Campagnano, G.; Lucignano, P.; Giuliano, D.; Tagliacozzo, A.
2014-01-01
A superconductor-semiconducting nanowire-superconductor heterostructure in the presence of spin orbit coupling and magnetic field can support a supercurrent even in the absence of phase difference between the superconducting electrodes. We investigate this phenomenon, the anomalous Josephson effect, employing a model capable of describing many bands in the normal region. We discuss geometrical and symmetry conditions required to have finite anomalous supercurrent and in particular we show tha...
Mark Josephson and the ICD: A Personal Perspective
Swerdlow, Charles D
2017-01-01
Mark Josephson dedicated his career to the prevention of premature sudden cardiac death (SCD). Toward that goal, he was an early adopter of the implantable cardioverter defibrillator (ICD) and indefatigable advocate for better ICD technology,[1] both as a clinical tool and as living laboratory to study SCD in ambulatory patients. With characteristic intellectual integrity and analytical rigour, he sought an honest and balanced appraisal of the life-saving benefits and serious complications of...
Synchronization of intrinsic Josephson junctions to a cavity
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig
2004-01-01
In the utilization of intrinsic Josephson junctions of the highly anisotropic BSCCO type for microwave generation the in-phase motion of fluxons in the different layers is highly desirable but difficult to obtain. We propose to couple each stack junction-which constitutes an underdamped fluxon...... oscillator-to an external high-Q resonator. We have numerically investigated the possibility for in-phase fluxon synchronization using the external cavity....
Josephson super-current in graphene-superconductor junction
Sarvestani, E.; Jafari, S. A.
2011-01-01
Within the tunneling Hamiltonian formulation for the eight-component spinors,the Josephson critical super-current has been calculated in a planar superconductor-normal graphene-superconductor junction. Coupling between superconductor regions and graphene is taken into account by a tunneling Hamiltonian which contains two types of tunneling, intra-valley and inter-valley tunneling. Within the present tunneling approach, we find that the contributions of two kinds of tunneling to the critical s...
Theory of the singly quasidegenerate Josephson junction parametric amplifier
DEFF Research Database (Denmark)
Sørensen, O.H.; Dueholm, B.; Mygind, Jesper
1980-01-01
A comprehensive account of the theory of the singly quasidegenerate Josephson junction parametric amplifier is given. In this mode the signal and idler frequencies are both approximately equal to half the pump frequency, and hence the signal and idler channels have a common termination. It is sho...... results are illustrated by self-consistent numerical solutions of the circuit equations. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Mark Josephson and the ICD: A Personal Perspective.
Swerdlow, Charles D
2017-04-01
Mark Josephson dedicated his career to the prevention of premature sudden cardiac death (SCD). Toward that goal, he was an early adopter of the implantable cardioverter defibrillator (ICD) and indefatigable advocate for better ICD technology,[1] both as a clinical tool and as living laboratory to study SCD in ambulatory patients. With characteristic intellectual integrity and analytical rigour, he sought an honest and balanced appraisal of the life-saving benefits and serious complications of this unique therapy.
Measurement of Quantum Phase-Slips in Josephson Junction Chains
Guichard, Wiebke
2011-03-01
Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.
Detecting topological superconductivity with φ0 Josephson junctions
Schrade, Constantin; Hoffman, Silas; Loss, Daniel
2017-05-01
The recent experimental discovery of φ0 Josephson junctions by Szombati et al. [Nat. Phys. 12, 568 (2016), 10.1038/nphys3742], characterized by a finite phase offset in the supercurrent, requires the same ingredients as topological superconductors, which suggests a profound connection between these two distinct phenomena. Here, we show that a quantum dot φ0 Josephson junction can serve as a qualitative indicator for topological superconductivity: microscopically, we find that the phase shift in a junction of s -wave superconductors is due to the spin-orbit induced mixing of singly occupied states on the quantum dot, while for a topological superconductor junction it is due to singlet-triplet mixing. Because of this important difference, when the spin-orbit vector of the quantum dot and the external Zeeman field are orthogonal, the s -wave superconductors form a π Josephson junction, while the topological superconductors have a finite offset φ0 by which topological superconductivity can be distinguished from conventional superconductivity. Our prediction can be immediately tested in nanowire systems currently used for Majorana fermion experiments and thus offers a realistic approach for detecting topological bound states.
0-π phase-controllable thermal Josephson junction
Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco
2017-05-01
Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.
Josephson coupling and plasma resonance in vortex crystal
Energy Technology Data Exchange (ETDEWEB)
Bulaevskii, L. N.; Koshelev, A. E.
2000-01-19
The authors consider the magnetic field dependence of the plasma resonance frequency in vortex crystal state. The authors found that low magnetic field induces a small correction to the plasma frequency proportional to the field. The slope of this linear field dependence is directly related to the average distance between the pancake vortices in the neighboring layers, wandering length. This length is determined by both Josephson and magnetic couplings between layers. At higher fields the Josephson coupling is suppressed collectively and is determined by elastic energy of the vortex lattice. Analyzing experimental data, they found that (1) the wandering length becomes comparable with the London penetration depth near {Tc}, (2) at small melting fields (< 20 G) the wandering length does not change much at the melting transition demonstrating existence of the line liquid phase in this field range, and (3) the self consistent theory of pancake fluctuations describes very well the field dependence of the Josephson plasma resonance frequency up to the melting point.
Search for the in-phase Flux Flow mode in stacked Josephson junctions
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Madsen, Søren Peder
2006-01-01
Josephson vortex flux flow states in stacked Josephson junctions are investigated numerically. The aim of the work is to understand the mechanisms behind the formation of triangular (anti-phase) and square (in-phase) vortex lattices, and is motivated by recent experiments on layered BSCCO type high...
Bifurcation and chaos in a dc-driven long annular Josephson junction
DEFF Research Database (Denmark)
Grnbech-Jensen, N.; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm
1991-01-01
Simulations of long annular Josephson junctions in a static magnetic field show that in large regions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in contrast to previously studied Josephson-junction systems where chaotic behavior has primarily been...
Self-field effects in window-type Josephson tunnel junctions
DEFF Research Database (Denmark)
Monaco, Roberto; Koshelets, Valery P; Mukhortova, Anna
2013-01-01
The properties of Josephson devices are strongly affected by geometrical effects such as those associated with the magnetic field induced by the bias current. The generally adopted analysis of Owen and Scalapino (1967 Phys. Rev. 164, 538) for the critical current, Ic, of an in-line Josephson tunnel...
Collective modes and radiation from gliding Josephson vortex lattice in layered superconductors
Energy Technology Data Exchange (ETDEWEB)
Artemenko, S.N.; Remizov, S.V. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki
1999-12-01
We found that stability of moving lattice of Josephson vortices driven by the transport current is limited by the critical velocity which agrees with the maximum velocity observed in BSCCO in the flux-flow regime. We also predict a peak of the radiation at Josephson plasma frequency which may be observed in high magnetic field. (orig.)
Savel'ev, Sergey; Yampol'skii, V. A.; Rakhmanov, A. L.; Nori, Franco
2010-02-01
The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. We review the problem of linear and nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. The spectrum of these waves is presented, and their excitation is discussed. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, ωJ, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect and the pumping of weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when ∂ω/∂k ≈ 0, caused by both nonlinearity and dissipation, can be observed in the Josephson plasma waves. At frequencies above ωJ, the current-phase nonlinearity can be used for transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunneling of fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices, either in a single Josephson junction or in layered superconductors. Furthermore, the
Fabrication of Josephson junctions by using an atomic force microscope
Song, I S; Kim, D H; Park, G S
2000-01-01
Josephson junctions have been fabricated by using an atomic foce microscope (AFM) for surface modification. YBCO films were fabricated on MgO substrates by using pulsed laser deposition. Surface modification of YBCO strips in the field of conductive AFM tips results in controlled and systematic growth of protrusions across the entire strip. Increasing the negative bias voltage to the AFM tip linearly increases the size of the modified structures. The offset superconducting transition temperature and the critical current values systematically shift to lower temperature and current values with increasing degree of AFM modification.
Displacement of microwave squeezed states with Josephson parametric amplifiers
Energy Technology Data Exchange (ETDEWEB)
Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)
2015-07-01
Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.
Fluxon propagation and Fiske steps in long Josephson tunnel junctions
DEFF Research Database (Denmark)
Erné, S. N.; Ferrigno, A.; Parmentier, R. D.
1983-01-01
) model. Resonant propagating configurations corresponding to the first and third Fiske steps are found. The fundamental frequencies and power levels of the radiation emitted from one end when the junction is biased on the first and third Fiske steps and on the first zero-field step are comparable......The dynamical behavior of fluxons propagating in the presence of an applied magnetic field on an overlap-geometry Josephson tunnel junction of length 5λJ having a McCumber βc=5π is studied by numerical integration of the circuit equations of a 50-section lumped RSJ-type (resistive shunted junction...
Quantum impurities: from mobile Josephson junctions to depletons
Schecter, Michael; Gangardt, Dimitri M.; Kamenev, Alex
2016-06-01
We overview the main features of mobile impurities moving in one-dimensional superfluid backgrounds by modeling it as a mobile Josephson junction, which leads naturally to the periodic dispersion of the impurity. The dissipation processes, such as radiative friction and quantum viscosity, are shown to result from the interaction of the collective phase difference with the background phonons. We develop a more realistic depleton model of an impurity-hole bound state that provides a number of exact results interpolating between the semiclassical weakly interacting picture and the strongly interacting Tonks-Girardeau regime. We also discuss the physics of a trapped impurity, relevant to current experiments with ultra cold atoms.
Stabilized superconductivity in periodically driven Josephson junction chains
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Junichi; Mathey, Ludwig [Center for Optical Quantum Technologies, University of Hamburg, Hamburg (Germany); Institute of Laser Physics, University of Hamburg, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Hamburg (Germany); Cavalleri, Andrea [Max Planck Institute for the Structure and Dynamics of Matter (Germany); University of Oxford (United Kingdom)
2016-07-01
Motivated by recent pump-probe experiments indicating enhanced coherent c-axis transport in an underdoped YBCO, a typical high-T{sub c} superconductor, we study a system of capacitively coupled alternating Josephson junctions periodically driven by laser pulses. Using Langevin simulations, we show that the reduction of current fluctuations is realized through the Kapitza effect for high-frequency driving. In this regime superfluid density calculated from the imaginary part of conductivity is indeed enhanced compared to the thermal value. Calculations based on effective models with renormalized parameters explain this enhancement of superfluid density and other features of driven states.
Shunted-Josephson-junction model. I. The autonomous case
DEFF Research Database (Denmark)
Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.
1977-01-01
The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... of the junction behavior in different regions of the parameter space. Approximate formulas are given for the parameter-space decomposition into regions of qualitatively different junction behavior corroborated by the associated-phase plane portraits and also approximate expressions for the corresponding dc...
Spin-orbit coupling and anomalous Josephson effect in nanowires.
Campagnano, G; Lucignano, P; Giuliano, D; Tagliacozzo, A
2015-05-27
A superconductor-semiconducting nanowire-superconductor heterostructure in the presence of spin-orbit coupling and magnetic field can support a supercurrent even in the absence of phase difference between the superconducting electrodes. We investigate this phenomenon—the anomalous Josephson effect—employing a model capable of describing many bands in the normal region. We discuss the geometrical and symmetry conditions required to have a finite anomalous supercurrent, and in particular we show that this phenomenon is enhanced when the Fermi level is located close to a band opening in the normal region.
How good are one-dimensional Josephson junction models?
DEFF Research Database (Denmark)
Lomdahl, P. S.; Olsen, O.H.; Eilbeck, J. C.
1985-01-01
A two-dimensional model of Josephson junctions of overlap type is presented and shown to reduce to the usual one-dimensional (1D) model in the limit of a very narrow junction. Comparisons between the stability limits for fluxon reflection obtained from the two models suggest that the many results...... obtained from the one-dimensional model can be used for large-area junctions, thus explaining the remarkable agreement between 1D theory and experiments. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Graphene-Based Josephson-Junction Single-Photon Detector
Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung
2017-08-01
We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.
A computer-assisted proof of chaos in Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Yang Xiaosong [Department of Mathematics, Huazhong University of Science and Technology, Wuhan, 430074 (China)] e-mail: yangxs@cqupt.edu.cn; Li Qingdu [Institute for Nonlinear Systems, Chongqing University of Posts and Telecomm., Chongqing 400065 (China)
2006-01-01
This paper presents a rigorous verification of chaos in the RCLSJ model for studying dynamics of the Josephson junction. By carefully picking a suitable cross-section with respect to the attractor, it is shown that for the corresponding Poincare map P obtained in terms of second return time, there exists a closed invariant set {lambda} in this cross-section such that P vertical bar {lambda} is semi-conjugate to a 2-shift map, thus showing existence of chaos in the RCLSJ model.
Linewidth and phase locking of Josephson flux flow oscillators
DEFF Research Database (Denmark)
Mygind, Jesper; Koshelets, V. P.; Shitov, S. V.
2000-01-01
We report on measurements of the linewidth of the emitted radiation from Josephson Flux Row Oscillators (FFOs). Frequency and phase locking to an external 10 MHz reference oscillator an demonstrated experimentally in the frequency range 270-440 GHz. A linewidth as low as 1 Hz (as determined by th......-band tunability and low noise are important for radio astronomy and air- and space-borne spectroscopy for atmospheric research and environmental monitoring. (C) 2000 Elsevier Science B.V. All rights reserved....
Laminar phase flow for an exponentially tapered Josephson oscillator
DEFF Research Database (Denmark)
Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.
2000-01-01
the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow......Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...
de Lange, G; van Heck, B; Bruno, A; van Woerkom, D J; Geresdi, A; Plissard, S R; Bakkers, E P A M; Akhmerov, A R; DiCarlo, L
2015-09-18
We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively shunted single elements behave as transmon circuits with electrically tunable transition frequencies. Two-element circuits also exhibit transmonlike behavior near zero applied flux but behave as flux qubits at half the flux quantum, where nonsinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in a magnetic field.
Linewidth of Josephson oscillations in YBa2Cu3O7-x grain-boundary junctions
DEFF Research Database (Denmark)
Divin, Yu. Ya.; Mygind, Jesper; Pedersen, Niels Falsig
1993-01-01
The AC Josephson effect in YBa2Cu3O7-x grain-boundary junctions (GBJs) was studied in the temperature range from 4 K to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured, and it is shown that the derived effective noise temperature of GBJ might...... be as low as the physical temperature in the temperature range investigated. This makes it possible to use the resistively shunted junction (RSJ) model with thermal fluctuations to get a limiting performance of high-T c devices utilizing the AC Josephson effect. The lowest value of the linewidth of 72 GHz...
Static properties of small Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monaco, R.; Aarøe, Morten; Mygind, Jesper
2008-01-01
The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase...... profile from which the dependence of the maximum Josephson current on the applied field amplitude is derived. The most common geometrical configurations are considered and, when possible, the theoretical findings are compared with the experimental data. ©2008 American Institute of Physics...
Hamedi, Hamid Reza
2015-03-01
This letter investigates the dynamical behavior of the absorption in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is found that the ratio of the Josephson coupling energy to the capacitive coupling strength provides an extra controlling parameter for manipulating transient absorption behaviors. It is also realized that in the presence of an incoherent pumping field, lasing without inversion can be obtained just through the joint effect of the Josephson coupling energy and the capacitive coupling strength. Results may provide some new possibilities for solid-state quantum information science.
DEFF Research Database (Denmark)
Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig
1997-01-01
self-energy (from the cold to the hot end of the junction). A phenomenon, the ''zero crossing flux flow step'' (ZCFFS) with a nonzero voltage at a zero applied current, was observed in nonuniform long Josephson junctions. The phenomenon is due to the existence of a preferential direction...... for the Josephson vortex motion. ZCFFS's were observed at certain magnetic fields when the critical current in one direction but not the other becomes zero. Possible applications of nonuniform Josephson junctions in flux flow oscillators and as a superconducting diode are discussed....
What happens in Josephson junctions at high critical current densities
Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.
2017-07-01
The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.
Effect of colored noise on an overdamped Josephson junction
Genchev, Z. D.
2001-03-01
In this paper my attention is restricted to stochastic differential equation in phase function φ(t), describing an overdamped Josephson junction. I accept the RSJ (resistively shunted junction) modeling, when the contact characterized by resistance R and critical current I c is under the action of a given direct current I and stochastic current source Ĩ(t) (=0) : {ℏ}/{2 eR }{dφ }/{dt }+I csinφ=I+ Ĩ(t). In our case the thermal noise is a Gaussian process and obeys the Johnson-Nyquistr correlation law C(t)== {ℏ}/{2πR}∫ -∞∞dω ω coth{ℏω}/{2k BT }cosωt. The effective Fokker-Planck equation is derived and the current-voltage characteristics (CVCs) of the Josephson junction are calculated for weakly colored noise. In the limit limℏ→0C(t)= {2k BT }/{R}δ(t) the well-known results for white noise are recovered.
Ballistic Josephson junctions in edge-contacted graphene.
Calado, V E; Goswami, S; Nanda, G; Diez, M; Akhmerov, A R; Watanabe, K; Taniguchi, T; Klapwijk, T M; Vandersypen, L M K
2015-09-01
Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest-quality graphene/superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here, we report graphene-based Josephson junctions with one-dimensional edge contacts of molybdenum rhenium. The contacts exhibit a well-defined, transparent interface to the graphene, have a critical magnetic field of 8 T at 4 K, and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase-coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-Pérot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 μm. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.
Effect of thick barrier in a gapped graphene Josephson junction
Suwannasit, Tatnatchai; Liewrian, Watchara
2017-09-01
We study the Josephson effect in a gapped graphene-based superconductor/barrier/superconductor junction using the Dirac-Bogoliubov de Gennes (DBdG) equation for theoretical prediction. A massive gap of this regime is induced by fabricating a monolayer graphene on substrate-induced bandgap and superconductivity is acquired by the proximity effect of conventional superconductor (s-wave superconductor) through top gate electrodes. This Josephson junction is investigated in case of thick barrier limit that is pointed out the effect of applying a gate voltage VG in the barrier. We find that the switching supercurrent can be controlled by the gate VG and the effect of thick barrier can influence the switching linear curve. When the barrier is adjusted to manner of a potential well which is inside the range of -m{v}F2≤ {V}G≤ 0, the supercurrent in the thick barrier case is examined to the same behavior as the thin barrier case. The controlling supercurrent through the electrostatic gate is suitable for alternative mechanism into experimental test.
Phase dynamics of low critical current density YBCO Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); Carillo, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Galletti, L. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)
2014-08-15
Highlights: • We study the phase dynamics of YBaCuO Josephson junctions using various tools. • We derive information on the dissipation in a wide range of transport parameters. • Dissipation in such devices can be described by a frequency dependent damping model. • The use of different substrates allows us to tune the shell circuit. - Abstract: High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current–voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.
Majorana zero modes in Dirac semimetal Josephson junctions
Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander
We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.
Thermalization of a quenched Bose-Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)
2015-07-01
The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.
Ebisu, H.; Lu, B.; Taguchi, K.; Golubov, Alexandre Avraamovitch; Tanaka, Y.
2016-01-01
We consider a superconducting nanowire proximity coupled to a superconductor/ferromagnet/superconductor (S/F/S) junction, where the magnetization penetrates into a superconducting segment in a nanowire decaying as ∼exp[−∣n∣ξ], where n is the site index and the ξ is the decay length. We tune chemical
Theory of the Josephson effect in unconventional superconducting junctions with diffusive barriers
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study theoretically the Josephson effect in junctions based on unconventional superconductors with diffusive barriers, using the quasiclassical Green's function formalism. Generalized boundary conditions at junction interfaces applicable to unconventional superconductors are derived by
DEFF Research Database (Denmark)
Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.
1976-01-01
The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions a l...... a large-amplitude microwave signal is emitted at fp provided the input power exceeds a threshold value. The results are compared to existing theory. Applied Physics Letters is copyrighted by The American Institute of Physics.......The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...
Voltage tunable differential heterodyne spectroscopy in the far-infrared with Josephson junctions
Ulrich, B. T.
1978-01-01
The basic methods of differential heterodyne spectroscopy with Josephson junctions are described. A technique is outlined for bridging the gap between a local oscillator frequency and a signal frequency through the use of a voltage-tunable internal oscillation frequency in a Josephson junction structure. It is shown that an intermediate frequency can be converted to a conveniently low frequency by double frequency conversion carried out directly in a Josephson junction. The expected conversion efficiency is estimated qualitatively. Experiments are discussed in which the differential heterodyne frequency-conversion technique was demonstrated at a wavelength of 0.4 mm and a voltage-tunable oscillation in a double Josephson junction structure was observed, with oscillation line widths as narrow as 0.5 Hz, for a resistance of 3.3 nanohms and an estimated inductance of the order of 1 nH.
Josephson Current in a Quantum Dot in the Kondo Regime Connected to Two Superconductors
Campagnano, G.; Giuliano, D.; Tagliacozzo, A.
2001-01-01
We apply a Gutzwiller-like variational technique to study Josephson conduction across a quantum dot with an odd number of electrons connected to two superconducting leads. We show that, for small values of the superconducting gap, Kondo correlations and superconductivity cooperate to enhance the Josephson current. As the superconducting gap increases, the current changes sign and the system becomes a $\\pi$-junction. The $\\pi$-junction behavior sets in much before antiferromagnetic correlation...
Josephson coupling in junctions made of monolayer graphene on SiC
Jouault, B.; Charpentier, S.; Massarotti, D.; Michon, A.; Paillet, M.; Huntzinger, J. -R.; Tiberj, A.; Zahab, A.; Bauch, T.; Lucignano, P.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.
2016-01-01
Graphene on silicon carbide (SiC) has proved to be highly successful in Hall conductance quantization for its homogeneity at the centimetre scale. Robust Josephson coupling has been measured in co-planar diffusive Al/monololayer graphene/Al junctions. Graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices, giving also promise of ballistic propagation.
Fluctuating pancake vortices revealed by dissipation of the Josephson vortex lattice
Koshelev, A.E.; Buzdin, A. I.; Kakeya, I.; T. Yamamoto; Kadowaki, K
2011-01-01
In strongly anisotropic layered superconductors in tilted magnetic fields, the Josephson vortex lattice coexists with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson vortex lattice is very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller than the corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the fluctuational regime either near the s...
The role of magnetic fields for curvature effects in Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Jarmoliński, A.; Dobrowolski, T., E-mail: dobrow@up.krakow.pl
2017-06-01
The large area Josephson junction is considered. On the basis of Maxwell equations the influence of the magnetic field on fluxion dynamics is considered. The presented studies show that assumptions presumed in the literature do not restrict experimental settings adopted in the considerations of the fluxion movement in the Josephson junction. It is shown that the particular orientation of the magnetic fields is not needed in order to study physical effects of curvature and therefore they do not restrict the experimental arrangements.
Breathers in Josephson junction ladders: resonances and electromagnetic wave spectroscopy.
Miroshnichenko, A E; Flach, S; Fistul, M V; Zolotaryuk, Y; Page, J B
2001-12-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the power of ac oscillations away from the breather center (the breather tail) displays singularities as the externally applied dc bias decreases. All these features may be mapped to the spectrum of EE's that has been derived analytically and numerically. Using an improved analysis of the breather tail, a spectroscopy of the EE's is developed. The nature of breather instability driven by localized EE's is established.
High-performance passive microwave survey on Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M. [State Research Center of Superconductive Radioelectronics, Kiev (Ukraine)
1994-12-31
The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.
Shunted-Josephson-junction model. II. The nonautonomous case
DEFF Research Database (Denmark)
Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.
1977-01-01
The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition........ The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...
Hysteresis in rf-driven large-area josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1986-01-01
We have studied the effect of an applied rf signal on the radiation emitted from a large-area Josephson junction by means of a model based on the sine-Gordon equation. The rms value of the voltage of the emitted signal has been calculated and a hysteresis loop found. An analysis shows that the hy...... such as threshold value and level of the branch are predicted analytically....... that the hysteresis is due to the nonlinearity in the system, i.e., the dynamics of the lower branch can be described by a solution to the linearized system while the upper branch is described by a breather mode. These solutions are frequency locked to the driving signal. Various characteristics of the loop...
High-efficiency thermal switch based on topological Josephson junctions
Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.
2017-02-01
We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.
Andreev levels in a Josephson superconductor graphene superconductor nanostructure
Energy Technology Data Exchange (ETDEWEB)
Manjarrés, Diego A., E-mail: damanjarrnsg@unal.edu.co; Gomez P, S., E-mail: sgomezp@unal.edu.co; Herrera, William J., E-mail: jherreraw@unal.edu.co
2014-12-15
We obtain the bound states in superconductor-graphene-superconductor nanostructure, which are responsible for the Josephson effect. The coupling between graphene and each superconducting region is modeled as two different hopping parameters in the respective SG and GS interfaces. With the purpose of determining the local density of states and the spectrum, the Green function of the junction is calculated resolving the Dyson equation. We obtain that the number of levels depends on the width and doping of graphene region and this occurs for the two types of edge (armchair or zigzag). We investigate the behavior of the bound states as a function of the transparency. In the limit of a transparent junction, the results obtained by the Green's function method reproduce those present in the literature. In the tunnel limit the spectrum is different for armchair and zigzag edges.
Andreev levels in a Josephson superconductor graphene superconductor nanostructure
Manjarrés, Diego A.; Gomez P., S.; Herrera, William J.
2014-12-01
We obtain the bound states in superconductor-graphene-superconductor nanostructure, which are responsible for the Josephson effect. The coupling between graphene and each superconducting region is modeled as two different hopping parameters in the respective SG and GS interfaces. With the purpose of determining the local density of states and the spectrum, the Green function of the junction is calculated resolving the Dyson equation. We obtain that the number of levels depends on the width and doping of graphene region and this occurs for the two types of edge (armchair or zigzag). We investigate the behavior of the bound states as a function of the transparency. In the limit of a transparent junction, the results obtained by the Green's function method reproduce those present in the literature. In the tunnel limit the spectrum is different for armchair and zigzag edges.
Simultaneous quasiparticle and Josephson tunneling in BSCCO-2212 break junctions.
Energy Technology Data Exchange (ETDEWEB)
Ozyuzer, L.
1998-10-27
Tunneling measurements are reported for superconductor-insulator-superconductor (SIS) break junctions on underdoped, optimally-doped, and overdoped single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212). The junction I-V characteristics exhibit well-defined quasiparticle current jumps at eV = 2A as well as hysteretic Josephson currents. The quasiparticle branch has been analyzed in the framework of d{sub x{sup 2}-y{sup 2}} (d-wave) superconductivity and indicates that there is preferential tunneling along the lobe directions of the d-wave gap. For overdoped Bi-2212 with T{sub c} = 62 K, the Josephson current is measured as a function of junction resistance, R{sub n}, which varied by two orders of magnitude (1 k{Omega} to 100 k{Omega}). I{sub c}R{sub n} product is proportional to the 0.47 power of I{sub c} and displays a maximum of 7.0 mV. When the hole doping is decreased from overdoped (T{sub c} = 62 K) to the underdoped regime (T{sub c} = 70 K), the average I{sub c}R{sub n} product increases as does the quasiparticle gap. The maximum I{sub c}R{sub n} is {approximately} 40% of the {Delta}/e at each doping level, with a value as high as 25 mV in underdoped Bi-2212.
Resonant tunneling in small current-biased Josephson Junctions
Energy Technology Data Exchange (ETDEWEB)
Schmidt, John Mark [Univ. of California, Berkeley, CA (United States)
1994-05-01
Effects of resonant tunneling between bound quantum states of a current-biased Josephson tunnel junction is studied both theoretically and experimentally. Several effects are predicted to arise from resonant tunneling, including a series of voltage peaks along the supercurrent branch of the current-voltage characteristic, and enhanced rate of escape from zero voltage state to voltage state at particular values of bias current. A model is developed to estimate magnitude and duration of voltage peaks, and to estimate enhancement of the escape rate, which appears as peaks in the rate as a function of bias current. An experimental investigation was carried out in an attempt to observe these predicted peaks in the escape rate distribution in a current-biased DC SQUID, which is shown to be dynamically equivalent to a Josephson junction with adjustable critical current. Electrical contact to each SQUID (fabricated from aluminium) was made through high resistance thin film leads located on the substrate. These resistors provided a high impedance at the plasma frequency which is for the isolation of the SQUID from its electromagnetic environment. Measurements were carried out on a dilution refrigerator at temperatures as low as 19 mK. No evidence was found for resonant tunneling; this is attributed to effective temperatures of hundreds of millikelvin. The behavior is well explained by a heating model where the high effective temperatures are generated by ohmic heating of the electron gas of the isolation resistors, which decouples from the phonon system (hot electron effect). The prospects for further theoretical and experimental research are discussed.
DEFF Research Database (Denmark)
Andersen, Christian Kraglund; Mølmer, Klaus
2013-01-01
variable: the phase change across a Josephson junction. The Josephson junction phase variable behaves as the position coordinate of a particle moving in a tilted washboard potential, and our general solution to the motion in such a potential with a time-dependent tilt reproduces a number of features...
Magnetoanisotropic Josephson effect in superconductor/ferromagnet/superconductor (S/F/S) junctions
Costa, Andreas; Hoegl, Petra; Fabian, Jaroslav
Heterostructures combining two nominally antagonistic states-superconductivity and ferromagnetism-are promising systems for future spintronic devices. Perhaps most striking in S/F/S Josephson junctions is the existence of π-states, in which an additional π-shift to the superconducting phase difference reverses the Josephson current flow compared to the usual (0-) state. Due to structure inversion asymmetry, interfacial spin-orbit fields invariably emerge in heterojunctions. By performing numerical calculations on S/F/S model junctions in the presence of interfacial Rashba and Dresselhaus spin-orbit fields, we study the unique signatures of the interplay of ferromagnetism and the spin-orbit fields in the Josephson current flow. We find that the Rashba fields can not only significantly enhance the Josephson current, but even induce transitions from 0- to π-states. As a clear indication for the spin-orbit fields, we predict marked magnetoanisotropies in the Josephson current. These anisotropies are huge compared to tunneling anisotropic magnetoresistance in normal-state junctions, particularly close to 0- π transitions. Finally, we show that 0- π transitions can also be manipulated by solely rotating the magnetization in the F layer. This work was supported by DFG SFB 689, by the International Doctorate Program Topological Insulators of the Elite Network of Bavaria, and by the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship.
NbN-AlN-NbN Josephson junctions on different substrates
Energy Technology Data Exchange (ETDEWEB)
Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)
2016-07-01
Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.
2016-09-01
demonstrated the model was applicable to a wide range of junctions constructed by various superconductor electrodes and barrier materials. The expression is...no 3 (June), pp. 756–759. T. Satoh, K. Hinode, H. Akaike, S. Nagasawa, Y. Kitagawa, and M. Hidaka. 2005., “Fabrication Process of Planarized
Xu, Yong; Uddin, Salah; Wang, Jun; Ma, Zhongshui; Liu, Jun-Feng
2018-01-01
Usually, the superconducting quantum interference device (SQUID) consists of two Josephson junctions, and the interference therein is modulated by a magnetic flux. In this paper, we propose an electrically modulated SQUID consisting of a single Josephson junction coupled by a time reversal breaking Weyl semimetal thin film. For a low Fermi energy, the Josephson current is only mediated by Fermi arc surface states and has an arbitrary ground-state phase difference φ0 which is directly proportional to the product of the transverse electric field and the cross section area of the junction. For a suitable Fermi energy, the bulk states make comparable contributions to the Josephson current with the current-phase relation of a 0 junction. The interference between the surface channel and the bulk channel results in an electrically modulated SQUID with single Josephson junction, which provides an experimental proposal to identify magnetic Weyl semimetals and may have potential applications in superconducting quantum computation.
Gallemí, A.; Guilleumas, M.; Mayol, R.; Mateo, A. Muñoz
2016-03-01
We analyze the dynamics of Josephson vortex states in two-component Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling by using the Gross-Pitaevskii equation. In one dimension, both in homogeneous and harmonically trapped systems, we report on stationary states containing doubly charged, static Josephson vortices. In multidimensional systems, we find stable Josephson vortices in a regime of parameters typical of current experiments with 87Rb atoms. In addition, we discuss the instability regime of Josephson vortices in disk-shaped condensates, where the snake instability operates and vortex dipoles emerge. We study the rich dynamics that they exhibit in different regimes of the spin-orbit-coupled condensate depending on the orientation of the Josephson vortices.
Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers
Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.
2014-01-01
Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.
ac Josephson effect in finite-length nanowire junctions with Majorana modes.
San-Jose, Pablo; Prada, Elsa; Aguado, Ramón
2012-06-22
It has been predicted that superconducting junctions made with topological nanowires hosting Majorana bound states (MBS) exhibit an anomalous 4π-periodic Josephson effect. Finding an experimental setup with these unconventional properties poses, however, a serious challenge: for finite-length wires, the equilibrium supercurrents are always 2π periodic as anticrossings of states with the same fermionic parity are possible. We show, however, that the anomaly survives in the transient regime of the ac Josephson effect. Transients are, moreover, protected against decay by quasiparticle poisoning as a consequence of the quantum Zeno effect, which fixes the parity of Majorana qubits. The resulting long-lived ac Josephson transients may be effectively used to detect MBS.
Golikova, T. E.; Wolf, M. J.; Beckmann, D.; Batov, I. E.; Bobkova, I. V.; Bobkov, A. M.; Ryazanov, V. V.
2014-03-01
A nonlocal supercurrent was observed in mesoscopic planar SNS Josephson junctions with additional normal-metal electrodes, where nonequilibrium quasiparticles were injected from a normal-metal electrode into one of the superconducting banks of the Josephson junction in the absence of a net transport current through the junction. We claim that the observed effect is due to a supercurrent counterflow, appearing to compensate for the quasiparticle flow in the SNS weak link. We have measured the responses of SNS junctions for different distances between the quasiparticle injector and the SNS junction at temperatures far below the superconducting transition temperature. The charge-imbalance relaxation length was estimated by using a modified Kadin, Smith, and Skocpol scheme in the case of a planar geometry. The model developed allows us to describe the interplay of charge imbalance and Josephson effects in the nanoscale proximity system in detail.
A compact high temperature superconducting bandpass filter for integration with a Josephson mixer
Bai, D. D.; Du, J.; Zhang, T.; He, Y. S.
2013-10-01
A compact eight-pole high temperature superconducting (HTS) filter is designed for the RF signal input of an HTS Josephson mixer. The filter has 18.2% fractional bandwidth centered at 11 GHz. A stepped-impedance hairpin resonator is employed to minimize the filter size. The obtained filter size is 10 mm × 2.79 mm, which is very compact. The monolithic HTS Josephson frequency down-converter that incorporated this new filter demonstrated the highest conversion efficiency to date for an HTS Josephson mixer. Both the filter and the on-chip HTS circuit module were fabricated on a 0.5 mm thick MgO wafer with a single-sided YBCO film. The design, simulation, and experimental characterization of the HTS filter are presented in this paper. The early measurement results of the integrated HTS down-converter incorporated this filter are also described.
Hybrid Josephson-CMOS Memory in Advanced Technologies and Larger Sizes
Energy Technology Data Exchange (ETDEWEB)
Liu, Q [Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA94720 (United States); Van Duzer, T [Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA94720 (United States); Fujiwara, K [Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA94720 (United States); Yoshikawa, N [Department of Electrical and Computer Engineering, Yokohama National University, Hodogaya, Yokohama (Japan)
2006-06-01
Recent progress on demonstrating components of the 64 kb Josephson-CMOS hybrid memory has encouraged exploration of the advancement possible with use of advanced technologies for both the Josephson and CMOS parts of the memory, as well as considerations of the effect of memory size on access time and power dissipation. The simulations to be reported depend on the use of an approximate model for 90 nm CMOS at 4 K. This model is an extension of the one we developed for 0.25 {mu}m CMOS and have already verified. For the Josephson parts, we have chosen 20 kA/cm{sup 2} technology, which was recently demonstrated. The calculations show that power dissipation and access time increase rather slowly with increasing size of the memory.
Energy Technology Data Exchange (ETDEWEB)
Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2014-09-15
Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.
Phononic Josephson oscillation and self-trapping with two-phonon exchange interaction
Xu, Xun-Wei; Chen, Ai-Xi; Liu, Yu-xi
2017-08-01
We propose a bosonic Josephson junction (BJJ) in two nonlinear mechanical resonators coupled through two-phonon exchange interaction induced by quadratic optomechanical couplings. The nonlinear dynamical equations and effective Hamiltonian are derived to describe behaviors of the BJJ. We show that the BJJ can work in two different dynamical regimes: Josephson oscillation and macroscopic self-trapping. The system can transfer from one regime to the other one when the self-interaction and asymmetric parameters exceed their critical values. We show that the transition from Josephson oscillation to macroscopic self-trapping can be induced by the phonon damping of the asymmetric BJJ. Our results open up a way to demonstrate BJJ with two-phonon exchange interaction and might be applied to other systems.
A near-quantum-limited Josephson traveling-wave parametric amplifier.
Macklin, C; O'Brien, K; Hover, D; Schwartz, M E; Bolkhovsky, V; Zhang, X; Oliver, W D; Siddiqi, I
2015-10-16
Detecting single-photon level signals—carriers of both classical and quantum information—is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a subwavelength resonant phase-matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including noise added by amplifiers following the Josephson amplifier). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics. Copyright © 2015, American Association for the Advancement of Science.
An effect of temperature distribution on terahertz phase dynamics in intrinsic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Asai, Hidehiro, E-mail: hd-asai@aist.go.jp; Kawabata, Shiro
2013-11-15
Highlights: •We calculate the temperature distribution in intrinsic Josephson junctions (IJJs). •We investigate the effect of temperature distribution on THz radiation from IJJs. •The Joule heating in the IJJs makes inhomogeneous temperature distribution. •The inhomogeneous temperature distribution strongly excites THz emission. -- Abstract: In this study, we numerically calculate the temperature distribution and the THz phase dynamics in the mesa-structured intrinsic Josephson junctions (IJJs) using the thermal diffusion equation and the Sine–Gordon equation. We observe that the temperature distribution has a broad peak around the center region of the IJJ mesa. Under a high external current, a “hot spot” where the temperature is locally higher than the superconducting critical temperature appears around this region. The transverse Josephson plasma wave is strongly excited by the inhomogeneous temperature distribution in the mesa. This gives rise to intense THz emission.
Nonclassical photon pair production in a voltage-biased Josephson junction.
Leppäkangas, Juha; Johansson, Göran; Marthaler, Michael; Fogelström, Mikael
2013-06-28
We investigate electromagnetic radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. At frequencies below the well-known emission peak at the Josephson frequency (2eV/h), extra radiation is triggered by quantum fluctuations in the transmission line. For weak tunneling couplings and typical Ohmic transmission lines, the corresponding photon-flux spectrum is symmetric around half the Josephson frequency, indicating that the photons are predominately created in pairs. By establishing an input-output formalism for the microwave field in the transmission line, we give further evidence for this nonclassical photon pair production, demonstrating that it violates the classical Cauchy-Schwarz inequality for two-mode flux cross correlations. In connection to recent experiments, we also consider a stepped transmission line, where resonances increase the signal-to-noise ratio.
Experiments on phase retrapping in φ Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Menditto, Rosina; Koelle, Dieter; Kleiner, Reinhold [University of Tuebingen, Tuebingen (Germany); Weides, Martin [KIT, Karlsruhe (Germany)
2015-07-01
We experimentally study retrapping of the phase in φ Josephson junctions (JJs) based on superconductor-insulator-ferromagnet-superconductor (SIFS) 0-π heterostructures. Such φ JJs have a doubly degenerate ground state (two potential energy wells) with the phases ±φ (0 < φ < π). We study in which of these two wells the phase is trapped upon return of the JJ to the zero voltage state. We find that for T>T* ∼ 2.4 K (large damping) the phase is always trapped in the +φ state. However, for lower T (small damping) the trapping result is a statistical mixture of the +φ and the -φ states due to the presence of noise in the system. The probability for retrapping to the -φ state increases and oscillates as T is decreasing below T*, reaching a saturation value of ∝ 30% for T
Josephson frequency meter for millimeter and submillimeter wavelengths
Energy Technology Data Exchange (ETDEWEB)
Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others
1994-12-31
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.
Josephson Effect in Graphene: a Tunneling Spectroscopy Study
Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
A normal conductor placed in good contact with a superconductor can inherit its electronic properties. This proximity effect in the conductor originates from the formation of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. Graphene provides a novel platform for studying Andreev physics in two dimensions because of its large mobility, ease of access and electrostatically tunable carrier density. Using a full van der Waals heterostructure, we have performed direct tunnelling spectroscopy of proximitized graphene. The measured energy spectra, which depend on the phase difference between the superconductors and on graphene carrier density, reveal a continuum of Andreev bound states. We further infer the supercurrent they carry from the phase dependence of the spectra, thus relating Andreev physics and the Josephson effect. As graphene's extended two-dimensional nature enables one to combine superconductivity and the quantum Hall effect, this platform is promising for the detection of Majorana modes, key ingredients for topologically protected quantum computation.
Current-phase relation of encapsulated graphene Josephson junctions
Nanda, Gaurav; Aguilera, Juan Luis; Rakyta, Peter; Kormányos, Andor; Kleiner, Reinhold; Koelle, Dieter; Watanabe, Kenji; Taniguchi, Takashi; Vandersypen, Lieven; Goswami, Srijit
In the past few years there has been remarkable progress in the study of graphene-superconductor hybrids. This surge in interest has primarily been driven by the ability to combine high-quality graphene with superconductors via clean interfaces. We use such ballistic graphene Josephson junctions to create a superconducting quantum interference device (SQUID) which can be tuned continuously from a symmetric to asymmetric configuration. The symmetric SQUID produces typical flux-periodic oscillations in the critical current with a large modulation amplitude. More interestingly, we show that the highly asymmetric configuration allows one to directly obtain the current-phase relation (CPR) of these ballistic graphene JJs. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and shows correlations with Fabry-Perot oscillations in the ballistic cavity. We compare our experiments with tight-binding calculations which include realistic graphene-superconductor interfaces and find a good qualitative agreement.
Current-Phase Relation of Ballistic Graphene Josephson Junctions.
Nanda, G; Aguilera-Servin, J L; Rakyta, P; Kormányos, A; Kleiner, R; Koelle, D; Watanabe, K; Taniguchi, T; Vandersypen, L M K; Goswami, S
2017-06-14
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in antiphase with Fabry-Pérot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations that include realistic graphene-superconductor interfaces and find a good qualitative agreement.
Determination of the dissipation in superconducting Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Mugnai, D., E-mail: d.mugnai@ifac.cnr.it; Ranfagni, A.; Cacciari, I. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)
2015-02-07
The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation, the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.
Large Tunable Thermophase in Superconductor - Quantum Dot - Superconductor Josephson Junctions.
Kleeorin, Yaakov; Meir, Yigal; Giazotto, Francesco; Dubi, Yonatan
2016-10-13
In spite of extended efforts, detecting thermoelectric effects in superconductors has proven to be a challenging task, due to the inherent superconducting particle-hole symmetry. Here we present a theoretical study of an experimentally attainable Superconductor - Quantum Dot - Superconductor (SC-QD-SC) Josephson Junction. Using Keldysh Green's functions we derive the exact thermo-phase and thermal response of the junction, and demonstrate that such a junction has highly tunable thermoelectric properties and a significant thermal response. The origin of these effects is the QD energy level placed between the SCs, which breaks particle-hole symmetry in a gradual manner, allowing, in the presence of a temperature gradient, for gate controlled appearance of a superconducting thermo-phase. This thermo-phase increases up to a maximal value of ±π/2 after which thermovoltage is expected to develop. Our calculations are performed in realistic parameter regimes, and we suggest an experimental setup which could be used to verify our predictions.
Numerical study of long Josephson junctions coupled to a high-Q cavity
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Pedersen, Niels Falsig; Davidson, A.
1990-01-01
Long Josephson junctions coupled to a high-Q resonator are studied numerically and compared with recently published approximative results, obtained by using a perturbative approach to the fluxon motion in the junction. The similarities and differences in the two approaches are discussed.......Long Josephson junctions coupled to a high-Q resonator are studied numerically and compared with recently published approximative results, obtained by using a perturbative approach to the fluxon motion in the junction. The similarities and differences in the two approaches are discussed....
Fluxon modes in stacked Josephson junctions: The role of linear modes
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig
2004-01-01
Plasma modes in stacked Josephson junctions are easily understood analytically from a linearization of the coupled sine-Gordon equation describing the system. We demonstrate here by numerical methods that the analytically derived symmetries of the plasma modes are carried over to the fluxon modes....... Using this fact we are, with a few exceptions, able to predict and construct a full family of Josephson fluxon modes without using numerical methods. The nature of the locking mechanism needed to create the technologically important in-phase fluxon modes is discussed....
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix
2016-12-01
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.
Josephson current in a quantum dot in the Kondo regime connected to two superconductors
Energy Technology Data Exchange (ETDEWEB)
Campagnano, Gabriele; Giuliano, Domenico; Naddeo, Adele; Tagliacozzo, Arturo
2004-07-01
We apply a Gutzwiller-like variational technique to study Josephson conduction across a quantum dot with an odd number of electrons connected to two superconducting leads. Our method projects out all states on the dot but the Kondo singlet and is valid when Kondo correlations are dominant and no Andreev bound states localized at the dot are available for Kondo screening. In these conditions superconducting pairing is a competing effect and the junction is {pi}-like, to optimize antiferromagnetic correlations on the dot. As the superconducting gap increases, the Josephson current also increases, but its phase dependence becomes strongly non-sinusoidal.
Negative Differential Resistance due to Nonlinearities in Single and Stacked Josephson Junctions
DEFF Research Database (Denmark)
Filatrella, Giovanni; Pierro, Vincenzo; Pedersen, Niels Falsig
2014-01-01
of the fluxon system have demonstrated that a cavity induced NDR plays a crucial role for the emission of electromagnetic radiation. We consider the case of an NDR region in the McCumber curve itself of a single junction and found that it has an effect on the emission of electromagnetic radiation. Two different......Josephson junction systems with a negative differential resistance (NDR) play an essential role for applications. As a well-known example, long Josephson junctions of the BSCCO type have been considered as a source of terahertz radiation in recent experiments. Numerical results for the dynamics...
Microwave oscillator based on an intrinsic BSCCO-type Josephson junction
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Madsen, Søren Peder
2005-01-01
The electrical behavior of anisotropic BSCCO single crystals is modeled by mutually coupled long Josephson junctions. For the basic fluxon modes with one fluxon per layer, the fluxons will arrange themselves in an anti phase configuration (triangular lattice) because of the mutual repulsion. We....... The resulting model is a set of coupled nonlinear partial differential equations. By direct numerical simulations we have demonstrated that the qualitative behavior of the combined intrinsic Josephson junction and cavity system can be understood on the basis of general concepts of nonlinear oscillators...
Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator
Energy Technology Data Exchange (ETDEWEB)
Holleitner, A.W.; Qin, H.; Simmel, F.; Irmer, B.; Kotthaus, J. P. [Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitaet, Geschwister-Scholl-Platz 1, 80539 Muenchen (Germany); Blick, R.H. [Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitaet, Geschwister-Scholl-Platz 1, 80539 Muenchen (Germany). E-mail: robert.blick at physik.uni-muenchen.de; Ustinov, A.V. [Physikalisches Institut III, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Strasse 1, 91058 Erlangen (Germany); Eberl, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)
2000-01-01
We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an 'ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlO{sub x}/Nb junction as a microwave source. We find photon-assistedtunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source. (author)
Spin-transfer torque effect in nanopillar superconducting-magnetic hybrid Josephson junctions
Baek, Burm; Rippard, William; Pufall, Matthew; Benz, Samuel; Russek, Stephen; Rogalla, Horst; Dresselhaus, Paul; National Institute of Standards; Technology Team
2015-03-01
We have developed single nanopillar Josephson junctions with pseudo-spin-valve barriers with a feature size 50 nm or larger. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. The magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents which is consistent with the spin-transfer torque effect in room-temperature spin valve devices. Our results demonstrate devices that combine superconducting and spintronic functions promising for a nanoscale cryogenic memory technology.
Josephson junctions and dc SQUIDs based on Nb/Al technology
Flokstra, Jakob; Adelerhof, Derk Jan; Adelerhof, D.J.; Houwman, Evert Pieter; Veldhuis, Dick; Rogalla, Horst
1991-01-01
A process for fabricating high-quality Josephson junctions and DC SQUIDS on basis of Nb/Al technology has been developed. DC magnetron sputtering is used for the deposition of the metal layers and the barrier is formed by thermal oxidation of the Al-layer. The junction area of 5 µm × 5 5 µm is obtained using anodisation. Three types of Josephson tunnel junctions have been prepared: standard Nb/Al, AlOx/Nb, symmetric Nb/Al, AlOx, Al/Nb and Nb/Al, AlOx/AlOx/Nb, the latter having a double oxide ...
Multiwall carbon nanotube Josephson junctions with niobium contacts
Energy Technology Data Exchange (ETDEWEB)
Pallecchi, Emiliano
2009-02-17
The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)
High-Q cavity-induced fluxon bunching in inductively coupled Josephson junctions
DEFF Research Database (Denmark)
Madsen, S.; Grønbech-Jensen, Niels; Pedersen, Niels Falsig
2008-01-01
We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analyses, the possibility for the cavity to induce a transition from the energetically...
Parameter dependence of homoclinic solutions in a single long Josephson junction
van den Berg, J.B.; van Gils, Stephanus A.; Visser, T.P.P.
2003-01-01
For a model of the long Josephson junction one can calculate for which parameter values there exists a homoclinic solution (fluxon solution). These parameter values appear to lie on a spiral. We show that this is a consequence of the presence of a heteroclinic solution, which lies at the centre of
Quench-induced trapping of magnetic flux in annular Josephson junctions
DEFF Research Database (Denmark)
Aarøe, Morten; Monaco, R.; Rivers, R.
2008-01-01
The aim of the project is to investigate spontaneous symmetry breaking in non-adiabatic phase transitions (Kibble-Zurek processes). A long and narrow annular Josephson tunnel junction is subjected to repeated thermal quenches through the normal-superconducting transition. The quench rate is varied...
De Lange, G.; Van Heck, B.; Bruno, A.; Van Woerkom, D.J.; Geresdi, A.; Plissard, S.R.; Bakkers, E.P.A.M.; Akhmerov, A.R.; Di Carlo, L.
2015-01-01
We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively shunted single elements behave as transmon circuits with electrically tunable transition frequencies. Two-element circuits
Stability analysis of π-kinks in a 0-π Josephson junction
Derks, G.; Doelman, A.; van Gils, Stephanus A.; Susanto, H.
2007-01-01
We consider a spatially nonautonomous discrete sine-Gordon equation with constant forcing and its continuum limit(s) to model a 0-$\\pi$ Josephson junction with an applied bias current. The continuum limits correspond to the strong coupling limit of the discrete system. The nonautonomous character is
Stability analysis of pi-kinks in a 0-pi Josephson junction
G. Derks (Gianne); A. Doelman (Arjen); S.A. van Gils; H. Susanto
2006-01-01
textabstractWe consider a spatially non-autonomous discrete sine-Gordon equation with constant forcing and its continuum limit(s) to model a 0-pi Josephson junction with an applied bias current. The continuum limits correspond to the strong coupling limit of the discrete system. The non-autonomous
Stability Analysis of pi-Kinks in a 0-pi Josephson Junction
Derks, G.; Doelman, A.; van Gils, S.A.; Susanto, H.
2007-01-01
Abstract We consider a spatially nonautonomous discrete sine-Gordon equation with constant forcing and its continuum limit(s) to model a 0-pi Josephson junction with an applied bias current. The continuum limits correspond to the strong coupling limit of the discrete system. The nonautonomous
Mutual Phase Locking of Fluxons in Stacked Long Josephson Junctions: Simulations and Experiment
DEFF Research Database (Denmark)
Carapella, Giovanni; Costabile, Giovanni; Filatrella, Giovanni
1997-01-01
We report on the experimental observation of reciprocal phase-locking in stacked $Nb-AlO_x-Nb$ Josephson junctions having overlap geometry. When the junctions are independently biased in zero external magnetic field, they each exhibit several Zero Field Steps. Biasing both the junctions on the Ze...
The submm wave Josephson flux flow oscillator; Linewidth measurements and simple theory
DEFF Research Database (Denmark)
Mygind, Jesper; Koshelets, V. P.; Samuelsen, Mogens Rugholm
2005-01-01
The Flux Flow Oscillator (FFO) is a long Josephson junction in which a DC bias current and a DC magnetic field maintain a unidirectional viscous flow of magnetic flux quanta. The theoretical linewidth of the electromagnetic radiation generated at the end boundary is due to internal current...
Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators
DEFF Research Database (Denmark)
Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.
1997-01-01
Flux-flow oscillators (FFO's) are being developed for integration with a SIS mixer for use in submillimeter wave receivers, The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlOx-Nb FFO's, A model based on the Josephson self-pumping effect is...
Parametric amplification on rf-induced steps in a Josephson tunnel junction
DEFF Research Database (Denmark)
Sørensen, O.H.; Pedersen, Niels Falsig; Mygind, Jesper
1979-01-01
Parametric effects including amplification in a singly degenerate mode have been observed in Josephson tunnel junctions at dc bias points on rf-induced steps. Net gain at 9 GHz was achieved with a bias on the fundamental 18-GHz step and subharmonic self-oscillations were seen on 18 and 70-GHz rf...
Noise properties of dc-SQUID with quasiplanar YBa2Cu3O7 Josephson junctions
Faley, M.I.; Poppe, U.; Urban, K.; Hilgenkamp, Johannes W.M.; Hemmes, Herman K.; Aarnink, W.A.M.; Aarnink, W.; Flokstra, Jakob; Rogalla, Horst
1995-01-01
We describe the noise performance of dc SQUIDs fabricated with quasiplanar ramp‐type Josephson junctions on the basis of c‐axis‐oriented YBa2Cu3O7/PrBa2Cu3O7 thin‐film heterostructures. The noise spectrum of the dc SQUIDs was measured with dc‐ and ac‐bias schemes at different temperatures and showed
DEFF Research Database (Denmark)
Shukrinov, Yu M.; Mahfouzi, F.; Pedersen, Niels Falsig
2007-01-01
and the saturated value depend on the coupling between junctions. We explain the results by the parametric resonance at the breakpoint and excitation of the longitudinal plasma wave by the Josephson oscillations. A way for the diagnostics of the junctions in the stack is proposed....
Schäpers, Th.; Guzenko, V.A.; Müller, R.P.; Golubov, Alexandre Avraamovitch; Brinkman, Alexander; Crecelius, G.; Kaluza, A.; Lüth, H.
2003-01-01
We study the suppression of the critical current in a multi-terminal superconductor/two-dimensional electron gas/superconductor Josephson junction by means of hot carrier injection. As a superconductor Nb is used, while the two-dimensional electron gas is located in a strained InGaAs/InP
Stability of fluxon motion in long Josephson junctions at high bias
DEFF Research Database (Denmark)
Pagano, S.; Sørensen, Mads Peter; Christiansen, Peter Leth
1988-01-01
In long Josephson junctions the motion of fluxons is revealed by the existence of current steps, zero-field steps, in the current-voltage characteristics. In this paper we investigate the stability of the fluxon motion when high values of the current bias are involved. The investigation is carrie...
Field dependence of Fiske resonances in Nb-AlOx based Josephson junctions
Gijsbertsen, Hans; Gijsbertsen, J.G.; Houwman, Evert Pieter; Flokstra, Jakob; Rogalla, Horst; Le grand, J.B.; de Korte, P.A.J.
1993-01-01
Fiske resonances have been measured in a rectangular Nb-Al, AlO x, Al-Nb Josephson junction as a function of the magnetic field applied parallel to a junction side. Due to the high quality factor of the junction, many resonant modes could be measured, using a special measuring technique. Each mode
Criteria for fluxon generation in long Josephson junctions by current pulses
DEFF Research Database (Denmark)
Sakai, S.; Samuelsen, Mogens Rugholm
1987-01-01
In recent measurements in the time domain on the fluxon shape in long Josephson junctions the fluxons were generated by a current pulse injected into one end. We present here a perturbation treatment of the fluxon generation which we compare with numerical experiments. The agreement turns out to ...... to be excellent. Applied Physics Letters is copyrighted by The American Institute of Physics....
Subharmonic generation in Josephson junction fluxon oscillators biased on Fiske steps
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Parmentier, R. D.
1983-01-01
Numerical integration of the perturbed sine-Gordon equation describing a long overlap-geometry Josephson junction in a magnetic field indicates a branched structure of the first Fiske step. The major portion of the step corresponds to a simply periodic fluxon oscillation whereas the branches are ...... are characterized by subharmonic generation. Applied Physics Letters is copyrighted by The American Institute of Physics....
DEFF Research Database (Denmark)
Jørgensen, E.; Koshelets, V. P.; Monaco, Roberto
1982-01-01
The radiation emission from long and narrow Josephson tunnel junctions dc-current biased on zero-field steps has been ascribed to resonant motion of fluxons on the transmission line. Within this dynamic model a theoretical expression for the radiation linewidth is derived from a full statistical...
Theory of macroscopic quantum tunneling in Nb/Au/YBCO Josephson junctions
Kawabata, S.; Kawabata, S.; Golubov, Alexandre Avraamovitch; Ariando, A.; Verwijs, C.J.M.; Hilgenkamp, Johannes W.M.
2007-01-01
We have theoretically investigated macroscopic quantum tunneling (MQT) in s-wave/d-wave (Nb/Au/YBCO) Josephson junctions, and the influence of the nodal-quasiparticle and the zero energy bound states (ZES) on MQT. In contrast to d-wave/d-wave junctions, low-energy quasiparticle excitations resulting
Theory of macroscopic quantum tunnelling and dissipation in high-Tc Josephson junctions
Kawabata, S.; Kawabata, Shiro; Kashiwaya, Satoshi; Asano, Yasuhiro; Tanaka, Yukio; Kato, Takeo; Kato, T.; Golubov, Alexandre Avraamovitch
2007-01-01
We have investigated macroscopic quantum tunnelling (MQT) in in-plane high-Tc superconductor Josephson junctions and the influence of the nodal-quasiparticle and zero energy bound states (ZES) on MQT. We have shown that the presence of ZES at the interface between the insulator and the
Kawabata, S.; Kawabata, Shiro; Asano, Yasuhiro; Tanaka, Yukio; Kashiwaya, Satoshi; Golubov, Alexandre Avraamovitch
2008-01-01
We theoretically investigate the cooper pair transport and the macroscopic quantum dynamics of a Josephson junction with a superconductor (S) and a ferromagnetic insulator (FI). By use of the recursive Green’s function method, we numerically found the formation of the π junction in the case of the
Millimeter-wave-induced fluxon pair creation in flux-flow Josephson oscillators
DEFF Research Database (Denmark)
Ustinov, A. V.; Mygind, Jesper; Pedersen, Niels Falsig
1992-01-01
We now observe a new type of dynamical state in long Josephson junctions. Millimeter-wave irradiation in the frequency range fext=62–77 GHz, was applied to a long junction biased in the flux-flow mode. Besides an ordinary flux-flow step satellite, flux-flow steps with voltage spacing corresponding...
Prediction of chaos in a Josephson junction by the Melnikov-function technique
DEFF Research Database (Denmark)
Bartuccelli, M.; Christiansen, Peter Leth; Pedersen, Niels Falsig
1986-01-01
The Melnikov function for prediction of Smale horseshoe chaos is applied to the rf-driven Josephson junction. Linear and quadratic damping resistors are considered. In the latter case the analytic solution including damping and dc bias is used to obtain an improved threshold curve for the onset...
Josephson effect in a multiorbital model for Sr2RuO4
Kawai, K.; Yada, Keiji; Tanaka, Y.; Asano, Y.; Golubov, Alexandre Avraamovitch; Kashiwaya, S.
2017-01-01
We study Josephson currents between s-wave/spin-triplet superconductor junctions by taking into account details of the band structures in Sr2RuO4, such as three conduction bands and spin-orbit interactions in the bulk and at the interface. We assume five superconducting order parameters in Sr2RuO4:
Costa, Andreas; Högl, Petra; Fabian, Jaroslav
2017-01-01
We study theoretically the effects of interfacial Rashba and Dresselhaus spin-orbit coupling in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions—with allowing for tunneling barriers between the ferromagnetic and superconducting layers—by solving the Bogoljubov-de Gennes equation for realistic heterostructures and applying the Furusaki-Tsukada technique to calculate the electric current at a finite temperature. The presence of spin-orbit couplings leads to out-of-plane and in-plane magnetoanisotropies of the Josephson current, which are giant in comparison to current magnetoanisotropies in similar normal-state ferromagnet/normal metal (F/N) junctions. Especially huge anisotropies appear in the vicinity of 0 -π transitions, caused by the exchange-split bands in the ferromagnetic metal layer. We also show that the direction of the Josephson critical current can be controlled (inducing 0 -π transitions) by the strength of the spin-orbit coupling and, more crucial, by the orientation of the magnetization. Such a control can bring new functionalities into Josephson junction devices.
Phase locking of 270-440 GHz Josephson flux flow oscillators
DEFF Research Database (Denmark)
Mygind, Jesper; Koshelets, V.P.; Shitov, S.V.
1999-01-01
External phase locking of a Josephson flux flow oscillator (FFO) to a 10 MHz reference oscillator is demonstrated experimentally in the frequency range 270-440 GHz. A linewidth as low as 1 Hz (as determined by the resolution bandwidth of the spectrum analyser) has been measured. This linewidth is...
Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator
Kawabata, S.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Vasenko, A.; Asano, Y.
2012-01-01
Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0–π transition has been theoretically predicted. In order to uncover
Paik, Hanhee; Schuster, D I; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L I; Girvin, S M; Devoret, M H; Schoelkopf, R J
2011-12-09
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ∼ 10 to 20 μs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.
Magnetic properties of two-dimensional Josephson nets with SNS-junctions
Ishikaev, S M; Ryazanov, V V; Oboznov, V A
2002-01-01
The dependence of the magnetic moment of the square (100 x 100) Josephson nets with the SNS-transitions in the Nb-Cu sub 0 sub . sub 9 sub 5 Al sub 0 sub . 0 sub 5 -Nb on the field is studied through the SQUID-magnetometer. Significant difference in the behaviour during the process of the magnetic flux inlet into the net and its outlet from there was identified thereby. The regular periodical dependence with peaks corresponding to the whole and half number of the flux quanta per one cell is observed on the curve branches, where the increase in the field absolute value takes place. At the same time no visible peculiarities are noted by decrease in the field absolute value. The flux quasi-hydrodynamic motion in the net is explained by significant viscosity of the vortices during their passage through the Josephson junction
Time-resolved statistics of photon pairs in two-cavity Josephson photonics
Energy Technology Data Exchange (ETDEWEB)
Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)
2017-06-15
We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Phase-flip bifurcation in a coupled Josephson junction neuron system
Energy Technology Data Exchange (ETDEWEB)
Segall, Kenneth, E-mail: ksegall@colgate.edu [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States); Guo, Siyang; Crotty, Patrick [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States); Schult, Dan [Department of Mathematics, Colgate University, Hamilton, NY 13346 (United States); Miller, Max [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States)
2014-12-15
Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry.
Investigating the quantum behavior of a graphene-based Josephson Junction
Lambert, Joseph; Thrailkill, Zechariah; Ramos, Roberto
2009-03-01
Recent experiments have demonstrated the Josephson effect in superconducting mesoscopic graphene devices consisting of two superconducting leads separated by a few hundred nanometers, contacted by single and multiple layers of graphene [1]. We report on the progress of low temperature experiments that study the temperature dependence of switching currents in this device. The motivation is to explore the presence of macroscopic quantum metastable states similar to those found in current-biased Josephson junctions. These states are interesting and have been used as basis states for superconducting qubits. [1] H.B. Heersche, P.D. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F.Morpurgo, Induced superconductivity in grapheme, Solid state communications, 143(1-2), 72-76 (2007)
Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator
DEFF Research Database (Denmark)
Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper
1991-01-01
coupled systems. Based on a single-resonator model, we explain the exceptional size of the steps by the large content of higher harmonics of the Josephson oscillation sustained by the multiple modes of the resonator. The parameters of the junction and the loaded resonator—measured in situ by using......An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...
0 -π transitions in a Josephson junction of an irradiated Weyl semimetal
Khanna, Udit; Rao, Sumathi; Kundu, Arijit
2017-05-01
We propose a setup for the experimental realization of anisotropic 0 -π transitions of the Josephson current, in a junction whose link is made of irradiated Weyl semimetal (WSM), due to the presence of chiral nodes. The Josephson current through a time-reversal symmetric WSM has anisotropic (with respect to the orientation of the chiral nodes) periodic oscillations as a function of k0L , where k0 is the (relevant) separation of the chiral nodes and L is the length of the sample. We then show that the effective value of k0 can be tuned with precision by irradiating the sample with linearly polarized light, which does not break time-reversal invariance, resulting in 0 -π transitions of the critical current. We also discuss the feasibility and robustness of our setup.
Wigner-Poisson statistics of topological transitions in a Josephson junction.
Beenakker, C W J; Edge, J M; Dahlhaus, J P; Pikulin, D I; Mi, Shuo; Wimmer, M
2013-07-19
The phase-dependent bound states (Andreev levels) of a Josephson junction can cross at the Fermi level if the superconducting ground state switches between even and odd fermion parity. The level crossing is topologically protected, in the absence of time-reversal and spin-rotation symmetry, irrespective of whether the superconductor itself is topologically trivial or not. We develop a statistical theory of these topological transitions in an N-mode quantum-dot Josephson junction by associating the Andreev level crossings with the real eigenvalues of a random non-Hermitian matrix. The number of topological transitions in a 2π phase interval scales as √[N], and their spacing distribution is a hybrid of the Wigner and Poisson distributions of random-matrix theory.
DEFF Research Database (Denmark)
Levring, O. A.; Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm
1983-01-01
The motion of a single fluxon in long Josephson-junctions of overlap and inline geometries is investigated in the presence of an applied external magnetic field. The form of the first zero-field step for various parameters is given in closed analytic forms in both cases, and the differences and s...... and similarities between the two geometries are emphasized. Journal of Applied Physics is copyrighted by The American Institute of Physics.......The motion of a single fluxon in long Josephson-junctions of overlap and inline geometries is investigated in the presence of an applied external magnetic field. The form of the first zero-field step for various parameters is given in closed analytic forms in both cases, and the differences...
DEFF Research Database (Denmark)
Holm, Jesper; Mygind, Jesper
1995-01-01
The first local oscillators based on moving magnetic flux quanta in long Josephson junctions are being developed for superconducting integrated quasi-optical SIS receivers. In order to further refine these oscillators one has to understand the complex dynamics of these devices. Since the local...... on measurements on different oscillator samples, performed with a novel Cryogenic Scanning Laser Microscope (CSLM) having a spatial resolution of less than ±2.5 μm over a 500 μm×50 μm wide scanning area in the temperature range 2 K-300 K. Even though the dynamical states are extremely sensitive to external noise...... this microscope enables us to make stable in-situ measurements on operating Josephson junctions. Recent results are presented and discussed....
Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics
DEFF Research Database (Denmark)
Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio
2015-01-01
We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane or in the ......We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...
Optical bistability via Josephson coupling energy in a superconducting quantum circuit
Hamedi, Hamid Reza
2014-11-01
A novel configuration is proposed to study optical bistability (OB) and optical multistability (OM) in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. We find that the ratio of the Josephson coupling energy to the capacitive coupling strength has a significant impact on creating optical bistability. The influence of other system parameters on bistable behavior of the artificial medium is then discussed. In particular, it is found that applying an incoherent pumping field can noticeably reduce the bistable threshold. We also realize a switch from OB to OM through proper tuning of detuning parameters. The controllability of OB and OM of this artificial molecule may be useful in building logic-gate devices for optical computing and quantum information processing and provide some new possibilities for solid-state quantum information science.
Energy Technology Data Exchange (ETDEWEB)
Hamedi, H.R., E-mail: hamid.r.hamedi@gmail.com
2015-05-15
We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is realized that the slope of dispersion can be changed from negative to positive or vice versa through the ratio of the Josephson coupling energy to the capacitive coupling strength which provides an extra controlling parameter for controlling the slope of dispersion. The temporal behavior of the probe dispersion and the required switching time for switching the superluminal light propagation to the subluminal light propagation are also discussed. The results may be useful for understanding the switching feature of slow light-based systems and have potential application in optical information processing.
Hamedi, H. R.
2015-05-01
We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is realized that the slope of dispersion can be changed from negative to positive or vice versa through the ratio of the Josephson coupling energy to the capacitive coupling strength which provides an extra controlling parameter for controlling the slope of dispersion. The temporal behavior of the probe dispersion and the required switching time for switching the superluminal light propagation to the subluminal light propagation are also discussed. The results may be useful for understanding the switching feature of slow light-based systems and have potential application in optical information processing.
Energy scales in YBaCuO grain boundary biepitaxial Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Tafuri, F., E-mail: tafuri@na.infn.it [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (CE) (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [DPMC, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Lucignano, P. [CNR-ISC, sede di Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Galletti, L. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (CE) (Italy); Massarotti, D. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Montemurro, D. [NEST and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa (Italy); Papari, G. [INPAC - Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Pulsed Fields Group, K.U. Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Barone, A.; Tagliacozzo, A. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy)
2012-09-15
Self-assembled nanoscale channels may naturally arise in the growth process of grain boundaries (GBs) in high critical temperature superconductor (HTS) systems, and deeply influence the transport properties of the GB Josephson junctions (JJs). By isolating nano-channels in YBCO biepitaxial JJs and studying their properties, we sort out specific fingerprints of the mesoscopic nature of the contacts. The size of the channels combined to the characteristic properties of HTS favors a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Thouless energy emerges as a characteristic energy of these types of Josephson junctions. Possible implications on the understanding of coherent transport of quasiparticles in HTS and of the dissipation mechanisms are discussed, along with elements to take into account when designing HTS nanostructures.
Spectral representation of the heat current in a driven Josephson junction
Virtanen, P.; Solinas, P.; Giazotto, F.
2017-04-01
We discuss thermal transport through a Josephson junction in a time-dependent situation. We write the spectral representation of the heat current pumped by a generic drive. This enables separation of the dissipative and reactive contributions, of which the latter does not contribute to long-time averages. We discuss the physical interpretation, and note that the condensate heat current identified by Maki and Griffin [Phys. Rev. Lett. 15, 921 (1965), 10.1103/PhysRevLett.15.921] is purely reactive. The results enable a convenient description of heat exchanges in a Josephson system in the presence of an external drive, with possible applications for the implementation of cooling devices.
Dynamical phase transitions in a two-species bosonic Josephson junction
Tian, Jing; Liu, Jun; Qiu, Hai-Bo; Xi, Xiao-Qiang
2017-10-01
We investigate dynamical phase transitions that are induced by interspecies interaction in a two-species bosonic Josephson junctions (BJJ), based on semi-classical theory. In zero-phase mode, similar to the case of a single-species BJJ, we observe the well-known dynamical phase transition from Josephson oscillation to self-trapping, which can be induced by both enhanced repulsive and attractive interspecies interactions. In π phase mode, dynamical phase transitions are even more interesting and counter-intuitive. We characterize a dynamical phase transition with the merging of two separate phase space domains into one, which is induced by increasing repulsive interspecies interaction. On the other hand, we find that by increasing attractive interspecies interaction, a phase separation of two formally overlapped phase space domains will occur. At last, we reveal that these intriguing dynamical phase transitions are caused by different kinds of bifurcations.
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
1999-01-01
We investigate both analytically and numerically phase locking and flux-flow resonances of long Josephson junctions in the presence of homogeneous microwave fields. We use a power balance analysis and a perturbation expansion around the uniform rotating solution to derive analytical expressions...... for the locking range in current of the phase-lock steps is also derived. These results are found to be in good agreement with numerical results....
Perturbation treatment of boundary conditions for fluxon motion in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm
1986-01-01
The sine-Gordon equation governing the motion of fluxons in the long Josephson junction is investigated by transforming it into a relativistic-particle equation of motion and using a perturbational approach. The effects of a finite junction length, an external magnetic field, as well as the effec...... of fluxon-antifluxon collisions are included in the calculations. All theoretical results are compared to numerical simulations in order to investigate the validity of the approach. Good agreement is found in most cases....
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Rivers, R.J.
2002-01-01
Phase transitions create a domain structure with defects, which has been argued by Zurek and Kibble (ZK) to depend in a characteristic way on the quench rate. We present an experiment to measure the ZK scaling exponent sigma. Using long symmetric Josephson tunnel junctions, for which the predicted...... index is sigma=0.25, we find sigma=0.27+/-0.05. Further, we agree with the ZK prediction for the overall normalization....
DEFF Research Database (Denmark)
Filatrella, G; Pedersen, Niels Falsig
1999-01-01
We have numerically investigated the behavior of stacks of long Josephson junctions considering a nonuniform bias profile. In the presence of a microwave field the nonuniform bias, which favors the formation of fluxons, can give rise to a change of the sequence of radio-frequency induced steps....... The amplitude of the steps is enhanced when the external frequency matches the fluxon shuttling regime. ©1999 American Institute of Physics....
Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions
Munoz, W. A.; Covaci, L.; Peeters, F. M.
2013-01-01
Using a numerical tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and non-dimer atoms, being more pronounced for rhombohedral st...
X-band singly degenerate parametric amplification in a Josephson tunnel junction
DEFF Research Database (Denmark)
Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.
1978-01-01
Preliminary measurements on a (quasi-) degenerate parametric amplifier using a single Josephson tunnel junction as the active element is reported. The pump frequency is at 18 GHz and the signal and idler frequencies are both at about 9 GHz. A power gain of 16 dB in a 4-MHz 3-dB bandwidth is achie...... is achieved at the top of the cryostat. Applied Physics Letters is copyrighted by The American Institute of Physics....
Microstrip coupling techniques applied to thin-film Josephson junctions at microwave frequencies
DEFF Research Database (Denmark)
Sørensen, O H; Pedersen, Niels Falsig; Mygind, Jesper
1981-01-01
Three different schemes for coupling to low impedance Josephson devices have been investigated. They all employ superconducting thin-film microstrip circuit techniques. The schemes are: (i) a quarterwave stepped impedance transformer, (ii) a microstrip resonator, (iii) an adjustable impedance...... transformer in inverted microstrip. Using single microbridges to probe the performance we found that the most primising scheme in terms of coupling efficiency and useful bandwidth was the adjustable inverted microstrip transformer....
Characterization of shadow evaporated Al/AlOx/Al Josephson Junctions
Burkett, Brian; Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware team Team
Building a large-scale quantum computer depends crucially on developing a Josephson junction fabrication process that is reliable. We have collected and analyzed data for more than 105 junctions, measured using an automated DC probe station at room temperature. Using this method, we can identify and monitor the impact of subtle process parameters on junction performance resulting from aging, pressure, lithography and surface treatment. We also present transmission electron microscopy and electron energy loss spectroscopy of our junctions.
Suppression of the critical current and Fiske resonances in specially shaped Josephson junctions
Gijsbertsen, J.G.; Gijsbertsen, Hans; Houwman, Evert Pieter; Flokstra, Jakob; Rogalla, Horst
1994-01-01
In some applications of Josephson junctions it is necessary to suppress the critical current and Fiske resonances with a relatively small magnetic field. The sidelobes of the Fraunhofer pattern can be suppressed by taking an appropriate shape for the junction. A suppression of the first sidelobe below 1% of the zero-field critical current is possible as was shown experimentally. However, Fiske resonances are still present. We investigated how an adaptation of the junction shape may suppress t...
Band-gaps in long Josephson junctions with periodic phase-shifts
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Saeed, E-mail: saeedahmad@uom.edu.pk [Department of Mathematics, University of Malakand Chakdara, Dir(L), Pakhtunkhwa (Pakistan); Susanto, Hadi, E-mail: hsusanto@essex.ac.uk [Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ (United Kingdom); Wattis, Jonathan A.D. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2017-04-04
We investigate analytically and numerically a long Josephson junction on an infinite domain, having arbitrary periodic phase shift of κ, that is, the so-called 0–κ long Josephson junction. The system is described by a one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices. We discuss the existence of periodic solutions of the system and investigate their stability both in the absence and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied bias current beyond which static periodic solutions cease to exist. Due to the periodic discontinuity in the phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias current on the band-gap structure. We present numerical simulations to support our analytical results. - Highlights: • A long Josephson junction on an infinite domain having arbitrary periodic phase shift has been proposed as artificial atom lattices recently. • We compute the band-gaps of the system asymptotically. • We show that the phase-shift and applied bias current can be used to control the band structures.
Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it
2017-05-15
Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.
Identifying the chiral d-wave superconductivity by Josephson φ0-states.
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-03-07
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ 0 -junction state where the current-phase relation is shifted by a phase φ 0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ 0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ 0 -states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ 0 - junction, which is useful in superconducting electronics and superconducting quantum computation.
Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Caruso, R. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Pal, A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, New York 11961 (United States); Pepe, G.P. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Blamire, M.G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tafuri, F. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy)
2017-02-15
Highlights: • We study the phase dynamics of ferromagnetic NbN/GdN/NbN Josephson junctions. • The ferromagnetic insulator GdN barrier generates spin-filtering properties. • Spin filter junctions fall in the underdamped regime. • MQT occurs with the same phenomenology as in conventional Josephson junctions. • Dissipation is studied in a wide range of critical current density values. - Abstract: A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (J{sub c}), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low J{sub c} values.
The ω-SQUIPT as a tool to phase-engineer Josephson topological materials
Strambini, E.; D'Ambrosio, S.; Vischi, F.; Bergeret, F. S.; Nazarov, Yu. V.; Giazotto, F.
2016-12-01
Multi-terminal superconducting Josephson junctions based on the proximity effect offer the opportunity to tailor non-trivial quantum states in nanoscale weak links. These structures can realize exotic topologies in several dimensions, for example, artificial topological superconductors that are able to support Majorana bound states, and pave the way to emerging quantum technologies and future quantum information schemes. Here we report the realization of a three-terminal Josephson interferometer based on a proximized nanosized weak link. Our tunnelling spectroscopy measurements reveal transitions between gapped (that is, insulating) and gapless (conducting) states that are controlled by the phase configuration of the three superconducting leads connected to the junction. We demonstrate the topological nature of these transitions: a gapless state necessarily occurs between two gapped states of different topological indices, in much the same way that the interface between two insulators of different topologies is necessarily conducting. The topological numbers that characterize such gapped states are given by superconducting phase windings over the two loops that form the Josephson interferometer. As these gapped states cannot be transformed to one another continuously without passing through a gapless condition, they are topologically protected. The same behaviour is found for all of the points of the weak link, confirming that this topology is a non-local property. Our observation of the gapless state is pivotal for enabling phase engineering of different and more sophisticated artificial topological materials.
Josephson junctions and DC SQUIDS based on Nb/Al technology.
Flokstra, J; Adelerhof, D J; Houwman, E P; Veldhuis, D; Rogalla, H
1991-01-01
A process for fabricating high-quality Josephson junctions and DC SQUIDs on basis of Nb/Al technology has been developed. DC magnetron sputtering is used for the deposition of the metal layers and the barrier is formed by thermal oxidation of the Al-layer. The junction area of 5 microns x 5 microns is obtained using anodisation. Three types of Josephson tunnel junctions have been prepared: standard Nb/Al, AlO kappa/Nb, symmetric Nb/Al, AlO kappa, Al/Nb and Nb/Al, AlO kappa/AlO kappa/Nb, the latter having a double oxide layer. We performed current-voltage and conductance-voltage measurements at different temperatures and special attention was paid to the noise behaviour. Gap and sub-gap parameters as well as barrier parameters are presented. Three different DC SQUID configurations were developed on basis of the Nb/Al Josephson junctions. The measured characteristics of the standard Tesche-Clarke DC SQUID, the resistively shunted SQUID and the inductively shunted SQUID are compared with special attention being paid to the noise properties. A 19-channel DC SQUID magnetometer with standard and/or resistively-shunted DC SQUIDs is under construction.
Energy Technology Data Exchange (ETDEWEB)
Yamada, Takahiro; Yamamori, Hirotake; Sasaki, Hitoshi; Shoji, Akira [Nanoelectronics Research Institute/National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Urano, Chiharu; Nishinaka, Hidefumi; Murayama, Yasushi; Iwasa, Akio; Nakamura, Yasuhiro, E-mail: yamada-takahiro@aist.go.j [National Metrology Institute of Japan/National Institute of Advanced Industrial Science and Technology, Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563 (Japan)
2009-09-15
A multi-chip 10 V programmable Josephson voltage standard (PJVS) system was demonstrated using a closed-cycle refrigerator. We precisely measured the PJVS by a direct comparison measurement with a conventional Josephson voltage standard. The result agreed within a combined standard uncertainty of 3.9 x 10{sup -10} at 10 V.
Chen, Anffany; Pikulin, D. I.; Franz, M.
2017-05-01
A linear Josephson junction mediated by the surface states of a time-reversal-invariant Weyl or Dirac semimetal localizes Majorana flat bands protected by the time-reversal symmetry. We show that as a result, the Josephson current exhibits a discontinuous jump at π phase difference which can serve as an experimental signature of the Majorana bands. The magnitude of the jump scales proportionally to the junction width and the momentum space distance between the Weyl nodes. It also exhibits a characteristic dependence on the junction orientation. We demonstrate that the jump is robust against the effects of nonzero temperature and weak nonmagnetic disorder.
Josephson oscillations and noise temperatures in YBa2Cu3O7-x grain-boundary junctions
DEFF Research Database (Denmark)
Yu, Ya. Divin; Mygind, Jesper; Pedersen, Niels Falsig
1992-01-01
The ac Josephson effect was studied in YBa2Cu3O7−x grain-boundary junctions (GBJ) in the temperature range from 4 to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured and it is shown that the derived effective noise temperatures may be as low...... as the physical temperature in the temperature range investigated. In the millimeter-wave range, linewidths as low as 380 MHz were found at liquid-nitrogen temperatures. Applied Physics Letters is copyrighted by The American Institute of Physics....
Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications
Niedzielski, Bethany Maria
A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this
Energy Technology Data Exchange (ETDEWEB)
Rudau, Fabian; Wieland, Raphael; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Universitaet Tuebingen (Germany); Zhou, Xianjing; Ji, Min; Hao, Luyao; Huang, Ya; Wang, Huabing [Research Institute of Superconductor Electronics, Nanjing University (China); National Institute for Materials Science, Tsukuba (Japan); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Li, Jun; Wu, Peiheng [Research Institute of Superconductor Electronics, Nanjing University (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)
2016-07-01
Stacks of intrinsic Josephson junctions, made of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, can be used as emitters of electromagnetic waves at terahertz frequencies. Coherent emission from 0.3 to 2.4 THz was detected from large, rectangular or disc-shaped mesa structures. Having a linewidth of only a few MHz, emission powers of several tens of microwatt can be produced for single stacks and up to 0.61 mW for an array of mesas. Since the mechanisms of synchronizing all the junctions in the stack is still not fully understood, we investigated the temperature distribution and electromagnetic standing waves in such stacks, as well as the generation of terahertz radiation, using a combination of electric transport measurements, direct radiation detection and low temperature scanning laser microscopy. Recent experimental results from our collaboration will be presented and compared to numerical simulations.
Quantitative description of hysteresis loops induced by rf radiation in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, Ole H.; Samuelsen, Mogens Rugholm
1991-01-01
The effect of an applied rf signal on the radiation emitted from a long Josephson junction is examined by means of a model based on the sine-Gordon equation. This system exhibits a variety of interesting phenomena, e.g., chaos and hysteresis. The hysteresis loop is examined in detail. These simpl...... analyses show that for rf frequencies larger than a certain threshold value no hysteresis is expected. This is verified in numerical simulations where the frequency and length of the junction have been varied....
Dynamics of an annular Josephson junction in a rotating magnetic field
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Malomed, Boris A.; Samuelsen, Mogens Rugholm
1992-01-01
We study analytically and numerically the dynamics of a solitary fluxon in a long annular damped Josephson junction placed into a rotating magnetic field, which is produced by superposition of two mutually perpendicular ac fields with a phase difference of π/2. We demonstrate that the rotating...... the edges of the step. For the case where the fluxon is slowly dragged by a fast traveling wave, the drift velocity is found. The analytical results are in very good agreement with numerical experiments performed on the perturbed sine-Gordon system. Finally the system is analyzed analytically for moderate...
Influence of the cos-phi conductance on fluxons propagating in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1982-01-01
The influence of a cosφ conductance on the motion of fluxons in long and narrow Josephson junctions is investigated by numerical computations and by a perturbation analysis. It turns out that the presence of the cosφ term will have opposite effects on the motion of a fluxon and on plasma waves...... or breathers. If the fluxon motion is damped, the plasma waves are enhanced by the cosφ term and vice versa. The presence of loss and bias results, in any event, in stabilization of the fluxon in a stationary motion. Good agreement between the numerical result for fluxon motion and the perturbation analysis...
Urushadze, G. I.
1986-03-01
A study has been carried out on the nonlinear nature of Anderson plasma excitations in narrow Josephson junctions in case of a longitudinal ultrasonic wave propagating normal to the tunnel barrier plane with a frequency resonant to the plasma oscillation frequency in the junction. A high frequency current associated with a sound-induced displacement of Anderson plasma energy levels was shown to be excited across the junction. The problem of sound wave attenuation and amplification is discussed and an attempt is made to predict the effect of amplification of ultrasonic waves passing through the junction.
Simulation studies of radiation linewidth in circular Josephson-junction fluxon oscillators
DEFF Research Database (Denmark)
If, F.; Christiansen, Peter Leth; Parmentier, R. D.
1985-01-01
Detailed simulation studies of the dynamics of fluxons in long circular Josephson tunnel junctions under the influence of external microwave radiation and internal thermal noise are presented. The simulation algorithm uses a pseudospectral method well adapted to vector processors (CRAY-1-S), which...... gives a speed-up factor in computing time of typically 22 in comparison to conventional high-speed computers, and also provides results with a relative accuracy of less than 10-8 thereby making possible the study of the very narrow radiation linewidth of such oscillators. Comparison of calculated...
Photon-modulated multiple-state memory cell in Josephson junction systems
Ho, I.-Lin; Shiau, Shiue-Yuan
2013-08-01
This work studies the multiple-state memory cell in weak-coupled Josephson junction systems, allowing for alternative occupations of the quasiparticle (QP) and Cooper pair (CP) in the memory node and presenting its adjustability (between the QP and CP) by electromagnetic modulations. We structure theoretical formulae considering these interactive dynamics by the golden approximation and perform the time evolutions of relevant function operations using Monte Carlo techniques. Numerical results demonstrate switchable hysteretic memory effects for devices under photon radiations or magnetic fields and signify other potential applications, e.g., on interconnections with optical computing systems.
Numerical study of fluxon dynamics in a system of two-stacked Josephson junctions
DEFF Research Database (Denmark)
Petraglia, Antonio; Ustinov, A. V.; Pedersen, Niels Falsig
1995-01-01
The dynamics of magnetic fluxons in a system of two vertically stacked long Josephson junctions is investigated numerically. The model is based on the approach by S. Sakai, P. Bodin, and N. F. Pedersen [J. Appl. Phys. 73, 2411 (1993)] and is described by two strongly coupled sine-Gordon equations....... In agreement with recent experimental data, we confirm numerically the effect of splitting of the fluxon travelling mode into two separated modes with different characteristic velocities. The simulated current-voltage characteristics indicate stable phase-locked flux-flow resonances of two junctions...
Energy Technology Data Exchange (ETDEWEB)
Bai, Chunxu [Anyang Normal University, School of Physics, Anyang (China); Chinese Academy of Sciences, SKLSM, Institute of Semiconductors, Beijing (China); Wei, Ke-Wei; Shen, Yuanyuan; Yang, Yanling [Anyang Normal University, School of Physics, Anyang (China)
2015-11-15
To guide the potential applications of topological insulator, we provide a theoretical investigation for a finite temperature and an arbitrary length scale Josephson junction in the Furusaki-Tsukada formula. We have shown theoretically that a large degree of control over the generated critical supercurrent can be obtained by changing directions of the magnetizations in ferromagnet. The special importance for experimental measurements is the asymmetric character, oscillatory feature arising in the Fermi energy window, and energy shift phenomenon unveiled by a top gate voltage, which are independent of magnetization amplitude. (orig.)
Compound Josephson-junction coupler for flux qubits with minimal crosstalk
Harris, R.; Lanting, T.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Bunyk, P.; Ladizinsky, E.; Ladizinsky, N.; Oh, T.; Han, S.
2009-08-01
An improved tunable coupling element for building networks of coupled rf-superconducting quantum interference device (rf-SQUID) flux qubits has been experimentally demonstrated. This new form of coupler, based on the compound Josephson-junction rf-SQUID, provides a sign and magnitude tunable mutual inductance between qubits with minimal nonlinear crosstalk from the coupler tuning parameter into the qubits. Quantitative agreement is shown between an effective one-dimensional model of the coupler’s potential and measurements of the coupler persistent current and susceptibility.
2016-11-17
Nanomagnets Joseph A. Glick, Reza Loloee, W. P. Pratt, Jr. and Norman O. Birge Dept. of Physics and Astronomy, Michigan State University , East Lansing...Phase control of the spin-triplet state in S/F/S josephson junctions,” Ph.D. dissertation, Michigan State University , 2014. [11] Y. Wang, W. P. Pratt Jr...of materials that fulfills these criteria is the Pd1−xFex alloy system with low Fe concentrations. We present studies of micron-scale elliptically
Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Vasenko, Andrey S. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France); Asano, Yasuhiro [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan)
2012-10-15
Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0-{pi} transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the {pi}(0) state is always more stable than the 0 ({pi}) state if L is odd (even).
Fluxon motion in long overlap and in-line Josephson junctions
DEFF Research Database (Denmark)
Levring, O. A.; Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm
1982-01-01
The motion of a single fluxon in long Josephson junctions of the overlap and inline geometries is investigated. It is concluded that if the junction is long and the damping is not too large then zero-field steps exist also in the inline junction. Thee zero-field steps are found to be mathematical...... identical to those of the overlap junctions in spite of the fact that the fluxon dynamics are quite different in the two cases. Applied Physics Letters is copyrighted by The American Institute of Physics....
Period doubling and chaos in large area Josephson junctions induced by rf signals
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1985-01-01
. In the intermediate regime lower and upper threshold values (for the amplitude) for transition to chaos are found. Feigenbaum period doubling (period-doubling bifurcation cascade) appears when chaos is approached for increasing amplitude. The findings are supported experimentally. Applied Physics Letters......The influence of an applied rf signal on the emitted radiation from a large area Josephson junction is examined. A model of the system is presented in the framework of the one-dimensional sine-Gordon equation. The model linearizes for small and large values of the amplitude of the applied signal...... is copyrighted by The American Institute of Physics....
A compact design for the Josephson mixer: The lumped element circuit
Energy Technology Data Exchange (ETDEWEB)
Pillet, J.-D. [Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Collège de France, 11 place Marcelin Berthelot, 75005 Paris (France); Flurin, E.; Mallet, F., E-mail: francois.mallet@lpa.ens.fr; Huard, B. [Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05 (France)
2015-06-01
We present a compact and efficient design in terms of gain, bandwidth, and dynamical range for the Josephson mixer, the superconducting circuit performing three-wave mixing at microwave frequencies. In an all lumped-element based circuit with galvanically coupled ports, we demonstrate nondegenerate amplification for microwave signals over a bandwidth up to 50 MHz for a power gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70%, and its saturation power reaches −112 dBm.
External noise-induced transitions in a current-biased Josephson junction
Directory of Open Access Journals (Sweden)
Qiongwei Huang
2016-01-01
Full Text Available We investigate noise-induced transitions in a current-biased and weakly damped Josephson junction in the presence of multiplicative noise. By using the stochastic averaging procedure, the averaged amplitude equation describing dynamic evolution near a constant phase difference is derived. Numerical results show that a stochastic Hopf bifurcation between an absorbing and an oscillatory state occurs. This means the external controllable noise triggers a transition into the non-zero junction voltage state. With the increase of noise intensity, the stationary probability distribution peak shifts and is characterised by increased width and reduced height. And the different transition rates are shown for large and small bias currents.
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, K.; Miyakawa, H.; Yoshikawa, N.; Feng, Y.; Whiteley, S.R.; Van Duzer, T
2003-10-15
We have been developing Josephson-CMOS hybrid memories where high-density CMOS devices are used as storage cells. One of the key components in the system is the interface circuit, which amplifies the signal from the SFQ circuits into voltage level processible in the CMOS circuits at high-speed. In this paper, we have implemented the ultra-fast interface circuit, which is composed of a Josephson driver and a Josephson-CMOS hybrid amplifier. The propagation delay of the ultra-fast interface circuit is estimated to be about 60 ps assuming a 2.5 kA/cm{sup 2} Nb process and a 0.6 {mu}m CMOS process. A low speed test results of the interface circuit shows that it amplifies the input voltage of 80 {mu}V to 0.9 V. We have also investigated their propagation delay and output voltage swing assuming the spread of the critical current in the Josephson stack.
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.
DEFF Research Database (Denmark)
Aarøe, Morten; Monaco, Roberto; Dmitriev, P
2007-01-01
We report on new investigations of spontaneous symmetry breaking in non-adiabatic phase transitions. This Zurek-Kibble (ZK) process is mimicked in solid state systems by trapping of magnetic flux quanta, fluxons, in a long annular Josephson tunnel junction quenched through the normal...
DEFF Research Database (Denmark)
Kofoed, Bent; Særmark, Knud
1973-01-01
We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak is observ...
Phase locked 270-440 GHz local oscillator based on flux flow in long Josephson tunnel junctions
DEFF Research Database (Denmark)
Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.
2000-01-01
The combination of narrow linewidth and wide band tunability makes the Josephson flux flow oscillator (FFO) a perfect on-chip local oscillator for integrated sub-mm wave receivers for, e.g., spectral radio astronomy. The feasibility of phase locking the FFO to an external reference oscillator is ...
Design and Characterization of a millikelvin dual-tip Josephson STM
Roychowdhury, A.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.
2014-03-01
We describe the design and characterization of a dual-tip Josephson STM that operates at millikelvin temperatures. We report an effective noise temperature for the STM on the order of 200 mK. In addition to the expected phase diffusive super current in the ultra-small Nb-Nb junction formed by one tip and the sample, our high resolution spectroscopy at mK temperatures reveals resonant coupling between the STM junction and the electromagnetic environment it is embedded in, as predicted by P(E) theory. We have for the first time, observed Shapiro-like steps in this limit by measuring the response of the P(E) supercurrent to microwave radiation as a function of amplitude. Fits to theory indicate that the coupling of an ultra-small Josephson junction to its environment/circuit may be used to a) directly measure dissipation channels associated with circuit resonances and b) calibrate the frequency dependent microwave attenuation in cryogenic circuits as seen by the junction.
Josephson junction between two high Tc superconductors with arbitrary transparency of interface
Directory of Open Access Journals (Sweden)
GhR Rashedi
2010-03-01
Full Text Available In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave with arbitrary reflection coefficient has been investigated theoretically. For the case of high Tc superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The physics of potential barrier will be demonstrated by a transparency coefficient via which the tunneling will occur. We have solved the nonlocal Eilenberger equations and obtained the corresponding and suitable Green functions analytically. Then, using the obtained Green functions, the current-phase diagrams have been calculated. The effect of the potential barrier and mis-orientation on the currents is studied analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in high Tc superconductors.
Current-phase relations of few-mode InAs nanowire Josephson junctions
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius; Krogstrup, Peter; Nygård, Jesper; Marcus, Charles M.; Moler, Kathryn A.
2017-12-01
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, φ, across the junction is called the current-phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. We measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunable junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.
Energy Technology Data Exchange (ETDEWEB)
Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)
2017-06-28
Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.
Superconductor-graphene-superconductor Josephson junction in the quantum Hall regime
Liu, Jie; Liu, Haiwen; Song, Juntao; Sun, Qing-Feng; Xie, X. C.
2017-07-01
Using a nonequilibrium-Green-function method, we numerically studied the transport properties of a superconductor-graphene-superconductor Josephson junction hybrid system in the quantum Hall regime. Our numerical calculations show that there are two interference patterns of the critical current due to the unique band structure of graphene. One is caused by the usual intraband Andreev retroreflection process, and the other one is caused by the interband specular Andreev reflection process. In the Andreev retroreflection regime, chiral Andreev edge states are formed and a distinct supercurrent can be observed. The critical current displays an AB oscillation behavior and the period is approximately 2 Φ0=h /e . As for the specular Andreev refection process, the reflected holes are bent back to the reverse direction of the incident electrons and the supercurrent flows along both edges. It is similar to a superconductor ring Josephson junction and the period is Φ0=h /2 e . However, the critical current for the specular Andreev reflection process is very small and is unlikely to be observable in an experiment. Thus, we conclude that our numerical calculations are inconsistent to the experimental findings by Amet et al. [Science 352, 966 (2016), 10.1126/science.aad6203].
Spin-Transfer Torque Switching in Nanopillar Superconducting-Magnetic Hybrid Josephson Junctions
Baek, Burm; Rippard, William H.; Pufall, Matthew R.; Benz, Samuel P.; Russek, Stephen E.; Rogalla, Horst; Dresselhaus, Paul D.
2015-01-01
The combination of superconducting and magnetic materials to create superconducting devices has been motivated by the discovery of Josephson critical current (Ic s ) oscillations as a function of magnetic layer thickness and the demonstration of devices with switchable critical currents. However, none of the hybrid devices has shown any spintronic effects, such as spin-transfer torque, which are currently used in room-temperature magnetic devices, including spin-transfer torque random-access memory and spin-torque nano-oscillators. We develop nanopillar Josephson junctions with a minimum feature size of 50 nm and magnetic barriers exhibiting magnetic pseudo-spin-valve behavior at 4 K. With a bias current higher than Ic s , these devices allow current-induced magnetization switching that results in tenfold changes in Ic s . The current-induced magnetic switching is consistent with spin-transfer torque models for room-temperature magnetic devices. Our work demonstrates that devices that combine superconducting and spintronic functions show promise for the development of a nanoscale, nonvolatile, cryogenic memory technology.
Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.; Loloee, Reza; Pratt, W. P.; Birge, Norman O.; Gingrich, E. C.; Kotula, P. G.; Missert, N.
2017-10-01
Josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni81Fe19 or Ni65Fe15Co20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extract the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. We compare the data to previous work and to models of the 0-π transitions based on existing theories.
Energy Technology Data Exchange (ETDEWEB)
Pinto Rengifo, Ricardo Alberto
2008-02-15
We address the excitation of quantum breathers in small nonlinear networks of two and three degrees of freedom, in order to study their properties. The invariance under permutation of two sites of these networks substitutes the translation invariance that is present in nonlinear lattices, where (classical) discrete breathers are time periodic space localized solutions of the underlying classical equations of motion. We do a systematic analysis of the spectrum and eigenstates of such small systems, characterizing quantum breather states by their tunneling rate (energy splitting), site correlations, fluctuations of the number of quanta, and entanglement. We observe how these properties are reflected in the time evolution of initially localized excitations. Quantum breathers manifest as pairs of nearly degenerate eigenstates that show strong site correlation of quanta, and are characterized by a strong excitation of quanta on one site of the network which perform slow coherent tunneling motion from one site to another. They enhance the fluctuations of quanta, and are the least entangled states among the group of eigenstates in the same range of the energy spectrum. We use our analysis methods to consider the excitation of quantum breathers in a cell of two coupled Josephson junctions, and study their properties as compared with those in the previous cases. We describe how quantum breathers could be experimentally observed by employing the already developed techniques for quantum information processing with Josephson junctions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gaber, Tobias
2007-07-01
In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-{kappa} junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-{kappa} junctions and fractional vortices are generalizations of the well-known 0-{pi} junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-{kappa} junctions that are based on standard Nb-AlO{sub x}-Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)
Proximity effect in Nb/Al, AlOxide, Al/Nb Josephson tunnel junctions
Houwman, E. P.; Gijsbertsen, J. G.; Flokstra, J.; Rogalla, H.; Le Grand, J. B.; de Korte, P. A. J.; Golubov, A. A.
1993-03-01
Regions with reduced energy gap induced by the proximity effect give rise to quasi-particle loss in Josephson-junction X-ray detectors, but may also be used advantageously for quasi-particle collection. The influence of the thickness of the Al proximity layers in Nb/Al1,AlO(x),Al2/Nb Josephson tunnel junctions on the electrical characteristics has been investigated theoretically and experimentally. Theoretically it is found that the strength of the proximity effect is mainly determined by the proximity parameters gammaM1 (gammaM2) of the electrodes. Good fits of the measured I-V curves with theory were obtained for junctions with thicknesses dA11 ranging from 4 to 25 nm and dA12 = 3 nm, with gammaM2 about 0.12 and gammaM1/gammaM2 = dA11/dA12. For all junctions the proximity knee remains more pronounced than predicted.
van Woerkom, David J.; Proutski, Alex; van Heck, Bernard; Bouman, Daniël; Väyrynen, Jukka I.; Glazman, Leonid I.; Krogstrup, Peter; Nygård, Jesper; Kouwenhoven, Leo P.; Geresdi, Attila
2017-09-01
The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates, providing a highly scalable and in situ variation of the device properties. In addition, semiconductors with large g-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as φ0 Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.
Stiglitz, M. R.
1985-11-01
The conference Phased Arrays '85 was held in Bedford, MA, on October 15-18, 1985. It is pointed out that the 15 years between the 1970 and 1985 conferences dedicated to phased array antennas have seen many technological advances. Attention is given to the principle of operation, monolithic phased arrays, active arrays of monopole elements, scan compensated active element patterns, microstrip arrays, time delay technologies for phased array systems, ferrite materials for mm-wave phase shifters, phase-only optimization of phased array excitation by B-quadratic programming, a nearly frequency-independent sidelobe suppression technique for phased arrays, and active impedance effects in low sidelobe and ultrawideband phased arrays.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-03-01
In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.
Josephson current and Andreev level dynamics in nanoscale superconducting weak links
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Aldo
2014-11-15
In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1968-01-01
In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...
Modelling of the Critical Dependences in Two-Layer Josephson Junctions
Atanasova, P H
2005-01-01
A numerical modelling of the critical current as a function of applied magnetic field in a two-layer symmetric inductive coupled Josephson stack is presented. For this purpose, the crossovers between superconducting and resisting regimes of each of the layers are mathematically interpreted as bifurcations of the magnetic flux in the layer [1, 2]. A magnetic configuration in one of the layers corresponds to a partial scalar Sturm--Liouville problem, the eigenvalues of which are related to the stability of the system. A critical curve of the layer is obtained as an envelope curve of the bifurcation curves corresponding to different magnetic field distributions. From a mathematical point of view, some of the effects, revealed in experiment [3, 4], are connected with discontinuity points in partial critical curves.
Terahertz frequency metrology based on high-T sub c Josephson junctions
Chen, J; Wang, H B; Nakajima, K; Yamashita, T; Wu, P H
2002-01-01
Using YBa sub 2 Cu sub 3 O sub 7 /MgO bicrystal Josephson junctions operating between 6-77 K, we have studied their responses to monochromatic electromagnetic radiation from 50 GHz to 4.25 THz. We have obtained direct detections for radiation at 70 K from 50 GHz to 760 GHz and at 40 K from 300 GHz to 3.1 THz. This indicates that fast detectors can be realized to cover the 10:1 frequency band at one operation temperature, and about 100:1 can be covered by operating only one junction at two different temperatures. Both the highest response frequency and the maximum value of the normalized response are shown to be proportional to the I sub C R sub N product of the junction, where I sub C and R sub N are the critical current and the normal resistance of the junction, respectively.
Josephson STM at mK temperatures: Coupling to the electronic environment
Dreyer, Michael; Dana, Rami; Liao, Wan-Ting; Lobb, Cris; Wellstood, Fred; Anderson, Bob
Ultra-small Josephson junctions can couple to modes in the electronic environment. This leads to sub-gap peaks in the I(V) curve in addition to the phase diffuse supercurrent. The I(V) curve can - in principle - be explained by P(E) theory which describes the probability of tunneling at energy E. A recent study showed that antenna modes of the STM tips could be responsible for the observed sideband structures. In our case the explanation appears to be less simple. We employ a dual tip STM at a temperature of 30 mK. The I(V) spectra of the two tips show distinct patterns with only one shared mode. While the supercurrent branch for the ''inner'' tip is visible, it is obscured by a resonance for the ``outer'' tip. Possible causes and applications to other systems will be discussed. Support from NSF (DMR- 0605763) and Laboratory for Physical Sciences.
Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings
Directory of Open Access Journals (Sweden)
Rahmonov I. R.
2016-01-01
Full Text Available The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current–voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge–Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna. We demonstrate the appearance of the charge traveling wave (CTW at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.
DEFF Research Database (Denmark)
Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.
2000-01-01
The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...... and its spectral distribution have been obtained in an annular geometry. It is demonstrated that noise reduces the amplitude of the radiated wave and broadens its spectrum. The effect of the radiated wave on the fluxon dynamics leads to a considerably smaller linewidth than observed in the usual flux flow...... oscillator. A resonant behavior of both the mean amplitude and the linewidth as functions of bias current is found. The obtained results enable an optimization of the main parameters (power, tunability, and linewidth) of practical mm- and sub-mm wave Cherenkov flux flow oscillators....
A cryogen-free dilution refrigerator based Josephson qubit measurement system
Tian, Ye; Yu, H. F.; Deng, H.; Xue, G. M.; Liu, D. T.; Ren, Y. F.; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han, Siyuan
2012-03-01
We develop a small-signal measurement system on cryogen-free dilution refrigerator which is suitable for superconducting qubit studies. Cryogen-free refrigerators have several advantages such as less manpower for system operation and large sample space for experiment, but concern remains about whether the noise introduced by the coldhead can be made sufficiently low. In this work, we demonstrate some effective approaches of acoustic isolation to reduce the noise impact. The electronic circuit that includes the current, voltage, and microwave lines for qubit coherent state measurement is described. For the current and voltage lines designed to have a low pass of dc-100 kHz, we show that the measurements of Josephson junction's switching current distribution with a width down to 1 nA, and quantum coherent Rabi oscillation and Ramsey interference of the superconducting qubit can be successfully performed.
Energy Technology Data Exchange (ETDEWEB)
Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)
2015-07-01
Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.
Lumped-element Josephson parametric amplifier at 650 MHz for nano-calorimeter readout
Vesterinen, Visa; Saira, Olli-Pentti; Räisänen, Ilmo; Möttönen, Mikko; Grönberg, Leif; Pekola, Jukka; Hassel, Juha
2017-08-01
We design a sub-gigahertz Josephson parametric amplifier for the readout of nanoscale calorimeters which consist of normal-metal-superconductor heterostructures. We characterize the amplifier performance at two operating points, 605 and 655 MHz, corresponding to reproducible local frequency maxima with respect to the applied magnetic flux. At the 655 MHz operating point, the device displays its maximum small-signal gain of 32 dB and gain-bandwidth product of 2π × 3.3 {MHz}. The gain remains above 20 dB for incident powers up to -119 dBm. The added noise of the amplifier, determined by the hot/cold source method, assumes a minimum value of 0.2 K.
Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions
Muñoz, W. A.; Covaci, L.; Peeters, F. M.
2013-12-01
Using a numerical tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and nondimer atoms, being more pronounced for rhombohedral stacking. Even though the proximity effect in nondimer sites is enhanced when compared to single-layer graphene, we find that the supercurrent is suppressed. The spatial distribution of the supercurrent shows that for Bernal stacking the current flows only in the topmost layers while for rhombohedral stacking the current flows throughout the whole structure.
Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures.
Borzenets, I V; Coskun, U C; Mebrahtu, H T; Bomze, Yu V; Smirnov, A I; Finkelstein, G
2013-07-12
We examine the nature of the transitions between the normal and superconducting branches in superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (normal to superconducting) transitions to electron overheating. In particular, we demonstrate that the retrapping current corresponds to the critical current at an elevated temperature, where the heating is caused by the retrapping current itself. The superconducting gap in the leads suppresses the hot electron outflow, allowing us to further study electron thermalization by phonons at low temperatures (T≲1 K). The relationship between the applied power and the electron temperature was found to be P∝T3, which we argue is consistent with cooling due to electron-phonon interactions.
Static properties of small Josephson tunnel junctions in an oblique magnetic field
DEFF Research Database (Denmark)
Monaco, Roberto; Aarøe, Morten; Mygind, Jesper
2009-01-01
We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the barrier plane. We considered annular junctions, as well as rectangular...... junctions (having both overlap and cross-type geometries) with different barrier aspect ratios. It is shown how most of the experimental findings in an oblique field can be reproduced invoking the superposition principle to combine the classical behavior of electrically small junctions in an in-plane field...... together with the small junction behavior in a transverse field that we recently published [R. Monaco , J. Appl. Phys. 104, 023906 (2008)]. We show that the presence of a transverse field may have important consequences, which could be either voluntarily exploited in applications or present an unwanted...
Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator
Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas
2016-01-01
We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732
Side-wall spacer passivated sub-μm Josephson junction fabrication process
Grönberg, Leif; Kiviranta, Mikko; Vesterinen, Visa; Lehtinen, Janne; Simbierowicz, Slawomir; Luomahaara, Juho; Prunnila, Mika; Hassel, Juha
2017-12-01
We present a structure and a fabrication method for superconducting tunnel junctions down to the dimensions of 200 nm using i-line UV lithography. The key element is a sidewall-passivating spacer structure (SWAPS) which is shaped for smooth crossline contacting and low parasitic capacitance. The SWAPS structure enables formation of junctions with dimensions at or below the lithography-limited linewidth. An additional benefit is avoiding the excessive use of amorphous dielectric materials which is favorable in sub-Kelvin microwave applications often plagued by nonlinear and lossy dielectrics. We apply the structure to niobium trilayer junctions, and provide characterization results yielding evidence on wafer-scale scalability, and critical current density tuning in the range of 0.1–3.0 kA cm‑2. We discuss the applicability of the junction process in the context of different applications, such as SQUID magnetometers and Josephson parametric amplifiers.
Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines
Macías-Díaz, J. E.
2017-12-01
In this note, we depart from a model describing the transmission of electric currents in Josephson-junction chains, and provide a fractional generalization using Riesz discrete differential operators. The fractional model considered has generalized Hamiltonian- and energy-like functionals. The model and the energy functionals are fully discretized in order to investigate numerically the complex dynamics of the system when a sinusoidal perturbation at one end of the chain is imposed. As one of the most important results in this report, we establish the persistence of the nonlinear phenomena of supratransmission and infratransmission in Riesz fractional chains. Nonlinear hysteresis loops are obtained numerically for some values of the order of the fractional derivative, and numerical simulations of the propagation of monochromatic wave signals through the transmission line are presented using the nonlinear bistability of the system.
Suppression of I[sub c] and Fiske resonances in specially shaped Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Gijsbertsen, J.G. (Dept. of Applied Physics, Univ. of Twente, Enschede (Netherlands)); Houwman, E.P. (Dept. of Applied Physics, Univ. of Twente, Enschede (Netherlands)); Flokstra, J. (Dept. of Applied Physics, Univ. of Twente, Enschede (Netherlands)); Rogalla, H. (Dept. of Applied Physics, Univ. of Twente, Enschede (Netherlands))
1994-02-01
In some applications of Josephson junctions it is necessary to suppress the critical current and Fiske resonances with a relatively small magnetic field. The sidelobes of the Fraunhofer pattern can be suppressed by taking an appropriate shape for the junction. A suppression of the first sidelobe below 1% of the zero-field critical current is possible as was shown experimentally. However, Fiske resonances are still present. We investigated how an adaptation of the junction shape may suppress these resonances, still maintaining the suppression of the sidelobes of the Fraunhofer pattern. Measurements of the critical current and Fiske resonance heights as a function of the magnetic field for a junction with a special shape and an adapted specially shaped junction were performed. For both types of junctions, the sidelobes of the I[sub c](B) patterns are suppressed. No extra suppression of the I[sub F](B) patterns due to the adaptation of the shape is observed. (orig.)
Characterization of different types of Nb-AlO sub x based Josephson tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Adelerhof, D.J.; Houwman, E.P.; Fransen, P.B.M.; Veldhuis, D.; Flokstra, J.; Rogalla, H. (Univ. of Twente, Faculty of Applied Physics, P.O. Box 217, 7500 AE Enschede (NL))
1991-03-01
This paper reports on three types of Josephson tunnel junctions, standard Nb/Al,AlO{sub x}/Nb, symmetric Nb/Al,AlO{sub x}/Al/Nb, and Nb/Al,AlO{sub x}/AlO{sub x}/Nb containing a double oxide layer investigated by means of temperature dependent I-V measurements, conductance-voltage measurements, noise analysis, and Auger Electron Spectroscopy scanning across the edge of a sputtered crater profile. In standard junctions frequently small leakage currents have been observed as well as resistance fluctuations, leading to telegraph noise. Both effects can be related to the direct contact between the AlO{sub x} and the Nb counter electrode. In none of the symmetric junctions leakage currents larger than 0.01% of the theoretical maximum critical current have been observed.
Suppression of I c and Fiske resonances in specially shaped Josephson junctions
Gijsbertsen, J. G.; Houwman, E. P.; Flokstra, J.; Rogalla, H.
1994-02-01
In some applications of Josephson junctions it is necessary to suppress the critical current and Fiske resonances with a relatively small magnetic field. The sidelobes of the Fraunhofer pattern can be suppressed by taking an appropriate shape for the junction. A suppression of the first sidelobe below 1% of the zero-field critical current is possible as was shown experimentally. However, Fiske resonances are still present. We investigated how an adaptation of the junction shape may suppress these resonances, still maintaining the suppression of the sidelobes of the Fraunhofer pattern. Measurements of the critical current and Fiske resonance heights as a function of the magnetic field for a junction with a special shape and an adapted specially shaped junction were performed. For both types of junctions, the sidelobes of the I c(B) patterns are suppressed. No extra suppression of the I F(B) patterns due to the adaptation of the shape is observed.
Directory of Open Access Journals (Sweden)
S Senoussi
2006-09-01
Full Text Available We report systematic investigations of the magnetic superconducting properties of the new superconducting materials (NS: New high temperature superconductors (HTS, Organic superconductors (OS, fullerenes, carbon nanotubes, MgB2 etc. We show that, contrary to conventional superconductors where the superconducting state can be coherent over several tenths of km, the macroscopic coherence range lc of the NS is often as short as 0.1 to 10 µm typically. As a consequence, the magnetic properties are dominated by granular-like effects as well as Josephson coupling between grains. Here, we concentrate on HTS ceramics and organic superconductors exclusively. In the first case we observe three distinct regimes: (i At very low field (H < 5 Oe to say all the grains are coupled via Josephson effect and lc can be considered as infinite. (2 At intermediate field (5 < H < 50 Oe, typically the grains are gradually decoupled by H and/or T. (iii At higher fields all the grains are decoupled and lc roughly coincides with the diameter of the metallurgical grains. The case of OS is more subtle and is connected with a kind of order-disorder transition that occurs in most of them. For instance, in this study, we exploit quenched disorder (after crossing such a transition in the -(BEDT-TTF2Cu[N(CN2]Br layered organic superconductor to get new insights on both the superconducting state (T £ 11.6 K and the glassy transition at Tg, by studying the superconducting properties as functions of annealing time and annealing temperature around the glassy transition. Our main result is that the data can be described by a percolation molecular cluster model in which the topology and the growth of the molecular clusters obey an Ising spin-glass-like model with Tg ≈ 80 K for the hydrogenated compound and Tg ≈ 55 K for the fully deuterated one.
Energy Technology Data Exchange (ETDEWEB)
Grison, X
2000-11-15
This work, mainly experimental, is dedicated to the study of the Josephson effect and the tunnel spectroscopy of superconducting films. Thin films of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} oriented towards [0,0,1], [1,0,3], [1,1,0] or [1,0,0] axis have been made. The results concerning the [0,0,1] orientation are consistent with an order parameter having a d(x{sup 2}-y{sup 2}) symmetry but with a small component of s symmetry due to the orthorombicity of YBa{sub 2}Cu{sub 3}O{sub 7{delta}}. The results concerning the [1,1,0] orientation show the existence (near (1,1,0)-type surfaces) of an order parameter whose symmetry is d(x{sup 2}-y{sup 2}) {+-} i*s or more likely d(x{sup 2} - y{sup 2}) {+-} i*d(xy). The latter term implies the breaking of the time reversing symmetry. The i*d(xy) component is responsible for the Josephson coupling along the [1,1,0] axis, which means that the coupling is not or is little carried by the Andreev bound states contrarily to recent predictions. It is also shown that Josephson junctions can be fabricated by using ion irradiation. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Freitas, Gustavo Quereza; Moreto, Jeferson Aparecido [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano (IFGO), Rio Verde, GO (Brazil); Zadorosny, Rafael; Silveira, Joao Borsil; Carvalho, Claudio Luiz [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil); Cena, Cicero Rafael, E-mail: gustavoquereza@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Birigui, SP (Brazil)
2016-03-15
A homemade Josephson junction was successfully obtained using a superconductor thin film of the BSCCO system. The film was deposited on a lanthanum aluminate, produced from a commercial powder with a nominal composition Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}CaCu{sub 2}O{sub x}, was thermally treated by a domestic microwave oven. The XRD analysis of the film indicated the coexistence of Bi-2212 and Bi-2223 phases and SEM images revealed that a typical superconductor plate-like morphology was formed. From the electrical characterization, performed using DC four probes technique, it was observed an onset superconducting transition temperature measured around 81K. At the current-voltage characteristics curve, a step of electric current at zero-voltage could be observed, an indicative that the tunneling Josephson occurred. (author)
Wang, Hui; Blencowe, M. P.; Armour, A. D.; Rimberg, A. J.
2017-09-01
We give a semiclassical analysis of the average photon number as well as photon number variance (Fano factor F ) for a Josephson junction (JJ) embedded microwave cavity system, where the JJ is subject to a fluctuating (i.e., noisy) bias voltage with finite dc average. Through the ac Josephson effect, the dc voltage bias drives the effectively nonlinear microwave cavity mode into an amplitude squeezed state (F factor to bias voltage noise depends qualitatively on which stable fixed point regime the system is in for the corresponding classical nonlinear steady-state dynamics. Furthermore, we show that the impact of voltage bias noise is most significant when the cavity is excited to states with large average photon number.
Pagano, S; Esposito, A P; Mukhanov, O; Rylov, S
1999-01-01
We have designed and realized a prototype of a high energy particle microstrip detector with Josephson readout circuits. The key features of this device are: minimum ionizing particle sensitivity, due to the use of semiconductive sensors, fast speed and radiation hardness, due to the use of superconductive circuitry, and current discrimination, which allows the use of several types of semiconductors as detector (Si, GaAs, CVD-diamond) without loss in performances. The Josephson circuitry, made by a combination of RSFQ and latching logic gates, realizes an 8-bit current discriminator and parallel to serial converter and can be directly interfaced to room temperature electronics. This device, which is designed for application as vertex detector for the Compass and LHC-B accelerator experiments, has been tested with small radioactive sources acid will undergo to a test beam at the CERN SPS facility with 24 GeV/c protons. Current results and future perspectives will be reported. (11 refs).
Energy Technology Data Exchange (ETDEWEB)
Baba, Shoji, E-mail: baba@meso.t.u-tokyo.ac.jp; Sailer, Juergen [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Deacon, Russell S. [Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); RIKEN Advanced Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oiwa, Akira [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Shibata, Kenji [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Hirakawa, Kazuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012 (Japan); Tarucha, Seigo [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); INQIE, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); QPEC, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656 (Japan)
2015-11-30
We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.
Fabricating Nanogaps in YBa2 Cu3 O7 -δ for Hybrid Proximity-Based Josephson Junctions
Baghdadi, Reza; Arpaia, Riccardo; Charpentier, Sophie; Golubev, Dmitri; Bauch, Thilo; Lombardi, Floriana
2015-07-01
The advances of nanotechnologies applied to high-critical-temperature superconductors (HTSs) have recently given a huge boost to the field, opening new prospectives for their integration in hybrid devices. The feasibility of this research goes through the realization of HTS nanogaps with superconductive properties close to the as-grown bulk material at the nanoscale. Here we present a fabrication approach allowing the realization of YBa2 Cu3 O7 -δ (YBCO) nanogaps with dimensions as small as 35 nm. To assess the quality of the nanogaps, we measure, before and after an ozone treatment, the current-voltage characteristics and the resistance versus temperature of YBCO nanowires with various widths and lengths, fabricated by using different lithographic processes. The analysis of the superconducting transition with a thermally activated vortex-entry model allows us to determine the maximum damage the nanowires undergo during the patterning which relates to the upper bound for the dimension of the nanogap. We find that the effective width of the nanogap is of the order of 100 nm at the superconducting transition temperature while retaining the geometrical value of about 35 nm at lower temperatures. The feasibility of the nanogaps for hybrid Josephson devices is demonstrated by bridging them with thin Au films. We detect a Josephson coupling up to 85 K with an almost ideal magnetic-field response of the Josephson current. These results pave the way for the realization of complex hybrid devices, where tiny HTS nanogaps can be instrumental to study the Josephson effect through barriers such as topological insulators or graphene.
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Levinsen, M. T.; Lindelof, Poul Erik
1979-01-01
Nonresonant detection of the Josephson radiation 35 GHz from a superconducting thin-film microbridge is reported. The high frequency and the accuracy of these measurements lead to a new important observation: subharmonic energy gap structure in the detected integral power. The maximum integral po...... power measured was as large as 8×10−11 W. Applied Physics Letters is copyrighted by The American Institute of Physics....
Fabrication and properties of Nb/Al, Alox/Nb Josephson tunnel junctions with a double-oxide barrier
Houwman, E. P.; Veldhuis, D.; Flokstra, J.; Rogalla, H.
1990-02-01
High-quality Nb/Al, Alox/Nb Josephson tunnel junctions using double-oxide layers as barriers have been fabricated. The critical current density is controlled by the thickness of the second Al layer. This layer has to be oxidized completely through in order to obtain high-quality junctions. Typically, gap voltages of 2.8-3.0 mV and Vm up to 70 mV at 4.2 K were obtained.
Integrated infrared array technology
Goebel, J. H.; Mccreight, C. R.
1987-01-01
An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.
Energy Technology Data Exchange (ETDEWEB)
Tachiki, T., E-mail: tachiki@nda.ac.j [Department of Electrical and Electronic Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686 (Japan); Sugawara, A.; Uchida, T. [Department of Electrical and Electronic Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686 (Japan)
2009-10-15
Voltage jumps have been observed in the quasiparticle branch I-V characteristics of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} intrinsic Josephson junctions fabricated as 60 mum x 300 mum x 0.5 mum mesas. The Josephson frequency at the highest jump voltage was estimated to be 0.65 THz, close to the fundamental cavity resonance frequency of the transverse Josephson plasma mode. Numerical simulations using coupled sine-Gordon equations demonstrated voltage jumps similar to the above experimental results, which appeared in the I-V characteristics, and the electric field distribution at the highest jump voltage exhibited resonance in the junctions. Moreover, the maximum radiation power, which was obtained in the vicinity of the highest voltage, was proportional to the square of the number of junctions. This can be explained by reduction of the impedance mismatch between the junctions and free space with increasing the number of junctions.
Dubey, S.; Han, Z.; Wen, B.; Goto, H.; Dean, C.; Bouchiat, V.
We study a wide and long graphene Josephson junction, where the graphene is 1D-contacted by NbN electrodes and encapsulated between two boron nitride flakes. Additional normal-metal side-electrodes enable a non-invasive measurement of the voltage drop (4W) across the junction. Both below and above transition parameters of the superconducting state (critical current and temperature), a gate-dependent zero-voltage state between these normal contacts is observed. This indicates the dual nature of the zero-voltage as the junction can be either in a normal ballistic regime or in a proximity superconducting state. Measuring the 4W voltage as a function of the current bias, temperature, gate voltage and magnetic field enable to build phase-diagram for both the diffusive/ballistic states and normal/superconducting states, defining a gate-controlled transition from ballistic to diffusive Josephson junction. A diffusive intermediate state is found close to the charge neutrality point, while ballistic regime is found both at high electron and hole doping regimes. The temperature dependence of the critical current provides a second and independent measurement of diffusivity in the proximity Josephson junction. It is found to be strongly affected by the diffusive/ballistic regime.
Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System
Directory of Open Access Journals (Sweden)
Endra Wijaya
2013-11-01
Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.
The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...
Energy Technology Data Exchange (ETDEWEB)
Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar
2017-01-17
The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.
Kizilaslan, O.; Rudau, F.; Wieland, R.; Hampp, J. S.; Zhou, X. J.; Ji, M.; Kiselev, O.; Kinev, N.; Huang, Y.; Hao, L. Y.; Ishii, A.; Aksan, M. A.; Hatano, T.; Koshelets, V. P.; Wu, P. H.; Wang, H. B.; Koelle, D.; Kleiner, R.
2017-03-01
We report on doping and undoping experiments of terahertz (THz) emitting intrinsic Josephson junction stacks, where the change in charge carrier concentration is achieved by heavy current injection. The experiments were performed on stand-alone structures fabricated from a Bi2Sr2CaCu2O{}8+δ single crystal near optimal doping. The stacks contained about 930 intrinsic Josephson junctions. On purpose, the doping and undoping experiments were performed over only a modest range of charge carrier concentrations, changing the critical temperature of the stack by less than 1 K. We show that both undoping and doping is feasible also for the large intrinsic Josephson junction stacks used for THz generation. Even moderate changes in doping introduce large changes in the THz emission properties of the stacks. The highest emission power was achieved after doping a pristine sample.
Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions
Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.
Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.
Effect of parallel transport currents on the d-wave Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Rashedi, Gholamreza [Department of Physics, Faculty of Sciences, University of Isfahan, Hezar Jerib Avenue, Isfahan 81746-73441 (Iran, Islamic Republic of)], E-mail: rashedi@phys.ui.ac.ir
2009-02-18
In this paper, the non-local mixing of coherent current states in d-wave superconducting banks is investigated. The superconducting banks are connected via a ballistic point contact. The banks have mis-orientation and phase difference. Furthermore, they are subjected to a tangential transport current along the ab plane of d-wave crystals and parallel to the interface between the superconductors. The effects of mis-orientation and external transport current on the current-phase relations and current distributions are the subjects of this paper. It is observed that, at values of phase difference close to 0, {pi} and 2{pi}, the current distribution may have a vortex-like form in the vicinity of the point contact. The current distribution of the above-mentioned junction between d-wave superconductors is totally different from the junction between s-wave superconductors. The interesting result which this study shows is that spontaneous and Josephson currents are observed for the case of {phi} = 0.
Stepwise compensation waveform generation by using Josephson voltage standards for joule balance
Wang, Gang; Xu, Jinxin; You, Qiang; Li, Zhengkun; Zhang, Zhonghua
2017-01-01
Flux linkage difference in the new joule balance can be obtained by the time integration of the induced voltage u(t) from the suspended coil relative to a moving magnet driven by a dc motor translation platform. Due to the finite acceleration of the dc motor, the transition and waveform of u(t) are finite and not regular. To accurately measure the time integration of u(t), a compensation waveform with precision time integration should be synthesized. In this paper, a stepwise compensation waveform is synthesized by a programmable Josephson voltage standard (PJVS) according to u(t). The accuracy of measuring the stepwise waveform with multiple transitions can be improved by reducing the ratio of the time integrated value of the total transitions to the total waveform less than one part in 102 in the joule balance. The time integration of the rise/fall transition is measured by a synchronized reference square wave generated by another PJVS system. With the total time integration more than 20 Vs, the uncertainty of the generated stepwise waveform is within 5.2 × 10-8 VsV-1s-1. The result confirms that the PJVS has the capability to generate a stepwise compensation voltage for flux linkage difference measurement.
Topological Weyl singularity in the Andreev spectrum of multi-terminal Josephson junction
Yokoyama, Tomohiro; Nazarov, Yuli
We theoretically investigate a multi-terminal Josephson junction. Such junctions can be realized, for instance, with crossed InSb nanowires. N superconductors can define N-1 independent superconducting phase differences. The spectrum of Andreev bound states in the junction is 2 π periodic in all the phase differences. By regarding the phase differences as ``quasimomenta'' for crystal, the Andreev spectrum can be proposed as ``an energy band structure in artificial material.'' We exhibit a topological Weyl singularity in the Andreev spectrum. We examine a model using scattering matrix based on a Beenakker's determinant equation to calculate the Andreev levels. The Weyl singularity requires more than three superconducting terminals. In a 3D space of the phase differences, the Weyl points come always in groups of four. They are present even in the absence of SO interaction, thus even for doubly degenerate spectrum. The SO interaction splits the conical spectrum of the Weyl points, however does not vanish the points. The Weyl points can be removed by the pair annihilation when one tunes the scattering matrix. This work has been partially supported by JSPS Postdoctoral Fellowships for Research Abroad and the Nanosciences Foundation in Grenoble, in the framework of its Chair of Excellence program Grant in Grenoble.
Wideband Isolation by Frequency Conversion in a Josephson-Junction Transmission Line
Ranzani, Leonardo; Kotler, Shlomi; Sirois, Adam J.; DeFeo, Michael P.; Castellanos-Beltran, Manuel; Cicak, Katarina; Vale, Leila R.; Aumentado, José
2017-11-01
Nonreciprocal transmission and isolation at microwave frequencies are important in many practical applications. In particular, compact isolators are useful in protecting sensitive quantum circuits operating at cryogenic temperatures from amplifier backaction and other environmental noise such as black-body radiation from higher temperature stages. However, the size of commercial cryogenic isolators limits the ability to measure multiple quantum circuits because of space constraints in typical dilution refrigerator systems. Furthermore, isolators usually require the use of ferrite components that cannot be integrated at the chip level and, since they also need large biasing magnetic fields, are incompatible with superconducting quantum circuits. In this work we show one way to accomplish isolation in a superconducting chip-scale device, a traveling-wave unidirectional frequency converter based on a parametrically pumped superconducting Josephson-junction transmission line, demonstrating better than 4.8 dB of inferred signal isolation from 6.6 to 11.4 GHz, with a maximum of 12 dB at 9.5 GHz. By using frequency diplexing techniques a conventional isolator could be implemented over this bandwidth.
Structured chaos in a devil's staircase of the Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu. M. [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Botha, A. E., E-mail: bothaae@unisa.ac.za [Department of Physics, University of South Africa, Science Campus, Private Bag X6, Florida Park 1710 (South Africa); Medvedeva, S. Yu. [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region 141700 (Russian Federation); Kolahchi, M. R. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Irie, A. [Department of Electrical and Electronic Systems Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585 (Japan)
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates
Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando
2014-03-01
In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.
Magnetization-induced dynamics of a Josephson junction coupled to a nanomagnet
Ghosh, Roopayan; Maiti, Moitri; Shukrinov, Yury M.; Sengupta, K.
2017-11-01
We study the superconducting current of a Josephson junction (JJ) coupled to an external nanomagnet driven by a time-dependent magnetic field both without and in the presence of an external ac drive. We provide an analytic, albeit perturbative, solution for the Landau-Lifshitz (LL) equations governing the coupled JJ-nanomagnet system in the presence of a magnetic field with arbitrary time dependence oriented along the easy axis of the nanomagnet's magnetization and in the limit of weak dimensionless coupling ɛ0 between the JJ and the nanomagnet. We show the existence of Shapiro-type steps in the I -V characteristics of the JJ subjected to a voltage bias for a constant or periodically varying magnetic field and explore the effect of rotation of the magnetic field and the presence of an external ac drive on these steps. We support our analytic results with exact numerical solution of the LL equations. We also extend our results to dissipative nanomagnets by providing a perturbative solution to the Landau-Lifshitz-Gilbert (LLG) equations for weak dissipation. We study the fate of magnetization-induced Shapiro steps in the presence of dissipation both from our analytical results and via numerical solution of the coupled LLG equations. We discuss experiments which can test our theory.
Enhancement of the critical current of intrinsic Josephson junctions by carrier injection
Kizilaslan, O.; Simsek, Y.; Aksan, M. A.; Koval, Y.; Müller, P.
2015-08-01
We present a study of the doping effect by carrier injection of high-Tc superconducting Bi-based whiskers. The current was injected in the c-axis direction, i.e., perpendicular to the superconducting planes. Superconducting properties were investigated systematically as a function of the doping level. The doping level of one and the same sample was changed by current injection in very small steps from an underdoped state up to a slightly overdoped state. We have observed that Tc versus log (jc) exhibits a dome-shaped characteristic, which can be fitted by a parabola. As Tc versus carrier concentration has a parabolic form, too, it can be concluded that the critical current density jc increases exponentially with the doping level. The electron-trapping mechanism is interpreted in the framework of Phillips’ microscopic theory. In addition, the Joule heating effect in the intrinsic Josephson junction (IJJ) was controlled by carrier injection, and the effect of the non-equilibrium quasiparticle on the I-V curves of the IJJs was also discussed.
Anomalous transport effects on switching currents of graphene-based Josephson junctions
Guarcello, Claudio; Valenti, Davide; Spagnolo, Bernardo; Pierro, Vincenzo; Filatrella, Giovanni
2017-03-01
We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, given the switching current distribution, i.e. the probability distribution of the passages to finite voltage from the superconducting state as a function of the bias current, that is the information more promptly available in the experiments. We consider a noise source that is a mixture of two different types of processes: a Gaussian contribution to simulate an uncorrelated ordinary thermal bath, and non-Gaussian, α-stable (or Lévy) term, generally associated to non-equilibrium transport phenomena. We find that the analysis of the switching current distribution makes it possible to efficiently detect a non-Gaussian noise component in a Gaussian background.
Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers
Mygind, J; Dmitriev, P N; Ermakov, A B; Koshelets, V P; Shitov, S V; Sobolev, A S; Torgashin, M Y; Khodos, V V; Vaks, V L; Wesselius, P R
2002-01-01
The Josephson flux flow oscillator (FFO) has proven to be one of the best on-chip local oscillators for heterodyne detection in integrated sub-mm receivers based on SIS mixers. Nb-AlO sub x -Nb FFOs have been successfully tested from about 120 to 700 GHz (gap frequency of Nb) providing enough power to pump an SIS mixer (about 1 mu W at 450 GHz). Both the frequency and the power of the FFO can be dc-tuned. Extensive measurements of the dependence of the free-running FFO linewidth on the differential resistances associated with both the bias current and the control-line current (applied magnetic field) have been performed. The FFO line is Lorentzian both in the resonant regime, on Fiske steps (FSs), and on the flux flow step (FFS). This indicates that internal wide-band noise is dominant. A phenomenological noise model can account for the FFO linewidth dependence on experimental parameters. The narrow free-running FFO linewidth achieved, in combination with the construction of a wide-band phase-locked loop (PLL...
Energy Technology Data Exchange (ETDEWEB)
Kandelaki, Ervand
2014-11-25
This Thesis reports on the scientific research conducted in the field of theoretical condensed matter physics and covers two rather independent topics. First, three different projects targeting heterostructures involving superconductors are discussed. Then, a project related to numerical methods for general fermionic interacting systems is presented. The Thesis is divided into four parts. In Part I of the present Thesis, we study the variation in the differential conductance G = dj/dV of a normal metal wire in a superconductor/normal metal heterostructure with a cross geometry under external microwave radiation applied to the superconducting parts. Our theoretical treatment is based on the quasiclassical Green's functions technique in the diffusive limit. Two limiting cases are considered: first, the limit of a weak proximity effect and low microwave frequency and second, the limit of a short dimension (short normal wire) and small irradiation amplitude. In Part II, we study the dynamics of Josephson junctions with a thin ferromagnetic layer F [superconductor-ferromagnet-insulator-ferromagnet-superconductor (SFIFS) junctions]. In such junctions, the phase difference φ of the superconductors and magnetization M in the F layer are two dynamic parameters coupled to each other. We derive equations describing the dynamics of these two parameters and formulate the conditions of validity. The coupled Josephson plasma waves and oscillations of the magnetization M affect the form of the current-voltage (I - V) characteristics in the presence of a weak magnetic field (Fiske steps). We calculate the modified Fiske steps and show that the magnetic degree of freedom not only changes the form of the Fiske steps but also the overall view of the I - V curve (new peaks related to the magnetic resonance appear). The I - V characteristics are shown for different lengths of the junction including those which correspond to the current experimental situation. We also calculate the
Computing prime factors using a Josephson phase-qubit architecture: 15 = 3 x 5
Lucero, Erik Anthony
Josephson phase-quantum-bits, (“qubits”), together with superconducting resonators, comprise the essential quantum elements in a state-of-the-art quantum processor (QuP). A QuP can be used to exploit quantum mechanics to find the prime factors of composite numbers by running Shor's algorithm[57]. In this thesis, I describe the first solid-state demonstration of a compiled version of Shor's algorithm. To meet this challenge, I designed a QuP so that I could map the problem of factoring the number N = 15 onto a quantum circuit that is compatible with our technological capabilities. The QuP is composed of nine quantum elements: four phase qubits and five superconducting coplanar waveguide (CPW) resonators. Using this device, I ran a three-qubit complied version of Shor's algorithm and successfully found the prime factors 48% of the time (compared to the ideal success rate of 50 %). In addition, the QuP produced coherent interactions between five quantum elements, and bi- and tripartite entanglement, which was verified via quantum state tomography (QST). Scaling up to nine quantum elements and performing these experiments represent key milestones to realizing a quantum computer. Continued improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms in the near future.
Anodization-based process for the fabrication of all niobium nitride Josephson junction structures
Directory of Open Access Journals (Sweden)
Massimiliano Lucci
2017-03-01
Full Text Available We studied the growth and oxidation of niobium nitride (NbN films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K.
Glick, Joseph A.; Edwards, Samuel; Korucu, Demet; Aguilar, Victor; Niedzielski, Bethany M.; Loloee, Reza; Pratt, W. P.; Birge, Norman O.; Kotula, P. G.; Missert, N.
2017-12-01
We present measurements of Josephson junctions containing three magnetic layers with noncollinear magnetizations. The junctions are of the form S /F'/N /F /N /F″/S , where S is superconducting Nb, F' is either a thin Ni or Permalloy layer with in-plane magnetization, N is the normal metal Cu, F is a synthetic antiferromagnet with magnetization perpendicular to the plane, composed of Pd/Co multilayers on either side of a thin Ru spacer, and F″ is a thin Ni layer with in-plane magnetization. The supercurrent in these junctions decays more slowly as a function of the F -layer thickness than for similar spin-singlet junctions not containing the F' and F″ layers. The slower decay is the prime signature that the supercurrent in the central part of these junctions is carried by spin-triplet pairs. The junctions containing F'= Permalloy are suitable for future experiments where either the amplitude of the critical current or the ground-state phase difference across the junction is controlled by changing the relative orientations of the magnetizations of the F' and F″ layers.
Choudhari, Tarun; Deo, Nivedita
2017-01-01
A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.
Cryogenic Memories based on Spin-Singlet and Spin-Triplet Ferromagnetic Josephson Junctions
Gingrich, Eric
The last several decades have seen an explosion in the use and size of computers for scientific applications. The US Department of Energy has set an ExaScale computing goal for high performance computing that is projected to be unattainable by current CMOS computing designs. This has led to a renewed interest in superconducting computing as a means of beating these projections. One of the primary requirements of this thrust is the development of an efficient cryogenic memory. Estimates of power consumption of early Rapid Single Flux Quantum (RSFQ) memory designs are on the order of MW, far too steep for any real application. Therefore, other memory concepts are required. S/F/S Josephson Junctions, a class of device in which two superconductors (S) are separated by one or more ferromagnetic layers (F) has shown promise as a memory element. Several different systems have been proposed utilizing either the spin-singlet or spin-triplet superconducting states. This talk will discuss the concepts underpinning these devices, and the recent work done to demonstrate their feasibility. This research is supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via U.S. Army Research Office Contract W911NF-14-C-0115.
Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions
Yokoyama, Takehito; Kato, Takeo; Tanaka, Yukio
2007-01-01
We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson junctions made of high-T_c superconductors in order to clarify the influence of the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the MQT rate on the twist angle $\\gamma$ about the c-axis is calculated by using the functional integral and the bounce method. Due to the d-wave OPS, the $\\gamma$ dependence of standard deviation of the switching current distribution and the crossover temperature from thermal activation to MQT are found to be given by $\\cos2\\gamma$ and $\\sqrt{\\cos2\\gamma}$, respectively. We also show that a dissipative effect resulting from the nodal quasiparticle excitation on MQT is negligibly small, which is consistent with recent MQT experiments using Bi${}_2$Sr${}_2$CaCu${}_2$O${}_{8 + \\delta}$ intrinsic junctions. These results indicate that MQT in c-axis twist junctions becomes a useful experimental tool for testing the OPS of high-T_c materials at low temperature, and suggest high potential of suc...
Time-multiplexed amplification in a hybrid-less and coil-less Josephson parametric converter
Abdo, Baleegh; Chavez-Garcia, Jose M.; Brink, Markus; Keefe, George; Chow, Jerry M.
2017-02-01
Josephson parametric converters (JPCs) are superconducting devices capable of performing nondegenerate, three-wave mixing in the microwave domain without losses. One drawback limiting their use in scalable quantum architectures is the large footprint of the auxiliary circuit needed for their operation, in particular, the use of off-chip, bulky, broadband hybrids and magnetic coils. Here, we realize a JPC that eliminates the need for these bulky components. The pump drive and flux bias are applied in the Hybrid-Less, Coil-Less (HLCL) device through an on-chip, lossless, three-port power divider and an on-chip flux line, respectively. We show that the HLCL design considerably simplifies the circuit and reduces the footprint of the device while maintaining a comparable performance to state-of-the-art JPCs. Furthermore, we exploit the tunable bandwidth property of the JPC and the added capability of applying alternating currents to the flux line in order to switch the resonance frequencies of the device, hence demonstrating time-multiplexed amplification of microwave tones that are separated by more than the dynamical bandwidth of the amplifier. Such a measurement technique can potentially serve to perform a time-multiplexed, high-fidelity readout of superconducting qubits.
Silveri, M.; Zalys-Geller, E.; Hatridge, M.; Leghtas, Z.; Devoret, M. H.; Girvin, S. M.
2015-03-01
In the remote entanglement process, two distant stationary qubits are entangled with separate flying qubits and the which-path information is erased from the flying qubits by interference effects. As a result, an observer cannot tell from which of the two sources a signal came and the probabilistic measurement process generates perfect heralded entanglement between the two signal sources. Notably, the two stationary qubits are spatially separated and there is no direct interaction between them. We study two transmon qubits in superconducting cavities connected to a Josephson Parametric Converter (JPC). The qubit information is encoded in the traveling wave leaking out from each cavity. Remarkably, the quantum-limited phase-preserving amplification of two traveling waves provided by the JPC can work as a which-path information eraser. By using a stochastic master approach we demonstrate the probabilistic production of heralded entangled states and that unequal qubit-cavity pairs can be made indistinguishable by simple engineering of driving fields. Additionally, we will derive measurement rates, measurement optimization strategies and discuss the effects of finite amplification gain, cavity losses, and qubit relaxations and dephasing. Work supported by IARPA, ARO and NSF.
Field dependence of Fiske resonances in Nb-AlO(x) based Josephson junctions
Gijsbertsen, J. G.; Houwman, E. P.; Flokstra, J.; Rogalla, H.; Le Grand, J. B.; de Korte, P. A. J.
1993-03-01
Fiske resonances have been measured in a rectangular Nb-Al, AlO(x), Al-Nb Josephson junction as a function of the magnetic field applied parallel to a junction side. Due to the high quality factor of the junction, many resonant modes could be measured, using a special measuring technique. Each mode shows more lobes than reported before. The measured curves are in very good agreement with the high Q theory of Kulik (1967), and Q-values ranging from 40 to 450 have been obtained. The surface resistance of the Al/Nb barrier probably dominates the microwave losses in the junction barrier at 4.2 K. Losses due to the quasi-particle tunneling current can be neglected. Fiske resonances in a square junction at a field angle of pi/4 rad were also measured. Two-dimensional resonant modes have been found. The field dependence of the (1,1) mixed mode agrees well with the theory of Nerenberg et al. (1976).
Golubov, A. A.; Houwman, E. P.; Gijsbertsen, J. G.; Krasnov, V. M.; Flokstra, J.; Rogalla, H.; Kupriyanov, M. Yu.
1995-01-01
A microscopic model of the proximity effect in superconductor-insulator-superconductor (SS'IS''S) Josephson tunnel junctions has been developed for the general case of the finite critical temperature of the S' (S'') metal, arbitrary SS' (SS'') boundary transparency and the strength of the proximity effect between S and S' (respectively S and S''). The metals are assumed to be in the dirty limit and the thickness of the proximity layer is assumed to be small compared to its coherence length. The electrical properties of the SS'IS''S junction are calculated as a function of the strength of the proximity effect, boundary transparency, critical temperature ratio, and temperature. The experimentally determined electrical characteristics of a series of Nb/Al1, Al oxide, Al2/Nb junctions with varying thickness d1 of the Al1 layer were interpreted with this model. The current-voltage characteristics and the temperature dependence of the critical current and sum-gap voltage could be described quantitatively well without any other correction than the non-BCS ratio Δ0/kBTc~=1.93 of Nb. Deviations from the model for the junctions with the largest d1 are attributed to the fact that the Nb and Al are not fully in the dirty limit and d1 is not small compared to the coherence length.
Energy Technology Data Exchange (ETDEWEB)
Guerlich, Christian
2010-05-11
With Low-Temperature-Electron-Microscopy (LTSEM) it is possible to analyse the transport properties of solids at low temperatures. In particular it is possible to image the supercurrent density j{sub s} in Josephson junctions. This was demonstrated by comparing TTREM-images with calculated values for j{sub s}. In this thesis ramp-type Nd{sub 2-x}Ce{sub x}CuO{sub 4-y}/Nb-Josephson-junctions (NCCO/Nb) and Josephson junctions with a ferromagnetic interlayer Nb/Al-Al{sub 2}O{sub 3}/NiCu/Nb, so-called SIFS (superconductor-insulator-ferromagnet-superconductor) Josephson junctions were studied.It was demonstrated that LTSEM provides direct imaging of the sign change of the order parameter in superconductors with d{sub x{sup 2}-y{sup 2}}-symmetry. This was a controversial issue over the last decade. A step like variation in the thickness of the F-layer allows the fabrication of linear and annular Josephson junctions with different numbers of 0 and {pi} facets. With the LTSEM 0-, {pi}-, 0-{pi}-, 0-{pi}-0-, 0/2-{pi}-0/2-, 20 x (0-{pi})- as well as square-shaped-, circular- and annular-Josephson-junctions were studied. It was demonstrated, that these junctions are of good quality and have critical current densities up to 42 A/cm{sup 2} at T=4.2 K, which is a record value for SIFS junctions with a NiCu F-layer so far. By comparing the measurements with simulations a first indication of a semifluxon at the 0-{pi}-boundary was found. (orig.)
Thermophotovoltaic Array Optimization
Energy Technology Data Exchange (ETDEWEB)
SBurger; E Brown; K Rahner; L Danielson; J Openlander; J Vell; D Siganporia
2004-07-29
A systematic approach to thermophotovoltaic (TPV) array design and fabrication was used to optimize the performance of a 192-cell TPV array. The systematic approach began with cell selection criteria that ranked cells and then matched cell characteristics to maximize power output. Following cell selection, optimization continued with an array packaging design and fabrication techniques that introduced negligible electrical interconnect resistance and minimal parasitic losses while maintaining original cell electrical performance. This paper describes the cell selection and packaging aspects of array optimization as applied to fabrication of a 192-cell array.
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Divin, Yu. Ya.; Mygind, Jesper
1986-01-01
We report on the observation of full splitting of the first zero-field steps in the I-V curves of Josephson transmission lines of intermediate length L≊(3–5)λJ, where λJ is the Josephson penetration length. We study in detail how this splitting of the step into two branches depends on the tempera...... on the temperature of the junction and on a weak applied magnetic field. We relate the splitting to excitations in the junctions whose behavior is described by the perturbed sine-Gordon equation....
Juan Carlos Paredes Campoy
2001-01-01
Resumo: Neste trabalho de tese de doutorado estudamos a dinâmica de vórtices Josephson ( JV) e panquecas de vórtices Abrikosov ( PV) em monocristais supercondutores de Bi2Sr2CaCu2O8 Bi(2212) e também o possível ferromagnetismo em compostos supercondutores A -15: Nb- Pt. Estudamos o desancoramento anômalo de vórtices Josephson no Bi(2212) por susceptibilidade ac com o campo magnético dc aplicado paralelo aos planos de CUO2. Devido à dependência com a frequência observada nesta anomalia calc...
Quantum simulators by design: Many-body physics in reconfigurable arrays of tunnel-coupled traps
Sturm, M. R.; Schlosser, M.; Walser, R.; Birkl, G.
2017-06-01
We present a platform for the bottom-up construction of itinerant many-body systems: ultracold atoms transferred from a Bose-Einstein condensate into freely configurable arrays of microlens generated focused-beam dipole traps. This complements traditional optical lattices and provides a different access to the field of two-dimensional quantum simulators. The ultimate control of topology, well depth, atom number, and interaction strength is matched by sufficient tunneling. We characterize the required light fields, derive the Bose-Hubbard parameters for several alkali-metal species, and investigate the loading procedures and heating mechanisms. To demonstrate the potential of this approach, we analyze coupled annular Josephson contacts exhibiting many-body resonances.
A self-aligned nano-fabrication process for vertical NbN-MgO-NbN Josephson junctions
Grimm, A.; Jebari, S.; Hazra, D.; Blanchet, F.; Gustavo, F.; Thomassin, J.-L.; Hofheinz, M.
2017-10-01
We present a new process for fabricating vertical NbN-MgO-NbN Josephson junctions using self-aligned silicon nitride spacers. It allows for a wide range of junction areas from 0.02 to several 100 μm2. At the same time, it is suited for the implementation of complex microwave circuits with transmission line impedances ranging from 1 {{k}}{{Ω }}. The constituent thin films and the finished junctions are characterized. The latter are shown to have high gap voltages (> 4 {mV}) and low sub-gap leakage currents.
Numerical simulation of the self-pumped long Josephson junction using a modified sine-Gordon model
DEFF Research Database (Denmark)
Sobolev, A.; Pankratov, A.; Mygind, Jesper
2006-01-01
We have numerically investigated the dynamics of a long Josephson junction (flux-flow oscillator) biased by a DC current in the presence of magnetic field. The study is performed in the frame of the modified sine-Gordon model, which includes the surface losses, RC-load at both FFO ends and the self......-pumping effect. In our model the dumping parameter depends both on the spatial coordinate and the amplitude of the AC voltage. In order to find the DC FFO voltage the damping parameter has to be calculated by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model...
Heinsohn, J.-K.; Dittmann, R.; Niemeyer, J.; Rodriguez Contreras, J.; Goldobin, E.; Klushin, A. M.; Siegel, M.; Hagedorn, D.; Pöpel, R.; Dolata, R.; Buchholz, F. -I.
2001-01-01
We have investigated the dependence of the critical current I-C on the value and orientation of an externally applied magnetic field H for interface-engineered YBa2Cu3O7-x ramp-type Josephson junctions. The results are compared with measurements of Nb ramp-type junctions with a PdAu interlayer. The I-C versus H dependences are similar to Fraunhofer patterns and their modulation period changes several orders of magnitude with the orientation of the magnetic field. For both junction types, the ...
Millimeter-wave response and linewidth of Josephson oscillations in YBa2Cu3O7 step-edge junctions
DEFF Research Database (Denmark)
Divin, Yu. Ya.; Andreev, A. V.; Fischer, Gerd Michael
1993-01-01
We have studied the response of YBa2Cu3O7 step-edge junctions to low-intensity millimeter-wave radiation in the temperature range from 4 to 80 K. The linewidth of the Josephson oscillations derived from the resonant part of the response at voltages V congruent-to (h/2e)f is shown to be determined...... by thermal fluctuations at liquid nitrogen temperatures. At lower temperatures the observed linewidth increases indicating that low-frequency fluctuations become dominant in the junction as the temperature is reduced. Due to an inhomogeneous spatial distribution of the current the step-edge junction might...
Energy Technology Data Exchange (ETDEWEB)
Houwman, E.P.; Veldhuis, D.; Flokstra, J.; Rogalla, H. (University of Twente, Faculty of Applied Physics, P.O.B. 217, 7500 AE Enschede, The Netherlands (NL))
1990-02-15
High-quality Nb/Al, Al{sub ox}/Nb Josephson tunnel junctions using double-oxide layers as barriers have been fabricated. The critical current density is controlled by the thickness of the second Al layer. This layer has to be oxidized completely through in order to obtain high-quality junctions. Typically, gap voltages of 2.8--3.0 mV and {ital V}{sub {ital m}} up to 70 mV at 4.2 K were obtained.
Superconducting Bolometer Array Architectures
Benford, Dominic J.; Chervenak, James A.; Irwin, Kent D.; Moseley, S. H., Jr.; Shafer, Richard A.; Staguhn, Johannes G.; Wollack, Ed
2003-02-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorn-coupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of ~10-17 W/√Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below 1fW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity. We also present a design and preliminary results for an enhanced-dynamic-range transition edge sensor suitable for broadband ultralow-background detectors.
Electronic Switch Arrays for Managing Microbattery Arrays
Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David
2008-01-01
Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.
Carbon nanotube nanoelectrode arrays
Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi
2008-11-18
The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.
Dynamically Reconfigurable Microphone Arrays
2011-05-01
Static + 2 Wireless Using only a standard computer sound card, a robot is limited to binaural inputs. Even when using wireless microphones, the audio...Abstract—Robotic sound localization has traditionally been restricted to either on-robot microphone arrays or embedded microphones in aware...a microphone array has a significant impact on the mathematics of sound source localization. Arrays, for instance, are commonly designed to
Energy Technology Data Exchange (ETDEWEB)
Born, F.
2006-07-01
The present dissertation reports on experimental studies about superconducting coupling through a thin Ni{sub 76}Al{sub 24} film. A new patterning process has been developed, which allows in combination with the wedge shaped deposition technique the in situ deposition of 20 single Nb/Al/Al{sub 2}O{sub 3}/Ni{sub 3}Al/Nb multilayers, each with its own well defined Ni{sub 3}Al thickness. Every single multilayer consists of 10 different sized Josephson junctions, showing a high reproducibility and scaling with its junction area. Up to six damped oscillations of the critical current density against F-layer thickness were observed, revealing three single 0-{pi}-transitions in the ground state of Josephson junctions. Contrary to former experimental studies, the exponential decay length is one magnitude larger than the oscillation period defining decay length. The theoretical predictions based on linearised Eilenberger equations results in excellent agreement of theory and experimental results. (orig.)
Rectenna array measurement results
Dickinson, R. M.
1980-01-01
The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.
Integrated Avalanche Photodiode arrays
Energy Technology Data Exchange (ETDEWEB)
Harmon, Eric S.
2017-04-18
The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.
Integrated avalanche photodiode arrays
Harmon, Eric S.
2015-07-07
The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.
Observation of Andreev bound states in YBa2Cu3O7-d/Au/Nb ramp-type Josephson junctions
Chesca, B.; Doenitz, D.; Dahm, T.; Huebener, R.P.; Koelle, D.; Kleiner, R.; Ariando, A.; Smilde, H.J.H.; Hilgenkamp, Johannes W.M.
2006-01-01
We report on Josephson and quasiparticle tunneling in YBa2Cu3O7-x(YBCO)/Au/Nb ramp junctions of several geometries. Macroscopically, tunneling is studied in the ab-plane of YBCO either in the (100) or (010) direction, or in the (110) direction. These junctions have a stable and macroscopically well
Marx, A.; Husemann, K.D.; Mayer, B.; Nissel, T.; Gross, R.; Verhoeven, M.A.J.; Verhoeven, M.A.J.; Gerritsma, G.J.
1994-01-01
We have studied the spatial distribution of the critical current density in YBa2Cu3O7−δ ramp edge Josephson junctions using low‐temperature scanning electron microscopy. Applying this technique allows the imaging of the critical current density distribution with a spatial resolution of about 1 μm.
den Hartog, Ronald; Golubov, Alexandre Avraamovitch; Martin, D.; Verhoeve, P.; Poelaert, P.A.; Peacock, A.; Krumrey, M.
2000-01-01
We present two independent experiments, each of which suggests that the local energy gap in Ta (and Nb) has a lateral spatial variation on a scale of several μm. The first experiment is a series of current–voltage characterizations of Nb/Al/AlOx and Ta/Al/AlOx Josephson junctions, which reveals a
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Aarøe, Morten
2006-01-01
New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched Nb-Al/Al-ox/Nb annular Josephson tunnel junctions (JTJs) as a function of the quench time, tau(Q). The probability f(1) to trap a single defect during the normal-metal-superconductor pha...
Energy Technology Data Exchange (ETDEWEB)
Barnes, S.E.; Mehran, F.
1986-10-01
The elementary theory of in situ measurements of the wave-vector-dependent dynamic susceptibility chi(q,..omega..) in superconductor-insulator-superconductor (SIS) and superconductor--normal-metal--superconductor (SNS) Josephson junctions is presented in some detail. The theory for more complicated SISN and SINS junctions is also described. In addition, the theory of point-contact and superconducting quantum interference device geometries, relevant to the recent experiments of Baberschke, Bures, and Barnes is developed. Involved is a detailed application of the Maxwell and London equations along with the distributed Josephson effect. In a measurement of chi(q,..omega..), the frequency ..omega.. is determined by the relation 2eV/sub 0/ = h-dash-bar..omega.. where V/sub 0/ is the voltage applied across the junction, and the wave vector q is determined by the relation 2edB/sub 0/ = h-dash-barq where d is the effective width of the junction and B/sub 0/ is the magnetic field applied perpendicular to the direction of the current. The relative merits of the different types of junctions are discussed and the expected signal strengths are estimated. The limitations for the maximum measurable frequency and wave vector are also given. It seems probable that the proposed technique can be used to measure spin-wave branches from zero wave vector up to about 10% of the way to the Brillouin zone edge.
Hamdipour, Mohammad
2017-12-01
By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.
Podt, M.; Weenink, J.; Weenink, J.; Flokstra, Jakob; Rogalla, Horst
2001-01-01
We report on a superconducting quantum interference device (SQUID) system to read out large arrays of cryogenic detectors. In order to reduce the number of SQUIDs required for an array of these detectors, we used code-division multiplexing. This simplifies the electronics because of a significantly
Huang, Ya; Sun, Hancong; An, Deyue; Zhou, Xianjing; Ji, Min; Rudau, Fabian; Wieland, Raphael; Hampp, Johannes S.; Kizilaslan, Olcay; Yuan, Jie; Kinev, Nickolay; Kiselev, Oleg; Koshelets, Valery P.; Li, Jun; Koelle, Dieter; Kleiner, Reinhold; Jin, Biaobing; Chen, Jian; Kang, Lin; Xu, Weiwei; Wang, Huabing; Wu, Peiheng
2017-11-01
Josephson junctions can serve as mixers for electromagnetic radiation, producing difference frequencies |m fs- n fLO| of the signal frequency fs and the local oscillator frequency fLO, where the latter can be provided by ac Josephson currents, and m and n are natural numbers. In order to obtain a better understanding of the purity of the terahertz radiation generated by stacks of intrinsic Josephson junctions (IJJs), we study self-mixing—i.e., fs is also produced by Josephson currents inside the stacks—in the difference-frequency range between 0.1 and 3.0 GHz. Simultaneously, we perform off-chip terahertz emission detection and transport measurements. We find that at high-bias currents, when a hot spot has formed in the stack, the power level of self-mixing can be low and sometimes is even absent at the terahertz emission peak, pointing to a good phase locking among all IJJs. By contrast, at low-bias currents where no hot spot exists, the self-mixing products are pronounced even if the terahertz emission peaks are strong. The mixing products at high operation temperature, at which the temperature variation within the stack is moderate, are minor, indicating that the low junction resistance, perhaps in combination with the lowered Josephson critical current density, may play a similar role for synchronization as the hot spot does at low temperature. While these observations are helpful for the task to synchronize thousands of IJJs, the observation of self-mixing in general may offer a simple method in evaluating the coherence of terahertz radiation produced by the IJJ stacks.
Microfabricated ion trap array
Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM
2006-12-26
A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.
Sensor array signal processing
Naidu, Prabhakar S
2009-01-01
Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...
Energy Technology Data Exchange (ETDEWEB)
Weintroub, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)], E-mail: jweintroub@cfa.harvard.edu
2008-10-15
A VLBI array operating at {lambda} 1.3 mm and 0.8 mm is being designed using existing submillimeter telescopes as ad-hoc stations. Initial three station {lambda} = 1.3 mm observations of SgrA* and other AGN have produced remarkable results, which are reported by Doeleman elsewhere in this proceedings. Future observations are planned with an enhanced array which has longer baselines, more stations, and greater sensitivity. At {lambda} = 0.8 mm and on the long baselines, the array will have about a 20 {mu}as angular resolution which equals the diameter of the event horizon of the massive black hole in SgrA*. Candidate single dish facilities include the Arizona Radio Observatory Submillimeter Telescope (SMT) in Arizona, the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell telescope (JCMT) in Hawaii, the Large Millimeter Telescope (LMT) in Mexico, ASTE and APEX in Chile, and the IRAM 30 m in Spain; interferometers include the Submillimeter Array (SMA) in Hawaii, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) in California, IRAM PdB Interferometer in France, and the Atacama Large Millimeter Array (ALMA) in Chile. I will discuss the techniques we have developed for phasing interferometric arrays to act as single VLBI station. A strategy for detection of short (10s) time-scale source variability using VLBI closure phase will be described.
Piezoelectric transducer array microspeaker
Carreno, Armando Arpys Arevalo
2016-12-19
In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50
Energy Technology Data Exchange (ETDEWEB)
Yu Lei [Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-6006 (United States); Gandikota, Raghuram [Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287-6006 (United States); Singh, Rakesh K [Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287-6006 (United States); Gu Lin [Center for Solid State Science, Arizona State University, Tempe, AZ 85287 (United States); Smith, David J [Center for Solid State Science, Arizona State University, Tempe, AZ 85287 (United States); Meng Xiaofan [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 (United States); Zeng Xianghui [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 (United States); Duzer, Theodore van [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 (United States); Rowell, John M [Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287-6006 (United States); Newman, N [Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-6006 (United States)
2006-08-15
The fabrication of self-shunted SNS (superconductor/normal conductor/superconductor) Josephson junctions for rapid single flux quantum (RSFQ) logic could potentially facilitate increased circuit density, as well as reduced parasitic capacitance and inductance over the currently used externally shunted SIS (superconductor/insulator/superconductor) trilayer junction process. We report the deposition, fabrication, and device characterization of Josephson junctions prepared with Nb{sub 1-y}Ti{sub y}N electrodes and Ta{sub x}N barriers tuned near the metal-insulator transition, deposited on practical large-area oxide-buffered silicon wafers. When scaled to practical device dimensions, this type of junction is found to have an I{sub c}R{sub n} product of over 0.5 mV and a critical current (I{sub c}) and normal resistance (R{sub n}) of magnitudes suitable for single flux quantum digital circuits. A longer than expected normal-metal coherence length ({xi}{sub n}) of 5.8 nm is inferred from the thickness dependence of J{sub c} at 4.2 K for junctions fabricated using a barrier resistivity of 13 m{omega} cm. Although not well understood and not quantitatively predicted by conventional theories, this results in a sufficiently high I{sub c} and I{sub c}R{sub n} to make the junctions suitable for practical applications. Similar observations of unexpectedly large Josephson coupling currents in SNS junctions have been documented in other systems, particularly in cases when the barrier is near the M-I transition, and have become known as the giant proximity effect. The temperature dependence of {xi}{sub n}, I{sub c}R{sub n}, and J{sub c} are also reported. For this technology to be used in practical applications, significant improvements in our fabrication process are needed as we observe large variations in I{sub c} and R{sub n} values across a 100 mm wafer, presumably as a result of variations in the Ta:N stoichiometry and the resulting changes in the Ta{sub x}N barrier
National Research Council Canada - National Science Library
Blandford, Robert
1997-01-01
The Infrasound Experts Group of the Geneva Conference on Disarmament Ad Hoc Committee on a Nuclear Test Ban has recommended an infrasound array design consisting of four elements, with three elements...
Protein Functionalized Nanodiamond Arrays
Directory of Open Access Journals (Sweden)
Liu YL
2010-01-01
Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.
Expandable LED array interconnect
Yuan, Thomas Cheng-Hsin; Keller, Bernd
2011-03-01
A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.
Litke, Alan; Meister, Markus
1991-12-01
We have fabricated and tested a set of electrode arrays for the study of information processing in the retina. Live retinal tissue is placed on top of an array with the output neurons directly above the electrodes. Absorption of light by the photoreceptor cells leads to the generation of electrical pulses in the output neurons. These pulses, in turn, produce voltage signals on the electrodes which are recorded simultaneously by external electronics. Thus, for the first time, the spatial and temporal firing patterns of a large set of retinal nerve cells can be studied. The arrays are fabricated on quartz wafers coated with a transparent conducting layer of indium tin oxide. The electrodes are electroplated with platinum black. Polyimide is used for insulation. The fabrication and properties of these arrays, and illustrative results with retinal tissue, are described.
Energy Technology Data Exchange (ETDEWEB)
Yamada, T; Sasaki, H; Yamamori, H; Shoji, A [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)], E-mail: yamada-takahiro@aist.go.jp
2008-03-01
We have demonstrated a programmable Josephson voltage standard (PJVS) operation up to 10.84 V using a multi-chip technique. We combined two PJVS chips fabricated using NbN/(TiN{sub x}/NbN){sub 2} junction technology. Each PJVS chip was mounted on a single chip carrier using bonding wire, and the two chip carriers were connected by a simple Cu lead wire, and mounted on a cryocooler. High-precision measurements confirmed flat voltage steps for all 22 cells, with a peak-to-peak variation of 100 nV and wide margins of at least 0.35 mA. We also confirmed the stability of the voltage steps in spite of a temperature and RF frequency variation of {+-} 0.1 K and {+-} 0.1 GHz, respectively.
Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz
Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay
2017-11-01
This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.
Conductance studies on different types of Nb/Al, AlO x,(/A1)/Nb Josephson tunnel junctions
Adelerhof, D. J.; Houwman, E. P.; Veldhuis, D.; Flokstra, J.; Rogalla, H.
1990-08-01
The conductance-voltage characteristics of different types of Josephson tunnel junctions have been measured at 4.2 K: symmetric Nb/Al, AlO x/Al/Nb, asymmetric Nb/Al, AlO x/Nb and Nb/Al/AlO x-/AlO x/Nb, containing a double oxidation layer. The symmetric junctions can be described very well by a trapezoidal potential barrier model. The asymmetric junctions show less agreement with theory. In these junctions resistance switching occurs, possibly due to charge trapping. The resistance is lower than in symmetric junctions. The conductance measurements on double oxidation layer junctions show, that this type of junction has an inhomogeneous oxide layer.
Bulgakova, A. A.; Gorobets, N. N.; Katrich, V. A.; Lyashchenko, V. A.
2016-12-01
Purpose: Theoretical investigation of directive gains of linear and planar antenna arrays depending on the distance between radiators and wavelength. Design/methodology/approach: Computing methods in applied mathematics in MathCad were used to calculate the twofold integrals of the radiation pattern over power throughout the whole space observed, defining the directivity in the most general terms. Patterns of radiators, i. e. elements of antenna arrays, are specified by mathematical models. The calculation accounts for the subintegral fast oscillating function. Findings: Calculations and analysis of a directive gain according to the number of radiators and distances between them in fractions of wavelength are made. It is shown that at the ratio of distance between radiators to wave-length being d/λ =0.5 the directivity of array of isotropic radiators is 1.5N², N - number of radiators. When increasing the d/λ to 0.65÷0.97 the directivity increases according to the law close to the linear one up to the maximum possible value for the specified number of radiators. With the increase of d/λ to the values greater than one, the directivity is significantly reduced (the “blinding” effect of non-phased antenna arrays) and its dependence with the growth of d/λ is decaying and oscillating in character. By that, the transfer function of antenna arrays has some vital difference from the transfer function of continuous antennas. Conclusions: Antenna arrays distort the waveform and spectrum of radiated and received signals as a result of irregular changes of their directivity depending on wavelength. The detected “blinding” effect of non-phased antenna arrays of large electrical dimensions must be taken into account in wideband and superwideband radio-electronics systems, especially in radio astronomy, telecommunications systems and superwideband radar.
Energy Technology Data Exchange (ETDEWEB)
Spuntarelli, A.; Pieri, P. [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy); Strinati, G.C. [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy)], E-mail: giancarlo.strinati@unicam.it
2010-03-15
The BCS-BEC crossover has received much attention lately, owing especially to its experimental realization with trapped ultracold Fermi atoms. Theoretically, the two limiting situations, of paired fermions described by BCS theory in weak coupling and of composite bosons undergoing Bose-Einstein condensation (BEC) in strong coupling, can be connected with continuity throughout the crossover. This evolution encompasses the unitary limit at intermediate values of the coupling, where the scattering length for two-fermion scattering diverges. Several quantities have been measured experimentally and calculated theoretically in this context over the last several years, with the notable exception of the Josephson and related effects. This is in spite of the fact that the Josephson effect is intimately associated with the spontaneous breaking of the phase of the complex order parameter which unifies superconductivity and superfluidity. In the present paper, we aim at filling (at least partially) this gap and investigate the evolution of the Josephson and related effects throughout the BCS-BEC crossover, by performing a systematic numerical solution of the (time-independent) Bogoliubov-de Gennes (BdG) equations at zero temperature in a fully self-consistent fashion. We consider a stationary and uniform current flowing in the presence of a three-dimensional barrier with a slab geometry. This extended geometry is specifically required to reach the BEC limit of the crossover, where the formation of composite bosons in terms of their fermionic constituents requires consideration of wave vectors with components along all three dimensions. In addition, we regard the fermionic attraction to extend unmodified over the barrier region, a situation that typically applies to ultracold Fermi atoms. The fully self-consistent solution of the BdG equations in such an extended geometry and coupling range represents a non-trivial numerical calculation. The numerical strategies and algorithms
Efficient Array Design for Sonotherapy
Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine
2008-01-01
New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair i...
1990-09-01
The problem of recoverable image resolution is investigated for the case where an imaging array is used which array has an optical transfer function that may be described as consisting of islands of nonzero value in a sea of zero values. Can the missing spatial frequency information can be provided--can, in effect, a form of (interpolative) super resolution. The CLEAN algorithm used by radio astronomers suggests that this should be possible. The results developed here indicate that this can be done, with no significant price in terms of signal-to-noise ratio to be paid, and further show that a nonlinear algorithm, like CLEAN, is not required. The results show that the feasibility of doing this depends on the angular size of the object being imaged. We find that its size must be less than the inverse of the largest gap between islands in the array's optical transfer function.
Cho, Ethan; Ma, Meng; Huynh, Chuong; Pratt, Kevin; Paulson, Doug; Glyantsev, Victor; Dynes, Robert; Cybart, Shane
We will present electrical transport data for Y-Ba-Cu-O superconducting quantum interference devices (SQUIDs) with focused helium ion damage Josephson junctions. The junctions were directly written with a 30 keV focused helium ion beam, which locally creates disorder in Y-Ba-Cu-O that induces a superconducting-insulator transition. SQUIDs with Josephson junctions written with a dose of 4 ×1016 He+/cm2 have metallic barriers and show a current-voltage characteristic (I-V) well-described by the resistively shunted junction model. The spectral density of the flux noise is 10 μΦ0 / √ Hz at 10 Hz and the white noise at higher frequencies is 2 μΦ0 / √ Hz. SQUIDs with junctions written with higher ion doses (~ 9 ×1016 He+/cm2) have insulating Josephson barriers with a critical current of 22 μA and a resistance of 12 Ω at 4 K. The I-V for all of these devices is not hysteretic due to the small capacitance and the resistance. At higher voltage the junction I-V curve shows tunnel-junction behavior and a superconducting energy gap edge at 20 mV. We will discuss how these results are a promising step forward for sensitive magnetic sensors made from high temperature superconductors at various temperatures.
Photovoltaic array performance model.
Energy Technology Data Exchange (ETDEWEB)
Kratochvil, Jay A.; Boyson, William Earl; King, David L.
2004-08-01
This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.
Solar array welding developement
Elms, R. V., Jr.
1974-01-01
The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.
DEFF Research Database (Denmark)
Falster, Peter; Jenkins, Michael
1999-01-01
This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...
Energy Technology Data Exchange (ETDEWEB)
Bauleo, P. E-mail: pablo.bauleo@colostate.edu; Bonifazi, C.; Filevich, A
2004-01-11
The angular and energy resolutions of the TANGO Array were obtained using extensive Monte Carlo simulations performed with a double purpose: (1) to determine the appropriate parameters for the array fitting to the desired range of sensitivity (the knee energy region), and (2) to construct a reliable shower database required for reference in the analysis of experimental data. The AIRES code, with the SIBYLL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (assuming protons and iron nuclei), with energies ranging from 10{sup 14} to 10{sup 18} eV. These data were fed into a realistic code which simulates the response of the detectors (water Cherenkov detectors), including the electronics, pickup noise, and the signal attenuation in the connecting cables. The trigger stage was considered in the simulations in order to estimate the trigger efficiency of the array and to verify the accuracy of the reconstruction codes. This paper delineates the simulations performed to obtain the expected behavior of the array, and describes the simulated data. The results of these simulations suggest that we can expect an error in the energy of the primary cosmic-ray of {approx}60% of the estimated value and that the error in the measurement of the direction of arrival can be estimated as {approx}4 deg. . The present simulations also indicate that unambiguous assignments of the primary energy cannot be obtained because of the uncertainty in the nature of the primary cosmic ray.
Bauleo, P.; Bonifazi, C.; Filevich, A.
2004-01-01
The angular and energy resolutions of the TANGO Array were obtained using extensive Monte Carlo simulations performed with a double purpose: (1) to determine the appropriate parameters for the array fitting to the desired range of sensitivity (the knee energy region), and (2) to construct a reliable shower database required for reference in the analysis of experimental data. The AIRES code, with the SIBYLL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (assuming protons and iron nuclei), with energies ranging from 10 14 to 10 18 eV. These data were fed into a realistic code which simulates the response of the detectors (water Cherenkov detectors), including the electronics, pickup noise, and the signal attenuation in the connecting cables. The trigger stage was considered in the simulations in order to estimate the trigger efficiency of the array and to verify the accuracy of the reconstruction codes. This paper delineates the simulations performed to obtain the expected behavior of the array, and describes the simulated data. The results of these simulations suggest that we can expect an error in the energy of the primary cosmic-ray of ˜60% of the estimated value and that the error in the measurement of the direction of arrival can be estimated as ˜4°. The present simulations also indicate that unambiguous assignments of the primary energy cannot be obtained because of the uncertainty in the nature of the primary cosmic ray.
Energy Technology Data Exchange (ETDEWEB)
Ostlund, N.S.
1980-01-01
The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
Radar techniques using array antennas
Wirth, Wulf-Dieter
2013-01-01
Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud
Timed arrays wideband and time varying antenna arrays
Haupt, Randy L
2015-01-01
Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth
Recurrent Memory Array Structures
Rocki, Kamil
2016-01-01
The following report introduces ideas augmenting standard Long Short Term Memory (LSTM) architecture with multiple memory cells per hidden unit in order to improve its generalization capabilities. It considers both deterministic and stochastic variants of memory operation. It is shown that the nondeterministic Array-LSTM approach improves state-of-the-art performance on character level text prediction achieving 1.402 BPC on enwik8 dataset. Furthermore, this report estabilishes baseline neural...
Hall, John Champlin; Martins, Guy Lawrence
2015-09-06
A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.
Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas
2008-01-01
A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.
Crouthamel, Marvin S.; Coyle, Peter J.
1982-01-01
An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.
Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)
1983-01-01
A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.
Picó-Cortés, Jordi; Domínguez, Fernando; Platero, Gloria
2017-09-01
We investigate theoretical aspects of the detection of Majorana bound states in Josephson junctions using the semiclassical resistively capacitively shunted junction (RCSJ) model of junction dynamics. The influence of a 4 π -periodic supercurrent contribution can be detected through its effect on the width of the Shapiro steps and the Fourier spectrum of the voltage signal. We explain how the inclusion of a capacitance term results in a strong quenching of the first step when the junction is underdamped, while the higher odd steps are less affected. Remarkably, this feature has been observed experimentally. We examine the emission spectrum of phase-locked solutions, showing that the presence of period doubling may make the measurement of the 4 π -periodic contribution from the Fourier spectrum difficult. Finally, we study the voltage response in the quasiperiodic regime and indicate how the Fourier spectra and the first-return maps in this regime reflect the change of periodicity in the supercurrent in the presence of Majorana bound states.
Noever, David A.; Koczor, Ronald J.
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Bhat, Anupama; Meng, Xiaofan; Wong, Andre; Van Duzer, Theodore [Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA 720 1770 (United States)
1999-11-01
We have grown superconducting NbN films using a pulsed KrF laser for potential use as superconducting electrodes in SNS Josephson junctions being developed for nonlatching logic applications. The NbN films show a superconducting transition of 16 K using an Nb target in background N{sub 2} gas. The T{sub c} dependence on N{sub 2} pressure in the range of 50-80 mTorr was investigated at a growth temperature of 600 deg. C. The NbN films were grown on MgO(100) and amorphous SiN{sub x}/Si substrates. In the latter case, the films had a lower T{sub c}, and appeared amorphous from x-ray diffraction measurements, while those on the MgO(100) substrates were strongly textured. AFM measurements reveal RMS surface roughness as low as 1 nm, over a 5 {mu}m x 5 {mu}m area, indicating that these films appear suitable for SNS junctions. (author)
Isohätälä, Jukka; Alekseev, Kirill N
2010-06-01
We consider the first order differential equation with a sinusoidal nonlinearity and periodic time dependence, that is, the periodically driven overdamped pendulum. The problem is studied in the case that the explicit time dependence has symmetries common to pure ac-driven systems. The only bifurcation that exists in the system is a degenerate pitchfork bifurcation, which describes an exchange of stability between two symmetric nonlinear modes. Using a type of Prüfer transform to a pair of linear differential equations, we derive an approximate condition of the bifurcation. This approximation is in very good agreement with our numerical data. In particular, it works well in the limit of large drive amplitudes and low external frequencies. We demonstrate the usefulness of the theory applying it to the models of pure ac-driven semiconductor superlattices and Josephson junctions. We show how the knowledge of bifurcations in the overdamped pendulum model can be utilized to describe the effects of rectification and amplification of electric fields in these microstructures. (c) 2010 American Institute of Physics.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-09-30
Lawrence Livermore National Laboratory is working with Varian Associates to lay the groundwork for the routine, reproducible fabrication of high-temperature superconducting trilayer structures. The objectives of this program are: To identify high temperature, superconducting materials, metallic and insulating barrier materials and associated substrate and electrode materials for engineered trilayer structures that can provide Josephson Junction devices with desired characteristics for sensor or electronic circuit use. To identify and test potentially useful analysis techniques and to provide data appropriate for the validation and analysis of the input materials, trilayer structures and completed JJ devices. To integrate the analysis results with the existing Varian data base to optimize the growth and fabrication process to obtain more reproducible devices across each chip and from chip to chip. These objectives were defined by a detailed set of milestones for both Lawrence Livermore National Laboratory and Varian Associates all of which have been meet. The timing of the milestones was revised midway through the CRADA term to allow a longer time to pursue the objectives at no additional cost to either partner.
Critical current of Nb-(Nb/Pd{sub 0.95}Fe{sub 0.05})-Nb Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Vavra, O.; Meindl, W.; Strunk, C.
2008-07-01
The antagonism of superconductivity and magnetism is investigated by fabricating Nb based Josephson Junction with lateral weak links consisting of Nb-Pd{sub 0.95}Fe{sub 0.05} bi-layers with lengths between 200 and 500 nm. The critical current (I{sub C}) of the Nb-Pd{sub 0.95}Fe{sub 0.05} bi-layer is found to be significantly reduced by the weak ferromagnetism in the Pd{sub 0.95}eFe{sub 0.05} alloy. We have studied the temperature and magnetic field (B) dependencies of the critical current. In magnetic field an irregular supercurrent interference pattern I{sub C}(B) is observed. The shape of the I{sub C}(B) oscillations is similar to that observed for grain boundary junctions between cuprate superconductors. We also investigate the dependence of I{sub C}(B) oscillations on the orientation of the magnetic field.
Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard
2009-01-01
This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.
A Lambda Calculus for Transfinite Arrays: Unifying Arrays and Streams
Sinkarovs, Artjoms; Scholz, Sven-Bodo
2017-01-01
Array programming languages allow for concise and generic formulations of numerical algorithms, thereby providing a huge potential for program optimisation such as fusion, parallelisation, etc. One of the restrictions that these languages typically have is that the number of elements in every array has to be finite. This means that implementing streaming algorithms in such languages requires new types of data structures, with operations that are not immediately compatible with existing array ...
Verhoeven, M.A.J.; Verhoeven, M.A.J.; Boguslavskij, Y.M.; Boguslavskij, Yu.M.; Reuvekamp, E.M.C.M.; Reuvekamp, E.M.C.M.; Gerritsma, G.J.; Rogalla, Horst
1994-01-01
The use of PrBa2Cu3-xGaxO7 barrier material with increased resistivity by Ga doping (x=0; 0.05 and 0.1) in ramp-type DyBa2Cu3O7/PrBa2Cu3-xGaxO7/DyBa2Cu3O7 Josephson junctions has been investigated. All junctions have been fabricated with very smooth sputtered films and show good RSJ-like I-V
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Jørgensen, Allan Grønlund
2008-01-01
In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....
Electromagnetically Clean Solar Arrays
Stem, Theodore G.; Kenniston, Anthony E.
2008-01-01
The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the
Electrodynamic Arrays Having Nanomaterial Electrodes
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
Combinatorial aspects of covering arrays
Directory of Open Access Journals (Sweden)
Charles J. Colbourn
2004-11-01
Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.
Compact dynamic microfluidic iris array
Kimmle, Christina; Doering, Christoph; Steuer, Anna; Fouckhardt, Henning
2011-09-01
A dynamic microfluidic iris is realized. Light attenuation is achieved by absorption of an opaque liquid (e.g. black ink). The adjustment of the iris diameter is achieved by fluid displacement via a transparent elastomer (silicone) half-sphere. This silicone calotte is hydraulically pressed against a polymethylmethacrylate (PMMA) substrate as the bottom window, such that the opaque liquid is squeezed away, this way opening the iris. With this approach a dynamic range of more than 60 dB can be achieved with response times in the ms to s regime. The design allows the realization of a single iris as well as an iris array. So far the master for the molded silicone structure was fabricated by precision mechanics. The aperture diameter was changed continuously from 0 to 8 mm for a single iris and 0 to 4 mm in case of a 3 x 3 iris array. Moreover, an iris array was combined with a PMMA lens array into a compact module, the distance of both arrays equaling the focal length of the lenses. This way e.g. spatial frequency filter arrays can be realized. The possibility to extend the iris array concept to an array with many elements is demonstrated. Such arrays could be applied e.g. in light-field cameras.
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...
Nomura, Y.; Okamoto, R.; Kakeya, I.
2017-10-01
We have investigated the switching dynamics of the first and second switches in intrinsic Josephson junctions (IJJs) of Bi2Sr2CaCu2O{}8+δ with different maximum Josephson current density J c to reveal the doping evolution of interaction between IJJs. For the second switch, the crossover temperature between temperature-independent switching similar to quantum tunneling and thermally activated switching {T}2{nd}* is remarkably higher than that for the first switch. Moreover, {T}2{nd}* slightly decreases with increasing J c, which violates the conventional relation between the crossover temperature and the critical current density. These features can be explained not by a change in the Josephson coupling energy but by a change in the charging energy of the Josephson junction. We argue that the capacitive coupling model explains the increase in the fluctuation in the quantum regime of the second switch and the anti-correlation between {T}2{nd}* and J c. Furthermore, inductive coupling does not contribute to these peculiar phenomena in the switching dynamics of stacked IJJs.
Gao, J; Wang, Z H
2002-01-01
High-T sub c ramp-type Josephson junctions were fabricated using a Nd sub 2 CuO sub 4 barrier. Such a Nd sub 2 CuO sub 4 material has excellent structural, thermal and chemical compatibility with YBa sub 2 Cu sub 3 O sub 7 sub - subdelta. Its very stable 214-T' structure, superior electric properties and closed lattice matching make it desirable to construct multilayer junctions. The growth and nature of the heteroepitaxial Nd sub 2 CuO sub 4 /YBa sub 2 Cu sub 3 O sub 7 sub - subdelta structures were investigated by using x-ray diffraction, small angle x-ray reflection, rocking curve, electron microscopy and surface scan measurements. Junctions with a Nd sub 2 CuO sub 4 barrier display typical resistively shunted junction-like I-V characteristics with reasonable I sub c R sub n products. The large normal resistance, absence of the potential barrier at the SN boundary and a high transparency for the quasi-particles show the advantages of the Nd sub 2 CuO sub 4 barrier. The temperature dependence of Josephson p...
Ke, Chung-Ting; Borzenets, Ivan; Amet, Francois; Draelos, Anne; Wei, Ming-Tso; Seredinski, Andrew; Watanabe, Kenji; Taniguchi, Takashi; Bomze, Yuriy; Yamamoto, Michihisa; Tarucha, Seigo; Finkelstein, Gleb
The Josephson effect describes the phenomenon of coupling a supercurrent between superconductors through a weak link. Using graphene as this weak link has seen much interest due to its tunable density and related Dirac fermion physics. Previously we have studied the critical current scaling in diffusive graphene samples with different junction lengths. For ballistic junctions, however, knowledge about transport properties remains scarce. With clean encapsulated graphene, studying the supercurrent transport mechanism in ballistic samples has now become feasible. We present measurements of ballistic graphene Josephson junctions from short to long junction limits. From their temperature dependence, we characterize the critical current in both the short and long junction cases by using the characteristic energies Δ and δE, where Δ is the superconducting gap and δE is the level spacing in the long junction case. At low temperatures, as KBT < Δ for short junctions and KBT < δE for long ones, we show that the critical current saturates at a level determined by the product of Δ (or δE) and the number of the junction's transversal modes.
Kitano, Haruhisa; Yamaguchi, Ayami; Takahashi, Yusaku; Kakehi, Daiki; Ayukawa, Shin-ya
2017-07-01
We study the microwave-induced phase switches from the finite voltage state for the underdamped intrinsic Josephson junctions (IJJs) made of Bi2Sr2CaCu2Oy (Bi2212). We observe the resonant double-peak structure in the switching current distribution at low temperatures. This feature is successfully explained by a quantum mechanical model where the strong microwave field effectively suppresses the potential barrier for the phase escape from a potential well and the macroscopic quantum tunneling (MQT) is resonantly enhanced. The detailed analyses considering the effects of multiple phase retrapping processes after the phase escape strongly suggest that the intense microwave field suppresses the energy-level spacing in the potential well, by effectively decreasing the fluctuation-free critical current and the Josephson plasma frequency. This effect also reduces the number of photons required for the multiphoton transition between the ground and the first excited states, making it possible to observe the energy level quantization in the MQT state. The temperature dependence of the resonance peak emerging in the switching rate clearly demonstrates that the quantized energy state can be survived up to ~10 K, which is much higher than a crossover temperature predicted by the conventional Caldeira-Leggett theory.
Frequency Diverse Array Receiver Architectures
2015-06-29
2009. DSP /SPE 2009. IEEE 13th, pp. 446 –450, Jan. 2009. 60 [19] Fuhrmann, D.R. and Browning, J.P. and Rangaswamy, M., “Adapting a MIMO/phased-array...Diverse Array Radar,” Master’s thesis, Naval Postgraduate School, September 2010. [25] D. Glass, “ Matlab 4-d visualization technique.” Personal
Ecklund, W. L.; Carter, D. A.; Balsley, B. B.
1986-01-01
The Aeronomy Laboratory recently installed a 100 x 100 meter array antenna with limited beam steering on Christmas Island as a part of the TOGA (Tropical Ocean and Global Atmosphere) program. The array and the associated beam steering and indicating hardware are described.
DEFF Research Database (Denmark)
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming
2017-01-01
BACKGROUND: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wi...
Chunking of Large Multidimensional Arrays
Energy Technology Data Exchange (ETDEWEB)
Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar
2007-02-28
Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.
Digital electrostatic acoustic transducer array
Carreno, Armando Arpys Arevalo
2016-12-19
In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.
A high-temperature ferromagnetic topological insulating phase by proximity coupling
Energy Technology Data Exchange (ETDEWEB)
Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.; Assaf, Badih A.; Jamer, Michelle E.; Wei, Peng; Satpati, Biswarup; Freeland, John W.; Eremin, Ilya; Heiman, Don; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.
2016-05-09
Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.
Magnetic proximity coupling to Cr-doped Sb2Te3 thin films
Duffy, L. B.; Figueroa, A. I.; Gładczuk, Ł.; Steinke, N.-J.; Kummer, K.; van der Laan, G.; Hesjedal, T.
2017-06-01
Using soft x-ray absorption spectroscopy we determined the chemical and magnetic properties of the magnetic topological insulator (MTI) Cr:Sb2Te3 . X-ray magnetic circular dichroism (XMCD) at the Cr L2 ,3, Te M4 ,5, and Sb M4 ,5 edges shows that the Te 5 p moment is aligned antiparallel to both the Cr 3 d and Sb 5 p moments, which is characteristic for carrier-mediated ferromagnetic coupling. Comparison of the Cr L2 ,3 spectra with multiplet calculations indicates a hybridized Cr state, consistent with the carrier-mediated coupling scenario. We studied the enhancement of the Curie temperature, TC, of the MTI thin film through the magnetic proximity effect. Arrott plots, measured using the Cr L3 XMCD, show a TC≈87 K for the as-cleaved film. After deposition of a thin layer of ferromagnetic Co onto the surface, the TC increases to ˜93 K, while the Co and Cr moments are parallel. This increase in TC is unexpectedly small compared to similar systems reported earlier. The XMCD spectra demonstrate that the Co/MTI interface remains intact, i.e., no reaction between Co and the MTI takes place. Our results are a useful starting point for refining the physical models of Cr-doped Sb2Te3 , which is required for making use of them in device applications.
SAQC: SNP Array Quality Control
Directory of Open Access Journals (Sweden)
Li Ling-Hui
2011-04-01
Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.
Planning a Global Array of Broadband Seismic Arrays
Koper, Keith D.; Ammon, Charles J.
2013-08-01
A diverse group of more than 70 seismologists met for 2 days in Raleigh, N.C., to report on recent innovations in seismic array methods and to discuss the future of seismic arrays in global seismology. The workshop was sponsored by the Incorporated Research Institutions for Seismology (IRIS), with U.S. National Science Foundation funding. Participants included representatives of existing array research groups in Australia, Canada, Germany, Japan, Norway, and the United States, with individuals from academia, government, and industry. The workshop was organized by the authors of this meeting report, Pablo Ampeuro (California Institute of Technology), and Colleen Dalton (Boston University), along with IRIS staff support.
Dependently typed array programs don’t go wrong
Trojahner, K.; Grelck, C.
2009-01-01
The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming
Dependently typed array programs don't go wrong
Trojahner, K.; Grelck, C.
2008-01-01
The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming
Offering an Array of Improvements
2001-01-01
Sensors Unlimited, Inc., with SBIR funding from NASA's Langley Research Center, Goddard Space Flight Center, Marshall Space Flight Center, and the Jet Propulsion Laboratory, developed a monolithic focal plane array for near-infrared imaging. The company developed one- (1- D) and two-dimensional (2-D) imaging arrays consisting of a highly reliable InGaAs p-I-n diode as a photodetector for monitoring a variety of applications, including single element device applications in receivers. The InGaAs 1-D and 2-D arrays have many applications. For example, they monitor the performance of dense wavelength division multiplexing (DWDM) systems- the process of packaging many channels into a single fiber-optic cable. Sensors Unlimited commercially offers its LXTM and LYTM Series InGaAs linear arrays for reliable DWDM performance monitoring. The LX and LY arrays enable instrument module designs with no moving parts, which provides for superior uniformity, and fast, linear outputs that remain stable over a wide temperature range. Innovative technologies derived from the monolithic focal plane array have enabled telecommunication companies to optimize existing bandwidth in their fiber-optic networks in order to support a high volume of network traffic. At the same time, the technologies obtained from the array have the potential for reducing costs, while increasing performance from Sensors Unlimited's current product lines.
Efficient array design for sonotherapy
Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Lu, X. Ming; Ferrara, Katherine W.
2008-07-01
New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for a high time-averaged power output suitable for mild hyperthermia applications. The 'thermal therapy' design produces more than 4 W of acoustic power from the low-frequency arrays with only a 10.5 °C internal rise in temperature after 100 s of continuous use with an unmodified conventional imaging system or substantially longer operation at lower acoustic power. The low-frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to the tissue load. Laboratory verification was successfully performed for the KLM-derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating, respectively.
Efficient array design for sonotherapy
Energy Technology Data Exchange (ETDEWEB)
Stephens, Douglas N; Kruse, Dustin E; Ferrara, Katherine W [University of California, Davis, CA (United States); Ergun, Arif S; Barnes, Stephen [Siemens Corporate Research, Inc., Imaging and Visualization, 755 College Road East, Princeton, New Jersey 08540 (United States); Lu, X Ming [Siemens Medical Solutions, 22010 SE 51st Street, Issaquah, Washington 98029-7298 (United States)], E-mail: dnstephens@ucdavis.edu, E-mail: kwferrara@ucdavis.edu
2008-07-21
New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for a high time-averaged power output suitable for mild hyperthermia applications. The 'thermal therapy' design produces more than 4 W of acoustic power from the low-frequency arrays with only a 10.5 deg. C internal rise in temperature after 100 s of continuous use with an unmodified conventional imaging system or substantially longer operation at lower acoustic power. The low-frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to the tissue load. Laboratory verification was successfully performed for the KLM-derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating, respectively.
Broadband phased-arrays antennas
Mansky, L.
1984-09-01
The actual jamming-to-signal ratio achieved in an electronic countermeasures (ECM) system depends on the effective radiated power (ERP) directed toward the radar by the ECM system. The required ERP may be obtained in a phase-steered array using a variety of transmit-subsystem hardware configurations. Here, tradeoff criteria to aid in the selection of an optimal architecture are discussed. Such selection is based on minimizing the array size, backscattering cross selection, and overall system complexity. Functional elements of typical phased arrays and their principal components are descried.
Pulse Dispersion in Phased Arrays
Directory of Open Access Journals (Sweden)
Randy L. Haupt
2017-01-01
Full Text Available Phased array antennas cause pulse dispersion when receiving or transmitting wideband signals, because phase shifting the signals does not align the pulse envelopes from the elements. This paper presents two forms of pulse dispersion that occur in a phased array antenna. The first results from the separation distance between the transmit and receive antennas and impacts the definition of far field in the time domain. The second is a function of beam scanning and array size. Time delay units placed at the element and/or subarrays limit the pulse dispersion.
Fundamentals of ultrasonic phased arrays
Schmerr, Lester W
2014-01-01
This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and
Antenna arrays a computational approach
Haupt, Randy L
2010-01-01
This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.
Energy Technology Data Exchange (ETDEWEB)
Setzu, R
2007-11-15
This thesis research, brought to the development and optimization of SNS (Superconductor / Normal Metal / Superconductor) Josephson junctions with NbN electrodes and a high resistivity Ta{sub x}N barrier. We were able to point out Josephson oscillations for frequencies above 1 THz and operation temperatures up to 10 K, which constituted the original goal of the project. This property makes these junctions unique and well adapted for realizing ultra-fast RSFQ (Rapid Single Flux Quantum) logic circuits suitable for spatial telecommunications. We showed a good reproducibility of Ta{sub x}N film properties as a function of the sputtering parameters. The NbN/Ta{sub x}N/NbN tri-layers exhibit high critical temperature (16 K). The junctions showed a clear dependence of the R{sub n}I{sub c} product as a function of the partial nitrogen pressure inside the reactive plasma; the R{sub n}I{sub c} is the product between the junction critical current and its normal resistance, and indicates the upper limit Josephson frequency. We have also obtained some really high R{sub n}I{sub c} products, up to 3.74 mV at 4.2 K for critical current densities of about 15 kA/cm{sup 2}. Junctions show the expected Josephson behaviors, respectively Fraunhofer diffraction and Shapiro steps. up to 14 K. This allows expecting good circuit operations in a relaxed cryogenics environment (with respect to the niobium circuits limited at 4.2 K). The junctions appear to be self-shunted. The SNOP junctions J{sub c}-temperature dependence has been fitted by using the long SNS junction model in the dirty limit, which gives a normal metal coherence length of about 3.8 nm at 4.2 K. We have finally studied a multilayer fabrication process, including a common ground plane and bias resistors, suitable for RSFQ logic basic circuits. To conclude we have been able to show the performance superiority of NbN/Ta{sub x}N/NbN junctions over the actual niobium junctions, as well as their interest for realizing compact
Fundamentals of spherical array processing
Rafaely, Boaz
2015-01-01
This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications. The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...
Monolithic phased arrays - Recent advances
Kinzel, Joseph A.
1991-07-01
Advances in monolithic phased array technology defined as a solid state array based on GaAs monolithic microwave integrated circuits are reviewed focusing on analytical and experimental work to improve array performance and reliability while reducing the cost. Monolithic array technology is equally applicable to communications and radar systems. In radar applications both transmit and receive functions at the elemental level require a transmit/receive module's physical size to be compatible with 1/2 wave length element spacing. For communication applications, separate aperture are used for transmit and receive to ensure sufficient isolation for full duplex operation. Radar transmitter chains are capable of operating with a saturated power output stage which helps to increase efficiency and minimize DC power. Communication systems place severe linearity constraints on the transmitters and receivers which requires the power amplifier to operate in an ultra-linear fashion.