WorldWideScience

Sample records for proximal limb muscles

  1. Muscle magnetic resonance imaging sensitivity does not decrease in chronic, mild, or proximal lower limb neuropathies.

    Science.gov (United States)

    Deroide, Nicolas; Bousson, Valérie; Daguet, Edouard; Dumurgier, Julien; Tin, Sophie Ng Wing; Hannouche, Didier; Richette, Pascal; Beaudreuil, Johann; Lioté, Frédéric; Lévy, Bernard; Vicaut, Eric; Laredo, Jean Denis; Kubis, Nathalie

    2012-05-01

    Muscle magnetic resonance imaging (MRI) is an innovative tool for exploring focal neuropathies. However, its usefulness in mild, proximal, or chronic lesions, when electromyography (EMG), the current "gold standard" sensitivity is inadequate, has yet to be studied. Clinical, MRI, and EMG examinations were performed in 113 muscles of 17 consecutive patients with clinically diagnosed lower limb focal neuropathies. The sensitivity and specificity of MRI and EMG were evaluated in relation to disease duration, severity, and anatomical location. Muscle MRI was highly sensitive for the detection of denervated muscle, and, unlike EMG, its sensitivity did not decrease regardless of the anatomical location, duration, or severity of the neuropathy. Five MRI false positives were noted, including three in the thigh muscles. Muscle MRI is an alternative tool to EMG in proximal, mild, or chronic clinical diagnoses of lower limb focal neuropathies. However, it also seems prone to false-positive results, particularly in proximal muscles. Copyright © 2012 Wiley Periodicals, Inc.

  2. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    Science.gov (United States)

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (Pankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Partial replantation following proximal limb injury].

    Science.gov (United States)

    Dubert, T; Malikov, S A; Dinh, A; Kupatadze, D D; Oberlin, C; Alnot, J Y; Nabokov, B B

    2000-11-01

    Proximal replantation is a technically feasible but life-threatening procedure. Indications must be restricted to patients in good condition with a good functional prognosis. The goal of replantation must be focused not only on reimplanting the amputated limb but also on achieving a good functional outcome. For the lower limb, simple terminalization remains the best choice in many cases. When a proximal amputation is not suitable for replantation, the main aim of the surgical procedure must be to reconstruct a stump long enough to permit fitting a prosthesis preserving the function of the adjacent joint. If the proximal stump beyond the last joint is very short, it may be possible to restore some length by partial replantation of spared tissues from the amputated part. We present here the results we obtained following this policy. This series included 16 cases of partial replantations, 14 involving the lower limb and 2 the upper limb. All were osteocutaneous microsurgical transfers. For the lower limb, all transfers recovered protective sensitivity following tibial nerve repair. The functional calcaeoplantar unit was used in 13 cases. The transfer of this specialized weight bearing tissue provided a stable distal surface making higher support unnecessary. In one case, we raised a 13-cm vascularized tibial segment covered with foot skin for additional length. For the upper limb, the osteocutaneous transfer, based on the radial artery, was not reinnervated, but this lack of sensitivity did not impair prosthesis fitting. One vascular failure was finally amputated. This was the only unsuccessful result. For all other patients, the surgical procedure facilitated prosthesis fitting and preserved the proximal joint function despite an initially very proximal amputation. The advantages of partial replantation are obvious compared with simple terminalization or secondary reconstruction. There is no secondary donor site and, because there is no major muscle mass in the

  4. Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.

    Science.gov (United States)

    Bawa, P; Hamm, J D; Dhillon, P; Gross, P A

    2004-10-01

    Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.

  5. Proximal weakness of lower limbs as the sole presentation of hyperthyroidism: report of one case.

    Science.gov (United States)

    Chen, Chu-Chin; Chiu, Pao-Chin; Shih, Chen-Houng; Hsieh, Kai-Sheng

    2005-01-01

    Most children with acute or chronic flaccid limb weakness have a disorder of motor unit. However, it is very important to exclude cerebral or other upper motor neuron disorders before we approach such patients as pure muscle disorders. In general, neuropathy results in distal limb weakness, myopathy manifests with proximal weakness. There are exceptions, however. Accurate diagnosis in this wide array of disorders is dependent on a careful clinical assessment followed by the appropriate investigations. Here we report a 14-year-old girl who presented with progressive difficulty in rising up from the floor for one month. Neurological examination revealed an obese, clumsy but clear girl with stable vital signs. The muscle power of neck and upper limbs was normal. There was positive Gower sign, but the toe and heel gaits were acceptable. The initial blood work and motor/sensory nerve conduction velocity were unremarkable. Further study for thyroid function showed a hyperthyroid state. The proximal myopathy recovered soon after medical treatment. There were no other symptoms, and signs indicating hyperthyroidism and proximal myopathy of lower limbs was the isolated clinical feature. Hyperthyroid myopathy is common in hyperthyroidism, but is unusual as the sole presenting symptom.

  6. Proximal Limb Weakness Reverting After CSF Diversion In Intracranial Hypertension

    Directory of Open Access Journals (Sweden)

    Sinha S

    2005-01-01

    Full Text Available We report about two young girls who developed progressive visual failure secondary to increased intracranial pressure and had significant proximal muscle weakness of limbs. Patients with elevated intracranial pressure (ICP may present with "false localizing signs", besides having headache, vomiting and papilledema. Radicular pain as a manifestation of raised ICP is rare and motor weakness attributable to polyradiculopathy is exceptional. Two patients with increased intracranial pressure without lateralizing signs′ had singnificant muscle weakness. Clinical evaluation and laboratory tests did not disclose any other cause for weakness. Following theco-peritoneal shunt, in both patients, there was variable recovery of vision but the proximal weakness and symptoms of elevated ICP improved rapidly. Recognition of this uncommon manifestation of raised ICP may obviate the need for unnecessary investigation and reduce morbidity due to weakness by CSF diversion procedure.

  7. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  8. Method to Measure Tone of Axial and Proximal Muscle

    Science.gov (United States)

    Gurfinkel, Victor S.; Cacciatore, Timothy W.; Cordo, Paul J.; Horak, Fay B.

    2011-01-01

    The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs1, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention. PMID:22214974

  9. Restoration of regenerative ability of x-rayed newt limbs after grafting of proximal or distal skin

    International Nuclear Information System (INIS)

    Clarke, B.J.

    1978-01-01

    Studies were conducted in order to determine the role of skin in restoring regenerative ability of x-rayed newt limbs. Non-x-rayed skin from the hindlimb was grafted in four ways to x-rayed (2680R) forelimbs, stripped of their own skin: proximal hindlimb skin to the proximal forelimb, proximal hindlimb skin to the distal forelimb, distal hindlimb skin to the distal forelimb, and distal hindlimb skin to the proximal forelimb. The forelimbs were immediately amputated at the distal extent of the skin graft. Thirty-two of thirty-five (92%) x-rayed forelimbs that had received hindlimb skin regenerated. Of those that regenerated, 28.1% were hindlimbs as shown by the presence of five digits; 34.4% had four digits or less; 31.2% had an outgrowth, but no morphogenesis of digits and 6.3% had two hands. The level of the regenerate from x-rayed limbs was determined by the stump, not the hindlimb skin graft. Only proximal hindlimb skin grafts were able to promote the formation of single 5 digit regenerates. X-rayed forelimb skin was grafted onto x-rayed (2680R) hindlimbs after the hindlimb muscle and skin was removed. X-rayed hindlimbs that had received grafts of forelimb skin produced 5-digit regenerates in 6 of 11 cases (55%). Only 2 (18%) had four digits. The remaining animals (27%) exhibited bud-like regenerates. It is concluded that skin is capable of restoring regenerative ability of x-rayed limbs and that these limbs are able to participate in the production of the regenerate

  10. X-rays computed tomographic scans of lower limb and trunk muscles in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Hirosei; Mano, Yukio; Takayanagi, Tetsuya [Nara Medical Univ., Kashihara (Japan); Takahashi, Keiichi; Nishio, Hisahide

    1992-10-01

    X-rays computed tomographic (CT) scans of muscles of the lower limbs and the trunk in 14 patients with facioscapulohumeral muscular dystrophy (FSH) were studied. The CT scans showed that the affected muscles were decreased in density and size. The laterality of muscular involvement was sometimes observed. The muscular lesions in the lower limbs showed proximal distribution. In the thigh, the hamstrings were affected first, the adductor muscles second, and then the muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, the gastrocnemius and soleus muscles were relatively spared as compared with the tibialis anterior muscle. In the lumbar girdle, the abdominal muscles were involved first, the gluteal muscles second, the back muscles third, and the psoas major muscle were relatively spared. The muscular weakness of this distribution exacerbated lumbar lordosis. The neck muscles were less affected than those of the lumbar girdle. The CT scans in FSH demonstrated the characteristic pattern of muscular involvement, which differed from the inherited muscular diseases such as Duchenne muscular dystrophy, myotonic dystrophy, and others. (author).

  11. X-rays computed tomographic scans of lower limb and trunk muscles in facioscapulohumeral muscular dystrophy

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Mano, Yukio; Takayanagi, Tetsuya; Takahashi, Keiichi; Nishio, Hisahide.

    1992-01-01

    X-rays computed tomographic (CT) scans of muscles of the lower limbs and the trunk in 14 patients with facioscapulohumeral muscular dystrophy (FSH) were studied. The CT scans showed that the affected muscles were decreased in density and size. The laterality of muscular involvement was sometimes observed. The muscular lesions in the lower limbs showed proximal distribution. In the thigh, the hamstrings were affected first, the adductor muscles second, and then the muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, the gastrocnemius and soleus muscles were relatively spared as compared with the tibialis anterior muscle. In the lumbar girdle, the abdominal muscles were involved first, the gluteal muscles second, the back muscles third, and the psoas major muscle were relatively spared. The muscular weakness of this distribution exacerbated lumbar lordosis. The neck muscles were less affected than those of the lumbar girdle. The CT scans in FSH demonstrated the characteristic pattern of muscular involvement, which differed from the inherited muscular diseases such as Duchenne muscular dystrophy, myotonic dystrophy, and others. (author)

  12. Protein Turnover and Cellular Stress in Mildly and Severely Affected Muscles from Patients with Limb Girdle Muscular Dystrophy Type 2I

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Vissing, John

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal...... by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal...... highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy....

  13. Predictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury.

    Science.gov (United States)

    Velstra, Inge-Marie; Bolliger, Marc; Krebs, Jörg; Rietman, Johan S; Curt, Armin

    2016-05-01

    To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. As part of a Europe-wide, prospective, longitudinal, multicenter study ISNCSCI, GRASSP, and Spinal Cord Independence Measure (SCIM III) scores were recorded at 1 and 6 months after SCI. For prediction of upper limb function and ADLs, a logistic regression model and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used. Results: Logistic regression and URP-CTREE revealed that a combination of ISNCSCI and GRASSP muscles (to a maximum of 4) demonstrated the best prediction (specificity and sensitivity ranged from 81.8% to 96.0%) of upper limb function and identified homogenous outcome cohorts at 6 months. The URP-CTREE model with the QlG predictors for upper limb function showed similar results. Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials. © The Author(s) 2015.

  14. Muscle MRI STIR signal intensity and atrophy are correlated to focal lower limb neuropathy severity.

    Science.gov (United States)

    Deroide, N; Bousson, V; Mambre, L; Vicaut, E; Laredo, J D; Kubis, Nathalie

    2015-03-01

    The objective is to determine if muscle MRI is useful for assessing neuropathy severity. Clinical, MRI and electromyography (EMG) examinations were performed in 17 patients with focal lower limb neuropathies. MRI Short Tau Inversion Recovery (STIR) signal intensity, amyotrophy, and muscle fatty infiltration measured after T1-weighted image acquisition, EMG spontaneous activity (SA), and maximal voluntary contraction (MVC) were graded using semiquantitative scores and quantitative scores for STIR signal intensity and were correlated to the Medical Research Council (MRC) score for testing muscle strength. Within this population, subgroups were selected according to severity (mild versus severe), duration (subacute versus chronic), and topography (distal versus proximal) of the neuropathy. EMG SA and MVC MRI amyotrophy and quantitative scoring of muscle STIR intensity were correlated with the MRC score. Moreover, MRI amyotrophy was significantly increased in severe, chronic, and proximal neuropathies along with fatty infiltration in chronic lesions. Muscle MRI atrophy and quantitative evaluation of signal intensity were correlated to MRC score in our study. Semiquantitative evaluation of muscle STIR signal was sensitive enough for detection of topography of the nerve lesion but was not suitable to assess severity. Muscle MRI could support EMG in chronic and proximal neuropathy, which showed poor sensitivity in these patients.

  15. Muscle MRI STIR signal intensity and atrophy are correlated to focal lower limb neuropathy severity

    Energy Technology Data Exchange (ETDEWEB)

    Deroide, N.; Mambre, L.; Kubis, Nathalie [Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hopital Lariboisiere, Paris (France); Universite Paris Diderot, Sorbonne Paris Cite France, Paris (France); Bousson, V.; Laredo, J.D. [Universite Paris Diderot, Sorbonne Paris Cite France, Paris (France); Radiologie Osteo-articulaire, AP-HP, Hopital Lariboisiere, Paris (France); Vicaut, E. [Universite Paris Diderot, Sorbonne Paris Cite France, Paris (France); URC, AP-HP, Hopital Lariboisiere, Paris (France)

    2014-09-26

    The objective is to determine if muscle MRI is useful for assessing neuropathy severity. Clinical, MRI and electromyography (EMG) examinations were performed in 17 patients with focal lower limb neuropathies. MRI Short Tau Inversion Recovery (STIR) signal intensity, amyotrophy, and muscle fatty infiltration measured after T1-weighted image acquisition, EMG spontaneous activity (SA), and maximal voluntary contraction (MVC) were graded using semiquantitative scores and quantitative scores for STIR signal intensity and were correlated to the Medical Research Council (MRC) score for testing muscle strength. Within this population, subgroups were selected according to severity (mild versus severe), duration (subacute versus chronic), and topography (distal versus proximal) of the neuropathy. EMG SA and MVC MRI amyotrophy and quantitative scoring of muscle STIR intensity were correlated with the MRC score. Moreover, MRI amyotrophy was significantly increased in severe, chronic, and proximal neuropathies along with fatty infiltration in chronic lesions. Muscle MRI atrophy and quantitative evaluation of signal intensity were correlated to MRC score in our study. Semiquantitative evaluation of muscle STIR signal was sensitive enough for detection of topography of the nerve lesion but was not suitable to assess severity. Muscle MRI could support EMG in chronic and proximal neuropathy, which showed poor sensitivity in these patients. (orig.)

  16. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles.

    Science.gov (United States)

    Pérez-Bellmunt, Albert; Miguel-Pérez, Maribel; Brugué, Marc Blasi; Cabús, Juan Blasi; Casals, Martí; Martinoli, Carlo; Kuisma, Raija

    2015-06-01

    The proximal attachment of hamstring muscles has a very high incidence of injuries due to a wide number of factors and its morphology may be one of the underlying factors as scientific literature points out. The connective tissue component of the attachment of hamstring muscles is not well known. For this reason the aim of this study is to describe the anatomy and histology surrounding the proximal attachment of the hamstring muscles (PAHM) and its direct anatomic relations. Forty-eight cryopreserved lower limbs have sequentially been studied by means of dissection, anatomical sections and histology. All specimens studied presented an annular connective tissue structure that resembles a retinaculum, which covers and adapts to the attachment of hamstring muscles on the ischial tuberosity. The results show how this retinaculum is continuous with the long head of biceps femoris muscle, however there is a layer of loose connective tissue between the retinaculum and the semitendinosus muscle. Furthermore, this structure receives expansions of the anterior epimysium of the gluteus maximus muscle (GIM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb.

    Science.gov (United States)

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi

    2016-09-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.

  18. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Patients with Limb girdle muscular dystrophy type 2I (LGMD2I are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4 and healthy subjects (n = 4. The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC and neural cell adhesion molecule (NCAM and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  19. Origin of directionally tuned responses in lower limb muscles to unpredictable upper limb disturbances.

    Directory of Open Access Journals (Sweden)

    Ali Forghani

    Full Text Available Unpredictable forces which perturb balance are frequently applied to the body through interaction between the upper limb and the environment. Lower limb muscles respond rapidly to these postural disturbances in a highly specific manner. We have shown that the muscle activation patterns of lower limb muscles are organized in a direction specific manner which changes with lower limb stability. Ankle muscles change their activity within 80 ms of the onset of a force perturbation applied to the hand which is earlier than the onset of changes in ground reaction force, ankle angle or head motion. The latency of the response is sensitive to the perturbation direction. However, neither the latency nor the magnitude of the response is affected by stiffening the arm even though this alters the magnitude and timing of motion of the body segments. Based on the short latency, insensitivity of the change in ankle muscle activation to motion of the body segments but sensitivity to perturbation direction we reason that changes in ankle muscle activation are most likely triggered by sensory signals originating from cutaneous receptors in the hand. Furthermore, evidence that the latency of changes in ankle muscle activation depends on the number of perturbation directions suggests that the neural pathway is not confined to the spinal cord.

  20. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    Science.gov (United States)

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  1. Characterizing changes in the excitability of corticospinal projections to proximal muscles of the upper limb.

    Science.gov (United States)

    Carson, Richard G; Nelson, Barry D; Buick, Alison R; Carroll, Timothy J; Kennedy, Niamh C; Cann, Rachel Mac

    2013-09-01

    There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function. To establish whether sigmoid fits provide a reliable basis upon which to characterize the input-output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC). A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation. The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS). The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  3. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B. M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G. S.; Ahn, B.; Ferreira, L. F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  4. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    International Nuclear Information System (INIS)

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-01-01

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  5. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.

    Science.gov (United States)

    Ruggiero, Marissa; Cless, Daniel; Infantolino, Benjamin

    2016-01-01

    Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age.

  6. Analysis and control of a parallel lower limb based on pneumatic artificial muscles

    Directory of Open Access Journals (Sweden)

    Feilong Jiang

    2016-12-01

    Full Text Available Most robots that are actuated by antagonistic pneumatic artificial muscles are controlled by various control algorithms that cannot adequately imitate the actual muscle distribution of human limbs. Other robots in which the distribution of pneumatic artificial muscle is similar to that of human limbs can only analyze the position of the robot using perceptual data instead of rational knowledge. In order to better imitate the movement of a human limb, the article proposes a humanoid lower limb in the form of a parallel mechanism where muscle is unevenly distributed. Next, the kinematic and dynamic movements of bionic hip joint are analyzed, where the joint movement is controlled by an observer-based fuzzy adaptive control algorithm as a whole rather than each individual pneumatic artificial muscle and parameters that are optimized by a neural network. Finally, experimental results are provided to confirm the effectiveness of the proposed method. We also document the role of muscle in trajectory tracking for the piriformis and musculi obturator internus in isobaric processes.

  7. Muscle co-contraction modulates damping and joint stability in a three-link bio mechanical limb

    Directory of Open Access Journals (Sweden)

    Stewart eHeitmann

    2012-01-01

    Full Text Available Computational models of neuromotor control require forward models of limb movement that can replicate the natural relationships between muscle activation and joint dynamics without the burdens of excessive anatomical detail. We present a model of a three-link biomechanical limb that emphasizes the dynamics of limb movement within a simplified two-dimensional framework. Muscle co-contraction effects were incorporated into the model by flanking each joint with a pair of antagonist muscles that may be activated independently. Muscle co-contraction is known to alter the damping and stiffness of limb joints without altering net joint torque. Idealized muscle actuators were implemented using the Voigt muscle model which incorporates the parallel elasticity of muscle and tendon but omits series elasticity. The natural force-length-velocity relationships of contractile muscle tissue were incorporated into the actuators using ideal mathematical forms. Numerical stability analysis confirmed that co-contraction of these simplified actuators increased damping in the biomechanical limb consistent with observations of human motor control. Dynamic changes in joint stiffness were excluded by the omission of series elasticity. The analysis also revealed the unexpected finding that distinct stable (bistable equilibrium positions can co-exist under identical levels of muscle co-contraction. We map the conditions under which bistability arises and prove analytically that monostability (equifinality is guaranteed when the antagonist muscles are identical. Lastly we verify these analytic findings in the full biomechanical limb model.

  8. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  9. Triceps brachii muscle reconstruction with a latissimus dorsi muscle flap in a dog.

    Science.gov (United States)

    Pavletic, Michael M; Kalis, Russell; Tribou, Patricia; Mouser, Pam J

    2015-01-15

    A 6-year-old spayed female Border Collie was examined for a severe deformity of the right forelimb. Three months prior to examination, the patient awkwardly fell off the couch and became acutely lame in the right forelimb, progressing to non-weight bearing over the following 72 hours. On physical examination, the dog carried the limb caudally against the thoracic wall, with the shoulder flexed and elbow in extension. The right triceps brachii muscle was atrophied and contracted, resulting in a resistant tension band effect that precluded manipulation of the right elbow joint. The physical changes in the triceps muscle were considered the primary cause of the patient's loss of limb function. Surgical treatment by means of elevation and transposition of the ipsilateral latissimus dorsi muscle was performed. The exposed triceps brachii muscles were transected 3 cm proximal to the tendons of insertion. Via a separate incision, the right latissimus dorsi muscle was elevated and tunneled subcutaneously beneath the interposing skin between the 2 surgical incisions. The muscle was then positioned and sutured to the proximal and distal borders of the divided triceps muscle group. Two weeks later, physical therapy was initiated. After 2 months, the patient regularly walked on the limb most of the time (9/10 steps). The surgical procedure for elevation and transposition of the latissimus dorsi muscle was relatively simple to perform. Physical therapy was an essential component to achieving the successful functional outcome in this case. This technique may be considered for treatment of similar patients in which the triceps muscle group is severely compromised.

  10. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface

    Directory of Open Access Journals (Sweden)

    Huang Stephanie

    2012-08-01

    Full Text Available Abstract Background Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user’s nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. Methods We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. Results We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Conclusion Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee’s nervous system.

  11. An investigation into the bilateral functional differences of the lower limb muscles in standing and walking

    Directory of Open Access Journals (Sweden)

    Shengyun Liang

    2016-08-01

    Full Text Available To date, most studies use surface electromyographic (sEMG signals as the control source on active rehabilitation robots, and unilateral data are collected based on the gait symmetry hypothesis, which has caused much controversy. The purpose of this study is to quantitatively evaluate the sEMG activity asymmetry of bilateral muscles in lower extremities during functional tasks. Nine participants were instructed to perform static and dynamic steady state tests. sEMG signals from the tibialis anterior, soleus, medial gastrocnemius and lateral gastrocnemius muscles of bilateral lower extremities were recorded in the experiments. Muscle activities are quantified in terms of sEMG amplitude. We investigated whether characteristics of left limb and the one of the right limb have the same statistical characteristics during functional tasks using The Wilcoxon rank-sum test, and studied dynamic signal irregularity degree for sEMG activities via sample entropy. The total of muscle activities showed significant differences between left limb and right limb during the static steady state (p = 0.000. For dynamic steady states, there were significant differences for most muscle activities between left limb and right limb at different speeds (p = 0.000. Nevertheless, there was no difference between the lateral gastrocnemius for bilateral limb at 2.0 kilometers per hour (p = 0.060. For medial gastrocnemius, differences were not found between left limb and right limb at 1.0 and 3.0 kilometers per hours (p = 0.390 and p = 0.085, respectively. Similarly, there was no difference for soleus at 3.0 kilometers per hour (p = 0.115. The importance of the differences in muscle activities between left limb and right limb were found. These results can potentially be used for evaluating lower limb extremity function of special populations (elderly people or stroke patients in an objective and simple method.

  12. Prevalence of adult Pompe disease in patients with proximal myopathic syndrome and undiagnosed muscle biopsy.

    Science.gov (United States)

    Golsari, Amir; Nasimzadah, Arzoo; Thomalla, Götz; Keller, Sarah; Gerloff, Christian; Magnus, Tim

    2018-03-01

    We examined patients with limb-girdle muscle weakness and/or hyper-CKaemia and undiagnosed muscle biopsy for late onset Pompe disease (LOPD). Patients with an inconclusive limb-girdle muscle weakness who presented at our neuromuscular centre between 2005 and 2015 with undiagnosed muscle biopsies were examined by dry blood spot testing (DBS) including determination of the enzyme activity of acid alpha-glucosidase (GAA). In the case of depressed enzyme activity, additional gene testing of the GAA gene was carried out. Of the 340 evaluated muscle biopsies, 69 patients fulfilled the inclusion criteria and were examined with DBS. Among those patients, 76% showed a limb-girdle muscle weakness and 14% showed a hyper-CKaemia. A diagnosis of LOPD could be established in the case of two patients (2.9%) with reduced GAA enzyme activity and proof of mutations in the GAA gene. One of the two patients presents in the muscle biopsy suggestive features of Pompe disease including vacuoles with positive acid phosphatase reaction. In summary, our results show that a muscle biopsy can be helpful in identifying LOPD patients, but vacuolation with glycogen storage can also be absent. An inconspicuous muscle biopsy does not rule out Pompe disease. Consequently, all patients with limb-girdle muscle weakness should be examined by DBS before conducting a muscle biopsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Proximal major limb amputations – a retrospective analysis of 45 oncological cases

    Directory of Open Access Journals (Sweden)

    Goertz Ole

    2009-02-01

    Full Text Available Abstract Background Proximal major limb amputations due to malignant tumors have become rare but are still a valuable treatment option in palliation and in some cases can even cure. The aim of this retrospective study was to analyse outcome in those patients, including the postoperative course, survival, pain, quality of life, and prosthesis usage. Methods Data of 45 consecutive patients was acquired from patient's charts and contact to patients, and general practitioners. Patients with interscapulothoracic amputation (n = 14, shoulder disarticulation (n = 13, hemipelvectomy (n = 3 or hip disarticulation (n = 15 were included. Results The rate of proximal major limb amputations in patients treated for sarcoma was 2.3% (37 out of 1597. Survival for all patients was 42.9% after one year and 12.7% after five years. Survival was significantly better in patients with complete tumor resections. Postoperative chemotherapy and radiation did not prolong survival. Eighteen percent of the patients with malignant disease developed local recurrence. In 44%, postoperative complications were observed. Different modalities of postoperative pain management and the site of the amputation had no significant influence on long-term pain assessment and quality of life. Eighty-seven percent suffered from phantom pain, 15.6% considered their quality of life worse than before the operation. Thirty-two percent of the patients who received a prosthesis used it regularly. Conclusion Proximal major limb amputations severely interfere with patients' body function and are the last, albeit valuable, option within the treatment concept of extremity malignancies or severe infections. Besides short survival, high complication rates, and postoperative pain, patients' quality of life can be improved for the time they have remaining.

  14. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    Science.gov (United States)

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Muscle-type Identity of Proprioceptors Specified by Spatially Restricted Signals from Limb Mesenchyme.

    Science.gov (United States)

    Poliak, Sebastian; Norovich, Amy L; Yamagata, Masahito; Sanes, Joshua R; Jessell, Thomas M

    2016-01-28

    The selectivity with which proprioceptive sensory neurons innervate their central and peripheral targets implies that they exhibit distinctions in muscle-type identity. The molecular correlates of proprioceptor identity and its origins remain largely unknown, however. In screens to define muscle-type proprioceptor character, we find all-or-none differences in gene expression for proprioceptors that control antagonistic muscles at a single hindlimb joint. Analysis of three of these genes, cadherin13 (cdh13), semaphorin5a (sema5a), and cartilage-acidic protein-1 (crtac1), reveals expression in proprioceptor subsets that supply muscle groups located at restricted dorsoventral and proximodistal domains of the limb. Genetically altering the dorsoventral character of the limb mesenchyme elicits a change in the profile of proprioceptor cdh13, sema5a, and crtac1 expression. These findings indicate that proprioceptors acquire aspects of their muscle-type identity in response to mesenchymal signals expressed in restricted proximodistal and dorsoventral domains of the developing limb. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Muscle-type identity of proprioceptors specified by spatially-restricted signals from limb mesenchyme

    Science.gov (United States)

    Poliak, Sebastian; Norovich, Amy L.; Yamagata, Masahito; Sanes, Joshua R.; Jessell, Thomas M.

    2016-01-01

    The selectivity with which proprioceptive sensory neurons innervate their central and peripheral targets implies that they exhibit distinctions in muscle-type identity. The molecular correlates of proprioceptor identity and its origins remain largely unknown, however. In screens to define muscle-type proprioceptor character we find all-or-none differences in gene expression for proprioceptors that control antagonistic muscles at a single hindlimb joint. Analysis of three of these genes, cadherin13 (cdh13), semaphorin5a (sema5a) and cartilage-acidic protein-1 (crtac1), reveals expression in proprioceptor subsets that supply muscle-groups located at restricted dorso-ventral and proximo-distal domains of the limb. Genetically altering the dorso-ventral character of the limb mesenchyme elicits a change in the profile of proprioceptor cdh13, sema5a and crtac1 expression. These findings indicate that proprioceptors acquire aspects of their muscle-type identity in response to mesenchymal signals expressed in restricted proximo-distal and dorso-ventral domains of the developing limb. PMID:26824659

  17. Maintenance of muscle strength retains a normal metabolic cost in simulated walking after transtibial limb loss

    Science.gov (United States)

    Russell Esposito, Elizabeth

    2018-01-01

    Recent studies on relatively young and fit individuals with limb loss suggest that maintaining muscle strength after limb loss may mitigate the high metabolic cost of walking typically seen in the larger general limb loss population. However, these data are cross-sectional and the muscle strength prior to limb loss is unknown, and it is therefore difficult to draw causal inferences on changes in strength and gait energetics. Here we used musculoskeletal modeling and optimal control simulations to perform a longitudinal study (25 virtual “subjects”) of the metabolic cost of walking pre- and post-limb loss (unilateral transtibial). Simulations of walking were first performed pre-limb loss on a model with two intact biological legs, then post-limb loss on a model with a unilateral transtibial prosthesis, with a cost function that minimized the weighted sum of gait deviations plus metabolic cost. Metabolic costs were compared pre- vs. post-limb loss, with systematic modifications to the muscle strength and prosthesis type (passive, powered) in the post-limb loss model. The metabolic cost prior to limb loss was 3.44±0.13 J/m/kg. After limb loss, with a passive prosthesis the metabolic cost did not increase above the pre-limb loss cost if pre-limb loss muscle strength was maintained (mean -0.6%, p = 0.17, d = 0.17). With 10% strength loss the metabolic cost with the passive prosthesis increased (mean +5.9%, p loss cost for all subjects with strength losses of 10% and 20%, but increased for all subjects with strength loss of 30% (mean +5.9%, p loss, and that a gait with minimal deviations can be achieved when muscle strength is sufficiently high, even when using a passive prosthesis. PMID:29329344

  18. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    Science.gov (United States)

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  19. Relationships of 35 lower limb muscles to height and body mass quantified using MRI.

    Science.gov (United States)

    Handsfield, Geoffrey G; Meyer, Craig H; Hart, Joseph M; Abel, Mark F; Blemker, Silvia S

    2014-02-07

    Skeletal muscle is the most abundant tissue in the body and serves various physiological functions including the generation of movement and support. Whole body motor function requires adequate quantity, geometry, and distribution of muscle. This raises the question: how do muscles scale with subject size in order to achieve similar function across humans? While much of the current knowledge of human muscle architecture is based on cadaver dissection, modern medical imaging avoids limitations of old age, poor health, and limited subject pool, allowing for muscle architecture data to be obtained in vivo from healthy subjects ranging in size. The purpose of this study was to use novel fast-acquisition MRI to quantify volumes and lengths of 35 major lower limb muscles in 24 young, healthy subjects and to determine if muscle size correlates with bone geometry and subject parameters of mass and height. It was found that total lower limb muscle volume scales with mass (R(2)=0.85) and with the height-mass product (R(2)=0.92). Furthermore, individual muscle volumes scale with total muscle volume (median R(2)=0.66), with the height-mass product (median R(2)=0.61), and with mass (median R(2)=0.52). Muscle volume scales with bone volume (R(2)=0.75), and muscle length relative to bone length is conserved (median s.d.=2.1% of limb length). These relationships allow for an arbitrary subject's individual muscle volumes to be estimated from mass or mass and height while muscle lengths may be estimated from limb length. The dataset presented here can further be used as a normative standard to compare populations with musculoskeletal pathologies. © 2013 Published by Elsevier Ltd.

  20. Muscle and Limb Mechanics.

    Science.gov (United States)

    Tsianos, George A; Loeb, Gerald E

    2017-03-16

    Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  1. Bilateral Dorsal Subluxation of the Proximal Interphalangeal Joint of the Hind Limb in a Mare: Case Report

    OpenAIRE

    Pizzigatti, Dietrich; Hussni, Carlos Alberto; Rodrigues, Celso Antonio; Watanabe, Marcos Jun; Moura Alonso, Juliana de; Vulcano, Luiz Carlos; Cisneros Álvarez, Luis Emiliano

    2013-01-01

    Subluxation of the proximal interphalangeal joint is a rare and little studied condition in horses. We describe the case of a 12-year-old mare with bilateral dorsal subluxation of the proximal interphalangeal joint of the hind feet. Tenectomy of the medial digital flexor was performed in both limbs, and the patient showed signs of recovery within 14 days. Goniometry of the proximal interphalangeal joints 10 months after surgery showed diminution of 5° for the proximal interphalangeal axis of ...

  2. Comparison of the large muscle group widths of the pelvic limb in seven breeds of dogs.

    Science.gov (United States)

    Sabanci, Seyyid Said; Ocal, Mehmet Kamil

    2018-05-14

    Orthopaedic diseases are common in the pelvic limbs of dogs, and reference values for large muscle groups of the pelvic limb may aid in diagnosis such diseases. As such, the objective of this study was to compare the large muscle groups of the pelvic limb in seven breeds of dogs. A total of 126 dogs from different breeds were included, and the widths of the quadriceps, hamstring and gastrocnemius muscles were measured from images of the lateral radiographies. The width of the quadriceps was not different between the breeds, but the widths of the hamstring and gastrocnemius muscles were significantly different between the breeds. The widest hamstring and gastrocnemius muscles were seen in the Rottweilers and the Boxers, respectively. The narrowest hamstring and gastrocnemius muscles were seen in the Belgian Malinois and the Golden retrievers, respectively. All ratios between the measured muscles differed significantly between the breeds. Doberman pinschers and Belgian Malinois had the highest ratio of gastrocnemius width:hamstring width. Doberman pinschers had also the highest ratio of quadriceps width:hamstring width. German shepherds had the highest ratio of gastrocnemius width:quadriceps width. The lowest ratios of quadriceps width:hamstring width were determined in the German shepherds. The ratios of the muscle widths may be used as reference values to assess muscular atrophy or hypertrophy in cases of bilateral or unilateral orthopaedic diseases of the pelvic limbs. Further studies are required to determine the widths and ratios of the large muscle groups of the pelvic limbs in other dog breeds. © 2018 Blackwell Verlag GmbH.

  3. Oral creatine supplementation attenuates muscle loss caused by limb immobilization: a systematic review

    Directory of Open Access Journals (Sweden)

    Camila Souza Padilha

    Full Text Available Abstract Introduction: Recent studies have pointing creatine supplementation as a promising therapeutic alterna- tive in several diseases, especially myopathies and neurodegenerative disorder. Objective: elucidate the role of creatine supplementation on deleterious effect caused by limb immobilization in humans and rats. Methods: Analyzed articles were searched by three online databases, PubMed, SportDicus e Scielo. After a review and analysis, the studies were included in this review articles on effect of creatine supplementation on skeletal muscle in humans and rat, before, during and after a period of limb immobilization. Results: Studies analyzed demonstrated positive points in use of creatine supplementation as a therapeutic tool to mitigating the deleterious effects of limb immobilization, in humans and rat. Conclusion: The dataset of this literature review allows us to conclude that creatine supplementation may reduce muscle loss and/or assist in the recovery of muscle atrophy caused by immobilization and disuse in rats and humans. Also, we note that further research with better methodological rigor is needed to clarify the mechanisms by which creatine support the recovery of muscle atrophy. Moreover, these effects are positive and promising in the field of muscle rehabilitation, especially after member’s immobilization.

  4. MR Imaging of Brachial Plexus and Limb-Girdle Muscles in Patients with Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Gerevini, Simonetta; Agosta, Federica; Riva, Nilo; Spinelli, Edoardo G; Pagani, Elisabetta; Caliendo, Giandomenico; Chaabane, Linda; Copetti, Massimiliano; Quattrini, Angelo; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2016-05-01

    To assess brachial plexus magnetic resonance (MR) imaging features and limb-girdle muscle abnormalities as signs of muscle denervation in patients with amyotrophic lateral sclerosis (ALS). This study was approved by the local ethical committees on human studies, and written informed consent was obtained from all subjects before enrollment. By using an optimized protocol of brachial plexus MR imaging, brachial plexus and limb-girdle muscle abnormalities were evaluated in 23 patients with ALS and clinical and neurophysiologically active involvement of the upper limbs and were compared with MR images in 12 age-matched healthy individuals. Nerve root and limb-girdle muscle abnormalities were visually evaluated by two experienced observers. A region of interest-based analysis was performed to measure nerve root volume and T2 signal intensity. Measures obtained at visual inspection were analyzed by using the Wald χ(2) test. Mean T2 signal intensity and volume values of the regions of interest were compared between groups by using a hierarchical linear model, accounting for the repeated measurement design. The level of interrater agreement was very strong (κ = 0.77-1). T2 hyperintensity and volume alterations of C5, C6, and C7 nerve roots were observed in patients with ALS (P < .001 to .03). Increased T2 signal intensity of nerve roots was associated with faster disease progression (upper-limb Medical Research Council scale progression rate, r = 0.40; 95% confidence interval: 0.001, 0.73). Limb-girdle muscle alterations (ie, T2 signal intensity alteration, edema, atrophy) and fat infiltration also were found, in particular, in the supraspinatus muscle, showing more frequent T2 signal intensity alterations and edema (P = .01) relative to the subscapularis and infraspinatus muscles. Increased T2 signal intensity and volume of brachial nerve roots do not exclude a diagnosis of ALS and suggest involvement of the peripheral nervous system in the ALS pathogenetic cascade. MR

  5. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  6. Upper limb muscle activation during sports video gaming of persons with spinal cord injury.

    Science.gov (United States)

    Jaramillo, Jeffrey P; Johanson, M Elise; Kiratli, B Jenny

    2018-04-04

    Video gaming as a therapeutic tool has largely been studied within the stroke population with some benefits reported in upper limb motor performance, balance, coordination, and cardiovascular status. To date, muscle activation of upper limb muscles in persons with spinal cord injuries (SCI) has not been studied during video game play. In this paper, we provide descriptive and comparative data for muscle activation and strength during gaming for players with tetraplegia and paraplegia, as well as, compare these results with data from traditional arm exercises (ie, biceps curl and shoulder press) with light weights which are commonly prescribed for a home program. Fourteen individuals with chronic SCI (9 tetraplegia, 5 paraplegia). We measured upper limb muscle activation with surface electromyography (EMG) during Wii Sports video game play. Muscle activation was recorded from the playing arm during 4 selected games and normalized to a maximum voluntary contraction (MVC). Heart rate and upper limb motion were recorded simultaneously with EMG. Wilcoxon signed rank tests were used to analyze differences in muscle activation between participants with paraplegia versus tetraplegia and compare gaming with traditional arm exercises with light weights. A Friedman 2-way analysis of variance identified key muscle groups active during game play. Overall muscle activation across the games was not different between those with paraplegia and tetraplegia. Heart rate during video game play for tennis and boxing were on average 10 to 20 beats/minute above resting heart rate. The magnitude of EMG was relatively greater for traditional arm exercises with light weights compared with game play. The selected Wii games were able to elicit upper extremity muscle activation and elevated heart rates for individuals with SCI that may be used to target therapeutic outcomes.

  7. The application of functional MRI in evaluating ischemic injuries of lower limb skeletal muscle

    International Nuclear Information System (INIS)

    Xia Caifeng; Gu Jianping

    2011-01-01

    The ischemic injury of lower limb skeletal muscle is caused by various reasons that lead to limb arterial blood flow insufficiency and subsequent muscle tissue hypoxia. Exact and correct evaluation of the ischemic degree of the skeletal muscle is very important for the physicians to guide the clinical treatment, to assess the therapeutic effect and to judge the prognosis. With the development and updating of scanning hardware and software, together with the use of diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), blood oxygen level dependent (BOLD) imaging and magnetic resonance spectroscopy (MRS), etc. the application of MRI has been dramatically expanded both in clinical practice and scientific researches. Nowadays, functional MRI can accurately reflect the physiological structures and pathologic changes in detail. This article aims mainly to make a comprehensive review about the application of these techniques in assessing the ischemic injuries of lower limb skeletal muscle. (authors)

  8. Salutary Effects of Cepharanthine against Skeletal Muscle and Kidney Injuries following Limb Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Ming-Chang Kao

    2015-01-01

    Full Text Available Limb ischemia/reperfusion (I/R causes oxidation and inflammation and subsequently induces muscle and kidney injuries. Cepharanthine, a natural plant alkaloid, possesses anti-inflammatory and antioxidative properties. We elucidated the salutary effects of cepharanthine against muscle and kidney injuries following limb I/R. Adult male rats were randomized to receive I/R or I/R plus cepharanthine. I/R was achieved by applying tourniquet high around each thigh for 3 hours followed by reperfusion for 24 hours. Cepharanthine (10 mg/kg, intraperitoneal was injected immediately before reperfusion. After euthanization, degrees of tissue injury, inflammation, and oxidation were examined. Our data revealed that the I/R group had significant increases in injury biomarker concentrations of muscle (creatine kinase and lactate dehydrogenase and kidney (creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Histological assays revealed moderate muscle and kidney injury characteristics in the I/R group. The I/R group also had significant increases in concentrations of inflammatory molecules (interleukin-6, macrophage inflammatory protein-2, and prostaglandin E2 and reactive nitrogen species (nitric oxide as well as lipid peroxidation (malondialdehyde. Of note, these effects of limb I/R could be mitigated by cepharanthine. These data confirmed that cepharanthine attenuated muscle and kidney injuries induced by limb I/R. The mechanisms may involve its anti-inflammatory and antioxidative capacities.

  9. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    Science.gov (United States)

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  10. Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2014-04-01

    Full Text Available It is a general assumption that pneumatic muscle-type actuators will play an important role in the development of an assistive rehabilitation robotics system. In the last decade, the development of a pneumatic muscle actuated lower-limb leg orthosis has been rather slow compared to other types of actuated leg orthoses that use AC motors, DC motors, pneumatic cylinders, linear actuators, series elastic actuators (SEA and brushless servomotors. However, recent years have shown that the interest in this field has grown exponentially, mainly due to the demand for a more compliant and interactive human-robotics system. This paper presents a survey of existing lower-limb leg orthoses for rehabilitation, which implement pneumatic muscle-type actuators, such as McKibben artificial muscles, rubbertuators, air muscles, pneumatic artificial muscles (PAM or pneumatic muscle actuators (PMA. It reviews all the currently existing lower-limb rehabilitation orthosis systems in terms of comparison and evaluation of the design, as well as the control scheme and strategy, with the aim of clarifying the current and on-going research in the lower-limb robotic rehabilitation field.

  11. Proximal Limb Weakness in a Patient with Celiac Disease: Copper Deficiency, Gluten Sensitivity, or Both as the Underlying Cause?

    Directory of Open Access Journals (Sweden)

    J. David Avila

    2016-01-01

    Full Text Available Celiac disease has been associated with several neurologic disorders which may result from micronutrient deficiencies, coexisting autoimmune conditions, or gluten sensitivity. Copper deficiency can produce multiple neurologic manifestations. Myeloneuropathy is the most common neurologic syndrome and it is often irreversible, despite copper replacement. We report the case of a 55-year-old man who presented with progressive proximal limb weakness and weight loss in the setting of untreated celiac disease without gastrointestinal symptoms. He had anemia, neutropenia, and severe hypocupremia. The pattern of weakness raised the suspicion that there was an underlying myopathy, although this was not confirmed by electrodiagnostic studies. Weakness and hematologic abnormalities resolved completely within 1 month of total parenteral nutrition with copper supplementation and a gluten-free diet. Myopathy can rarely occur in patients with celiac disease, but the mechanism is unclear. Pure proximal limb weakness has not been previously reported in copper deficiency. We propose that this may represent a novel manifestation of hypocupremia and recommend considering copper deficiency and gluten sensitivity in patients presenting with proximal limb weakness.

  12. Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice

    Science.gov (United States)

    Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.

    2016-01-01

    Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (pdemand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (pDemand ischemia increased the PGC1α mRNA (pdemands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999

  13. Lower limb muscle volume estimation from maximum cross-sectional area and muscle length in cerebral palsy and typically developing individuals.

    Science.gov (United States)

    Vanmechelen, Inti M; Shortland, Adam P; Noble, Jonathan J

    2018-01-01

    Deficits in muscle volume may be a significant contributor to physical disability in young people with cerebral palsy. However, 3D measurements of muscle volume using MRI or 3D ultrasound may be difficult to make routinely in the clinic. We wished to establish whether accurate estimates of muscle volume could be made from a combination of anatomical cross-sectional area and length measurements in samples of typically developing young people and young people with bilateral cerebral palsy. Lower limb MRI scans were obtained from the lower limbs of 21 individuals with cerebral palsy (14.7±3years, 17 male) and 23 typically developing individuals (16.8±3.3years, 16 male). The volume, length and anatomical cross-sectional area were estimated from six muscles of the left lower limb. Analysis of Covariance demonstrated that the relationship between the length*cross-sectional area and volume was not significantly different depending on the subject group. Linear regression analysis demonstrated that the product of anatomical cross-sectional area and length bore a strong and significant relationship to the measured muscle volume (R 2 values between 0.955 and 0.988) with low standard error of the estimates of 4.8 to 8.9%. This study demonstrates that muscle volume may be estimated accurately in typically developing individuals and individuals with cerebral palsy by a combination of anatomical cross-sectional area and muscle length. 2D ultrasound may be a convenient method of making these measurements routinely in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects.

    Science.gov (United States)

    Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare

    2016-01-01

    To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Lheureux, E. (Universite des Sciences et Techniques, Lille (France). Lab. de Morphogenese Animale)

    1983-08-01

    An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump was carried out on animals entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop.

  16. Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration

    International Nuclear Information System (INIS)

    Lheureux, E.

    1983-01-01

    An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump was carried out on animals entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop. (author)

  17. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    Science.gov (United States)

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    Science.gov (United States)

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability

  19. Proximal muscle weakness as a result of osteomalacia associated with celiac disease: a case report.

    Science.gov (United States)

    Oz, B; Akan, O; Kocyigit, H; Gürgan, H A

    2016-02-01

    A 24-year-old woman suffering from back and hip pain with difficulty in walking was reported. She had proximal muscle weakness. Laboratory findings led to the diagnosis of osteomalacia. Positivity of antibodies strengthened suspicion of celiac disease. In patients with proximal muscle weakness, osteomalacia should be considered in differential diagnosis even in a young woman. A 24-year-old woman suffering from back pain, bilateral hip pain, and difficulty in walking was reported. Her symptoms had started in the first trimester of pregnancy. In her physical examination, proximal muscle weakness and waddling gait pattern were determined. Her lumbar spine and hip MRI revealed no obvious pathological findings. Electromyography showed a myophatic pattern. Physical examination, normal values of creatine kinase, and muscle biopsy were supplied to exclude the diagnosis of primer muscle diseases. Laboratory findings led to the diagnosis of osteomalacia with normal renal function. Gastrointestinal symptoms and positivity of anti-gliadin and anti-endomysium antibodies strengthened the suspicion of celiac disease as a cause of the osteomalacia. The diagnosis of celiac disease was confirmed with duodenal mucosal biopsy. In patients with proximal muscle weakness and waddling gait pattern, osteomalacia should be considered in differential diagnosis even in a young woman and underlying disease should be investigated.

  20. Growth of limb muscle is dependent on skeletal-derived Indian hedgehog

    OpenAIRE

    Bren-Mattison, Yvette; Hausburg, Melissa; Olwin, Bradley B.

    2011-01-01

    During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of I...

  1. The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles

    Directory of Open Access Journals (Sweden)

    Papadakis Stamatios A

    2007-09-01

    Full Text Available Abstract Background Several studies have been carried out in order to investigate the effect of ankle bracing on ankle joint function and performance. However, no study so far has examined the role of skin-brace interface pressure in neuromuscular control. The aim of this study was to investigate the effect of different skin-ankle brace interface pressures on quiet single limb balance and the electromyographic (EMG activation sequence of four lower limb muscles. Methods Thirty three male physical education students who volunteered to take part in the study were measured under three ankle brace conditions: i without brace, ii with brace and 30 kPa application pressure and iii with brace and 60 kPa application pressure. Single limb balance (anteroposterior and mediolateral parameter was assessed on the dominant lower limb, with open and closed eyes, on a force platform, simultaneously with the EMG recording of four lower lower limb muscles' (gastrocnemius, peroneus longus, rectus femoris and biceps femoris activation onset. Results The results showed that overall balance (total stability parameter was not significantly affected in any of the three ankle brace conditions. However, the anteroposterior centre of pressure excursion and centre of pressure excursion velocity were significantly increased with the application of ankle brace, both with 30 and 60 kPa application pressures. Furthermore, it was found that single limb balance was significantly worse with closed eyes compared to open eyes. EMG measurements showed that the sequence of lower limb activation onset was not affected in any of the three ankle brace application conditions. The results of this study showed that the application of an ankle brace with two different skin-brace interface pressures had no effect on overall single limb balance and the sequence of lower limb muscle activation. Conclusion These findings suggest that peripheral joint receptors are either not adequately

  2. Effects of transcutaneous electrical stimulation of lower limb muscles on experimental fatty liver.

    Science.gov (United States)

    El-Kafoury, Bataa M; Seif, Ansam A; El-Aziz Abd El-Hady, Enas A; El-Sebaiee, Ahmed E

    2016-03-01

    Although the beneficial effects of exercise on fatty liver have been described, a previous study conducted at our department showed that transcutaneous electrical muscle stimulation (TEMS) of lower abdominal muscles aggravated fatty liver. The present study aims to evaluate the ability of TEMS of the lower limb muscles to improve fatty liver infiltration. Thirty male Wistar rats were randomly allocated into three groups: control; fructose-fed (F), fed fructose-enriched diet for 6weeks; and fructose-fed with transcutaneous electrical muscle stimulation (F+TEMS), fed fructose-enriched diet for 6weeks and lower limb muscles subjected to TEMS during the last 3weeks of feeding, five sessions/week. Body weight, length, body mass index (BMI), and abdominal and lower limb circumferences were all recorded. Fasting blood glucose, serum insulin, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein, serum albumin, high density lipoprotein cholesterol (HDL-C), triglyceride (TG), and total cholesterol (TC) levels were measured. LDL cholesterol (LDL-C) and the atherogenic index (AI) were calculated. Absolute and relative hepatic weights as well as histological examination of the liver were assessed. Final body weight, abdominal and lower limb circumferences, absolute liver weight, homoeostasis model assessment (HOMA) score, and TG, LDL-C, AI, serum ALT, and AST levels were all significantly reduced in the (F+TEMS) group compared to the (F) group. There was a significant increase in GPx and HDL-C levels, HDL/LDL ratio, and total protein and serum albumin content in (F+TEMS) rats compared to (F) rats. Histologically, hepatic tissue from (F+TEMS) rats had minimal steatotic changes that were restricted to zone 1 and less marked inflammatory cell infiltration compared to (F) rats. TEMS was able to reverse steatosis, hyperglycaemia, insulin resistance, dyslipidaemia, and fatty liver caused by fructose feeding. The study confirmed that the variation in

  3. Powered Upper Limb Orthosis Actuation System Based on Pneumatic Artificial Muscles

    Science.gov (United States)

    Chakarov, Dimitar; Veneva, Ivanka; Tsveov, Mihail; Venev, Pavel

    2018-03-01

    The actuation system of a powered upper limb orthosis is studied in the work. To create natural safety in the mutual "man-robot" interaction, an actuation system based on pneumatic artificial muscles (PAM) is selected. Experimentally obtained force/contraction diagrams for bundles, consisting of different number of muscles are shown in the paper. The pooling force and the stiffness of the pneumatic actuators is assessed as a function of the number of muscles in the bundle and the supply pressure. Joint motion and torque is achieved by antagonistic actions through pulleys, driven by bundles of pneumatic muscles. Joint stiffness and joint torques are determined on condition of a power balance, as a function of the joint position, pressure, number of muscles and muscles

  4. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  5. Infantile lipofibromatosis of the upper limb

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Harvey E.L.; Peh, Wilfred C.G. [KK Women' s and Children' s Hospital, Department of Diagnostic Imaging, Singapore (Singapore); Chan, Mei-Yoke [KK Women' s and Children' s Hospital, Department of Paediatric Medicine, Singapore (Singapore); Walford, Norman [Tan Tock Seng Hospital, Department of Pathology, Singapore (Singapore)

    2005-12-01

    The imaging features of extensive lipofibromatosis presenting in a 1-day-old female infant are reported. This lesion involved her entire right upper limb, extending from the axilla to the palm of the hand. Radiographs showed marked deformity and thinning of all the right upper-limb bones due to pressure effect of soft-tissue enlargement, especially affecting the distal humerus and proximal forearm bones. Magnetic resonance imaging showed a huge soft-tissue mass infiltrating most of the muscles of the entire upper limb, with bony erosion. The mass was largely T1-isointense, moderately T2-hyperintense and showed marked enhancement. There were intra-lesional signal changes consistent with fatty elements. A lesion debulking procedure was performed and the histology was that of lipofibromatosis. The limb was found to be non-viable after the procedure and a subsequent above-elbow amputation was performed. Although the resection margins were not clear, she had no further recurrence over a subsequent 3-year follow-up period. (orig.)

  6. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    Science.gov (United States)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  7. Lower-limb pain, disease, and injury burden as determinants of muscle strength deficit after hip fracture

    NARCIS (Netherlands)

    Portegijs, Erja; Rantanen, Taina; Kallinen, Mauri; Heinonen, Ari; Alen, Markku; Kiviranta, Ilkka; Sipilä, Sarianna

    2009-01-01

    BACKGROUND: Hip fracture may result in an asymmetrical lower-limb strength deficit. The deficit may be related to the trauma, surgical treatment, pain, or disuse of the fractured limb. However, disease and injury burden or musculoskeletal pain in the other limb may reduce muscle strength on that

  8. Multiple regeneration from axolotl limb stumps bearing cross-transplanted minced muscle regenerates : brief note

    NARCIS (Netherlands)

    Carlson, Bruce M.

    Flexor and extensor muscles in the upper arms of axolotls were minced and cross-transplanted. The limbs were amputated 5 and 30 days after mincing. In each experiment a high percentage of the regenerates consisted of multiple limbs. This demonstrates that the morphogenetic information which produces

  9. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.

    Science.gov (United States)

    Rinaldi, Martina; Ranavolo, Alberto; Conforto, Silvia; Martino, Giovanni; Draicchio, Francesco; Conte, Carmela; Varrecchia, Tiwana; Bini, Fabiano; Casali, Carlo; Pierelli, Francesco; Serrao, Mariano

    2017-10-01

    The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time-distance, kinematic, kinetic, and energetic parameters were estimated. Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    Science.gov (United States)

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults.

  11. Bethlem myopathy is not allelic to limb-girdle muscular dystrophy type 1A

    Energy Technology Data Exchange (ETDEWEB)

    Speer, M.C.; Yamaoka, L.H.; Stajich, J.; Lewis, K. [and others

    1995-08-28

    The Bethlem myopathy, an autosomal-dominant myopathy, shows a distribution of proximal muscle weakness similar to that observed in dominant limb-girdle muscular dystrophy (LGMD). Yet the Bethlem myopathy differs from most limb-girdle dystrophies in two important regards. First, the Bethlem myopathy presents with joint contractures most commonly observed at the elbows, ankles, and neck. Secondly, disease onset in the Bethlem myopathy is in early childhood, while most dominant LGMDs present with adult onset. 6 refs., 1 fig.

  12. Voluntary ambulation using voluntary upper limb muscle activity and Hybrid Assistive Limb® (HAL®) in a patient with complete paraplegia due to chronic spinal cord injury: A case report.

    Science.gov (United States)

    Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Saotome, Kousaku; Ueno, Tomoyuki; Abe, Tetsuya; Marushima, Aiki; Watanabe, Hiroki; Endo, Ayumu; Tsurumi, Kazue; Ishimoto, Ryu; Matsushita, Akira; Koda, Masao; Matsumura, Akira; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi

    2018-01-19

    We sought to describe our experience with the Hybrid Assistive Limb® (HAL®) for active knee extension and voluntary ambulation with remaining muscle activity in a patient with complete paraplegia after spinal cord injury. A 30-year-old man with complete paraplegia used the HAL® for 1 month (10 sessions) using his remaining muscle activity, including hip flexor and upper limb activity. Electromyography was used to evaluate muscle activity of the gluteus maximus, tensor fascia lata, quadriceps femoris, and hamstring muscles in synchronization with the Vicon motion capture system. A HAL® session included a knee extension session with the hip flexor and voluntary gait with upper limb activity. After using the HAL® for one month, the patient's manual muscle hip flexor scores improved from 1/5 to 2/5 for the right and from 2/5 to 3/5 for the left knee, and from 0/5 to 1/5 for the extension of both knees. Knee extension sessions with HAL®, and hip flexor and upper-limb-triggered HAL® ambulation seem a safe and feasible option in a patient with complete paraplegia due to spinal cord injury.

  13. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles

    Directory of Open Access Journals (Sweden)

    Heidi Haavik

    2016-12-01

    Full Text Available This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O curves for an upper limb muscle (abductor pollicus brevis; APB were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP, late bereitschafts potential (LBP and also for peak negativity (PN. The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle

  15. Age factor and proximate compositions of the muscle of ...

    African Journals Online (AJOL)

    Significant increases (P < 0.05) in the nitrogen free extract (NFE) of the fish muscle might have been due to the high energy demand imposed on the fish as a positive survival value under the condition of crude oil stress. Keywords: Heterobranchus bidorsalis, Age groups, Proximate composition, Bonny-light crude oil, ...

  16. Factors predicting the feasibility of monitoring lower-limb muscle motor evoked potentials in patients undergoing excision of spinal cord tumors.

    Science.gov (United States)

    Rajshekhar, Vedantam; Velayutham, Parthiban; Joseph, Mathew; Babu, K Srinivasa

    2011-06-01

    This prospective study on intraoperative muscle motor evoked potentials (MMEPs) from lower-limb muscles in patients undergoing surgery for spinal cord tumors was performed to: 1) determine preoperative clinical features that could predict successful recording of lower-limb MMEPs; 2) determine the muscle in the lower limb from which MMEPs could be most consistently obtained; 3) assess the need to monitor more than 1 muscle per limb; and 4) determine the effect of a successful baseline MMEP recording on early postoperative motor outcome. Of 115 consecutive patients undergoing surgery for spinal cord tumors, 110 were included in this study (44 intramedullary and 66 intradural extramedullary tumors). Muscle MEPs were generated using transcranial electrical stimulation under controlled anesthesia and were recorded from the tibialis anterior, quadriceps, soleus, and external anal sphincter muscles bilaterally. The effect of age (≤ 20 or > 20 years old), location of the tumor (intramedullary or extramedullary), segmental location of the tumor (cervical, thoracic, or lumbar), duration of symptoms (≤ 12 or > 12 months), preoperative functional grade (Nurick Grades 0-3 or 4-5), and muscle power (Medical Research Council Grades 0/5-3/5 or 4/5-5/5) on the success rate of obtaining MMEPs was studied using multiple regression analysis. The effect of the ability to monitor MMEPs on motor outcome at discharge from the hospital was also analyzed. The overall success rate for obtaining baseline lower-limb MMEPs was 68.2% (75 of 110 patients). Eighty-nine percent of patients with Nurick Grades 0-3 had successful MMEP recordings. Muscle MEPs could not be obtained in any patient in whom muscle power was 2/5 or less, but were obtained from 91.4% of patients with muscle power of 4/5 or more. Analysis showed that only preoperative Nurick grade (p ≤ 0.0001) and muscle power (p < 0.0001) were significant predictors of the likelihood of obtaining MMEPs. Responses were most consistently

  17. Development of nylon-based artificial muscles for the usage in robotic prosthetic limb

    Science.gov (United States)

    Atikah, Nurul Anis; Weng, Leong Yeng; Anuar, Adzly; Fat, Chau Chien; Abidin, Izham Zainal; Sahari, Khairul Salleh Mohamed

    2017-09-01

    This paper describes the development of nylon-based artificial muscles that is intended to be used in prosthetic limb for young amputees. Prosthetic limbs are very expensive and this situation is further compounded for young amputees who are very quickly out-grow their prosthesis. The proposed artificial muscles are made of nylon fishing strings from various size such as 0.45mm, 0.55mm, 0.65mm and 1.00mm. These fishing strings were twisted into coils to create Super Coiled Polymers (SCP) and tested using hot air blower. These artificial muscles react counterintuitively, where when it is exposed to heat, contracts, and when cooled, expands. Peltier devices, when switched-on acts as heat pump, where one side is hot and the other is cold. This phenomenon, when affixed in between 2 SCP's, creates tandem motion similar to triceps and biceps. As initial study, the hot side of the Peltier module was tested using these artificial muscles. The string was measured for both its force production, length contraction, the initial results were promising.

  18. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.

  19. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    Science.gov (United States)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  20. Muscle MRI findings in patients with limb girdle muscular dystrophy with calpain 3 deficiency (LGMD2A) and early contractures.

    Science.gov (United States)

    Mercuri, Eugenio; Bushby, Kate; Ricci, Enzo; Birchall, Daniel; Pane, Marika; Kinali, Maria; Allsop, Joanna; Nigro, Vincenzo; Sáenz, Amets; Nascimbeni, Annachiara; Fulizio, Luigi; Angelini, Corrado; Muntoni, Francesco

    2005-02-01

    Limb girdle muscular dystrophy 2A is a common variant secondary to mutations in the calpain 3 gene. A proportion of patients has early and severe contractures, which can cause diagnostic difficulties with other conditions. We report clinical and muscle magnetic resonance imaging findings in seven limb girdle muscular dystrophy 2A patients (four sporadic and three familial) who had prominent and early contractures. All patients showed a striking involvement of the posterior thigh muscles. The involvement of the other thigh muscles was variable and was related to clinical severity. Young patients with minimal functional motor impairment showed a predominant involvement of the adductors and semimembranosus muscles while patients with restricted ambulation had a more diffuse involvement of the posterolateral muscles of the thigh and of the vastus intermedius with relative sparing of the vastus lateralis, sartorius and gracilis. At calf level all patients showed involvement of the soleus muscle and of the medial head of the gastrocnemius with relative sparing of the lateral head. MRI findings were correlated to those found in two patients with the phenotype of limb girdle muscular dystrophy 2A without early contractures and the pattern observed was quite similar. However, the pattern observed in limb girdle muscular dystrophy 2A is different from that reported in other muscle diseases such as Emery-Dreifuss muscular dystrophy and Bethlem myopathy which have a significant clinical overlap with limb girdle muscular dystrophy 2A once early contractures are present. Our results suggest that muscle MRI may help in recognising patients with limb girdle muscular dystrophy 2A even when the clinical presentation overlaps with other conditions, and may therefore, be used as an additional investigation to target the appropriate biochemical and genetic tests.

  1. [The effect of neurorehabilitation on the functional state and muscle tone of upper limb in patients after ischaemic stroke].

    Science.gov (United States)

    Klimkiewicz, Paulina; Kubsik, Anna; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2014-03-01

    Rehabilitation of upper limb in patients after ischemic stroke is a major challenge for modern neurorehabilitation. Function of upper limb of patients after ischemic stroke returns on the end of the rehabilitation comparing with another parts of the body. Below presents two groups of patients after ischemic stroke who were rehabilitated with use of the following methods: kinesiotherapy combined with NDT- Bobath method and kinesiotherapy only. The aim of this study was to assess the impact of kinesiotherapy only and NDT- Bobath method combined with kinesiotherapy on the functional state and muscle tone of upper limb in patients after ischemic stroke. The study involved a group of 40 patients after ischemic stroke with motor control and muscle tone problems of upper limb. Patients were divided into two groups, each of them included 20 people. Upper limb in group I was rehabilitated with the use of kinesiotherapy exercise however group II with the use of kinesiotherapy exercise combined with NDT- Bobath method (Neurodevelopmental Treatment Bobath). To evaluate the patients before and after rehabilitation muscle tone Asworth scale was used and to assess functional status Rivermead Motor Assessment (RMAIII) scale was used. After 5 weeks of rehabilitation in group II in majority patients were observed decrease of muscle tone and improvement in upper limb functional status. In group I the muscle tone were also decreased and functional status were better but in smaller impact than in II group. Classical kinesiotherapy combined with the NDT-Bobath method gives better results in neurorehabilitation of upper limb than the use of kinesiotherapy exercises only in patients after ischemic stroke.

  2. Effect of Hemipelvectomy Amputation on Kinematics and Muscle Force Generation of Lower Limb While Walking

    Directory of Open Access Journals (Sweden)

    Keyvan Sharifmoradi

    2017-07-01

    Conclusion The kinematics pattern of the patient’s lower limb during gait is different. Kinematic changes are associated with a significant increase in lower limb muscle generation that can have a degenerative effect on the knee joint. So the importance of this subject should be considered by rehabilitation experts.

  3. Deep pain thresholds in the distal limbs of healthy human subjects.

    Science.gov (United States)

    Rolke, R; Andrews Campbell, K; Magerl, W; Treede, R-D

    2005-02-01

    Pressure pain thresholds (PPTs) in distal limbs have been under-investigated despite their potential clinical importance. Therefore, we compared PPTs over nail bed, bony prominences, and muscle in distal parts of upper and lower limbs. We investigated 12 healthy subjects using three handheld devices: a spring-loaded, analogue pressure threshold meter (PTM) with two operating ranges, and an electronic Algometer. PPTs were determined with three series of ascending stimulus intensities with a ramp of about 50 kPa/s. PPTs were normally distributed in logarithmic space. PPTs over different tissues varied significantly (ANOVA, pAlgometer than with PTMs (ANOVA, ptesting over muscle. There was no significant right-left difference (ANOVA, p=0.33). In spite of considerable variability across subjects, reproducibility within subjects was high (correlation coefficients>0.90). For within-subject comparisons, threshold elevations beyond 33-43% would be abnormal (95% confidence intervals), whereas only deviations from the group mean by at least a factor of two would be abnormal with respect to absolute normative values. PPTs over distal muscles were comparable to published values on proximal limb and trunk muscles. These findings suggest that pressure pain testing over distal muscles may be a sensitive test for deep pain sensitivity and that the simple and less expensive devices are sufficient for testing this tissue type. Intra-individual site-to-site comparisons will be more sensitive than absolute normative values.

  4. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

    Science.gov (United States)

    McClung, Joseph M; McCord, Timothy J; Ryan, Terence E; Schmidt, Cameron A; Green, Tom D; Southerland, Kevin W; Reinardy, Jessica L; Mueller, Sarah B; Venkatraman, Talaignair N; Lascola, Christopher D; Keum, Sehoon; Marchuk, Douglas A; Spangenburg, Espen E; Dokun, Ayotunde; Annex, Brian H; Kontos, Christopher D

    2017-07-18

    Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1 , that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6- Lsq1-3 ). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3 Ile81 , but not BAG3 Met81 , improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3 Ile81 (n=9), but not BAG3 Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3 Met81 , BAG3 Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle

  5. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery

  6. "An Investigation Into The Interrater Reliability Of The Modified Ashworth Scale In The Assessment Of Muscle Spasticity In Hemiplegic Patients "

    Directory of Open Access Journals (Sweden)

    N. Nokhostin-Ansari

    2006-06-01

    Full Text Available Background and Aim: Spasticity is a velocity-dependent increase in tonic stretch reflexes (muscle tone with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex. The measurement of spasticity is necessary to determine the effect of treatments. The Modified Ashworth Scale is the most widely used method for assessing muscle spasticity in clinical practice and research. The purpose of this study was to investigate the interrater reliability of Modified Ashworth Scale in hemiplegic patients. Materials and Methods: Thirty subjects (16 males, 14 females with a mean age of 59.40 (SD =14.013 recruited. Shoulder adductor , elbow flexor , wrist dorsiflexor , hip adductor , knee extensor and ankle plantarflexor on the hemiplegic side were tested by two physiotherapists. Results: In the upper limb, the interrater reliability for shoulder adductor and elbow flexor muscles was fair (0.372 and 0.369, respectively. The reliability for the wrist flexors was good (0.612. The difference in Kappa value for the proximal muscle (shoulder adductor; 0.372 and the distal muscle (wrist flexor; 0.612 was significant (²X=33.87, df=1, p0.05. The mean value for the upper limb (0.505 and the lower limb (0,.516 was not significantly different (²X=0.1407, df=1, p>0.05. Conclusion: The interrater reliability of Modified Ashworth Scale was not good . The limb, upper or lower, had no significant effect on the reliability. In the upper limb, the reliability for the proximal and distal muscle was significantly different. However. The difference in the lower limb was not significant.When using the scale, one should consider it's limitation.

  7. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    Science.gov (United States)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  8. Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults.

    Science.gov (United States)

    MacLellan, Michael J

    2017-07-01

    Human locomotor patterns require precise adjustments to successfully navigate complex environments. Studies suggest that the central nervous system may control such adjustments through supraspinal signals modifying a basic locomotor pattern at the spinal level. To explore this proposed control mechanism in the leading and trailing limbs during obstructed walking, healthy young adults stepped over obstacles measuring 0.1 and 0.2 m in height. Unobstructed walking with no obstacle present was also performed as a baseline. Full body three-dimensional kinematic data were recorded and electromyography (EMG) was collected from 14 lower limb muscles on each side of the body. EMG data were analyzed using two techniques: by mapping the EMG data to the approximate location of the motor neuron pools on the lumbosacral enlargement of the spinal cord and by applying a nonnegative matrix factorization algorithm to unilateral and bilateral muscle activations separately. Results showed that obstacle clearance may be achieved not only with the addition of a new activation pattern in the leading limb, but with a temporal shift of a pattern present during unobstructed walking in both the leading and trailing limbs. An investigation of the inter-limb coordination of these patterns suggested a strong bilateral linkage between lower limbs. These results highlight the modular organization of muscle activation in the leading and trailing limbs, as well as provide a mechanism of control when implementing a locomotor adjustment when stepping over an obstacle.

  9. Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition.

    Science.gov (United States)

    Molnar, Julia L; Diogo, Rui; Hutchinson, John R; Pierce, Stephanie E

    2018-05-01

    The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods. Our synthesis revealed that many tetrapod shoulder muscles probably were already present in tetrapodomorph fish, while most of the more-distal appendicular muscles either arose later from largely undifferentiated dorsal and ventral muscle masses or did not leave clear correlates of attachment in these taxa. Based on this review and meta-analysis, we postulate a stepwise sequence of specific appendicular muscle acquisitions, splits, and fusions that led from the ancestral sarcopterygian pectoral fin to the ancestral tetrapod forelimb. This sequence largely agrees with previous hypotheses based on palaeontological and comparative work, but it is much more comprehensive in terms of both muscles and taxa. Combined with existing information about the skeletal system, our new synthesis helps to illuminate the genetic, developmental, morphological, functional, and ecological changes that were key components of the

  10. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking.

    Science.gov (United States)

    Klemetti, Rudolf; Steele, Katherine M; Moilanen, Petro; Avela, Janne; Timonen, Jussi

    2014-07-18

    This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the trunk induced by individual muscles, in the sagittal and frontal planes, were calculated using 3D muscle-driven simulations of seven young healthy subjects walking at free speed. Analysis of the simulations demonstrated that the abdominal and back muscles displayed large contributions throughout the gait cycle both in the sagittal and frontal planes. Proximal lower-limb muscles contributed more than distal muscles in the sagittal plane, while both proximal and distal muscles showed large contributions in the frontal plane. Along with the stance-limb muscles, the swing-limb muscles also exhibited considerable contribution. The gluteus medius was found to be an important individual frontal-plane control muscle; enhancing its function in pathologies could ameliorate gait by attenuating trunk sway. In addition, since gravity appreciably accelerated the trunk in the frontal plane, it may engender excessive trunk sway in pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparison between Flail Arm Syndrome and Upper Limb Onset Amyotrophic Lateral Sclerosis: Clinical Features and Electromyographic Findings.

    Science.gov (United States)

    Yoon, Byung-Nam; Choi, Seong Hye; Rha, Joung-Ho; Kang, Sa-Yoon; Lee, Kwang-Woo; Sung, Jung-Joon

    2014-09-01

    Flail arm syndrome (FAS), an atypical presentation of amyotrophic lateral sclerosis (ALS), is characterized by progressive, predominantly proximal, weakness of upper limbs, without involvement of the lower limb, bulbar, or respiratory muscles. When encountering a patient who presents with this symptomatic profile, possible diagnoses include upper limb onset ALS (UL-ALS), and FAS. The lack of information regarding FAS may make differential diagnosis between FAS and UL-ALS difficult in clinical settings. The aim of this study was to compare clinical and electromyographic findings from patients diagnosed with FAS with those from patients diagnosed with UL-ALS. To accomplish this, 18 patients with FAS and 56 patients with UL-ALS were examined. Significant differences were observed between the 2 groups pertaining to the rate of fasciculation, patterns of predominantly affected muscles, and the Medical Research Council scale of the weakest muscle. The presence of upper motor neuron signs and lower motor neuron involvement evidenced through electromyography showed no significant between-group differences.

  12. Pneumatic Muscle Actuated Rehabilitation Equipment of the Upper Limb Joints

    Science.gov (United States)

    Deaconescu dr. eng. habil., Andrea, Prof.

    2017-06-01

    Rehabilitation equipment of the upper limb joints holds a key role in passive physical therapy. Within this framework, the paper presents two such pieces of equipment developed for the rehabilitation of elbow and of wrist and knuckles, respectively. The presented and discussed equipment is actuated by pneumatic muscles, its benefits being a low cost, simple and robust construction, as well as short response time to commands.

  13. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  14. Comparison of muscle and joint pressure-pain thresholds in patients with complex regional pain syndrome and upper limb pain of other origin.

    Science.gov (United States)

    Mainka, Tina; Bischoff, Florian S; Baron, Ralf; Krumova, Elena K; Nicolas, Volkmar; Pennekamp, Werner; Treede, Rolf-Detlef; Vollert, Jan; Westermann, Andrea; Maier, Christoph

    2014-03-01

    Pain localized in the deep tissues occurs frequently in complex regional pain syndrome (CRPS). In addition, hyperalgesia to blunt pressure over muscles is common in CRPS, but it often appears in limb pain of other origin as well. Considering that 3-phase bone scintigraphy (TPBS) reveals periarticular enhanced bone metabolism in CRPS, joint-associated hyperalgesia to blunt pressure might be a more specific finding than hyperalgesia over muscles. In 34 patients with upper limb pain (18 CRPS, 16 non-CRPS; diagnosed in accordance to the Budapest criteria) and in 18 healthy controls, pressure-pain thresholds (PPT) were assessed bilaterally over the thenar (PPTThenar), the metacarpophalangeal (PPTMCP), and the proximal interphalangeal (PPTPIP) joints using a pressure algometer (Somedic, Sweden). Beforehand, all patients had received TPBS for diagnostic purposes independently of the study. Region-of-interest (ROI) ratios (mineralization phase) for the MCP and PIP, excluding fracture sites, were correlated with the PPT. In CRPS, all ROI ratios were significantly increased and all PPT of the affected hand were decreased compared to non-CRPS (PPTThenar: 243±150kPa vs 358±197kPa, PPTMCP: 80±67kPa vs 159±93kPa, PPTPIP: 80±56kPa vs 184±110kPa; PPain. Published by Elsevier B.V. All rights reserved.

  15. Remote Effect of Lower Limb Acupuncture on Latent Myofascial Trigger Point of Upper Trapezius Muscle: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kai-Hua Chen

    2013-01-01

    Full Text Available Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40 and Yanglingquan (GB34 points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side versus sham needling on the contralateral lower limb (control side in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P=0.03 in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P=0.036. Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle.

  16. Remote Effect of Lower Limb Acupuncture on Latent Myofascial Trigger Point of Upper Trapezius Muscle: A Pilot Study

    Science.gov (United States)

    Chen, Kai-Hua; Hsiao, Kuang-Yu; Lin, Chu-Hsu; Chang, Wen-Ming; Hsu, Hung-Chih; Hsieh, Wei-Chi

    2013-01-01

    Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs) of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40) and Yanglingquan (GB34) points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side) versus sham needling on the contralateral lower limb (control side) in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM) upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P = 0.03) in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P = 0.036). Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle. PMID:23710218

  17. Effects of cross-education on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe.

    Science.gov (United States)

    Magnus, Charlene R A; Barss, Trevor S; Lanovaz, Joel L; Farthing, Jonathan P

    2010-12-01

    The purpose of this study was to apply cross-education during 4 wk of unilateral limb immobilization using a shoulder sling and swathe to investigate the effects on muscle strength, muscle size, and muscle activation. Twenty-five right-handed participants were assigned to one of three groups as follows: the Immob + Train group wore a sling and swathe and strength trained (n = 8), the Immob group wore a sling and swathe and did not strength train (n = 8), and the Control group received no treatment (n = 9). Immobilization was applied to the nondominant (left) arm. Strength training consisted of maximal isometric elbow flexion and extension of the dominant (right) arm 3 days/wk. Torque (dynamometer), muscle thickness (ultrasound), maximal voluntary activation (interpolated twitch), and electromyography (EMG) were measured. The change in right biceps and triceps brachii muscle thickness [7.0 ± 1.9 and 7.1 ± 2.2% (SE), respectively] was greater for Immob + Train than Immob (0.4 ± 1.2 and -1.9 ± 1.7%) and Control (0.8 ± 0.5 and 0.0 ± 1.1%, P effect on maximal voluntary activation or EMG. The cross-education effect on the immobilized limb was greater after elbow extension training. This study suggests that strength training the nonimmobilized limb benefits the immobilized limb for muscle size and strength.

  18. Characteristics of the muscle activities of the elderly for various pressures in the pneumatic actuator of lower limb orthosis

    Science.gov (United States)

    Kim, Kyong; Yu, Chang-Ho; Kwon, Tae-Kyu; Hong, Chul-Un; Kim, Nam-Gyun

    2005-12-01

    There developed a lower limb orthosis with a pneumatic rubber actuator, which can assist and improve the muscular activities in the lower limb of the elderly. For this purpose, the characteristics of the lower limbs muscle activities for various pressures in the pneumatic actuator for the lower limb orthosis was investigated. To find out the characteristics of the muscle activities for various pneumatic pressures, it analyzed the flexing and extending movement of the knees, and measured the lower limbs muscular power. The subjects wearing the lower limbs orthosis were instructed to perform flexing and extending movement of the knees. The variation in the air pressure of the pneumatic actuator was varies from one kgf/cm2 to four kgf/cm2. The muscular power was measured by monitoring electromyogram using MP100 (BIOPAC Systems, Inc.) and detailed three-dimensional motions of the lower limbs were collected by APAS 3D Motion Analysis system. Through this study, it expected to find the most suitable air pressure for the improvement of the muscular power of the aged.

  19. Lower-limb pain, disease and injury burden as determinants of muscle strength deficit after hip fracture

    OpenAIRE

    Portegijs, Erja; Rantanen, Taina; Kallinen, Mauri; Heinonen, Ari; Alén, Markku; Kiviranta, Ilkka; Sipilä, Sarianna

    2009-01-01

    Background: Hip fracture may result in an asymmetrical lower-limb strength deficit. The deficit may be related to the trauma, surgical treatment, pain, or disuse of the fractured limb. However, disease and injury burden or musculoskeletal pain in the other limb may reduce muscle strength on that side, reducing the asymmetrical deficit. Our study aim was to explore the asymmetrical strength deficit and to determine potential underlying factors in persons 6 months to 7 years afte...

  20. Glu20Ter Variant in PLEC 1f Isoform Causes Limb-Girdle Muscle Dystrophy with Lung Injury

    Directory of Open Access Journals (Sweden)

    Roman V. Deev

    2017-07-01

    Full Text Available Plectinopathies are orphan diseases caused by PLEC gene mutations. PLEC is encoding the protein plectin, playing a role in linking cytoskeleton components in various tissues. In this study, we describe the clinical case of a 26-year-old patient with an early onset plectinopathy variant “limb-girdle muscle dystrophy type 2Q,” report histopathological and ultrastructural findings in m. vastus lateralis biopsy and a novel homozygous likely pathogenic variant (NM_201378.3:c.58G>T, NP_958780.1:p.Glu20Ter in isoform 1f of the gene PLEC. The patient had an early childhood onset with retarded physical development, moderate weakness in pelvic girdle muscles, progressive weakening of limb-girdle muscles after the age of 21, pronounced atrophy of axial muscles, and hypertrophy of the gastrocnemius, deltoid, and triceps muscles, intermittent dyspnea, and no skin involvement. Findings included: non-infectious bronchiolitis and atelectasis signs, biopsy revealed myodystrophal pattern without macrophage infiltration, muscle fiber cytoskeleton disorganization resulted from the plectin loss, incomplete reparative rhabdomyogenesis, and moderate endomysial fibrosis. We have determined a novel likely pathogenic variant in PLEC 1f isoform that causes limb-girdle muscle dystrophy type 2Q and described the third case concerning an isolated myodystrophic phenotype of LGMD2Q with the likely pathogenic variant in PLEC 1f isoform. In addition, we have demonstrated the presence of severe lung injury in a patient and his siblings with the same myodystrophic phenotype and discussed the possible role of plectin deficiency in its pathogenesis.

  1. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    Science.gov (United States)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  2. Radiography of syndactylous limbs of cattle

    International Nuclear Information System (INIS)

    Taura, Y.; Takeuchi, A.; Uchino, T.

    1985-01-01

    Fore and hind limbs of 4-month-old Holstein-Friesian cattle ♀ (No.I) and those of 1-month-old Holstein-Friesian×Japanese Black cattle ♀ (No.II) suffering from syndactyly were dissected by means of radiographic examinations. The details were reported as follows. 1. The phalanges of both fore and left hind limbs of No.II cattle were completely fused. But, all the phalanges of left fore limb and proximal phalanges of right fore limb in No.I and the distal phalanges of right hind limb in No.II were normal, the others being of partial synostosis. 2. The distal parforating canal was absent in the metacarpus and the right metatarsus in No.II cattle. Also, in No.II on the distal part of the metacarpal or metatarsal, bone vestiges were noted, not only of the fifth and second metacarpus or metatarsus, but also the mutually jointed phalanges. 3. In No.I cattle, the left fore limb and 4 proximal sesamoid bones and 2 distal sesamoid bones, but the right limb had 4 sesamoid bones and 0 distal one. In No.II cattle, the fore limbs had 2 proximal and 0 distal sesamoid bones, left hind limb had 3 proximal and 0 distal ones, right hind limb had 3 proximal and 1 distal ones. 4. The arteries accommodated the syndactylous deformities. The median and radial arteries were fixed to be descended on to the palmar side of the metacarpus and mutually anastomosed to form a deep palmar arch. arising from the deep palmar arch, two branches (palmar proper digital aa. III and IV) were terminated by the lateral and medial palmar surfaces of the digit, where some anastomosing arches were formed by them. The arteries of the hind limbs were also similar to those of the fore limbs. 5. In radiographic examinations of syndactyly (in No.II) after 7-month feeding, hoof and digital bones were noted to have been developed, but distal phalanges were destructed and left in suspicion of bad prognosis

  3. Disfunção muscular periférica em DPOC: membros inferiores versus membros superiores Peripheral muscle dysfunction in COPD: lower limbs versus upper limbs

    Directory of Open Access Journals (Sweden)

    Eduardo Foschini Miranda

    2011-06-01

    unsupported upper limbs and two mechanisms have been proposed to explain this fact: neuromechanical dysfunction of respiratory muscles; and changes in lung volume during such activities. The neuromechanical dysfunction seen in COPD patients during this type of exercise is related to changes in the breathing pattern, as well as to the simultaneity of afferent and efferent muscle stimuli, resulting in respiratory muscle asynchrony. In addition, the increased ventilation during upper limb exercise in patients with COPD leads to dynamic hyperinflation at different workloads. During lower limb exercises, the strength and endurance of the quadriceps muscle is lower in COPD patients than in healthy subjects. This could by explained by abnormal muscle metabolism (decreased aerobic capacity, dependence on glycolytic metabolism, and rapid accumulation of lactate during exercise. In comparison with lower limb exercises, upper limb exercises result in higher metabolic and ventilatory demands, as well as in a more intense sensation of dyspnea and greater fatigue. Because there are differences between the upper and lower limb muscles in terms of the morphological and functional adaptations in COPD patients, specific protocols for strength training and endurance should be developed and tested for the corresponding muscle groups

  4. Upper limb congenital muscular hypertrophy and aberrant muscle syndrome in children.

    Science.gov (United States)

    Dahan, Emmanuel; Chaves, Camilo; Bachy, Manon; Fitoussi, Frank

    2018-01-01

    Congenital muscle hypertrophy of the upper limb is a very rare condition with unknown aetiology. This descriptive observational and retrospective series included eight children followed by a multidisciplinary team from 2005 to 2017. The diagnosis was based on a cluster of clinical and radiological characteristics after elimination of differential diagnoses. Patients were categorized according to: anomalies of the wrist, anomalies of long fingers of intrinsic or extrinsic origin; and anomalies of the thumb with or without first web space contracture. Treatment begins in young children with hand orthoses to limit muscle contraction and joint malposition. The purpose of surgical treatment was to release contractures and to restore muscle balance through, in the main, finger intrinsic releases and first web releases. At the 2-year follow-up, we found that limited surgical procedures improved finger, thumb and wrist positions. We conclude that muscle hypertrophy is the main cause of deformity and that selective releases of contracted musculo-tendinous units and skin lengthening are effective. IV.

  5. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  6. Rectus femoris muscle flap based on proximal insertion mobilization to cover a groin infected vascular graft.

    Science.gov (United States)

    Silvestre, Luís; Pedro, Luís Mendes; Fernandes e Fernandes, Ruy; Silva, Emanuel; Fernandes e Fernandes, José

    2015-10-01

    The rectus femoris (RF) muscle flap, which is widely used to cover groin infected vascular grafts, is usually harvested through distal tendon division and an extensive muscle elevation and transposition into the groin wound defect. A case of a vascular prosthetic graft infection in the groin was successfully controlled after coverage with an RF flap that was harvested based on proximal portion mobilization instead of the conventional distal one. This case suggests that the RF muscle flap based on proximal insertion mobilization is a feasible, effective, technically simpler, and less invasive alternative to cover infected vascular grafts in the groin. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Pilot study on quantitative assessment of muscle imbalance: differences of muscle synergies, equilibrium-point trajectories, and endpoint stiffness in normal and pathological upper-limb movements.

    Science.gov (United States)

    Oku, Takanori; Uno, Kanna; Nishi, Tomoki; Kageyama, Masayuki; Phatiwuttipat, Pipatthana; Koba, Keitaro; Yamashita, Yuto; Murakami, Kenta; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki

    2014-01-01

    This paper proposes a novel method for assessment of muscle imbalance based on muscle synergy hypothesis and equilibrium point (EP) hypothesis of motor control. We explain in detail the method for extracting muscle synergies under the concept of agonist-antagonist (AA) muscle pairs and for estimating EP trajectories and endpoint stiffness of human upper limbs in a horizontal plane using an electromyogram. The results of applying this method to the reaching movement of one normal subject and one hemiplegic subject suggest that (1) muscle synergies (the balance among coactivation of AA muscle pairs), particularly the synergies that contributes to the angular directional kinematics of EP and the limb stiffness, are quite different between the normal subject and the hemiplegic subject; (2) the concomitant EP trajectory is also different between the normal and hemiplegic subjects, corresponding to the difference of muscle synergies; and (3) the endpoint (hand) stiffness ellipse of the hemiplegic subject becomes more elongated and orientation of the major axis rotates clockwise more than that of the normal subject. The level of motor impairment would be expected to be assessed from a comparison of these differences of muscle synergies, EP trajectories, and endpoint stiffness among normal and pathological subjects using the method.

  8. Influence of limb temperature on cutaneous silent periods.

    Science.gov (United States)

    Kofler, Markus; Valls-Solé, Josep; Vasko, Peter; Boček, Václav; Štetkárová, Ivana

    2014-09-01

    The cutaneous silent period (CSP) is a spinal inhibitory reflex mediated by small-diameter afferents (A-delta fibers) and large-diameter efferents (alpha motoneurons). The effect of limb temperature on CSPs has so far not been assessed. In 27 healthy volunteers (11 males; age 22-58 years) we recorded median nerve motor and sensory action potentials, median nerve F-wave and CSPs induced by noxious digit II stimulation in thenar muscles in a baseline condition at room temperature, and after randomly submersing the forearm in 42 °C warm or 15 °C cold water for 20 min each. In cold limbs, distal and proximal motor and sensory latencies as well as F-wave latencies were prolonged. Motor and sensory nerve conduction velocities were reduced. Compound motor and sensory nerve action potential amplitudes did not differ significantly from baseline. CSP onset and end latencies were more delayed than distal and proximal median nerve motor and sensory latencies, whereas CSP duration was not affected. In warm limbs, opposite but smaller changes were seen in nerve conduction studies and CSPs. The observed CSP shift "en bloc" towards longer latencies without affecting CSP duration during limb cooling concurs with slower conduction velocity in both afferent and efferent fibers. Disparate conduction slowing in afferents and efferents, however, suggests that nociceptive EMG suppression is mediated by fibers of different size in the afferent than in the efferent arm, indirectly supporting the contribution of A-delta fibers as the main afferent input. Limb temperature should be taken into account when testing CSPs in the clinical setting, as different limb temperatures affect CSP latencies more than large-diameter fiber conduction function. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Interventions for treating proximal humeral fractures in adults

    DEFF Research Database (Denmark)

    Handoll, Helen H G; Brorson, Stig

    2015-01-01

    supervised exercise in a swimming pool plus home exercise.Eight trials, involving 567 older participants, evaluated surgical intervention for displaced fractures. There was high quality evidence of no clinically important difference in patient-reported shoulder and upper-limb function at one- or two......BACKGROUND: Fracture of the proximal humerus, often termed shoulder fracture, is a common injury in older people. The management of these fractures varies widely. This is an update of a Cochrane Review first published in 2001 and last updated in 2012. OBJECTIVES: To assess the effects (benefits...... and harms) of treatment and rehabilitation interventions for proximal humeral fractures in adults. SEARCH METHODS: We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and other databases, conference...

  10. Oxygen consumption and cytochrome exidase activity of axolotl limbs muscle tissue in restoration of regenerative ability suprressed by X-irradiation

    International Nuclear Information System (INIS)

    Teplits, N.A.

    1975-01-01

    The rate of oxygen use and activity of cytochrome oxidase in a homogenate of mitochondria and nuclei of muscle tissue of axolotl limbs after suppression of their regenerative capability by x irradiation and their restoration was studied experimentally. With suppression of the regenative capability the use of oxygen was depressed. Cytochrome oxidase activity in the homogenate and mitochondria decreased compared to that of the intact limb, in the nuclei of muscle tissue it was the same or greater. With restoration of the regenerative capability of the limbs the respiration rate of the homogenate and the mitochondria increased, accompanied by increased cytochrome oxidase activity. In the nuclei the cytochrome oxidase activity did not change in the blastema stage and sharply decreased in the limb formation state. (E.T.)

  11. Oxygen consumption and cytochrome exidase activity of axolotl limbs muscle tissue in restoration of regenerative ability suppressed by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Teplits, N A [AN SSSR, Moscow. Inst. Biologii Razvitiya

    1975-01-01

    The rate of oxygen use and activity of cytochrome oxidase in a homogenate of mitochondria and nuclei of muscle tissue of axolotl limbs after suppression of their regenerative capability by x irradiation and their restoration was studied experimentally. With suppression of the regenative capability the use of oxygen was depressed. Cytochrome oxidase activity in the homogenate and mitochondria decreased compared to that of the intact limb, in the nuclei of muscle tissue it was the same or greater. With restoration of the regenerative capability of the limbs the respiration rate of the homogenate and the mitochondria increased, accompanied by increased cytochrome oxidase activity. In the nuclei the cytochrome oxidase activity did not change in the blastema stage and sharply decreased in the limb formation state.

  12. Growth of Limb Muscle is Dependent on Skeletal-Derived Indian Hedgehog

    Science.gov (United States)

    Bren-Mattison, Yvette; Hausburg, Melissa; Olwin, Bradley B.

    2011-01-01

    During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh−/− mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis accompanied by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels. PMID:21683695

  13. Thoracic limb morphology of the red panda (Ailurus fulgens evidenced by osteology and radiography

    Directory of Open Access Journals (Sweden)

    Modesta Makungu

    2015-07-01

    Full Text Available The red panda (Ailurus fulgens is distributed primarily in the Himalayas and southern China. It is classified as a vulnerable species by the International Union for Conservation of Nature. The aim of this study was to describe the normal osteology and radiographic anatomy of the thoracic limb of the red panda. Radiography of the right thoracic limb was performed in seven captive adult red pandas. Radiographic findings were correlated with bone specimens from three adult animals. The scapula was wide craniocaudally and presented with a large area for the origin of the teres major muscle. The square-shaped major tubercle did not extend proximal to the head of the humerus. The medial epicondyle was prominent. A supracondylar foramen was present. The radial tuberosity and sesamoid bone for the abductor digiti I longus were prominent. The accessory carpal bone was directed palmarolaterally. Metacarpal bones were widely spread. The thoracic limb morphology of the red panda evidenced by osteology and radiography indicated flexibility of the thoracic limb joints and well-developed flexor and supinator muscles, which are important in arboreal quadrupedal locomotion. Knowledge gained during this study may prove useful in identifying skeletal material or remains and diagnosing musculoskeletal diseases and injuries of the thoracic limb.

  14. Thoracic limb morphology of the red panda (Ailurus fulgens) evidenced by osteology and radiography.

    Science.gov (United States)

    Makungu, Modesta; Groenewald, Hermanus B; du Plessis, Wencke M; Barrows, Michelle; Koeppel, Katja N

    2015-07-15

    The red panda (Ailurus fulgens) is distributed primarily in the Himalayas and southern China. It is classified as a vulnerable species by the International Union for Conservation of Nature. The aim of this study was to describe the normal osteology and radiographic anatomy of the thoracic limb of the red panda. Radiography of the right thoracic limb was performed in seven captive adult red pandas. Radiographic findings were correlated with bone specimens from three adult animals. The scapula was wide craniocaudally and presented with a large area for the origin of the teres major muscle. The square-shaped major tubercle did not extend proximal to the head of the humerus. The medial epicondyle was prominent. A supracondylar foramen was present. The radial tuberosity and sesamoid bone for the abductor digiti I longus were prominent. The accessory carpal bone was directed palmarolaterally. Metacarpal bones were widely spread. The thoracic limb morphology of the red panda evidenced by osteology and radiography indicated flexibility of the thoracic limb joints and well-developed flexor and supinator muscles, which are important in arboreal quadrupedal locomotion. Knowledge gained during this study may prove useful in identifying skeletal material or remains and diagnosing musculoskeletal diseases and injuries of the thoracic limb.

  15. Comparison of Lower Limb Segments Kinematics in a Taekwondo Kick. An Approach to the Proximal to Distal Motion

    Directory of Open Access Journals (Sweden)

    Estevan Isaac

    2015-09-01

    Full Text Available In taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane of lower limb segments (thigh, shank and foot, and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values, with the distal segment taking the longest to reach this peak velocity (p < 0.01. Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01. It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.

  16. Rebound boots change lower limb muscle activation and kinematics during different fitness exercises.

    Science.gov (United States)

    Rossato, Mateus; Dellagrana, Rodolfo André; Dos Santos, Juliane Cristine Lopes; Carpes, Felipe P; Gheller, Rodrigo Ghedini; da Silva, De Angelys de Ceselles Seixas; Bezerra, Ewertton de Souza; Dos Santos, João Otacílio Libardoni

    2017-10-01

    The purpose of this study was to evaluate electromyography and kinematic parameters of the lower limbs using rebound boots (RB) and barefoot during a gym workout. This information can be helpful to practitioners to schedule rehabilitation and training programs. Ten women (25 ± 9 years) volunteered for the study; inclusion criteria were as follows: subjects must have experienced the use of RB and the analyzed exercises for at least 6 months, and have no previous injuries in the lower limbs. Seven exercises were performed for 30 s with the RB and subsequently barefoot. Data from muscle activation of vastus lateralis (VL), biceps femoris (BF), lateral gastrocnemius (LG) and 2D kinematics were collected. The use of RB triggered postural changes, characterized by greater hip extension (in 4 of the exercises) and knee extension (in 6 of the exercises) for the landing. RB reduced activation mainly in LG (in 6 of the exercise) while no changes were observed for VL (except in exercise 1) and BF. RB change kinematics and muscle activation suggesting changes in the way the legs absorb and transmit force during jumps. LG was the main muscle affected by the use of RB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Proximal forearm extensor muscle strain is reduced when driving nails using a shock-controlled hammer.

    Science.gov (United States)

    Buchanan, Kimberly A; Maza, Maria; Pérez-Vázquez, Carlos E; Yen, Thomas Y; Kijowski, Richard; Liu, Fang; Radwin, Robert G

    2016-10-01

    Repetitive hammer use has been associated with strain and musculoskeletal injuries. This study investigated if using a shock-control hammer reduces forearm muscle strain by observing adverse physiological responses (i.e. inflammation and localized edema) after use. Three matched framing hammers were studied, including a wood-handle, steel-handle, and shock-control hammer. Fifty volunteers were randomly assigned to use one of these hammers at a fatiguing pace of one strike every second, to seat 20 nails in a wood beam. Magnetic resonance imaging was used to scan the forearm muscles for inflammation before the task, immediately after hammering, and one to two days after. Electromyogram signals were measured to estimate grip exertions and localized muscle fatigue. High-speed video was used to calculate the energy of nail strikes. While estimated grip force was similar across the three hammers, the shock-control hammer had 40% greater kinetic energy upon impact and markedly less proximal extensor muscle edema than the wood-handle and steel-handle hammers, immediately after use (phandle shock can mitigate strain in proximal forearm extensor muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Muscle areas of lower limbs were determined by anthropometric and computed tomography in the adult of the masculine sex

    International Nuclear Information System (INIS)

    Fernandez Vieitez, Jorge Alberto; Alvarez Cuesta, Jose Alberto; Williams Wilson, Luis

    2000-01-01

    In a sample of 17 males (age 26 + - 5 years; weight 76.3 + - 7.1 kg and height 177.2 + - 3.9 cm) the differences, ratios and interchangeability among muscle areas (cm 2 ) of lower limbs (medial thigh and maximum leg) were determined by anthropometric (muscle area= [limb circumference (cm)- 0.31416 skinfold (mm)]2 /12.5664 and computed tomography. The anthropometric method overestimated muscle areas in both regions (thigh + 9.0 + - 12.8; p= 0.01 and leg: +8.5 + - 11.2; p=0.006). Relation between the two procedures was statistically significant (thigh r=0.9; p= 8.8 .10-7 and leg r=0.52; p=0.03). Both methods were interchangeable since neither the correlation coefficient (thigh r=0.42; leg r=0.38) nor the regression gradient (thigh b 0 .21 + - 0.12; leg b = -0.44 + - 0.28) between the differences (anthropometric ? TAC) and the averages (anthropometric + TAC/ 2) in both methods were statistically significant (p>0.05). It was concluded that the anthropometric method requires certain adjustments to be able to estimate more accurately the muscle areas of lower limbs

  19. SPASTICITY PATTERNS OF HAND MUSCLES AND BOTULINUM TOXIN THERAPY APPLICATION IN PATIENTS WITH CEREBRAL PALSY WITH UPPER LIMB INVOLVEMENT

    Directory of Open Access Journals (Sweden)

    O. A. Klochkova

    2013-01-01

    Full Text Available Botulinum toxin therapy is an effective and safe method of treatment of local spasticity in patients with cerebral palsy (CP. Calculation of botulinum toxin A (BTA dosage based on the spasticity patterns and functional capabilities of the patient proved effective for the hypertonic lower limb muscle spasm treatment and is being applied to BTA injections in hand muscles more often. The article presents contemporary scientific data and results of the original study of BTA injections efficacy for pathologic tension reduction in hand muscles of 52 patients with CP. The authors give detailed description of the upper limb spasticity patterns, their frequency and role in the pathological movement pattern formation. The authors propose BTA dosage calculation for the functional segments of upper limbs, which allows minimizing the total amount of the administered drug and avoiding excessive weakness. The authors have also conducted a follow-up analysis of changes in hand muscle tone for the period of 6 months after the first BTA injection, compared results of botulinum toxin therapy at various clinical forms of CP and given recommendations on the optimum duration of the follow-up period.

  20. Transcriptional and functional differences in stem cell populations isolated from Extraocular and Limb muscles

    DEFF Research Database (Denmark)

    Pacheco-Pinedo, Eugenia Cristina; Budak, Murat T; Zeiger, Ulrike

    2008-01-01

    The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct...... from other skeletal muscles that the term: allotype has been coined to highlight EOM-group-specific properties. We hypothesized that increased and distinct stem cells may underlie the continual myogenesis noted in EOM. The side population (SP) stem cells were isolated and studied. EOMs had 15x higher...... SP cell content compared to limb muscles. Expression profiling revealed 348 transcripts that define the EOM-SP transcriptome. Over 92% of transcripts were SP-specific, as they were absent in previous whole-muscle microarray studies. Cultured EOM-SP cells revealed superior in vitro proliferative...

  1. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.

    Science.gov (United States)

    Weinert-Aplin, R A; Howard, D; Twiste, M; Jarvis, H L; Bennett, A N; Baker, R J

    2017-01-01

    Reduced capacity and increased metabolic cost of walking occurs in amputees, despite advances in prosthetic componentry. Joint powers can quantify deficiencies in prosthetic gait, but do not reveal how energy is exchanged between limb segments. This study aimed to quantify these energy exchanges during amputee walking. Optical motion and forceplate data collected during walking at a self-selected speed for cohorts of 10 controls, 10 unilateral trans-tibial, 10 unilateral trans-femoral and 10 bilateral trans-femoral amputees were used to determine the energy exchanges between lower limb segments. At push-off, consistent thigh and shank segment powers were observed between amputee groups (1.12W/kg vs. 1.05W/kg for intact limbs and 0.97W/kg vs. 0.99W/kg for prosthetic limbs), and reduced prosthetic ankle power, particularly in trans-femoral amputees (3.12W/kg vs. 0.87W/kg). Proximally-directed energy exchange was observed in the intact limbs of amputees and controls, while prosthetic limbs displayed distally-directed energy exchanges at the knee and hip. This study used energy flow analysis to show a reversal in the direction in which energy is exchanged between prosthetic limb segments at push-off. This reversal was required to provide sufficient energy to propel the limb segments and is likely a direct result of the lack of push-off power at the prosthetic ankle, particularly in trans-femoral amputees, and leads to their increased metabolic cost of walking. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. IS PAIN IN ONE KNEE ASSOCIATED WITH ISOMETRIC MUSCLE STRENGTH IN THE CONTRALATERAL LIMB? - DATA FROM THE OSTEOARTHRITIS INITIATIVE (OAI)

    Science.gov (United States)

    Steidle, E.; Wirth, W.; Glass, N.; Ruhdorfer, A.; Cotofana, S.; Eckstein, F.; Segal, N. A.

    2014-01-01

    Objective Knee pain and muscle weakness confer risk for knee osteoarthritis incidence and progression. The purpose of this study was to determine whether unilateral knee pain influences contralateral thigh muscle strength. Design Of 4796 Osteoarthritis Initiative participants, 224 (mean±SD age 63.9±8.9 years) cases could be matched to a control. Cases were defined as having unilateral knee pain (numerical rating scale (NRS)≥4/10; ≥infrequent pain) and one pain-free knee (NRS 0–1; ≤infrequent pain; WOMAC≤1). Controls were defined as having bilaterally pain-free knees (NRS 0–1; ≤infrequent pain; WOMAC≤1). Maximal isometric muscle strength [N] was compared between limbs in participants with unilateral pain (cases), and between pain-free limbs of cases and controls. Results Knee extensor/flexor strength in pain-free limbs of cases was lower than in bilaterally pain-free controls (−5.5%/–8.4%; p=0.043/p=0.022). Within cases, maximum extensor/flexor strength was significantly lower in the painful than in the pain-free limb (−6.4%/4.1%; pstrength in limbs without knee pain is associated with the pain status of the contralateral knee. The strength difference between unilateral pain-free cases and matched bilateral pain-free controls was similar to that between limbs in persons with unilateral knee pain. Lower strength due to contralateral knee pain might be centrally mediated. PMID:25768069

  3. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration.

    Science.gov (United States)

    Hunger, Conny; Ödemis, Veysel; Engele, Jürgen

    2012-10-15

    The chemokine, SDF-1/CXCL12, and its receptor, CXCR4, have been implied to play major roles during limb myogenesis. This concept was recently challenged by the identification of CXCR7 as an alternative SDF-1 receptor, which can either act as a scavenger receptor, a modulator of CXCR4, or an active chemokine receptor. We have now re-examined this issue by determining whether SDF-1 would signal to C2C12 myoblasts and subsequently influence their differentiation via CXCR4 and/or CXCR7. In addition, we have analyzed CXCR7, CXCR4, and SDF-1 expression in developing and injured mouse limb muscles. We demonstrate that in undifferentiated C2C12 cells, SDF-1-dependent cell signaling and resulting inhibitory effects on myogenic differentiation are entirely mediated by CXCR4. We further demonstrate that CXCR7 expression increases in differentiating C2C12 cells, which in turn abrogates CXCR4 signaling. Moreover, consistent with the view that CXCR4 and CXCR7 control limb myogenesis in vivo by similar mechanisms, we found that CXCR4 expression is the highest in late embryonic hindlimb muscles and drops shortly after birth when secondary muscle growth terminates. Vice versa, CXCR7 expression increased perinatally and persisted into adult life. Finally, underscoring the role of the SDF-1 system in muscle regeneration, we observed that SDF-1 is continuously expressed by endomysial cells of postnatal and adult muscle fibers. Analysis of dystrophin-deficient mdx mice additionally revealed that muscle regeneration is associated with muscular re-expression of CXCR4. The apparent tight control of limb muscle development and regeneration by CXCR4 and CXCR7 points to these chemokine receptors as promising therapeutic targets for certain muscle disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    Science.gov (United States)

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  5. Proximal Focal Femoral Deficiency in Ibadan a Developing ...

    African Journals Online (AJOL)

    The cultural aversion to amputation in our environment makes it difficult to employ that option of treatment. Proximal focal femoral deficiency in Ibadan a developing country's perspective and a review of the literature. Keywords: Proximal focal femoral deficiency , congenital malformations , limb malformations , lower limb ...

  6. Alterations in upper limb muscle synergy structure in chronic stroke survivors

    Science.gov (United States)

    Rymer, William Z.; Perreault, Eric J.; Yoo, Seng Bum; Beer, Randall F.

    2013-01-01

    Previous studies in neurologically intact subjects have shown that motor coordination can be described by task-dependent combinations of a few muscle synergies, defined here as a fixed pattern of activation across a set of muscles. Arm function in severely impaired stroke survivors is characterized by stereotypical postural and movement patterns involving the shoulder and elbow. Accordingly, we hypothesized that muscle synergy composition is altered in severely impaired stroke survivors. Using an isometric force matching protocol, we examined the spatial activation patterns of elbow and shoulder muscles in the affected arm of 10 stroke survivors (Fugl-Meyer synergies were identified using non-negative matrix factorization. In both groups, muscle activation patterns could be reconstructed by combinations of a few muscle synergies (typically 4). We did not find abnormal coupling of shoulder and elbow muscles within individual muscle synergies. In stroke survivors, as in controls, two of the synergies were comprised of isolated activation of the elbow flexors and extensors. However, muscle synergies involving proximal muscles exhibited consistent alterations following stroke. Unlike controls, the anterior deltoid was coactivated with medial and posterior deltoids within the shoulder abductor/extensor synergy and the shoulder adductor/flexor synergy in stroke was dominated by activation of pectoralis major, with limited anterior deltoid activation. Recruitment of the altered shoulder muscle synergies was strongly associated with abnormal task performance. Overall, our results suggest that an impaired control of the individual deltoid heads may contribute to poststroke deficits in arm function. PMID:23155178

  7. Influence of aging on isometric muscle strength, fat-free mass and electromyographic signal power of the upper and lower limbs in women

    Science.gov (United States)

    Amaral, Josária F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, José M.

    2014-01-01

    Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.7±3.5 years; middle age (MA) n=15, 58.6±4.2 years; and older adults (OA). n=15, 72.0±4.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and pisometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705

  8. MR imaging in congenital lower limb deformities

    International Nuclear Information System (INIS)

    Laor, T.; Jaramillo, D.; Hoffer, F.A.; Kasser, J.R.

    1996-01-01

    Treatment for children with cogenital deformities of the lower extremities may vary, depending on the state of the unossified skeletal structures and surrounding soft tissues. The purpose of our study was to demonstrate the spectrum of the osteochondral and extrasosseous abnormalities as depicted with MR imaging. We retrospectively reviewed MR examinations of 13 limbs of ten children (aged 1 month-9 years, mean 2.1 years) with longitudinal and transverse deformities of the lower extremities. The lesions imaged were fibular hemimelia (n=5), tibial hemimelia (n=5), and congenital constriction bands (n=3). Each examination was assessed for abnormalities in the osteocartilaginous and extraosseous (articular or periarticular components such as ligaments, tendons, and menisci; the muscles and the arteries) structures. Abnormalities were seen in all patients. Osteocartilaginous abnormalities in the patients with longitudinal deformities included abnormal distal femoral epiphyses, abnormal proximal tribial physes, hypertrophied and dislocated proximal fibular epiphyses, unsuspected fibular and tibial remnants, and absence or coalition of the tarsal bones. No osteocartilaginous abnormalities were seen in the patients with congential constriction bands. Articular abormalities in patients with either form of hemimelia included absent cruciate ligaments and menisci, dislocated or absent cartilaginous patellae, absent patellar tendons, and abnormal collateral ligaments. All but one limb imaged had absent or attenuated muscle groups. Of the nine MR arteriograms performed at the level of the knee, eight were abnormal. The normal popliteal trifurcation was absent or in an abnormal location. We conclude that MR imaging of children with congenital lower extremity deformities shows many osteochondral and extraosseous abnormalities that are not depicted by conventional radiogrpahy. This information can help to plan early surgical intervention and prosthetic rehabilitation. (orig.)

  9. Upper Limb Evaluation in Duchenne Muscular Dystrophy: Fat-Water Quantification by MRI, Muscle Force and Function Define Endpoints for Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Valeria Ricotti

    Full Text Available A number of promising experimental therapies for Duchenne muscular dystrophy (DMD are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function.15 non-ambulant DMD boys (mean age 13.3 y and 10 age-gender matched healthy controls (mean age 14.6 y were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.. Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation.Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (p<0.001. A progressive f.f. increase was observed in DMD over 12 months, reaching significance from 6 months (p<0.001, n = 7, accompanied by a significant loss in pinch strength at 6 months (p<0.001, n = 9 and a loss of upper limb function and grip force observed over 12 months (p<0.001, n = 8.These results support the use of MRI muscle f.f. as a biomarker to monitor disease progression in the upper limb in non-ambulant DMD, with sensitivity adequate to detect group-level change over time intervals practical for use in clinical trials. Clinical validity is supported by the association of the progressive fat transformation of muscle with loss of muscle force and function.

  10. Three-body segment musculoskeletal model of the upper limb

    Directory of Open Access Journals (Sweden)

    Valdmanová L.

    2013-06-01

    Full Text Available The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle.

  11. Upper Limb Evaluation in Duchenne Muscular Dystrophy: Fat-Water Quantification by MRI, Muscle Force and Function Define Endpoints for Clinical Trials.

    Science.gov (United States)

    Ricotti, Valeria; Evans, Matthew R B; Sinclair, Christopher D J; Butler, Jordan W; Ridout, Deborah A; Hogrel, Jean-Yves; Emira, Ahmed; Morrow, Jasper M; Reilly, Mary M; Hanna, Michael G; Janiczek, Robert L; Matthews, Paul M; Yousry, Tarek A; Muntoni, Francesco; Thornton, John S

    2016-01-01

    A number of promising experimental therapies for Duchenne muscular dystrophy (DMD) are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI) could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function. 15 non-ambulant DMD boys (mean age 13.3 y) and 10 age-gender matched healthy controls (mean age 14.6 y) were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.). Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation. Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (pmuscle f.f. as a biomarker to monitor disease progression in the upper limb in non-ambulant DMD, with sensitivity adequate to detect group-level change over time intervals practical for use in clinical trials. Clinical validity is supported by the association of the progressive fat transformation of muscle with loss of muscle force and function.

  12. Muscle biopsies off-set normal cellular signaling in surrounding musculature

    DEFF Research Database (Denmark)

    Krag, Thomas O; Hauerslev, Simon; Dahlqvist, Julia R

    2013-01-01

    muscle tissue for at least 3 weeks after the biopsy was performed and magnetic resonance imaging suggests that an effect of a biopsy may persist for at least 5 months. Cellular signaling after a biopsy resembles what is seen in severe limb-girdle muscular dystrophy type 2I with respect to protein......Studies of muscle physiology and muscular disorders often require muscle biopsies to answer questions about muscle biology. In this context, we have often wondered if muscle biopsies, especially if performed repeatedly, would affect interpretation of muscle morphology and cellular signaling. We...... hypothesized that muscle morphology and cellular signaling involved in myogenesis/regeneration and protein turnover can be changed by a previous muscle biopsy in close proximity to the area under investigation. Here we report a case where a past biopsy or biopsies affect cellular signaling of the surrounding...

  13. Effect of Constraint Loading on the Lower Limb Muscle Forces in Weightless Treadmill Exercise

    Directory of Open Access Journals (Sweden)

    Ning Guo

    2018-01-01

    Full Text Available Long exposure to the microgravity will lead to muscle atrophy and bone loss. Treadmill exercise could mitigate the musculoskeletal decline. But muscle atrophy remains inevitable. The constraint loading applied on astronauts could affect the muscle force and its atrophy severity. However, the quantitative correlation between constraint loading mode and muscle forces remains unclear. This study aimed to characterize the influence of constraint loading mode on the lower limb muscle forces in weightless treadmill exercise. The muscle forces in the full gait cycle were calculated with the inverse dynamic model of human musculoskeletal system. The calculated muscle forces at gravity were validated with the EMG data. Muscle forces increased at weightlessness compared with those at the earth’s gravity. The increasing percentage from high to low is as follows: biceps femoris, gastrocnemius, soleus, vastus, and rectus femoris, which was in agreement with the muscle atrophy observed in astronauts. The constraint loading mode had an impact on the muscle forces in treadmill exercise and thus could be manipulated to enhance the effect of the muscle training in spaceflight. The findings could provide biomechanical basis for the optimization of treadmill constraint system and training program and improve the countermeasure efficiency in spaceflight.

  14. Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles

    Science.gov (United States)

    Diogo, R; Wood, B

    2011-01-01

    Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm. PMID:21689100

  15. Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles.

    Science.gov (United States)

    Diogo, R; Wood, B

    2011-09-01

    Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  16. Influence of muscle groups' activation on proximal femoral growth tendency.

    Science.gov (United States)

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  17. Reliability of hand-held dynamometry for measurement of lower limb muscle strength in children with Duchenne and Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Wei SHI

    2015-05-01

    Full Text Available Objective To determine the reliability of hand-held dynamometry (HHD for lower limb isometric muscle strength measurement in children with Duchenne and Becker muscular dystrophy (DMD/BMD.  Methods A total of 21 children [20 males and one female; mean age was (7.88 ± 2.87 years, ranging between 3.96-14.09 years; mean age at diagnosis was (5.88 ± 2.88 years, ranging between 1.35-12.89 years; mean height was (120.64 ± 16.30 cm, ranging between 97-153 cm; mean body weight was (24.62 ± 9.05 kg, ranging between 14-50 kg] with DMD (19/21 and BMD (2/21 were involved from Rehabilitation Center of Children's Hospital of Fudan University. The muscle strength of hip, knee and ankle was measured by HHD under standardized test methods. The test-retest results were compared to determine the inter-test reliability, and the results among testers were compared to determine the inter-tester reliability.  Results HHD showed fine inter-tester reliability (ICC = 0.762-0.978 and inter-test reliability (ICC = 0.690-0.938 in measuring lower limb muscle strength of children with DMD/BMD. Results also showed relatively poor reliability in distal muscle groups (foot plantar flexion and dorsiflexion.  Conclusions HHD, showing fine inter-tester and inter-test reliability in measuring the lower limb muscle strength of children with DMD/BMD, can be used in monitoring muscle strength changing and assessing effects of clinical interventions. DOI: 10.3969/j.issn.1672-6731.2015.05.009

  18. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods.

    Science.gov (United States)

    Campione, Nicolás E; Evans, David C

    2012-07-10

    Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a

  19. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Directory of Open Access Journals (Sweden)

    Campione Nicolás E

    2012-07-01

    Full Text Available Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in

  20. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    Science.gov (United States)

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues

  1. Progressive numbness of distal limbs for two years, unsteady gait for two months

    Directory of Open Access Journals (Sweden)

    Jun MA

    2016-11-01

    Full Text Available A 50-year-old female was admitted to our department, complaining of progressive numbness of distal limbs for two years and unsteady gait for two months. “Peripheral neuropathy” was the presumed diagnosis. She has suffered dry mouth for months. Neurological examination revealed proximal upper muscle strength was normal and distal was 5-/5 while muscle strength in lower limbs was normal. Tendon reflexes in all limbs were reduced, and superficial sensation as well as deep sensation in all limbs was also diminished. Deep sensation below T8-10 was diminished. Romberg’s test was positive with negative pathological reflex. Several sensory nerves action potentials (SNAPs were diminished or absent with normal compound muscle action potentials (CMAPs. Cervical MRI showed hyperintensities in the dorsal column. Serum anti-Ro/SSA antibody was positive. Tear break-up time was abnormal in either eye (5s, normal range>10s; the rate of saliva production declined 0.02 ml/min (> 1.50 ml/15 min; parotid gland contrast sialography was abnormal; lip biopsy was positive with focal lymphocytic sialadenitis with focus score ≥1. The patient was diagnosed as primary Sjogren's syndrome and sensory neuronopathy. She received oral prednisone in dose of 1mg/(kg·d for four weeks, then reduce the dosage with 5mg/w to 0.50mg/ (kg·d. Later she reduced the dosage with 2.5mg/per week. At the same time, she got cyclophosphamide (100mg every other day and hydroxychloroquine (0.20g twice a day. Numbness of limbs and unsteady gait were improved when the patient was discharged. Two month later, during the follow-up, the patient’ gait was slightly improved, but the numbness still existed. DOI: 10.3969/j.issn.1672-6731.2016.11.016

  2. Pedicled Gastrocnemius Flap: Clinical Application in Limb Sparing Surgical Resection of Sarcoma Around the Knee Region and Popliteal Fossa

    International Nuclear Information System (INIS)

    EL-SHERBINY, M.

    2008-01-01

    To highlight on the versatility of superiorly based pedicled gastrocnemius muscle flap in the limb-sparing surgery for bone or soft tissue sarcoma around the knee and popliteal fossa. Patients and Methods: A total of 30 patients with localized bone or soft tissue sarcoma around the knee and popliteal fossa were treated with limb-salvage procedure. The study included 5 cases with bone sarcoma of the distal femur, 15 cases having bone sarcoma of proximal tibia and 10 cases having soft tissue sarcoma around the knee region and popliteal fossa. Routine preoperative staging studies were done for every patient and included local plain radiography, local MRI, isotopic bone scan and CT chest. Local MRA or angiography was done in selected cases. According to the Enneking staging system, 19 patients had stage IIB and 11 had stage IIA. Patients having bone sarcoma of the proximal tibia were subjected to wide resection, endo prosthetic reconstruction and reconstruction of the extensor mechanism by the medial gastrocnemius muscle flap. Patients having bone sarcoma of the distal femur were subjected to wide resection, endo prosthetic reconstruction and coverage of the prosthesis and re balance of the patellar tendon by the medial gas-trocnemius flap. Patients having soft tissue sarcoma were subjected to wide resection and soft tissue coverage with either medial or lateral myocutaneous gastrocnemius flap or muscle flap with grafting. Limb function was evaluated according to MSTS functional scores. Adjuvant chemotherapy or radiotherapy was given according to nationally agreed protocols. Results: There were 18 males and 12 females with a mean age of 29 years at the time of surgery (range 11-44 years). The mean follow-up period was 52 months (range 25-72 months). Resection with a negative bony and soft tissue margins could be achieved in all cases. A total of 30 flaps were used and included medial gastrocnemius muscle flaps in 21 cases (15 cases had proximal tibia endoprothesis, 5

  3. Repeated prolonged whole-body low-intensity exercise: effects on insulin sensitivity and limb muscle adaptations

    DEFF Research Database (Denmark)

    Helge, Jørn Mikael; Overgaard, Kristian; Damsgaard, Rasmus

    2006-01-01

    arbitrary units) than in the arm (54 ± 9 arbitrary units) and was not changed in the leg, but was increased (P increased glucose transporter expression in arm muscle may compensate for the loss of lean body mass...... or body mass, were not affected by the crossing. Citrate synthase activity was higher (P muscle (16 ± 2 µmol · g-1 · min-1) and was unchanged after the crossing. Muscle GLUT4 protein concentration was higher (P ...This study investigates the effect of prolonged whole-body low-intensity exercise on insulin sensitivity and the limb muscle adaptive response. Seven male subjects (weight, 90.2 ± 3.2 kg; age, 35 ± 3 years) completed a 32-day unsupported crossing of the Greenland icecap on cross-country skies...

  4. The effect of exercise types for rotator cuff repair patients on activities of shoulder muscles and upper limb disability.

    Science.gov (United States)

    Kang, Jeong-Il; Moon, Young-Jun; Choi, Hyun; Jeong, Dae-Keun; Kwon, Hye-Min; Park, Jun-Su

    2016-10-01

    [Purpose] This study investigated the effect on activities, shoulder muscle fatigue, upper limb disability of two exercise types performed by patients in the post- immobilization period of rotator cuff repair. [Subjects and Methods] The intervention program was performed by 20 patients from 6 weeks after rotator cuff repair. Ten subjects each were randomly allocated to a group performing open kinetic chain exercise and a group preforming closed kinetic chain exercise. Muscle activity and median frequency were measured by using sEMG and the Upper Extremity Function Assessment before and after conducting the intervention and changes in the results were compared. [Results] There was a significant within group increases in the activities of the shoulder muscles, except for the posterior deltoid. The median power frequencies (MFD) of the supraspinatus, infraspinatus and anterior deltoid significantly increased in the open kinetic chain exercise group, but that of the posterior deltoid decreased. There were significant differences in the changes in the upper limb disability scores of the two groups, in the shoulder muscle activities, except for that of the posterior deltoid, in the comparison of the change in the muscle activities of the two groups, and in the MDFs of all shoulder muscles. [Conclusion] The Median power frequencies of all these muscles after closed kinetic chain exercise increased indicating that muscle fatigue decreased. Therefore, research into exercise programs using closed kinetic chain exercises will be needed to establish exercise methods for reducing muscle fatigue.

  5. Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation.

    Science.gov (United States)

    Allan, Robert; Sharples, Adam P; Close, Graeme L; Drust, Barry; Shepherd, Sam O; Dutton, John; Morton, James P; Gregson, Warren

    2017-08-01

    Mechanisms mediating postexercise cold-induced increases in PGC-1α gene expression in human skeletal muscle are yet to be fully elucidated but may involve local cooling effects on AMPK and p38 MAPK-related signaling and/or increased systemic β-adrenergic stimulation. Therefore, we aimed to examine whether postexercise cold water immersion enhancement of PGC-1α mRNA is mediated through local or systemic mechanisms. Ten subjects completed acute cycling (8 × 5 min at ~80% peak power output) followed by seated-rest (CON) or single-leg cold water immersion (CWI; 10 min, 8°C). Muscle biopsies were obtained preexercise, postexercise, and 3 h postexercise from a single limb in the CON condition but from both limbs in CWI [thereby providing tissue from a CWI and nonimmersed limb (NOT)]. Muscle temperature decreased up to 2 h postexercise following CWI (-5°C) in the immersed limb, with lesser changes observed in CON and NOT (-3°C, P cold induction of PGC-1α mRNA. NEW & NOTEWORTHY We report for the first time that postexercise cold water immersion of one limb also enhances PGC-1α expression in a contralateral, nonimmersed limb. We suggest that increased systemic β-adrenergic stimulation, and not localized cooling per se, exerts regulatory effects on local signaling cascades, thereby modulating PGC-1α expression. Therefore, these data have important implications for research designs that adopt contralateral, nonimmersed limbs as a control condition while also increasing our understanding of the potential mechanisms underpinning cold-mediated PGC-1α responses. Copyright © 2017 the American Physiological Society.

  6. The role of variable muscle adaptation to limb lengthening in the development of joint contractures: an experimental study in the goat.

    Science.gov (United States)

    Makarov, Marina; Birch, John; Samchukov, Mikhail

    2009-03-01

    Muscle stiffness and joint contractures are currently regarded as the most common complications of limb lengthening. To better understand the mechanisms of joint contractures, architectural changes of all involved muscles were analyzed in 9 goats after 20% tibial lengthening with standard distraction protocol.All 13 muscles of the goat's tibia were found to be organized into an anterior compartment with 2 longitudinal and 4 pennate muscles and a posterior compartment with 1 longitudinal and 6 pennate muscles. Longitudinal muscles showed better compliance to distraction than pinnate muscles. Although muscle-to-bone lengthening ratio ranged widely (0-1.2), most of the muscles and especially those located in the posterior compartment showed much less lengthening than the bone. Muscular portions of the muscles lengthened more substantially (average, 17%) than their associated tendons (average, 7%). Muscle fiber length changes varied greatly between muscles (range, 0%-88%). Normalization of muscle fiber length revealed considerable elongation of anterior muscles fibers (25%) that was associated with an addition of new sarcomeres in series. Fiber length increase of all posterior muscles but one occurred by stretching of existing sarcomeres, with little addition or even dissolution of sarcomeres in series. This correlated with muscle mass changes showing significant muscle atrophy in the posterior compartment and better mass preservation in the anterior compartment.The study revealed striking difference in response to limb lengthening between individual muscles and muscles from antagonistic compartments in particular. Poor sarcomerogenesis in the posterior muscles leading to their insufficient length increase seems to play major role in the development of joint contractures.

  7. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    Science.gov (United States)

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. THE ANALYSIS OF MORPHOFUNCTIONAL CONDITION OF THE UPPER LIMB MUSCLES IN TREATMENT OF PATIENTS WITH POSTTRAUMATIC ELBOW FLEXION-AND-EXTENSION CONTRACTURES

    Directory of Open Access Journals (Sweden)

    L. A. Grebenyuk

    2012-01-01

    Full Text Available The aim of the work was to study the echography visualization-based structural features of muscles and the wrist radial flexors for surgical treatment of 56 patients with the elbow flexion-and-extension contractures. The result of surgical treatment in the main group of patients consisted in the increase of the elbow extension angle. Muscle pattern was similar to a typical, normal ultrasound image. The most characteristic feature was a significant decrease in the muscle belly thickness. The thickness of fore-arm flexor muscular layer was 29,2% decreased for the brachium injured amounting to 16.5 ± 4.7 mm (P ≤ 0.05, and that for the intact segment - to 23.3 ± 2.6 mm. In the immediate periods after treatment the signs of atrophy remained. It manifested by the significant decrease of the anterior muscle group thickness with regard to the intact segment values. The index of the echo intensity of m. biceps brachii in operated limb increased by 53.7% compared to preoperative values, reaching 22.8 ± 2.1 conv. u (P m. brachialis - 30 conv. u (P> 0.05. Before the treatment in patients aged 8-13 years the relative strength of the forearm muscles was reduced by 12% compared with those on the contralateral limb (P <0.05 according to t-test, and in the older age group - 20.9% (P <0.01. With increasing of movement range in the late periods after treatment were observed satisfactory contractile response of the upper limb muscles. At different stages of reconstructive and restorative treatment of patients with posttraumatic elbow contractures it is advisable to use a combination of ultrasonic imaging of muscles and hand dynamometry with the definition of the relative strength of the muscles.

  9. Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise.

    Science.gov (United States)

    Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito

    2010-01-01

    We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.

  10. Predictive value of upper limb muscles and grasp patterns on functional outcome in cervical spinal cord injury

    NARCIS (Netherlands)

    Velstra, Inge-Marie; Bolliger, M.; Krebs, J.; Rietman, Johan Swanik; Curt, A.

    2015-01-01

    Objective: To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP),

  11. Correlations and coherence of monopolar EMG-currents of the medial gastrocnemius muscle in proximal and distal compartments

    Directory of Open Access Journals (Sweden)

    Vinzenz eVon Tscharner

    2014-06-01

    Full Text Available The penniform gastrocnemius muscle contains multiple heads in the proximal regions and the aponeuroses are attached to the Achilles tendon. The multiple head structure lead to the assumption that different regions of the muscle must be activated compartment wise. The purpose of this study was to compare the correlation and coherence of EMG-currents within and between proximal and distal compartments of the medial gastrocnemius muscle, which reflect underling synchronization of motor units. It was hypothesized and shown that phase-inverted signals represent a property that discriminates compartments. However, the phase-inverted and non-inverted signals showed values of correlations that were indicative for highly synchronized signals. The correlation increased with the complexity of the task and was higher for the calf-rising movement than while balancing in a tiptoe position. Because the muscle fibers do not span the whole length of the muscles one has to conclude that the MUs were synchronized by synchronizing the various motor nerves. This study shows that it is essential to measure monopolar signals and use non-isometric contractions to observe synchronization of the EMG-signals. One could speculate that compartmental differences can only be observed if more complex movements that generate rotational forces at the knee or ankle are used.

  12. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion.

    Science.gov (United States)

    Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G

    2017-01-01

    Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.

  13. The muscle CT of thigh in chronic Werdnig-Hoffmann disease

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Konagaya, Masaaki; Takayanagi, Tetsuya; Otsuji, Hideaki

    1986-01-01

    In this paper, the muscle CT of thigh in chronic Werdnig-Hoffmann disease (chronic WH) was evaluated. The subjects were five cases of chronic WH (3 males and 2 females, ages ranging from 6 to 22 years) and four control males. All cases showed symmetrical muscular weakness. The proximal muscle were more affected than the distal in the upper limbs. But the muscle strength of hip adduction was relatively spared as compared with other strength of lower limbs. The CT scan was carried out at the upper quarter level between lesser trochanter and medial condyle of the femur. The muscle CT of cases aged 6 and 7 years showed the severely decreased cross-sectional area of muscle without significant decrease in density. The atrophic muscles were surrounded by a large amount of low density area. The hamstring muscles and the adductor muscles, especially adductor longus muscle (ALM), were less affected than the quadriceps femoris muscles. Spotty and moth-eaten low density areas were observed dominantly in the severely affected muscles. In the advanced cases, only ALM could be identified on the CT image. The other muscles were unable to be identified because of severe atrophy with extremely low density. These CT findings suggest the process of muscular wastings of chronic WH as follows; at first muscle fibers are atrophied due to denervation and sooner or later replaced with fat tissue. Moreover, the preservation of ALM suggests that loss of anterior horn cells does not always go on homogeneously. (author)

  14. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    Directory of Open Access Journals (Sweden)

    Anna Salazar-Degracia

    2017-12-01

    Full Text Available Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection, redox balance (protein oxidation and nitration and antioxidants and muscle proteins (1-dimensional immunoblots, carbonylated proteins (2-dimensional immunoblots, inflammatory cells (immunohistochemistry, and mitochondrial respiratory chain (MRC complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV. Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.

  15. Anatomical study of the proximal origin of hamstring muscles.

    Science.gov (United States)

    Sato, Kengo; Nimura, Akimoto; Yamaguchi, Kumiko; Akita, Keiichi

    2012-09-01

    It is relatively well accepted that the long head of the biceps femoris and the semitendinosus both originate from the ischial tuberosity as a common tendon. However, it is also widely known that the biceps femoris is consistently injured more than the semitendinosus. The purpose of this study was to examine the origins of the hamstring muscles, to find an anatomic basis for diagnosis and treatment of injuries of the posterior thigh regions. Twenty-eight hips of fourteen adult Japanese cadavers were used in this study. In twenty hips of ten cadavers, the positional relationships among the origins on the ischial tuberosity were examined. In eight hips of four cadavers, histological examination of the origins of the hamstrings was also performed. The origin of the long head of the biceps femoris adjoined that of the semitendinosus. In the proximal regions of these muscles, the long head consisted of the tendinous part; however, the semitendinosus mainly consisted of the muscular part. Some of the fibers of the biceps tendon extended to fuse with the sacrotuberous ligament. The semimembranosus muscle broadly originated from the lateral surface of the ischial tuberosity. The origins of the long head of the biceps femoris and the semitendinosus are found to be almost independent, and the tendon of the long head is partly fused with the sacrotuberous ligament. The high incidence of injuries to the long head of the biceps femoris could be explained by these anatomical configurations.

  16. Modeling and Simulation to Muscle Strength Training of Lower Limbs Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Ke-Yi Wang

    2015-01-01

    Full Text Available Considering the issues of lower limb rehabilitation robots with single control strategies and poor training types, a training method for improving muscle strength was put forward in this paper. Patients’ muscle strength could be achieved by targeted exercises at the end of rehabilitation. This approach could be realized through programming wires’ force. On the one hand, each wires force was measured by tension sensor and force closed loop control was established to control the value of wires’ force which was acted on trainees. On the other hand, the direction of output force was changed by detecting the trainees’ state of motion and the way of putting load to patient was achieved. Finally, the target of enhancing patients’ muscle strength was realized. Dynamic model was built by means of mechanism and training types of robots. Force closed loop control strategy was established based on training pattern. In view of the characteristics of the redundance and economy of wire control, the process for simple wire's load changes was discussed. In order to confirm the characteristics of robot control system, the controller was simulated in Matlab/Simulink. It was verified that command signal could be traced by control system availably and the load during muscle training would be provided effectively.

  17. Foot posture influences the electromyographic activity of selected lower limb muscles during gait

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2009-11-01

    Full Text Available Abstract Background Some studies have found that flat-arched foot posture is related to altered lower limb muscle function compared to normal- or high-arched feet. However, the results from these studies were based on highly selected populations such as those with rheumatoid arthritis. Therefore, the objective of this study was to compare lower limb muscle function of normal and flat-arched feet in people without pain or disease. Methods Sixty adults aged 18 to 47 years were recruited to this study. Of these, 30 had normal-arched feet (15 male and 15 female and 30 had flat-arched feet (15 male and 15 female. Foot posture was classified using two clinical measurements (the arch index and navicular height and four skeletal alignment measurements from weightbearing foot x-rays. Intramuscular fine-wire electrodes were inserted into tibialis posterior and peroneus longus under ultrasound guidance, and surface EMG activity was recorded from tibialis anterior and medial gastrocnemius while participants walked barefoot at their self-selected comfortable walking speed. Time of peak amplitude, peak and root mean square (RMS amplitude were assessed from stance phase EMG data. Independent samples t-tests were performed to assess for significant differences between the normal- and flat-arched foot posture groups. Results During contact phase, the flat-arched group exhibited increased activity of tibialis anterior (peak amplitude; 65 versus 46% of maximum voluntary isometric contraction and decreased activity of peroneus longus (peak amplitude; 24 versus 37% of maximum voluntary isometric contraction. During midstance/propulsion, the flat-arched group exhibited increased activity of tibialis posterior (peak amplitude; 86 versus 60% of maximum voluntary isometric contraction and decreased activity of peroneus longus (RMS amplitude; 25 versus 39% of maximum voluntary isometric contraction. Effect sizes for these significant findings ranged from 0.48 to 1

  18. Musculoskeletal modelling of an ostrich (Struthio camelus pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Directory of Open Access Journals (Sweden)

    John R. Hutchinson

    2015-06-01

    Full Text Available We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures. This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our

  19. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    Science.gov (United States)

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  20. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion.

    Directory of Open Access Journals (Sweden)

    Paul D Marasco

    Full Text Available Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion. This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2, with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.

  1. MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Michele; Mileto, Achille; Minutoli, Fabio; Settineri, Nicola; Donato, Rocco; Ascenti, Giorgio; Blandino, Alfredo [Policlinico ' ' G. Martino' ' , Dipartimento di Scienze Radiologiche, Messina (Italy); Mazzeo, Anna; Di Leo, Rita [Policlinico ' ' G. Martino' ' , Dipartimento di Neuroscienze, Scienze Psichiatriche ed Anestesiologiche, Messina (Italy)

    2012-05-15

    To describe the magnetic resonance imaging (MRI) pattern of muscle involvement and disease progression in five patients with late-onset Charcot-Marie-Tooth (CMT) disease type 2 F, due to a previously unknown mutation. Five patients (three males, two females) underwent MRI of the lower limbs to define the pattern of muscle involvement and evaluate the muscle fat fraction (MFF) of residual thigh muscle with gradient-echo (GRE) dual-echo dual-flip angle technique. Evaluation of fatty infiltration both by visual inspection and MFF calculation was performed. A proximal-to-distal gradient of muscle involvement was depicted in male patients with extensive muscle wasting of lower legs, less severe impairment of distal thigh muscles, and sparing of proximal thigh muscles. A peculiar phenotype finding was that no or only slight muscle abnormalities could be found in the two female patients. We described the pattern of muscle involvement and disease progression in a family with CMT disease type 2 F. GRE dual-echo dual-flip angle MRI technique is a valuable technique to obtain a rapid quantification of MFF. (orig.)

  2. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements

    OpenAIRE

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-01-01

    The limb skeletal elements that have unique morphology and distinct locations are developed from limb progenitors, derived from the lateral plate mesoderm. These skeletal elements arise during limb development. In this study, we show genetic evidence that function of Sall4 is essential prior to limb outgrowth for development of the anterior-proximal skeletal elements. Furthermore, genetic interaction between Sall4 and Gli3 is upstream of establishing Shh (Sonic hedgehog) expression, and there...

  3. Internal models of limb dynamics and the encoding of limb state

    Science.gov (United States)

    Hwang, Eun Jung; Shadmehr, Reza

    2005-09-01

    Studies of reaching suggest that humans adapt to novel arm dynamics by building internal models that transform planned sensory states of the limb, e.g., desired limb position and its derivatives, into motor commands, e.g., joint torques. Earlier work modeled this computation via a population of basis elements and used system identification techniques to estimate the tuning properties of the bases from the patterns of generalization. Here we hypothesized that the neural representation of planned sensory states in the internal model might resemble the signals from the peripheral sensors. These sensors normally encode the limb's actual sensory state in which movement errors occurred. We developed a set of equations based on properties of muscle spindles that estimated spindle discharge as a function of the limb's state during reaching and drawing of circles. We then implemented a simulation of a two-link arm that learned to move in various force fields using these spindle-like bases. The system produced a pattern of adaptation and generalization that accounted for a wide range of previously reported behavioral results. In particular, the bases showed gain-field interactions between encoding of limb position and velocity, very similar to the gain fields inferred from behavioral studies. The poor sensitivity of the bases to limb acceleration predicted behavioral results that were confirmed by experiment. We suggest that the internal model of limb dynamics is computed by the brain with neurons that encode the state of the limb in a manner similar to that expected of muscle spindle afferents.

  4. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    Science.gov (United States)

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  5. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Chingyi Nam

    2017-12-01

    Full Text Available BackgroundImpaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES robotic hand was designed previously, whereas its rehabilitation effects were not investigated.ObjectivesThis study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke.MethodA clinical trial with single-group design was conducted on chronic stroke participants (n = 15 who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA, the Action Research Arm Test (ARAT, the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS. Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs of the target muscles in the upper limb.ResultsSignificant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05, the ARAT (P < 0.05, and in the MAS (P < 0.05 were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD and biceps brachii (P < 0.05, as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05.ConclusionThe upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later.Trial registration

  6. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke.

    Science.gov (United States)

    Nam, Chingyi; Rong, Wei; Li, Waiming; Xie, Yunong; Hu, Xiaoling; Zheng, Yongping

    2017-01-01

    Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. A clinical trial with single-group design was conducted on chronic stroke participants ( n  = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Significant improvements in the FMA shoulder/elbow and wrist/hand scores ( P  < 0.05), the ARAT ( P  < 0.05), and in the MAS ( P  < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii ( P  < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii ( P  < 0.05). The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. ClinicalTrials.gov. NCT02117089; date of registration: April

  7. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb

    International Nuclear Information System (INIS)

    Dik, K.J.; Boroffka, S.; Stolk, P.

    1994-01-01

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions

  8. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb.

    Science.gov (United States)

    Dik, K J; Boroffka, S; Stolk, P

    1994-01-01

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions.

  9. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.

    Science.gov (United States)

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2018-05-01

    To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Ectopic Fgf signaling induces the intercalary response in developing chicken limb buds.

    Science.gov (United States)

    Makanae, Aki; Satoh, Akira

    2018-01-01

    Intercalary pattern formation is an important regulatory step in amphibian limb regeneration. Amphibian limb regeneration is composed of multiple steps, including wounding, blastema formation, and intercalary pattern formation. Attempts have been made to transfer insights from regeneration-competent animals to regeneration-incompetent animalsat each step in the regeneration process. In the present study, we focused on the intercalary mechanism in chick limb buds. In amphibian limb regeneration, a proximodistal axis is organized as soon as a regenerating blastema is induced. Intermediate structures are subsequently induced (intercalated) between the established proximal and distal identities. Intercalary tissues are derived from proximal tissues. Fgf signaling mediates the intercalary response in amphibian limb regeneration. We attempted to transfer insights into intercalary regeneration from amphibian models to the chick limb bud. The zeugopodial part was dissected out, and the distal and proximal parts were conjunct at st. 24. Delivering ectopic Fgf2 + Fgf8 between the distal and proximal parts resulted in induction of zeugopodial elements. Examination of HoxA11 expression, apoptosis, and cell proliferation provides insights to compare with those in the intercalary mechanism of amphibian limb regeneration. Furthermore, the cellular contribution was investigated in both the chicken intercalary response and that of axolotl limb regeneration. We developed new insights into cellular contribution in amphibian intercalary regeneration, and found consistency between axolotl and chicken intercalary responses. Our findings demonstrate that the same principal of limb regeneration functions between regeneration-competent and -incompetent animals. In this context, we propose the feasibility of the induction of the regeneration response in amniotes.

  11. Effect of enzyme replacement therapy on isokinetic strength for all major muscle groups in four patients with Pompe disease-a long-term follow-up

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Schlütter, Jacob Mørup; Vissing, John

    2014-01-01

    Pompe disease is a rare, inherited metabolic myopathy characterized by progressive weakness of the proximal limb and respiratory muscles. We report the findings from four patients with late-onset Pompe disease treated with α-glucosidase (Myozyme) for 2 (n=2) and 6 (n=2) years, and monitored with ...

  12. Creatine supplementation elicits greater muscle hypertrophy in upper than lower limbs and trunk in resistance-trained men.

    Science.gov (United States)

    Nunes, João Pedro; Ribeiro, Alex S; Schoenfeld, Brad J; Tomeleri, Crisieli M; Avelar, Ademar; Trindade, Michele Cc; Nabuco, Hellen Cg; Cavalcante, Edilaine F; Junior, Paulo Sugihara; Fernandes, Rodrigo R; Carvalho, Ferdinando O; Cyrino, Edilson S

    2017-12-01

    Creatine (Cr) supplementation associated with resistance training produces greater muscular strength improvements in the upper compared with the lower body; however, no study has investigated if such region-specific results are seen with gains in muscle mass. We aimed to evaluate the effect of Cr supplementation in combination with resistance training on lean soft tissue changes in the upper and lower limbs and trunk in resistance-trained young adult men. In a randomized, double-blind and placebo-controlled design, 43 resistance-trained men (22.7 ± 3.0 years, 72.9 ± 8.7 kg, 177.9 ± 5.7 cm, 23.0 ± 2.5 kg/m 2 ) received either creatine (Cr, n = 22) or placebo (PLA, n = 21) over an 8-week study period. The supplementation protocol included a loading phase (7 days, four doses of 0.3 g/kg per day) and a maintenance phase (7 weeks, single dose of 0.03 g/kg per day). During the same period, subjects performed resistance training four times per week using the following two-way split routine: Monday and Thursday = pectoral, shoulders, triceps, and abdomen, Tuesday and Friday = back, biceps, thighs, and calves. Lean soft tissue of the upper limbs (ULLST), lower limbs (LLLST), and trunk (TLST) was assessed by dual-energy X-ray absorptiometry before and after the intervention. Both groups showed significant ( p hypertrophy (ULLST = 1.6 ± 3.0%; LLLST = 0.7 ± 2.8%; TLST = 0.7 ± 2.8%). Our results suggest that Cr supplementation can positively augment muscle hypertrophy in resistance-trained young adult men, particularly in the upper limbs.

  13. Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Duchenne Muscular Dystrophy: Safety and Feasibility Study in India.

    Science.gov (United States)

    Rajput, B S; Chakrabarti, Swarup K; Dongare, Vaishali S; Ramirez, Christina M; Deb, Kaushik D

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a musculo-degenerative disease characterized by lack of dystrophin production with no definite cure available currently. Discarded umbilical cord is a potential source of mesenchymal stem cells which are non-immunogenic and can be used for transplantation in allogenic set ups. Given the regenerative and anti-inflammatory properties of mesenchymal stem cells (MSCs), here we investigated its role in the cellular therapy of DMD patients. This is a single-blinded study conducted in various hospitals of India situated in Mumbai, Delhi, and Lucknow. Inclusion criteria for enrolling the patients in the study were boys aged between 5 to 18 years, absence of dystrophin in the immunohistochemistry of muscle biopsy and mutation in dystrophin gene in cytogenetic analysis. The exclusion criteria were presence of dystrophin in the muscle biopsy, patients on corticosteroids etc. UC-MSCs (2 millions/kg body weight) were administered through IV and IM injection. Muscle power in muscles of proximal upper limb, distal upper limb, proximal lower limb, distal lower limb, hip flexors, hip extensors, hip abductors, and paraspinal muscles were measured in 11 DMD patients after UC-MSCs transplantation and were followed for up to 3 years (average follow up 1.5 years). 5 DMD patients did not receive any UC-MSCs transplantation and served as the control group. The treatment group (N = 11 at baseline) had a pretransplantation strength of 3.45 ± 1.0357 and 4.090 ± 0.8312 in muscles of proximal upper limb and distal upper limb respectively. After 1 year (N = 9) these strengths remained stable with an average of 3.78 (1.03) and 4.22 (0.83). In contrast, the control group (N = 5) has a pre-transplantation strength of 3.6 (0.54) and 4 (1) in the proximal and distal upper limb respectively. After 1 year, (N = 5) 3/5 subjects had a slight but not statistically significant decrease in the proximal upper limb, mean 3.0 (1.0) and 5/5 had a lunit decrease in

  14. Hereditary sensory ataxic neuropathy associated with proximal muscle weakness in the lower extremities.

    Science.gov (United States)

    Murakami, Tatsufumi; Fukai, Yuta; Rikimaru, Mitsue; Henmi, Shoji; Ohsawa, Yutaka; Sunada, Yoshihide

    2010-04-15

    We describe three patients from the same family with hereditary sensory ataxic neuropathy followed by proximal muscle weakness in the lower extremities. Sensory ataxic gait began as an initial symptom when patients were in their 50s. Mild proximal weakness in the lower extremities appeared several years later. Serum creatine kinase was mildly elevated. Nerve conduction studies revealed sensory dominant axonal neuropathy, and short sensory evoked potentials showed involvement of the sensory nerve axon, dorsal root ganglia and posterior funiculus of the spinal cord. Needle electromyography showed fibrillation, positive sharp waves, and multiple giant motor unit potentials, suggesting the involvement of anterior horn motor neurons or the anterior root. Autosomal recessive inheritance was considered, because of consanguinity. The disorder described here may be a new clinical entity with unique clinical manifestations. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two.

    Science.gov (United States)

    MacInnis, Martin J; McGlory, Chris; Gibala, Martin J; Phillips, Stuart M

    2017-06-01

    Direct sampling of human skeletal muscle using the needle biopsy technique can facilitate insight into the biochemical and histological responses resulting from changes in exercise or feeding. However, the muscle biopsy procedure is invasive, and analyses are often expensive, which places pragmatic restraints on sample sizes. The unilateral exercise model can serve to increase statistical power and reduce the time and cost of a study. With this approach, 2 limbs of a participant are randomized to 1 of 2 treatments that can be applied almost concurrently or sequentially depending on the nature of the intervention. Similar to a typical repeated measures design, comparisons are made within participants, which increases statistical power by reducing the amount of between-person variability. A washout period is often unnecessary, reducing the time needed to complete the experiment and the influence of potential confounding variables such as habitual diet, activity, and sleep. Variations of the unilateral exercise model have been employed to investigate the influence of exercise, diet, and the interaction between the 2, on a wide range of variables including mitochondrial content, capillary density, and skeletal muscle hypertrophy. Like any model, unilateral exercise has some limitations: it cannot be used to study variables that potentially transfer across limbs, and it is generally limited to exercises that can be performed in pairs of treatments. Where appropriate, however, the unilateral exercise model can yield robust, well-controlled investigations of skeletal muscle responses to a wide range of interventions and conditions including exercise, dietary manipulation, and disuse or immobilization.

  16. Antagonistic Mono- and Bi-Articular Lower-Limb Muscle Activities’ Model Characterization at Different Speeds

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available Nowadays, medical rehabilitation system has become a requirement due to increment in national rehabilitation centres and medical hospitals. An assistive rehabilitation orthosis becomes essential and was used for rehabilitation therapy, condition monitoring, and physical strengthening. This study focused on the lower limb assistive rehabilitation orthosis development using pneumatic artificial muscle. To successfully control this orthosis system which consists of antagonistic mono- and biarticular muscle actuators, it is necessary to construct a reliable control algorithm. The suitable control scheme and strategy to manoeuvre this orthosis system similar to human musculoskeletal system have yet to be fully developed and established. Based on the review study, it is said that the co-contraction controls of anterior-posterior pneumatic muscles was able to improve the joint stiffness and stability of the orthosis as well as good manoeuvrability. Therefore, a characterization model of an antagonistic mono- and bi-articular muscles activities of human's lowerlimb during walking motion will be necessary. A healthy young male subject was used as test subject to obtain the sEMG muscle activities for antagonistic mono- and bi-articular muscles (i.e., Vastus Medialis-VM, Vastus Lateralis-VL, Rectus Femoris-RF, and Bicep Femoris-BF. The tests were carried out at different speeds of 2km/h, 3km/h, and 4km/h for one minute walking motion on a treadmill. Then, the patterns of the sEMG muscle activities were modelled and characterised using fifth order polynomial equation. Based on the results, it is shown that the anterior and posterior muscles were exhibited a muscle synergy in-between multiple anterior or posterior muscles and muscle co-contraction between anteriorposterior muscles in order to control the movements at the joints during walking motion. As conclusion, it is proven that the sEMG muscle activities of the antagonistic mono- and bi

  17. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  18. Skeletal Muscle Magnetic Resonance Imaging of the Lower Limbs in Late-onset Lipid Storage Myopathy with Electron Transfer Flavoprotein Dehydrogenase Gene Mutations

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Ming Jin; Zhi-Qiang Wang; Dan-Ni Wang; Jun-Jie He; Min-Ting Lin; Hong-Xia Fu

    2016-01-01

    Background:Lipid storage myopathy (LSM) is a genetically heterogeneous group with variable clinical phenotypes.Late-onset multiple acyl-coenzyme A dehydrogenation deficiency (MADD) is a rather common form of LSM in China.Diagnosis and clinical management of it remain challenging,especially without robust muscle biopsy result and genetic detection.As the noninvasion and convenience,muscle magnetic resonance imaging (MRI) is a helpful assistant,diagnostic tool for neuromuscular disorders.However,the disease-specific MRI patterns of muscle involved and its diagnostic value in late-onset MADD have not been systematic analyzed.Methods:We assessed the MRI pattern and fat infiltration degree of the lower limb muscles in 28 late-onset MADD patients,combined with detailed clinical features and gene spectrum.Fat infiltration degree of the thigh muscle was scored while that ofgluteus was described as obvious or not.Associated muscular atrophy was defined as obvious muscle bulk reduction.Results:The mean scores were significantly different among the anterior,medial,and posterior thigh muscle groups.The mean of fat infiltration scores on posterior thigh muscle group was significantly higher than either anterior or medial thigh muscle group (P < 0.001).Moreover,the mean score on medial thigh muscle group was significantly higher than that of anterior thigh muscle group (P < 0.01).About half of the patients displayed fat infiltration and atrophy in gluteus muscles.Of 28 patients,12 exhibited atrophy in medial and/or posterior thigh muscle groups,especially in posterior thigh muscle group.Muscle edema pattern was not found in all the patients.Conclusions:Late-onset MADD patients show a typical muscular imaging pattern of fat infiltration and atrophy on anterior,posterior,and medial thigh muscle groups,with major involvement of posterior thigh muscle group and gluteus muscles and a sparing involvement of anterior thigh compartment.Our findings also suggest that muscle MRI of

  19. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb

    DEFF Research Database (Denmark)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal

    2016-01-01

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation...... for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb....

  20. Ultrasound-Guided Injection of Botulinum Toxin Type A for Piriformis Muscle Syndrome: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Andrea Santamato

    2015-08-01

    Full Text Available Piriformis muscle syndrome (PMS is caused by prolonged or excessive contraction of the piriformis muscle associated with pain in the buttocks, hips, and lower limbs because of the close proximity to the sciatic nerve. Botulinum toxin type A (BoNT-A reduces muscle hypertonia as well as muscle contracture and pain inhibiting substance P release and other inflammatory factors. BoNT-A injection technique is important considering the difficult access of the needle for deep location, the small size of the muscle, and the proximity to neurovascular structures. Ultrasound guidance is easy to use and painless and several studies describe its use during BoNT-A administration in PMS. In the present review article, we briefly updated current knowledge regarding the BoNT therapy of PMS, describing also a case report in which this syndrome was treated with an ultrasound-guided injection of incobotulinumtoxin A. Pain reduction with an increase of hip articular range of motion in this patient with PMS confirmed the effectiveness of BoNT-A injection for the management of this syndrome.

  1. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults

    OpenAIRE

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (...

  2. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    Science.gov (United States)

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparison of Findings from Oblique Radiographs of the Raised Limb with Those of the Weight-bearing Limb for Selected Diseases of the Equine Digit

    Directory of Open Access Journals (Sweden)

    J. Šterc

    2007-01-01

    Full Text Available In the present study, the radiographic examination of the distal and proximal interphalangeal joints was performed in 43 randomly selected horses. A total of 86 forelimbs were examined. On the forelimbs, dorsolateral-palmaromedial, and dorsomedial-palmarolateral oblique views were performed. The oblique views were performed on raised limbs placed in a navicular block and on weight-bearing limbs placed on a pedestal made at the equine clinic. In total, 688 dorsolateral-palmaromedial and dorsomedial-palmarolateral views were taken. During the evaluation of the radiographs we focused on the detection of signs of degenerative joint disease of the distal and proximal iterphalangeal joints, and the detection of new bone formation in the phalanx regions, not associated with a disease of the distal or proximal interphalangeal joints. Based on the radiographic signs visible on these views, we diagnosed 9 cases of degenerative joint disease of the distal intraphalangeal joint, 13 cases of the degenerative joint disease of the proximal intraphalangeal joint and 21 cases of new bone formation in the phalanx regions. These signs were observed in 253 of 688 oblique views. Positive radiographic findings of the above-mentioned disorders were shown on 127 oblique views of the raised limb placed in the navicular block and 126 oblique views of the weight-bearing limb placed on the pedestal we made. When 128 oblique views of the weight-bearing limb (placed on the pedestal were compared with those of the raised limb (in the navicular block, there were different radiographic findings in three cases only. The differences in detection rates of radiographic signs between different type views showed no statistical significance (p ≥ 0.05. Therefore we assume that the pedestal we made can be routinely used for the radiographic examination of the distal and proximal interphalangeal joints on DL-PM and DM-PL oblique views, as part of pre-purchase examination or diagnosis

  4. Limb muscle sound speed estimation by ultrasound computed tomography excluding receivers in bone shadow

    Science.gov (United States)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Takeuchi, Hideki; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro

    2017-03-01

    Sarcopenia is the degenerative loss of skeletal muscle ability associated with aging. One reason is the increasing of adipose ratio of muscle, which can be estimated by the speed of sound (SOS), since SOSs of muscle and adipose are different (about 7%). For SOS imaging, the conventional bent-ray method iteratively finds ray paths and corrects SOS along them by travel-time. However, the iteration is difficult to converge for soft tissue with bone inside, because of large speed variation. In this study, the bent-ray method is modified to produce SOS images for limb muscle with bone inside. The modified method includes three steps. First, travel-time is picked up by a proposed Akaike Information Criterion (AIC) with energy term (AICE) method. The energy term is employed for detecting and abandoning the transmissive wave through bone (low energy wave). It results in failed reconstruction for bone, but makes iteration convergence and gives correct SOS for skeletal muscle. Second, ray paths are traced using Fermat's principle. Finally, simultaneous algebraic reconstruction technique (SART) is employed to correct SOS along ray paths, but excluding paths with low energy wave which may pass through bone. The simulation evaluation was implemented by k-wave toolbox using a model of upper arm. As the result, SOS of muscle was 1572.0+/-7.3 m/s, closing to 1567.0 m/s in the model. For vivo evaluation, a ring transducer prototype was employed to scan the cross sections of lower arm and leg of a healthy volunteer. And the skeletal muscle SOSs were 1564.0+/-14.8 m/s and 1564.1±18.0 m/s, respectively.

  5. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography.

    Science.gov (United States)

    Scremin, Oscar U; Figoni, Stephen F; Norman, Keith; Scremin, A M Erika; Kunkel, Charles F; Opava-Rutter, Dorene; Schmitter, Eric D; Bert, Alberto; Mandelkern, Mark

    2010-06-01

    To establish whether muscle blood flow (MBF) measurements with O-water positron emission tomography could reliably identify patients with critical limb ischemia and detect and quantify a distal deficit in skeletal MBF in these cases. O-water positron emission tomography scans were performed at rest or during unloaded ankle plantar and dorsiflexion exercise of the diseased leg in 17 subjects with leg ischemia or on a randomly selected leg of 18 age-matched healthy control subjects. TcPO2 was evaluated with Novametrix monitors and perfusion of skin topically heated to 44 degrees C and adjacent nonheated areas with a Moor Instruments laser Doppler imaging scanner. The enhancement of MBF induced by exercise was significantly lower in ischemic than in normal legs, and the sensitivity and specificity of this phenomenon were similar to those of laser Doppler imaging or TcPO2 in identifying ischemia subjects. In addition, the exercise MBF deficit was predominant at the distal-leg levels, indicating the ability of the technique to help determine the correct level of amputation. Skeletal MBF of legs with severe ischemia can be detected accurately with O-water positron emission tomography and could add valuable information about viability of skeletal muscle in the residual limb when deciding the level of an amputation.

  6. Effect of lower limb preference on local muscular and vascular function

    International Nuclear Information System (INIS)

    Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Loenneke, Jeremy P; Kim, Daeyeol; Bemben, Michael G; Abe, Takashi

    2014-01-01

    Unilateral physical training can enhance muscular size and function as well as vascular function in the trained limb. In non-athletes, the preferred arm for use during unilateral tasks may exhibit greater muscular strength compared to the non-preferred arm. It is unclear if lower limb preference affects lower limb vascular function or muscular endurance and power in recreationally active adults. To examine the effect of lower limb preference on quadriceps muscle size and function and on lower limb vascular function in middle-aged adults. Twenty (13 men, 7 women) recreationally-active middle-aged (55 ± 7 yrs) adults underwent measurements of quadriceps muscle thickness, strength, mean power, endurance, and arterial stiffness, calf venous compliance, and calf blood flow in the preferred and non-preferred lower limb. The preferred limb exhibited greater calf vascular conductance (31.6 ± 15.5 versus 25.8 ± 13.0 units flow/mmHg; p = 0.011) compared to the non-preferred limb. The interlimb difference in calf vascular conductance was negatively related to weekly aerobic activity (hrs/week) (r = −0.521; p = 0.019). Lower limb preference affects calf blood flow but not quadriceps muscle size or function. Studies involving unilateral lower limb testing procedures in middle-aged individuals should consider standardizing the testing to either the preferred or non-preferred limb rather than the right or left limb. (paper)

  7. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Directory of Open Access Journals (Sweden)

    Cristina Roldán-Jiménez

    Full Text Available Sit-to-stand (STS tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG, biceps femoris (BF, vastus medialis of the quadriceps (QM, the abdominal rectus (AR, erector spinae (ES, rectus femoris (RF, soleus (SO and the tibialis anterior (TA. Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  8. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Science.gov (United States)

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  9. Reverse Less Invasive Stabilization System (LISS) Plating for Proximal Femur Fractures in Poliomyelitis Survivors: A Report of Two Cases.

    Science.gov (United States)

    Yao, Chen; Jin, Dongxu; Zhang, Changqing

    2017-11-15

    BACKGROUND Poliomyelitis is a neuromuscular disease which causes muscle atrophy, skeletal deformities, and disabilities. Treatment of hip fractures on polio-affect limbs is unique and difficult, since routine fixation methods like nailing may not be suitable due to abnormal skeletal structures. CASE REPORT We report one femoral neck fracture and one subtrochanteric fracture in polio survivors successfully treated with reverse less invasive stabilization system (LISS) plating technique. Both fractures were on polio-affected limbs with significant skeletal deformities and low bone density. A contralateral femoral LISS plate was applied upside down to the proximal femur as an internal fixator after indirect or direct reduction. Both patients had uneventful bone union and good functional recovery. CONCLUSIONS Reverse LISS plating is a safe and effective technique to treat hip fractures with skeletal deformities caused by poliomyelitis.

  10. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  11. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control

    Science.gov (United States)

    Biewener, Andrew A.; Daley, Monica A.

    2009-01-01

    Summary By integrating studies of muscle function with analysis of whole body and limb dynamics, broader appreciation of neuromuscular function can be achieved. Ultimately, such studies need to address non-steady locomotor behaviors relevant to animals in their natural environments. When animals move slowly they likely rely on voluntary coordination of movement involving higher brain centers. However, when moving fast, their movements depend more strongly on responses controlled at more local levels. Our focus here is on control of fast-running locomotion. A key observation emerging from studies of steady level locomotion is that simple spring-mass dynamics, which help to economize energy expenditure, also apply to stabilization of unsteady running. Spring-mass dynamics apply to conditions that involve lateral impulsive perturbations, sudden changes in terrain height, and sudden changes in substrate stiffness or damping. Experimental investigation of unsteady locomotion is challenging, however, due to the variability inherent in such behaviors. Another emerging principle is that initial conditions associated with postural changes following a perturbation define different context-dependent stabilization responses. Distinct stabilization modes following a perturbation likely result from proximo-distal differences in limb muscle architecture, function and control strategy. Proximal muscles may be less sensitive to sudden perturbations and appear to operate, in such circumstances, under feed-forward control. In contrast, multiarticular distal muscles operate, via their tendons, to distribute energy among limb joints in a manner that also depends on the initial conditions of limb contact with the ground. Intrinsic properties of these distal muscle–tendon elements, in combination with limb and body dynamics, appear to provide rapid initial stabilizing mechanisms that are often consistent with spring-mass dynamics. These intrinsic mechanisms likely help to simplify the

  12. Infrared thermography applied to lower limb muscles in elite soccer players with functional ankle equinus and non-equinus condition

    Directory of Open Access Journals (Sweden)

    David Rodríguez-Sanz

    2017-05-01

    Full Text Available Gastrocnemius-soleus equinus (GSE is a foot-ankle complaint in which the extensibility of the gastrocnemius (G and soleus muscles (triceps surae and ankle are limited to a dorsiflexion beyond a neutral ankle position. The asymmetric forces of leg muscles and the associated asymmetric loading forces might promote major activation of the triceps surae, tibialis anterior, transverses abdominal and multifidus muscles. Here, we made infrared recordings of 21 sportsmen (elite professional soccer players before activity and after 30 min of running. These recordings were used to assess temperature modifications on the gastrocnemius, tibialis anterior, and Achilles tendon in GSE and non-GSE participants. We identified significant temperature modifications among GSE and non-GSE participants for the tibialis anterior muscle (mean, minimum, and maximum temperature values. The cutaneous temperature increased as a direct consequence of muscle activity in GSE participants. IR imaging capture was reliable to muscle pattern activation for lower limb. Based on our findings, we propose that non-invasive IR evaluation is suitable for clinical evaluation of the status of these muscles.

  13. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.

    Science.gov (United States)

    Singer, Ellen; Garcia, Tanya; Stover, Susan

    2015-07-16

    Sagittal fractures of the proximal phalanx (P1) in the racehorse appear to be associated with turf racing surfaces, which are known to restrict forward slide of the foot at impact. We hypothesized that restriction of forward foot slip would result in higher P1 bone strains during metacarpophalangeal joint (MCPJ) hyperextension. Unilateral limbs from six equine cadavers were instrumented with strain gauges and bone reference markers to measure dorsoproximal P1 bone strains and MCPJ extension, collateromotion and axial rotation during in vitro limb loading to 10,500 N. By limiting movement of the distal actuator platform, three different foot conditions (forward, free, and restricted) were applied in a randomised block design. Bone reference markers, recorded by video, were analyzed to determine motion of P1 relative to MC3. Rosette strain data were reduced to principal and shear magnitudes and directions. A mixed model ANOVA determined the effect of foot position on P1 bone strains and MCPJ angles. At 10,000 N load, the restricted condition resulted in higher P1 axial compressive (p=0.015), maximum shear (p=0.043) and engineering shear (p=0.046) strains compared to the forward condition. The restricted condition had higher compressive (p=0.025) and lower tensile (p=0.043) principal strains compared to the free condition. For the same magnitude of principal or shear strains, axial rotation and collateromotion angles were greatest for the restricted condition. Therefore, the increase in P1 principal compressive and shear bone strains associated with restricted foot slip indicate that alterations in foot:ground interaction may play a role in fracture occurrence in horses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    Directory of Open Access Journals (Sweden)

    Ana Cotta

    2014-09-01

    Full Text Available Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  15. Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: A review of the English-language literature.

    Science.gov (United States)

    De Brandt, Jana; Spruit, Martijn A; Hansen, Dominique; Franssen, Frits Me; Derave, Wim; Sillen, Maurice Jh; Burtin, Chris

    2018-05-01

    Chronic obstructive pulmonary disease (COPD) patients often experience lower limb muscle dysfunction and wasting. Exercise-based training has potential to improve muscle function and mass, but literature on this topic is extensive and heterogeneous including numerous interventions and outcome measures. This review uses a detailed systematic approach to investigate the effect of this wide range of exercise-based interventions on muscle function and mass. PUBMED and PEDro databases were searched. In all, 70 studies ( n = 2504 COPD patients) that implemented an exercise-based intervention and reported muscle strength, endurance, or mass in clinically stable COPD patients were critically appraised. Aerobic and/or resistance training, high-intensity interval training, electrical or magnetic muscle stimulation, whole-body vibration, and water-based training were investigated. Muscle strength increased in 78%, muscle endurance in 92%, and muscle mass in 88% of the cases where that specific outcome was measured. Despite large heterogeneity in exercise-based interventions and outcome measures used, most exercise-based trials showed improvements in muscle strength, endurance, and mass in COPD patients. Which intervention(s) is (are) best for which subgroup of patients remains currently unknown. Furthermore, this literature review identifies gaps in the current knowledge and generates recommendations for future research to enhance our knowledge on exercise-based interventions in COPD patients.

  16. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  17. Motor unit firing frequency of lower limb muscles during an incremental slide board skating test.

    Science.gov (United States)

    Piucco, Tatiane; Bini, Rodrigo; Sakaguchi, Masanori; Diefenthaeler, Fernando; Stefanyshyn, Darren

    2017-11-01

    This study investigated how the combination of workload and fatigue affected the frequency components of muscle activation and possible recruitment priority of motor units during skating to exhaustion. Ten male competitive speed skaters performed an incremental maximal test on a slide board. Activation of six muscles from the right leg was recorded throughout the test. A time-frequency analysis was performed to compute overall, high, and low frequency bands from the whole signal at 10, 40, 70, and 90% of total test time. Overall activation increased for all muscles throughout the test (p  0.80). There was an increase in low frequency (90 vs. 10%, p = 0.035, ES = 1.06) and a decrease in high frequency (90 vs. 10%, p = 0.009, ES = 1.38, and 90 vs. 40%, p = 0.025, ES = 1.12) components of gluteus maximus. Strong correlations were found between the maximal cadence and vastus lateralis, gluteus maximus and gluteus medius activation at the end of the test. In conclusion, the incremental skating test lead to an increase in activation of lower limb muscles, but only gluteus maximus was sensitive to changes in frequency components, probably caused by a pronounced fatigue.

  18. Limb myokymia

    International Nuclear Information System (INIS)

    Albers, J.W.; Allen, A.A.; Bastron, J.A.; Daube, J.R.

    1981-01-01

    Thirty-eight patients with myokymic discharges localized to limb muscles on needle electromyography had various neurologic lesions, both acute and chronic. Of the 38 patients, 27 had had previous radiation therapy and the clinical diagnosis of radiation-induced plexopathy, myelopathy, or both. For the remaining 11 patients, the diagnoses included multiple sclerosis, inflammatory polyradiculoneuropathy, ischemic neuropathy, inflammatory myopathy, and chronic disorders of the spinal cord and peripheral nerves. The clinical presentations and results of local ischemia, peripheral nerve block, and percutaneous stimulation suggest that most limb myokymic discharges arise focally at the site of a chronic peripheral nerve lesion

  19. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik Study).

    Science.gov (United States)

    Johannesdottir, Fjola; Aspelund, Thor; Siggeirsdottir, Kristin; Jonsson, Brynjolfur Y; Mogensen, Brynjolfur; Sigurdsson, Sigurdur; Harris, Tamara B; Gudnason, Vilmundur G; Lang, Thomas F; Sigurdsson, Gunnar

    2012-05-01

    In a cross-sectional study we investigated the relationship between muscle and bone parameters in the mid-thigh in older people using data from a single axial computed tomographic section through the mid-thigh. Additionally, we studied the association of these variables with incident low-trauma lower limb fractures. A total of 3,762 older individuals (1,838 men and 1,924 women), aged 66-96 years, participants in the AGES-Reykjavik study, were studied. The total cross-sectional muscular area and knee extensor strength declined with age similarly in both sexes. Muscle parameters correlated most strongly with cortical area and total shaft area (adjusted for age, height, and weight) but explained lower limb fractures. Small muscular area, low knee extensor strength, large MA, low cortical thickness, and high BR were significantly associated with fractures in both sexes. Our results show that bone and muscle loss proceed at different rates and with different gender patterns.

  20. Muscle power output properties using the stretch-shortening cycle of the upper limb and their relationships with a one-repetition maximum bench press.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinichi

    2006-05-01

    The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.

  1. The dance’s influence on muscle strength of lower limbs on the elderly

    Directory of Open Access Journals (Sweden)

    Joseane Rodrigues da Silva

    2011-09-01

    Full Text Available The aim of this study was to evaluate the influence of dance in the lower limb muscle strength on the elderly. This research has a qualitative-quantitative aproach. The sample was composed by ten elderly of both sexes, who practiced ballroom dancing classes during twelve weeks. The evaluation was performed before and after the classes and it was composed by a questionnaire with personal data and medical history, “test stand and sit in 30 seconds” and a semi-structured interview with a guiding question regarding the perception of muscular strength of the elderly. The quantitative analysis was performed using the Student’s t-test with a significance level of p<0,05%. The qualitative analysis was made according directions proposed by Minayo (1994. The evaluation of muscle strength measured by the test of sitting and standing up, showed that four participants had a decreased and six had an increase in the number of movements executed, but not existed a significant statistical difference between the values before and after intervention (p=0,1934. However, the speech of the participants showed an improvement on the perception in relation muscle strength, mobility, joviality and self-esteem. It suggests that the effect of the dance, performed in the frequency used in this study, has an effect on the well-being and psychosocial sphere of the elderly. Playful activities in physical therapy performed by groups, bringing benefits, however, it should not be an isolated activity, it should be associated with a specific training to improve muscle strength related to the needs of each elderly.

  2. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    Science.gov (United States)

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  3. Influence of Lateral Muscle Loading in the Proximal Femur after Fracture Stabilization with a Trochanteric Gamma Nail (TGN)

    Science.gov (United States)

    Sitthiseripratip, Kriskrai; Mahaisavariya, Banchong; Suwanprateeb, Jintamai; Bohez, Erik; Vander Sloten, Jos

    The purpose of this study was to investigate the influence of lateral muscle loading on the stress/strain distributions of the trochanteric Gamma nail (TGN) fixation within the healed, trochanteric and subtrochanteric femoral fractures by means of a finite element method. The effect of three muscle groups, the abductors (ABD), the vastus lateralis (VL) and the iliotibial band (ITB), were investigated. The analytical results showed that addition of lateral muscle forces, iliotibial band and vastus lateralis, produced compensation of forces and reduction of bending moments in the bone and in the trochanteric Gamma nail especially in the lateral aspect. The iliotibial band produced a higher impact as compared to the vastus lateralis. Therefore in the finite element analysis of the proximal femur with the trochanteric Gamma nail fracture fixation should include the lateral muscle forces to simulate load condition with maximal physiological relevance to the closed nailing technique.

  4. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    Science.gov (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  6. Reflections on the present and future of upper limb prostheses.

    Science.gov (United States)

    Farina, Dario; Amsüss, Sebastian

    2016-01-01

    Despite progress in research and media attention on active upper limb prostheses, presently the most common commercial upper limb prosthetic devices are not fundamentally different from solutions offered almost one century ago. Limited information transfer for both control and sensory-motor integration and challenges in socket technology have been major obstacles. By analysing the present state-of-the-art and academic achievements, we provide our opinion on the future of upper limb prostheses. We believe that surgical procedures for muscle reinnervation and osseointegration will become increasingly clinically relevant; muscle electrical signals will remain the main clinical means for prosthetic control; and chronic electrode implants, first in muscles (control), then in nerves (sensory feedback), will become viable clinical solutions. After decades of suspended clinically relevant progress, it is foreseeable that a new generation of upper limb prostheses will enter the market in the near future based on such advances, thereby offering substantial clinical benefit for patients.

  7. Operative management of partial-thickness tears of the proximal hamstring muscles in athletes.

    Science.gov (United States)

    Bowman, Karl F; Cohen, Steven B; Bradley, James P

    2013-06-01

    Partial tears of the hamstring muscle origin represent a challenging clinical problem to the patient and orthopaedic surgeon. Although nonoperative treatment is frequently met with limited success, there is a paucity of data on the efficacy of surgical management for partial proximal hamstring tears in the active and athletic population. To evaluate the results of an anatomic repair for partial tears of the hamstring muscle origin in athletes. Case series; Level of evidence, 4. The records of 17 patients with partial tears of the proximal hamstring origin were reviewed after institutional review board approval was obtained. All patients were treated with open debridement and primary tendon repair after failure of at least 6 months of nonoperative therapy. Clinical and operative records, radiographs, and magnetic resonance images were reviewed for all patients. A patient-reported outcomes survey was completed by 14 patients that included the Lower Extremity Functional Score (LEFS), Marx activity rating scale, custom LEFS and Marx scales, and subjective patient satisfaction scores. Early and late postoperative complications were recorded. There were 3 male and 14 female patients; their average age was 43 years (range, 19-64 years) and average follow-up was 32 months (range, 12-51 months). There were 2 collegiate athletes (field hockey, track), 14 amateur athletes (distance running, waterskiing, tennis), and a professional bodybuilder. Postoperative LEFS was 73.3 ± 9.9 (range, 50-80) and custom LEFS was 66.7 ± 17.0 (range, 37-80) of a maximum 80 points. The most commonly reported difficulty was with prolonged sitting and explosive direction change while running. The average Marx score was 6.5 ± 5.3 (range, 0-16) of a maximum 16, correlating with a greater return to recreational running activities in this patient cohort than regular participation in pivoting or cutting sports. Marx custom scores were 20 of a maximum 20 in all patients, demonstrating no disability in

  8. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses

    Science.gov (United States)

    Clites, Tyler R.; Carty, Matthew J.; Srinivasan, Shriya; Zorzos, Anthony N.; Herr, Hugh M.

    2017-06-01

    Objective. Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. Approach. (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. Main results. Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. Significance. These results indicate that the AMI has the potential to communicate meaningful kinesthetic

  9. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    Science.gov (United States)

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  10. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I

    DEFF Research Database (Denmark)

    Willis, Tracey A; Hollingsworth, Kieren G; Coombs, Anna

    2014-01-01

    -related protein (FKRP) gene were recruited. In each patient, T1-weighted (T1w) imaging was assessed by qualitative grading for 15 individual lower limb muscles and quantitative Dixon imaging was analysed on 14 individual lower limb muscles by region of interest analysis. We described the pattern and appearance......) that the quantitative Dixon technique is an objective quantitative marker of disease and (ii) new observations of gender specific patterns of muscle involvement in LGMD2I....

  11. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    Science.gov (United States)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  12. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    International Nuclear Information System (INIS)

    Li, J; Rutkove, S B

    2013-01-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  13. ANATOMICAL VARIATIONS OF THE GASTROCNEMIUS MUSCLE- A DISSECTION-BASED STUDY

    Directory of Open Access Journals (Sweden)

    Rajat Dutta Roy

    2017-11-01

    Full Text Available BACKGROUND In human, the bulk of the posterior compartment of the leg is formed by the gastrocnemius and the soleus muscle. The superficially-placed gastrocnemius is a bipennate muscle, but according to available literature, it exhibits numerous anatomical variations. The aim of the present study is to find out the anatomical variations of the gastrocnemius muscle in this part of Assam. MATERIALS AND METHODS The present study undertaken in the Department of Anatomy, Jorhat Medical College, from August 2014 to August 2017 included 30 lower limbs from 15 embalmed cadavers of known sexes. These cadavers were provided to the first year MBBS students for routine dissection procedure. After carrying out the dissection as per Cunningham’s Manual of Practical Anatomy, the gastrocnemius muscle was examined for its two heads of origin. Any accessory heads found were noted and recorded. RESULTS Out of the 30 lower limb specimens, 28 (93.33% limbs presented with the normal two-headed gastrocnemius muscle, while 2 (6.66% limbs (1 right and 1 left, presented with four-headed gastrocnemius muscle. Both these limbs belonged to male cadavers. CONCLUSION The precise knowledge of occurrence of multi-headed gastrocnemius muscle should be kept in mind, while performing myocutaneous flaps around the knee joint and also during limb salvage procedures or limb sparing surgery.

  14. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    Science.gov (United States)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  15. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity.

    Science.gov (United States)

    Rice, Hannah; Fallowfield, Joanne; Allsopp, Adrian; Dixon, Sharon

    2017-05-01

    The high stress fracture occurrence in military populations has been associated with frequent load carriage activities. This study aimed to assess the influence of load carriage and of completing a load carriage training activity on gait characteristics. Thirty-two Royal Marine recruits completed a 12.8-km load carriage activity as part of their military training. Data were collected during walking in military boots, pre and post-activity, with and without the additional load (35.5 kg). Ground contact time, lower limb sagittal plane kinematics and kinetics, and electromyographic variables were obtained for each condition. When carrying load, there was increased ground contact time, increased joint flexion and joint moments, and increased plantar flexor and knee extensor muscle activity. Post-activity, there were no changes to kinematic variables, knee extensor moments were reduced, and there was evidence of plantar flexor muscle fatigue. The observed gait changes may be associated with stress fracture development. Practitioner Summary: This study identified gait changes due to load carriage and after a military load carriage training activity. Such activities are associated with lower limb stress fractures. A pre-post study design was used. Gait mechanics changed to a greater extent when carrying load, than after completion of the activity when assessed without load.

  16. Proximal focal femoral deficiency: A case report

    Directory of Open Access Journals (Sweden)

    Shashank Sharma

    2015-01-01

    Full Text Available Proximal focal femoral deficiency (PFFD is a rare congenital anomaly resulting in limb shortening and disability in young. The exact cause of the disease is not known and it may present as varying grades of affection involving the proximal femur and the acetabulum. Recognition of this rare abnormality on radiographs can help manage these cases better since early institution of therapy may help in achieving adequate growth of the femur.

  17. Exercise-induced muscle fatigue in the unaffected knee joint and its influence on postural control and lower limb kinematics in stroke patients

    Directory of Open Access Journals (Sweden)

    Sun Wook Park

    2017-01-01

    Full Text Available This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.

  18. Effect of limb demand ischemia on autophagy and morphology in mice.

    Science.gov (United States)

    Albadawi, Hassan; Oklu, Rahmi; Milner, John D; Uong, Thuy P; Yoo, Hyung-Jin; Austen, William G; Watkins, Michael T

    2015-10-01

    Obesity is a major risk factor for diabetes and peripheral arterial disease, which frequently leads to lower limb demand ischemia. Skeletal muscle autophagy and mitochondrial biogenesis are important processes for proper oxidative capacity and energy metabolism, which are compromised in diabetes. This study compares autophagy, mitochondrial biogenesis, energy metabolism, and morphology in the hind limbs of obese diabetic mice subjected to demand or sedentary ischemia. Unilateral hind limb demand ischemia was created in a group of diet-induced obese mice after femoral artery ligation and 4 wk of daily exercise. A parallel group of mice underwent femoral artery ligation but remained sedentary for 4 wk. Hind limb muscles were analyzed for markers of autophagy, mitochondrial biogenesis, adenosine triphosphate, and muscle tissue morphology. At the end of the 4-wk exercise period, demand ischemia increased the autophagy mediator Beclin-1, but it did not alter the autophagy indicator, LC3B-II/I ratio, or markers of mitochondrial biogenesis, optic atrophy/dynamin-related protein. In contrast, exercise significantly increased the level of mitochondrial protein-succinate dehydrogenase subunit-A and reduced adipocyte accumulation and the percentage of centrally nucleated myofibers in the demand ischemia limb. In addition, demand ischemia resulted in decreased uncoupling protein-3 levels without altering muscle adenosine triphosphate or pS473-Akt levels. Limb demand ischemia markedly decreased adipocyte accumulation and enhanced muscle regeneration in obese mice, but it did not appear to enhance autophagy, mitochondrial biogenesis, energy metabolism, or insulin sensitivity. Future studies aimed at evaluating novel therapies that enhance autophagy and mitochondrial biogenesis in diabetes with peripheral arterial disease are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of Ankle-foot Orthosis on Lower Limb Muscle Activities and Static Balance of Stroke Patients Authors’ Names

    OpenAIRE

    Lee, Youngmin; Her, Jin Gang; Choi, Youngeun; Kim, Heesoo

    2014-01-01

    [Purpose] This study examined the effects of an ankle-foot orthosis worn during balance training on lower limb muscle activity and static balance of chronic stroke patients. [Subjects] The subjects were twenty-five inpatients receiving physical therapy for chronic stroke. [Methods] The chronic stroke patients were divided into two groups: thirteen patients were assigned to the ankle-foot orthosis group, while the remaining twelve patients wore only their shoes. Each group performed balance tr...

  20. A newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement

    NARCIS (Netherlands)

    van der Kooi, A. J.; Ledderhof, T. M.; de Voogt, W. G.; Res, C. J.; Bouwsma, G.; Troost, D.; Busch, H. F.; Becker, A. E.; de Visser, M.

    1996-01-01

    Sixty-five members of three families with limb girdle muscular dystrophy (LGMD) underwent neurological, cardiological, and ancillary investigations. Thirty-five individuals were diagnosed as having slowly progressive autosomal dominant LGMD. Symmetrical weakness started in the proximal lower limb

  1. GH/IGF-I Transgene Expression on Muscle Homeostasis

    Science.gov (United States)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  2. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study.

    Science.gov (United States)

    Yasuda, Tomohiro; Fujita, Satoshi; Ogasawara, Riki; Sato, Yoshiaki; Abe, Takashi

    2010-09-01

    Single-joint resistance training with blood flow restriction (BFR) results in significant increases in arm or leg muscle size and single-joint strength. However, the effect of multijoint BFR training on both blood flow restricted limb and non-restricted trunk muscles remain poorly understood. To examine the impact of BFR bench press training on hypertrophic response to non-restricted (chest) and restricted (upper-arm) muscles and multi-joint strength, 10 young men were randomly divided into either BFR training (BFR-T) or non-BFR training (CON-T) groups. They performed 30% of one repetition maximal (1-RM) bench press exercise (four sets, total 75 reps) twice daily, 6 days week(-1) for 2 weeks. During the exercise session, subjects in the BFR-T group placed elastic cuffs proximally on both arms, with incremental increases in external compression starting at 100 mmHg and ending at 160 mmHg. Before and after the training, triceps brachii and pectoralis major muscle thickness (MTH), bench press 1-RM and serum anabolic hormones were measured. Two weeks of training led to a significant increase (Pbench press strength in BFR-T (6%) but not in CON-T (-2%). Triceps and pectoralis major MTH increased 8% and 16% (Pbench press training leads to significant increases in muscle size for upper arm and chest muscles and 1-RM strength.

  3. Limb muscle quality and quantity in elderly adults with dynapenia but not sarcopenia: An ultrasound imaging study.

    Science.gov (United States)

    Chang, Ke-Vin; Wu, Wei-Ting; Huang, Kuo-Chin; Jan, Wei Han; Han, Der-Sheng

    2018-03-28

    Dynapenia is prevalent in people with reduced skeletal muscle mass, i.e. sarcopenia, but a certain population develops muscle strength loss despite having normal skeletal muscle volume. To date, studies investigating muscle quality and quantity in groups with dynapenia but not sarcopenia are limited. Echogenicity and thickness of the biceps brachii, triceps brachii, rectus femoris, and medial gastrocnemius muscles were measured using high-resolution ultrasonography in 140 community-dwelling elderly adults. Participants with decreased handgrip strength but normal muscular volume were diagnosed as having dynapenia without sarcopenia. A multivariate regression model was used to analyze the association between dynapenia and ultrasound indicators of the sampled muscle expressed as odds ratio (OR) and 95% confidence interval (CI). A total of 140 participants were recruited for the study, 12.6% (n = 18) of whom had dynapenia. The dynapenia group had a higher mean age, higher proportion of women, slower fast gait speed, reduced handgrip strength, and decreased thicknesses of the biceps brachii, rectus femoris, and medial gastrocnemius muscles. On multivariate logistic regression analysis, dynapenia was associated with older age (OR, 1.18; 95% CI, 1.05 to 1.33), higher body mass index (OR, 1.28; 95% CI, 1.05 to 1.64), and decreased thicknesses of the rectus femoris (OR, 0.01; 95% CI, <0.01 to 0.24) and medial gastrocnemius muscles (OR, 0.03; 95% CI, <0.01 to 0.61). Dynapenia without sarcopenia is associated with decreased thicknesses of the rectus femoris and medial gastrocnemius muscles, an association that remains significant after adjustment for demographics, body composition, and physical performance. Ultrasound measurements of lower-limb muscle thickness can be considered an auxiliary criterion for evaluating dynapenia. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Novel syndrome of four-limb proximal fragility fractures associated with HIV infection, cholestatic liver failure, and histiocytic infiltration of bone marrow.

    Science.gov (United States)

    Yu, Run; Nissen, Nicholas N; Balzer, Bonnie; Fan, Xuemo

    2012-01-01

    We report a syndrome of four-limb proximal fragility fractures associated with HIV infection, cholestatic liver failure, and histiocytic infiltration of bone marrow in a 40-year-old African American man. The patient presented with multiple fractures in the proximal humeri and femurs without osteopenia in the vertebrae. His right humerus appeared normal on chest X-ray film 3 years before presentation when he was first diagnosed with HIV infection and abnormal liver functions. At presentation, the patient had vitamin D deficiency, hypogonadism, and low IGF- 1 levels, but did not have hyperparathyroidism. Bone biopsy showed diffuse foamy histiocytic infiltration of bone marrow at all fracture sites without evidence of infectious or neoplastic processes. Exhaustive search did not identify any similar cases in the English literature. Our case likely represents a novel syndrome, the etiology of which is probably multifactorial and includes HIV infection, cholestatic liver failure, immobility, and endocrine abnormalities. The case further calls for the need for monitoring of bone health in patients with HIV infection or liver disease.

  5. Are there radiologically identifiable prodromal changes in Thoroughbred racehorses with parasagittal fractures of the proximal phalanx?

    Science.gov (United States)

    Smith, M R W; Wright, I M

    2014-01-01

    Fractures of the proximal phalanx are generally considered to result from monotonic supraphysiological loads, but radiological observations from clinical cases suggest there may be a stress-related aetiology. To determine whether there are radiologically identifiable prodromal changes in Thoroughbred racehorses with confirmed parasagittal fractures of the proximal phalanx. Retrospective cross-sectional study. Case records and radiographs of Thoroughbred racehorses with parasagittal fractures of the proximal phalanx were analysed. Thickness of the subchondral bone plate was measured in fractured and contralateral limbs, and additional radiological features consistent with prodromal fracture pathology documented. The subchondral bone plate was significantly thicker in affected than in contralateral limbs. Evidence of additional prodromal fracture pathology was observed in 15/110 (14%) limbs with parasagittal fractures, and in 4% of contralateral limbs. The results of this study are not consistent with monotonic loading as a cause of fracture in at least a proportion of cases, but suggest a stress-related aetiology. Increased thickness of the subchondral bone plate may reflect (failed) adaptive changes that precede fracture. Better understanding of the aetiology of fractures of the proximal phalanx may help develop strategies to reduce the risk of fracture. © 2013 EVJ Ltd.

  6. [Avulsion of the Proximal Hamstring Insertion. Case Reports].

    Science.gov (United States)

    Mizera, R; Harcuba, R; Kratochvíl, J

    2016-01-01

    Proximal hamstring avulsion is an uncommon muscle injury with a lack of consensus on indications and the timing and technique of surgery. Poor clinical symptoms and difficulties in the diagnostic process can lead to a false diagnosis. The authors present three cases of proximal hamstring avulsion, two complete and one partial ruptures of the biceps femoris muscle. MRI and ultrasound scans were used for optimal treatment alignment. Acute surgery reconstruction (hamstring strength. Two interesting systematic reviews published on the treatment of proximal hamstring avulsion are discussed in the final part of the paper. Key words: hamstring, rupture, avulsion.

  7. EFFECT OF UPPER-LIMB AND THORACIC MUSCLE STRENGTH ON 6-MIN WALK DISTANCE IN COPD PATIENTS

    Directory of Open Access Journals (Sweden)

    D Varalakshmi

    2014-06-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is the only cause of death from chronic disease that will increase worldwide until 2020 and it represents a big burden for patients and society. Patients with COPD characteristically show poor exercise performance indicated by a marked reduction in both peak pulmonary 02 uptake and work rate at peak exercise. The sequelae of exercise intolerance include increased difficulty in performing daily tasks, etc. The objective of the study is to investigate the influence of thoracic and upper limb muscle function on 6-min walk distance (6MWD in patients with COPD. Method: Thirty eight COPD patients were included if they fulfilled the criteria for COPD according to the Global Initiative for Chronic Obstructive Lung Disease guidelines. Prospective, cross-sectional design with sample size of 38 patients. All patients performed 6MWD and 1RM exercises. Results: To study the correlation between variables, Pearson or Spearman coefficients of correlation were used with the level of statistical significance set at 5%.Results of this study suggested for the first time that thoracic muscle strength is a predictor of 6MWD in COPD patients. It also confirms the influence of respiratory muscle strength (Pimax, dyspnea, on the 6MWD of these patients. Conclusion: It is concluded that peripheral muscle strength, respiratory muscle strength, and the sensation of dyspnea all have an influence on the capacity of COPD patients to perform exercises.

  8. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  9. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Science.gov (United States)

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  10. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    Science.gov (United States)

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Effect of pneumatic tourniquet on muscle oxygen tension.

    Science.gov (United States)

    Santavirta, S; Höckerstedt, K; Niinikoski, J

    1978-10-01

    Recent investigations suggest that circulation in a limb can be reduced with a tourniquet to less than 1 per cent of the control limb, or even completely occluded. The development of tissue oxygen tonometry with implanted silastic tubes has provided new possibilities for assessing muscle tissue oxygen tension. In the present work, this method was employed to register the effect of tourniquet blackade on the lower limb muscle PO2 in rabbits. The duration of the tourniquet blockade was 60, 120 and 180 minutes. The baseline muscle PO2 in the tibialis anterior muscle was 22.6 +/- 0.6 mmHg. During the tourniquet blockade the oxygen tension dropped to minimal values between 9.2 +/- 0.5 and 10.7 +/- 0.6 mmHg in these experimental groups, but the tissue microclimate never reached fully anoxic conditions. The rapid response of muscle PO2 to oxygen breathing after release of the blockade suggests that limb microcirculation tolerates tourniquet occlusion well.

  12. RARE PRESENTATION OF SYMPTOMATIC BILATERAL PROXIMAL POPLITEAL ARTERY ANEURYSM

    Directory of Open Access Journals (Sweden)

    Thulasikumar Ganapathy

    2016-07-01

    Full Text Available True Popliteal artery aneurysm is the most common of all the peripheral artery aneurysms. We present a case of proximal popliteal artery aneurysm involvement both lower limb presented with gangrene in one lower limb and incapacitating claudication pain on the other lower limb. We have successfully repaired both sides aneurysm in the same sitting with Poly Tetra Fluro Ethylene (PTFE graft, as the patient also had multiple venous perforators’ involvement on both sides, which left us only with synthetic graft repair option rather than venous graft repair.

  13. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb.

    Science.gov (United States)

    Patel, Ashish S; Smith, Alberto; Nucera, Silvia; Biziato, Daniela; Saha, Prakash; Attia, Rizwan Q; Humphries, Julia; Mattock, Katherine; Grover, Steven P; Lyons, Oliver T; Guidotti, Luca G; Siow, Richard; Ivetic, Aleksandar; Egginton, Stuart; Waltham, Matthew; Naldini, Luigi; De Palma, Michele; Modarai, Bijan

    2013-06-01

    A third of patients with critical limb ischemia (CLI) will eventually require limb amputation. Therapeutic neovascularization using unselected mononuclear cells to salvage ischemic limbs has produced modest results. The TIE2-expressing monocytes/macrophages (TEMs) are a myeloid cell subset known to be highly angiogenic in tumours. This study aimed to examine the kinetics of TEMs in patients with CLI and whether these cells promote neovascularization of the ischemic limb. Here we show that there are 10-fold more circulating TEMs in CLI patients, and removal of ischemia reduces their numbers to normal levels. TEM numbers in ischemic muscle are two-fold greater than normoxic muscle from the same patient. TEMs from patients with CLI display greater proangiogenic activity than TIE2-negative monocytes in vitro. Using a mouse model of hindlimb ischemia, lentiviral-based Tie2 knockdown in TEMs impaired recovery from ischemia, whereas delivery of mouse macrophages overexpressing TIE2, or human TEMs isolated from CLI patients, rescued limb ischemia. These data suggest that enhancing TEM recruitment to the ischemic muscle may have the potential to improve limb neovascularization in CLI patients. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  14. Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix

    2014-08-01

    Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

  15. Proximal focal femoral deficiency: evaluation by MR imaging

    International Nuclear Information System (INIS)

    Biko, David M.; Davidson, Richard; Pena, Andres; Jaramillo, Diego

    2012-01-01

    Proximal focal femoral deficiency (PFFD) is a rare congenital anomaly characterized by abnormal development of the proximal femur. The most common radiographic classification (Aitken) does not evaluate the cartilaginous and soft-tissue abnormalities. To demonstrate MR findings of PFFD focusing on features not seen with radiographs. Nine MR examinations of the hip and femurs of seven children with PFFD were retrospectively reviewed. Imaging was quantitatively and qualitatively assessed comparing the affected limb to the contralateral limb and age-matched controls. The children were classified via the Aitken classification. All children had at least mild acetabular dysplasia, and one type D patient had no acetabulum. MR demonstrated that 4/6 children had labral hypertrophy with a decreased distance from the greater trochanter to the acetabular rim, suggesting impingement (P < 0.05). The proximal femoral physis was abnormal in all cases. The connection between the femoral head and shaft if present was fibrous or fibrocartilaginous. MRI can help in evaluation of PFFD by defining the anatomy. MR demonstrates features of the acetabulum and cartilaginous femoral epiphysis and depicts ligamentous abnormalities of the knee. (orig.)

  16. Proximal focal femoral deficiency: evaluation by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Biko, David M. [National Naval Medical Center, Department of Radiology, Bethesda, MD (United States); Uniformed Services University of Health Sciences, Department of Radiology and Radiological Sciences, Bethesda, MD (United States); Davidson, Richard [The Children' s Hospital of Philadelphia, Department of Orthopedic Surgery, Philadelphia, PA (United States); Pena, Andres; Jaramillo, Diego [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2012-01-15

    Proximal focal femoral deficiency (PFFD) is a rare congenital anomaly characterized by abnormal development of the proximal femur. The most common radiographic classification (Aitken) does not evaluate the cartilaginous and soft-tissue abnormalities. To demonstrate MR findings of PFFD focusing on features not seen with radiographs. Nine MR examinations of the hip and femurs of seven children with PFFD were retrospectively reviewed. Imaging was quantitatively and qualitatively assessed comparing the affected limb to the contralateral limb and age-matched controls. The children were classified via the Aitken classification. All children had at least mild acetabular dysplasia, and one type D patient had no acetabulum. MR demonstrated that 4/6 children had labral hypertrophy with a decreased distance from the greater trochanter to the acetabular rim, suggesting impingement (P < 0.05). The proximal femoral physis was abnormal in all cases. The connection between the femoral head and shaft if present was fibrous or fibrocartilaginous. MRI can help in evaluation of PFFD by defining the anatomy. MR demonstrates features of the acetabulum and cartilaginous femoral epiphysis and depicts ligamentous abnormalities of the knee. (orig.)

  17. Skeletal muscle substrate metabolism during exercise: methodological considerations

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; González-Alonso, J; Sacchetti, M

    1999-01-01

    and the respiratory exchange ratio. However, if the aim is to quantify limb or muscle metabolism, invasive measurements have to be carried out, such as the determination of blood flow, arterio-venous (a-v) difference measurements for O2 and relevant substrates, and biopsies of the active muscle. As many substrates...... substrates. There are several methodological concerns to be aware of when studying the metabolic response to exercise in human subjects. These concerns include: (1) the muscle mass involved in the exercise is largely unknown (bicycle or treadmill). Moreover, whether the muscle sample obtained from a limb......; (3) the use of net limb glycerol release to estimate lipolysis is probably not valid (triacylglycerol utilization by muscle), since glycerol can be metabolized in skeletal muscle; (4) the precision of blood-borne substrate concentrations during exercise measured by a-v difference is hampered since...

  18. Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.

    Science.gov (United States)

    Sheldon, Ryan D; Roseguini, Bruno T; Thyfault, John P; Crist, Brett D; Laughlin, M H; Newcomer, Sean C

    2012-06-01

    The mechanisms by which intermittent pneumatic leg compression (IPC) treatment effectively treats symptoms associated with peripheral artery disease remain speculative. With the aim of gaining mechanistic insight into IPC treatment, the purpose of this study was to investigate the effect of IPC frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression. In this two study investigation, healthy male subjects underwent an hour of either high-frequency (HF; 2-s inflation/3-s deflation) or low-frequency (LF; 4-s inflation/16-s deflation) IPC treatment of the foot and calf. In study 1 (n = 11; 23.5 ± 4.7 yr), subjects underwent both HF and LF treatment on separate days. Doppler/ultrasonography was used to measure popliteal artery diameter and blood velocity at baseline and during IPC treatment. Flow-mediated dilation (FMD) and peak reactive hyperemia blood flow (RHBF) were determined before and after IPC treatment. In study 2 (n = 19; 22.0 ± 4.6 yr), skeletal muscle biopsies were taken from the lateral gastrocnemius of the treated and control limb at baseline and at 30- and 150-min posttreatment. Quantitative PCR was used to assess mRNA concentrations of genes associated with inflammation and vascular remodeling. No treatment effect on vascular function was observed. Cuff deflation resulted in increased blood flow (BF) and shear rate (SR) in both treatments at the onset of treatment compared with baseline (P < 0.01). BF and SR significantly diminished by 45 min of HF treatment only (P < 0.01). Both treatments reduced BF and SR and elevated oscillatory shear index compared with baseline (P < 0.01) during cuff inflation. IPC decreased the mRNA expression of cysteine-rich protein 61 from baseline and controls (P <0 .01) and connective tissue growth factor from baseline (P < 0.05) in a frequency-dependent manner. In conclusion, a single session of IPC acutely impacts limb hemodynamics and skeletal muscle gene expression in a frequency

  19. [Analysis of fatigue associated to periodic limb movement during sleep in former poliomyelitis patients].

    Science.gov (United States)

    Oliveira, A R; Correa, F I; Correa, J C F; Oliveira, L V F

    2012-01-01

    Following poliomyelitis, patients may experience sleep disorders stemming from periodic limb movement, leading to fatigue and compromised muscle function the following day. To establish the presence or absence of muscle fatigue in these patients using electromyography and relating the data to polysomnographic findings. An analytical cross-sectional study was carried out involving 19 individuals with motor sequelae in the lower limbs stemming from poliomyelitis. Quantitative tests for the assessment of neurophysiological aspects (knee-jerk/Achilles reflexes and peripheral muscle strength of rectus femoris) and a sleep study (standard, level I polysomnography) were administered. A statistically significant difference was detected (p fatigue associated to sleep disorder. Individuals with sequelae from poliomyelitis exhibit sleep disorders that may lead to muscle fatigue. Periodic limb movement may contribute to this phenomenon.

  20. Navicular bone fracture in the pelvic limb in two horses

    International Nuclear Information System (INIS)

    Kaser-Hotz, B.; Ueltschi, G.; Hess, N.

    1991-01-01

    The case history, radiographic and scintigraphic findings of two horses with pelvic limb navicular bone fractures are presented. In both cases the fractures were of traumatic origin. One horse had a bilateral fracture of the navicular bone, distal border, the other horse had a fracture of the proximal articular border in one pelvic limb navicular bone

  1. Pathology and prognosis of proximal-type cervical spondylotic amyotrophy: new assessment using compound muscle action potentials of deltoid and biceps brachii muscles.

    Science.gov (United States)

    Imajo, Yasuaki; Kato, Yoshihiko; Kanchiku, Tsukasa; Suzuki, Hidenori; Taguchi, Toshihiko

    2011-04-01

    Case studies of patients with cervical spondylotic amyotrophy (CSA) used compound muscle action potentials (CMAPs) of deltoid and biceps brachii muscles. To discuss pathology and prognosis from the magnetic resonance imaging (MRI) and CMAPs of deltoid and biceps brachii muscles. CSA is a rare type of cervical spondylotic disorder. Selective lesions in ventral nerve roots (VNR) or anterior horns (AH) have been proposed to explain the pathology of CSA, but these are not well understood. Conservative therapy was performed in 21 patients with the proximal-type CSA. Patients were classified into two groups: 13 with incomplete recovery of deltoid and biceps brachii muscle strength (Group 1) and 8 with complete recovery (Group 2). All underwent MRI. Erb-point-stimulated CMAPs were recorded in the deltoid and biceps. Measurements of CMAPs included negative-peak amplitude from the baseline to peak. The percentage amplitude of CMAPs was calculated in contrast to the opposite side. Sagittal T2-weighted MRI showed spinal cord compression in all patients from Group 1 and in four patients from Group 2. Deltoid muscle CMAPs: Three patients from Group 1 and all eight patients from Group 2 had a CMAPs' amplitude on the normal side that was greater than 10 mV. Biceps brachii muscle CMAPs: four patients from Group 1 and four patients from Group 2 had a CMAPs' amplitude on the normal side that was greater than 10 mV. Patients with a CMAPs amplitude on the normal side that exceeded 10 mV had no impingement of the AH. A CMAPs' amplitude that exceeded 10 mV on the normal side and a CMAPs' amplitude of more than 50% on the affected side compared with the normal side indicated slight involvement of VNR. These patients were able to fully recover function.

  2. Radiographic and Computed Tomographic Configuration of Incomplete Proximal Fractures of the Proximal Phalanx in Horses Not Used for Racing.

    Science.gov (United States)

    Brünisholz, Hervé P; Hagen, Regine; Fürst, Anton E; Kuemmerle, Jan M

    2015-10-01

    To characterize the configuration of incomplete proximal fractures of the proximal phalanx (P1) in horses not used for racing and compare radiographic with computed tomography (CT) findings. Historical cohort. Twenty-four horses with incomplete fractures of P1. Medical records of horses not used for racing diagnosed with an incomplete proximal fracture of P1 based on clinical and radiographic examination and confirmed by CT between 2008 and 2013 were retrieved. Radiographs and CT studies of these horses were analyzed using a subjective grading system and by measuring variables that characterized fracture configuration. Twenty-four horses were included (20 Warmbloods) with a mean age of 9.5 years and mean body weight of 574 kg. Fourteen forelimbs and 10 hind limbs were affected. Mean duration of lameness was 8.7 weeks. Computed tomography was superior to radiography in both identifying the fracture and determining fracture size and location. On CT, 92% of fractures were located in the mid-sagittal plane. Mean proximodistal length of the fracture was 13 mm. Fractures were frequently not bicortical. Fractures in forelimbs were located significantly more dorsally than fractures in hind limbs. A distinct fracture pattern with 2 subchondral lines running parallel in close proximity to each other was identified in 54% of cases. Incomplete proximal fractures of P1 have significant variation in their configurations, especially their dorsopalmar/-plantar location. Computed tomography examination allowed clear identification of the fracture configurations and was superior to radiography. © Copyright 2015 by The American College of Veterinary Surgeons.

  3. The peroneus quartus muscle: clinical correlation with evolutionary importance.

    Science.gov (United States)

    Athavale, Sunita Arvind; Gupta, Vanita; Kotgirwar, Sheetal; Singh, Vikrant

    2012-06-01

    The peroneus quartus (PQ) is an accessory muscle of the peroneal/lateral compartment of the leg. The muscle has often been implicated as a cause of pain in the lateral ankle region, and subluxation or attrition of the peroneal tendons. The present study was aimed at observing the prevalence and morphology of this muscle in human cadavers. Ninety-two embalmed lower limbs were dissected for this study. The PQ muscle was found in 21% of the limbs. In all these limbs it originated from the lower part of the lateral surface of the fibula, the undersurface of peroneus brevis and the posterior intermuscular septum. In the majority of limbs, insertion was on the retrotrochlear eminence of the calcaneus. Taking into account the possibility of this muscle being a cause of lateral ankle pathology, the present study attempts to correlate the findings with the anatomy of the surrounding region. The frequent occurrence of this muscle in humans is suggestive of a progressive evolutionary change to evert the foot in order to assume a bipedal gait.

  4. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs with full

  5. Proximal hamstring morphology and morphometry in men: an anatomic and MRI investigation.

    Science.gov (United States)

    Storey, R N; Meikle, G R; Stringer, M D; Woodley, S J

    2016-12-01

    The proximal musculo-tendinous junction (MTJ) is a common site of hamstring strain injury but the anatomy of this region is not well defined. A morphometric analysis of the proximal MTJs of biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) was undertaken from dissection of 10 thighs from five male cadavers and magnetic resonance imaging of 20 thighs of 10 active young men. The length, volume, and cross-sectional area of the proximal tendon, MTJ and muscle belly, and muscle-tendon interface area were calculated. In both groups, MTJs were reconstructed three-dimensionally. The proximal tendons and MTJs were expansive, particularly within SM and BFlh. Morphology varied between muscles although length measurements within individual muscles were similar in cadavers and young men. Semimembranosus had the longest proximal tendon (cadavers: mean 33.6 ± 2.0 cm; young men: mean 31.7 ± 1.6 cm) and MTJ (>20 cm in both groups) and the greatest muscle-tendon interface area, followed by BFlh and ST. Mean muscle belly volumes were more than three times greater in young men than elderly male cadavers (P hamstring anatomy, an important factor in the pathogenesis of hamstring strain injury. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  7. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.

    Science.gov (United States)

    Bertolaccini, Guilherme da Silva; Carvalho Filho, Idinei Francisco Pires de; Christofoletti, Gustavo; Paschoarelli, Luis Carlos; Medola, Fausto Orsi

    2018-06-01

    Wheelchair configuration is an important factor influencing the ergonomics of the user-device interface and, from a biomechanical point of view, small changes in chair setup may have a positive influence on the demand on the upper limbs during manual propulsion. This study aimed to investigate the influence of the position of the rear wheels' axle and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion. Electromyography signals of the biceps, triceps, anterior deltoids and pectoralis major were collected for 11 able-bodied subjects in a wheelchair propulsion protocol with four different wheelchair configurations (differing in axle position and the use of accessories) on a straightforward sprint and a slalom course. With accessories, moving the axle forward led to a decrease in the activity of all muscles in both the straightforward sprint (significant differences in triceps, anterior deltoids and biceps) and the slalom course (significant difference in anterior deltoids and biceps). However, when propelling the chair without accessories, no difference was found related to axle position. Changes in wheelchair configuration can influence the ergonomics of manual wheelchair propulsion. Reducing the biomechanical loads may benefit users' mobility, independence and social participation.

  8. Activity of Lower Limb Muscles During Squat With and Without Abdominal Drawing-in and Pilates Breathing.

    Science.gov (United States)

    Barbosa, Alexandre C; Martins, Fábio M; Silva, Angélica F; Coelho, Ana C; Intelangelo, Leonardo; Vieira, Edgar R

    2017-11-01

    Barbosa, AC, Martins, FM, Silva, AF, Coelho, AC, Intelangelo, L, and Vieira, ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res 31(11): 3018-3023, 2017-The purpose of this study was to assess the effects of abdominal drawing-in and Pilates breathing on the activity of lower limb muscles during squats. Adults (n = 13, 22 ± 3 years old) with some Pilates experience performed three 60° squats under each of the following conditions in a random order: (I) normal breathing, (II) drawing-in maneuver with normal breathing, and (III) drawing-in maneuver with Pilates breathing. Peak-normalized surface electromyography of the rectus femoris, biceps femoris, gastrocnemius medialis, and tibialis anterior during the knee flexion and extension phases of squat exercises was analyzed. There were significant differences among the conditions during the knee flexion phase for the rectus femoris (p = 0.001), biceps femoris (p = 0.038), and tibialis anterior (p = 0.001), with increasing activation from conditions I to III. For the gastrocnemius medialis, there were significant differences among the conditions during the knee extension phase (p = 0.023), with increased activity under condition I. The rectus and biceps femoris activity was higher during the extension vs. flexion phase under conditions I and II. The tibialis anterior activity was higher during the flexion compared with the extension phase under all conditions, and the medial gastrocnemius activity was higher during the extension phase under condition I. Doing squats with abdominal drawing-in and Pilates breathing resulted in increased rectus, biceps femoris, and tibialis anterior activity during the flexion phase, increasing movement stability during squat exercises.

  9. Lower limb muscle activity during forefoot and rearfoot strike running techniques.

    Science.gov (United States)

    Landreneau, Lindsey L; Watts, Kayla; Heitzman, Jill E; Childers, W Lee

    2014-12-01

    Distance running offers a method to improve fitness but also has a risk of lower limb overuse injuries. Foot strike technique has been suggested as a method to alter loading of the lower limb and possibly minimize injury risk. However, there is a dearth of information regarding neuromuscular response to variations in running techniques. The purpose of this investigation was to compare the EMG activity that occurs during FFS running and RFS running, focusing on the biceps femoris, semitendenosis, rectus femoris, vastus medialis oblique, tibialis anterior (TA), medial head of gastrocnemeus (MGas), lateral head of gastrocnemius (LGas), and soleus. healthy adults (6 male, 8 female; age, 24.2 ± 0.8 years, height 170.1 ± 7.8 cm; mass 69.8 ±10.9 kg; Body Mass Index 24.1 ± 3.0 kg·m2) participated in the study. All participants performed a RFS and FFS running trial at 8.85 kph. A 3D motion capture system was used to collect kinematic data and electromyography was used to define muscle activity. Two-tailed paired t-tests were used to examine differences in outcomes between RFS and FFS conditions. The ankle was significantly more plantarflexed during FFS running (p = .0001) but there were no significant differences in knee and hip angles (p = .618 & .200, respectively). There was significantly less activity in tibialis anterior (TA) (p < .0001) and greater activity in the MGas (p= .020) during FFS running. The LGas and soleus did not change activity (p = .437 & .490, respectively). FFS running demonstrated lower muscular activity in the TA and increased activation in the MGas. FFS and RFS running have the potential to off-load injury prone tissues by changing between techniques. However, future studies will be necessary to establish more direct mechanistic connections between running technique and injury.

  10. Design and control of hybrid actuation lower limb exoskeleton

    Directory of Open Access Journals (Sweden)

    Hipolito Aguilar-Sierra

    2015-06-01

    Full Text Available In this article, two types of actuators are applied for a lower limb exoskeleton. They are DC motors with the harmonic drive and the pneumatic artificial muscles. This combination takes advantages of both the harmonic drive and the pneumatic artificial muscle. It provides both high accuracy position control and high ratio of strength and weight. The shortcomings of the two actuators are overcome by the hybrid actuation, for example, low control accuracy and modeling difficult of pneumatic artificial muscle, compactness, and structural flexibility of DC motors. The design and modeling processes are discussed to show the proposed exoskeleton can increase the strength of human lower limbs. Experiments and analysis of the exoskeleton are given to evaluate the effectiveness of the design and modeling.

  11. The Urodele Limb Regeneration Blastema: The Cell Potential

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2010-01-01

    Full Text Available The developmental potential of the limb regeneration blastema, a mass of mesenchymal cells of mixed origins, was once considered as being pluripotent, capable of forming all cell types. Now evidence asserts that the blastema is a heterogeneous mixture of progenitor cells derived from tissues of the amputation site, with limited developmental potential, plus various stem cells with multipotent abilities. Many specialized cells, bone, cartilage, muscle, and Schwann cells, at the injury site undergo dedifferentiation to a progenitor state and maintain their cell lineage as they redifferentiate in the regenerate. Muscle satellite reserve stem cells that are active in repair of injured muscle may also dedifferentiate and contribute new muscle cells to the limb blastema. Other cells from the dermis act as multipotent stem cells that replenish dermal fibroblasts and differentiate into cartilage. The blastema primordium is a self-organized, equipotential system, but at the cellular level can compensate for specific cell loss. It is able to induce dedifferentiation of introduced exogenous cells and such cells may be transformed into new cell types. Indigenous cells of the blastema associated with amputated tissues may also transform or possibly transdifferentiate into new cell types. The blastema is a microenvironment that enables dedifferentiation, redifferentiation, transdifferentiation, and stem cell activation, leading to progenitor cells of the limb regenerate.

  12. Pretreatment with Fish Oil-Based Lipid Emulsion Modulates Muscle Leukocyte Chemotaxis in Murine Model of Sublethal Lower Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Yao-Ming Shih

    2017-01-01

    Full Text Available This study investigated the effects of a fish oil- (FO- based lipid emulsion on muscle leukocyte chemotaxis and inflammatory responses in a murine model of limb ischemia-reperfusion (IR injury. Mice were assigned randomly to 1 sham (sham group, 2 ischemic groups, and 2 IR groups. The sham group did not undergo the ischemic procedure. The mice assigned to the ischemic or IR groups were pretreated intraperitoneally with either saline or FO-based lipid emulsion for 3 consecutive days. The IR procedure was induced by applying a 4.5 oz orthodontic rubber band to the left thigh above the greater trochanter for 120 min and then cutting the band to allow reperfusion. The ischemic groups were sacrificed immediately while the IR groups were sacrificed 24 h after reperfusion. Blood, IR-injured gastrocnemius, and lung tissues were collected for analysis. The results showed that FO pretreatment suppressed the local and systemic expression of several IR-induced proinflammatory mediators. Also, the FO-pretreated group had lower blood Ly6ChiCCR2hi monocyte percentage and muscle M1/M2 ratio than the saline group at 24 h after reperfusion. These findings suggest that FO pretreatment may have a protective role in limb IR injury by modulating the expression of proinflammatory mediators and regulating the polarization of macrophage.

  13. Plasma cytokine expression after lower-limb compression in rats

    Directory of Open Access Journals (Sweden)

    Mauricio Wanderley Moral Sgarbi

    2015-02-01

    Full Text Available OBJECTIVES: Muscle injury due to crushing (muscle compression injury is associated with systemic manifestations known as crush syndrome. A systemic inflammatory reaction may also be triggered by isolated muscle injury. The aim of this study was to investigate the plasma levels of interleukins (IL 1, 6 and 10 and tumor necrosis factor alpha (TNF-α, which are markers for possible systemic inflammatory reactions, after isolated muscle injury resulting from lower-limb compression in rats.METHODS: Male Wistar rats were subjected to 1 h of compression of their lower limbs by means of a rubber band. The plasma levels of IL 1, 6 and 10 and TNF-α were measured 1, 2 and 4 h after the rats were released from compression.RESULTS: The plasma levels of IL 10 decreased in relation to those of the other groups, with a statistically significant difference (p < 0.05. The method used did not detect the presence of IL 1, IL 6 or TNF-α.CONCLUSION: Our results demonstrated that the changes in plasma levels of IL 10 that were found may have been a sign of the presence of circulating interleukins in this model of lower-limb compression in rats.

  14. Regulation of proximal-distal intercalation during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-12-01

    Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  15. Myokymia of lower limbs for over one year

    Directory of Open Access Journals (Sweden)

    Jing ZHAO

    2015-09-01

    Full Text Available A 51-year-old man came to our outpatient for one-year history of progressive myokymia in both legs. He had initially noted a “continuous muscle-fiber activity” of lower limbs in July 2013. Two months later, similar symptoms progressively affected muscles in both thighs and fundament, which was persistent during sleep. The frequency, duration and severity were gradually increased. He suffered from a feeling of tiredness and fatigue in both legs after long-time walking. In the local hospital, spinal MRI showed protrusion of C5-6, L4-5, L5-S1 intervertebral disc. One day in Oct 2013, his legs subsequently became generally stiff and painful to the point of a stiff paralysis and presented excessive sweating after drunk. This attack lasted for 30 min. Then he came to our clinic. Routine blood tests were normal. Electromyographic examination showed neurogenic damages of left thoracic paraspinal muscles. Abnormal F wave of left lower limb and discrete waveform of four limbs could be seen. Nerve conduction velocity (NCV and sympathetic skin response (SSR were unremarkable. Treatments with oral phenytoin sodium and carbamazepine were all ineffective. The attack occurred only a few times a year, especially after drunk, as well as the frequency, duration and severity roughly similar. He was admitted in our hospital in Oct 2014. The patient had a 9-year history of high blood pressure and the family history was normal. Neurological examination revealed generalized leg muscle hypertrophy, especially the gastrocnemius muscle, despite lack of physical exercise. Cranial nerves were intact. Hyperhidrosis was noted along with abundant myokymia that were evident in lower limbs. Muscle bulk and strength of upper limbs were normal. The deep tendon reflexes of lower limbs were unobtainable. Sensory and cerebellar examination revealed no dysfunction. Laboratory records showed that serum A type Sjögren's syndrome antibody (SSA and Ro52 antibody was positive

  16. Peak activation of lower limb musculature during high flexion kneeling and transitional movements.

    Science.gov (United States)

    Kingston, David C; Tennant, Liana M; Chong, Helen C; Acker, Stacey M

    2016-09-01

    Few studies have measured lower limb muscle activation during high knee flexion or investigated the effects of occupational safety footwear. Therefore, our understanding of injury and disease mechanisms, such as knee osteoarthritis, is limited for these high-risk postures. Peak activation was assessed in eight bilateral lower limb muscles for twelve male participants, while shod or barefoot. Transitions between standing and kneeling had peak quadriceps and tibialis anterior (TA) activations above 50% MVC. Static kneeling and simulated tasks performed when kneeling had peak TA activity above 15% MVC but below 10% MVC for remaining muscles. In three cases, peak muscle activity was significantly higher (mean 8.9% MVC) when shod. However, net compressive knee joint forces may not be significantly increased when shod. EMG should be used as a modelling input when estimating joint contact forces for these postures, considering the activation levels in the hamstrings and quadriceps muscles during transitions. Practitioner Summary: Kneeling transitional movements are used in activities of daily living and work but are linked to increased knee osteoarthritis risk. We found peak EMG activity of some lower limb muscles to be over 70% MVC during transitions and minimal influence of wearing safety footwear.

  17. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    Science.gov (United States)

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues. © 2016. Published by The Company of Biologists Ltd.

  18. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  19. Phosphorylation of Lbx1 controls lateral myoblast migration into the limb.

    Science.gov (United States)

    Masselink, Wouter; Masaki, Megumi; Sieiro, Daniel; Marcelle, Christophe; Currie, Peter D

    2017-10-15

    The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud. Copyright © 2017. Published by Elsevier Inc.

  20. Motor control and learning with lower-limb myoelectric control in amputees.

    Science.gov (United States)

    Alcaide-Aguirre, Ramses E; Morgenroth, David C; Ferris, Daniel P

    2013-01-01

    Advances in robotic technology have recently enabled the development of powered lower-limb prosthetic limbs. A major hurdle in developing commercially successful powered prostheses is the control interface. Myoelectric signals are one way for prosthetic users to provide feedforward volitional control of prosthesis mechanics. The goal of this study was to assess motor learning in people with lower-limb amputation using proportional myoelectric control from residual-limb muscles. We examined individuals with transtibial amputation and nondisabled controls performing tracking tasks of a virtual object. We assessed how quickly the individuals with amputation improved their performance and whether years since amputation correlated with performance. At the beginning of training, subjects with amputation performed much worse than control subjects. By the end of a short training period, tracking error did not significantly differ between subjects with amputation and nondisabled subjects. Initial but not final performance correlated significantly with time since amputation. This study demonstrates that although subjects with amputation may initially have poor volitional control of their residual lower-limb muscles, training can substantially improve their volitional control. These findings are encouraging for the future use of proportional myoelectric control of powered lower-limb prostheses.

  1. Clinical and muscle biopsy findings in Norwegian paediatric patients with limb girdle muscular dystrophy 2I.

    Science.gov (United States)

    Rasmussen, Magnhild; Scheie, David; Breivik, Noralv; Mork, Marit; Lindal, Sigurd

    2014-05-01

    To describe patients diagnosed with limb girdle muscular dystrophy 2I (LGMD2I) in our paediatric departments between 2004 and 2012. The hospital charts of 17 patients presenting for evaluation at a mean age of 7.8 years (range 1-13 years) were retrospectively reviewed. With one exception, all patients were homozygous for the common mutation c.826C>A in the FKRP gene. Three patients experienced transient pronounced weakness as toddlers. Fatigue and muscle pain were most prominent, weakness less so, in children presenting at an older age. The degree of severity varied substantially. In certain cases, increased creatine kinase was an incidental finding. All walked independently by 18 months. When last evaluated at a mean age of 14.3 years (range 3.5-18 years), five patients were part-time wheelchair users. One patient was then treated for a cardiomyopathy. Creatine kinase was consistently increased, except presymptomatic in one patient. Muscle biopsies showed focal acute and chronic myopathic changes and pathological expression of α-dystroglycan. No consistent relationship between clinical function and the degree of morphological pathology was found. LGMD2I is a relevant differential diagnosis when creatine kinase is increased in children presenting with fatigue, muscle pain and sometimes weakness. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.

    Directory of Open Access Journals (Sweden)

    J Lucas McKay

    Full Text Available Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3 across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2× compared to individual muscle control. Our results are consistent with the idea that hierarchical, task

  3. No impaired hemoglobin oxygenation in forearm muscles of patients with chronic CRPS-1.

    Science.gov (United States)

    Brunnekreef, Jaap J J; Oosterhof, Jan; Wolff, André P; Crul, Ben J P; Wilder-Smith, Oliver H G; Oostendorp, Rob A B

    2009-01-01

    Physiotherapy is considered an important treatment option in patients with upper limb complex regional pain syndrome type-1 (CRPS-1). In case of chronic CRPS-1, exercise therapy of the affected limb forms an important part of the physiotherapeutic program. We investigated whether muscle loading in chronic CRPS-1 patients is associated with impairments in muscle circulation of the forearm of the affected limb. Thirty patients with chronic CRPS-1 unilaterally affecting their upper limbs, and 30 age-matched and sex-matched control participants were included in this study. Local muscle blood flow and hemoglobin oxygenation were measured by near infrared spectroscopy within the muscles of the forearm at rest, after 1-minute isometric handgrip exercises, and after arterial occlusion. Main outcome parameters were: local muscle blood flow, O2 consumption (mVO2), and postischemic reoxygenation (ReOx). We found no differences in baseline muscle blood flow, mVO2, and ReOx between the affected CRPS-1, unaffected CRPS-1, and control arms. After exercise, mVO2 of the affected CRPS-1 arms was not different from the clinically unaffected CRPS-1 arms. Furthermore, in comparison with the control arms, unaffected CRPS-1 arms showed no difference in mVO2 or ReOx. Muscle loading does not seems to be related to impairments in muscle oxygen uptake in forearm muscles of upper limbs affected by chronic CRPS-1. Our results suggest that exercise therapy can be safely used in physiotherapeutic training programs for chronic CRPS-1 of the upper limb.

  4. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy".

    Directory of Open Access Journals (Sweden)

    Christopher B Ruff

    Full Text Available While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply

  5. Improvement of limb salvage procedure using intraoperative radiotherapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Toru; Iwasaki, Katsuo; Kamishiro,; Toshiyuki,; Hayashi, Yasuyuki [Nagasaki Univ. (Japan). School of Medicine

    1992-10-01

    Clinical outcome of limb salvage procedure combined with intraoperative irradiation was investigated in 6 patients with osteosarcoma in the distal part of femur (n=4) and proximal part of tibia (n=2). They ranged in age from 12 to 54 years, with a mean of 22.5. First, a lesion was separated from the surrounding soft tissue with curatively wide margin. Osteotomy was performed at the portion of diaphysis. After irradiation field was setted up by lifting the lesion, and was exposed to doses ranging from 60 Gy to 85 Gy of intraoperative irradiation, soft tissue and fragile tumor tissue, excluding joint capsule and ligament, were removed as soon as possible. Finally, bone was jointed by means of inner fixation or bone grafting. They had a median follow-up of one year and four months after surgery. Although superficial wound infection and delayed wound adhesion were encountered as postoperative complications in one and two patients, respectively, these were all healed. None of the patients had local recurrence. The ability of salvaged limb was excellent in one, good in 3, and fair in 2 patients. Because both of the two patients with sarcoma in the proximal part of tibia had excellent and good limb ability, this procedure was considered useful especially for sarcoma in the proximal part of tibia. (N.K.).

  6. Improvement of limb salvage procedure using intraoperative radiotherapy for osteosarcoma

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuo; Kamishiro; Toshiyuki; Hayashi, Yasuyuki

    1992-01-01

    Clinical outcome of limb salvage procedure combined with intraoperative irradiation was investigated in 6 patients with osteosarcoma in the distal part of femur (n=4) and proximal part of tibia (n=2). They ranged in age from 12 to 54 years, with a mean of 22.5. First, a lesion was separated from the surrounding soft tissue with curatively wide margin. Osteotomy was performed at the portion of diaphysis. After irradiation field was setted up by lifting the lesion, and was exposed to doses ranging from 60 Gy to 85 Gy of intraoperative irradiation, soft tissue and fragile tumor tissue, excluding joint capsule and ligament, were removed as soon as possible. Finally, bone was jointed by means of inner fixation or bone grafting. They had a median follow-up of one year and four months after surgery. Although superficial wound infection and delayed wound adhesion were encountered as postoperative complications in one and two patients, respectively, these were all healed. None of the patients had local recurrence. The ability of salvaged limb was excellent in one, good in 3, and fair in 2 patients. Because both of the two patients with sarcoma in the proximal part of tibia had excellent and good limb ability, this procedure was considered useful especially for sarcoma in the proximal part of tibia. (N.K.)

  7. The occurrence of dystonia in upper-limb multiple sclerosis tremor.

    Science.gov (United States)

    Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A

    2015-12-01

    The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.

  8. A reevaluation of X-irradiation-induced phocomelia and proximodistal limb patterning.

    Science.gov (United States)

    Galloway, Jenna L; Delgado, Irene; Ros, Maria A; Tabin, Clifford J

    2009-07-16

    Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a marked increase in incidence in the early 1960s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation. Both X-irradiation and thalidomide-induced phocomelia have been interpreted as patterning defects in the context of the progress zone model, which states that a cell's proximodistal identity is determined by the length of time spent in a distal limb region termed the 'progress zone'. Indeed, studies of X-irradiation-induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the progress zone model. Here, using a combination of molecular analysis and lineage tracing in chick, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. Because skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the aetiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that proximodistal patterning is unaffected after X-irradiation does not support the predictions of the progress zone model.

  9. Prediction equation for lower limbs lean soft tissue in circumpubertal boys using anthropometry and biological maturation.

    Directory of Open Access Journals (Sweden)

    João Valente-dos-Santos

    Full Text Available Lean soft tissue (LST, a surrogate of skeletal muscle mass, is largely limited to appendicular body regions. Simple and accurate methods to estimate lower limbs LST are often used in attempts to partition out the influence of body size on performance outputs. The aim of the current study was to develop and cross-validate a new model to predict lower limbs LST in boys aged 10-13 years, using dual-energy X-ray absorptiometry (DXA as the reference method. Total body and segmental (lower limbs composition were assessed with a Hologic Explorer-W QDR DXA scanner in a cross-sectional sample of 75 Portuguese boys (144.8±6.4 cm; 40.2±9.0 kg. Skinfolds were measured at the anterior and posterior mid-thigh, and medial calf. Circumferences were measured at the proximal, mid and distal thigh. Leg length was estimated as stature minus sitting height. Current stature expressed as a percentage of attained predicted mature stature (PMS was used as an estimate of biological maturity status. Backward proportional allometric models were used to identify the model with the best statistical fit: ln (lower limbs LST  = 0.838× ln (body mass +0.476× ln (leg length - 0.135× ln (mid-thigh circumference - 0.053× ln (anterior mid-thigh skinfold - 0.098× ln (medial calf skinfold - 2.680+0.010× (percentage of attained PMS (R = 0.95. The obtained equation was cross-validated using the predicted residuals sum of squares statistics (PRESS method (R2PRESS = 0.90. Deming repression analysis between predicted and current lower limbs LST showed a standard error of estimation of 0.52 kg (95% limits of agreement: 0.77 to -1.27 kg. The new model accurately predicts lower limbs LST in circumpubertal boys.

  10. Acute swelling of the limbs: magnetic resonance pictorial review of fascial and muscle signal changes

    Energy Technology Data Exchange (ETDEWEB)

    Revelon, Geraldine [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Rahmouni, Alain [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Jazaerli, Nedal [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Godeau, Bertrand [Department of Internal Medicine, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Chosidow, Olivier [Department of Dermatology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Authier, Jerome [Department of Pathology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Mathieu, Didier [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Roujeau, Jean-Claude [Department of Dermatology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Vasile, Norbert [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France)

    1999-04-01

    Objective: This pictorial review analyzes the magnetic resonance (MR) fascial/muscular changes in 69 patients referred as emergencies with acute swelling of the limbs (ASL) from various causes. Methods and material: A prospective MR imaging (MRI) study of 69 patients referred as emergencies for ASL was performed. Our population consisted of 45 patients with skin and soft-tissue infections (cellulitis and necrotizing fasciitis, and pyomyositis), six patients with soft-tissue inflammatory diseases (dermatomyositis, graft-versus-host disease), 11 patients with acute deep venous thrombosis, three patients with rhabdomyolysis, one patient with acute denervation and three other patients with rare diseases. Hematomas, tumorous or infectious bone involvement and soft-tissue tumors were excluded. All studies included spin echo T1-weighted images and spin echo T2-weighted images. Gadolinium-enhanced spin echo T1-weighted images were obtained when an abscess was suspected on T2-weighted images. Selective fat-saturated T1- and T2-weighted sequences were also used. MRI analysis was performed to obtain a compartmentalized anatomical approach according to the location of signal abnormalities in subcutaneous fat, superficial and deep fascia and muscle. Results: In all patients with ASL, MRI demonstrated soft-tissue abnormalities involving subcutaneous fat, superficial fascia, deep fascia, or muscle. Although MR findings were non-specific, MRI appears sensitive for detecting subtle fascial and muscle signal changes. Conclusions: In skin and soft-tissue infections, MRI can be helpful for therapeutic management by determining the depth of soft-tissue involvement, particularly within fasciae and muscles, which is partly related to the severity of cellulitis with severe systemic manifestations. MRI can also aid the surgeon in diagnosing abscesses. In inflammatory diseases, MRI can determine the best site for biopsy and also monitor therapeutic response.

  11. Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb.

    Science.gov (United States)

    Neufeld, Stanley J; Wang, Fan; Cobb, John

    2014-11-01

    The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb. Copyright © 2014 by the Genetics Society of America.

  12. Isometric hip muscle strength in posttraumatic below-knee amputees

    Directory of Open Access Journals (Sweden)

    Jandrić Slavica

    2007-01-01

    Full Text Available Background/Aim. Traumas and war injuries, next to chronic occlusive artery disease and diabetes mellitus-derived complications, are the most frequent cause of the lower limbs amputation. They affect mostly younger population that need a higher level of activities as compared with the elderly. Medical rehabilitation is very significant for the muscle performance improvement in this population providing their social reintegration. The aim of this study was to investigate the effect of below-knee amputation on the hip isometric muscle strength and effect of rehabilitation on improvement of hip muscle strength in below-knee amputees, secondary to war wounding. Methods. Forty below-knee amputees (after war wounding, average age 35.6±10.6 years, that were included in primary rehabilitation program with prosthetics, were examined. Objective parameters were used to evaluate therapeutical effects. Isometric muscle strength of hip flexors, extensors, abductors and adductors was measured by dynamometer and expressed in Newton (N at admission, control and discharge for each patient. Average length of the treatment was 51 ± 34.1 days. Results. For isometric hip flexors (t = - 1.99346, p < 0.05, extensors (t = -4.629073, p < 0.001, abductors (t = -4.9408, p < 0.001 and adductors (t = -2.00228, p < 0.05, muscle strength was significantly less on the amputated than on nonamputated side. The highest differences in muscle strength between amputated and nonamputated limbs were noted for hip abductors (26.6% and extensors (23.3%. There was significant improvement of mean values of strength for all examined hip muscles after rehabilitation and prosthetics for both legs in comparison to beginning of the therapy. The hip abductor on the amputated side was for 19.4% weaker after rehabilitation in comparison to the nonamputated limb. Conclusion. Decreases of isometric muscle strength in all examined hip muscles were observed, more in the amputated limb. Rehabilitation

  13. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  14. Change in muscle thickness under contracting conditions following return to sports after a hamstring muscle strain injury—A pilot study

    Directory of Open Access Journals (Sweden)

    Yasuharu Nagano

    2015-04-01

    Full Text Available The purpose of this study was to measure the change in hamstring muscle thickness between contracting and relaxing conditions following a return to sports after a hamstring muscle strain and thereby evaluate muscle function. Six male track and field sprinters participated in this study. All had experienced a prior hamstring strain injury that required a minimum of 2 weeks away from sport participation. Transverse plane scans were performed at the following four points on the affected and unaffected sides under contracting and relaxing conditions: proximal biceps femoris long head, proximal semitendinosus, middle biceps femoris long head, and middle semitendinosus. The results demonstrated an increase in the thickness of the middle biceps femoris long head and middle semitendinosus regions on the unaffected side with contraction, whereas the affected side did not show a significant increase. The proximal semitendinosus muscle thickness was increased with contraction on both the unaffected and the affected sides. By contrast, the proximal biceps femoris muscle thickness did not show a significant increase on both sides. The results of this study show that evaluation of muscle thickness during contraction may be useful for assessing the change in muscle function after a hamstring muscle strain injury.

  15. Abnormal 201Tl limb scan due to unilateral tremor

    International Nuclear Information System (INIS)

    Simons, M.; Schelstraete, K.; Bratzlavsky, M.

    1982-01-01

    A abnormal intra- and interextremity distribution pattern on 201 Tl was observed on the limb scan of a patient with a unilateral tremor. This is ascribed to the increased blood flow in the muscles responsible for the tremor. The suggestion is made that the existence of tremor should be considered as a possible explanation for unexpected abnormalities on 201 Tl limb scintigrams

  16. Anatomical variation of radial wrist extensor muscles: a study in cadavers

    Directory of Open Access Journals (Sweden)

    Soubhagya Ranjan Nayak

    2008-01-01

    Full Text Available OBJECTIVE: The tendons of the extensor carpi radialis longus and brevis muscles are quite useful in tendon transfer, such as in correction of finger clawing and restoration of thumb opposition. Knowledge of additional radial wrist extensor muscle bellies with independent tendons is useful in the above-mentioned surgical procedures. METHODS: The skin, subcutaneous tissue, and antebrachial fascia of 48 (24 on the right side and 24 on left side male upper limb forearms were dissected. The following aspects were then analyzed: (a the presence of additional muscle bellies of radial wrist extensors, (b the origin and insertion of the additional muscle, and (c measurements of the muscle bellies and their tendons. RESULTS: Five out of 48 upper limbs (10.41% had additional radial wrist extensors; this occurred in 3 out of 24 left upper limbs (12.5% and 2 out of 24 right upper limbs (8.3%. In one of the right upper limbs, two additional muscles were found. The length and width of each additional muscle belly and its tendon ranged between 2 - 15cm by 0.35 - 6.4cm and 2.8 - 20.8cm by 0.2 0.5cm, respectively. The additional radial wrist extensor tendons in our study basically originated either from the extensor carpi radialis longus or brevis muscles and were inserted at the base of the 2nd or 3rd metacarpal bone. CONCLUSION: The present study will inform surgeons about the different varieties of additional radial wrist extensors and the frequency of their occurrence.

  17. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  18. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    International Nuclear Information System (INIS)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-01-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin -/- (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of

  19. Exploring the fine structure at the limb in coronal holes

    Science.gov (United States)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  20. Muscle areas of lower limbs were determined by anthropometric and computed tomography in the adult of the masculine sex; Areas musculares del muslo y la pierna estimadas por antropometria y tomografia axial computadorizada en varones adultos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Vieitez, Jorge Alberto; Alvarez Cuesta, Jose Alberto; Williams Wilson, Luis [Centro Provincial de Medicina del Deporte, Holguin (Cuba)

    2000-07-01

    In a sample of 17 males (age 26 {sup +}{sub -} 5 years; weight 76.3 {sup +}{sub -} 7.1 kg and height 177.2 {sup +}{sub -} 3.9 cm) the differences, ratios and interchangeability among muscle areas (cm{sup 2}) of lower limbs (medial thigh and maximum leg) were determined by anthropometric (muscle area= [limb circumference (cm)- 0.31416 skinfold (mm)]2 /12.5664 and computed tomography. The anthropometric method overestimated muscle areas in both regions (thigh + 9.0 {sup +}{sub -} 12.8; p= 0.01 and leg: +8.5 {sup +}{sub -} 11.2; p=0.006). Relation between the two procedures was statistically significant (thigh r=0.9; p= 8.8 .10-7 and leg r=0.52; p=0.03). Both methods were interchangeable since neither the correlation coefficient (thigh r=0.42; leg r=0.38) nor the regression gradient (thigh b {sub {sub 0.21}} {sup +}{sub -} 0.12; leg b = -0.44{sup +}{sub -} 0.28) between the differences (anthropometric ? TAC) and the averages (anthropometric + TAC/ 2) in both methods were statistically significant (p>0.05). It was concluded that the anthropometric method requires certain adjustments to be able to estimate more accurately the muscle areas of lower limbs.

  1. Synergistic effects of radiation and immobilization of hind limb on bone in rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Ikeda, Mizuyo; Nakamura, Mariko

    2008-01-01

    Synergistic effects of radiation (x-ray) and immobilization of hind limbs on bone in rats were examined, and the preventive effect of milk basic protein (MBP) on radiation effects was tested. One hundred and twenty female rats were divided into three large groups and then each group was divided into four small groups such as the no treatment, oral administered MBP, immobilization (IM) of hind limb, and IM+MBP groups. The rats of two large groups were exposed to a whole-body dose of 3 Gy or 6 Gy of x-ray. Half of the rats of each large group were sacrificed at 1 and 3 months, respectively. Muscle weights and bone mineral density decreased significantly in the IM groups following radiation, and bone volume in the proximal metaphysis of the tibia decreased significantly in all of the radiation groups and most in the radiation+IM group at 1 month. The bone volume recovered in all of the radiation groups except for the radiation+IM groups. The results indicated that the bone damages increased more as a result of the synergistic effects of radiation and IM than as a result of either of IM or radiation alone, and the harmful damage caused by IM was much greater than that of radiation. (author)

  2. Shared and task-specific muscle synergies of Nordic walking and conventional walking.

    Science.gov (United States)

    Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B

    2018-03-01

    Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  4. Tissue-Muscle Perfusion Scintigraphy of the Lower Limbs in a Patient with Type 2 Diabetes Mellitus and Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Irfan Ahmet

    2016-02-01

    Full Text Available The estimation of tissue perfusion as a hemodynamic consequence of peripheral arterial disease (PAD in diabetic patients is of great importance in the management of these patients.We present a noninvasive, functional method of 99mTc-MIBI (methoxy-isobutyl-isonitrile tissue-muscle perfusion scintigraphy (TMPS of the lower limbs, which assesses tissue perfusion in basal conditions (“rest” study and exercise conditions (“stress” study. Emphasis is given on perfusion reserve (PR as an important indicator of preservation of microcirculation and its local autoregulatory mechanisms in PAD. We present a case of a 71-year-old male diabetic patient with skin ulcers of the right foot and an ankle-brachial index >1.2 (0.9-1.1. Dynamic phase TMPS of the lower limbs showed decreased and late arterial vascularization of the right calf (RC with lower percentage of radioactivity in the 1st minute: RC 66%, left calf (LC 84%. PR was borderline with a value of 57% for LC and decreased for RC (42%. Functional assessment of hemodynamic consequences of PAD is important in evaluating both advanced and early PAD, especially the asymptomatic form. The method used to determine the TMPS of the lower limbs, can differentiate subtle changes in microcirculation and tissue perfusion

  5. A Morphometric Analysis of Fibularis Tertius Muscle in Eastern Indian Population

    Directory of Open Access Journals (Sweden)

    Gyanaranjan Nayak

    2017-10-01

    Full Text Available Introduction: Fibularis tertius is a unipennate muscle of extensor compartment of leg exclusively found in humans. Fibularis tertius muscle flap is used for transposition and correcting any laxity in the ankle joint by foot surgeons. Variable insertion of the muscle may play a role in causation of torsional stress as observed in certain fractures of foot. Aim: To study the incidence of fibularis tertius muscle with its dimensions and note the variations in origin and insertion of the muscle in cadaveric limbs. Materials and Methods: Hundred cadaveric lower limbs (50 right and 50 left were dissected and analysed macroscopically to find out the incidence, dimensions and variations in origin and insertion of the fibularis tertius muscle. Results: Fibularis tertius was present in all the limbs. It was inserted to fourth or fifth metatarsals. The length and width of the muscle and its tendon were also noted. Conclusion: Distal attachment of fibularis tertius is variable making a precise knowledge of the muscle necessary for foot surgeons in performing tendoplasty or tendon transfer surgeries.

  6. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice.

    Science.gov (United States)

    Crawford, Robert S; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A; Abularrage, Christopher J; Yoo, Hyung-Jin; Lamuraglia, Glenn M; Watkins, Michael T

    2013-08-01

    We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The reverse sural artery fasciomusculocutaneous flap for small lower-limb defects: the use of the gastrocnemius muscle cuff as a plug for small bony defects following debridement of infected/necrotic bone.

    Science.gov (United States)

    Al-Qattan, M M

    2007-09-01

    The reverse sural artery fasciomusculocutaneous flap is a modification of the original fasciocutaneous flap in which a midline gastrocnemius muscle cuff around the buried sural pedicle is included in the flap. This modification was done to improve the blood supply of the distal part of the flap, which is harvested from the upper leg. The aim of this paper is to demonstrate that there is another important advantage of the modified flap: the use of the muscle cuff as a "plug" for small lower limb defects following debridement of infected/necrotic bone. A total of 10 male adult patients with small complex lower-limb defects with underlying bone pathology were treated with the modified flap using the muscle component to fill up the small bony defects. The bony pathology included necrotic exposed bone without evidence of osteomyelitis or wound infection (n = 1), an underlying neglected tibial fracture with wound infection (n = 4), and a sinus at the heel with underlying calcaneal osteomyelitis (n = 5). Primary wound healing of the flap into the defect was noted in all patients. No recurrence of calcaneal osteomyelitis was seen and all tibial fractures united following appropriate orthopedic fixation. It was concluded that the reverse sural artery fasciomusculocutaneous flap is well suited for small complex lower-limb defects with underlying bone pathology.

  8. Intermediate syndrome in organophosphate poisoning: case series ...

    African Journals Online (AJOL)

    The clinical manifestations of IMS typically occur within 24 to 96 hours, affecting conscious patients without cholinergic signs, and involve the muscles of respiration, proximal limb muscles, neck flexors, and muscles innervated by motor cranial nerves. With appropriate therapy that commonly includes artificial respiration; ...

  9. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    NARCIS (Netherlands)

    Forbes, P.A.; Vlutters, M; Dakin, CJ; van der Kooij, H.; Blouin, JS; Schouten, A.C.

    2017-01-01

    During walking, the vestibular influence on locomotor activity is phase-dependent and modulated in both limbs with changes in velocity. It is unclear, however, whether this bilateral modulation is due to a coordinated mechanism between both limbs or instead through limb-specific processes that

  10. Associations between biopsychosocial factors and chronic upper limb pain among slaughterhouse workers

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D; Brandt, Mikkel

    2016-01-01

    of slaughterhouse work (all p > 0.4). CONCLUSIONS: Chronic upper limb pain was paralleled by reduced neuromuscular function of the shoulder and hand along with impaired work ability, work disability and general health. Future studies on chronic pain management at the workplace should carefully consider....... METHODS: Eighty-two male slaughterhouse workers, 49 with chronic upper limb pain and 33 pain-free controls participated in the study. Maximal muscle strength, RFD, and muscle activity was determined from fast and forceful maximal voluntary contractions for the shoulder and hand. Participants filled out...

  11. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  12. Effects of training programs based on ipsilateral voluntary and stimulated contractions on muscle strength and monopedal postural control of the contralateral limb.

    Science.gov (United States)

    Kadri, Mohamed Abdelhafid; Noé, Frederic; Nouar, Merbouha Boulahbel; Paillard, Thierry

    2017-09-01

    To compare the effects of unilateral strength training by stimulated and voluntary contractions on muscle strength and monopedal postural control of the contralateral limb. 36 non-active healthy male subjects were recruited and split randomly into three groups. Two groups of 12 subjects took part in a strength-training program (3 sessions a week over 8 weeks) comprising 43 contractions of the quadriceps femoris of the ipsilateral limb (at 20% of the MVC). One group carried out voluntary contractions exclusively (VOL group), while the other group benefited exclusively from electro-induced contractions (NMES group). The other 12 subjects formed the control (CON) group. Assessments of MVC and monopedal postural control in static and dynamic postural tasks were performed with the ipsilateral (ISPI) and contralateral (CONTRA) limbs before (PRE) and after (POST) completion of the training program. After the training program, the MVC of the IPSI and CONTRA limbs increased similarly for both experimental groups (VOL and NMES). There were no significant improvements of monopedal postural control for the IPSI or CONTRA limbs in either the VOL or NMES experimental group. No change was observed for the CON group over the protocol period. The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.

  13. A new model for the immobilization of the rat hind limb

    Directory of Open Access Journals (Sweden)

    Coutinho E.L.

    2002-01-01

    Full Text Available An alternative device for the immobilization of the hind limb of the rat was developed to study the effects of chronic disuse on the soleus and tibialis anterior muscles, maintained for 3 weeks in the shortening and the stretching positions, respectively. The proposed device is made of steel mesh and cotton materials, and has some advantages when compared to cast or plaster cast: it is cheaper, lighter (12 g or 4% of the body weight of the rat and the same unit can be easily adjusted and used several times in the same animal or in animals of similar size. Immobilization is also useful to restrain the movements of the hip, knee, and ankle joints. Male rats (291 ± 35 g and aged 14 ± 2 weeks were used to develop and test the model. The soleus muscle of 18 rats was maintained in a shortened position for 21 consecutive days and lost 19 ± 7% of its length (P = 0.008 and 44 ± 6% of its weight (P = 0.002 compared to the contralateral intact muscle. No difference (P = 0.67 was found in the stretched tibialis anterior of the same hind limb when compared to the contralateral muscle. No ulcer, sore or foot swelling was observed in the animals. Immobilization was effective in producing chronic muscle disuse in the hind limbs of rats and is an acceptable alternative to the traditional methods of immobilization such as cast or plaster cast.

  14. Searching for new features of intravitality of hanging based on macro- and microscopic evaluation of the proximal attachment of the sternocleidomastoid muscle and the mastoid process of the temporal bone.

    Science.gov (United States)

    Szleszkowski, Ł; Hałoń, A; Thannhäuser, A; Jurek, T

    2015-01-01

    Assessment of the usefulness of intravital lesions in the proximal attachment of the sternocleidomastoid muscle and the mastoid process of the temporal bone in medico-legal evaluation of death by hanging. The study material was obtained from the bodies of 35 people who died by hanging. The control group comprised specimens collected from 30 people who died of non-traumatic causes. The structures under study were examined macro- and microscopically. The basic change which could be recognized as a marker of intravitality of hanging was the presence of a macroscopically extensive blotchy area of abundant ecchymosis in the proximal muscle attachment, similar to that found in the distal attachment, and the presence of abundant diffuse intraosseous ecchymoses in the mastoid process. None of the cases revealed any ecchymoses in the proximal attachment of the muscle that would be similar to those present in the distal attachment. Discolourations within the mastoid processes, macroscopically suggestive of extensive intraosseous effusions arising from the mechanism of stretching, were not confirmed by microscopic evaluation and occurred at the same frequency as in the control group. Limitations of the study were related to the method which involved sample collection by means of bone chisels, decalcification and preparation of specimens, which had an effect, for example, on the measurable evaluation of the degree of congestion. The study has failed to provide convincing and unambiguous data on the usefulness of examining mastoid processes and proximal attachments of the sternocleidomastoid muscles during autopsy to determine the presence of intravitality features of hanging. A description of research methodology and its associated difficulties, e.g. with the interpretation of results, can also be useful for the planning of similar studies by other researchers.

  15. Searching for new features of intravitality of hanging based on macro- and microscopic evaluation of the proximal attachment of the sternocleidomastoid muscle and the mastoid process of the temporal bone

    Directory of Open Access Journals (Sweden)

    Łukasz Szleszkowski

    2016-03-01

    Full Text Available Aim of the study : Assessment of the usefulness of intravital lesions in the proximal attachment of the sternocleidomastoid muscle and the mastoid process of the temporal bone in medico-legal evaluation of death by hanging. Material and methods: The study material was obtained from the bodies of 35 people who died by hanging. The control group comprised specimens collected from 30 people who died of non-traumatic causes. The structures under study were examined macro- and microscopically. The basic change which could be recognized as a marker of intravitality of hanging was the presence of a macroscopically extensive blotchy area of abundant ecchymosis in the proximal muscle attachment, similar to that found in the distal attachment, and the presence of abundant diffuse intraosseous ecchymoses in the mastoid process. Results: None of the cases revealed any ecchymoses in the proximal attachment of the muscle that would be similar to those present in the distal attachment. Discolourations within the mastoid processes, macroscopically suggestive of extensive intraosseous effusions arising from the mechanism of stretching, were not confirmed by microscopic evaluation and occurred at the same frequency as in the control group. Limitations of the study were related to the method which involved sample collection by means of bone chisels, decalcification and preparation of specimens, which had an effect, for example, on the measurable evaluation of the degree of congestion. Conclusions : The study has failed to provide convincing and unambiguous data on the usefulness of examining mastoid processes and proximal attachments of the sternocleidomastoid muscles during autopsy to determine the presence of intravitality features of hanging. A description of research methodology and its associated difficulties, e.g. with the interpretation of results, can also be useful for the planning of similar studies by other researchers.

  16. [A 34-year-old woman with delayed motor milestones, high arched palate, and proximal muscle weakness].

    Science.gov (United States)

    Yamamoto, T; Kitada, T; Hirasawa, E; Mori, H; Mizuno, Y

    1996-07-01

    We report a right-handed 34-year-old woman with diffuse muscle atrophy. The patient was a full-term infant of uneventful delivery, however, motor milestones were delayed in that neck control was obtained at 10 months of the age and she started to walk unassisted at 2 years of the age. Mental development was normal. She was unable to run with her mates at her kindergarten and she required a handrail when she walk up the stairs. She could not close her mouth completely at the primary school. She was unable to use a straw as a middle school pupil. Recently, she noted difficulty in raising her head from the supine position, and has become unable to walk a long distance. She was admitted to our hospital in September 17, 1994 when she was 34-year-old. On admission, general physical examination revealed that she looked slender weighing 38 kg with 149.5 cm height. She showed a high arched palate, slight scoliosis, and pes equinus. Otherwise general physical examination was unremarkable. Upon neurologic examination, she was alert and well oriented. Cranial nerves were unremarkable except for bilateral facial atrophy and moderate weakness. Her voice was of nasal quality, and swallowing was slightly difficult. No atrophy was noted in the sternocleidomastoid muscle. She showed waddling gait and positive Gowers' sign. Diffuse muscle atrophy was noted and mild to moderate weakness was presented more in the proximal part in both upper and lower extremities, however, deltoid muscles retained normal power. No ataxia was noted. All the deep tendon reflexes were lost. Sensation was intact. Routine laboratory examination was unremarkable. Serum CK was 56 IU/l. Electromyography revealed myogenic changes in the deltoid, biceps, and quadriceps muscles. A diagnostic biopsy was performed in the left biceps brachii muscle. The patient was discussed in the neurologic CPC, and the chief discussant arrived at the conclusion that the patient had nemaline myopathy. Opinions were divided among

  17. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains.

    Science.gov (United States)

    Orchard, John; Farhart, Patrick; Kountouris, Alex; James, Trefor; Portus, Marc

    2010-01-01

    To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains. This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998-1999 to 2008-2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI]) were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture. Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4-7.1). Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03-2.1) and quadriceps strain (RR = 2.0; 95% CI: 1.1-3.5) were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4-1.1). Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group. Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a strong theoretical basis for the connection, it is likely that this is a true association.

  18. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lisa Mailleux

    Full Text Available The clinical application of upper limb (UL three-dimensional movement analysis (3DMA in children with unilateral cerebral palsy (uCP remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS levels and explored the relation between clinical and kinematic parameters in children with uCP.Fifty children (MACS: I = 15, II = 26, III = 9 underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis, bimanual performance (Assisting Hand Assessment, AHA, unimanual capacity (Melbourne Assessment 2, MA2 and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS, duration, (timing of maximum velocity, trajectory straightness and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk.Longer movement durations and increased APS were found with higher MACS-levels (p<0.001. Increased APS was also associated with more severe sensorimotor impairments (r = -0.30-(-0.73 and with lower AHA and MA2-scores (r = -0.50-(-0.86. For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74 and muscle tone (r = 0.33-(-0.61; proximal movement deviations correlated only with muscle weakness (r = -0.35-0.59. Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002.We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness

  19. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy.

    Science.gov (United States)

    Mailleux, Lisa; Jaspers, Ellen; Ortibus, Els; Simon-Martinez, Cristina; Desloovere, Kaat; Molenaers, Guy; Klingels, Katrijn; Feys, Hilde

    2017-01-01

    The clinical application of upper limb (UL) three-dimensional movement analysis (3DMA) in children with unilateral cerebral palsy (uCP) remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS) levels and explored the relation between clinical and kinematic parameters in children with uCP. Fifty children (MACS: I = 15, II = 26, III = 9) underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis), bimanual performance (Assisting Hand Assessment, AHA), unimanual capacity (Melbourne Assessment 2, MA2) and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS), duration, (timing of) maximum velocity, trajectory straightness) and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS)) were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk. Longer movement durations and increased APS were found with higher MACS-levels (pMA2-scores (r = -0.50-(-0.86)). For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74)) and muscle tone (r = 0.33-(-0.61)); proximal movement deviations correlated only with muscle weakness (r = -0.35-0.59). Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002). We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness. The lower correlations suggest that 3DMA provides additional information regarding UL motor function, particularly for

  20. Pathophysiology of Venous Thromboembolism with Respect to the Anatomical Features of the Deep Veins of Lower Limbs: A Review.

    Science.gov (United States)

    Ro, Ayako; Kageyama, Norimasa; Mukai, Toshiji

    2017-06-25

    Here the pathophysiology of venous thromboembolism is reviewed with respect to the anatomical features of the deep veins of lower limbs. A thrombus is less likely to form in the thigh veins compared with that in the calf veins; however, clinical symptoms are more likely to appear in the thigh veins owing to vascular occlusion. When a patient is bedridden, thrombosis is more likely to occur in the intramuscular vein, which mainly depends on muscular pumping and the venous valve, rather than in the three crural branches, which mainly depends on the pulsation of the accompanying artery. Thrombi are prone to be generated in the soleal vein compared with those in the gastrocnemius vein because of the vein and muscle structures. A soleal vein thrombosis grows toward the proximal veins along the drainage veins. To prevent a sudden pulmonary thromboembolism-related death in bedridden patients, preventing soleal vein thrombus formation and observing the thrombus proximal propagation via the drainage veins are clinically important. When deep vein thrombosis occurs, avoiding embolization and sequela caused by the thrombus organization is necessary.

  1. Contribution of limb momentum to power transfer in athletic wheelchair pushing.

    Science.gov (United States)

    Masson, G; Bégin, M-A; Lopez Poncelas, M; Pelletier, S-K; Lessard, J-L; Laroche, J; Berrigan, F; Langelier, E; Smeesters, C; Rancourt, D

    2016-09-06

    Pushing capacity is a key parameter in athletic racing wheelchair performance. This study estimated the potential contribution of upper limb momentum to pushing. The question is relevant since it may affect the training strategy adopted by an athlete. A muscle-free Lagrangian dynamic model of the upper limb segments was developed and theoretical predictions of power transfer to the wheelchair were computed during the push phase. Results show that limb momentum capacity for pushing can be in the order of 40J per push cycle at 10m/s, but it varies with the specific pushing range chosen by the athlete. Although use of momentum could certainly help an athlete improve performance, quantifying the actual contribution of limb momentum to pushing is not trivial. A preliminary experimental investigation on an ergometer, along with a simplified model of the upper limb, suggests that momentum is not the sole contributor to power transfer to a wheelchair. Muscles substantially contribute to pushing, even at high speeds. Moreover, an optimal pushing range is challenging to find since it most likely differs if an athlete chooses a limb momentum pushing strategy versus a muscular exertion pushing strategy, or both at the same time. The study emphasizes the importance of controlling pushing range, although one should optimize it while also taking the dynamics of the recovery period into account. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Upper-limb exoskeleton for human muscle fatigue

    OpenAIRE

    Ali, SK; Tokhi, MO

    2017-01-01

    Human muscle fatigue is identified as one of the causes to musculuskeletal disorder (MSD). The objective of this paper is to investigate the effect of an exoskeleton in dealing with muscle fatigue in a virtual environment. The focus of this work is, for the exoskeleton to provide support as needed by human joint. A (Proportional, Integration and Derivative) controller is used for both human and exoskeleton. Simmechanics and Simulink are used to evaluate the performance of the exoskeleton. Exp...

  3. Hemodynamic study of ischemic limb by velocity measurement in foot

    International Nuclear Information System (INIS)

    Shionoya, S.; Hirai, M.; Kawai, S.; Ohta, T.; Seko, T.

    1981-01-01

    By means of a tracer technique with 99mTc-pertechnetate, provided with seven zonal regions of interest, 6 mm in width, placed at equal spaces of 18 mm, from the toe tip to the midfoot at a right angle to the long axis of the foot, arterial flow velocity in the foot during reactive hyperemia was measured. The mean velocity in the foot was 5.66 +/- 1.78 cm/sec in 14 normal limbs, 1.58 +/- 1.07 cm/sec in 29 limbs with distal thromboangiitis obliterans (TAO), 0.89 +/- 0.61 cm/sec in 13 limbs with proximal TAO, and 0.97 +/- 0.85 cm/sec in 15 limbs with arteriosclerosis obliterans (ASO). The velocity returned to normal in all 12 limbs after successful arterial reconstruction, whereas the foot or toe blood pressure remained pathologic in 9 of the 12 limbs postoperatively; the velocity reverted to normal in 4 of 13 limbs after lumbar sympathectomy. When the velocity was normalized after operation, the ulceration healed favorably, and the ischemic limb was salvaged. The most characteristic feature of peripheral arterial occlusive disease of the lower extremity was a stagnation of arterial circulation in the foot, and the flow velocity in the foot was a sensitive predictive index of limb salvage

  4. Effects of postural changes of the upper limb on reflex transmission in the lower limb. Cervicolumbar reflex interactions in man.

    Science.gov (United States)

    Delwaide, P J; Figiel, C; Richelle, C

    1977-06-01

    The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.

  5. A Reevaluation of X-Irradiation Induced Phocomelia and Proximodistal Limb Patterning

    Science.gov (United States)

    Galloway, Jenna L.; Delgado, Irene; Ros, Maria A.; Tabin, Clifford J.

    2009-01-01

    Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a dramatic increase in incidence in the early 1960’s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative1, 2. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation3-5. Both X-irradiation5 and thalidomide-induced phocomelia5, 6 have been interpreted as patterning defects in the context of the Progress Zone Model, which states that a cell’s proximodistal (PD) identity is determined by the length of time spent in a distal limb region termed the “Progress Zone” 7. Indeed, studies of X-irradiation induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the Progress Zone Model. Here, using a combination of molecular analysis and lineage tracing, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. As skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the etiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that PD patterning is unaffected following X-irradiation does not support the predictions of the Progress Zone

  6. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I: a multinational cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Tracey A Willis

    Full Text Available We conducted a prospective multinational study of muscle pathology using magnetic resonance imaging (MRI in patients with limb-girdle muscular dystrophy 2I (LGMD2I. Thirty eight adult ambulant LGMD2I patients (19 male; 19 female with genetically identical mutations (c.826C>A in the fukutin-related protein (FKRP gene were recruited. In each patient, T1-weighted (T1w imaging was assessed by qualitative grading for 15 individual lower limb muscles and quantitative Dixon imaging was analysed on 14 individual lower limb muscles by region of interest analysis. We described the pattern and appearance of muscle pathology and gender differences, not previously reported for LGMD2I. Diffuse fat infiltration of the gastrocnemii muscles was demonstrated in females, whereas in males fat infiltration was more prominent in the medial than the lateral gastrocnemius (p = 0.05. In the anterior thigh of males, in contrast to females, median fat infiltration in the vastus medialis muscle (45.7% exceeded that in the vastus lateralis muscle (11.2% (p<0.005. MRI is non-invasive, objective and does not rely on patient effort compared to clinical and physical measures that are currently employed. We demonstrated (i that the quantitative Dixon technique is an objective quantitative marker of disease and (ii new observations of gender specific patterns of muscle involvement in LGMD2I.

  7. Chronic Stimulation-Induced Changes in the Rodent Thyroarytenoid Muscle

    Science.gov (United States)

    McMullen, Colleen A.; Butterfield, Timothy A.; Dietrich, Maria; Andreatta, Richard D.; Andrade, Francisco H.; Fry, Lisa; Stemple, Joseph C.

    2011-01-01

    Purpose: Therapies for certain voice disorders purport principles of skeletal muscle rehabilitation to increase muscle mass, strength, and endurance. However, applicability of limb muscle rehabilitation to the laryngeal muscles has not been tested. In this study, the authors examined the feasibility of the rat thyroarytenoid muscle to remodel as a…

  8. Age-specific effects of mirror-muscle activity on cross-limb adaptations under mirror and non-mirror visual feedback conditions.

    Directory of Open Access Journals (Sweden)

    Paola eReissig

    2015-12-01

    Full Text Available Cross-limb transfer (CLT describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53 engaged in a short-term training regime (300 movements involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb. Bilateral performance was examined before, during and following the training. Furthermore, we measured corticospinal excitability (using TMS at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (all ps > 0.1. Training also elicited bilateral increases in corticospinal excitability (p < 0.05. For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47, whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60. The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the

  9. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration.

    Science.gov (United States)

    Xu, Yanyi; Fu, Minghuan; Li, Zhihong; Fan, Zhaobo; Li, Xiaofei; Liu, Ying; Anderson, Peter M; Xie, Xiaoyun; Liu, Zhenguo; Guan, Jianjun

    2016-02-01

    Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle

  10. Case report A Rare Cause of Sub-Acute Proximal Intestinal ...

    African Journals Online (AJOL)

    KIGZ

    A Rare Cause of Sub-Acute Proximal Intestinal Obstruction Due to Annular Pancreas. Weledji EP, Ngowe M, Mokake M. Department of Surgery, Regional Hospital Buea, Cameroon. Correspondence to: E P Weledji, P.O Box 126, Limbe, Cameroon. Email:elroypat@yahoo.co.uk. Summary. Background: Annular pancreas is a ...

  11. The Effect of Local Fatigue Induced at Proximal and Distal Muscles of Lower Extremity in Sagittal Plane on Visual Dependency in Quiet Standing Postural Stability of Healthy Young Females

    Directory of Open Access Journals (Sweden)

    Manijeh Soleymani-Far

    2007-10-01

    Full Text Available Objective: The purpose of the present study was to assess the effect of local muscle fatigue induced at proximal and distal segments of lower extremity on sagittal plane mover on visual dependency in quiet standing postural stability. Materials & Methods: In this Quasi–experimental study (before – after comparison sagittal plane prime movers of the ankle and hip musculature were fatigued using isokinetic contractions at two test sessions with a randomized order and one week interval. Twenty five healthy young female students were َselected by using non probability selection and sample of convenience and asked to maintain single leg upright posture as immobile as possible. RMS and SD of Center of Pressure displacements were assessed in 30 seconds and consequently, the eyes were closed after 15 seconds. A analysis of variance (ANOVA for repeated measures was used to analyze the effect of the following factors over two periods of 5 seconds immediately before and after eye closure: (1 fatigue, (2 vision, (3 segment of fatigue. Results: The main effects of each within-subject factors (fatigue, vision and segment of fatigue were significant (P<0.05. The analysis of RMS and SD of Center of Pressure demonstrated a significant interaction between fatigue and vision, and fatigue and segment of fatigue so that the effects of Fatigue on Proximal segment and eye closed conditions were increased. Conclusion: The visual dependency for control of postural stability incremented following muscle fatigue. Proximal muscle fatigue lead to exaggeration of visual dependency for control of postural stability. Based on the present results, emphasis on the proprioception of proximal segment of lower extremity may be recommended for postural stability training.

  12. In vitro biomechanical properties of 2 compression fixation methods for midbody proximal sesamoid bone fractures in horses.

    Science.gov (United States)

    Woodie, J B; Ruggles, A J; Litsky, A S

    2000-01-01

    To evaluate 2 methods of midbody proximal sesamoid bone repair--fixation by a screw placed in lag fashion and circumferential wire fixation--by comparing yield load and the adjacent soft-tissue strain during monotonic loading. Experimental study. 10 paired equine cadaver forelimbs from race-trained horses. A transverse midbody osteotomy of the medial proximal sesamoid bone (PSB) was created. The osteotomy was repaired with a 4.5-mm cortex bone screw placed in lag fashion or a 1.25-mm circumferential wire. The limbs were instrumented with differential variable reluctance transducers placed in the suspensory apparatus and distal sesamoidean ligaments. The limbs were tested in axial compression in a single cycle until failure. The cortex bone screw repairs had a mean yield load of 2,908.2 N; 1 limb did not fail when tested to 5,000 N. All circumferential wire repairs failed with a mean yield load of 3,406.3 N. There was no statistical difference in mean yield load between the 2 repair methods. The maximum strain generated in the soft tissues attached to the proximal sesamoid bones was not significantly different between repair groups. All repaired limbs were able to withstand loads equal to those reportedly applied to the suspensory apparatus in vivo during walking. Each repair technique should have adequate yield strength for repair of midbody fractures of the PSB immediately after surgery.

  13. A Reevaluation of X-Irradiation Induced Phocomelia and Proximodistal Limb Patterning

    OpenAIRE

    Galloway, Jenna L.; Delgado, Irene; Ros, Maria A.; Tabin, Clifford J.

    2009-01-01

    Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a marked increase in incidence in the early 1960s due to the tragic tox...

  14. Anatomical variations of pronator teres muscle: predispositional role for nerve entrapment

    Directory of Open Access Journals (Sweden)

    Edie Benedito Caetano

    Full Text Available ABSTRACT OBJECTIVE: To assess the anatomical variations of the pronator teres muscle (PTM and its implication in the compression of the median nerve, which passes through the humeral and ulnar heads of the PTM. METHODS: For the present study, 100 upper limbs from human cadavers from the anatomy laboratory were dissected. Forty-six specimens were male and four, female, whose aged ranged from 28 to 77 years; 27 were white and 23, non-white. A pilot study consisting of six hands from three fresh cadaver dissections was conducted to familiarize the authors with the local anatomy; these were not included in the present study. RESULTS: The humeral and ulnar heads of PTM were present in 86 limbs. In 72 out of the 86 limbs, the median nerve was positioned between the two heads of the PTM; in 11, it passed through the muscle belly of ulnar head of the PTM, and in three, posteriorly to both heads of the PTM. When both heads were present, the median nerve was not observed as passing through the muscle belly of the humeral head of PTM. In 14 out of the 100 dissected limbs, the ulnar head of the PTM was not observed; in this situation, the median nerve was positioned posteriorly to the humeral head in 11 limbs, and passed through the humeral head in three. In 17 limbs, the ulnar head of PTM was little developed, with a fibrous band originating from the ulnar coronoid process, associated with a distal muscle component near the union with the humeral head. In four limbs, the ulnar head of the MPR was represented by a fibrous band. In both limbs of one cadaver, a fibrous band was observed between the supinator muscle and the humeral head of the PTM, passing over median nerve. CONCLUSION: The results suggest that these anatomical variations in relationship median nerve and PTM are potential factors for median nerve compression, as they narrow the space through which the median nerve passes.

  15. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model

    International Nuclear Information System (INIS)

    Clemente, Christofer J; Richards, Christopher

    2012-01-01

    Frogs are capable of impressive feats of jumping and swimming. Recent work has shown that anuran hind limb muscles can operate at lengths longer than the ‘optimal length’. To address the implications of muscle operating length on muscle power output and swimming mechanics, we built a robotic frog hind limb model based upon Xenopus laevis. The model simulated the force–length and force–velocity properties of vertebrate muscle, within the skeletal environment. We tested three muscle starting lengths, representing long, optimal and short starting lengths. Increasing starting length increased maximum muscle power output by 27% from 98.1 W kg −1 when muscle begins shortening from the optimal length, to 125.1 W kg −1 when the muscle begins at longer initial lengths. Therefore, longer starting lengths generated greater hydrodynamic force for extended durations, enabling faster swimming speeds of the robotic frog. These swimming speeds increased from 0.15 m s −1 at short initial muscle lengths, to 0.39 m s −1 for the longest initial lengths. Longer starting lengths were able to increase power as the muscle's force–length curve was better synchronized with the muscle's activation profile. We further dissected the underlying components of muscle force, separating force–length versus force–velocity effects, showing a transition from force–length limitations to force–velocity limitations as starting length increased. (paper)

  16. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.

    Science.gov (United States)

    Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina

    2006-01-01

    Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.

  17. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    Science.gov (United States)

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Different Muscle-Recruitment Strategies Among Elite Breaststrokers.

    Science.gov (United States)

    Guignard, Brice; Olstad, Bjørn H; Simbaña Escobar, David; Lauer, Jessy; Kjendlie, Per-Ludvik; Rouard, Annie H

    2015-11-01

    To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers. The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded. The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive PP was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations. The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.

  19. Immediate effects of scalp acupuncture with twirling reinforcing manipulation on hemiplegia following acute ischemic stroke: a hidden association study

    Directory of Open Access Journals (Sweden)

    Xiao-zheng Du

    2016-01-01

    Full Text Available Data mining has the potential to provide information for improving clinical acupuncture strategies by uncovering hidden rules between acupuncture manipulation and therapeutic effects in a data set. In this study, we performed acupuncture on 30 patients with hemiplegia due to acute ischemic stroke. All participants were pre-screened to ensure that they exhibited immediate responses to acupuncture. We used a twirling reinforcing acupuncture manipulation at the specific lines between the bilateral Baihui (GV20 and Taiyang (EX-HN5. We collected neurologic deficit score, simplified Fugl-Meyer assessment score, muscle strength of the proximal and distal hemiplegic limbs, ratio of the maximal H-reflex to the maximal M-wave (H max /M max , muscle tension at baseline and immediately after treatment, and the syndromes of traditional Chinese medicine at baseline. We then conducted data mining using an association algorithm and an artificial neural network backpropagation algorithm. We found that the twirling reinforcing manipulation had no obvious therapeutic difference in traditional Chinese medicine syndromes of "Deficiency and Excess". The change in the muscle strength of the upper distal and lower proximal limbs was one of the main factors affecting the immediate change in Fugl-Meyer scores. Additionally, we found a positive correlation between the muscle tension change of the upper limb and H max /M max immediate change, and both positive and negative correlations existed between the muscle tension change of the lower limb and immediate H max /M max change. Additionally, when the difference value of muscle tension for the upper and lower limbs was > 0 or < 0, the difference value of H max /M max was correspondingly positive or negative, indicating the scalp acupuncture has a bidirectional effect on muscle tension in hemiplegic limbs. Therefore, acupuncture with twirling reinforcing manipulation has distinct effects on acute ischemic stroke patients

  20. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.

    Science.gov (United States)

    Gamer, L W; Cox, K A; Small, C; Rosen, V

    2001-01-15

    GDF11, a new member of the TGF-beta gene superfamily, regulates anterior/posterior patterning in the axial skeleton during mouse embryogenesis. Gdf11 null mice display skeletal abnormalities that appear to represent anterior homeotic transformations of vertebrae consistent with high levels of Gdf11 expression in the primitive streak, presomitic mesoderm, and tail bud. However, despite strong Gdf11 expression in the limb throughout development, this structure does not appear to be affected in the knockout mice. In order to understand this dichotomy of Gdf11 expression versus Gdf11 function, we identified the chicken Gdf11 gene and studied its role during limb formation. In the early limb bud, Gdf11 transcripts are detected in the subectodermal mesoderm at the distal tip, in a region overlapping the progress zone. At these stages, Gdf11 is excluded from the central core mesenchyme where precartilaginous condensations will form. Later in development, Gdf11 continues to be expressed in the distal most mesenchyme and can also be detected more proximally, in between the forming skeletal elements. When beads incubated in GDF11 protein were implanted into the early wing bud, GDF11 caused severe truncations of the limb that affected both the cartilage elements and the muscle. Limb shortening appeared to be the result of an inhibition of chondrogenesis and myogenesis and using an in vitro micromass assay, we confirmed the negative effects of GDF11 on both myogenic and chondrogenic cell differentiation. Analysis of molecular markers of skeletal patterning revealed that GDF11 induced ectopic expression of Hoxd-11 and Hoxd-13, but not of Hoxa-11, Hoxa-13, or the Msx genes. These data suggest that GDF11 may be involved in controlling the late distal expression of the Hoxd genes during limb development and that misregulation of these Hox genes by excess GDF11 may cause some of the observed alterations in skeletal element shape. In addition, GDF11 induced the expression of its own

  1. Isokinetic hamstring and quadriceps muscle strength profiles of elite ...

    African Journals Online (AJOL)

    Football players are at risk of lower limb injuries, specifically hamstring muscle strains and ACL injuries due to muscle imbalances. This was a descriptive study assessing the isokinetic hamstring and quadriceps muscle strength and endurance in 28 elite, male, South African football players. Muscle strength was tested at 60 ...

  2. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  3. Using a Thermal Imaging Camera to Locate Perforators on the Lower Limb

    Directory of Open Access Journals (Sweden)

    Sharad P. Paul

    2017-05-01

    Full Text Available Reconstruction of the lower limb presents a complex problem after skin cancer surgery, as proximity of skin and bone present vascular and technical challenges. Studies on vascular anatomy have confirmed that the vascular plane on the lower limb lies deep to the deep fascia. Yet, many flaps are routinely raised superficial to this plane and therefore flap failure rates in the lower limb are high. Fascio-cutaneous flaps based on perforators offer a better cosmetic alternative to skin grafts. In this paper, we detail use of a thermal imaging camera to identify perforator ‘compartments’ that can help in designing such flaps.

  4. Recurrence of non-Hodgkin's lymphoma isolated to the right masticator and left psoas muscles

    International Nuclear Information System (INIS)

    Connor, S.E.J.; Chavda, S.V.; West, R.

    2000-01-01

    We present the clinical and magnetic resonance imaging findings of a patient who, following treatment for pancreatic non-Hodgkin's lymphoma (NHL), relapsed with apparently isolated involvement of the right masticator space and left psoas muscles. Non-Hodgkin's lymphoma arising from the masticator space muscles is very rare. In addition, simultaneous lymphomatous involvement of multiple discrete skeletal muscle sites, in the absence of disease elsewhere, has previously only been reported in the limb or limb girdle muscles. Lymphoma should be considered as a cause of isolated enlarged skeletal muscles, even when involving such distant sites. (orig.)

  5. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  6. Reflexive contraction of the levator palpebrae superioris muscle to involuntarily sustain the effective eyelid retraction through the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle: verification with evoked electromyography.

    Science.gov (United States)

    Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke

    2010-01-01

    We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.

  7. Palmaris Longus Muscle in the South Indian Population – A Cadaveric Study

    Directory of Open Access Journals (Sweden)

    Lydia S. Quadros

    2017-07-01

    Full Text Available Introduction: Palmaris longus, one of the superficial flexor muscles of the anterior compartment of the forearm is the most variable muscle of the upper limb. Purpose: To note the variations of palmaris longus for tendon grafts. Methods: Forty formalin-fixed upper limb specimens of South Indian population were dissected to note the variations of Palmaris longus muscle. Results: Out of the forty upper limb specimens, two variants of the palmaris longus were noted. In one specimen, a reversed palmaris longus was noted. It had a long tendinous origin with a muscle belly and a short flat tendon at insertion. The tendon inserted partly into the flexor retinaculum and partly into palmar aponeurosis. In another specimen, apart from the normal palmaris longus muscle, an additional smaller muscle was noted. It was the Palmaris profundus. This muscle took origin in the form of a tendon from the middle of the shaft of the radius, continued as a muscle belly and then terminated as a tendon which later inserted into the flexor retinaculum, close to the tendon of palmaris longus muscle. At its insertion, the superficial palmar branch of radial artery hooked it. The anterior interosseous nerve supplied the Palmaris profundus. Conclusion: These variations are worthy to be noted for tendon grafts.

  8. Adductor muscle pyo-myositis simulating appendicitis: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Coumbaras, M.; Le Hir, P.; Jomaah, N.; Arrive, L.; Tubiana, J.M.

    2001-01-01

    Pyo-myositis is a primary bacterial infection of skeletal muscle. This infection tends to occur in the large muscles of the lower extremity. Pyo-myositis of the proximal muscles of the thigh can simulate acute abdominal disease. Early diagnosis improves the outcome. Delayed diagnosis may lead to septicemia and shock. We report the CT and MRI findings in a patient with pyo-myositis of the proximal muscles of the thigh. (authors)

  9. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    Science.gov (United States)

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Morphological Variation in Anuran Limbs: Constraints and Novelties.

    Science.gov (United States)

    Fabrezi, Marissa; Goldberg, Javier; Chuliver Pereyra, Mariana

    2017-09-01

    Anurans have three primary types of locomotion: walking, jumping, and swimming. Additionally, they may dig, climb, grasp, etc. All adult anurans have four limbs, with four fingers on the hands and five toes on the feet. We summarized and updated knowledge on the interspecific variation within anuran limbs, then discuss how developmental constraints (e.g., in size) and novelties may have influenced anuran diversification through the locomotion. We analyze morphological variation from limb bud stages up to the final limb form resulting from certain skeletal organization and growth. We find limited morphometric variations in the skeleton of different developmental modules (i.e., skull, trunk, urostyle, limbs) indicate that the anuran body shape is largely constrained. We identify specializations of the stylopodium, zeugopodium, and proximal carpals/tarsals that have evolved to facilitiate saltatorial locomotion. We show that the anuran prepollex and prehallux are not vestigial digits and that they have come to serve specialized function. Medial rotation of the manus in anurans appears to have evolved to help distribute the force of impact upon landing at the end of a jump. Additional skeletal elements in anuran limbs are intercalary elements and sesamoids. The intercalary elements appear within neobatrachians and are integrated with digital pads in lineages capable of locomotion on smooth vertical surfaces. They have allowed arboreal anurans to occupy a wide range of arboreal habitats. © 2017 Wiley Periodicals, Inc.

  11. The treatment of soft-tissue sarcomas of the extremities - prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Rosenberg, S.A.; Tepper, J.; Glatstein, E.

    1982-01-01

    Between May 1975 and April 1981, 43 adult patients with high-grade soft tissue sarcomas of the extremities were prospectively randomized to receive either amputation at or above the joint proximal to the tumor, including all involved muscle groups, or to receive a limb-sparing resection plus adjuvant radiation therapy. The limb-sparing resection group received wide local excision followed by 5000 rads to the entire anatomic area at risk for local spread and 6000 to 7000 rads to the tumor bed. Both randomization groups received postoperative chemotherapy with doxorubicin (maximum cumulative dose 550 mg/m 2 ), cyclophosphamide, and high-dose methotrexate. Twenty-seven patients randomized to receive limb-sparing resection and radiotherapy, and 16 received amputation (randomization was 2:1). There were four local recurrences in the limb-sparing group and none in the amputation group (p 1 = 0.06 generalized Wilcoxon test). However, there were no differences in disease-free survival rates (83% and 88% at five years; p 2 = 0.99) between the limb-sparing group and the amputation treatment groups. Multivariate analysis indicated that the only correlate of local recurrence was the final margin of resection. Patients with positive margins of resection had a higher likelihood of local recurrence compared with those with negative margins (p 1 1 = 0.00008) and overall survival (95% vs. 74%; p 1 = 0.04)

  12. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters.

    Science.gov (United States)

    Handsfield, G G; Knaus, K R; Fiorentino, N M; Meyer, C H; Hart, J M; Blemker, S S

    2017-10-01

    Sprint runners achieve much higher gait velocities and accelerations than average humans, due in part to large forces generated by their lower limb muscles. Various factors have been explored in the past to understand sprint biomechanics, but the distribution of muscle volumes in the lower limb has not been investigated in elite sprinters. In this study, we used non-Cartesian MRI to determine muscle sizes in vivo in a group of 15 NCAA Division I sprinters. Normalizing muscle sizes by body size, we compared sprinter muscles to non-sprinter muscles, calculated Z-scores to determine non-uniformly large muscles in sprinters, assessed bilateral symmetry, and assessed gender differences in sprinters' muscles. While limb musculature per height-mass was 22% greater in sprinters than in non-sprinters, individual muscles were not all uniformly larger. Hip- and knee-crossing muscles were significantly larger among sprinters (mean difference: 30%, range: 19-54%) but only one ankle-crossing muscle was significantly larger (tibialis posterior, 28%). Population-wide asymmetry was not significant in the sprint population but individual muscle asymmetries exceeded 15%. Gender differences in normalized muscle sizes were not significant. The results of this study suggest that non-uniform hypertrophy patterns, particularly large hip and knee flexors and extensors, are advantageous for fast sprinting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    Science.gov (United States)

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  14. Noninvasive Multimodal Imaging to Predict Recovery of Locomotion after Extended Limb Ischemia.

    Directory of Open Access Journals (Sweden)

    Jason S Radowsky

    Full Text Available Acute limb ischemia is a common cause of morbidity and mortality following trauma both in civilian centers and in combat related injuries. Rapid determination of tissue viability and surgical restoration of blood flow are desirable, but not always possible. We sought to characterize the response to increasing periods of hind limb ischemia in a porcine model such that we could define a period of critical ischemia (the point after which irreversible neuromuscular injury occurs, evaluate non-invasive methods for characterizing that ischemia, and establish a model by which we could predict whether or not the animal's locomotion would return to baselines levels post-operatively. Ischemia was induced by either application of a pneumatic tourniquet or vessel occlusion (performed by clamping the proximal iliac artery and vein at the level of the inguinal ligament. The limb was monitored for the duration of the procedure with both 3-charge coupled device (3CCD and infrared (IR imaging for tissue oxygenation and perfusion, respectively. The experimental arms of this model are effective at inducing histologically evident muscle injury with some evidence of expected secondary organ damage, particularly in animals with longer ischemia times. Noninvasive imaging data shows excellent correlation with post-operative functional outcomes, validating its use as a non-invasive means of viability assessment, and directly monitors post-occlusive reactive hyperemia. A classification model, based on partial-least squares discriminant analysis (PLSDA of imaging variables only, successfully classified animals as "returned to normal locomotion" or "did not return to normal locomotion" with 87.5% sensitivity and 66.7% specificity after cross-validation. PLSDA models generated from non-imaging data were not as accurate (AUC of 0.53 compared the PLSDA model generated from only imaging data (AUC of 0.76. With some modification, this limb ischemia model could also serve as a

  15. Muscle MRI in neutral lipid storage disease (NLSD).

    Science.gov (United States)

    Garibaldi, Matteo; Tasca, Giorgio; Diaz-Manera, Jordi; Ottaviani, Pierfancesco; Laschena, Francesco; Pantoli, Donatella; Gerevini, Simonetta; Fiorillo, Chiara; Maggi, Lorenzo; Tasca, Elisabetta; D'Amico, Adele; Musumeci, Olimpia; Toscano, Antonio; Bruno, Claudio; Massa, Roberto; Angelini, Corrado; Bertini, Enrico; Antonini, Giovanni; Pennisi, Elena Maria

    2017-07-01

    Neutral lipid storage disease (NLSD) is a rare inherited disorder of lipid metabolism resulting in lipid droplets accumulation in different tissues. Skeletal muscle could be affected in both two different form of disease: NLSD with myopathy (NLSD-M) and NLSD with ichthyosis (NLSD-I). We present the muscle imaging data of 12 patients from the Italian Network for NLSD: ten patients presenting NLSD-M and two patients with NLSD-I. In NLSD-M gluteus minimus, semimembranosus, soleus and gastrocnemius medialis in the lower limbs and infraspinatus in the upper limbs were the most affected muscles. Gracilis, sartorius, subscapularis, pectoralis, triceps brachii and sternocleidomastoid were spared. Muscle involvement was not homogenous and characteristic "patchy" replacement was observed in at least one muscle in all the patients. Half of the patients showed one or more STIR positive muscles. In both NLSD-I cases muscle involvement was not observed by T1-TSE sequences, but one of them showed positive STIR images in more than one muscle in the leg. Our data provides evidence that muscle imaging can identify characteristic alterations in NLSD-M, characterized by a specific pattern of muscle involvement with "patchy" areas of fatty replacement. Larger cohorts are needed to assess if a distinct pattern of muscle involvement exists also for NLSD-I.

  16. Knee functional recovery and limb-to-limb symmetry restoration after anterior cruciate ligament (ACL) rupture and ACL reconstruction

    Science.gov (United States)

    Nawasreh, Zakariya Hussein

    change over time. Further to investigate whether RTAC variables at 6-M following ACLR predict return to the same preinjury activity level at 12 and 24 months following ACLR. The findings of this work revealed that patients who fail on RTAC 6-M after ACLR are more likely to demonstrate impaired knee function and limb-to-limb movement asymmetry at 12-M and 24-M after ACLR. Additionally, RTAC variables can predict the return to participate in the same preinjury activity level at 12-M and 24-M after ACLR. The combination of RTAC variables explain more than one-fourth to one-third of returning to participate in the same preinjury activity level 12-M and 24-M respectively after ACLR. For athletes choosing non-surgical management, the physical therapy recommendation is to administrate progressive strength training augmented with manual perturbation training. Manual perturbation training is a type of specialized neuromuscular training that includes purposeful manipulations of support surfaces by a therapist. While manual perturbation promotes dynamic knee stability, enhances dynamic knee function, mitigates abnormal movement pattern and normalizes the muscle co-contraction, perturbation training is not widely used as part of the ACL rehabilitation program in the United States. Further, the perturbation training requires extensive physical labor and one-on-one time from the treating therapist. The effect of administering perturbation training using mechanical device as part of the ACL rehabilitation program has not investigated. An automated "Reactive Agility System" device provides perturbation stimuli including multidirectional translations similar to those of manual perturbation training. Administrating the perturbation training using a mechanical device may facilitate the use of controlled and standardized training in a wide range of the rehabilitation clinics and allow administering controlled and standardized training. However, it is unknown whether administering

  17. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children.

    Science.gov (United States)

    Reyes, M Loreto; Hernández, Marta; Holmgren, Luz J; Sanhueza, Enrique; Escobar, Raúl G

    2011-08-01

    Disuse osteoporosis in children is a progressive disease that can affect quality of life. High-frequency, low-magnitude vibration (HFLMV) acts as an anabolic signal for bone and muscle. We undertook a prospective, randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of regional HFLMV in disabled children. Sixty-five children 6 to 9 year of age were randomized into three groups: placebo, 60 Hz, and 90 Hz. In the two active groups, a 0.3-g mechanical vibration was delivered to the radii and femurs for 5 minutes each day. After 6 months, the main endpoint was bone mineral density (BMD) at the ultradistal radius (UDR), 33% radii (33%R), and femoral necks (FN). Secondary endpoints were area and bone mineral content (BMC) at the UDR, 33%R, and FN; grip force of the upper and lower limbs; motor function; and PedsQL evaluation. An intention-to-treat analysis was used. Fifty-seven children (88%) completed the protocol. A significant increase was observed in the 60-Hz group relative to the other groups in BMD at the UDR (p = .011), in grip force of the upper limbs (p = .035), and in the "daily activities item" (p = .035). A mixed model to evaluate the response to intervention showed a stronger effect of 60 Hz on patients with cerebral palsy on the UDR and that between-subject variability significantly affected the response. There were no reported side effects of the intervention. This work provides evidence that regional HFLMV is an effective and safe strategy to improve bone mass, muscle strength, and possibly independence in children with motor disabilities. Copyright © 2011 American Society for Bone and Mineral Research.

  18. The normal radiological anteroposterior alignment of the lower limb in children

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, Dmitry; Popkov, Arnold [Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan (Russian Federation); Lascombes, Pierre [University of Geneva, Division of Pediatric Orthopaedics, Geneva (Switzerland); Berte, Nicolas; Hetzel, Laurent; Baptista, Bruno Ribeiro; Journeau, Pierre [Children' s Hospital of Nancy, Department of Pediatric Orthopaedics, Nancy (France)

    2014-07-05

    The development of reconstructive surgery of the lower limbs aimed at multilevel correction demands a precise knowledge of the physiological variations in general radiological parameters of the lower limbs in children of various age groups. It is crucial in systemic skeletal diseases, when deformities affect limbs and the surgeon does not have an intact limb as a reference. The aim of this retrospective study was to establish the normal radiological values of lower limb parameters used in the surgical correction of deformities in children of various age groups. Teleradiographs of the lower limbs taken in children with unilateral congenital or posttraumatic deformity were retrospectively reviewed. Weight-bearing full-length anteroposterior radiographs of the entire lower extremities were taken in a standing position. The study involved 215 extremities of 208 children (93 girls and 115 boys); the ages ranged from 2 years 1 month to 15 years 11 months old. Key variables included the anatomic medial proximal femoral angle (aMPFA), anatomic lateral distal femoral angle (aLDFA), anatomic medial proximal tibial angle (aMPTA), anatomic lateral distal tibial angle (aLDTA), mechanical axis deviation (MAD), the angle formed by the femoral anatomical axis and the mechanical axis of the lower limb. The means and dynamics of variations, standard deviations (SD) and 95 % confidence intervals of each parameter were calculated for each age and gender group. Simple regression analysis was performed to determine the relationship between the patient's age and the magnitude of aMPFA, aLDFA, aMPTA and aLDTA. Simple regression analysis showed a significant inverse correlation between patient age and the magnitude of aMPFA: the correlation coefficient was -0.77. A statistically significant inverse correlation between the MAD and the angle between the anatomic femoral axis and mechanical limb axis was found: the correlation coefficient was -0.53. In general, the received values were

  19. Control of non-linear actuator of artificial muscles for the use in low-cost robotics prosthetics limbs

    Science.gov (United States)

    Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham

    2017-10-01

    Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.

  20. Rare muscular variations identified in a single cadaveric upper limb: a four-headed biceps brachii and muscular elevator of the latissimus dorsi tendon.

    Science.gov (United States)

    Moore, Colin W; Rice, Charles L

    2018-03-01

    Supernumerary or accessory heads of the biceps brachii are persistent muscular structures which can vary in number and location in the arm. Variations in other arm muscles, such as the coracobrachialis, can accompany supernumerary biceps brachii musculature in the upper limb. In this case report, we describe two rare muscular variants in a single adult male: a four-headed biceps brachii and the muscular elevator of the latissimus dorsi tendon. Additionally, accessory muscles of the brachialis and flexor digiti minimi brevis were identified in the upper limb. To our knowledge, the muscular variants identified here are considered rare, and their co-occurrence in a single upper limb has not been described previously. Also, a four-headed biceps brachii consisting of both the infero-medial and infero-lateral humeral heads has not been described previously to our knowledge. We postulate that the simultaneous appearance of several muscular variations may indicate a signaling disruption in embryogenesis during muscle patterning of the ventral limb bud. Knowledge of variant musculature in the arm is important for surgeons and clinicians as these muscles and their aberrant innervation patterns can complicate surgical procedures and may compress arteries and nerves producing upper limb pain and paresthesia. The clinical, functional and embryological implications of the upper limb variants are discussed.

  1. Analysis of 1,338 Patients with Acute Lower Limb Deep Venous Thrombosis (DVT) Supports the Inadequacy of the Term "Proximal DVT".

    Science.gov (United States)

    De Maeseneer, M G R; Bochanen, N; van Rooijen, G; Neglén, P

    2016-03-01

    For decades acute lower limb deep venous thrombosis (DVT) has been subdivided into distal DVT (isolated to the calf veins) and proximal DVT (extending above calf vein level). The aim of this study was to analyse the anatomical site and extent of thrombus in a large cohort of patients with acute DVT. A retrospective analysis of all patients aged >18 years, presenting with unilateral DVT according to duplex ultrasound investigation was performed at the University Hospital of Antwerp, Belgium (1994-2012). The anatomical site and extent of thrombus was registered and subdivided into five segments: calf veins (segment 1), popliteal vein (segment 2), femoral vein (segment 3), common femoral vein (segment 4), and iliac veins, with or without inferior vena cava (segment 5). The median age of the 1,338 patients (50% male) included was 62 years (range 18-98 years). Left sided DVT was predominant (57%). DVT was limited to one segment in 443 patients, of whom 370 had DVT isolated to the calf veins (28% of total cohort). In 968 patients with what was previously called "proximal DVT", the median number of affected segments was three (range 1-5 segments). In this group iliofemoral DVT (at least involving segment four and/or five) was present in 506 patients (38% of total cohort), whereas the remaining patients had femoropopliteal DVT (at least in segment two and/or three but not in four or five). Iliofemoral DVT without thrombus in segments one and two was present in 160 patients (12% of total cohort). This study illustrates the large diversity of thrombus distribution in patients previously described as having "proximal DVT". Therefore, this term should be abandoned and replaced with iliofemoral and femoropopliteal DVT. Patients with iliofemoral DVT (38%) could be considered for early clot removal; 12% of all patients with DVT would be ideal candidates for such intervention. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Effects of whole-body vibration on muscle architecture, muscle strength, and balance in stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Marín, Pedro J; Ferrero, Cristina M; Menéndez, Héctor; Martín, Juan; Herrero, Azael J

    2013-10-01

    The aim of the present study was to analyze the effects of whole-body vibration on lower limb muscle architecture, muscle strength, and balance in stroke patients during a period of 3 mos. The inclusion criteria were having had ischemic or hemorrhagic stroke at least 6 mos before the study and a National Institutes of Health Stroke Scale score of greater than 1 and less than 20. The patients were randomly divided into two groups: an experimental group (n = 11, six men and five women; age, 62.4 ± 10.7 yrs; height, 1.64 ± 0.07 m; mass, 69.4 ± 12.9 kg) and a sham group (n = 9, five men and four women; age, 64.4 ± 7.6 yrs; height, 1.62 ± 0.07 m; mass, 75.0 ± 15.8 kg). The experimental group received a whole-body vibration treatment, with an increase in frequency, sets, and time per set during 17 sessions. The sham group performed the same exercises as that of the experimental group but was not exposed to vibration. Outcome variables included the muscle architecture (the rectus femoris, the vastus lateralis, and the medial gastrocnemius), the maximal isometric voluntary contraction of the knee extensors, and the Berg Balance Scale. There were no significant differences between the groups on the primary outcomes of lower limb muscle architecture, muscle strength, and balance. It seems that whole-body vibration exercise does not augment the increase in neuromuscular performance and lower limb muscle architecture induced by isometric exercise alone in stroke patients.

  3. Multidisciplinary ''limb salvage'' treatment of soft tissue and skeletal sarcomas

    International Nuclear Information System (INIS)

    Weisenburger, T.H.; Eilber, F.R.; Grant, T.T.; Morton, D.L.; Mirra, J.J.; Steinberg, M.; Rickles, D.

    1984-01-01

    The goal of treating primary bone and soft tissue tumors, as with most other malignancies, is to control the disease locally and systematically while preserving as much function as possible. For soft tissue sarcomas the results following radical excision and post-operative radiation therapy with preservation of the limb have equaled the control rates of amputation. However, local recurrence rates of approximately 25-30% are reported for high-grade lesions of the proximal lower extremity. Amputations provides excellent local control for osteosarcoma but the functional results may be less than optimal. In an attempt to achieve limb salvage for these tumors, a multidisciplinary protocol was developed using intra-arterial doxorubicin, pre-operative radiation therapy and limb-sparing radical wide excision followed by post-operative chemotherapy for presumed micro-metastatic disease

  4. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B

    2005-01-01

    AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate...... in the dysregulation of skeletal muscle fatty acid metabolism, with only the leg, but not the arm, showing an impairment of fatty acid kinetics at baseline and during a hyperinsulinaemic-euglycaemic clamp causing a physiological increase in insulin concentration....

  5. Diagnostic distribution of non-traumatic upper limb disorders

    DEFF Research Database (Denmark)

    Laursen, Lise H; Sjøgaard, Gisela; Hagert, C G

    2007-01-01

    BACKGROUND: Upper limb disorders (ULDs) are common, and so are the difficulties in specific diagnoses of these disorders. Prior studies have shed light on the nerves in the diagnostic approach beside disorders related to muscles, tendons and joints (MCDs). OBJECTIVE: The study aimed to compare th...

  6. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    NARCIS (Netherlands)

    Forbes, Patrick A.; Vlutters, Mark; Dakin, Christopher J.; van der Kooij, Herman; Blouin, Jean Sébastien; Schouten, Alfred C.

    2017-01-01

    Key points: -The vestibular influence on human walking is phase-dependent and modulated across both limbs with changes in locomotor velocity and cadence. -Using a split-belt treadmill, we show that vestibular influence on locomotor activity is modulated independently in each limb. -The independent

  7. Characterization of proximal pulmonary arterial cells from chronic thromboembolic pulmonary hypertension patients

    Directory of Open Access Journals (Sweden)

    Quarck Rozenn

    2012-03-01

    Full Text Available Abstract Background Chronic thromboembolic pulmonary hypertension (CTEPH is associated with proximal pulmonary artery obstruction and vascular remodeling. We hypothesized that pulmonary arterial smooth muscle (PASMC and endothelial cells (PAEC may actively contribute to remodeling of the proximal pulmonary vascular wall in CTEPH. Our present objective was to characterize PASMC and PAEC from large arteries of CTEPH patients and investigate their potential involvement in vascular remodeling. Methods Primary cultures of proximal PAEC and PASMC from patients with CTEPH, with non-thromboembolic pulmonary hypertension (PH and lung donors have been established. PAEC and PASMC have been characterized by immunofluorescence using specific markers. Expression of smooth muscle specific markers within the pulmonary vascular wall has been studied by immunofluorescence and Western blotting. Mitogenic activity and migratory capacity of PASMC and PAEC have been investigated in vitro. Results PAEC express CD31 on their surface, von Willebrand factor in Weibel-Palade bodies and take up acetylated LDL. PASMC express various differentiation markers including α-smooth muscle actin (α-SMA, desmin and smooth muscle myosin heavy chain (SMMHC. In vascular tissue from CTEPH and non-thromboembolic PH patients, expression of α-SMA and desmin is down-regulated compared to lung donors; desmin expression is also down-regulated in vascular tissue from CTEPH compared to non-thromboembolic PH patients. A low proportion of α-SMA positive cells express desmin and SMMHC in the neointima of proximal pulmonary arteries from CTEPH patients. Serum-induced mitogenic activity of PAEC and PASMC, as well as migratory capacity of PASMC, were increased in CTEPH only. Conclusions Modified proliferative and/or migratory responses of PASMC and PAEC in vitro, associated to a proliferative phenotype of PASMC suggest that PASMC and PAEC could contribute to proximal vascular remodeling in CTEPH.

  8. Coexistence of a pectoralis quartus muscle, a supernumerary head of biceps brachii muscle and an accessory head of flexor digitorum profundus muscle.

    Science.gov (United States)

    Song, Halim; Kim, Jinu; Yoon, Sang-Pil

    2018-05-26

    Although anatomical variations in the upper limb are frequent, coexistence of multiple combined variations is rare. During a routine educational dissection at Jeju National University Medical School, three muscular variations were found in a 75-year-old Korean male cadaver, in which a supraclavicular cephalic vein was also found in ipsilateral upper extremity during skinning (Go et al., 2017). Here we describe characteristics of the pectoralis quartus muscle, the supernumerary head of biceps brachii muscle and an accessory head of flexor digitorum profundus muscle, and discuss their coexistence from morphological and embryological points of view.

  9. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I

    DEFF Research Database (Denmark)

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten

    2016-01-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat...

  10. Mirror therapy for upper limb rehabilitation in chronic patients after stroke

    OpenAIRE

    Mota, Dreyzialle Vila Nova; Meireles, André Luís Ferreira de; Viana, Marcelo Tavares; Almeida, Rita de Cássia de Albuquerque

    2016-01-01

    Abstract Introduction: Individuals with stroke sequelae present changes in the postural alignment and muscle strength associated with hemiplegia or hemiparesis. Mirror therapy is a technique that aims to improve the motor function of the paretic limb. Objective: The aim of this study was to evaluate the effect of mirror therapy, associated with conventional physiotherapy, for range of motion (ROM), degree of spasticity of the affected upper limb, and the level of independence in the activ...

  11. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...... was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration....

  12. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  13. Anatomical variations between the sciatic nerve and the piriformis muscle: a contribution to surgical anatomy in piriformis syndrome.

    Science.gov (United States)

    Natsis, Konstantinos; Totlis, Trifon; Konstantinidis, George A; Paraskevas, George; Piagkou, Maria; Koebke, Juergen

    2014-04-01

    To detect the variable relationship between sciatic nerve and piriformis muscle and make surgeons aware of certain anatomical features of each variation that may be useful for the surgical treatment of the piriformis syndrome. The gluteal region of 147 Caucasian cadavers (294 limbs) was dissected. The anatomical relationship between the sciatic nerve and the piriformis muscle was recorded and classified according to the Beaton and Anson classification. The literature was reviewed to summarize the incidence of each variation. The sciatic nerve and piriformis muscle relationship followed the typical anatomical pattern in 275 limbs (93.6 %). In 12 limbs (4.1 %) the common peroneal nerve passed through and the tibial nerve below a double piriformis. In one limb (0.3 %) the common peroneal nerve coursed superior and the tibial nerve below the piriformis. In one limb (0.3 %) both nerves penetrated the piriformis. In one limb (0.3 %) both nerves passed above the piriformis. Four limbs (1.4 %) presented non-classified anatomical variations. When a double piriformis muscle was present, two different arrangements of the two heads were observed. Anatomical variations of the sciatic nerve around the piriformis muscle were present in 6.4 % of the limbs examined. When dissection of the entire piriformis is necessary for adequate sciatic nerve decompression, the surgeon should explore for the possible existence of a second tendon, which may be found either inferior or deep to the first one. Some rare, unclassified variations of the sciatic nerve should be expected during surgical intervention of the region.

  14. Strength and fatigability of selected muscles in upper limb: assessing muscle imbalance relevant to tennis elbow.

    Science.gov (United States)

    Alizadehkhaiyat, O; Fisher, A C; Kemp, G J; Frostick, S P

    2007-08-01

    The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.

  15. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    Science.gov (United States)

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  16. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Michael Villiger

    2017-11-01

    Full Text Available Key factors positively influencing rehabilitation and functional recovery after spinal cord injury (SCI include training variety, intensive movement repetition, and motivating training tasks. Systems supporting these aspects may provide profound gains in rehabilitation, independent of the subject’s treatment location. In the present study, we test the hypotheses that virtual reality (VR-augmented training at home (i.e., unsupervised is feasible with subjects with an incomplete SCI (iSCI and that it improves motor functions such as lower limb muscle strength, balance, and functional mobility. In the study, 12 chronic iSCI subjects used a home-based, mobile version of a lower limb VR training system. The system included motivating training scenarios and combined action observation and execution. Virtual representations of the legs and feet were controlled via movement sensors. The subjects performed home-based training over 4 weeks, with 16–20 sessions of 30–45 min each. The outcome measures assessed were the Lower Extremity Motor Score (LEMS, Berg Balance Scale (BBS, Timed Up and Go (TUG, Spinal Cord Independence Measure mobility, Walking Index for Spinal Cord Injury II, and 10 m and 6 min walking tests. Two pre-treatment assessment time points were chosen for outcome stability: 4 weeks before treatment and immediately before treatment. At post-assessment (i.e., immediately after treatment, high motivation and positive changes were reported by the subjects (adapted Patients’ Global Impression of Change. Significant improvements were shown in lower limb muscle strength (LEMS, P = 0.008, balance (BBS, P = 0.008, and functional mobility (TUG, P = 0.007. At follow-up assessment (i.e., 2–3 months after treatment, functional mobility (TUG remained significantly improved (P = 0.005 in contrast to the other outcome measures. In summary, unsupervised exercises at home with the VR training system led to beneficial

  17. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury.

    Science.gov (United States)

    Villiger, Michael; Liviero, Jasmin; Awai, Lea; Stoop, Rahel; Pyk, Pawel; Clijsen, Ron; Curt, Armin; Eng, Kynan; Bolliger, Marc

    2017-01-01

    Key factors positively influencing rehabilitation and functional recovery after spinal cord injury (SCI) include training variety, intensive movement repetition, and motivating training tasks. Systems supporting these aspects may provide profound gains in rehabilitation, independent of the subject's treatment location. In the present study, we test the hypotheses that virtual reality (VR)-augmented training at home (i.e., unsupervised) is feasible with subjects with an incomplete SCI (iSCI) and that it improves motor functions such as lower limb muscle strength, balance, and functional mobility. In the study, 12 chronic iSCI subjects used a home-based, mobile version of a lower limb VR training system. The system included motivating training scenarios and combined action observation and execution. Virtual representations of the legs and feet were controlled via movement sensors. The subjects performed home-based training over 4 weeks, with 16-20 sessions of 30-45 min each. The outcome measures assessed were the Lower Extremity Motor Score (LEMS), Berg Balance Scale (BBS), Timed Up and Go (TUG), Spinal Cord Independence Measure mobility, Walking Index for Spinal Cord Injury II, and 10 m and 6 min walking tests. Two pre-treatment assessment time points were chosen for outcome stability: 4 weeks before treatment and immediately before treatment. At post-assessment (i.e., immediately after treatment), high motivation and positive changes were reported by the subjects (adapted Patients' Global Impression of Change). Significant improvements were shown in lower limb muscle strength (LEMS, P  = 0.008), balance (BBS, P  = 0.008), and functional mobility (TUG, P  = 0.007). At follow-up assessment (i.e., 2-3 months after treatment), functional mobility (TUG) remained significantly improved ( P  = 0.005) in contrast to the other outcome measures. In summary, unsupervised exercises at home with the VR training system led to beneficial functional

  18. Proximal hamstring reconstruction using semitendinosus and gracilis autograft: a novel technique.

    Science.gov (United States)

    Muellner, Thomas; Kumar, Sandeep; Singla, Amit

    2017-01-01

    The complete proximal hamstring avulsion is relatively uncommon injury and predominantly occurs in young athletes but causes significant functional impairment. In chronic cases, the muscle mass is so much retracted that primary repair is not possible. A surgical technique for reconstruction of chronic proximal hamstring avulsion using contralateral semitendinosus and gracilis autograft is described in this case report. V.

  19. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    Science.gov (United States)

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  20. Proximal Tibial Epiphysis Fracture in a 13-Year-Old Male Athlete

    Directory of Open Access Journals (Sweden)

    Ioannis M. Stavrakakis

    2017-01-01

    Full Text Available Fractures of the proximal epiphysis of the tibia are rare, representing 0.5 to 3.0% of all epiphyseal injuries. These injuries can damage the popliteal vessels and their bifurcation, affecting the blood supply of the lower limb, as well as the nerves below the knee. Epiphyseal growth arrest is also a potential complication, leading to various angular deformities. We present a case of a 13-year-old male athlete with a posteriorly displaced Salter-Harris type II fracture of the proximal epiphysis of the left tibia who was treated conservatively with closed reduction and cast immobilization.

  1. Myoelectric control of artificial limb inspired by quantum information processing

    International Nuclear Information System (INIS)

    Siomau, Michael; Jiang, Ning

    2015-01-01

    Precise and elegant coordination of a prosthesis across many degrees of freedom represents a significant challenge to efficient rehabilitation of people with limb deficiency. Processing the electrical neural signals collected from the surface of the remnant muscles of the stump is a common way to initiate and control the different movements available to the artificial limb. Based on the assumption that there are distinguishable and repeatable signal patterns among different types of muscular activation, the problem of prosthesis control reduces to one of pattern recognition. Widely accepted classical methods for pattern recognition, however, cannot provide simultaneous and proportional control of the artificial limb. Here we show that, in principle, quantum information processing of the neural signals allows us to overcome the above-mentioned difficulties, suggesting a very simple scheme for myoelectric control of artificial limb with advanced functionalities. (paper)

  2. Multi-muscle electrical stimulation and stand training: Effects on standing.

    Science.gov (United States)

    Momeni, Kamyar; Ramanujam, Arvind; Garbarini, Erica L; Forrest, Gail F

    2018-02-15

    To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). Single-subject, longitudinal study. Neuroplasticity laboratory. A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSL A/P =54.0 kg.cm, TSL M/L =14.5 kg.cm), compared to ES-alone (TSL A/P =8.5 kg.cm, TSL M/L =3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.

  3. Disappearance of "phantom limb" and amputated arm usage during dreaming in REM sleep behaviour disorder.

    Science.gov (United States)

    Vetrugno, Roberto; Arnulf, Isabelle; Montagna, Pasquale

    2009-01-01

    Limb amputation is followed, in approximately 90% of patients, by "phantom limb" sensations during wakefulness. When amputated patients dream, however, the phantom limb may be present all the time, part of the time, intermittently or not at all. Such dreaming experiences in amputees have usually been obtained only retrospectively in the morning and, moreover, dreaming is normally associated with muscular atonia so the motor counterpart of the phantom limb experience cannot be observed directly. REM sleep behaviour disorder (RBD), in which muscle atonia is absent during REM sleep and patients act out their dreams, allows a more direct analysis of the "phantom limb" phenomena and their modifications during sleep.

  4. Bioimpedance system for monitoring muscle and cardiovascular activity in the stump of lower-limb amputees

    International Nuclear Information System (INIS)

    Hornero, G; Díaz, D; Casas, O

    2013-01-01

    A bioimpedance system for the continuous measurement of non-invasive physiological parameters in lower-limb amputees is presented. The aim of the system is to monitor as many physiological parameters as possible from a single bioimpedance electrode configuration. In this way, a simple, low-cost and low-size autonomous system is developed that is able to continuously monitor the amputee in different environments (home, work, etc). The system measures both electrical impedance myography and electrical impedance plethysmography in the stump with electrodes placed in the inside face of a silicone interface. Such a system allows for the monitoring of a patient's muscle activity, and heart and breath rate, thus enabling the study and continuous monitoring of prosthesis adaptation and improvement of patient's gait to reduce physiological stress. Additionally, it can prevent cardiovascular problems due to the effort involved in the use of prostheses, which can decrease the life expectancy of amputees with previous vascular diseases. Experimental results obtained from different amputees' test validate the purpose of the system. (paper)

  5. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.’s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    Directory of Open Access Journals (Sweden)

    Hideyuki Usa

    2017-01-01

    Full Text Available This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm was calculated. Body weight and limb segment length (thigh and lower leg length were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  6. Lower limb asymmetry in mechanical muscle function

    DEFF Research Database (Denmark)

    Jordan, M J; Aagaard, Per; Herzog, W

    2015-01-01

    .05), and the final phase of the SJ (P AI in the CMJ concentric phase (r = 0.57, P Future research is required to assess the role of the CMJ and SJ phase-specific kinetic impulse AI......-R). Elite alpine skiers with ACL-R (n = 9; 26.2 ± 11.8 months post-op) and uninjured skiers (n = 9) participated in neuromuscular screening. Vertical ground reaction force during the CMJ and SJ was assessed using dual force plate methodology to obtain phase-specific bilateral asymmetry indices (AIs......) for kinetic impulse (CMJ and SJ phase-specific kinetic impulse AI). Dual x-ray absorptiometry scanning was used to assess asymmetry in lower body muscle mass. Compared with controls, ACL-R skiers had increased AI in muscle mass (P AI in the CMJ concentric phase (P 

  7. Relationship between lower limb position and pelvic floor muscle surface electromyography activity in menopausal women: a prospective observational study

    Directory of Open Access Journals (Sweden)

    Halski T

    2017-01-01

    Full Text Available Tomasz Halski,1 Kuba Ptaszkowski,2 Lucyna Słupska,1 Robert Dymarek,3 Małgorzata Paprocka-Borowicz2 1Department of Physiotherapy, Opole Medical School, Opole, 2Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, 3Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland Objectives: In physiotherapeutic practice, special attention is being given to the reciprocal anatomical, physiological, and biomechanical relationship of the pelvis and the structures connected to it. However, the scientific literature shows mainly the theoretical information about their mutual connections. The lack of information about these relations from a practical aspect coupled with the paucity of scientific papers on the impact of posture changes on the pelvic floor led the authors to conduct this study. The primary aim of this study was to compare the resting and functional bioelectrical activities of pelvic floor muscles (PFMs depending on three different positions of the lower limbs (positions A, B, and C in the supine position.Materials and methods: This was a prospective observational study evaluating resting and functional activities of the PFM depending on the position of the lower limbs. The study was carried out at the Department and Clinic of Urology, University Hospital in Wroclaw, Poland and the target group were women in the menopausal period. Bioelectrical activity of PFM was recorded using a surface electromyographic instrument in the supine position. Results of the values obtained in A, B, and C positions were compared using a one-way analysis of variance.Results: In position A, the average resting surface electromyography (sEMG activity of PFM was 6.9±2.6 µV; in position B, the result was 6.9±2.5 µV and in position C, the resting sEMG activity was 5.7±1.8 µV (P=0.0102. The results of the functional bioelectrical activity of PFM were as follows: position A – 20.3

  8. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.

    Science.gov (United States)

    Inouye, Joshua M; Valero-Cuevas, Francisco J

    2016-02-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms

  9. Muscle Functions and Functional Performance among Older Persons with and without Low Back Pain

    Directory of Open Access Journals (Sweden)

    Nor Azizah Ishak

    2016-01-01

    Full Text Available This study aims to compare muscle functions and functional performances between older persons with and without low back pain (LBP and to determine the association between muscle functions and functional performances. This is a cross-sectional study, involving 95 older persons (age = 70.27±7.26 years. Anthropometric characteristics, muscle functions, and functional performances were measured. Data were analyzed using ANOVA, Pearson’s correlation, and multiple linear regression. The functional performances showed no significant differences (females LBP versus non-LBP, males LBP versus non-LBP (p<0.05. For muscle functions, significant differences were found (females LBP versus non-LBP for abdominal muscle strength (p=0.006 and back muscle strength (p=0.07. In the LBP group, significant correlations were found between back and abdominal muscle strength and hand grip strength (r=0.377 and r=0.396, resp., multifidus control and lower limb function (r=0.363 in females, and back muscle strength and lower limb function (r=0.393 in males (all p<0.05. Regression analysis showed that abdominal and back muscle strengths were significant predictors of hand grip strength (p=0.041 and p=0.049, resp., and multifidus control was a significant predictor of lower limb function in females (p=0.047. This study demonstrates that older women with LBP exhibit poorer muscle functions compared to older women without LBP.

  10. Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles.

    Science.gov (United States)

    Abdala, Virginia; Diogo, Rui

    2010-11-01

    The main aim of the present work is to synthesize the information obtained from our dissections of the pectoral and forelimb muscles of representative members of the major extant taxa of limbed amphibians and reptiles and from our review of the literature, in order to provide an account of the comparative anatomy, homologies and evolution of these muscles in the Tetrapoda. The pectoral and forelimb musculature of all these major taxa conform to a general pattern that seems to have been acquired very early in the evolutionary history of tetrapods. Although some muscles are missing in certain taxa, and a clear departure from this general pattern is obviously present in derived groups such as birds, the same overall configuration is easily distinguishable in these taxa. Among the most notable anatomical differences between the groups, one that seems to have relevant evolutionary and functional implications, concerns the distal insertion points of the forearm musculature. In tetrapods, the muscles of the radial and ulnar complexes of the forearm are pleisomorphically mainly inserted onto the radius/ulna or onto the more proximal carpal bones, but in mammals some of these muscles insert more distally onto bones such as the metacarpals. Interestingly, a similar trend towards a more distal insertion of these muscles is also found in some non-mammalian tetrapod taxa, such as some anurans (e.g. Phyllomedusa). This may be correlated with the acquisition of more subtle digital movement abilities in these latter taxa. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  11. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002adults for the trunk (0.001older adults for the ankle (0.009Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Directory of Open Access Journals (Sweden)

    Kouki Nakagawa

    2017-01-01

    Full Text Available The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON, denervation (DN, and denervation with direct ES (DN + ES. Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA, and capillary-to-fiber (C/F ratio of the tibialis anterior (TA muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.

  13. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Science.gov (United States)

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  14. Effects of an Eight-Week Stepladder Exercise Protocol on Lower Limb Muscular Strength of Apparently Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Olagbegi Oladapo Michael

    2017-09-01

    Full Text Available Purpose. Backward descent of stairs is associated with improved muscle strength and reduced joint stress, but the effect of backward ascent of stairs on lower limb muscle strength has not been reported. This study compared the effects of forward and backward stair climbing on lower limb muscle strength in apparently healthy young adults. Methods. The total of 31 young volunteers were allocated to either forward or backward stair climbing group (n = 16 and 15, respectively. Dynamic quadriceps and hamstring muscle strength was assessed in addition to thigh girth at baseline and at weeks 4 and 8 with the use of the repetitive maximum method and tape measure, respectively. Results. Between baseline and week 8, muscular strength in both groups (quadriceps: 14.4 ± 3.6 to 16.4 ± 3.4 kg; 14.0 ± 2.9 to 15.3 ± 2.7 kg; hamstring: 12.2 ± 3.2 to 13.4 ± 3.2; 11.7 ± 2.5 to 12.9 ± 2.7 kg increased significantly (p 0.05. The groups were comparable in all three measures post intervention. Conclusions. Forward and backward stair climbing protocols are effective for improving the dynamic strength of the hamstring and quadriceps muscles of apparently healthy young adults. Thus, either protocol could be used for the improvement of lower limbs dynamic muscle strength.

  15. Reconstruction of the Proximal Humerus after Wide Resection of Tumors: Comparison of Three Reconstructive Options

    International Nuclear Information System (INIS)

    EL-SHERBINY, M.

    2008-01-01

    Purpose: Assessment of the functional results and complications of three bone reconstructive procedures after resection of primary tumors of the proximal humerus. Material and Methods: Between 2000 and 2008, 32 patients having primary malignant, aggressive benign or metastatic tumors of the proximal humerous were selected for limb sparing surgery. Preoperative evaluation included CT chest, MRI. Limb sparing surgical resection was done including intraarticular or extra articular wide resection of the tumor. Bone defect was reconstructed with fusion shoulder using free vascularized fibular graft (FFFG) in 11 patients and pedicled lateral scapular crest graft (PLSCG) in 8 patients and mobile shoulder reconstruction using proximal humerus prosthesis in 13 patients. Those patients were followed-up at regular interval to detect bone union and complications related to bone flaps or prosthesis. Functional results were assessed for every patient after one year postoperatively. Results: The median age of the patients was 21 years and the follow-up period ranged from 19 months to 92 months. Postoperative resection margins were negative in all cases. The mean length of the resected humerus was 13 cm. The mean operative time for prosthesis cases was 3.5 hours and that for FVFG was 6.5 hours and was 5 hours for PLSCG cases. The mean time of bone union proximally and distally for FVFG and PLSCG was 4.2 and 5.5 months accordingly. At 1 year follow-up, the functional results for the three reconstructive procedures were nearly the same with a mean functional score for FVFG cases was 73%, for PLSCG cases was 68% and was 71% for prosthesis cases. Hand and elbow functions were preserved in all types of reconstruction. The range of shoulder abduction and flexion was grossly limited with prosthesis cases while it showed marked improvement with fusion by FVFG and PLSCG. Complications for prosthesis cases were one case proximal migration and one case posterior sublaxation. Complications of

  16. Passive Muscle-Tendon Unit Gearing is Joint Dependent in Human Medial Gastrocnemius

    Directory of Open Access Journals (Sweden)

    Emma F Hodson-Tole

    2016-03-01

    Full Text Available Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fibre length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behaviour of muscle fibres and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles.

  17. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  18. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    Science.gov (United States)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    .5 limb buds was cultured with and without encapsulation in alginate prior to culturing in the bioreactor. Encapsulated limbs grown in the bioreactor did not fuse together, but developed only the more proximal elements while limbs grown in culture dishes formed proximal and distal elements. Alginate encapsulation may have reduced oxygenation to the progress zone of the developing limb bud resulting in lack of development of the more distal elements. These results show that the bioreactor supports growth and differentiation of skeletal elements in entire E13 limb buds, and that a method to culture younger limb buds without fusing together needs to be developed if any morphometric analysis is to be performed.

  19. Effect of acute inspiratory muscle exercise on blood flow of resting and exercising limbs and glucose levels in type 2 diabetes.

    Science.gov (United States)

    Corrêa, Ana Paula dos Santos; Antunes, Cristiano Fetter; Figueira, Franciele Ramos; de Castro, Marina Axmann; Ribeiro, Jorge Pinto; Schaan, Beatriz D'Agord

    2015-01-01

    To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (Pexercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (Pexercise that recruits the diaphragm can abruptly reduce glucose levels.

  20. Resistance to rocuronium of rat diaphragm as compared with limb muscles.

    Science.gov (United States)

    Huang, Lina; Yang, Meirong; Chen, Lianhua; Li, Shitong

    2014-12-01

    Skeletal muscles are composed of different muscle fiber types. We investigated the different potency to rocuronium among diaphragm (DIA), extensor digitorum longus (EDL), and soleus (SOL) in vitro as well as to investigate the differences of acetylcholine receptors (AChRs) among these three typical kinds of muscles. The isolated left hemidiaphragm nerve-muscle preparations, the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations were established to evaluate the potency to rocuronium. Concentration-response curves were constructed and the values of IC50 were obtained. The density of AChRs at the end plate and the number of AChRs per unit fiber cross fiber area (CSA), AChR affinity for muscle relaxants were evaluated. The concentration-twitch tension curves of rocuronium were significantly different. The curves demonstrated a shift to the right of the DIA compared with the EDL and SOL (P  0.05). IC50 was significantly largest in DIA, second largest in SOL, and smallest in EDL (P rocuronium of DIA compared with EDL and SOL was verified. The DIA was characterized by the largest number of AChRs per unit fiber CSA and the lowest affinity of the AChRs. Although compared with SOL, EDL was proved to have larger number of AChRs per unit fiber CSA and the lower affinity of the AChRs. These findings may be the mechanisms of different potency to rocuronium in DIA, EDL, and SOL. The results of the study could help to explain the relationship between different composition of muscle fibers and the potency to muscle relaxants. Extra caution should be taken in clinical practice when monitoring muscle relaxation in anesthetic management using different muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.

    Science.gov (United States)

    Hatzitaki, V; McKinley, P

    2001-09-01

    This study employed the paradigm of asymmetric limb loading during bilateral arm reaching to examine the motor system's ability to independently organize the discrete movement of both upper limbs to equidistant targets when one of the limbs is loaded under specific timing constraints. The loading procedure involved attaching two different Velcro strapped weights to the right wrist, thus increasing the right arm's mass by 25% (1 kg) and 50% (2 kg). Movements were captured by a high-speed digital camera (240 Hz), while electromyographic (EMG) activity of selected elbow and shoulder muscles of both limbs was recorded (1,000 Hz) simultaneously. The results revealed that the mechanisms used by the system to compensate for unilateral limb loading were as follows: First, addition of an inertial load resulted in an increased movement time and concomitant decrease in peak velocity of both the upper arm and forearm of only the loaded limb and was scaled to the added weight. Second, for the EMG parameters, adjustments to the inertial load were primarily characterized by an increase in burst duration of all muscles, with load-specific changes in activity and onset time: the elbow antagonist (biceps) demonstrated a decrease in activity with the 50% load, and the elbow agonist (triceps) had an earlier onset with the 25% load. Concomitant adjustments on the unloaded limb consisted primarily of an increase in burst duration of the shoulder and elbow agonists (pectoralis and triceps), an earlier triceps onset solely with the 25% load, and a decrease in activity of the biceps solely with the 50% load. Third, with the exception of biceps activity, the amplitude of EMG activity was invariant across changes in load for both the loaded and unloaded limb. This lack of modulation in activity may have been related to the inability of performers to meet the time constraint of simultaneous bilateral limb arrival to the end targets. This inability can be the result of an active strategy

  2. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains

    Directory of Open Access Journals (Sweden)

    John Orchard

    2010-09-01

    Full Text Available John Orchard1, Patrick Farhart2, Alex Kountouris3, Trefor James3, Marc Portus31School of Public Health, University of Sydney, Australia; 2Punjab Kings XI team, Indian Premier League, India; 3Cricket Australia, Melbourne, AustraliaObjective: To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains.Methods: This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998–1999 to 2008–2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI] were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture.Results: Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4–7.1. Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03–2.1 and quadriceps strain (RR = 2.0; 95% CI: 1.1–3.5 were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4–1.1. Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group.Conclusion: Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a

  3. Computed tomography in deep venous thrombosis with limb oedema

    International Nuclear Information System (INIS)

    Seem, E.; Stranden, E.; Stiris, M.G.; Aker Sykehus, Oslo

    1985-01-01

    Computed tomography was used in 12 patients to investigate the distribution of oedema in the soft tissue compartments of lower limbs with deep venous thrombosis. Oedema was evenly distributed throughout the subcutis and the muscular compartments in tomograms obtained 25 cm proximal to the ankle. Significantly less swelling in the muscular compartments was found 10 cm proximal to the ankle. Interstitial fluid hydrostatic pressure was measured in the subcutis, and in anterior and posterior muscular compartments, and was significantly increased in all cases. Except for one case, the recorded pressures were well below 30 mmHg, which is considered the limit above which compartment syndromes occur. Tissue compliance was significantly lower in muscular compartments than in the subcutis. (orig.)

  4. Risk factors associated with the occurrence of silent pulmonary embolism in patients with deep venous thrombosis of the lower limb.

    Science.gov (United States)

    Li, Fenghe; Wang, Xuehu; Huang, Wen; Ren, Wei; Cheng, Jun; Zhang, Mao; Zhao, Yu

    2014-08-01

    The aim of our study is to investigate the prevalence of silent pulmonary embolism in patients with deep venous thrombosis in the lower limbs and to evaluate the associated risk factors. A total of 322 patients with acute deep venous thrombosis confirmed by CT venography or Doppler ultrasonography were studied. The diagnosis of silent pulmonary embolism was established by computed tomography pulmonary arteriography (CTPA). The association between covariates and the prevalence of silent pulmonary embolism in patients with deep venous thrombosis in lower limbs were assessed using chi-square test and multivariable regression. The incidence of silent pulmonary embolism was 33.5% (108 in 322 patients) in all patients with deep venous thrombosis in lower limbs. Chi-square test showed male gender, the right lower limb, proximal location of the thrombus, unprovoked venous thrombosis and coexisting heart diseases were related to a higher incidence of silent pulmonary embolism in patients with deep venous thrombosis in lower limbs. The multivariate regression analysis confirmed that the risk factors associated with silent pulmonary embolism in deep venous thrombosis patients included the right side and proximal location of the thrombus (odds ratio: 2.023, 95% CI: 1.215-3.368; odds ratio: 3.610, 95% CI: 1.772-7.354), unprovoked venous thrombosis (odds ratio: 2.037, 95% CI: 1.188-3.493), coexisting heart diseases (odds ratio: 4.507, 95% CI: 2.667-7.618). Silent pulmonary embolism occurred frequently in patients with deep venous thrombosis in lower limbs. The right side, the proximal location of the thrombus, unprovoked venous thrombosis and coexisting heart diseases increased the risk for the occurrence of silent pulmonary embolism. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Inhibition of α-adrenergic tone disturbs the distribution of blood flow in the exercising human limb.

    Science.gov (United States)

    Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K

    2013-07-15

    The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.

  6. Osteology and radiology of the Maned Wolf (Chrysocyon brachyurus) pelvic limb.

    Science.gov (United States)

    Siqueira, R C; Rahal, S C; Inamassu, L R; Mamprim, M J; Felix, M; Castilho, M S; Mesquita, L R; Ribeiro, V L; Teixeira, C R; Rassy, F B

    2017-12-01

    This study describes the osteology and radiology of the pelvic limb in maned wolves. Ten (five live and five dead) maned wolves (Chrysocyon brachyurus), five males and five females, aged from 2 to 7 years old were used. Digital radiographs were taken and recorded for both pelvic limbs in all animals. Osteology was correlated with the radiographic images. The pelvis had a rectangular shape, and the obturator foramen (foramen obturatum) was oval. The femoral neck (collum femoris) was short and thick. The greater trochanter (trochanter major) extended proximally to near the dorsum of the femoral head (caput ossis femoris). The lateral femoral condyle (condylus lateralis) was larger than the medial condyle (condylus medialis), and the intercondylar fossa (fossa intercondylaris) had a slightly oblique orientation. The proximal tibia displayed medial and lateral condyles with the medial larger. The femur was slightly shorter than the tibia. Seven tarsal bones (ossa tarsi) were present, four long metatarsal bones (ossa metatarsalia II - V) and a short first metatarsal bone (os metatarsal I). © 2017 Blackwell Verlag GmbH.

  7. Trunk and lower limb biomechanics during stair climbing in people with and without symptomatic femoroacetabular impingement.

    Science.gov (United States)

    Hammond, Connor A; Hatfield, Gillian L; Gilbart, Michael K; Garland, S Jayne; Hunt, Michael A

    2017-02-01

    Femoroacetabular impingement is a pathomechanical hip condition leading to pain and impaired physical function. It has been shown that those with femoroacetabular impingement exhibit altered gait characteristics during level walking and stair climbing, and decreased muscle force production during isometric muscle contractions. However, no studies to-date have looked at trunk kinematics or muscle activation during dynamic movements such as stair climbing in this patient population. The purpose of this study was to compare biomechanical outcomes (trunk and lower limb kinematics as well as lower limb kinetics and muscle activation) during stair climbing in those with and without symptomatic femoroacetabular impingement. Trunk, hip, knee and ankle kinematics, as well as hip, knee and ankle kinetics and muscle activity of nine lower limb muscles were collected during stair climbing for 20 people with clinical and radiographic femoroacetabular impingement and compared to 20 age- and sex-matched pain-free individuals. Those with femoroacetabular impingement ascended the stairs slower (effect size=0.82), had significantly increased peak trunk forward flexion angles (effect size=0.99) and external hip flexion moments (effect size=0.94) and had decreased peak external knee flexion moments (effect size=0.90) compared to the control group. Findings from this study indicate that while those with and without femoroacetabular impingement exhibit many biomechanical similarities when ascending stairs, differences in trunk forward flexion and joint kinetics indicate some important differences. Further longitudinal research is required to elucidate the cause of these differences as well as the clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Outcomes of the Bobath concept on upper limb recovery following stroke.

    Science.gov (United States)

    Luke, Carolyn; Dodd, Karen J; Brock, Kim

    2004-12-01

    To determine the effectiveness of the Bobath concept at reducing upper limb impairments, activity limitations and participation restrictions after stroke. Electronic databases were searched to identify relevant trials published between 1966 and 2003. Two reviewers independently assessed articles for the following inclusion criteria: population of adults with upper limb disability after stroke; stated use of the Bobath concept aimed at improving upper limb disability in isolation from other approaches; outcomes reflecting changes in upper limb impairment, activity limitation or participation restriction. Of the 688 articles initially identified, eight met the inclusion criteria. Five were randomized controlled trials, one used a single-group crossover design and two were single-case design studies. Five studies measured impairments including shoulder pain, tone, muscle strength and motor control. The Bobath concept was found to reduce shoulder pain better than cryotherapy, and to reduce tone compared to no intervention and compared to proprioceptive neuromuscular facilitation (PNF). However, no difference was detected for changes in tone between the Bobath concept and a functional approach. Differences did not reach significance for measures of muscle strength and motor control. Six studies measured activity limitations, none of these found the Bobath concept was superior to other therapy approaches. Two studies measured changes in participation restriction and both found equivocal results. Comparisons of the Bobath concept with other approaches do not demonstrate superiority of one approach over the other at improving upper limb impairment, activity or participation. However, study limitations relating to methodological quality, the outcome measures used and contextual factors investigated limit the ability to draw conclusions. Future research should use sensitive upper limb measures, trained Bobath therapists and homogeneous samples to identify the influence of

  9. Functional roles of lower-limb joint moments while walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  10. Factors associated with night-time calf muscle cramps: a case-control study.

    Science.gov (United States)

    Hawke, Fiona; Chuter, Vivienne; Burns, Joshua

    2013-03-01

    Although highly prevalent and painful, night-time calf muscle cramping is poorly understood, and no treatment has shown consistent efficacy or safety. One hundred sixty adults were recruited from New South Wales, Australia, including 80 who had night-time calf cramping at least once per week and 80 age- and gender-matched adults who did not. Participants were assessed using reliable tests of lower limb strength, flexibility, morphometrics, circulation, and sensation, and were questioned about health and lifestyle factors, diet, medications, exercise, symptomatology, sleeping habits, and footwear. Conditional logistic regression identified 3 factors independently associated with night-time calf muscle cramps: muscle twitching (OR 4.6, 95% CI 1.6-15.5, P = 0.01); lower limb tingling (OR 4.1, 95% CI 1.6-10.3, P = 0.003); and foot dorsiflexion weakness (OR 1.02, 95% CI 1.01-1.03, P = 0.002), which represented other measures of lower limb weakness in the model. Night-time calf muscle cramps were associated with markers of neurological dysfunction and potential musculoskeletal therapeutic targets. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  11. Comparative anatomy of the arm muscles of the Japanese monkey (Macaca fuscata) with some comments on locomotor mechanics and behavior.

    Science.gov (United States)

    Aversi-Ferreira, Tales Alexandre; Aversi-Ferreira, Roqueline A G M F; Bretas, Rafael Vieira; Nishimaru, Hiroshi; Nishijo, Hisao

    2016-08-01

    The anatomical literature on the genus Macaca has focused mainly on the rhesus monkey. However, some aspects in the positional behaviors of the Japanese monkey may be different from those in rhesus monkey, suggesting that the anatomical details of these species are divergent. Four thoracic limbs of Macaca fuscata adults were dissected. The arm muscles in Japanese macaques are more similar to rhesus monkeys and Papio; these characteristics are closer to those of bearded capuchins than apes, indicating more proximity of this genus to New World primates. The anatomical features observed favor quadrupedal locomotor behaviors on the ground and in arboreal environments. Japanese monkeys, rhesus monkeys, and bearded capuchins, which share more primitive characteristics in their arm muscles, present features that favor both arboreal and quadrupedal locomotor behaviors, whereas apes, mainly Pan and Gorilla, which spend more time on the ground, present more quadrupedal specializations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    Science.gov (United States)

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P force and power are

  13. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    Science.gov (United States)

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  14. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  15. Reasonable classical concepts in human lower limb anatomy from the viewpoint of the primitive persistent sciatic artery and twisting human lower limb.

    Science.gov (United States)

    Kawashima, Tomokazu; Sasaki, Hiroshi

    2010-11-01

    The main aim of this review is (1) to introduce the two previous studies we published human lower limb anatomy based on the conventional macroscopic anatomical [corrected] criteria with hazardous recognition of this description, (2) to activate the discussion whether the limb homology exists, and (3) to contribute to future study filling the gap between the gross anatomy and embryology. One of the topics we discussed was the human persistent sciatic artery. To date, numerous human cases of persistent sciatic artery have been reported in which the anomalous artery was present in the posterior compartment of the thigh alongside the sciatic nerve. As one of the important criteria for assessing the human primitive sciatic artery, its ventral arterial position with respect to the sciatic nerve is reasonable based on the initial positional relationship between ventral arterial and dorsal nervous systems and comparative anatomical findings. We also discuss ways of considering the topography of muscles of the lower limb and their innervations compared to those of the upper limb. We propose a schema of the complex anatomical characteristics of the lower limb based on the vertebrate body plan. According to this reasonable schema, the twisted anatomy of the lower limb can be understood more easily. These two main ideas discussed in this paper will be useful for further understanding of the anatomy of the lower limb and as a first step for future. We hope that the future study in lower limb will be further developed by both viewpoints of the classical gross anatomy and recent embryology.

  16. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  17. The anatomy and ontogeny of the head, neck, pectoral, and upper limb muscles of Lemur catta and Propithecus coquereli (primates): discussion on the parallelism between ontogeny and phylogeny and implications for evolutionary and developmental biology.

    Science.gov (United States)

    Diogo, Rui; Molnar, Julia L; Smith, Timothy D

    2014-08-01

    Most anatomical studies of primates focus on skeletal tissues, but muscular anatomy can provide valuable information about phylogeny, functional specializations, and evolution. Herein, we present the first detailed description of the head, neck, pectoral, and upper limb muscles of the fetal lemuriforms Lemur catta (Lemuridae) and Propithecus coquereli (Indriidae). These two species belong to the suborder Strepsirrhini, which is often presumed to possess some plesiomorphic anatomical features within primates. We compare the muscular anatomy of the fetuses with that of infants and adults and discuss the evolutionary and developmental implications. The fetal anatomy reflects a phylogenetically more plesiomorphic condition in nine of the muscles we studied and a more derived condition in only two, supporting a parallel between ontogeny and phylogeny. The derived exceptions concern muscles with additional insertions in the fetus which are lost in adults of the same species, that is, flexor carpi radialis inserts on metacarpal III and levator claviculae inserts on the clavicle. Interestingly, these two muscles are involved in movements of the pectoral girdle and upper limb, which are mainly important for activities in later stages of life, such as locomotion and prey capture, rather than activities in fetal life. Accordingly, our findings suggest that some exceptions to the "ontogeny parallels phylogeny" rule are probably driven more by ontogenetic constraints than by adaptive plasticity. © 2014 Wiley Periodicals, Inc.

  18. Autosomal dominant HMSN with proximal involvement: new Brazilian cases HMSN autossômica dominante com envolvimento proximal: novos casos brasileiros

    Directory of Open Access Journals (Sweden)

    Cristiane Borges Patroclo

    2009-09-01

    Full Text Available We report four Brazilian siblings with Autosomal Dominant Hereditary Motor Sensory Neuropathy with Proximal Dominant Involvement (HMSN-P, a rare form of HMSN, that was characterized by proximal dominant muscle weakness and atrophy onset after the age of 30 years, fasciculation, arreflexia and sensory disturbances with autosomal dominant inheritance. Electrophysiological study and sural nerve biopsy were in the accordance with axonal sensory motor polyneuropathy and laboratorial analysis disclosed serum lipids and muscle enzymes abnormalities. Our report is the first done by a group outside Japan, where the disease initially seemed to be restricted and stressed the phenotypic variability from the original report.Relatamos os casos de quatro irmãos brasileiros com Neuropatia Sensitivo Motora Hereditária com Envolvimento Proximal Dominante (HMSN-P, uma forma rara de HMSN caracterizada por fraqueza muscular de predomínio proximal e atrofia de instalação após os 30 anos, fasciculações, arreflexia, distúrbios sensitivos e padrão de herança autossômica dominante. Os estudos eletrofisiológicos e de biópsia do nervo sural confirmaram o diagnóstico de polineuropatia sensitivo-motora com padrão lesional axonal. Laboratorialmente foram constatadas anormalidades séricas no metabolismo lipídico e enzimas musculares. Nosso relato é o primeiro feito por um grupo fora do Japão, onde a doença parecia restrita até então e ressalta a variabilidade fenotípica apresentada nos casos Brasileiros.

  19. Effect of whole-body vibration on muscle strength, spasticity, and ...

    African Journals Online (AJOL)

    CP) and is characterized by spasticity and muscle weakness of both lower limbs resulting in decreased walking ability. The purpose of this study was to evaluate the effect of whole body vibration (WBV) training on muscle strength, spasticity, and ...

  20. Effectiveness of muscle strengthening and description of protocols for preventing falls in the elderly: a systematic review

    Directory of Open Access Journals (Sweden)

    Erika Y. Ishigaki

    2014-05-01

    Full Text Available Background: Falls are a geriatric syndrome that is considered a significant public health problem in terms of morbidity and mortality because they lead to a decline in functional capacity and an impaired quality of life in the elderly. Lower limb muscle strengthening seems to be an effective intervention for preventing falls; however, there is no consensus regarding the best method for increasing lower limb muscle strength. Objectives: To analyze the effectiveness of lower limb muscle strengthening and to investigate and describe the protocols used for preventing falls in elderly subjects. Method: We performed a systematic review of randomized and controlled clinical trials published between 2002 and 2012 in the databases PubMed, EMBASE, Scopus, Web of Science, and PEDro that cited some type of lower limb muscle strengthening protocol and that evaluated the incidence of falls as the primary outcome exclusively in elderly subjects. Twelve studies met the inclusion criteria. Qualitative analysis was performed by independent reviewers applying the PEDro scale. Results: The data obtained from the selected studies showed lower fall rates in the intervention groups compared to controls. Six studies described the lower limb muscle strengthening protocol in detail. High methodological quality was found in 6 studies (PEDro score ≥7/10 points. Conclusions: The methodological quality of the studies in this area appears to leave little doubt regarding the effectiveness of lower limb strengthening exercises for preventing falls in elderly subjects, however the interventions in these studies were poorly reported.

  1. The effect of lower limb rehabilitation gymnastics on postoperative rehabilitation in elderly patients with femoral shaft fracture: A retrospective case-control study.

    Science.gov (United States)

    Yang, Si-Dong; Ning, Sheng-Hua; Zhang, Li-Hong; Zhang, Ying-Ze; Ding, Wen-Yuan; Yang, Da-Long

    2016-08-01

    The purpose of this study was to explore the effect of lower limb rehabilitation gymnastics on postoperative rehabilitation in elderly patients with femoral shaft fracture after undergoing intramedullary nail fixation surgery.We collected medical records of elderly patients aged ≥ 60 years with femoral shaft fracture between 03/2010 and 03/2015 in Longyao County Hospital. Totally, 160 patients were identified and divided into the intervention group (n = 80) and the control group (n = 80). During the postoperative period, the intervention group received lower limb rehabilitation gymnastics treatment for 3 months, but the control group did not. All patients were routinely asked to return hospital for a check in the 1st postoperative week, as well as the 2nd week, the 1st month, and the 3rd month, after surgery. The clinical rehabilitation effect was evaluated by checking lower limb action ability, detecting the lower limb deep venous thrombosis (DVT), scoring muscle strength of quadriceps and visual analog scale (VAS) score, and performing satisfaction survey.At the 1st week and 2nd week after surgery, the clinical rehabilitation effect in the intervention group was better regarding lower limb action ability, lower limb DVT, muscle strength of quadriceps, VAS score, and patient satisfaction, as compared with the control group. However, there was no significant difference at the 1st month and the 3rd month after surgery when comparing the intervention group to the control group.In the early postoperative stage, lower limb rehabilitation gymnastics can effectively improve the recovery of lower limb function, beneficial to reducing postoperative complications such as lower limb DVT and muscle atrophy, and increasing patient satisfaction rate.

  2. Ipsilateral vascularised ulnar transposition autograft for limb-sparing surgery of the distal radius in 2 dogs with osteosarcoma : clinical communication

    Directory of Open Access Journals (Sweden)

    G.S. Irvine-Smith

    2006-06-01

    Full Text Available Canine osteosarcoma is the most commonly diagnosed primary bone tumour in the dog, affecting mainly large and giant breed dogs with the predilection site being the metaphysis of long bones, specifically the distal radius, proximal humerus, distal femur and proximal tibia and fibula. Treatment options are either palliative or curative intent therapy, the latter limb amputation or limb-sparing surgery together with chemotherapy. This article describes the use of an ipsilateral vascularised ulnar transposition autograft as well as chemotherapy in 2 dogs with osteosarcoma of the distal radius. Both dogs showed minimal complications with the technique and both survived over 381 days following the surgery. Complications seen were loosening of the screws and osteomyelitis. The procedure was well tolerated with excellent limb use. This technique is indicated for use in cases with small tumour size that have not broken through the bone cortex.

  3. Biomechanical parameters in lower limbs during natural walking and Nordic walking at different speeds.

    Science.gov (United States)

    Dziuba, Alicja K; Żurek, Grzegorz; Garrard, Ian; Wierzbicka-Damska, Iwona

    2015-01-01

    Nordic Walking (NW) is a sport that has a number of benefits as a rehabilitation method. It is performed with specially designed poles and has been often recommended as a physical activity that helps reduce the load to limbs. However, some studies have suggested that these findings might be erroneous. The aim of this paper was to compare the kinematic, kinetic and dynamic parameters of lower limbs between Natural Walking (W) and Nordic Walking (NW) at both low and high walking speeds. The study used a registration system, BTS Smart software and Kistler platform. Eleven subjects walked along a 15-metre path at low (below 2 m⋅s-1) and high (over 2 m⋅s-1) walking speeds. The Davis model was employed for calculations of kinematic, kinetic and dynamic parameters of lower limbs. With constant speed, the support given by Nordic Walking poles does not make the stroke longer and there is no change in pelvic rotation either. The only change observed was much bigger pelvic anteversion in the sagittal plane during fast NW. There were no changes in forces, power and muscle torques in lower limbs. The study found no differences in kinematic, kinetic and dynamic parameters between Natural Walking (W) and Nordic Walking (NW). Higher speeds generate greater ground reaction forces and muscle torques in lower limbs. Gait parameters depend on walking speed rather than on walking style.

  4. Understanding the three-dimensional anatomy of the superficial lymphatics of the limbs.

    Science.gov (United States)

    Tourani, Saam S; Taylor, G Ian; Ashton, Mark W

    2014-11-01

    There are minimal data in the current literature regarding the depth of the superficial lymphatic collectors of the limbs in relation to the various subcutaneous tissue layers. Injection, microdissection, radiographic, and histologic studies of the superficial lymphatics and the subcutaneous tissues of 32 limbs from 15 human cadavers were performed. Five layers were consistently identified in the integument of all the upper and lower limb specimens: (1) skin, (2) subcutaneous fat, (3) superficial fascia, (4) loose areolar tissue, and (5) deep fascia. Layer 2 was further divided into superficial (2a) and deep (2c) compartments by a thin, transparent, horizontal septum (layer 2b). The main superficial veins and the superficial nerves coursed in layer 4. The lymphatic collectors were found at layer 2c and layer 4. The use of consistent nomenclature to describe the subcutaneous tissue layers facilitates a greater understanding and discussion of the anatomy. In lymphovenous anastomosis for the treatment of lymphedema, indocyanine green lymphography is an unreliable method for identification of the superficial collectors of the thigh. The medial proximal leg, the dorsum of the wrist over the anatomical snuffbox, and the volar proximal forearm provide suitable areas for locating superficial collectors with nearby matching size veins. In vertical medial thigh lift, choosing a dissection plane superficial to the great saphenous vein is unlikely to preserve the collectors of the ventromedial bundle.

  5. Limb-girdle muscular dystrophy type 2A in Brazilian children

    Directory of Open Access Journals (Sweden)

    Marco Antônio Veloso de Albuquerque

    2015-12-01

    Full Text Available ABSTRACT Calpainopathy is an autosomal recessive limb girdle muscular dystrophy (LGMD2A caused by mutations in CAPN3 gene. Objective To present clinical and histological findings in six children with a molecular diagnosis of LGMD2A and additionally the MRI findings in two of them. Method We retrospectively assessed medical records of 6 patients with mutation on CAPN3 gene. Results All patients were female (three to 12 years. The mean of age of disease onset was 9 years. All of them showed progressive weakness with predominance in lower limbs. Other findings were scapular winging, joint contractures and calf hypertrophy. One female had a more severe phenotype than her dizygotic twin sister that was confirmed by muscle MRI. Muscle biopsies showed a dystrophic pattern in all patients. Conclusion In this cohort of children with LGMD2A, the clinical aspects were similar to adults with the same disorder.

  6. Lipid storage myopathy with clinical markers of Marfan syndrome: A rare association

    Directory of Open Access Journals (Sweden)

    Subasree Ramakrishnan

    2012-01-01

    Full Text Available Disorders of lipid metabolism can cause variable clinical presentations, often involving skeletal muscle, alone or together with other tissues. A 19-year-old boy presented with a 2-year history of muscle pain, cramps, exercise intolerance and progressive weakness of proximal lower limbs. Examination revealed skeletal markers of Marfan syndrome in the form of increased arm span compared with height, Kyphoscoliois, moderate pectus excavatum, high arched palate and wrist sign. He also had mild neck flexor weakness and proximal lower limb weakness with areflexia. Pathologic findings revealed lipid-laden fine vacuoles in the muscle fibers. Possibility of carnitine deficiency myopathy was considered and the patient was started on carnitine and Co Q. The patient made remarkable clinical improvement over the next 2 months. This case is reported for rarity of the association of clinical markers of Marfan syndrome and lipid storage myopathy and sparse literature on lipid storage myopathy in the Indian context.

  7. Low markers of muscle damage and inflammation following a 3-day ...

    African Journals Online (AJOL)

    running on markers of muscle damage and inflammation have not yet been reported. ... in muscles of the lower limb, as they contract eccentrically during downhill ..... nutritional and fluid intake in future field work on multiday trail running.

  8. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle.

    Science.gov (United States)

    Goh, Colleen; Blanchard, Mary L; Crompton, Robin H; Gunther, Michael M; Macaulay, Sophie; Bates, Karl T

    2017-10-01

    Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  9. Tendon vibration attenuates superficial venous vessel response of the resting limb during static arm exercise

    Directory of Open Access Journals (Sweden)

    Ooue Anna

    2012-11-01

    Full Text Available Abstract Background The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Methods Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB and without (EX vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE in overall and exercising muscle were measured. The cross-sectional area (CSAvein and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein was calculated using both variables. Results Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P P vein in the resting limb at EX decreased during exercise from baseline (P vein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P vein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Conclusion Diminished central command induced by tendon

  10. Magnetic-resonance-imaging-based three-dimensional muscle reconstruction of hip abductor muscle volume in a person with a transfemoral bone-anchored prosthesis : A feasibility study

    NARCIS (Netherlands)

    Leijendekkers, Ruud A.; Marra, Marco A.; Ploegmakers, Marieke J.M.; Van Hinte, Gerben; Frölke, Jan Paul; Van De Meent, Hendrik; Staal, J. Bart; Hoogeboom, Thomas J.; Verdonschot, Nico

    2018-01-01

    Background: Persons with transfemoral amputation typically have severe muscle atrophy of the residual limb. The effect of bone-anchored prosthesis use on existing muscle atrophy is unknown. A potentially feasible method to evaluate this is magnetic resonance imaging (MRI)-based three-dimensional

  11. Skeletal muscle contraction-induced vasodilation in the microcirculation.

    Science.gov (United States)

    Hong, Kwang-Seok; Kim, Kijeong

    2017-10-01

    Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.

  12. Roentgenodiagnostics of soft tissue condition in achondroplasia cases in limb lengthening after Ilizarov

    International Nuclear Information System (INIS)

    D'yachkova, G.V.

    1995-01-01

    Muscles and subcutaneous cellular tissue of upper and lower limbs have been studied in 14 patients with achondroplasia treated after Ilizarov in various periods of lengthening employing contrast roentgenography. The technique applied has allowed to reveal anatomic and topographic features of muscles and subcutaneous cellular tissue in achodroplasia cases and observe changes of morphological parameters in different stages of elongation. 8 refs.; 8 figs

  13. The Use of Functional Electrical Stimulation on the Upper Limb and Interscapular Muscles of Patients with Stroke for the Improvement of Reaching Movements: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Alicia Cuesta-Gómez

    2017-05-01

    Full Text Available IntroductionReaching movements in stroke patients are characterized by decreased amplitudes at the shoulder and elbow joints and greater displacements of the trunk, compared to healthy subjects. The importance of an appropriate and specific contraction of the interscapular and upper limb (UL muscles is crucial to achieving proper reaching movements. Functional electrical stimulation (FES is used to activate the paretic muscles using short-duration electrical pulses.ObjectiveTo evaluate whether the application of FES in the UL and interscapular muscles of stroke patients with motor impairments of the UL modifies patients’ reaching patterns, measured using instrumental movement analysis systems.DesignA cross-sectional study was carried out.SettingThe VICON Motion System® was used to conduct motion analysis.ParticipantsTwenty-one patients with chronic stroke.InterventionThe Compex® electric stimulator was used to provide muscle stimulation during two conditions: a placebo condition and a FES condition.Main outcome measuresWe analyzed the joint kinematics (trunk, shoulder, and elbow from the starting position until the affected hand reached the glass.ResultsParticipants receiving FES carried out the movement with less trunk flexion, while shoulder flexion elbow extension was increased, compared to placebo conditions.ConclusionThe application of FES to the UL and interscapular muscles of stroke patients with motor impairment of the UL has improved reaching movements.

  14. TRAINING-INDUCED CHANGES IN THE TOPOGRAPHY OF MUSCLE TORQUES AND MAXIMAL MUSCLE TORQUES IN BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Krzysztof Buśko

    2012-01-01

    Full Text Available The aim of the study was to detect changes in the maximal muscle torques in male basketball players during a two-year training cycle. We verified the hypothesis that different workloads applied during the preparation and competition periods would result in changes in the maximal muscle torques of the athletes (increase during the former and decrease or no change during the latter period accompanied by no alteration of the percent muscle topography of all the muscle groups tested. The examinations were conducted on nine senior male basketball players from the Polish national team. Estimations of the muscle torques in static conditions were performed at the end of the preparation (measurements I and III and competition (measurements II and IV periods of a two-year training cycle. Eleven muscle groups were studied including flexors and extensors of the trunk and flexors and extensors of the shoulder, the elbow, the hip, the knee, and the ankle. Muscle torques of the shoulder and the elbow insignificantly decreased except for the muscle torque of the flexors of the shoulder. Muscle torques of the flexors and extensors of the trunk as well as of the flexors and extensors of the hip, the knee, and the ankle increased between measurements I and III and between measurements I and IV with the only exception being the muscle torque of the flexors of the knee (which significantly decreased by 7.4% In the case of the flexors and extensors of the trunk and the flexors and extensors of the hip, the changes appeared to be significant. The sum of the muscle torques of the upper limbs markedly decreased between the preparation (measurement I and competition (measurement IV periods. The sum of the muscle torques of the trunk and the lower limbs and the sum of the muscle torques of the eleven muscle groups significantly increased between measurements I and IV. Percent muscle topography significantly decreased for the flexors and extensors of the shoulder and the

  15. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy.

    Science.gov (United States)

    Hu, Xiao; Blemker, Silvia S

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a genetic disease that occurs due to the deficiency of the dystrophin protein. Although dystrophin is deficient in all muscles, it is unclear why degeneration progresses differently across muscles in DMD. We hypothesized that each muscle undergoes a different degree of eccentric contraction during gait, which could contribute to the selective degeneration in lower limb muscle, as indicated by various amounts of fatty infiltration. By comparing eccentric contractions quantified from a previous multibody dynamic musculoskeletal gait simulation and fat fractions quantified in a recent imaging study, our preliminary analyses show a strong correlation between eccentric contractions during gait and lower limb muscle fat fractions, supporting our hypothesis. This knowledge is critical for developing safe exercise regimens for the DMD population. This study also provides supportive evidence for using multiscale modeling and simulation of the musculoskeletal system in future DMD research. © 2015 Wiley Periodicals, Inc.

  16. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man.

    Science.gov (United States)

    Strutton, Paul H; Beith, Iain D; Theodorou, Sophie; Catley, Maria; McGregor, Alison H; Davey, Nick J

    2004-10-01

    Trunk muscles receive corticospinal innervation ipsilaterally and contralaterally and here we investigate the degree of ipsilateral innervation and any cortical asymmetry in pairs of trunk muscles and proximal and distal limb muscles. Transcranial magnetic stimulation (TMS) was applied to left and right motor cortices in turn and bilateral electromyographic (EMG) recordings were made from internal oblique (IO; lower abdominal), deltoid (D; shoulder) and first dorsal interosseus (1DI; hand) muscles during voluntary contraction in ten healthy subjects. We used a 7-cm figure-of-eight stimulating coil located 2 cm lateral and 2 cm anterior to the vertex over either cortex. Incidence of ipsilateral motor evoked potentials (MEPs) was 85% in IO, 40% in D and 35% in 1DI. Mean (+/- S.E.M.) ipsilateral MEP latencies were longer ( Pmuscle (IO: n=16; D: n=8; 1DI: n=7 ratios). Mean values for these ratios were 0.70+/-0.20 (IO), 0.14+/-0.05 (D) and 0.08+/-0.02 (1DI), revealing stronger ipsilateral drive to IO. Comparisons of the sizes of these ratios revealed a bias towards one cortex or the other (four subjects right; three subjects left). The predominant cortex showed a mean ratio of 1.21+/-0.38 compared with 0.26+/-0.06 in the other cortex ( Pmuscles and also shows hemispheric asymmetry.

  17. Concomitant upper limb fractures and short-term functional recovery in hip fracture patients: does the site of upper limb injury matter?

    Science.gov (United States)

    Di Monaco, Marco; Castiglioni, Carlotta; Vallero, Fulvia; Di Monaco, Roberto; Tappero, Rosa

    2015-05-01

    The aim of this study was to evaluate functional recovery in a subgroup of hip fracture patients who sustained a simultaneous fracture at the upper limb, taking into account the site of upper limb injury. Of 760 patients admitted consecutively to the authors' rehabilitation hospital because of a fall-related hip fracture, 700 were retrospectively investigated. Functional outcome was assessed using Barthel Index scores. In 49 of the 700 patients, a single fall resulted in both a hip fracture and a fracture of either wrist (n = 34) or proximal humerus (n = 15). The patients with concomitant shoulder fractures had lower median Barthel Index scores after rehabilitation (70 vs. 90, P = 0.003), lower median Barthel Index effectiveness (57.1 vs. 76.9, P = 0.018), and prolonged median length of stay (42 vs. 36 days, P = 0.011) than did the patients with isolated hip fractures. Significant differences persisted after adjustment for six potential confounders. The adjusted odds ratio for achieving a Barthel Index score lower than 85 was 6.71 (95% confidence interval, 1.68-26.81; P = 0.007) for the patients with concomitant shoulder fractures. Conversely, no prognostic disadvantages were associated with concomitant wrist fractures. Data show a worse functional recovery and a prolonged length of stay in the subgroup of hip fracture patients who sustained a concomitant fracture at the proximal humerus, but not at the wrist.

  18. Venous compressions of the nerves in the lower limbs.

    Science.gov (United States)

    Artico, M; Stevanato, G; Ionta, B; Cesaroni, A; Bianchi, E; Morselli, C; Grippaudo, F R

    2012-06-01

    The lower limbs are frequently involved in neurovascular compression syndromes, owing to their anatomical, vascular and muscular characteristics and to the orthostatic position. These syndromes were identified by exclusion, using neuroimaging techniques and treated by microsurgical techniques. Eight patients with a neurovascular compression syndrome due to venous vascular lesions in the lower limbs (popliteal fossa, proximal and medial third of the inferior limb, tarsal tunnel) were selected. The symptomatology was characterized by pain, Tinel's sign, hyperalgesia, allodynia, numbness along the nerve course and foot weakness: all were exacerbated by the standing position, thus suggesting a neurovascular compression syndrome. Diagnostic tools comprised Doppler ultrasonography, Electromyography, CT 3D and MRI. Treatment consisted of microsurgery with neurovascular dissection. Following surgical treatment, rapid pain relief and a partial recovery of neurological deficits (including the ability to walk) was observed within 8-10 months. An early diagnosis of NCS using various neuroimaging techniques and prompt treatment may improve the response to surgical therapy. The aim of the case studies described is to improve understanding of these pathologies thus enabling correct clinical decisions.

  19. Acute compartment syndrome after muscle rupture in a non-athlete.

    OpenAIRE

    Thennavan, A S; Funk, L; Volans, A P

    1999-01-01

    Acute compartment syndrome after muscle rupture, although rare, is a limb threatening condition, which warrants emergency treatment. The case of acute compartment syndrome secondary to a gastrocnemius muscle tear of the right lower leg, in a non-athlete is reported. To our knowledge, this is the only description of acute compartment syndrome due to muscle rupture in a non-athlete.

  20. Dose--effect relationships for femoral fractures after multimodality limb-sparing therapy of soft-tissue sarcomas of the proximal lower extremity.

    Science.gov (United States)

    Pak, Daniel; Vineberg, Karen A; Griffith, Kent A; Sabolch, Aaron; Chugh, Rashmi; Ben-Josef, Edgar; Biermann, Janet Sybil; Feng, Mary

    2012-07-15

    We investigated the clinical and dosimetric predictors for radiation-associated femoral fractures in patients with proximal lower extremity soft tissue sarcomas (STS). We examined 131 patients with proximal lower extremity STS who received limb-sparing surgery and external-beam radiation therapy between 1985 and 2006. Five (4%) patients sustained pathologic femoral fractures. Dosimetric analysis was limited to 4 fracture patients with full three-dimensional dose information, who were compared with 59 nonfracture patients. The mean doses and volumes of bone (V(d)) receiving specified doses (≥30 Gy, 45 Gy, 60 Gy) at the femoral body, femoral neck, intertrochanteric region, and subtrochanteric region were compared. Clinical predictive factors were also evaluated. Of 4 fracture patients in our dosimetric series, there were three femoral neck fractures with a mean dose of 57.6 ± 8.9 Gy, V30 of 14.5 ± 2.3 cc, V45 of 11.8 ± 1.1 cc, and V60 of 7.2 ± 2.2 cc at the femoral neck compared with 22.9 ± 20.8 Gy, 4.8 ± 5.6 cc, 2.5 ± 3.9 cc, and 0.8 ± 2.7 cc, respectively, for nonfracture patients (p fracture rate was higher than at the subtrochanteric region despite lower mean doses at these subregions. All fracture sites received mean doses greater than 40 Gy. Also, with our policy of prophylactic femoral intramedullary nailing for high-risk patients, there was no significant difference in fracture rates between patients with and without periosteal excision. There were no significant differences in age, sex, tumor size, timing of radiation therapy, and use of chemotherapy between fracture and nonfracture patients. These dose-volume toxicity relationships provide RT optimization goals to guide future efforts for reducing pathologic fracture rates. Prophylactic femoral intramedullary nailing may also reduce fracture risk for susceptible patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dose-Effect Relationships for Femoral Fractures After Multimodality Limb-Sparing Therapy of Soft-Tissue Sarcomas of the Proximal Lower Extremity

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Daniel; Vineberg, Karen A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Griffith, Kent A. [Biostatistics Unit, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI (United States); Sabolch, Aaron [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Chugh, Rashmi [Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI (United States); Ben-Josef, Edgar [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Biermann, Janet Sybil [Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI (United States); Feng, Mary, E-mail: maryfeng@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)

    2012-07-15

    Purpose: We investigated the clinical and dosimetric predictors for radiation-associated femoral fractures in patients with proximal lower extremity soft tissue sarcomas (STS). Methods and Materials: We examined 131 patients with proximal lower extremity STS who received limb-sparing surgery and external-beam radiation therapy between 1985 and 2006. Five (4%) patients sustained pathologic femoral fractures. Dosimetric analysis was limited to 4 fracture patients with full three-dimensional dose information, who were compared with 59 nonfracture patients. The mean doses and volumes of bone (V{sub d}) receiving specified doses ({>=}30 Gy, 45 Gy, 60 Gy) at the femoral body, femoral neck, intertrochanteric region, and subtrochanteric region were compared. Clinical predictive factors were also evaluated. Results: Of 4 fracture patients in our dosimetric series, there were three femoral neck fractures with a mean dose of 57.6 {+-} 8.9 Gy, V30 of 14.5 {+-} 2.3 cc, V45 of 11.8 {+-} 1.1 cc, and V60 of 7.2 {+-} 2.2 cc at the femoral neck compared with 22.9 {+-} 20.8 Gy, 4.8 {+-} 5.6 cc, 2.5 {+-} 3.9 cc, and 0.8 {+-} 2.7 cc, respectively, for nonfracture patients (p < 0.03 for all). The femoral neck fracture rate was higher than at the subtrochanteric region despite lower mean doses at these subregions. All fracture sites received mean doses greater than 40 Gy. Also, with our policy of prophylactic femoral intramedullary nailing for high-risk patients, there was no significant difference in fracture rates between patients with and without periosteal excision. There were no significant differences in age, sex, tumor size, timing of radiation therapy, and use of chemotherapy between fracture and nonfracture patients. Conclusions: These dose-volume toxicity relationships provide RT optimization goals to guide future efforts for reducing pathologic fracture rates. Prophylactic femoral intramedullary nailing may also reduce fracture risk for susceptible patients.

  2. Dose–Effect Relationships for Femoral Fractures After Multimodality Limb-Sparing Therapy of Soft-Tissue Sarcomas of the Proximal Lower Extremity

    International Nuclear Information System (INIS)

    Pak, Daniel; Vineberg, Karen A.; Griffith, Kent A.; Sabolch, Aaron; Chugh, Rashmi; Ben-Josef, Edgar; Biermann, Janet Sybil; Feng, Mary

    2012-01-01

    Purpose: We investigated the clinical and dosimetric predictors for radiation-associated femoral fractures in patients with proximal lower extremity soft tissue sarcomas (STS). Methods and Materials: We examined 131 patients with proximal lower extremity STS who received limb-sparing surgery and external-beam radiation therapy between 1985 and 2006. Five (4%) patients sustained pathologic femoral fractures. Dosimetric analysis was limited to 4 fracture patients with full three-dimensional dose information, who were compared with 59 nonfracture patients. The mean doses and volumes of bone (V d ) receiving specified doses (≥30 Gy, 45 Gy, 60 Gy) at the femoral body, femoral neck, intertrochanteric region, and subtrochanteric region were compared. Clinical predictive factors were also evaluated. Results: Of 4 fracture patients in our dosimetric series, there were three femoral neck fractures with a mean dose of 57.6 ± 8.9 Gy, V30 of 14.5 ± 2.3 cc, V45 of 11.8 ± 1.1 cc, and V60 of 7.2 ± 2.2 cc at the femoral neck compared with 22.9 ± 20.8 Gy, 4.8 ± 5.6 cc, 2.5 ± 3.9 cc, and 0.8 ± 2.7 cc, respectively, for nonfracture patients (p < 0.03 for all). The femoral neck fracture rate was higher than at the subtrochanteric region despite lower mean doses at these subregions. All fracture sites received mean doses greater than 40 Gy. Also, with our policy of prophylactic femoral intramedullary nailing for high-risk patients, there was no significant difference in fracture rates between patients with and without periosteal excision. There were no significant differences in age, sex, tumor size, timing of radiation therapy, and use of chemotherapy between fracture and nonfracture patients. Conclusions: These dose–volume toxicity relationships provide RT optimization goals to guide future efforts for reducing pathologic fracture rates. Prophylactic femoral intramedullary nailing may also reduce fracture risk for susceptible patients.

  3. FITTS LAW AS A LOW-PASS FILTER EFFECT OF MUSCLE-STIFFNESS

    NARCIS (Netherlands)

    VANGALEN, GP; SCHOMAKER, LRB; Schomaker, Lambertus

    It is proposed that the speed of aiming movements is the optimized outcome of a stochastic, oscillatory recruitment signal to the muscles and filtering properties of the effector limb. The filtering characteristic of the limb is seen to be modulated through a stiffness parameter, to be set by the

  4. Aging impairs the recovery in mechanical muscle function following 4 days of disuse

    DEFF Research Database (Denmark)

    Hvid, L G; Suetta, C; Nielsen, J H

    2014-01-01

    As aged individuals are frequently exposed to short-term disuse caused by disease or musculoskeletal injury, it is important to understand how short-term disuse and subsequent retraining affect lower limb mechanical muscle function. The purpose of the present study was, therefore, to investigate...... the effect of 4 days of lower limb disuse followed by 7 days of active recovery on mechanical muscle function of the knee extensors in young (24.3±0.9 years, n=11) and old (67.2±1.0 years, n=11) recreationally active healthy males. Slow and moderate dynamic muscle strength were assessed using isokinetic...... to disuse, marked age-related differences (p

  5. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    Science.gov (United States)

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  6. Prevention of upper limb symptoms and signs of nerve afflictions in computer operators

    DEFF Research Database (Denmark)

    Riis Jepsen, Jørgen; Thomsen, Gert

    2008-01-01

    could be drawn regarding the relation to the intervention of this reduction. Incident pain correlated to findings in accordance with the three locations of nerve affliction. CONCLUSION: A six month course of stretching seems to reduce upper limb symptoms in computer operators but we could......ABSTRACT: BACKGROUND: In a previous study of computer operators we have demonstrated the relation of upper limb pain to individual and patterns of neurological findings (reduced function of muscles, sensory deviations from normal and mechanical allodynia of nerve trunks). The identified patterns......, respectively, computer operators in two divisions of an engineering consultancy company were invited to answer a questionnaire on upper limb symptoms and to undergo a blinded neurological examination. Participants in one division were subsequently instructed to participate in an upper limb stretching course...

  7. Acute Effect of Static Stretching on Lower Limb Movement Performance by Using STABL Virtual Reality System.

    Science.gov (United States)

    Ameer, Mariam A; Muaidi, Qassim I

    2017-07-17

    The effect of acute static stretch (ASS) on the lower limb RT has been recently questioned to decrease the risk of falling and injuries in situations requiring a rapid reaction, as in the cases of balance disturbance. The main purpose of this study was to detect the effect of ASS on the lower limb RT by using virtual reality device. Two Group Control Group design. Research laboratory. The control and experimental groups were formed randomly from sixty female university students. Each participant in the experimental group was tested before and after ASS for the quadriceps, hamstrings and planter flexor muscles, and compared with the control group with warming-up exercise only. The stretching program involved warming-up in the form of circular running inside the lab for 5 minutes followed by stretching of each muscle group thrice, to the limit of discomfort of 45 s, with resting period of 15s between stretches. The measurements included the RT of the dominant lower extremity by using the dynamic stability program, STABL Virtual Reality System (Model No. DIZ 2709, Motek Medical and Force Link Merged Co., Amsterdam). There was statistically significant reduction (F = 162, P= .00) in post-test RT between the two groups, and significant decrease in RT after stretching, in the experimental group (7.5%) (P= .00). ASS of the lower limb muscles tends to decrease the lower limb RT and improve movement performance.

  8. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study.

    Science.gov (United States)

    Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas

    2017-12-01

    So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.

  9. A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth.

    Directory of Open Access Journals (Sweden)

    John R Hutchinson

    Full Text Available The large theropod dinosaur Tyrannosaurus rex underwent remarkable changes during its growth from 6000 kg adults in <20 years. These changes raise fascinating questions about the morphological transformations involved, peak growth rates, and scaling of limb muscle sizes as well as the body's centre of mass that could have influenced ontogenetic changes of locomotion in T. rex. Here we address these questions using three-dimensionally scanned computer models of four large, well-preserved fossil specimens as well as a putative juvenile individual. Furthermore we quantify the variations of estimated body mass, centre of mass and segment dimensions, to characterize inaccuracies in our reconstructions. These inaccuracies include not only subjectivity but also incomplete preservation and inconsistent articulations of museum skeletons. Although those problems cause ambiguity, we conclude that adult T. rex had body masses around 6000-8000 kg, with the largest known specimen ("Sue" perhaps ∼9500 kg. Our results show that during T. rex ontogeny, the torso became longer and heavier whereas the limbs became proportionately shorter and lighter. Our estimates of peak growth rates are about twice as rapid as previous ones but generally support previous methods, despite biases caused by the usage of scale models and equations that underestimate body masses. We tentatively infer that the hindlimb extensor muscles masses, including the large tail muscle M. caudofemoralis longus, may have decreased in their relative size as the centre of mass shifted craniodorsally during T. rex ontogeny. Such ontogenetic changes would have worsened any relative or absolute decline of maximal locomotor performance. Regardless, T. rex probably had hip and thigh muscles relatively larger than any extant animal's. Overall, the limb "antigravity" muscles may have been as large as or even larger than those of ratite birds, which themselves have the most muscular limbs of any living

  10. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae

    Directory of Open Access Journals (Sweden)

    Luis P. Lamas

    2014-12-01

    Full Text Available Emus (Dromaius novaehollandiae are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths and calculated muscle physiological cross sectional area (PCSA and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg. The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus also exhibited positive allometry for length, and two others (femur and first phalanx of digit III had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus.

  11. Biomechanical Constraints Underlying Motor Primitives Derived from the Musculoskeletal Anatomy of the Human Arm.

    Science.gov (United States)

    Gritsenko, Valeriya; Hardesty, Russell L; Boots, Mathew T; Yakovenko, Sergiy

    2016-01-01

    Neural control of movement can only be realized though the interaction between the mechanical properties of the limb and the environment. Thus, a fundamental question is whether anatomy has evolved to simplify neural control by shaping these interactions in a beneficial way. This inductive data-driven study analyzed the patterns of muscle actions across multiple joints using the musculoskeletal model of the human upper limb. This model was used to calculate muscle lengths across the full range of motion of the arm and examined the correlations between these values between all pairs of muscles. Musculoskeletal coupling was quantified using hierarchical clustering analysis. Muscle lengths between multiple pairs of muscles across multiple postures were highly correlated. These correlations broadly formed two proximal and distal groups, where proximal muscles of the arm were correlated with each other and distal muscles of the arm and hand were correlated with each other, but not between groups. Using hierarchical clustering, between 11 and 14 reliable muscle groups were identified. This shows that musculoskeletal anatomy does indeed shape the mechanical interactions by grouping muscles into functional clusters that generally match the functional repertoire of the human arm. Together, these results support the idea that the structure of the musculoskeletal system is tuned to solve movement complexity problem by reducing the dimensionality of available solutions.

  12. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury.

    Science.gov (United States)

    Bourne, M N; Opar, D A; Williams, M D; Al Najjar, A; Shield, A J

    2016-06-01

    This study aimed to determine: (a) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); (b) whether previously injured hamstrings display activation deficits during the NHE; and (c) whether previously injured hamstrings exhibit altered cross-sectional area (CSA). Ten healthy, recreationally active men with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging of their thighs before and after six sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles [biceps femoris long head (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)] were measured at rest and immediately after the NHE and CSA was measured at rest. For the uninjured limb, the ST's percentage increase in T2 with exercise was 16.8%, 15.8%, and 20.2% greater than the increases exhibited by the BFlh, BFsh, and SM, respectively (P hamstring muscles (n = 10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, P = 0.001). No muscles displayed significant between-limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared with uninjured contralateral muscles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Is muscle coordination affected by loading condition in ballistic movements?

    Science.gov (United States)

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: Ppush-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Repeated Muscle Injury as a Presumptive Trigger for Chronic Masticatory Muscle Pain

    Directory of Open Access Journals (Sweden)

    Dean Dessem

    2011-01-01

    Full Text Available skeletal muscles sustain a significant loss of maximal contractile force after injury, but terminally damaged fibers can eventually be replaced by the growth of new muscle (regeneration, with full restoration of contractile force over time. After a second injury, limb muscles exhibit a smaller reduction in maximal force and reduced inflammation compared with that after the initial injury (i.e., repeated bout effect. In contrast, masticatory muscles exhibit diminished regeneration and persistent fibrosis, after a single injury; following a second injury, plasma extravasation is greater than after a single injury and maximal force is decreased more than after the initial injury. Thus, masticatory muscles do not exhibit a repeated bout effect and are instead increasingly damaged by repeated injury. We propose that the impaired ability of masticatory muscles to regenerate contributes to chronic muscle pain by leading to an accumulation of tissue damage, fibrosis, and a persistent elevation and prolonged membrane translocation of nociceptive channels such as P2X3 as well as enhanced expression of neuropeptides including CGRP within primary afferent neurons. These transformations prime primary afferent neurons for enhanced responsiveness upon subsequent injury thus triggering and/or exacerbating chronic muscle pain.

  15. Redox regulation of ischemic limb neovascularization – What we have learned from animal studies

    Directory of Open Access Journals (Sweden)

    Reiko Matsui

    2017-08-01

    Full Text Available Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts, is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization. Keywords: Ischemic limb, Angiogenesis, Oxidants, GSH adducts, Glutaredoxin

  16. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  17. THE NEPHROTOXICITY RISK IN RATS SUBJECTED TO HEAVY MUSCLE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Gülsen Öner

    2009-09-01

    Full Text Available When the body is exposed to insults, the kidneys exhibit adaptive changes termed renal cytoresistance, characterized by cholesterol accumulation in the membranes of the tubule cells. However, heavy muscle activity has not yet been accepted as one of the stressors that could lead to cytoresistance. In order to study the renal functional characteristics of animals exposed to heavy muscle activity, rats were subjected to exhaustive treadmill exercise for 5 days and their data was compared to those of sedentary controls. It was found that in exercised rats, blood lactate, muscle citrate synthase and proximal tubule peroxynitrite levels were all elevated, suggesting the presence of oxidative stress in the proximal tubule segments. However, mean arterial pressure, renal blood flow, glomerular filtration rate, fractional excretion of sodium and potassium, and organic anion excretion remained normal. Despite unchanged blood cholesterol levels, cholesterol loading in the proximal tubule segments, especially the free form, and decreased lactate dehydrogenase release from cytoresistant proximal tubule segments indicated the development of renal cytoresistance. However, this resistance did not seem to have protected the kidneys as expected because organic anion accumulation associated with glycosuria and proteinuria, in addition to the elevated urinary cholesterol levels, all imply the presence of an impaired glomerular permeability and reabsorption in the proximal tubule cells. Therefore, we suggest that in response to heavy muscle activity the tubular secretion may remain intact, although cytoresistance in the proximal tubule cells may affect the tubular reabsorptive functions and basolateral uptake of substances. Thus, this differential sensitivity in the cytoresistance should be taken into account during functional evaluation of the kidneys

  18. Tibial torsion in non-arthritic Indian adults: A computer tomography study of 100 limbs

    Directory of Open Access Journals (Sweden)

    Mullaji Arun

    2008-01-01

    Full Text Available Background: Knowledge of normal tibial torsion is mandatory during total knee replacement (TKR, deformity correction and fracture management of tibia. Different values of tibial torsion have been found in different races due to biological and mechanical factors. Value of normal tibial torsion in Indian limbs is not known, hence this study to determine the norm of tibial torsional value in normal Indian population. Materials and Methods: Computer tomography (CT scans were performed in 100 non-arthritic limbs of 50 Indian adults (42 males, eight females; age 26-40 years. Value of tibial torsion was measured using dorsal tangent to tibial condyles proximally and bimalleolar axis distally. Results: Normal tibial torsion was found to be 21.6 ± 7.6 (range 4.8 to 39.5 with none of the values in internal rotation. Right tibia was externally rotated by 2 degrees as compared to the left side ( P 0.029. No significant difference was found in male and female subjects. Value of tibial torsion was less than in Caucasian limbs, but was comparable to Japanese limbs when studies using similar measurement technique were compared. Conclusions: Indian limbs have less tibial torsion than Caucasian limbs but the value of tibial torsion is comparable to Japanese limbs.

  19. Gene expression profiling in limb-girdle muscular dystrophy 2A.

    Directory of Open Access Journals (Sweden)

    Amets Sáenz

    Full Text Available Limb-girdle muscular dystrophy type 2A (LGMD2A is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3. Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens, cell adhesion (fibronectin, muscle development (myosins and melusin and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1. Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.

  20. Revised upper limb module for spinal muscular atrophy: Development of a new module.

    Science.gov (United States)

    Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio

    2017-06-01

    There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.

  1. Double muscle innervation using end-to-side neurorrhaphy in rats

    Directory of Open Access Journals (Sweden)

    Elisangela Jeronymo Stipp-Brambilla

    Full Text Available CONTEXT AND OBJECTIVE: One of the techniques used for treating facial paralysis is double muscle innervation using end-to-end neurorrhaphy with sectioning of healthy nerves. The aim of this study was to evaluate whether double muscle innervation by means of end-to-side neurorrhaphy could occur, with maintenance of muscle innervation. DESIGN AND SETTING: Experimental study developed at the Experimental Research Center, Faculdade de Medicina de Botucatu, Unesp. METHODS: One hundred rats were allocated to five groups as follows: G1, control group; G2, the peroneal nerve was sectioned; G3, the tibial nerve was transected and the proximal stump was end-to-side sutured to the intact peroneal nerve; G4, 120 days after the G3 surgery, the peroneal nerve was sectioned proximally to the neurorrhaphy; G5, 120 days after the G3 surgery, the peroneal and tibial nerves were sectioned proximally to the neurorrhaphy. RESULTS: One hundred and fifty days after the surgery, G3 did not show any change in tibial muscle weight or muscle fiber diameter, but the axonal fiber diameter in the peroneal nerve distal to the neurorrhaphy had decreased. Although G4 showed atrophy of the cranial tibial muscle 30 days after sectioning the peroneal nerve, the electrophysiological test results and axonal diameter measurement confirmed that muscle reinnervation had occurred. CONCLUSION: These findings suggest that double muscle innervation did not occur through end-to-side neurorrhaphy; the tibial nerve was not able to maintain muscle innervation after the peroneal nerve had been sectioned, although muscle reinnervation was found to have occurred, 30 days after the peroneal nerve had been sectioned.

  2. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    Science.gov (United States)

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  3. Contractility and supersensitivity to adrenaline in dystrophic muscle.

    Science.gov (United States)

    Takamori, M

    1975-01-01

    In the adductor pollicis muscle of patients with limb-girdle and facioscapulohumeral muscular dystrophies and possible carriers of Duchenne type muscular dystrophy, abnormal active state properties were found at the time when there was no alteration of needle electromyography and evoked muscle action potentials. Adrenaline induced a marked reduction of incomplete tetanus via beta receptors without change in neuromuscular transmission. PMID:1151415

  4. Muscle activation timing and balance response in chronic lower back pain patients with associated radiculopathy.

    Science.gov (United States)

    Frost, Lydia R; Brown, Stephen H M

    2016-02-01

    Patients with chronic low back pain and associated radiculopathy present with neuromuscular symptoms both in their lower back and down their leg; however, investigations of muscle activation have so far been isolated to the lower back. During balance perturbations, it is necessary that lower limb muscles activate with proper timing and sequencing along with the lower back musculature to efficiently regain balance control. Patients with chronic low back pain and radiculopathy and matched controls completed a series of balance perturbations (rapid bilateral arm raise, unanticipated and anticipated sudden loading, and rapid rise to toe). Muscle activation timing and sequencing as well as kinetic response to the perturbations were analyzed. Patients had significantly delayed lower limb muscle activation in rapid arm raise trials as compared to controls. In sudden loading trials, muscle activation timing was not delayed in patients; however, some differences in posterior chain muscle activation sequencing were present. Patients demonstrated less anterior-posterior movement in unanticipated sudden loading trials, and greater medial-lateral movement in rise to toe trials. Patients with low back pain and radiculopathy demonstrated some significant differences from control participants in terms of muscle activation timing, sequencing, and overall balance control. The presence of differences between patients and controls, specifically in the lower limb, indicates that radiculopathy may play a role in altering balance control in these patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    McCusker, Catherine D; Gardiner, David M

    2013-01-01

    The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  6. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    Science.gov (United States)

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important

  7. Balneotherapy in treatment of spastic upper limb after stroke.

    Science.gov (United States)

    Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo

    2015-02-01

    After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. ischaemic stroke, developed spasticity of upper limb, post-stroke interval balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at pbalneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Reduction in tone of affected upper limb muscles was significant in Ex group (pbalneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients.

  8. Upper limb joint muscle/tendon injury and anthropometric adaptations in French competitive tennis players.

    Science.gov (United States)

    Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe

    2016-01-01

    The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.

  9. Muscle mechanics and neuromuscular control

    NARCIS (Netherlands)

    Hof, AL

    The purpose of this paper is to demonstrate that the properties of the mechanical system, especially muscle elasticity and limb mass, to a large degree determine force output and movement. This makes the control demands of the central nervous system simpler and more robust. In human triceps surae, a

  10. Magnetic resonance imaging of facial muscles

    Energy Technology Data Exchange (ETDEWEB)

    Farrugia, M.E. [Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Oxford (United Kingdom)], E-mail: m.e.farrugia@doctors.org.uk; Bydder, G.M. [Department of Radiology, University of California, San Diego, CA 92103-8226 (United States); Francis, J.M.; Robson, M.D. [OCMR, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford (United Kingdom)

    2007-11-15

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders.

  11. Magnetic resonance imaging of facial muscles

    International Nuclear Information System (INIS)

    Farrugia, M.E.; Bydder, G.M.; Francis, J.M.; Robson, M.D.

    2007-01-01

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders

  12. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    Science.gov (United States)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  13. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  14. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  15. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    length, passive stiffness and passive force of spastic GA were decreased whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However......, the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate......The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO) and plantaris (PL) were assessed in anesthetized spastic...

  16. Medium-Term Outcomes Following Endovascular Repair of Infrarenal Abdominal Aortic Aneurysms with an Unfavourable Proximal Neck

    International Nuclear Information System (INIS)

    Saha, Prakash; Hughes, John; Patel, Ashish S.; Donati, Tommaso; Sallam, Morad; Patel, Sanjay D.; Bell, Rachel E.; Katsanos, Konstantinos; Modarai, Bijan; Zayed, Hany A.

    2015-01-01

    PurposeThe purpose of this study was to evaluate medium-term outcomes following endovascular repair of abdominal aortic aneurysms (EVAR) with unfavourable neck anatomy using stent grafts with a 36 mm or larger proximal diameter.Materials and MethodsA retrospective review of 27 patients who underwent elective EVAR between 2006 and 2008 using a stent graft with a 36 mm or larger proximal diameter was carried out. All patients had computed tomography angiography (CTA) for procedure planning, and detailed assessment of the aneurysm neck was performed using a three-dimensional CTA workstation. Patients were followed up with CTA at 3 and 12 months and annual duplex thereafter.ResultsThe median aneurysm diameter was 7 cm, and the median aneurysm neck diameter was 31 mm. Cook Zenith stent grafts were used in all patients, with a proximal diameter of 36 mm (n = 25) and 40 mm (n = 2). Primary and assisted primary technical success rates were 74 and 93 %, respectively. The follow-up period ranged from 62 to 84 months, with a median of 72 months. 15 patients died during follow-up. Two patients died from aortic rupture, and the remaining patients died from cardiac disease (n = 4), chest sepsis (n = 6), cancer (n = 2) and renal failure (n = 1). Complications included type I endoleak (n = 5), limb occlusion (n = 2), limb stenosis (n = 2), limb kinking (n = 1), dissection of an artery (n = 1), occlusion of a femorofemoral cross-over graft (n = 1) and poor attachment of a distal limb (n = 1).ConclusionsEVAR using stent grafts in the presence of an unfavourable neck has a high risk of complications. Medium-term survival in this group is low but mainly due to patient co-morbidities

  17. Medium-Term Outcomes Following Endovascular Repair of Infrarenal Abdominal Aortic Aneurysms with an Unfavourable Proximal Neck

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Prakash, E-mail: prakash.2.saha@kcl.ac.uk; Hughes, John, E-mail: johnhughes387@rocketmail.com; Patel, Ashish S., E-mail: ashish.s.patel@kcl.ac.uk; Donati, Tommaso, E-mail: tommaso.donati@gstt.nhs.uk; Sallam, Morad, E-mail: morad.sallam@gstt.nhs.uk; Patel, Sanjay D., E-mail: sanjay.patel@gstt.nhs.uk; Bell, Rachel E. [King’s Health Partners, Department of Vascular Surgery, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Modarai, Bijan, E-mail: bijan.modarai@kcl.ac.uk; Zayed, Hany A., E-mail: hany.zayed@gstt.nhs.uk [King’s Health Partners, Department of Vascular Surgery, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom)

    2015-08-15

    PurposeThe purpose of this study was to evaluate medium-term outcomes following endovascular repair of abdominal aortic aneurysms (EVAR) with unfavourable neck anatomy using stent grafts with a 36 mm or larger proximal diameter.Materials and MethodsA retrospective review of 27 patients who underwent elective EVAR between 2006 and 2008 using a stent graft with a 36 mm or larger proximal diameter was carried out. All patients had computed tomography angiography (CTA) for procedure planning, and detailed assessment of the aneurysm neck was performed using a three-dimensional CTA workstation. Patients were followed up with CTA at 3 and 12 months and annual duplex thereafter.ResultsThe median aneurysm diameter was 7 cm, and the median aneurysm neck diameter was 31 mm. Cook Zenith stent grafts were used in all patients, with a proximal diameter of 36 mm (n = 25) and 40 mm (n = 2). Primary and assisted primary technical success rates were 74 and 93 %, respectively. The follow-up period ranged from 62 to 84 months, with a median of 72 months. 15 patients died during follow-up. Two patients died from aortic rupture, and the remaining patients died from cardiac disease (n = 4), chest sepsis (n = 6), cancer (n = 2) and renal failure (n = 1). Complications included type I endoleak (n = 5), limb occlusion (n = 2), limb stenosis (n = 2), limb kinking (n = 1), dissection of an artery (n = 1), occlusion of a femorofemoral cross-over graft (n = 1) and poor attachment of a distal limb (n = 1).ConclusionsEVAR using stent grafts in the presence of an unfavourable neck has a high risk of complications. Medium-term survival in this group is low but mainly due to patient co-morbidities.

  18. Effects of upper-limb immobilisation on driving safety.

    Science.gov (United States)

    Gregory, J J; Stephens, A N; Steele, N A; Groeger, J A

    2009-03-01

    Doctors are frequently asked by patients whether it is safe to drive with an upper limb immobilised in a cast. In the literature there are no objective measurements of the effects of upper-limb immobilisation upon driving performance. Eight healthy volunteers performed four 20-min driving circuits in a driving simulator (STISIM 400W), circuits 1 and 4 without immobilisation and circuits 2 and 3 with immobilisation. Immobilisation involved a lightweight below-elbow cast with the thumb left free. Volunteers were randomised to right or left immobilisation for circuit 2, and the contralateral wrist was immobilised for circuit 3. Circuits included urban and rural environments and specific hazards (pedestrians crossing, vehicles emerging from a concealed entrance, traffic lights changing suddenly, avoidance of an oncoming vehicle in the driver's carriageway). Limb immobilisation led to more cautious rural and urban driving, with less adjustment of speed and lateral road position than when unrestricted. However when responding to hazards immobilisation caused less safe driving, with higher speeds, a greater proximity to the hazard before action was taken and less steering adjustment. The effects of restriction upon performance were more prevalent and severe with right-arm immobilisation. Upper-limb immobilisation appears to have little effect on the ability to drive a car unchallenged, but to adversely affect responses to routine hazards. Advice on ability to drive safely should be cautious, as the impact of immobilisation appears to be more subtle and wide ranging than previously thought.

  19. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model.

    Directory of Open Access Journals (Sweden)

    Hazem Akkad

    Full Text Available Critical illness myopathy (CIM is a debilitating common consequence of modern intensive care, characterized by severe muscle wasting, weakness and a decreased myosin/actin (M/A ratio. Limb/trunk muscles are primarily affected by this myopathy while cranial nerve innervated muscles are spared or less affected, but the mechanisms underlying these muscle-specific differences remain unknown. In this time-resolved study, the cranial nerve innervated masseter muscle was studied in a unique experimental rat intensive care unit (ICU model, where animals were exposed to sedation, neuromuscular blockade (NMB, mechanical ventilation, and immobilization for durations varying between 6 h and 14d. Gel electrophoresis, immunoblotting, RT-PCR and morphological staining techniques were used to analyze M/A ratios, myofiber size, synthesis and degradation of myofibrillar proteins, and levels of heat shock proteins (HSPs. Results obtained in the masseter muscle were compared with previous observations in experimental and clinical studies of limb muscles. Significant muscle-specific differences were observed, i.e., in the masseter, the decline in M/A ratio and muscle fiber size was small and delayed. Furthermore, transcriptional regulation of myosin and actin synthesis was maintained, and Akt phosphorylation was only briefly reduced. In studied degradation pathways, only mRNA, but not protein levels of MuRF1, atrogin-1 and the autophagy marker LC3b were activated by the ICU condition. The matrix metalloproteinase MMP-2 was inhibited and protective HSPs were up-regulated early. These results confirm that the cranial nerve innervated masticatory muscles is less affected by the ICU-stress response than limb muscles, in accordance with clinical observation in ICU patients with CIM, supporting the model' credibility as a valid CIM model.

  20. Novel Use of the Nintendo Wii Board for Measuring Isometric Lower Limb Strength

    DEFF Research Database (Denmark)

    Gronbech Jorgensen, Martin; Andersen, Stig; Ryg, Jesper

    BACKGROUND: Portable, low-cost, objective and reproducible assessment of muscle strength in the lower limbs is important as it allows clinicians to precisly track progression of patients undergoing rehabilitation. The Nintendo Wii Balance Board (WBB) is portable, inexpensive, durable, available...

  1. Neuromuscular properties of the thigh muscles in patients with Ehlers-Danlos syndrome

    NARCIS (Netherlands)

    Gerrits, K.H.; Voermans, N.C.; Haan, A. de; Engelen, B.G.M. van

    2013-01-01

    INTRODUCTION: Ehlers-Danlos syndrome (EDS), a connective tissue disorder, may lead to impaired contractile function of lower limb muscles. METHODS: To test this hypothesis and to understand the possible mechanisms involved, isometric function of the thigh muscles was investigated at different joint

  2. Neuromuscular properties of the thigh muscles in patients with Ehlers-Danlos syndrome

    NARCIS (Netherlands)

    Gerrits, K.H.L.; Voermans, N.C.; de Haan, A.; van Engelen, B.G.

    2013-01-01

    Introduction: Ehlers-Danlos syndrome (EDS), a connective tissue disorder, may lead to impaired contractile function of lower limb muscles. Methods: To test this hypothesis and to understand the possible mechanisms involved, isometric function of the thigh muscles was investigated at different joint

  3. Towards the resolution of a long-standing evolutionary question: muscle identity and attachments are mainly related to topological position and not to primordium or homeotic identity of digits.

    Science.gov (United States)

    Diogo, Rui; Walsh, Sean; Smith, Christopher; Ziermann, Janine M; Abdala, Virginia

    2015-06-01

    Signaling for limb bone development usually precedes that for muscle development, such that cartilage is generally present before muscle formation. It remains obscure, however, if: (i) tetrapods share a general, predictable spatial correlation between bones and muscles; and, if that is the case, if (ii) such a correlation would reflect an obligatory association between the signaling involved in skeletal and muscle morphogenesis. We address these issues here by using the results of a multidisciplinary analysis of the appendicular muscles of all major tetrapod groups integrating dissections, muscle antibody stainings, regenerative and ontogenetic analyses of fluorescently-labeled (GFP) animals, and studies of non-pentadactyl human limbs related to birth defects. Our synthesis suggests that there is a consistent, surprising anatomical pattern in both normal and abnormal phenotypes, in which the identity and attachments of distal limb muscles are mainly related to the topological position, and not to the developmental primordium (anlage) or even the homeotic identity, of the digits to which they are attached. This synthesis is therefore a starting point towards the resolution of a centuries-old question raised by authors such as Owen about the specific associations between limb bones and muscles. This question has crucial implications for evolutionary and developmental biology, and for human medicine because non-pentadactyly is the most common birth defect in human limbs. In particular, this synthesis paves the way for future developmental experimental and mechanistic studies, which are needed to clarify the processes that may be involved in the elaboration of the anatomical patterns described here, and to specifically test the hypothesis that distal limb muscle identity/attachment is mainly related to digit topology. © 2015 Anatomical Society.

  4. Different regulation of limb development by p63 transcript variants.

    Directory of Open Access Journals (Sweden)

    Manabu Kawata

    Full Text Available The apical ectodermal ridge (AER, located at the distal end of each limb bud, is a key signaling center which controls outgrowth and patterning of the proximal-distal axis of the limb through secretion of various molecules. Fibroblast growth factors (FGFs, particularly Fgf8 and Fgf4, are representative molecules produced by AER cells, and essential to maintain the AER and cell proliferation in the underlying mesenchyme, meanwhile Jag2-Notch pathway negatively regulates the AER and limb development. p63, a transcription factor of the p53 family, is expressed in the AER and indispensable for limb formation. However, the underlying mechanisms and specific roles of p63 variants are unknown. Here, we quantified the expression of p63 variants in mouse limbs from embryonic day (E 10.5 to E12.5, and found that ΔNp63γ was strongly expressed in limbs at all stages, while TAp63γ expression was rapidly increased in the later stages. Fluorescence-activated cell sorting analysis of limb bud cells from reporter mouse embryos at E11.5 revealed that all variants were abundantly expressed in AER cells, and their expression was very low in mesenchymal cells. We then generated AER-specific p63 knockout mice by mating mice with a null and a flox allele of p63, and Msx2-Cre mice (Msx2-Cre;p63Δ/fl. Msx2-Cre;p63Δ/fl neonates showed limb malformation that was more obvious in distal elements. Expression of various AER-related genes was decreased in Msx2-Cre;p63Δ/fl limb buds and embryoid bodies formed by p63-knockdown induced pluripotent stem cells. Promoter analyses and chromatin immunoprecipitation assays demonstrated Fgf8 and Fgf4 as transcriptional targets of ΔNp63γ, and Jag2 as that of TAp63γ. Furthermore, TAp63γ overexpression exacerbated the phenotype of Msx2-Cre;p63Δ/fl mice. These data indicate that ΔNp63 and TAp63 control limb development through transcriptional regulation of different target molecules with different roles in the AER. Our findings

  5. Anatomy of vastus lateralis muscle flap.

    Science.gov (United States)

    Tayfur, Volkan; Magden, Orhan; Edizer, Mete; Atabey, Atay

    2010-11-01

    A vastus lateralis muscle flap is used as a pedicled and free flap. In this study, the vastus lateralis muscles of 15 adult formalin-fixed cadavers (30 cases) were dissected. The dominant pedicle was found to be descending branch of the lateral circumflex femoral artery. The mean diameter of the artery was found to be 2.1 mm. This pedicle was located 119.4 mm distal to the pubic symphysis. The mean length of the major pedicle was found to be 56.8 mm when the dominant pedicle was chosen to nourish the flap. The dominant pedicle entered the muscle 155.8 and 213.7 mm from the greater trochanter and the anterior superior iliac spine, respectively. The muscle had proximal minor pedicles from the ascending and transverse branches of lateral circumflex femoral artery. These arteries had mean diameters of 1.8 and 2.0 mm, respectively. The distal minor branches were present in all of the dissections. The distal branch had a mean diameter of 1.8 mm. The origin of this distal branch was located 83.7 mm proximal to the intercondylar line. The motor nerve of the vastus lateralis was found to be originating from femoral nerve. The nerve entered the muscle 194.6 mm from the anterior superior iliac spine.

  6. A mitochondrial tRNA(Met) mutation causing developmental delay, exercise intolerance and limb girdle phenotype with onset in early childhood

    DEFF Research Database (Denmark)

    Born, Alfred Peter; Duno, Morten; Rafiq, Jabin

    2015-01-01

    A 10-year-old girl presented with exercise intolerance, learning difficulty, and muscle weakness in a limb girdle distribution. She had delayed achievement of motor milestones and difficulties with social interaction at pre-school age. Muscle biopsy showed no myopathic or dystrophic features...

  7. Modeling and analysis of proximal tibial growth plate fractures in adolescents: Theory and potential applications

    Directory of Open Access Journals (Sweden)

    Susan Basile

    2016-01-01

    Full Text Available Background: Overuse injuries in children and adolescents are becoming increasingly common, particularly in those who regularly participate in a single sport. As a result, prevention, early detection and treatment of these injuries is vital. However, existing research in adult populations cannot always be directly applied to analogous cases in younger populations. This study attempts to provide an example of how both mathematical and computer modeling can be utilized to predict alterations in load locations, directions, and magnitudes resulting from maturational changes in a way not possible in vivo. Methods: A 2D leg extension model was created and used to calculate relevant forces at the proximal knee joint. Individual aspects of the model, such as quadriceps force and leg length, were changed to quantify how increases in a growing adolescent’s force generation and limb length may affect the forces at the joint. The derived forces were input into a 3D finite element model incorporating a growing young adult’s relatively weaker epiphyseal plate material to calculate the stresses and strains on the tibia of an adolescent. Results: Findings indicated that a shortened patellar tendon and increased quadriceps muscle strength were potentially greater contributors to increased stress on the proximal tibia, as opposed to aspects such as height and weight changes. Conclusions: The theoretical and computational methods employed show promise in their ability to predict potential injury risks in populations for whom evidence-based research is lacking. Models incorporating the elbow and shoulder have high impact potential for young baseball pitchers.

  8. Mechanobiology of embryonic limb development.

    Science.gov (United States)

    Nowlan, Niamh C; Murphy, Paula; Prendergast, Patrick J

    2007-04-01

    Considerable evidence exists to support the hypothesis that mechanical forces have an essential role in healthy embryonic skeletal development. Clinical observations and experimental data indicate the importance of muscle contractions for limb development. However, the influence of these forces is seldom referred to in biological descriptions of bone development, and perhaps this is due to the fact that the hypothesis that mechanical forces are essential for normal embryonic skeletal development is difficult to test and elaborate experimentally in vivo, particularly in humans. Computational modeling has the potential to address this issue by simulating embryonic growth under a range of loading conditions but the potential of such models has yet to be fully exploited. In this article, we review the literature on mechanobiology of limb development in three main sections: (a) experimental alteration of the mechanical environment, (b) mechanical properties of embryonic tissues, and (c) the use of computational models. Then we analyze the main issues, and suggest how experimental and computational fields could work closer together to enhance our understanding of mechanobiology of the embryonic skeleton.

  9. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3

    Directory of Open Access Journals (Sweden)

    Mary P. Colasanto

    2016-11-01

    Full Text Available In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS, characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5, but also for a subset of posterior muscles (lateral triceps and brachialis and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development.

  10. Estimation of tensile force in the hamstring muscles during overground sprinting.

    Science.gov (United States)

    Ono, T; Higashihara, A; Shinohara, J; Hirose, N; Fukubayashi, T

    2015-02-01

    The purpose of this study was to identify the period of the gait cycle during which the hamstring muscles were likely injured by estimating the magnitude of tensile force in each muscle during overground sprinting. We conducted three-dimensional motion analysis of 12 male athletes performing overground sprinting at their maximal speed and calculated the hamstring muscle-tendon length and joint angles of the right limb throughout a gait cycle during which the ground reaction force was measured. Electromyographic activity during sprinting was recorded for the biceps femoris long head, semitendinosus, and semimembranosus muscles of ipsilateral limb. We estimated the magnitude of tensile force in each muscle by using the length change occurred in the musculotendon and normalized electromyographic activity value. The study found a quick increase of estimated tensile force in the biceps femoris long head during the early stance phase of the gait cycle during which the increased hip flexion angle and ground reaction force occurred at the same time. This study provides quantitative data of tensile force in the hamstring muscles suggesting that the biceps femoris long head muscle is susceptible to a strain injury during the early stance phase of the sprinting gait cycle. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Mouse Plantar Flexor Muscle Size and Strength After Inactivity and Training

    Science.gov (United States)

    2010-07-01

    atrophy and weakness as a function of the intensity of the train- ing ( 15 ). Although the hind limb suspension resulted in loss of muscle mass in...Muscle Biology Laboratory, Department of Health and Kinesiology , Texas A&M University, College Station, TX, and Gordon L. Warren, Ph.D., Division of

  12. [RESEARCH PROGRESS OF BIOMECHANICS OF PROXIMAL ROW CARPAL INSTABILITY].

    Science.gov (United States)

    Guo, Jinhai; Huang, Fuguo

    2015-01-01

    To review the research progress of the biomechanics of proximal row carpal instability (IPRC). The related literature concerning IPRC was extensively reviewed. The biomechanical mechanism of the surrounding soft tissue in maintaining the stability of the proximal row carpal (PRC) was analyzed, and the methods to repair or reconstruct the stability and function of the PRC were summarized from two aspects including basic biomechanics and clinical biomechanics. The muscles and ligaments of the PRC are critical to its stability. Most scholars have reached a consensus about biomechanical mechanism of the PRC, but there are still controversial conclusions on the biomechanics mechanism of the surrounding soft tissue to stability of distal radioulnar joint when the triangular fibrocartilage complex are damaged and the biomechanics mechanism of the scapholunate ligament. At present, there is no unified standard about the methods to repair or reconstruct the stability and function of the PRC. So, it is difficult for clinical practice. Some strides have been made in the basic biomechanical study on muscle and ligament and clinical biomechanical study on the methods to repair or reconstruct the stability and function of PRC, but it will be needed to further study the morphology of carpal articular surface and the adjacent articular surface, the pressure of distal carpals to proximal carpal and so on.

  13. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Catherine D McCusker

    Full Text Available The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP, to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  14. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study

    Directory of Open Access Journals (Sweden)

    Kerkhofs Lore

    2011-01-01

    Full Text Available Abstract Background Few research in multiple sclerosis (MS has focused on physical rehabilitation of upper limb dysfunction, though the latter strongly influences independent performance of activities of daily living. Upper limb rehabilitation technology could hold promise for complementing traditional MS therapy. Consequently, this pilot study aimed to examine the feasibility of an 8-week mechanical-assisted training program for improving upper limb muscle strength and functional capacity in MS patients with evident paresis. Methods A case series was applied, with provision of a training program (3×/week, 30 minutes/session, supplementary on the customary maintaining care, by employing a gravity-supporting exoskeleton apparatus (Armeo Spring. Ten high-level disability MS patients (Expanded Disability Status Scale 7.0-8.5 actively performed task-oriented movements in a virtual real-life-like learning environment with the affected upper limb. Tests were administered before and after training, and at 2-month follow-up. Muscle strength was determined through the Motricity Index and Jamar hand-held dynamometer. Functional capacity was assessed using the TEMPA, Action Research Arm Test (ARAT and 9-Hole Peg Test (9HPT. Results Muscle strength did not change significantly. Significant gains were particularly found in functional capacity tests. After training completion, TEMPA scores improved (p = 0.02, while a trend towards significance was found for the 9HPT (p = 0.05. At follow-up, the TEMPA as well as ARAT showed greater improvement relative to baseline than after the 8-week intervention period (p = 0.01, p = 0.02 respectively. Conclusions The results of present pilot study suggest that upper limb functionality of high-level disability MS patients can be positively influenced by means of a technology-enhanced physical rehabilitation program.

  15. Mathematical models of human paralyzed muscle after long-term training.

    Science.gov (United States)

    Law, L A Frey; Shields, R K

    2007-01-01

    Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.

  16. A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy

    DEFF Research Database (Denmark)

    Riisager, Maria; Duno, M; Hansen, Flemming Juul

    2013-01-01

    to aberrations of FKTN is rare, with only eight reported cases of limb girdle phenotype (LGMD2M). We describe the mildest affected patient outside Japan with genetically confirmed LGMD2M and onset of symptoms at age 14. She was brought to medical attention at age 12, not because of muscle weakness, but due...... to episodes of tachycardia caused by Wolff-Parkinson-White syndrome. On examination, she had rigid spine syndrome, a typical limb girdle dystrophy pattern of muscle weakness, cardiomyopathy, and serum CK levels >2000 IU/L (normal G; p.Y306C mutation in the FKTN gene was found. The case confirms FKTN mutations...... as a cause of LGMD2M without mental retardation and expands the phenotypic spectrum for LGMD2M to include cardiomyopathy and rigid spine syndrome in the mildest affected non-Japanese patient reported so far....

  17. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    Science.gov (United States)

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  18. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.

    Science.gov (United States)

    Li, Chong; Rusák, Zoltán; Horváth, Imre; Ji, Linhong

    2014-12-01

    Efficacious stroke rehabilitation depends not only on patients' medical treatment but also on their motivation and engagement during rehabilitation exercises. Although traditional rehabilitation exercises are often mundane, technology-assisted upper-limb robotic training can provide engaging and task-oriented training in a natural environment. The factors that influence engagement, however, are not fully understood. This paper therefore studies the relationship between engagement and muscle activities as well as the influencing factors of engagement. To this end, an experiment was conducted using a robotic upper limb rehabilitation system with healthy individuals in three training exercises: (a) a traditional exercise, which is typically used for training the grasping function, (b) a tracking exercise, currently used in robot-assisted stroke patient rehabilitation for fine motor movement, and (c) a video game exercise, which is a proliferating approach of robot-assisted rehabilitation enabling high-level active engagement of stroke patients. These exercises differ not only in the characteristics of the motion that they use but also in their method of triggering engagement. To measure the level of engagement, we used facial expressions, motion analysis of the arm movements, and electromyography. The results show that (a) the video game exercise could engage the participants for a longer period than the other two exercises, (b) the engagement level decreased when the participants became too familiar with the exercises, and (c) analysis of normalized root mean square in electromyographic data indicated that muscle activities were more intense when the participants are engaged. This study shows that several sub-factors on engagement, such as versatility of feedback, cognitive tasks, and competitiveness, may influence engagement more than the others. To maintain a high level of engagement, the rehabilitation system needs to be adaptive, providing different exercises to

  19. Normal isometric strength of rotator cuff muscles in adults

    OpenAIRE

    Chezar, A.; Berkovitch, Y.; Haddad, M.; Keren, Y.; Soudry, M.; Rosenberg, N.

    2013-01-01

    Objectives The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for e...

  20. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  1. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  2. Muscle synergy analysis in children with cerebral palsy

    Science.gov (United States)

    Tang, Lu; Li, Fei; Cao, Shuai; Zhang, Xu; Wu, De; Chen, Xiang

    2015-08-01

    Objective. To explore the mechanism of lower extremity dysfunction of cerebral palsy (CP) children through muscle synergy analysis. Approach. Twelve CP children were involved in this study, ten adults (AD) and eight typically developed (TD) children were recruited as a control group. Surface electromyographic (sEMG) signals were collected bilaterally from eight lower limb muscles of the subjects during forward walking at a comfortable speed. A nonnegative matrix factorization algorithm was used to extract muscle synergies. In view of muscle synergy differences in number, structure and symmetry, a model named synergy comprehensive assessment (SCA) was proposed to quantify the abnormality of muscle synergies. Main results. There existed larger variations between the muscle synergies of the CP group and the AD group in contrast with the TD group. Fewer mature synergies were recruited in the CP group, and many abnormal synergies specific to the CP group appeared. Specifically, CP children were found to recruit muscle synergies with a larger difference in structure and symmetry between two legs of one subject and different subjects. The proposed SCA scale demonstrated its great potential to quantitatively assess the lower-limb motor dysfunction of CP children. SCA scores of the CP group (57.00 ± 16.78) were found to be significantly less (p < 0.01) than that of the control group (AD group: 95.74 ± 2.04; TD group: 84.19 ± 11.76). Significance. The innovative quantitative results of this study can help us to better understand muscle synergy abnormality in CP children, which is related to their motor dysfunction and even the physiological change in their nervous system.

  3. Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion - A comparison between healthy subjects and stroke survivors.

    Science.gov (United States)

    Angelova, Silvija; Ribagin, Simeon; Raikova, Rositsa; Veneva, Ivanka

    2018-02-01

    After a stroke, motor units stop working properly and large, fast-twitch units are more frequently affected. Their impaired functions can be investigated during dynamic tasks using electromyographic (EMG) signal analysis. The aim of this paper is to investigate changes in the parameters of the power/frequency function during elbow flexion between affected, non-affected, and healthy muscles. Fifteen healthy subjects and ten stroke survivors participated in the experiments. Electromyographic data from 6 muscles of the upper limbs during elbow flexion were filtered and normalized to the amplitudes of EMG signals during maximal isometric tasks. The moments when motion started and when the flexion angle reached its maximal value were found. Equal intervals of 0.3407 s were defined between these two moments and one additional interval before the start of the flexion (first one) was supplemented. For each of these intervals the power/frequency function of EMG signals was calculated. The mean (MNF) and median frequencies (MDF), the maximal power (MPw) and the area under the power function (APw) were calculated. MNF was always higher than MDF. A significant decrease in these frequencies was found in only three post-stroke survivors. The frequencies in the first time interval were nearly always the highest among all intervals. The maximal power was nearly zero during first time interval and increased during the next ones. The largest values of MPw and APw were found for the flexor muscles and they increased for the muscles of the affected arm compared to the non-affected one of stroke survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Patients with polymyositis show changes in muscle protein charges

    DEFF Research Database (Denmark)

    Bartels, E M; Jacobsen, Søren; Rasmussen, L

    1989-01-01

    Polymyositis (PM) appears with indolent proximal muscle weakness and is an inflammatory disease with breakdown of muscle cells. In our study the protein charge concentrations of the contractile proteins in the A and I bands were determined, applying a microelectrode technique. Patients with PM sh...

  5. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.

    Science.gov (United States)

    Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio

    2018-06-01

    The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury.

    Science.gov (United States)

    Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi

    2017-01-01

    Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20-67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60-90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings

  7. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Yukiyo Shimizu

    2017-11-01

    Full Text Available Patients with complete paraplegia after spinal cord injury (SCI are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20–67 years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60–90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention

  8. Development of a hybrid strength training technique for paretic lower-limb muscles

    NARCIS (Netherlands)

    Bennett, T. L.; Glaser, R. M.; Janssen, T. W J; Couch, W. P.; Herr, C. J.; Almeyda, J. W.; Petrofsky, S. H.; Akuthota, P.

    1996-01-01

    A hybrid resistance exercise technique for strength training of patients with lower-limb paresis was developed. It consists of electrical stimulation-induced contractions (ESIC) superimposed on voluntary contractions to increase recruitment of motor units and the functional load capability of

  9. The effect of isolating the paretic limb on weight-bearing distribution and EMG activity during squats in hemiplegic and healthy individuals.

    Science.gov (United States)

    Lee, Dong-Kyu; An, Duk-Hyun; Yoo, Won-Gyu; Hwang, Byong-Yong; Kim, Tae-Ho; Oh, Jae-Seop

    2017-05-01

    Neural reorganization for movement therapy after a stroke is thought to be an important mechanism that facilitates motor recovery. However, there is a lack of evidence for the effectiveness of exercise programs in improving the lower limbs. We investigated the immediate effect of isolating the paretic limb using different foot positions ((i) foot parallel; both feet parallel, (ii) foot asymmetry; paretic foot backward by 10 cm, and (iii) foot lifting; nonparetic foot lifting by normalization to 25% of knee height) on weight-bearing distribution and electromyography (EMG) of the thigh muscle during squats. In total, 20 patients with hemiplegia and 16 healthy subjects randomly performed three squat conditions in which the knee joint was flexed to 30°. Weight distribution was measured using the BioRescue system. Muscle activity was measured using a surface EMG system. Patients with hemiplegia exhibited significantly decreased weight bearing on the paretic foot at 0° and 30° knee flexion compared with the nondominant foot of a healthy subject. The muscle activity of the quadriceps was significantly lower in patients with hemiplegia compared to healthy subjects. Weight bearing and EMG activity of the quadriceps femoris on the paretic or nondominant side significantly increased during a knee flexion of 30° with under the foot asymmetry and foot lifting positions compared with the parallel foot position. Isolating the paretic limb using the asymmetric foot positions and lifting of the foot during squats might help patients with hemiplegia to improve weight-bearing and achieve greater activation of the quadriceps muscle in the paretic limb.

  10. Botulinum Toxin in Management of Limb Tremor

    Directory of Open Access Journals (Sweden)

    Elina Zakin

    2017-11-01

    Full Text Available Essential tremor is characterized by persistent, usually bilateral and symmetric, postural or kinetic activation of agonist and antagonist muscles involving either the distal or proximal upper extremity. Quality of life is often affected and one’s ability to perform daily tasks becomes impaired. Oral therapies, including propranolol and primidone, can be effective in the management of essential tremor, although adverse effects can limit their use and about 50% of individuals lack response to oral pharmacotherapy. Locally administered botulinum toxin injection has become increasingly useful in the management of essential tremor. Targeting of select muscles with botulinum toxin is an area of active research, and muscle selection has important implications for toxin dosing and functional outcomes. The use of anatomical landmarks with palpation, EMG guidance, electrical stimulation, and ultrasound has been studied as a technique for muscle localization in toxin injection. Earlier studies implemented a standard protocol for the injection of (predominantly wrist flexors and extensors using palpation and EMG guidance. Targeting of muscles by selection of specific activators of tremor (tailored to each patient using kinematic analysis might allow for improvement in efficacy, including functional outcomes. It is this individualized muscle selection and toxin dosing (requiring injection within various sites of a single muscle that has allowed for success in the management of tremors.

  11. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    Science.gov (United States)

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  12. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia.

    Science.gov (United States)

    Lu, Minxun; Li, Yongjiang; Luo, Yi; Zhang, Wenli; Zhou, Yong; Tu, Chongqi

    2018-03-06

    Currently, it is challenging to treat massive bone defects of proximal tibia. Although numerous methods are available for reconstruction with epiphysis preservation, limitations in knee function and complications are noted with these methods. Our paper describes our attempt to reconstruct a marked defect in the proximal tibia with an uncemented three-dimensional (3D)-printed prosthesis and to evaluate the prosthesis design and short-term outcomes. A 15-year-old boy with metaphyseal osteosarcoma of the tibia underwent intercalary allograft reconstruction following wide tumour resection with epiphysis preservation. However, chronic allograft rejection and/or infection occurred after the surgery and a sinus tract was formed. The rejection and/or infection process was successfully stopped by the removal of the graft and implantation of an antibiotic-loaded cement spacer; however, the limb function was poor. Because of the irregular shape of the defect and the excessively short length of the residual proximal tibia, we used the 3D printing technology to design and fabricate a personalised prosthesis to reconstruct the defect, with the preservation of the knee joint. At the last follow-up at 26 months, the patient had satisfactory limb function. The 3D-printed prosthesis may be a feasible option in the reconstruction of tibial metaphyseal defects with the preservation of the knee joint. Moreover, it can result in good postoperative function and low complication rates. However, a long-term follow-up is required to clarify its long-term outcomes.

  13. An ultrasonic methodology for muscle cross section measurement of support space flight

    Science.gov (United States)

    Hatfield, Thomas R.; Klaus, David M.; Simske, Steven J.

    2004-09-01

    The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes. The small sampling size of astronauts, together with the fact that most physiological data collection tends to be rather tedious, continues to hinder elucidation of the underlying mechanisms responsible for the observed changes that occur in space. Better characterization of the muscle loss experienced by astronauts requires that new technologies be implemented. To this end, we have begun to validate a 360° ultrasonic scanning methodology for muscle measurements and have performed empirical sampling of a limb surrogate for comparison. Ultrasonic wave propagation was simulated using 144 stations of rotated arm and calf MRI images. These simulations were intended to provide a preliminary check of the scanning methodology and data analysis before its implementation with hardware. Pulse-echo waveforms were processed for each rotation station to characterize fat, muscle, bone, and limb boundary interfaces. The percentage error between MRI reference values and calculated muscle areas, as determined from reflection points for calf and arm cross sections, was -2.179% and +2.129%, respectively. These successful simulations suggest that ultrasound pulse scanning can be used to effectively determine limb cross-sectional areas. Cross-sectional images of a limb surrogate were then used to simulate signal measurements at several rotation angles, with ultrasonic pulse-echo sampling performed experimentally at the same stations on the actual limb surrogate to corroborate the results. The objective of the surrogate sampling was to compare the signal

  14. Diabetic neuropathic cachexia in a young female

    Directory of Open Access Journals (Sweden)

    Saumik Datta

    2013-01-01

    Full Text Available A 42-year-old lady, a known diabetic presented with generalized body ache, severe burning sensation over her lower limbs, loss of weight (approximately 8 kg, loss of appetite, nausea, frequent vomiting, and altered bowel habits without history of fever or pain abdomen. Symmetrical wasting was noted in all limbs with bilateral proximal muscle weakness, particularly of lower limbs. Ankle jerks were absent with symmetrically decreased reflexes. nerve conduction velocity (NCV revealed symmetrical distal axonal and demyelinating type of sensorimotor polyneuropathy. Hematological and gastrointestinal (GI malignancy were excluded. Patient responded to antidepressants.

  15. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    Science.gov (United States)

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.

  16. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Science.gov (United States)

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  17. Tracking upper limbs fatigue by means of electronic dynamometry

    Directory of Open Access Journals (Sweden)

    Fernando Max Lima

    2015-06-01

    Full Text Available This study aimed to identify useful electronic grip dynamometry parameters to track differences between trained (TR and untrained (UT participants, and between dominant (DO and non-dominant (ND limbs as a consequence of upper limbs muscle fatigue following 10 RM tests of the brachial biceps. This experimental study with transversal design involved 18 young adult males, of whom 9 were untrained and 9 were experienced in resistance training.Isometric grip force was evaluated (30 seconds long previous and after 10RM tests by means of a G200 Model grip dynamometer with precision load cell (Biometrics(r. Significant differences between initial and final measurements were found only for trained participants: Peak force for TR-DO (67.1 vs 55.5 kgf, p = .0277; Raw average for TR-DO (46.96 vs 42.22 kgf, p = .0464, and for TR-ND (40.34 vs 36.13 kgf, p = .0277. Electronic grip dynamometry efficiently identified upper limbs fatigue in trained participants, being raw average measurements the best parameter.

  18. Recurrent diabetic muscle infarction, a rare complication of diabetes: a case report

    Directory of Open Access Journals (Sweden)

    Tariq Bhat

    2017-01-01

    Full Text Available Diabetic muscle infarction is a rare complication of diabetes mellitus that presents as a localized, exquisitely painful swelling and limited range of motion of the involved extremity. The onset is usually acute, persists for several weeks and resolves spontaneously over several weeks to months without the need for intervention. However, as diabetes mellitus is an immunocompromised state and any painful swelling in the limbs is often taken as infectious in aetiology, the patient is inadvertently investigated with invasive procedures and is started on unnecessary antibiotics, adding to the burden of management. Keeping in view the low threshold for starting antibiotics in painful limb swelling in diabetes mellitus in our setting, we hereby describe a case of recurrent painful diabetic muscle infarction, first involving the right upper and later the right lower limb, managed with physical rest and analgesics. This case emphasizes that the treating physician keep this rare complication of diabetes mellitus in consideration in the respective clinical scenario and adopt a less aggressive (a noninvasive method like ultrasound rather than a more aggressive (an invasive method like muscle biopsy approach in diagnosis and take a similar approach towards management.

  19. Effect of low-cost resistance training on lower-limb strength and balance in institutionalized seniors.

    Science.gov (United States)

    Motalebi, Seyedeh Ameneh; Cheong, Loke Seng; Iranagh, Jamileh Amirzadeh; Mohammadi, Fatemeh

    2018-01-01

    Background/Study Context: Given the rapid increase in the aging population worldwide, fall prevention is of utmost importance. It is essential to establish an efficient, simple, safe, and low-cost intervention method for reducing the risk of falls. This study examined the effect of 12 weeks of progressive elastic resistance training on lower-limb muscle strength and balance in seniors living in the Rumah Seri Kenangan, social welfare home in Cheras, Malaysia. A total of 51 subjects qualified to take part in this quasi-experimental study. They were assigned to either the resistance exercise group (n = 26) or control group (n = 25). The mean age of the 45 participants who completed the program was 70.7 (SD = 6.6). The exercise group met twice per week and performing one to three sets of 8 to 10 repetitions for each of nine lower-limb elastic resistance exercises. All exercises were conducted at low to moderate intensities in sitting or standing positions. The subjects were tested at baseline and 6 and 12 weeks into the program. The results showed statistically significant improvements in lower-limb muscle strength as measured by five times sit-to-stand test (%Δ = 22.6) and dynamic balance quantified by the timed up-and-go test (%Δ = 18.7), four-square step test (%Δ = 14.67), and step test for the right (%Δ = 18.36) and left (%Δ = 18.80) legs. No significant changes were observed in static balance as measured using the tandem stand test (%Δ = 3.25), and one-leg stand test with eyes opened (%Δ = 9.58) and eyes closed (%Δ = -0.61) after completion of the program. The findings support the feasibility and efficacy of a simple and inexpensive resistance training program to improve lower-limb muscle strength and dynamic balance among the institutionalized older adults.

  20. Muscle metaboreflex control of the circulation during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2010-01-01

    . It can both elevate and decrease muscle blood flow depending on (1) the intensity and mode of contraction, (2) the limb in which the reflex is evoked, (3) the strength of the signal defined by the muscle mass, (4) the extent to which blood flow is redistributed from inactive vascular beds to increase......This review covers the control of blood pressure, cardiac output and muscle blood flow by the muscle metaboreflex which involves chemically sensitive nerves located in muscle parenchyma activated by metabolites accumulating in the muscle during contraction. The efferent response to metaboreflex...... activation is an increase in sympathetic nerve activity that constricts the systemic vasculature and also evokes parallel inotropic and chronotropic effects on the heart to increase cardiac output. The metaboreflex elicits a significant blood pressure elevating response during exercise and functions...