WorldWideScience

Sample records for provo river project

  1. Proposal to market Provo River Project power, Salt Lake City area

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report is an environmental assessment of the Western Area Power Administrations`s proposal to change the way in which the power produced by the Provo River Project (PRP) is marketed. The topics of the report include the alternatives to the proposed action that have been considered, a description of the environmental consequences of the proposed action and the alternatives that were considered, and other environmental considerations.

  2. iUTAH Summer Research: Analyzing diel variations of MeHg in the Provo River, Utah

    Science.gov (United States)

    Hamilton, G. L.; Packer, B. N.; Carling, G. T.; Checketts, H. N.; Shepherd Barkdull, N.

    2016-12-01

    iUTAH is an interdisciplinary research program aimed at strengthening science for Utah's water future and funded by the National Science Foundation. iUTAH is comprised of three research areas with an overarching goal of understanding how Utah's water system operates as an integrated physical, chemical, biological, and social system. During the Summer of 2016, I participated in the iUTAH (Innovative Urban Transitions and Aridregion Hydro-sustainability) iFellows undergraduate research program. iUTAH provided the opportunity to conduct research at Brigham Young University with graduate students studying trace metal dynamics in the Provo River, Utah, USA. This report presents the chemical system evaluation of methylmercury (MeHg) during diurnal variations from snowmelt runoff. Water samples were collected during peak discharge from Soapstone Basin, a site along the Upper Provo River watershed, every hour over a 24-hour (diel) period. Sampling began at 1200 hours on June 1 and ended at 1100 hours on June 2, 2016. The results of the Provo River MeHg analysis showed dissolved MeHg had a concentration variance of 0.027 ng/L and particulate MeHg had a concentration variance of 0.056 ng/L. The variances during the diel cycle represent more than a two-fold change in concentration. The hourly MeHg concentration levels demonstrated an inverse relationship with gage height indicative of dilution. The purpose of the study is to develop a more thorough understanding of short-term variances over time and the potential affect on long-term interpretations of MeHg fluctuations in the river. The Provo River flows through Jordanelle Reservoir where there is a mercury advisory for two fish species. MeHg is a bioaccumulative neurotoxin that humans are primarily exposed to by the consumption of contaminated fish. The strong correlation between the levels of MeHg in water and fish make the river concentrations an important factor.

  3. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  4. The Provo Corpus: A large eye-tracking corpus with predictability norms.

    Science.gov (United States)

    Luke, Steven G; Christianson, Kiel

    2017-05-18

    This article presents the Provo Corpus, a corpus of eye-tracking data with accompanying predictability norms. The predictability norms for the Provo Corpus differ from those of other corpora. In addition to traditional cloze scores that estimate the predictability of the full orthographic form of each word, the Provo Corpus also includes measures of the predictability of the morpho-syntactic and semantic information for each word. This makes the Provo Corpus ideal for studying predictive processes in reading. Some analyses using these data have previously been reported elsewhere (Luke & Christianson, 2016). The Provo Corpus is available for download on the Open Science Framework, at https://osf.io/sjefs .

  5. Savannah River bus project

    Energy Technology Data Exchange (ETDEWEB)

    Summers, W.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1998-08-01

    The H2Fuel Bus is the world`s first hybrid hydrogen electric transit bus. It was developed through a public/private partnership involving several leading technology and industrial organizations in the Southeast, with primary funding and program management provided by the Department of Energy. The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen buses and to enhance the public awareness and acceptance of emerging hydrogen technologies. The bus has been operated by the transit agency in Augusta, Georgia since April, 1997. It employs a hybrid IC engine/battery/electric drive system, with onboard hydrogen fuel storage based on the use of metal hydrides. Initial operating results have demonstrated an overall energy efficiency (miles per Btu) of twice that of a similar diesel-fueled bus and an operating range twice that of an all-battery powered electric bus. Tailpipe emissions are negligible, with NOx less than 0.2 ppm. Permitting, liability and insurance issues were addressed on the basis of extensive risk assessment and safety analyses, with the inherent safety characteristic of metal hydride storage playing a major role in minimizing these concerns. Future plans for the bus include continued transit operation and use as a national testbed, with potential modifications to demonstrate other hydrogen technologies, including fuel cells.

  6. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  7. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  8. Projected future runoff of the Breede River under climate change ...

    African Journals Online (AJOL)

    The Breede River is the largest river in the Western Cape Province of South Africa, and as such, is a key resource for a variety of activities within the region. It is this significance of the river that prompted a study into the impact of climate change on future runoff in the river and hence, the potential impacts a projected change ...

  9. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Conservation Advisory Group; Yakima River Basin Water Enhancement Project, Yakima, WA AGENCY: Bureau of... Committee Act, the Yakima River Basin Conservation Advisory Group, Yakima River Basin Water Enhancement... River Basin Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012...

  10. Rocky River Watershed Based Curriculum Guide Project

    Science.gov (United States)

    Cox, Phillip Howard

    Environmental education has the ability to increase cognitive ability, have a positive impact on group work skills, attitudes and self-efficacy, and increase student performance. Due to Federal "No Child Left Behind Act" legislation, increased standardized testing has resulted in the disenfranchisement of students from formal learning. The purpose of this project was to develop a curriculum guide based on the Rocky River watershed so teachers could use the Rocky River watershed as a means to satisfy the objectives of the NC Standard Course of Study and at the same time increase student environmental awareness, classroom engagement, sense of place and scores on the NC Earth/Environmental Final Exams. The project was developed to correlate with the newly revised North Carolina Standard Course of Study for Earth/Environmental Science. The curriculum guide was developed by utilizing the best practices suggested by scientific literature, the NC Standard Course of Study for Earth/Environmental Science, the North American Association for Environmental Education and the National Education Association.

  11. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  12. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  13. Hood River Conservation Project load analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, T.K.

    1987-11-01

    As a part of the Hood River Conservation Project (HRCP), 314 homes were monitored to measure electrical energy use. The total electrical load, space heating load, water heating load (in about 200 homes), wood-stove heat output (in about 100 homes), and indoor temperature were monitored. Data were collected for one full year before and one full year after these homes were retrofit with conservation measures. Local weather information was also collected on a 15-min basis. This data base was used to evaluate the load savings attributable to HRCP. Two methods of weather normalization were used and showed close agreement. The weather-normalized diversified residential load savings on the Pacific Power and Light system and Hood River area peak days were >0.5 kW/household. The average spring, summer, and fall savings were much smaller, <0.1 kW/household. The load factor for the diversified residential load decreased following the conservation retrofit actions. 11 refs., 40 figs., 13 tabs.

  14. 78 FR 66695 - Loveland Area Projects, Colorado River Storage Project, Pacific Northwest-Pacific Southwest...

    Science.gov (United States)

    2013-11-06

    ... Area Power Administration Loveland Area Projects, Colorado River Storage Project, Pacific Northwest-Pacific Southwest Intertie Project, Central Arizona Project, and Parker-Davis Project--Rate Order No. WAPA... Western Area Power Administration (Western) Transmission Projects to Enter into WestConnect's Point-to...

  15. Clinch River project: Sediment contaminants in the Lower Clinch River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples from three mainstem and seven tributary sites in the Clinch River Basin were analyzed for 21 organochlorine compounds, 19 metals, total volatile...

  16. Greater Green River Basin Production Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  17. Wood River recovery project -- speed and cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, D.F.; Santschi, M.F. [Sargent and Lundy, Chicago, IL (United States); Sander, S. [Illinois Power Co., Decatur, IL (United States)

    1998-12-31

    A unit trip is a situation avoided by power generators because it affects their bottom line. The ability to recover from the trip quickly, and restore MW generation is the desired goal. However, what do you do if you lose your unit to a disastrous fire? How do you recover from this situation? This will be the subject of this paper describing such an event which affected the Illinois Power Company`s (IPC) operation. IPC`s Wood River Power Station suffered a disastrous fire which knocked out the Station`s only two operable units--4 and 5. The fire was the result of a coal mill explosion and damaged beyond repair, the units control systems and operating capabilities. A total of 488 MW in generating capacity was lost at a time when the IPC system required all available generation now, and in the foreseeable future. This paper will describe the event, the immediate mobilization efforts, and the challenges of recovering both units in the most expedient time frame possible. The keys to the success of the recovery project will be described in detail.

  18. Projected future runoff of the Breede River under climate change ...

    African Journals Online (AJOL)

    Projected future runoff of the Breede River under climate change. ... system dynamics of the river adequately. ... Not only does this information assist in the process of long-term policy decisions made in relation to water-transfer schemes, but it also allows for an assessment of the future ecological sustainability of the ...

  19. LCREP prey data - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  20. LCREP genetic stock ID - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  1. LCREP catch records - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  2. LCREP chemistry and lipids - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  3. Hydroelectric project impacts on Stikine River ecosystems: An overview

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The report provides an overview on the hydroelectric project impacts on Stikine river ecosystems. The objective of this study was to develop a report which would aid...

  4. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    Science.gov (United States)

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  5. LCREP growth rates - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  6. Skagit IMW - Skagit River Estuary Intensively Monitored Watershed Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study evaluates system-level effects of several estuary restoration projects on juvenile Chinook salmon production in the Skagit River estuary. The monitoring...

  7. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  8. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-04-01

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  9. Project GROW [Green River Opportunities for Work]: Final Report.

    Science.gov (United States)

    Vikers, Theo; Gibson, Melvin Pat

    Summarizing the progress of Project Green River Opportunities for Work (Project GROW), the document reviews the study's background and the activities resulting from a third party evaluation by the Southern Association of Colleges and Schools. Objectives based on the evaluation and recommendations included: (1) development of an articulated and…

  10. 77 FR 10503 - Fall River Community Hydro Project; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2012-02-22

    ... Energy Regulatory Commission Fall River Community Hydro Project; Notice of Preliminary Permit Application... the Fall River Community Hydro Project to be located on Fall River, near the town of Fall River Mills..., 2011, Fall River Valley Community Service District, California, filed an application for a preliminary...

  11. [Upper Steele Bayou Projects : Yazoo River Basin, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a collection of documents related to four projects which were proposed by the U.S. Army, Corps of Engineers in the Yazoo River Basin. The Upper Yazoo Basin...

  12. Computing the Water Quality Index: The Hudson River Project.

    Science.gov (United States)

    Mihich, Orlando

    1996-01-01

    Describes a science project at Booker T. Washington Middle School #54 (New York City) where seventh and eighth graders computed the Hudson River's water quality using ClarisWorks spreadsheets and MicroWorlds software. Students gained technology skills and public recognition, as well as scientific and environmental information. Includes sample…

  13. Communications on the Ohio River Bridges Project: Best Practices

    OpenAIRE

    Boone, Paul; Nichols, Angela

    2017-01-01

    Managing the internal and external communications on the Ohio River Bridges Project provided our team with a unique opportunity for public outreach and involvement. Learn what worked, and how the communications were tracked and reported throughout the 3.5 years of construction.

  14. Rosphalt Riding Surface: Ohio River Bridges (ORB) Project

    OpenAIRE

    Hamilton, David; Quire, Scott

    2017-01-01

    The Ohio River Bridges Project used a Rosphalt asphalt deck in lieu of a concrete deck on the I-65 main bridge. S&ME did the testing for this mixture. This presentation was given at the S&ME technical conference.

  15. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  16. Napa River Salt Marsh Restoration Project. Volume 1: Environmental Impact Statement

    National Research Council Canada - National Science Library

    Norton, Brad

    2004-01-01

    ...), and California Department of Fish and Game (DFG) (project sponsors) are proposing a salinity reduction and habitat restoration project for the 94569,460-acre Napa River Unit of the Napa-Sonoma Marshes Wildlife Area (NSMWA) (Napa River Unit...

  17. Wabash River coal gasification repowering project: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  18. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  19. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  20. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California

    Science.gov (United States)

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert B.; Twiss, Robert

    2008-01-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  1. Project SHARE Sustainable Hydropower in Alpine Rivers Ecosystems

    Science.gov (United States)

    Mammoliti Mochet, Andrea

    2010-05-01

    SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems is a running project early approved and co funded by the European regional development fund in the context of the European Territorial Cooperation Alpine Space programme 2007 - 2013: the project is formally ongoing from August 2009 and it will end July 2012. Hydropower is the most important renewable resource for electricity production in alpine areas: it has advantages for the global CO2 balance but creates serious environmental impacts. RES-e Directives require renewable electricity enhance but, at the same time, the Water Framework Directive obliges member States to reach or maintain a water bodies "good" ecological status, intrinsically limiting the hydropower exploitation. Administrators daily face an increasing demand of water abstraction but lack reliable tools to rigorously evaluate their effects on mountain rivers and the social and economical outputs on longer time scale. The project intends to develop, test and promote a decision support system to merge on an unprejudiced base, river ecosystems and hydropower requirements. This approach will be led using existing scientific tools, adjustable to transnational, national and local normative and carried on by permanent panel of administrators and stakeholders. Scientific knowledge related to HP & river management will be "translated" by the communication tools and spent as a concrete added value to build a decision support system. In particular, the Multicriteria Analysis (MCA) will be applied to assess different management alternatives where a single-criterion approach (such as cost-benefit analysis) falls short, especially where environmental, technical, economic and social criteria can't be quantified by monetary values. All the existing monitoring databases will be used and harmonized with new information collected during the Pilot case studies. At the same time, all information collected will be available to end users and actors of related

  2. Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas

    Science.gov (United States)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.

  3. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  4. The Role of Anthropogenic Stratigraphy in River Restoration Projects

    Science.gov (United States)

    Evans, J. E.; Webb, L. D.

    2012-12-01

    As part of a river restoration project and removal of a low-head dam on the Ottawa River (northwestern Ohio and southeastern Michigan) in 2007, a longer-term project was initiated to assess anthropogenic changes of the Ottawa River fluvial system. A composite stratigraphic section 4.5 m in length was constructed by stratigraphic correlation from three trenches up to 2.5 m in depth and 14 vibracores up to 2.5 m in length, all within a small region (flood horizons are indicated in multiple trenches or cores, and identified as the historic floods of 1913 and 1959. The data show the following major changes in the fluvial system over time: (1) prior to approximately 5 Ka, the river system was transporting mineral-rich sediment and formed meandering point-bar sequences approximately 1.5 m thick; (2) between approximately 5 Ka and 200 YBP, the river system was transporting organic-rich sediment (i.e., blackwater stream) bordered by riparian wetlands accumulating peat (part of the regional "Great Black Swamp" discovered by settlers from eastern North America); (3) between approximately 200 YBP and the early 1960s the river system was transporting mineral-rich sediment (i.e., brownwater stream), probably sourced from extensive land clearance for agriculture, which backfilled and overtopped the previous riparian wetlands and produced an series of thin channel fills interpreted as rapidly shifting avulsional channels; (4) since the early 1960s, sediment supply has exceeded sediment conveyance capacity, leading to vertical aggradation of approximately 1.7 m, creating the fill-terrace morphology evident today; and (5) overlapping with the previous stage, channel incision and lateral channel migration has produced a fluvial system dominated by bank erosion, logjams due to tree fall, and degraded substrate with fluvial pavements. Stage 4 is interpreted as a time-specific (1950s-1960s) sediment pulse related to extensive urbanization of the lower drainage basin, while the partly

  5. Columbia River: Terminal fisheries research project. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  6. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  7. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Science.gov (United States)

    2010-02-05

    ... Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project... Puget Sound Energy Inc., a Large Generator Interconnection Agreement for interconnection of up to 1250... their proposed Lower Snake River Wind Energy Project (Wind Project) in Garfield and Columbia counties...

  8. Evaluating success criteria and project monitoring in river enhancement within an adaptive management framework

    Science.gov (United States)

    O'Donnell, T. K.; Galat, D.L.

    2008-01-01

    Objective setting, performance measures, and accountability are important components of an adaptive-management approach to river-enhancement programs. Few lessons learned by river-enhancement practitioners in the United States have been documented and disseminated relative to the number of projects implemented. We conducted scripted telephone surveys with river-enhancement project managers and practitioners within the Upper Mississippi River Basin (UMRB) to determine the extent of setting project success criteria, monitoring, evaluation of monitoring data, and data dissemination. Investigation of these elements enabled a determination of those that inhibited adaptive management. Seventy river enhancement projects were surveyed. Only 34% of projects surveyed incorporated a quantified measure of project success. Managers most often relied on geophysical attributes of rivers when setting project success criteria, followed by biological communities. Ninety-one percent of projects that performed monitoring included biologic variables, but the lack of data collection before and after project completion and lack of field-based reference or control sites will make future assessments of ecologic success difficult. Twenty percent of projects that performed monitoring evaluated ???1 variable but did not disseminate their evaluations outside their organization. Results suggest greater incentives may be required to advance the science of river enhancement. Future river-enhancement programs within the UMRB and elsewhere can increase knowledge gained from individual projects by offering better guidance on setting success criteria before project initiation and evaluation through established monitoring protocols. ?? 2007 Springer Science+Business Media, LLC.

  9. Proposed OPEG Namakan River hydro development project draft environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Ojibway Power and Energy Group (OPEG) is planning on installing a hydroelectric generating facility along the Namakan River at High Falls in Canada. In order the meet the different requirements in terms of environmental assessment for such a project, the group prepared an environmental report. The aim of this paper is to present the comments of the Quetico Foundation, a charity whose aim is to protect wilderness class parks. The foundation found both general and discipline-by-discipline deficiencies in OPEG's environmental report. All the deficiencies the Foundation observed are listed in this report, general deficiencies, and specific deficiencies concerning fisheries, terrestrial ecology, hydrology and socio-economic impacts. The Quetico Foundation demonstrated that a significant number of deficiencies are found in the OPEG environmental report, suggesting that they did not fully understand the potential long term impacts of their project and that further study should be undertaken.

  10. River Protection Project (RPP) Dangerous Waste Training Plan

    Energy Technology Data Exchange (ETDEWEB)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  11. Office of River Protection: Simplifying Project management tools

    Energy Technology Data Exchange (ETDEWEB)

    TAYLOR, D.G.

    2000-09-24

    The primary approach to the effort was to form a multi-organizational team comprised of federal and contractor staff to develop and implement the necessary tools and systems to manage the project. In late 1999 the DOE Manager of the Office of River Protection formed the Project Integration Office to achieve the objective of managing the efforts as a single project. The first major task, and the foundation upon which to base the development of all other tools, was the establishment of a single baseline of activities. However, defining a single scope schedule and cost was a difficult matter indeed. Work scopes were available throughout the project, but the level of detail and the integration of the activities existed primarily between working groups and individuals and not on a project-wide basis. This creates a situation where technical needs, logic flaws, resource balancing, and other similar integration needs are not elevated for management attention and resolution. It should be noted that probably 90% of the interface issues were known and being addressed. The key is simplifying the process and providing tangible assurance that the other 10% does not contain issues that can delay the project. Fortunately all of the contractors employed a common scheduling tool, which served as the basis for first communicating and then integrating baseline activities. Utilizing a powerful computer-based scheduling tool, it was soon possible to integrate the various schedules after the following was accomplished: Establishment of a scheduling specification (standardized input, coding, and approach to logic); and Clearly defined project assumptions.

  12. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  13. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects.

    Science.gov (United States)

    Morandi, Bertrand; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2014-05-01

    Since the 1990s, French operational managers and scientists have been involved in the environmental restoration of rivers. The European Water Framework Directive (2000) highlights the need for feedback from restoration projects and for evidence-based evaluation of success. Based on 44 French pilot projects that included such an evaluation, the present study includes: 1) an introduction to restoration projects based on their general characteristics 2) a description of evaluation strategies and authorities in charge of their implementation, and 3) a focus on the evaluation of results and the links between these results and evaluation strategies. The results show that: 1) the quality of an evaluation strategy often remains too poor to understand well the link between a restoration project and ecological changes; 2) in many cases, the conclusions drawn are contradictory, making it difficult to determine the success or failure of a restoration project; and 3) the projects with the poorest evaluation strategies generally have the most positive conclusions about the effects of restoration. Recommendations are that evaluation strategies should be designed early in the project planning process and be based on clearly-defined objectives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 75 FR 60804 - Nimbus Hatchery Fish Passage Project, Lower American River, California

    Science.gov (United States)

    2010-10-01

    ... Bureau of Reclamation Nimbus Hatchery Fish Passage Project, Lower American River, California AGENCY... Hatchery Fish Passage Project (Project). The purpose of the Project is to create and maintain a reliable system for collecting adult fish at the Nimbus Fish Hatchery (Hatchery). Reclamation maintains the...

  15. Global projections of river flood risk in a warmer world

    Science.gov (United States)

    Alfieri, Lorenzo; Bisselink, Berny; Dottori, Francesco; Naumann, Gustavo; de Roo, Ad; Salamon, Peter; Wyser, Klaus; Feyen, Luc

    2017-02-01

    Rising global temperature has put increasing pressure on understanding the linkage between atmospheric warming and the occurrence of natural hazards. While the Paris Agreement has set the ambitious target to limiting global warming to 1.5°C compared to preindustrial levels, scientists are urged to explore scenarios for different warming thresholds and quantify ranges of socioeconomic impact. In this work, we present a framework to estimate the economic damage and population affected by river floods at global scale. It is based on a modeling cascade involving hydrological, hydraulic and socioeconomic impact simulations, and makes use of state-of-the-art global layers of hazard, exposure and vulnerability at 1-km grid resolution. An ensemble of seven high-resolution global climate projections based on Representative Concentration Pathways 8.5 is used to derive streamflow simulations in the present and in the future climate. Those were analyzed to assess the frequency and magnitude of river floods and their impacts under scenarios corresponding to 1.5°C, 2°C, and 4°C global warming. Results indicate a clear positive correlation between atmospheric warming and future flood risk at global scale. At 4°C global warming, countries representing more than 70% of the global population and global gross domestic product will face increases in flood risk in excess of 500%. Changes in flood risk are unevenly distributed, with the largest increases in Asia, U.S., and Europe. In contrast, changes are statistically not significant in most countries in Africa and Oceania for all considered warming levels.

  16. Global Projections of River Flood Risk at Specific Warming Levels

    Science.gov (United States)

    Alfieri, L.; Feyen, L.; Dottori, F.; Naumann, G.; Bianchi, A.; De Roo, A. P. J.; Bernard, B.; Hirpa, F. A.; Salamon, P.

    2016-12-01

    The ongoing rise in global average temperature has put increasing pressure on understanding the links between atmospheric warming and the occurrence of natural hazards. While the Paris Agreement has set the ambitious target to limit global warming to 1.5°C compared to pre-industrial levels, scientist are urged to explore scenarios for different warming thresholds and quantify ranges of socio-economic impact. In this work, we present a framework to estimate the economic damage and population affected by river floods. It is based on a modeling cascade involving hydrological, hydraulic and socio-economic impact simulations. The modeling framework is designed to perform global scale simulations with hazard and risk mapping at 1 km spatial resolution. Furthermore, it relies on state-of-the-art exposure and vulnerability information. We forced the global hydrological model with an ensemble of seven high-resolution climate projections based on RCP8.5 to derive a streamflow climatology of up to 160 years of daily data starting in 1971. This was used to assess the frequency and magnitude of river floods over time slices centered on the years of exceeding specific warming levels of 1.5, 2, and 4 °C. Results indicate a clear positive correlation between atmospheric warming and future flood risk at global scale. Changes in flood risk appear unevenly distributed, with the largest increases in Asia, America and Europe. On the other hand, changes are statistically not significant in most countries in Africa and Oceania for all considered warming levels.

  17. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  18. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  19. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State... Integrated Water Resource Management Alternative in June 2009 under SEPA. The Integrated Water Resource...

  20. Bear River Migratory Bird Refuge trumperter swan translocation project : Issues/action items

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Background information and current issues regarding the trumpeter swan translocation project at Bear River Migratory Bird Refuge. Major issues include harvesting of...

  1. Hotspot: the Snake River Geothermal Drilling Project--initial report

    Science.gov (United States)

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  2. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L.R.; Trefry, M.G.; Barr, A.D. [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S. [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M. [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan)] [and others

    1992-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  3. Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, Brian; Olegario, Anthony; Powers, Paul

    2002-06-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

  4. Sandy River Delta Habitat Restoration Project, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Virginia; Dobson, Robin L.

    2002-11-01

    The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland with components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years

  5. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; White River Bull Trout Enumeration Project Summary, Progress Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2004-02-01

    This report summarizes the first year of a three-year bull trout (Salvelinus confluentus) enumeration project on the White River and is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The White River has been identified as an important bull trout spawning tributary of the upper Kootenay River in southeastern British Columbia. The objective was to collect information on the returning adult spawning population to the White River through the use of a fish fence and traps, and to conduct redd surveys at the conclusion of spawning to provide an index of spawning escapement and distribution. The fence was installed on September 9th, 2003 and was operated continuously (i.e. no high-water or breaching events) until the fence was removed on October 9th, 2003. Estimation of the spawning population of White River bull trout was incomplete. This was due to a larger and more protracted out-migration than expected. As a result, the bull trout spawning population of the White River was estimated to be somewhere above 899 fish. In comparison, this represents approximately one third the population estimate of the 2003 Wigwam River bull trout spawning population. Based on redd index data, the number of bull trout per redd was over twice that of the Wigwam River or Skookumchuck Creek. This was expected as the index sites on the Wigwam River and Skookumchuck Creek cover the majority of the spawning area. This is not true on the White River. From previous redd counts, it is known that there are approximately twice as many redds in Blackfoot Creek as there are in the index site. Additionally, given the large size of the White River watershed and in particular, the large number of tributaries, there is a high likelihood that important bull trout spawning areas remain unidentified. Both floy tag and radio-telemetry data for the White River bull trout have identified extensive life history migrations

  6. Columbia River Pathway Dosimetry Report, 1944-1992. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Farris, W.T.; Napier, B.A.; Simpson, J.C.; Snyder, S.F.; Shipler, D.B.

    1994-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One objective of the HEDR Project is to estimate doses to individuals who were exposed to the radionuclides released to the Columbia River (the river pathway). This report documents the last in a series of dose calculations conducted on the Columbia River pathway. The report summarizes the technical approach used to estimate radiation doses to three classes of representative individuals who may have used the Columbia River as a source of drinking water, food, or for recreational or occupational purposes. In addition, the report briefly explains the approaches used to estimate the radioactivity released to the river, the development of the parameters used to model the uptake and movement of radioactive materials in aquatic systems such as the Columbia River, and the method of calculating the Columbia River`s transport of radioactive materials. Potential Columbia River doses have been determined for representative individuals since the initiation of site activities in 1944. For this report, dose calculations were performed using conceptual models and computer codes developed for the purpose of estimating doses. All doses were estimated for representative individuals who share similar characteristics with segments of the general population.

  7. Parker River National Wildlife Refuge Conflict Resolution Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A major controversy exists over plans to develop the Parker River Wildlife Refuge in Newbury, Massachusetts. Ironically, the conflict is between the Fish and...

  8. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1983-01-01

    The U.S. Army Corps of Engineers' plan to control the natural chloride pollution in the Wichita River basin includes the construction of Truscott Brine Lake on a tributary of the North Wichita River. In connection with the proposed brine lake, the U.S. Geological Survey was requested to: (1) Define the existing ground-water conditions in the shallow fresh-water system of the project area; and (2) project the post-construction effects of the proposed lake on the fresh-water aquifer, especially in relation to hydraulic-head changes but also with respect to possible changes in the chemical quality of the ground water.

  9. 76 FR 53054 - Safety Zone; TriMet Bridge Project, Willamette River; Portland, OR

    Science.gov (United States)

    2011-08-25

    ... 2011 through October 2014. The project includes the construction of four piers, two on land and two... safety zone during the construction of the TriMet Bridge on the Willamette River, in Portland, OR. This... close proximity to cranes and overhead work associated with this construction project. During the...

  10. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    Science.gov (United States)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  11. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    Science.gov (United States)

    Schwartz, Michael O.

    2017-07-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  12. The Volta River Project and Tongu Ewe migrant communities along ...

    African Journals Online (AJOL)

    While fishing and farming continued to be the main livelihood activities, clam picking and creek fishing were no longer possible activities for Tongu women and men respectively. Even more importantly, there was a transformation of livelihood activities from being organised around the seasonal flooding of the Volta River to ...

  13. Toussaint River Unexploded Ordnance (UXO) Demonstration Dredging Project

    National Research Council Canada - National Science Library

    Welp, Timothy

    1998-01-01

    .... The Toussaint River is adjacent to the former Erie Army Depot (near Port Clinton, Ohio), a previous Department of Defense facility that used a section of Lake Erie from 1918 through 1965 as an impact area for testing and proof firing Army ordnance...

  14. Hood River and Pelton Ladder Monitoring and Evaluation Project and Hood River Fish Habitat Project : Annual Progress Report 1999-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-02-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat [contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000.

  15. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Data Report

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barber, David S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Betsill, J. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlefield, Adriane C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shanks, Sonoya T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yuldashev, Bekhzad [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Saalikhbaev, Umar [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Radyuk, Raisa [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Djuraev, Akram [Tajik Academy of Sciences, Dushanbe (Tajikistan); Djuraev, Anwar [Tajik Academy of Sciences, Dushanbe (Tajikistan); Vasilev, Ivan [Inst. of Physics, Bishkek (Kyrgyzstan); Tolongutov, Bajgabyl [Inst. of Physics, Bishkek (Kyrgyzstan); Valentina, Alekhina [Inst. of Physics, Bishkek (Kyrgyzstan); Solodukhin, Vladimir [Inst. of Nuclear Physics, Almaty (Kazakhstan); Pozniak, Victor [Inst. of Nuclear Physics, Almaty (Kazakhstan)

    2003-04-01

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. The Project also collects data on basic water quality parameters. Data obtained in this project are shared among all participating countries and the public through a world-wide web site (http://www.cmc.sandia.org/Central/centralasia.html), and are available for use in further studies and in regional transboundary water resource management efforts. This report includes graphs showing selected data from the Fall 2000 and Spring 2001 sampling seasons. These data include all parameters grouped into six regions, including main rivers and some tributaries in the Amu Darya and Syr Darya river systems. This report also assembles all data (in tabular form) generated by the project from Fall 2000 through Fall 2001. This report comes as the second part of a planned three-part reporting process. The first report is the Sampling and Analysis Plan and Operational Manual, SAND 2002-0484. This is the second report.

  16. Change In Course Pattern Of The Teesta River: After Effect Of An Engineering Project

    Science.gov (United States)

    Ashrafi, Z. M.; Shuvo, S. D.; Mahmud, M. S.

    2016-12-01

    Bangladesh is blessed by rivers that contribute to country's agriculture, landscape development and water supply. Due to nature of the river's flow and morphology, several engineering project have been initiated to enhance its utility, Teesta barrage was one of them. After two decades of its construction in Northern Bangladesh, several study identified major impacts on local ecosystem due to hindrance in water flow. However, how Teesta River evolved in last 25 years after the barrage construction, has not been quantified yet. This study quantifies the downstream evolution of Teesta River in after-construction period (1990-2015). Time series earth observation satellite (Landsat) data and geo-spatial techniques have been utilized to understand the changes in course pattern. Besides, sinuosity index has been used to quantify it. Analysis shows that the river is becoming more braided with the rise of numerous `Char' areas (islands); as well as bifurcation of the main channel, creating newer channels increasingly. Statistically significant changes in Sinuosity Index (SI) of the Teesta river has found in post construction period. In some locations SI increased which indicate that the river is becoming more and more winding than straight it used to be around 1990. It is also found that the river is shifting towards the east where the number of human settlement is higher. The rate of shifting has accelerated during the 2000s. There are places where the course has moved about 3 kilometers from its earlier course. Therefore, higher number of human settlements are in threat of river bank erosion in recent years. River bank management should be developed considering the pattern of course change so that rural settlement can save from destructive river bank erosion.

  17. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  18. Environmental Impact Assessment: Uri hydroelectric power project on River Jhelum in Kashmir, India

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, L.

    1995-09-01

    This report is an Initial Aquatic Environmental Impact Assessment of the Uri Hydroelectric Power Project on River Jhelum in Kashmir, India. It includes the Terms of Reference of the assessment, a discussion on biodiversity and threats to it, the environmental indicators used to monitor and predict the impacts, a description of the physical, chemical and biological prerequisites of the River Jhelum ecosystem, a description of the survey sites chosen, and an overview of the present fish and bottom fauna. Finally, there are sections on the potential impacts on biota of the Uri Project and a list of proposals for how mitigating and enhancing measures could be enforced

  19. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  20. Evaluation of dredged material proposed for ocean disposal from Bronx River Project Area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Gruendell, B.D.; Gardiner, W.W.; Antrim, L.D.; Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle Marine Research Lab., Sequim, WA (United States)

    1996-12-01

    The objective of the Bronx River project was to evaluate proposed dredged material from the Bronx River project area in Bronx, New York, to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Bronx River was one of five waterways that the US Army Corps of Engineers-New York District (USAGE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and to evaluate for dredging and disposal. Sediment samples were submitted for physical and chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests, and bioaccumulation studies. Fifteen individual sediment core samples collected from the Bronx River project area were analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample, representing the entire reach of the area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which was prepared from the suspended-particulate phase (SPP) of the Bronx River sediment composite, were analyzed for metals, pesticides, and PCBS.

  1. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  2. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.

  3. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  4. Hood River Monitoring and Evaluation Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Vaivoda, Alexis

    2004-02-01

    The Hood River Production Program Monitoring and Evaluation Project is co-managed by the Confederated Tribes of Warm Springs (CTWSRO) and the Oregon Department of Fish and Wildlife. The program is divided up to share responsibilities, provide efficiency, and avoid duplication. From October 2002 to September 2003 (FY 03) project strategies were implemented to monitor, protect, and restore anadromous fish and fish habitat in the Hood River subbasin. A description of the progress during FY 03 is reported here. Additionally an independent review of the entire program was completed in 2003. The purpose of the review was to determine if project goals and actions were achieved, look at critical uncertainties for present and future actions, determine cost effectiveness, and choose remedies that would increase program success. There were some immediate changes to the implementation of the project, but the bulk of the recommendations will be realized in coming years.

  5. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  6. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  7. Cooper River Rediversion Project. Lake Moultrie and Santee River, South Carolina. Fish Hatchery.

    Science.gov (United States)

    1980-07-01

    and tallrace canals 15,336,000 CY CONSTRAINTS IN COOPER RIVER TO LAKE MOUI.TRIE’ Strawberry Landing railroad bridge - width - feet 33 Lock size at...Clearance Above W.,tcr 16’ llorizontal lca rah ce, Ct’ntvr Span 40’ Type of Bridge Prestressed Concrete Number of Spans 11 RILOCLATION Of" S.C. ROAD 8-35

  8. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to controlOncomelania hupensissnails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    Science.gov (United States)

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  9. Deer browse resources of the Atomic Energy Commission's Savannah River project area

    Science.gov (United States)

    William H. Moore

    1967-01-01

    A procedure developed in Georgia was used to inventory the browse resources of the Atomic Energy Commission's Savannah River Project Area near Aiken, South Carolina. Through this procedure, the forest land manager is supplied with relative carrying capacity data for deer . If silvical practices can be related to habitat quality and quantity, he can adjust...

  10. Sediment management of run-of-river hydroelectric power project in ...

    Indian Academy of Sciences (India)

    Neena Isaac

    management. This paper presents the drawdown flushing studies of the reservoir of a Himalayan River. Hydroelectric Project called Kotlibhel in Uttarakhand, India. For the ... The model studies show that the sedimentation problem of the reservoir can be ..... [6] Yoon Y N 1992 The state and the perspective of the direct.

  11. 76 FR 76153 - Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC...

    Science.gov (United States)

    2011-12-06

    ... Wholesale Generator Status; Caney River Wind Project, LLC, Mesquite Solar 1, LLC, Copper Crossing Solar LLC, Copper Mountain Solar 1, LLC, Pinnacle Wind, LLC, Bellevue Solar, LLC, Yamhill Solar, LLC, Osage Wind...-captioned entities as Exempt Wholesale Generators became effective by operation of the Commission's...

  12. The Kings River Sustainable Forest Ecosystems Project: inception, objectives, and progress

    Science.gov (United States)

    Jared Verner; Mark T. Smith

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project, a formal administrative study involving extensive and intensive collaboration between Forest Service managers and researchers, is a response to changes in the agency’s orientation in favor of ecosystem approaches and to recent concern over issues associated with maintenance of late successional forest attributes...

  13. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-12-10

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

  14. 77 FR 70414 - White River National Forest; Eagle County, CO; Vail Mountain Recreation Enhancements Projects EIS

    Science.gov (United States)

    2012-11-26

    ...: Scott Fitzwilliams, Forest Supervisor, c/o Don Dressler, Winter Sports Administrator, White River... information related to the proposed project can be obtained from: Don Dressler, Winter Sports Administrator... a recreation-based economy, the Vail Valley both relies on, and attracts, large numbers of visitors...

  15. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  16. The Santa Margarita River Arundo donax control project: development of methods and plant community response

    Science.gov (United States)

    Dawn M. Lawson; Jesse A. Giessow; Jason H. Giessow

    2005-01-01

    A large-scale effort to control the aggressively invasive exotic species Arundo donax in the Santa Margarita River watershed in California’s south coast ecoregion was initiated in 1997. The project was prompted by the need for Marine Corps Base Camp Pendleton to address impacts to habitat for federally-listed endangered species and wetlands regulated...

  17. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  18. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  19. [Potential impact of water transfer project from Yangtze River to Huaihe River on snail spread and schistosomiasis transmission].

    Science.gov (United States)

    Cao, Zhi-guo; Wang, Tian-ping; Wu, Wei-duo; Zhang, Shi-qing; Lv, Da-bing; Fang, Guo-ren; Zhao, Feng; Ling, Xian-sheng; Sha, Jian-jun; Wang, Feng-feng; Zhu, Lei

    2007-10-01

    To investigate the possibility of spread of snails and transmission of schistosomiasis japonica due to the construction of water transfer project from Yangtze River to Huaihe River. In order to understand the current endemic situation of schistosomiasis in the project area, the distribution of snails was surveyed by routine methods, level of anti-schistosome antibody in human sera was detected by indirect haemagglutination test (IHA), and the prevalence of schistosomiasis in cattle was detected by egg hatching method. The snail survival and reproduction were observed in Chaohu Lake area(experimental area) and a control area for one year. Snail density was high in two starting points, from where the water in Yangtze River will be directed to Huaihe River. In counties of Wuwei and Hexian, through which the project will be built, the positive rate of anti-schistosome antibody in residents was 22.11% (168/760) and 18.59% (37/199), schistosomiasis prevalence in cattle was 2.42% (9/371) and 0.2% (2/997), respectively. Schistosomiasis was also endemic in Juchao District of Chaohu City. Snails respectively from grassland and hilly area were collected and put in Chaohu Lake for breed and newborn snails were found one year later. During the egg-laying season, the survival rate of snails from grassland in 2 experiment areas and a control area was 11.3%-16.7%, 3.0%-20.8% and 4.7%-14.7% respectively (chi2 = 0.093, 0.760, P > 0.05; chi2 = 0.647, 0, P > 0.05), and that of snails from hilly area was 24.1%-44.4%, 37.8%-67.3% and 86.3%-93.1% respectively (chi2 = 9.575, 5.302, P < 0.05; chi2 = 56.863, 36.218, P < 0.05). There was no significant difference between the experimental area and the control area on the number of eggs in the ovaries of the same type female snails. The one-year observation reveals that the construction of the project might result in spread of snails and transmission of schistosomiasis japonica in the relevant areas.

  20. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Borde, Amy B.; Dawley, Earl; Diefenderfer, Heida L.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Thom, Ronald M.; Vavrinec, John; Whiting, Allan H.

    2007-12-06

    This report is the third annual report of a six-year project to evaluate the cumulative effects of habitat restoration action in the Columbia River Estuary (CRE). The project is being conducted for the U.S. Army Corps of Engineers (Corps) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory, the Pt. Adams Biological Field Station of the National Marine Fisheries Service, and the Columbia River Estuary Study Taskforce. Measurement of the cumulative effects of ecological restoration projects in the Columbia River estuary is a formidable task because of the size and complexity of the estuarine landscape and the meta-populations of salmonids in the Columbia River basin. Despite the challenges presented by this system, developing and implementing appropriate indicators and methods to measure cumulative effects is the best way to enable estuary managers to track the overall effectiveness of investments in estuarine restoration projects. This project is developing methods to quantify the cumulative effects of multiple restoration activities in the CRE. The overall objectives of the 2006 study were to continue to develop techniques to assess cumulative effects, refine the standard monitoring protocols, and initiate development of an adaptive management system for Corps of Engineers’ habitat restoration monitoring efforts in the CRE. (The adaptive management effort will be reported at a later date.) Field studies during 2006 were conducted in tidal freshwater at Kandoll Farm on the lower Grays River and tidal brackish water at Vera Slough on Youngs Bay. Within each of area, we sampled one natural reference site and one restoration site. We addressed the overall objectives with field work in 2006 that, coupled with previous field data, had specific objectives and resulted in some important findings that are summarized here by chapter in this report. Each chapter of the report contains data on particular monitored variables for pre- and post

  1. Cooper River Rediversion Project. Lake Moultrie and Santee River, South Carolina. Intake and Tailrace Canals.

    Science.gov (United States)

    1976-06-01

    Eocene age. The Black Mingo crops out northwest of the proposed canal along the Santee River; maximum thickness is about 250 feet. The formation...bedrock surface to the right (south) of the present alinement. It sub- crops at approximate elevation 8 in boring R-I at the right limit of the 4...8217 -?APOL. 𔃾 MAXIMUM VELOCITY pPROFILE FOR TAILRACE CANAL 0. " -R R, A N -~ M(, F 8 SANIFE R I IF f - AQ N SCA -1

  2. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  3. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    Science.gov (United States)

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  5. Green River Formation water flood demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, B.I.; Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc. (United States)]|[Lomax Exploration Co., Salt Lake City, UT (United States); Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1996-11-01

    The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

  6. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

    2006-12-20

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

  7. Development of Joint Climate and Discharge Projections for the International Rhine River Basin - the CHR RheinBlick2050 Project

    Science.gov (United States)

    Görgen, K.; Pfister, L.

    2008-12-01

    The anticipated climate change will lead to modified hydro-meteorological regimes that influence discharge behaviour and hydraulics of rivers. This has variable impacts on managed (anthropogenic) and unmanaged (natural) systems, depending on their sensitivity and vulnerability (ecology, economy, infrastructure, transport, energy production, water management, etc.). Decision makers in these contexts need adequate adaptation strategies to minimize adverse effects of climate change, i.e. an improved knowledge on the potential impacts including uncertainties means an extension of the informed options open to users. The goal of the highly applied study presented here is the development of joint, consistent climate and discharge projections for the international Rhine River catchments (Switzerland, France, Germany, Netherlands) in order to assess future changes of hydro-meteorological regimes in the meso- and macroscale Rhine River catchments and to derive and improve the understanding of such impacts on hydrologic and hydraulic processes. The RheinBlick2050 project is an international effort initiated by the International Commission for the Hydrology of the Rhine Basin (CHR) in close cooperation with the International Commission for the Protection of the Rhine. The core experiment design foresees a data-synthesis, multi-model approach where (transient) (bias- corrected) regional climate change projections are used as forcing data for existing calibrated hydrological (and hydraulic) models at a daily temporal resolution over mesoscale catchments of the Rhine River. Mainly for validation purposes, hydro-meteorological observations from national weather services are compiled into a new consistent 5 km x 5 km reference dataset from 1961 to 2005. RCM data are mainly used from the ENSEMBLES project and other existing dynamical downscaling model runs to derive probabilistic ensembles and thereby also access uncertainties on a regional scale. A benchmarking is helping to

  8. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China

    Science.gov (United States)

    Yuan, Fei; Zhao, Chongxu; Jiang, Yong; Ren, Liliang; Shan, Hongcui; Zhang, Limin; Zhu, Yonghua; Chen, Tao; Jiang, Shanhu; Yang, Xiaoli; Shen, Hongren

    2017-11-01

    Projections of hydrological changes are associated with large uncertainties from different sources, which should be quantified for an effective implementation of water management policies adaptive to future climate change. In this study, a modeling chain framework to project future hydrological changes and the associated uncertainties in the Xijiang River basin, South China, was established. The framework consists of three emission scenarios (ESs), four climate models (CMs), four statistical downscaling (SD) methods, four hydrological modeling (HM) schemes, and four probability distributions (PDs) for extreme flow frequency analyses. Direct variance method was adopted to analyze the manner by which uncertainty sources such as ES, CM, SD, and HM affect the estimates of future evapotranspiration (ET) and streamflow, and to quantify the uncertainties of PDs in future flood and drought risk assessment. Results show that ES is one of the least important uncertainty sources in most situations. CM, in general, is the dominant uncertainty source for the projections of monthly ET and monthly streamflow during most of the annual cycle, daily streamflow below the 99.6% quantile level, and extreme low flow. SD is the most predominant uncertainty source in the projections of extreme high flow, and has a considerable percentage of uncertainty contribution in monthly streamflow projections in July-September. The effects of SD in other cases are negligible. HM is a non-ignorable uncertainty source that has the potential to produce much larger uncertainties for the projections of low flow and ET in warm and wet seasons than for the projections of high flow. PD contributes a larger percentage of uncertainty in extreme flood projections than it does in extreme low flow estimates. Despite the large uncertainties in hydrological projections, this work found that future extreme low flow would undergo a considerable reduction, and a noticeable increase in drought risk in the Xijiang

  9. Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

  10. Projections of the 21st Century Changjiang-Huaihe River Basin Extreme Precipitation Events

    OpenAIRE

    Yan, Cui; Zhi-Hong, Jiang; Wei-Lin, Chen; Ruo-Yu, Zhang

    2012-01-01

    Based on the 1961–1990 observed daily precipitation in the Changjiang-Huaihe River Basin, the NCEP/NCAR reanalysis data, and the HadCM3 model data for IPCC SRES A1B climate projections, the simulation capabilities of the BP-CCA downscaling approach for extreme precipitation indices of the current climate are assessed by applying canonical correlation analysis (CCA). In addition, future extreme precipitation indices in the middle and late 21st century are projected. The results show that simul...

  11. Extreme climate projections over the transboundary Koshi River Basin using a high resolution regional climate model

    Directory of Open Access Journals (Sweden)

    Rupak Rajbhandari

    2017-09-01

    Full Text Available The high-resolution climate model Providing REgional Climates for Impacts Studies (PRECIS was used to project the changes in future extreme precipitation and temperature over the Koshi River Basin for use in impact assessments. Three outputs of the Quantifying Uncertainties in Model Prediction (QUMP simulations using the Hadley Centre Couple Model (HadCM3 based on the IPCC SRES A1B emission scenario were used to project the future climate. The projections were analysed for three time slices, 2011–2040 (near future, 2041–2070 (mid-century, and 2071–2098 (distant future. The results show an increase in the future frequency and intensity of climate extremes events such as dry days, consecutive dry days, and very wet days (95th percentile, with greater increases over the southern plains than in the mountainous area to the north. A significant decrease in moderate rainfall days (75th percentile is projected over the middle (high mountain and trans-Himalaya areas. Increases are projected in both the extreme maximum and extreme minimum temperature, with a slightly higher rate in minimum temperature. The number of warm days is projected to increase throughout the basin, with more rapid rates in the trans-Himalayan and middle mountain areas than in the plains. Warm nights are also projected to increase, especially in the southern plains. A decrease is projected in cold days and cold nights indicating overall warming throughout the basin.

  12. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  13. Estimated Entrainment of Dungeness Crab During Dredging For The Columbia River Channel Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2002-12-01

    The studies reported here focus on issues regarding the entrainment of Dungeness crab related to the proposed Columbia River Channel Improvement Project and provided direct measurements of crab entrainment rates at three locations (Desdomona Shoals, Upper Sands, and Miller Sands) from RM4 to RM24 during summer 2002. Entrainment rates for all age classes of crabs ranged from zero at Miller Sands to 0.224 crabs per cy at Desdemona Shoals in June 2002. The overall entrainment rate at Desdomona Shoals in September was 0.120 crabs per cy. A modified Dredge Impact Model (DIM) used the summer 2002 entrainment rates to project crab entrainment and adult equivalent loss and loss to the fishery for the Channel Improvement Project. To improve the projections, entrainment data from Flavel Bar is needed. The literature, analyses of salinity intrusion scenarios, and the summer 2002 site-specific data on entrainment and salinity all indicate that bottom salinity influences crab distribution and entrainment, especially at lower salinities. It is now clear from field measurements of entrainment rates and salinity during a period of low river flow (90-150 Kcfs) and high salinity intrusion that entrainment rates are zero where bottom salinity is less than 16 o/oo most of the time. Further, entrainment rates of 2+ and older crab fall with decreasing salinity in a clear and consistent manner. More elaboration of the crab distribution- salinity model, especially concerning salinity and the movements of 1+ crab, is needed.

  14. Documenting Temporal Changes in Channel Geometry of the Buffalo RiverResulting from a Large-Scale Environmental Dredging Project

    Science.gov (United States)

    Singer, J.; Bajo, J. V.; Pfender, K.; Luther, B.

    2016-12-01

    The Buffalo River is classified as a Great Lakes Area of Concern due to loss of habitat, poor water quality, and contaminated bottom sediments. Much attention is being paid to restoring the environmental health of the river with the goal to address the environmental impairments and de-list the river. In support of this effort, an environmental dredging project taking place between 2011 and 2015 removed over 1 million cubic yards of highly contaminated sediment. To support this project, sounding surveys were conducted before, during, and after removal of sediment to determine the amount of sediment to be removed from different 'dredge cells' in the river. These digital data, available upon request from the United States Army Corps of Engineers and the United States Environmental Protection Agency, are being used to generate digital elevation models (DEMs) using ArcGIS 10.3.1. The DEMs are compared to show channel topography and generate cross sectional profiles. Findings show channel deepening of several meters along with channel widening >10m in some dredged portions of the river. Other areas show decrease in depth and suggest local slumping and redeposition of dredged sediment. The sounding data available throughout the stages of the environmental dredging project support an improved understanding of the temporal changes to Buffalo River's channel resulting from the dredging project. The findings also advance our fundamental understanding about the response by rivers to channel modifications.

  15. Office of River Protection (RPP) Interface Management in the Multi Contract Project Environment at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    SHIKASHIO, L.A.

    2000-09-22

    The Office of River Protection (ORP) is implementing the River Protection Project (RPP) using two prime contractors. CH2M Hill Hanford Group, Inc. (CHG) is responsible for operating the existing tank system, delivering the waste feed to the waste treatment plant, and managing the resulting low- and high-level glass waste ''product'' through a performance-based fee type contract. A separate prime contractor will be responsible for designing, constructing and commissioning of a new Waste Treatment and Immobilization Plant (WTP), and preparing the waste for ultimate disposal. In addition to the prime contractors and their interfaces, the River Protection Project is being conducted on the Hanford Site, which is under the management of another DOE organization, DOE Richland Field Office (DOE-RL). The infrastructure and utilities are provided by DOE-RL, for example. In addition, there are multiple other technical interfaces with federal, state and other regulatory agencies that influence the management of the activities. This paper provides an overview of the approach employed by ORP to identify, coordinate, and manage the technical interfaces of RPP. In addition, this paper describes the approach and methodologies used to: Establish an overall framework for interface management. Establish the requirements for defining and managing interfaces for the prime contractors and DOE. Contractually requiring the prime contractors to control and manage the interfaces.

  16. Runoff projection under climate change over Yarlung Zangbo River, Southwest China

    Science.gov (United States)

    Xuan, Weidong; Xu, Yue-Ping

    2017-04-01

    The Yarlung Zangbo River is located in southwest of China, one of the major source of "Asian water tower". The river has great hydropower potential and provides vital water resource for local and downstream agricultural production and livestock husbandry. Compared to its drainage area, gauge observation is sometimes not enough for good hydrological modeling in order to project future runoff. In this study, we employ a semi-distributed hydrologic model SWAT to simulate hydrological process of the river with rainfall observation and TRMM 3B4V7 respectively and the hydrological model performance is evaluated based on not only total runoff but snowmelt, precipitation and groundwater components. Firstly, calibration and validation of the hydrological model are executed to find behavioral parameter sets for both gauge observation and TRMM data respectively. Then, behavioral parameter sets with diverse efficiency coefficient (NS) values are selected and corresponding runoff components are analyzed. Robust parameter sets are further employed in SWAT coupled with CMIP5 GCMs to project future runoff. The final results show that precipitation is the dominating contributor nearly all year around, while snowmelt and groundwater are important in the summer and winter alternatively. Also sufficient robust parameter sets help reduce uncertainty in hydrological modeling. Finally, future possible runoff changes will have major consequences for water and flood security.

  17. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  18. [Effect of land consolidation project on detention of Oncomelania hupensis snails in flood at Yangtze River beach].

    Science.gov (United States)

    Gao, Guang-ting; Liu, Yi-xin; Sun, Zhen; Hu, Jian-guo; Hu, Qiong

    2013-10-01

    To explore the effect of land consolidation project on the detention of Oncomelania hupensis snails in the flood at the Yangtze River beach. The land consolidation project including removing wild willow groves, cutting the high and filling the low, and improving the slope was carried out at the Yangtze River beach in 2011, and the status of snails was investigated before and after the project, respectively, at the end of the flood season. Before the project (2010), at the end of the flood season, the rate of the frames with snails was 96.5% and the snail density was 3.655/0.1 m2. After the project (2012), at the end of the flood season in the same area, the rate of the frames with snails was 2.0% and the snail density was 0.015/0.1 m2 (chi2 = 357.29, P snails in the flood at the Yangtze River beach.

  19. Wind River Watershed Project; Volume II of III Reports F and G, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    1999-11-01

    The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds.

  20. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    Science.gov (United States)

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  1. Environmental Assessment for Lignite Fuel Enhancement Project, Coal Creek Station, Great River Energy, Underwood, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-01-16

    The US Department of Energy (DOE) has prepared this EA to assess the environmental impacts of the commercial application of lignite fuel enhancement. The proposed demonstration project would be implemented at Great River Energy's Coal Creek Station near Underwood, North Dakota. The proposed project would demonstrate a technology to increase the heating value of lignite and other high-moisture coals by reducing the moisture in the fuels. Waste heat that would normally be sent to the cooling towers would be used to drive off a percentage of the moisture contained within the lignite. Application of this technology would be expected to boost power-generating efficiencies, provide economic cost savings for lignite and sub-bituminous power plants, and reduce air emissions. The proposed project would be constructed on a previously disturbed site within the Coal Creek Station and no negative impacts would occur in any environmental resource area.

  2. "Projeto Rios" (Rivers Project) a methodology of classroom of the future (northern Portugal)

    Science.gov (United States)

    Almeida, Ana

    2013-04-01

    The rivers and the surrounding land drained by them are very important wildlife habitats. The water itself provides the environment for plants and animals, while the banks and nearby land support creatures such as otters, water lizards, dragonflies and a variety of water-loving plants. Using a different teaching strategy, on the latest three years, students of the eighth grade of the EB 2.3 Agrela school have been implementing the project "Nós e o Leça" (We and the river Leça). This initiative is part of a nationwide project in Portugal, the "Projeto Rios", which is a tool that aims the adoption and monitoring of a 500 meter river section, promoting society's awareness for the problems and the need of protection and recovery of the riparian systems. These students adopted a section of the Leça River, which is the one that is passing nearby our school. Throughout the mentioned school years, the children made field trips for characterization, knowledge and observation of some happenings on the section adopted, with the aid of a complete kit of materials (galoshes, loupes, tweezers, trays, fishnets, tape measure, tape of pH...). Token fields for identifications of plants and animals and specific data sheets/questionnaires, were also used and fulfilled. While in the river, it is done the collection of macro invertebrates to conclude about the water quality of the section under study. Youth also detect disturbances in the balance of the riverine ecosystem, either naturally occurring or of human origin. Aiming the sustained development and the citizenship education, the students performed a final action for improvement, which consisted in the uprooting of an invasive plant, in this case "the herb-of-fortune" and also gathering the "trash" founded along the adopted stretch of the river. Back to the classroom, we selected photographs and the collected data is treated and discussed to produce information (summaries, reports, tables, charts,...) which will be published

  3. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  4. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one

  5. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  6. Weymouth Fore River, Weymouth, Braintree, Massachusetts, Small Navigation Project. Detailed Project Report and Environmental Assessment.

    Science.gov (United States)

    1981-02-01

    rehabilitation work would not be reflected in the economic analysis. d. Maintenance of the project would be a federal responsibility. If conditions (a) and (b...frozen for analyses for organics. Prior to being chemically analyzed, biological samples were thawed and exoskeletons of grass shrimp and hard clams

  7. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie [Oregon Department of Fish and Wildlife

    2009-07-15

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since the initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.

  8. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  9. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    Directory of Open Access Journals (Sweden)

    John W. Shervais

    2013-03-01

    Full Text Available HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP. The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. Theprimary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho.Project HOTSPOT has completed three drill holes. (1 The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2 The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperaturerhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3 The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments.We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.

  10. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Bryson, Amanda J.; Cameron, April; Coleman, Andre M.; Corbett, C.; Dawley, Earl M.; Ebberts, Blaine D.; Kauffman, Ronald; Roegner, G. Curtis; Russell, Micah T.; Silva, April; Skalski, John R.; Thom, Ronald M.; Vavrinec, John; Woodruff, Dana L.; Zimmerman, Shon A.

    2010-10-26

    This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).

  11. Flood protection effect of the existing and projected reservoirs in the Amur River basin: evaluation by the hydrological modeling system

    Directory of Open Access Journals (Sweden)

    Y. Motovilov

    2015-06-01

    Full Text Available Hydrological modeling system was developed as a tool addressed supporting flood risk management by the existing and projected reservoirs in the Amur River basin. The system includes the physically-based semi-distributed model of runoff generation ECOMAG coupled with a hydrodynamic MIKE-11 model to simulate channel flow in the main river. The case study was carried out for the middle part of the Amur River where large reservoirs are located on the Zeya and Bureya Rivers. The models were calibrated and validated using streamflow measuruments at the different gauges of the main river and its tributaries. Numerical experiments were carried out to assess the effect of the existing Zeya and Bureya reservoirs regulation on 850 km stretch of the middle Amur River stage. It was shown that in the absence of the reservoirs, the water levels downstream of the Zeya and Bureya Rivers would be 0.5–1.5 m higher than the levels measured during the disastrous flood of 2013. Similar experiments were carried out to assess possible flood protection effect of new projected reservoirs on the Zeya and Bureya Rivers.

  12. Flood protection effect of the existing and projected reservoirs in the Amur River basin: evaluation by the hydrological modeling system

    Science.gov (United States)

    Motovilov, Y.; Danilov-Danilyan, V.; Dod, E.; Kalugin, A.

    2015-06-01

    Hydrological modeling system was developed as a tool addressed supporting flood risk management by the existing and projected reservoirs in the Amur River basin. The system includes the physically-based semi-distributed model of runoff generation ECOMAG coupled with a hydrodynamic MIKE-11 model to simulate channel flow in the main river. The case study was carried out for the middle part of the Amur River where large reservoirs are located on the Zeya and Bureya Rivers. The models were calibrated and validated using streamflow measuruments at the different gauges of the main river and its tributaries. Numerical experiments were carried out to assess the effect of the existing Zeya and Bureya reservoirs regulation on 850 km stretch of the middle Amur River stage. It was shown that in the absence of the reservoirs, the water levels downstream of the Zeya and Bureya Rivers would be 0.5-1.5 m higher than the levels measured during the disastrous flood of 2013. Similar experiments were carried out to assess possible flood protection effect of new projected reservoirs on the Zeya and Bureya Rivers.

  13. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  14. Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2015-07-01

    Full Text Available Recent studies by the United Nations Environment Programme (UNEP and the Intergovernmental Panel on Climate Change (IPCC indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River in Central Vietnam in the twenty-first century through hydrologic simulations driven by climate model projections. To calibrate and validate the hydrologic model, the model was forced by the rain gage-based gridded Asian Precipitation–Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE V1003R1 Monsoon Asia precipitation data along with observed temperature, humidity, wind speed, and solar radiation data from local weather stations. The simulated discharge was compared to observations for the period from 1951 until present. Three Global Climate Models (GCMs ECHAM5-OM, HadCM3 and GFDL-CM2.1 integrated into Long Ashton Research Station-Weather Generator (LARS-WG stochastic weather generator were run for three IPCC–Special Report on Emissions Scenarios (IPCC-SRES emissions scenarios A1B, A2, and B1 to simulate future climate conditions. The hydrologic model simulated the Huong River discharge for each IPCC-SRES scenario. Simulation results under the three GCMs generally indicate an increase in summer and fall river discharge during the twenty-first century in A2 and B1 scenarios. For A1B scenario, HadCM3 and GFDL-CM2.1 models project a decrease in river discharge from present to the 2051–2080 period and then increase until the 2071–2100 period while ECHAM5-OM model produces opposite projection that discharge will increase until the 2051–2080 period and then decrease for the rest of the century. Water management

  15. Fall 1993 Hardwood Seed Collection Project for the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Boatwright, N.I. III [Canal Environmental Services (United States)

    1993-12-31

    The Fall 1993 Hardwood Seed Collection Project was conducted as an initial step towards regenerating creek habitat on the Savannah River Site (SRS) that was damaged by past plant operating activities. Seed from various hardwood species was collected from the coastal plain of South Carolina (See Table 1). The contract required that seed collected from each tree be kept separate through processing and delivery. Height and dbh measurements and a photograph of each tree were also required. The contract procurement area was expanded eastward in an effort to alleviate problems associated with locating adequate seed sources in and around SRP.

  16. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  17. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    Science.gov (United States)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  18. John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H. (Oregon Department of Fish and Wildlife, John Day, OR)

    2006-03-01

    Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelhead redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.

  19. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  20. Ecological effects and potential risks of the water diversion project in the Heihe River Basin.

    Science.gov (United States)

    Zhang, Mengmeng; Wang, Shuai; Fu, Bojie; Gao, Guangyao; Shen, Qin

    2017-11-18

    To curb the severe ecological deterioration in the lower Heihe River Basin (HRB) in northwest China, a water diversion project was initiated in 2000. A comprehensive analysis of the ecological effects and potential risks associated with the project is needed. We assessed the hydrological and ecological achievements, and also analyzed the potential problems after the project was completed. We found that since the project began the hydrological regime has changed, with more than 57.82% of the upstream water being discharged to the lower reaches on average. As a result, the groundwater level in the lower reaches has risen; the terminal lake has gradually expanded to a maximum area in excess of 50km2 since 2010, and there has been a significant recovery of vegetation in the riparian zone and the Ejin core oases, which represents the initial rehabilitation of the degraded downstream environment. Additionally, the economy of Ejin has developed spectacularly, with an annual growth rate of 28.06%. However, in the middle reaches, the average groundwater level has continuously declined by a total of 5.8m and significant degradation of the vegetation has occurred along the river course. The discrepancy in the water allocation between the middle and lower reaches has intensified. This highlights the inability of the current water diversion scheme to realize further ecological restoration and achieve sustainable development throughout the whole basin. In future water management programs, we recommend that water allocation is coordinated by considering the basin as an integrated entity and to scientifically determine the size of the midstream farmland and downstream oasis; restrict non-ecological water use in the lower reaches, and jointly dispatch the surface water and groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Bates, D.J.

    1994-01-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  2. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Bates, D.J.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  3. Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R.; Borde, Amy B.; Dawley, Earl; Coleman, Andre M.; Woodruff, Dana L.; Breithaupt, Stephen A.; Cameron, April; Corbett, C.; Donley, Erin E.; Jay, D. A.; Ke, Yinghai; Leffler, K.; McNeil, C.; Studebaker, Cindy; Tagestad, Jerry D.

    2012-05-01

    This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.

  4. Multi-Model Projections of River Flood Risk in Europe under Global Warming

    Directory of Open Access Journals (Sweden)

    Lorenzo Alfieri

    2018-01-01

    Full Text Available Knowledge on the costs of natural disasters under climate change is key information for planning adaptation and mitigation strategies of future climate policies. Impact models for large scale flood risk assessment have made leaps forward in the past few years, thanks to the increased availability of high resolution climate projections and of information on local exposure and vulnerability to river floods. Yet, state-of-the-art flood impact models rely on a number of input data and techniques that can substantially influence their results. This work compares estimates of river flood risk in Europe from three recent case studies, assuming global warming scenarios of 1.5, 2, and 3 degrees Celsius from pre-industrial levels. The assessment is based on comparing ensemble projections of expected damage and population affected at country level. Differences and common points between the three cases are shown, to point out main sources of uncertainty, strengths, and limitations. In addition, the multi-model comparison helps identify regions with the largest agreement on specific changes in flood risk. Results show that global warming is linked to substantial increase in flood risk over most countries in Central and Western Europe at all warming levels. In Eastern Europe, the average change in flood risk is smaller and the multi-model agreement is poorer.

  5. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  6. People's perception on impacts of hydro-power projects in Bhagirathi river valley, India.

    Science.gov (United States)

    Negi, G C S; Punetha, Disha

    2017-04-01

    The people's perception on environmental and socio-economic impacts due to three hydro-electric projects (HEPs; commissioned and under construction) were studied in the north-west Indian Himalaya. Surveys among 140 project-affected people (PAPs) using a checklist of impacts indicate that among the negative impacts, decrease in flora/fauna, agriculture, flow of river, aesthetic beauty; and increase in water pollution, river bed quarrying for sand/stone, human settlement on river banks and social evils; and among the positive impacts, increase in standard of living, road connectivity, means of transport, public amenities, tourism and environmental awareness were related with HEPs. The PAPs tend to forget the negative impacts with the age of the HEPs after it becomes functional, and the positive impacts seem to outweigh the negative impacts. Study concludes that it is difficult to separate the compounding impacts due to HEP construction and other anthropogenic and natural factors, and in the absence of cause-and-effect analyses, it is hard to dispel the prevailing notion that HEPs are undesirable in the study area that led to agitations by the environmentalists and stopped construction of one of these HEPs. To overcome the situation, multi-disciplinary scientific studies involving the PAPs need to be carried out in planning and decision-making to make HEPs environment friendly and sustainable in this region. There is also a need to adopt low carbon electric power technologies and promote a decentralized energy strategy through joint ventures between public and private companies utilizing locally available renewable energy resources.

  7. Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin

    Science.gov (United States)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-02-01

    The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during

  8. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix D. Ohio River Demonstration Projects.

    Science.gov (United States)

    1981-12-01

    ii Ohio River, Moundsville (Grave Creek), West Virginia ....................... D-1-1 to 54 - Ohio River... Moundsville , West Virginia ..................................... D-2-1 to 64 Ohio River, Powhatan Point, Ohio .......................................... D-3...Division Office. Reports on Demonstration Projects Main Report Pittsburgh District Map No. S Moundsville Grave Creek, West Virginia 1 Moundsville Country

  9. Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin

    Science.gov (United States)

    Aloysius, Noel; Saiers, James

    2017-08-01

    Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB) have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs) under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016-2035) and mid-century (2046-2065). We find that total runoff from the CRB is projected to increase by 5 % [-9 %; 20 %] (mean - min and max - across model ensembles) over the next two decades and by 7 % [-12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5) are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.

  10. Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin

    Directory of Open Access Journals (Sweden)

    N. Aloysius

    2017-08-01

    Full Text Available Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016–2035 and mid-century (2046–2065. We find that total runoff from the CRB is projected to increase by 5 % [−9 %; 20 %] (mean – min and max – across model ensembles over the next two decades and by 7 % [−12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5 are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.

  11. Project Hotspot: Mineral chemistry of high-MgO basalts from the Kimama core, Snake River Scientific Drilling Project, Idaho

    Science.gov (United States)

    Bradshaw, R. W.; Christiansen, E. H.; Dorais, M. J.; Potter, K. E.; Shervais, J. W.

    2011-12-01

    Mineral compositions can be used to deduce magma crystallization temperatures and to infer key characteristics of magma source regions including delving into the plume or no-plume sources of intraplate basalts. To this end, mineral compositions in basalt acquired by the Snake River Scientific Drilling Project have been analyzed by electron microprobe. The samples are from the Kimama drill hole on the axis of the Central Snake River Plain, Idaho which was drilled through 1912 m of basalt and interbedded sediments. Five of the least evolved basalt flows (i.e., low Fe, Ti, and high Ni and Cr) were chosen based on semiquantitative analyses using a Bruker Tracer IV handheld X-ray fluorescence spectrometer. Phenocryst phases include olivine and plagioclase; many olivine phenocrysts also contain inclusions of Cr-Al-rich spinel. Groundmass phases are olivine, plagioclase, clinopyroxene, magnetite, and ilmenite. Olivine phenocrysts are normally zoned with cores of Fo 81-70; the rims of Fo 70-50 overlap with the compositions of olivine in the groundmass. Spinels included in olivines in the most MgO-rich lavas are Al-rich (up to 34 wt% Al2O3), similar to those in ocean island basalts (Barnes and Roeder, 2001) and some zone to higher Fe and Ti. Plagioclase phenocryst cores (An 76-65) overlap significantly with the compositions of groundmass plagioclase (An 72-40). Clinopyroxene is confined to the groundmass and creates an ophitic texture. Pyroxene compositions are typically: Wo 45-37, En 42-30, Fs 30-15 and more evolved pyroxenes trend towards Craters of the Moon pyroxenes which have lower Ca. Temperature and oxygen fugacity were calculated from magnetite-ilmenite pairs using QUILF (Anderson et al., 1993), which yielded temperatures of 750-1000°C and fO2 near or just below the QFM buffer. The magnetite-ilmenite pairs are all groundmass phases; thus, these are post-eruption temperatures and fO2 estimates. Olivine compositions were used to test if the source of the Snake River

  12. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghani, A.

    1994-06-01

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  13. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers

    Science.gov (United States)

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m3/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  14. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Roegner, Curtis; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Johnson, Gary E.; Sobocinski, Kathryn L.; Anderson, Michael G.; Ebberts, Blaine

    2005-12-15

    The restoration of wetland salmon habitat in the tidal portion of the Columbia River is occurring at an accelerating pace and is anticipated to improve habitat quality and effect hydrological reconnection between existing and restored habitats. Currently multiple groups are applying a variety of restoration strategies in an attempt to emulate historic estuarine processes. However, the region lacks both a standardized means of evaluating the effectiveness of individual projects as well as methods for determining the cumulative effects of all restoration projects on a regional scale. This project is working to establish a framework to evaluate individual and cumulative ecosystem responses to restoration activities in order to validate the effectiveness of habitat restoration activities designed to benefit salmon through improvements to habitat quality and habitat opportunity (i.e. access) in the Columbia River from Bonneville Dam to the ocean. The review and synthesis of approaches to measure the cumulative effects of multiple restoration projects focused on defining methods and metrics of relevance to the CRE, and, in particular, juvenile salmon use of this system. An extensive literature review found no previous study assessing the cumulative effects of multiple restoration projects on the fundamental processes and functions of a large estuarine system, although studies are underway in other large land-margin ecosystems including the Florida Everglades and the Louisiana coastal wetlands. Literature from a variety of scientific disciplines was consulted to identify the ways that effects can accumulate (e.g., delayed effects, cross-boundary effects, compounding effects, indirect effects, triggers and thresholds) as well as standard and innovative tools and methods utilized in cumulative effects analyses: conceptual models, matrices, checklists, modeling, trends analysis, geographic information systems, carrying capacity analysis, and ecosystem analysis. Potential

  15. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    Energy Technology Data Exchange (ETDEWEB)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  16. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  17. Asbestos--cement pipeline experience at the Raft River Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.; Kunze, J.F.; Sanders, R.D.

    1977-04-01

    The first buried asbestos-cement (Transite) pipeline used in high temperature (approximately 300/sup 0/F) service for transport of geothermal fluids was installed in the fall of 1975, and has seen 1/sup 1///sub 2/ years of service. The line is 4000 ft long, between the deep geothermal wells No. 1 and No. 2, in the Raft River Valley of Idaho. The experience in using this pipeline has been satisfactory, and methods have been developed for minimizing the thermal expansion/thermal shock breakage problems. Recommendations on improved design and construction practices for future pipelines are given. The substantially reduced cost (factor of 2) of an asbestos-cement pipeline compared to the conventional steel pipeline, plus the esthetically desirable effect of a buried pipeline dictate adoption of this type as standard practice for moderate temperature geothermal developments. The Raft River Geothermal Project intends to connect all future wells with pipelines of asbestos-cement, insulated with 1 to 2-inches of urethane, and buried between 2 and 3 ft. Total cost will be approximately $110,000/mile for 10-inch diameter pipe, $125,000/mile for 12-inch diameter.

  18. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

  19. Project Hotspot - The Snake River Scientific Drilling Project - Investigating the Interactions of Mantle Plumes and Continental Lithosphere

    Science.gov (United States)

    Shervais, J. W.

    2008-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time- transgressive hotspot track beneath continental crust. Recently, a 100 km wide thermal anomaly has been imaged by seismic tomography to depths of over 500 km beneath the Yellowstone Plateau. The Yellowstone Plateau volcanic field consists largely of rhyolite lavas and ignimbrites, with few mantle-derived basalts. In contrast, the Snake River Plain (SRP), which represents the track of the Yellowstone hotspot, consists of rhyolite caldera complexes that herald the onset of plume-related volcanism and basalts that are compositionally similar to ocean island basalts like Hawaii. The SRP preserves a record of volcanic activity that spans over 16 Ma and is still active today, with basalts as young as 200 ka in the west and 2 ka in the east. The SRP is unique because it is young and relatively undisturbed tectonically, and because it contains a complete record of volcanic activity associated with passage of the hotspot. This complete volcanic record can only be sampled by drilling. In addition, the western SRP rift basin preserves an unparalleled deep-water lacustrine archive of paleoclimate evolution in western North America during the late Neogene. The central question addressed by the Snake River Scientific Drilling Project is how do mantle hotspots interact with continental lithosphere, and how does this interaction affect the geochemical evolution of mantle-derived magmas and the continental lithosphere? Our hypothesis is that continental mantle lithosphere is constructed in part from the base up by the underplating of mantle plumes, which are compositionally distinct from cratonic lithosphere, and that plumes modify the impacted lithosphere by thermally and mechanically eroding cratonic mantle lithosphere, and by underplating depleted plume-source mantle. Addition of mafic magma to the crust represents a significant contribution to crustal growth, and densifies

  20. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  1. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  2. Application of a Sediment Information System to the Three Gorges Project on Yangtze River, China

    Science.gov (United States)

    Cao, Shuyou; Liu, Xingnian; Yang, Kejun; Li, Changzhi

    Based on survey and analysis of a huge number of observed entrance sediment transport data and the research results of physical and numerical modeling of Three Gorges Reservoir on the Yangtze River, a sediment information system was designed. The basis of this system includes spatial data and properties of geographic elements, and various documents involved to the Three Gorges Project (TGP). Database and knowledge base are constructed as the information bank. The running environment is constructed by the general control program to realize requirements about various sediment information. The system chooses the window software as the system software. The techniques of graphical user interfaces and groupware geographic information system are applied in this system. In this phase, the emphases of the system are development of document system, map system, and presentation system. Cross-section system of the TGP was also attached. For further improvement of the system, a prepared interface of decision supporting subsystem is finished.

  3. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Dawley, Earl M.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Russell, Micah; Skalski, John R.; Thom, Ronald M.; Vavrinec, John

    2008-10-01

    The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoring indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.

  4. Use of wood for space heating: Analysis of Hood River Conservation project submetered homes

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.; White, D.L.

    1987-09-01

    This report analyzes wood use in the 100 homes that had wood channel submeters installed as part of the Hood River Conservation project. In addition to wood heat output data, data were also available on electricity use, house characteristics, household demographics, and weatherization measures installed. The data indicate that in wood using homes, space heat produced by wood burning is approximately twice as much as provided by electricity. Woodusers tend to have larger homes and families, and use wood for strictly economic reasons. Patterns of wood and electricity use for space heating do not vary much by day of week, but are strongly correlated with outdoor temperatures. The large residential demand for wood may present difficult power planning problems for the Bonneville Power Administration if households suddenly switch back to electricity. However, conservation programs provide Bonneville benefits by dampening the magnitude of any potential swings.

  5. http://dx.doi.org/10.4314/jae.v18i1.4 Adoption of Green River Project ...

    African Journals Online (AJOL)

    PROF. MADUKWE

    http://dx.doi.org/10.4314/jae.v18i1.4. Adoption of Green River Project Fish Farming Technologies by Farmers in Niger ... Green River Project (GRP) agricultural extension service delivery system operates in the land and swamp areas of Niger ..... A translog stochastic frontier production function approach. Nigeria Agricultural ...

  6. Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge National Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods

  7. 77 FR 64718 - Safety Zone; Steam Ship Col. James M. Schoonmaker Relocation Project, Maumee River, Toledo, OH

    Science.gov (United States)

    2012-10-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Steam Ship Col. James M. Schoonmaker...-0939 Safety Zone; Steam Ship Col. James M. Schoonmaker relocation project, Maumee River, Toledo, OH. (a...

  8. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  9. Impact of forest management on coho salmon (Oncorhynchus kisutch) populations of the Clearwater River, Washington: A project summary

    Science.gov (United States)

    C. J. Cederholm; L. M. Reid

    1987-01-01

    Abstract - In 1972, declining coho salmon production and visible forestry impacts on coho habitats prompted the initiation of an ongoing fisheries research project in the Clearwater River basin of the Olympic Peninsula. Heavy fishery catches have resulted in a general under-seeding of the basin, as demonstrated by stocking experiments and inventories of potential...

  10. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Sampling and Analysis Plan and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D.; Barber, David S.; Betsill, J. David; Littlfield, Adriane C.; Mohagheghi, Amir H.; Shanks, Sonoya T.; Yuldashev, Bekhzad; Salikhbaev, Umar; Radyuk, Raisa; Djuraev, Akram; Djuraev, Amwar; Vasilev, Ivan; Tolongutov, Bajgabyl; Valentina, Alekhina; Solodukhin, Vladimir; Pozniak, Victor

    2002-04-02

    The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site, and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

  11. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  12. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20

    was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  13. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  14. Wildlife and Wildlife Habitat Loss Assessment at Dexter Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Dexter Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the project. Preconstruction, post-construction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Dexter Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 445 acres of riparian habitat. Impacts resulting from the Dexter Project included the loss of year-round habitat for black-tailed deer, red fox, mink, beaver, western gray squirrel, ruffed grouse, ring-necked pheasant, California quail, wood duck and nongame species. Bald eagle, osprey, and greater scaup were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Dexter Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  15. Dungeness Crab Dredging Entrainment Studies in the Lower Columbia River, 2002 – 2004: Loss Projections, Salinity Model, and Scenario Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2005-01-01

    Dungeness crab studies conducted in 2002 for the Portland District of the U.S. Army Corps of Engineers (Corps) constituted a major step forward in quantifying crab entrainment through statistical projections of adult equivalent loss (AEL) and loss to the fishery (LF) from proposed construction and maintenance dredging in the Columbia River navigation channel (Pearson et al. 2002, 2003). These studies also examined the influence of bottom salinity on crab abundance and entrainment rates. Additional sampling was conducted in 2004 to tighten loss projections, further develop the crab salinity model, and apply the model to assess correlations of entrainment rates and projected losses with seasonal salinity changes.

  16. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  17. Hood River and Pelton Ladder Evaluation Studies and Hood River Fish Habitat Project, 1998 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    1999-12-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin.

  18. Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin

    Directory of Open Access Journals (Sweden)

    R. Thorne

    2011-05-01

    Full Text Available Like many high latitude areas, the mountainous region of subarctic Canada has experienced recent warming and is an area of large inter-annual temperature variations, most notably during the winter. Quantifying how climate tendencies affect streamflow, especially in the spring melt season, is critical not only to regional water resource management, but to understanding the influence of freshwater on the Arctic sea-ice cover and global climate system. The impact of projected atmospheric warming on the discharge of the Liard River is unclear. Here, uncertainty in climate projections associated with GCM structure (2 °C prescribed warming and magnitude of increases in global mean air temperature (1 to 6 °C on the river discharge are assessed using a well-tested, semi-distributed hydrological model. Analyses have shown that the hydrological impacts are highly dependant on the GCM scenario. Uncertainties between the GCM scenarios are driven by the inconsistencies in projected spatial variability and magnitude of precipitation, rather than warming temperatures. Despite these uncertainties, the entire scenario simulations project that the subarctic nival regime will be preserved in the future, but the magnitude of change in river discharge is highly uncertain. Generally, spring freshet will arrive earlier, autumn to spring discharge will increase whereas summer flow will decrease, leading to an overall increase in annual discharge.

  19. Determination of key radionuclides and parameters related to dose from the Columbia River pathway. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.

    1993-03-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. These scoping calculations may include some radionuclides and pathways that were included in the Phase 1 Columbia River pathway dose evaluations, as well as other potential exposure pathways being evaluated for possible inclusion in future Hanford Environmental Dose Reconstruction Project (HEDR) modeling efforts. This scoping calculation (Calculation 009) examines the contributions of numerous radionuclides to dose via environmental exposures and accumulation in water, fish, and other aquatic biota. Addressed in these calculations are the contributions to effective dose from (1) external exposure to contaminated river water, ( 2) ingestion of contaminated drinking water, and (3) ingestion of contaminated resident Columbia River fish. Additional information on contamination of anadromous fish and waterfowl is provided.

  20. Contextual Essays on the Monongahela River Navigation System. Locks and Dams 2, 3 and 4 Monongahela River Project

    Science.gov (United States)

    2012-09-24

    diversification and a healthier economic situation for the western territories. The greatest need in the United States of the early 1800s involved the area...of these early coal reserves, together with diversification of manufacturing, the establishment of small towns, better and more roads, and...clerks; ship’s carpenters; potters; founders; plus others whose livelihoods were tied to the rivers and indirectly to the navigation system and to the

  1. Combined effects of projected sea level rise, storm surge, and peak river flows on water levels in the Skagit Floodplain

    Science.gov (United States)

    Hamman, Josheph J; Hamlet, Alan F.; Fuller, Roger; Grossman, Eric E.

    2016-01-01

    Current understanding of the combined effects of sea level rise (SLR), storm surge, and changes in river flooding on near-coastal environments is very limited. This project uses a suite of numerical models to examine the combined effects of projected future climate change on flooding in the Skagit floodplain and estuary. Statistically and dynamically downscaled global climate model scenarios from the ECHAM-5 GCM were used as the climate forcings. Unregulated daily river flows were simulated using the VIC hydrology model, and regulated river flows were simulated using the SkagitSim reservoir operations model. Daily tidal anomalies (TA) were calculated using a regression approach based on ENSO and atmospheric pressure forcing simulated by the WRF regional climate model. A 2-D hydrodynamic model was used to estimate water surface elevations in the Skagit floodplain using resampled hourly hydrographs keyed to regulated daily flood flows produced by the reservoir simulation model, and tide predictions adjusted for SLR and TA. Combining peak annual TA with projected sea level rise, the historical (1970–1999) 100-yr peak high water level is exceeded essentially every year by the 2050s. The combination of projected sea level rise and larger floods by the 2080s yields both increased flood inundation area (+ 74%), and increased average water depth (+ 25 cm) in the Skagit floodplain during a 100-year flood. Adding sea level rise to the historical FEMA 100-year flood resulted in a 35% increase in inundation area by the 2040's, compared to a 57% increase when both SLR and projected changes in river flow were combined.

  2. Investigating the impact of correcting regional climate scenarios on the projected changes in river runoff

    Science.gov (United States)

    Muerth, M.; Gauvin St-Denis, B.; Ricard, S.; Velázquez, J. A.; Schmid, F. J.; Ludwig, R.; Chaumont, D.; Turcotte, R.

    2012-04-01

    In Climate Change impact research, the projection of future river runoff as well as the catchment scale water balance is impeded by different sources of predictive uncertainty. Some research has already been done in order to quantify the uncertainty of regional climate projections with regard to the applied climate models and downscaling techniques as well as the internal variability apparent in climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 (Québec-Bavaria International Collaboration on Climate Change) project the uncertainties in the whole model chain (from global climate models to water management models) are investigated in four humid, mid-latitude catchments located in Southern Québec (Canada) and Southern Germany using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, many recent impact studies have used Regional Climate Models. One reason for that is that the physical correlations between atmospheric variables is preserved, especially between temperature and precipitation. Yet, the RCM outputs often are biased compared to the observed climatology of a region, so often the biases in those outputs are corrected to reproduce historic runoff conditions, even if those corrections alter the relationship between temperature and precipitation. For those reasons, the effect of bias correction on the relative changes in runoff indicators, which identify those conditions especially important for water management decisions, is explored. If bias correction affects the conclusion, we should consider BC as a source of uncertainty. If not, there is no need to correct these biases. The presented results highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow sub-catchments, driven by different regional climate model outputs for a reference (1971

  3. South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-07-01

    The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

  4. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  5. River

    Directory of Open Access Journals (Sweden)

    Morel Mathieu

    2016-01-01

    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  6. Flood projections within the Niger River Basin under future land use and climate change.

    Science.gov (United States)

    Aich, Valentin; Liersch, Stefan; Vetter, Tobias; Fournet, Samuel; Andersson, Jafet C M; Calmanti, Sandro; van Weert, Frank H A; Hattermann, Fred F; Paton, Eva N

    2016-08-15

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projects the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.

  8. Island End River, Chelsea, Massachusetts. Detailed Project Report and Environmental Assessment. Revised,

    Science.gov (United States)

    1981-02-01

    carolinus Grubby Myoxocephalus aeneus Four- spined stickleback Apeltes quadracus White perch Morone americana Striped bass Morone saxatalis Cunner...provide land for urban development, reducing the river to its present size . Most of the reclaimed land to the northwest of the river is relatively flat and...River, would cause the size of any marina facilities to be extremely limited. PLAN FORMULATION RATIONALE The first step in the formulation of alternative

  9. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  10. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    National Research Council Canada - National Science Library

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater‐budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the...

  11. Silalirijiit Project: Kangiqtugaapik (Clyde River), Nunavut, Canada, Weather Station Network, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Kangiqtugaapik (Clyde River), Nunavut, Canada, Weather Station Network is a collection of weather station data from the locations of Akuliaqattak,...

  12. Developing Rivers

    Directory of Open Access Journals (Sweden)

    Abhik Chakraborty

    2013-10-01

    Full Text Available This article explores the reasons behind the continuation of contentious dam projects in Japanese river basins. Though the River Law of the country was reformed in 1997, and subsequent sociopolitical developments raised hopes that river governance would progress toward a more environment-oriented and bottom-up model, basin governance in Japan remains primarily based on a utilitarian vision that sees rivers as waterways. This article reviews the Achilles heel of the 1997 River Law by examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp: as projects planned during postwar reconstruction and economic growth continue to be top priorities in policymaking circles while concerns over environment remain largely unaddressed.

  13. End-of-Century Projections of North American Atmospheric River Events in CMIP5 Climate Models

    Science.gov (United States)

    Warner, M.; Mass, C.; Salathe, E. P., Jr.

    2014-12-01

    Most extreme precipitation events that occur along the North American west coast are associated with narrow plumes of above-average water vapor concentration that stretch from the tropics or subtropics to the West Coast. These events generally occur during the wet season (October-March) and are referred to as atmospheric rivers (AR). ARs can cause major river management problems, damage from flooding or landslides, and loss of life. It is expected that anthropogenic global warming could lead to thermodynamic and dynamic changes in the atmosphere, such as increases in water vapor content and, thus, precipitation, and shifts in the climatological jet stream. Since AR events are associated with extreme values of integrated water vapor (IWV) near the West Coast, increases in IWV could impact the intensity of AR events intersecting the coast. Additionally, ARs are associated with cyclonic activity that originates near and propagates along the jet stream. The jet stream configuration influences the frequency and location of AR landfall along the North American west coast. It is probable that any changes in the general circulation of the atmosphere will result in changes in the frequency, orientation, and location of AR landfalls. Global climate models have sufficient resolution to simulate synoptic features associated with AR events, such as high values of vertically integrated vapor transport (IVT) approaching the coast. Ten Coupled Model Intercomparison Project (CMIP5) simulations are used to identify changes in ARs impacting the west coast of North America between historical (1970-1999) and end-of-century (2070-2099) runs, using representative concentration pathway (RCP) 8.5. The most extreme ARs are identified in both time periods by the 99th percentile of IVT days along a north-south transect offshore of the coast. Integrated water vapor (IWV) and IVT are predicted to increase, while lower-tropospheric winds change little. Winter-mean precipitation along the West

  14. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  15. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    Science.gov (United States)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make

  16. The River EdenDTC Project: A National Demonstration Test Catchment

    Science.gov (United States)

    Benskin, C.; Surridge, B.; Deasy, C.; Woods, C.; Rimmer, D.; Lees, E.; Owens, G.; Jonczyk, J.; Quinton, J.; Wilkinson, M.; Perks, M.; Quinn, P.; Barker, P.; Haygarth, P.; Burke, S.; Reaney, S.; Watson, N.

    2012-04-01

    Our environment is a complex system of interactions between natural process and anthropogenic activities that disrupt them. It is crucial to manage the balance for continued food production whilst maintaining the quality of the environment. The challenges we face include managing the impact of agricultural land use on aquatic quality and biodiversity as an integral system, rather than as separate issues. In order to do this, it is critical to understand how the different components are linked - how does land use affect our water courses and ground water, and their associated ecosystems, and how can the impact of agricultural land use on these systems be minimised? Regulating farm nutrient management through measures that minimise sources, their exposure to mobilisation, and reduce drainage pathways to water courses are all fundamental to the UK's approach to meeting the Water Framework Directive objective of achieving 'good ecological status' in all surface and groundwater bodies by 2015. The EdenDTC project is part of a 5-year national Demonstration Test Catchments (DTC) environmental scheme, aiming to understand the above issues through combining scientific research with local knowledge and experience from multiple stakeholders. The DTC project is a 5-year initiative by Defra, Welsh Assembly Government and the Environment Agency, which encompasses a research platform covering three distinct river catchments: the Eden in Cumbria; the Wensum in Norfolk; and the Avon in Hampshire. Within the EdenDTC, the impact and effects of multiple diffuse pollutants on ecosystems and sustainable food production are being studied on a river catchment scale. Three 10 km2 focus catchments, selected to represent the different farming practices and geologies observed across the Eden, have been instrumented to record the dynamics of agricultural diffuse pollution at multiple scales. Within each focus catchment, two sub-catchments were selected: one control and one mitigation, in which

  17. Sensitivity of glacier runoff projections to baseline climate data in the Indus River Basin

    Directory of Open Access Journals (Sweden)

    Michele eKoppes

    2015-10-01

    Full Text Available Quantifying the contribution of glacier runoff to water resources is particularly important in regions such High Mountain Asia, where glaciers provide a large percentage of seasonal river discharge and support large populations downstream. In remote areas, direct field measurements of glacier melt rates are difficult to acquire and rarely observed, so hydro-glaciological modeling and remote sensing approaches are needed. Here we present estimates of glacier melt contribution to the Upper Indus watershed over the last 40 years using a suite of seven reanalysis climate datasets that have previously been used in hydrological models for this region, a temperature-index melt model and > 29,000 km2 of ice cover. In particular, we address the uncertainty in estimates of meltwater flux that is introduced by the baseline climate dataset chosen, by comparing the results derived from each. Mean annual glacier melt contribution varies from 8 km3 yr-1 and 169 km3 yr-1, or between 4-78% of the total annual runoff in the Indus, depending on temperature dataset applied. Under projected scenarios of an additional 2-4°C of regional warming by 2100 AD, we find annual meltwater fluxes vary by >200% depending on the baseline climate dataset used and, importantly, span a range of positive and negative trends. Despite significant differences between climate datasets and the resulting spread in meltwater fluxes, the spatial pattern of melt is highly correlated and statistically robust across all datasets. This allows us to conclude with confidence that fewer than 10% of the >20,000 glaciers in the watershed contribute more than 80% of the total glacier runoff to the Indus. These are primarily large, low elevation glaciers in the Karakoram and Hindu Kush. Additional field observations to ground-truth modeled climate data will go far to reduce the uncertainty highlighted here and we suggest that efforts be focused on those glaciers identified to be most significant to

  18. Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration

    Science.gov (United States)

    Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.

    2016-01-01

    The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.

  19. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Vaivoda, Alexis

    2004-02-01

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water

  20. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  1. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  2. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  3. Impact of hydropower project (RoR on the ichthyofaunal diversity of river Birahiganga in Central Himalaya (India

    Directory of Open Access Journals (Sweden)

    Gurnam Singh

    2017-08-01

    Full Text Available Study examined the present status of ichthyofaunal diversity of river Birahiganga in compliance to the construction of one hydropower project (HPP. The river is diverted through tunnel, leaving very less water in its fragmented course (~2.5 km. Sometime river gets almost dried in summer season. Altogether 20 fish species belonging to two orders, three families and eight genera were reported from fragmented and continuous flowing stretches of the river. Snow trout (Schizothorax and Schizothoraichthys spp. have shown major share in total fish catch composition whereas the typical hill stream fishes (Garra and Pseudecheneis spp. were the least contributor. Installation of HPP has effect on the fish population structure. Maximum species richness (20 sp. was recorded from mainstream whereas 16 sp. were procured from the fragmented stretch. Relative abundance of most of the species was considerably high in the mainstream than the fragmented stretch, except Glyptothorax pectinopterus which has shown equal abundance at both the sites. Low water discharge in the fragmented stretch supports only small sized fishes. The degradation of habitat ecology and variation in physico-chemical features seems distressing the fish population structure. The threat status of fish fauna ascertain that out of 20 species, status of 6 species is under lower risk Near Threatened, 5 as Vulnerable and 4 as Endangered.

  4. Reconstruction of radionuclide concentrations in the Columbia River from Hanford, Washington to Portland, Oregon, January 1950--January 1971. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Gilmore, B.G. [Pacific Northwest Lab., Richland, WA (United States); Richmond, M.C. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

    1994-05-01

    Battelle, Pacific Northwest Laboratories conducted this study of the Columbia River for the Technical Steering Panel (TSP) and the Centers for Disease Control and Prevention as part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation dose that individuals may have received from operations that began at the Hanford Site in 1944. The purpose of the study was to reconstruct concentrations of radionuclides in Columbia River water for estimating doses to humans from the river pathway.

  5. Phase 1 summaries of radionuclide concentration data for vegetation, river water, drinking water, and fish. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Denham, D.H.; Dirkes, R.L.; Hanf, R.W.; Poston, T.M.; Thiede, M.E.; Woodruff, R.K.

    1993-06-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at the Hanford Site since 1944. As part of the HEDR Project, the Environmental Monitoring Data Task (Task 05) staff assemble, evaluate, and summarize key historical measurements of radionuclide concentrations in the environment as a result of Hanford operations. The scope of work performed during Phase I included initiating the search, recovery, and inventory of environmental reports. Summaries of the environmental monitoring data that were recovered and evaluated are presented for specific periods of interest. These periods include vegetation monitoring data (primarily sagebrush) for the years 1945 through 1947, Columbia River water and drinking water monitoring data for the years 1963 through 1966, and fish monitoring data for the years 1964 through 1966. Concern was limited to those radionuclides identified as the most likely major contributors to the dose potentially received by the public during the times of interest: phosphorous-32, copper-64, zinc-65, arsenic-76, and neptunium-239 in Columbia River fish and drinking water taken from the river, and iodine-131 in vegetation. This report documents the achievement of the Phase I objectives of the Environmental Monitoring Data Task.

  6. A modelling framework to project future climate change impacts on streamflow variability and extremes in the West River, China

    Directory of Open Access Journals (Sweden)

    Y. Fei

    2014-09-01

    Full Text Available In this study, a hydrological modelling framework was introduced to assess the climate change impacts on future river flow in the West River basin, China, especially on streamflow variability and extremes. The modelling framework includes a delta-change method with the quantile-mapping technique to construct future climate forcings on the basis of observed meteorological data and the downscaled climate model outputs. This method is able to retain the signals of extreme weather events, as projected by climate models, in the constructed future forcing scenarios. Fed with the historical and future forcing data, a large-scale hydrologic model (the Variable Infiltration Capacity model, VIC was executed for streamflow simulations and projections at daily time scales. A bootstrapping resample approach was used as an indirect alternative to test the equality of means, standard deviations and the coefficients of variation for the baseline and future streamflow time series, and to assess the future changes in flood return levels. The West River basin case study confirms that the introduced modelling framework is an efficient effective tool to quantify streamflow variability and extremes in response to future climate change.

  7. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

  8. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  9. Projected effects of proposed salinity-control projects on shallow ground water; preliminary results for the upper Brazos River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1982-01-01

    As part of the plan to control the natural salt pollution in the upper Brazos River basin of Texas, the U.S. Army Corps of Engineers recommended construction of three impoundment and retention reservoirs. In connection with the proposed reservoirs, the U.S. Geological Survey was requested to define the existing ground-water conditions in the shallow ground-water system of the area and to project the post-construction effects of the reservoirs on the shallow aquifer, especially in relation to aquifer-head changes but also with respect to possible changes in the chemical quality of the ground water.

  10. Field Plot Points for Bluestone National Scenic River Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class contains point features which represent locations of vegetation sampling plots in Bluestone National Scenic River. Location coordinates for most...

  11. Project CHECO Southeast Asia Report. Aerial Protection of Mekong River Convoys in Cambodia

    National Research Council Canada - National Science Library

    Mitchell, William A

    1971-01-01

    ...) shortages in the Khmer Republic (Cambodia) which had resulted from successful enemy attacks on commercial shipping vessels sailing the Mekong River inside Cambodia These attacks, combined with the closure of land Route 4 from the port city...

  12. Accuracy Assessment Plots for Stones River National Battlefield Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This is a vector file showing the location of NatureServe accuracy assessment sites at Stones River National Battlefield. The coordinates of this dataset were...

  13. Yellow-billed loon populations on the Colville River Delta, arctic Alaska: Supplemental project report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the yellow-billed loon populations on the Colville river delta in the Arctic Alaska. The estimates sizes of the 1982 and 1984 yellow-billed look...

  14. 77 FR 73976 - Nez Perce-Clearwater National Forests; Idaho; Crooked River Valley Rehabilitation Project

    Science.gov (United States)

    2012-12-12

    ... Crooked River Narrows Road and the extent and location of road reconstruction. The forest will decide what... Biological Opinions from NOAA Fisheries and U.S. Fish and Wildlife Service, or CWA--Section 402 NPDES permits...

  15. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Structural Features

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Anna, L.O., 1986, Geologic framework of the ground water...

  16. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  17. Spatial Vegetation Data for Upper Delaware Scenic and Recreational River Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Vegetation map of the Upper Delaware Scenic and Recreational River provides local park-specific names for vegetation types, as well as crosswalks to the National...

  18. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Anna Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following U.S. Geological Survey Professional Paper: Anna, L.O., 1986, Geologic...

  19. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Slack Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Slack, P. B., 1981, Paleotectonics and hydrocarbon...

  20. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Maughan and Perry Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Maughan, E.K., and Perry, W.J., Jr., 1986, Lineaments and...

  1. Sacramento River, Chico Landing to Red Bluff, California Bank Protection Project

    Science.gov (United States)

    1975-01-01

    fertilized to assist in good germination. Willow sprigs will be planted in scarred areas above the rock. The river stage will be below the sustained high...miles to 40 miles. The evolution of the fertile Sacramento Valley involved a succession of countless river configurations and channel changes...ae 3 CO Ul 4 HERBACEOUS PLANTS (Cont’d) Cali forn i a mugwort Occasional-Pacific States X (" Artemisia dou gl asi ana) Western ragweed

  2. Mississippi River, Baton Rouge to the Gulf, Louisiana, Project. Supplement II.

    Science.gov (United States)

    1984-04-01

    are the Morganza Floodway located on the right descending (west) bank at river mile 280 AHP and the Bonnet Carre Floodway located on the left...descending (east) bank at river mile 128 AHP. Both of these floodways have been used since construction, the Morganza in 1973 and the Bonnet Carre in 1937...Environmental hazards of heavy metals: summary evaluation of lead, cadmium and mercury. MARC Report Number 20, Monitoring and Assessment Research Centre

  3. Upper Mississippi River System - Environmental Management Program Definite Project Report (R-4) with Integrated Environmental Assessment. Andalusia Refuge Rehabilitation and Enhancement. Pool 16, Upper Mississippi River, Rock Island County, Illinois. Technical Appendices

    Science.gov (United States)

    1988-11-01

    ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT POOL 16, MISSISSIPPI RIVER MILES 462 THROUGH 463 ROCK...FISHERIES INVESTIGATION OF DEAD SLOUGH I - WATERFOWL OBSERVATION DATA FOR ANDALUSIA REFUGE DTIC S ELECTE 3MAR 1 19WOU 0600 I Approv edlf~rP Uc rap 90 03...REPORT (R-4) ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT POOL 16, RIVER MILES 462 THROUGH 463 ROCK ISLAND COUNTY, ILLINOIS APPENDIX A HYDROLOGY AND

  4. Reconstruction of radionuclide concentrations in the Columbia River from Hanford, Washington to Portland, Oregon, January 1950--January 1971. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Gilmore, B.G. [Pacific Northwest Lab., Richland, WA (United States); Richmond, M.C. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

    1994-01-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, this report addresses the radioactivity in the Columbia River. The Columbia River received cooling-water effluent from the eight Hanford single-pass reactors and was the major pathway for waterborne radionuclides. The pathway began at the Hanford Site and continued downstream past the mouth of the Columbia River to the adjacent coastal and ocean areas. The objective of the HEDR Project`s Surface-Water Transport Task is to provide monthly average radionuclide concentrations in river water at specific locations along the Columbia River. These concentrations will be used in final estimates of radiation doses that individuals may have received from the Columbia River pathway. Under this task, a river hydraulic computer model was used to simulate transport of specific radionuclides from the Hanford reactors to Portland, Oregon. The model output consisted of monthly average water concentrations of radionuclides computed for 12 locations over 253 months (January 1950--January 1971). These water concentrations were forwarded to the staff of the Environmental Pathways and Dose Estimates Task for calculating dose estimates. The model used a source term input data file developed by the staff of the Source Terms Task which provided monthly average releases from each of the eight reactors, from January 1950 through January 1971. The Environmental Monitoring Task staff provided historical river monitoring data for use in validating computed water concentrations. The purpose of this report is to document the mathematical modeling required to reconstruct concentrations of radionuclides in Columbia River water. Modeling was required because available monitoring data are limited. The specific radionuclides considered are sodium-24, phosphorus-32, zinc-65, arsenic-76, and neptunium-239, determined by their relative contribution to dose for the river pathway (Napier 1993).

  5. 10 years after the largest river restoration project in Northern Europe

    DEFF Research Database (Denmark)

    Astrup Kristensen, Esben Astrup; Kronvang, B.; Wiberg-Larsen, P.

    2014-01-01

    that erosion and sedimentation have changed the cross-sectional profiles over the last 10 years, resulting in a net input of sediment to the lower reaches of the river. However, the change of channel form was a slow process and predicted bank retreat over a 100 year period was only up to 6.8 m. Hence...... periodically flooded, but that the flooding is controlled and tamed due to the restoration design. The restoration of River Skjern has therefore failed to re-create the natural habitats formerly present and the natural dynamic processes that shape these habitats are slow. To speed up this process we therefore...

  6. The Han River watershed management initiative for the South-to-North Water Transfer project (Middle Route) of China.

    Science.gov (United States)

    Zhang, Quanfa; Xu, Zhifang; Shen, Zehao; Li, Siyue; Wang, Shusen

    2009-01-01

    The South-to-North Water Transfer (SNWT) Project of China is the largest of its kind ever implemented. Of its three routes (i.e., East, Middle and West), the middle one will transfer 14 billion m(3) of water annually from the Han River, a tributary of the Yangtze and the water supplying area, to Beijing by 2030. Thus water quality in the 95,000 km(2) upper Han River basin is of great concern. A watershed management initiative has been implemented in the basin, and the ultimate objectives are to quantify basin's ecosystem functioning and to develop an integrated management system with respect to water resources conservation. Specifically, the program includes five activities: characterization of riparian ecosystems, detection of land use and land cover change, quantification of nutrient cycling of representative ecosystems, determination of spatial and temporal variations of water quality, and finally development of a watershed management system for water conservation. This article provides the justifications of the watershed management initiative and the initial results are comprehended with respect to the water conservation in the Han River basin.

  7. Characterizing student navigation in educational multiuser virtual environments: A case study using data from the River City project

    Science.gov (United States)

    Dukas, Georg

    Though research in emerging technologies is vital to fulfilling their incredible potential for educational applications, it is often fraught with analytic challenges related to large datasets. This thesis explores these challenges in researching multiuser virtual environments (MUVEs). In a MUVE, users assume a persona and traverse a virtual space often depicted as a physical world, interacting with other users and digital artifacts. As students participate in MUVE-based curricula, detailed records of their paths through the virtual world are typically collected in event logs. Although many studies have demonstrated the instructional power of MUVEs (e.g., Barab, Hay, Barnett, & Squire, 2001; Ketelhut, Dede, Clarke, Nelson, & Bowman, 2008), none have successfully quantified these student paths for analysis in the aggregate. This thesis constructs several frameworks for conducting research involving student navigational choices in MUVEs based on a case study of data generated from the River City project. After providing a context for the research and an introduction to the River City dataset, the first part of this thesis explores the issues associated with data compression and presents a grounded theory approach (Glaser & Strauss, 1967) to the cleaning, compacting, and coding or MUVE datasets. In summary of this section, I discuss the implication of preparation choices for further analysis. Second, two conceptually different approaches to analyzing behavioral sequences are investigated. For each approach, a theoretical context, description of possible exploratory and confirmatory methods, and illustrative examples from River City are provided. The thesis then situates these specific analytic approaches within the constellation of possible research utilizing MUVE event log data. Finally, based on the lessons of River City and the investigation of a spectrum of possible event logs, a set of design heuristics for data collection in MUVEs is constructed and a possible

  8. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  9. 76 FR 78159 - Safety Zone; Submarine Cable Installation Project; Chicago River South Branch, Chicago, IL

    Science.gov (United States)

    2011-12-16

    ... W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through... Bridge between Mile Marker 325.1 and Mile Marker 325.5 of the Chicago River South Branch in Chicago... vessels intending to transit or anchor in the vicinity of the Madison Street Bridge between Mile Marker...

  10. Savannah River Plant, Project 8980: Engineering and design history of No. 400 Area. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The description and development, selection and descriptions of processes, design, and specialized design problems are presented for the 400-D Area at the Savannah River Plant. These facilities were used for the production of high purity heavy water for use as a moderator and coolant in the 100 Areas. Also, deuterium gas and hydrogen sulfide were produced here.

  11. 75 FR 78228 - Takes of Marine Mammals Incidental to Specified Activities; Columbia River Crossing Project...

    Science.gov (United States)

    2010-12-15

    ... authorization to take marine mammals incidental to bridge construction and demolition activities at the Columbia... (MMPA), NMFS is announcing receipt of CRC's request for the development and implementation of... activities: Replacement of the existing Columbia River bridges with two new structures; Widening of the...

  12. Savannah River Plant - Project 8980 engineering and design history. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This volume provides an engineering and design history of the 100 area of the Savannah River Plant. This site consisted of five separate production reactor sites, 100-R, P, L, K, and C. The document summarizes work on design of the reactors, support facilities, buildings, siting, etc. for these areas.

  13. 76 FR 25278 - Safety Zone; TriMet Bridge Project, Willamette River; Portland, OR

    Science.gov (United States)

    2011-05-04

    ..., which will then become highlighted in blue. In the ``Document Type'' drop down menu select ``Proposed..., will be starting construction of the new Portland-Milwaukie Light Rail Bridge on July 1, 2011 (with in... traffic. The rule will only limit entry into certain areas of the river for safety; the other section of...

  14. Quantitative Assessment of Hydrological Alteration Caused by Irrigation Projects in the Tarim River basin, China.

    Science.gov (United States)

    Xue, Lianqing; Zhang, Hui; Yang, Changbing; Zhang, Luochen; Sun, Chao

    2017-06-27

    The Tarim River is the longest inland river at an arid area in China. Deterioration in its ecohydrological system has received much attention world widely. This study presents quantitative assessment of hydrological alterations in the hydrological regime of the Tarim River caused by reservoir irrigation and channel irrigation over a period of over a half century. The improved indicators of hydrologic alteration and range of variability approach were applied to the daily flow rates at the two representative hydrological stations. Our study shows that the annual extreme water conditions (1-, 3-, 7-day annual minimum and extreme low timing) have been altered, compared with the pre-impact period. The average flow rate in July, the 30-day annual maximum flow rates, the date for the maximum rate, the rise rate, and the fall rate show a significant decreasing trend. The improved overall degree of hydrological alteration for the two stations are approximately 68.7% and 61.8%, suggesting a high degree of alteration. This study greatly improved our understanding of impacts of irrigations on the ecohydrological characteristics in the Tarim River.

  15. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume I..

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developed to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost ratio of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. 28 figs., 23 tabs.

  16. Projected risk of population declines for native fish species in the Upper Mississippi River

    Science.gov (United States)

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. 33 CFR 165.T13-149 - Safety Zone; McNary-John Day Transmission Line Project, Columbia River, Hermiston, OR.

    Science.gov (United States)

    2010-07-01

    ... Transmission Line Project, Columbia River, Hermiston, OR. 165.T13-149 Section 165.T13-149 Navigation and... Areas Thirteenth Coast Guard District § 165.T13-149 Safety Zone; McNary-John Day Transmission Line... Columbia River between two lines with the first line starting at the north bank at 45° 56′ 16.5″ N/119° 19...

  18. Snake River Sockeye Salmon, Sawtooth Valley Project : 1992 Juvenile and Adult Trapping Program : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ``endangered`` (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973.

  19. Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo [Idaho Department of Fish and Game

    2009-04-09

    This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

  20. Evaluating effectiveness and constraints of private sector agricultural extension services of the Green River Project in Imo and Rivers States, Nigeria

    Directory of Open Access Journals (Sweden)

    Onyinyechi I. Ogbonna

    2016-06-01

    Full Text Available Background: Oil exploration operations decreased the cultivable lands of rural people in the study area, leading to the establishment of the Green River Project (GRP. This study assessed the effectiveness and constraints of private sector extension services of GRP in Imo and Rivers States, Nigeria. Objectives: To analyse the roles and effectiveness of, as well as constraints to, the GRP in the area. Method: A multistage sampling technique was used to select 120 respondents. Descriptive statistics, factor analysis, chi square and t-test were used to analyse the data. Results: Roles of GRP in farming technologies dissemination included training of farmers on fish pond construction technique and maintenance of good pH levels. There was significant improvement in standard of living (X2 = 15.7; p ≤ 0.05 and size of production (t = 6.398; p ≤ 0.05 of the respondents after participation. In terms of the effectiveness of private sector deliveries on public policies, the programme had effect on beneficiaries’ access to credit, education of wards and poverty reduction. But it is worthy to note that the observed changes may not have been solely caused by the GRP, given that there could be many other factors affecting fish farming, either positively or negatively. Serious implementation constraints to effective performance of GRP included organisational, input and sustainability constraints. Conclusion: It was recommended that there should be timely provision of sufficient inputs to farmers and measures to improve organisation of private sector extension services in the area in order to enhance development.

  1. Deposition, persistence and turnover of pollutants: first results from the EU project AquaTerra for selected river basins and aquifers

    DEFF Research Database (Denmark)

    Barth, J.A.C.; Steidle, D.; Kuntz, D.

    2007-01-01

    Deposition, turnover and movement of persistent organic pollutants (POP) were investigated in the EU integrated project "AquaTerra", which is among the first funded environmental projects within the 6th Framework Program by the European Commission. Project work integrates across various disciplines...... that range from biogeochemistry, environmental engineering, computer modelling and chemistry to socio-economic sciences. Field study areas are the river basins of the Ebro, the Meuse, the Elbe and the Danube as well as the 3-km(2) French catchment of the Brevilles Spring. Within the first 2 years...... in laboratory studies with soils and aquifer material from selected sites. For sediment transport of contaminants, new flood sampling techniques revealed highest deposition rates of beta-hexachlorocyclohexane (beta-HCH) in river sediments at hotspot areas on the Mulde River in the Bitterfeld region (Elbe Basin...

  2. Large-scale dam removal in the northeast United States: documenting ecological responses to the Penobscot River Restoration Project

    Science.gov (United States)

    Collins, M. J.; Aponte Clarke, G.; Baeder, C.; McCaw, D.; Royte, J.; Saunders, R.; Sheehan, T.

    2012-12-01

    The Penobscot River Restoration Project aims to improve aquatic connectivity in New England's second largest watershed ( 22,000 km2) by removing the two lowermost, mainstem dams and bypassing a third dam on a principal tributary upstream. Project objectives include: restoring unobstructed access to the entire historic riverine range for five lower river diadromous species including Atlantic and shortnose sturgeon; significantly improving access to upstream habitat for six upper river diadromous species including Atlantic salmon; reconnecting trophic linkages between headwater areas and the Gulf of Maine; restoring fluvial processes to the former impoundments; improving recreational and Penobscot Nation cultural opportunities; and maintaining basin-wide hydropower output. The project is expected to have landscape-scale benefits and the need for a significant investment in long-term monitoring and evaluation to formally quantify ecosystem response has been recognized. A diverse group of federal, state, tribal, NGO, and academic partners has developed a long-term monitoring and evaluation program composed of nine studies that began in 2009. Including American Recovery and Reinvestment Act (ARRA) funding that leveraged partner contributions, we have invested nearly $2M to date in pre- and post-removal investigations that evaluate geomorphology/bed sediment, water quality, wetlands, and fisheries. Given the number of affected diadromous species and the diversity of their life histories, we have initiated six distinct, but related, fisheries investigations to document these expected changes: Atlantic salmon upstream and downstream passage efficiency using passive integrated transponder (PIT) and acoustic telemetry; fish community structure via an index of biotic integrity (IBI); total diadromous fish biomass through hydroacoustics; shortnose sturgeon spawning and habitat use via active and passive acoustic telemetry; and freshwater-marine food web interactions by

  3. High-resolution projections of 21st century climate over the Athabasca River Basin through an integrated evaluation-classification-downscaling-based climate projection framework

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Zhu, Jinxin; Zhou, Xiong; Yao, Y.

    2017-03-01

    An evaluation-classification-downscaling-based climate projection (ECDoCP) framework is developed to fill a methodological gap of general circulation models (GCMs)-driven statistical-downscaling-based climate projections. ECDoCP includes four interconnected modules: GCM evaluation, climate classification, statistical downscaling, and climate projection. Monthly averages of daily minimum (Tmin) and maximum (Tmax) temperature and daily cumulative precipitation (Prec) over the Athabasca River Basin (ARB) at a 10 km resolution in the 21st century under four Representative Concentration Pathways (RCPs) are projected through ECDoCP. At the octodecadal scale, temperature and precipitation would increase; after bias correction, temperature would increase with a decreased increment, while precipitation would increase only under RCP 8.5. Interannual variability of climate anomalies would increase from RCPs 4.5, 2.6, 6.0 to 8.5 for temperature and from RCPs 2.6, 4.5, 6.0 to 8.5 for precipitation. Bidecadal averaged climate anomalies would decrease from December-January-February (DJF), March-April-May (MAM), September-October-November (SON) to June-July-August (JJA) for Tmin, from DJF, SON, MAM to JJA for Tmax, and from JJA, MAM, SON to DJF for Prec. Climate projection uncertainties would decrease in May to September for temperature and in November to April for precipitation. Spatial climatic variability would not obviously change with RCPs; climatic anomalies are highly correlated with climate-variable magnitudes. Climate anomalies would decrease from upstream to downstream for temperature, and precipitation would follow an opposite pattern. The north end and the other zones would have colder and warmer days, respectively; precipitation would decrease in the upstream and increase in the remaining region. Climate changes might lead to issues, e.g., accelerated glacier/snow melting, deserving attentions of researchers and the public.

  4. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-01

    Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir in southern Raft River valley is fairly extensive and significantly permeable and merits further exploration.

  5. Cultural Resources Survey for the Lake Darling-Souris River Project, North Dakota (1982).

    Science.gov (United States)

    1985-06-13

    finishings on pottery , the Saskatchewan Basin sequence known from the Morkin Site, and the Cluny Complex, a proto- historic manifestation identified at...the Cluny Site in Alberta. Pottery found on the Souris River may be related to the Late Woodland ceramic-making cultures of seuthern Canada (see... Pottery and Projectile Points (site lead) Schweigert, 1978 " (SW SE ) 32RV435 Servold Homestead House Schweigert, 1978 Sec. 17 (SW NWh) McCarroll Ranch

  6. Columbia River : Select Area Fishery Evaluation project : 1995-96 Annual Reports.

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1998-06-01

    Water quality monitoring was conducted from November 1994 through October 1996 at five Oregon and three Washington select area study sites in the lower Columbia River. Physicochemical monitoring and aquatic biomonitoring programs were established to profile baseline parameters at each study site and document differences between study sites. Data collected at study sites where fish rearing operations were initiated indicate a potential negative impact on the surrounding benthic invertebrate communities.

  7. Intensive Survey of Two Rivers Dam and Reservoir Project, Chaves County, New Mexico.

    Science.gov (United States)

    1981-11-01

    River valley (Figure 1). The local hills are carved from Permian limestones and dolomites of the San Andres formation. The Rio Rondo drains parts of the...silicified dolomite ) originating from the central Texas Panhandle some 400 km (250 miles) to the northeast (Bryan 1950:14; Shaeffer 1958). Very few nodules...probable age of 50 years or more, not meeting the criteria for sites. Hearth: a cluster of burned ( calcined , heat-fractured, Sand/or heat-darkened

  8. Status Report of Environmental Evaluations Trinity River Project, Texas. Main Text

    Science.gov (United States)

    1975-06-01

    Fort Worth, along with the diaton spectes (Division Chrysophyta) Nitzschia palea, Navicula cryptocephala, Gomphonema angustatum, and Gomphonema...and Navicula rhvnchocephake. Palmer (1969) has reported Melosira and Cyclotella species as being indicators of low organic enrichment. The fact th’t the...lower portion of the Trinity River has high chloride concentrations is born out by the presence of Navicula rhynchocephala which, according to

  9. Uncertainty of runoff projections under changing climate in Wami River sub-basin

    Directory of Open Access Journals (Sweden)

    Frank Joseph Wambura

    2015-09-01

    New Hydrological Insights for the Region: The results of projected streamflow shows that the baseline annual climatology flow (ACF is 98 m3/s and for the future, the median ACF is projected to be 81 m3/s. At 100% uncertainty of skilled projections, the ACF from the sub-basin is projected to range between −47% and +36% from the baseline ACF. However, the midstream of the sub-basin shows reliable water availability for foreseen water uses expansion up to the year 2039.

  10. John Day River Subbasin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.

    2004-04-01

    Work undertaken in 2003 included: (1) Seven new fence projects were completed thereby protecting 7.6 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) Maintenance of all active project fences (66.14 miles), watergaps (66), spring developments (33) and plantings were checked and repairs performed. (4) Since the initiation of the Fish Habitat Project in 1984 we have 72.94 miles of stream protected using 131.1 miles of fence. With the addition of the Restoration and Enhancement Projects we have 205.96 miles of fence protecting 130.3 miles of stream.

  11. 77 FR 14970 - Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR

    Science.gov (United States)

    2012-03-14

    ... improved bicycle and pedestrian facilities. The project includes the construction of two temporary..., design, or operation; test methods; sampling procedures; and related management systems practices) that...

  12. Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin

    Science.gov (United States)

    Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun

    2018-01-01

    Climate change is expected to have severe impacts on natural systems as well as various socio-economic aspects of human life. This has urged scientific communities to improve the understanding of future climate and reduce the uncertainties associated with projections. In the present study, ten statistically downscaled CMIP5 GCMs at 1/16th deg. spatial resolution from two different downscaling procedures are utilized over the Columbia River Basin (CRB) to assess the changes in climate variables and characterize the associated uncertainties. Three climate variables, i.e. precipitation, maximum temperature, and minimum temperature, are studied for the historical period of 1970-2000 as well as future period of 2010-2099, simulated with representative concentration pathways of RCP4.5 and RCP8.5. Bayesian Model Averaging (BMA) is employed to reduce the model uncertainty and develop a probabilistic projection for each variable in each scenario. Historical comparison of long-term attributes of GCMs and observation suggests a more accurate representation for BMA than individual models. Furthermore, BMA projections are used to investigate future seasonal to annual changes of climate variables. Projections indicate significant increase in annual precipitation and temperature, with varied degree of change across different sub-basins of CRB. We then characterized uncertainty of future projections for each season over CRB. Results reveal that model uncertainty is the main source of uncertainty, among others. However, downscaling uncertainty considerably contributes to the total uncertainty of future projections, especially in summer. On the contrary, downscaling uncertainty appears to be higher than scenario uncertainty for precipitation.

  13. Hydropeaking mitigation project on a multi-purpose hydro-scheme on Valsura River in South Tyrol/Italy.

    Science.gov (United States)

    Premstaller, Georg; Cavedon, Valentina; Pisaturo, Giuseppe Roberto; Schweizer, Steffen; Adami, Vito; Righetti, Maurizio

    2017-01-01

    A hydropeaking mitigation project on Valsura River in the Italians Alps is described. The project is of particular interest due to several aspects. First of all, the Valsura torrent has unique morphological braiding characteristics, which are unique in the reach of Adige valley between Merano and Bolzano, and has a good reproduction potential for fish, especially in the terminal stretch along a biotope before its confluence with Adige River. Moreover, the Valsura hydropower cascade, which overall consists of six high-head hydropower plants, has an exceptional economic importance for the local hydropower industry. Lastly, the last HPP on the cascade is a multipurpose plant, so that interesting interactions between hydropeaking mitigation, irrigation supply and peak energy production are considered. The project started from a hydrological and a limnological measuring campaign and from an energetic, hydraulic and legislative framework analysis. The ecological findings are combined into a deficit analysis, founding the basis for the definition of a hydrological target state, which points to achieve a good natural reproduction for brown trout in the hydropeaked stretch, fulfilling at the same time the human safety conditions. Finally, mitigation Measures are described that at the same time comply with the following manifold aspects: a. maintenance of the requested target limits for fish reproduction; b. maintenance of the water release for the agricultural irrigation; c. enhancement of the flexibility of the hydropower plant's operation; d. reduction of the risk for local population. The paper compares operational and constructive mitigation measures and shows that constructive hydropeaking mitigation measures, for the present case study, can combine the positive effects of ecological improvement with higher safety standards and more flexible energy production. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Wildlife and Wildlife Habitat Loss Assessment at Detroit Big Cliff Dam and Reservoir Project, North Santiam River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Detroit/Big Cliff Dam and Reservoir Project (Detroit Project) on the North Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric-related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1939, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each time period were determined. Ten wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Detroit Project extensively altered or affected 6324 acres of land and river in the North Santiam River drainage. Impacts to wildlife centered around the loss of 1,608 acres of conifer forest and 620 acres of riparian habitat. Impacts resulting from the Detroit Project included the loss of winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, river otter, beaver, ruffed grouse, pileated woodpecker, spotted owl, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Detroit Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  15. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  16. An Evaluation of Water and Land Uses in the Kano River Project ...

    African Journals Online (AJOL)

    ... yield of 34.5 tonnes per hectare per farmer was realized as against the projected 24.3 tonnes per hectare. It is argued that the observed improper water application and low land development are bound to pose serious limitations to efficient performance of the irrigation project, and, hence a threat to a sustainable irrigation ...

  17. Project Work Plan 100-N Area Strontium-90 Treatability Demonstration Project: Phytoremediation Along the 100-N Columbia River Riparian Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Calvin C.

    2006-04-30

    The 100-N Area Innovative Treatment and Remediation Demonstration (ITRD) identified phyto¬remediation as a potential technology both for the removal of 90Sr from the soil of the riparian zone and as a filter for groundwater along the Columbia River. Recent greenhouse and growth chamber studies have demonstrated the viability of phytoextraction to remove 90Sr from this area’s soil/water; in conjunction with monitored natural attenuation and an apatite barrier the process would make an effective treatment for remediation of the 100-N Area 90Sr plume. All activities associated with the 100-NR-1 and 100-NR-2 Operable Units of the Hanford 100-N Area have had, and continue to have, significant regulatory and stakeholder participation. Beginning in 1998 with the ITRD process, presentations to the ITRD TAG were heavily attended by EPA, Washington State Department of Ecology, and stakeholders. In addition, three workshops have been held to receive regulatory and stakeholder feedback on monitored natural attenuation, the apatite barrier, and phytoremediation; these were held in Richland in August 2003, December 2004, and August 2005. The apatite injection treatability test plan (DOE 2005) describes phytoremediation as a technology to be evaluated during the March 2008 evaluation milestone as described in the Tri-Party Agreement change request (M-16-06-01 Change Control Form). If, during this evaluation milestone, phytoremediation is favorably evaluated it would be incorporated into the treatability test plan. The phytoremediation treatability test described in this proposal is strongly supported by the Washington State Department of Ecology.

  18. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  19. Emerging and Legacy Contaminants in The Foodweb in The Lower Columbia River: USGS ConHab Project

    Science.gov (United States)

    Nilsen, E. B.; Alvarez, D.; Counihan, T.; Elias, E.; Gelfenbaum, G. R.; Hardiman, J.; Jenkins, J.; Mesa, M.; Morace, J.; Patino, R.; Torres, L.; Waite, I.; Zaugg, S.

    2012-12-01

    An interdisciplinary study, USGS Columbia River Contaminants and Habitat Characterization (ConHab) project, investigates transport pathways, chemical fate, and effects of polybrominated diphenyl ethers (PBDEs) and other endocrine disrupting chemicals (EDCs) in aquatic media and the foodweb in the lower Columbia River, Oregon and Washington. Polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs) were co-deployed at each of 10 sites in 2008 to provide a measure of the dissolved concentrations of select PBDEs, chlorinated pesticides, and other EDCs. PBDE-47 was the most prevalent of the PBDEs detected. Numerous organochlorine pesticides, both banned and current-use, including hexachlorobenzene, pentachloroanisole, dichlorodiphenyltrichloroethane (DDT) and its degradates, chlorpyrifos, endosulfan, and the endosulfan degradation products, were measured at each site. EDCs commonly detected included a series of polycyclic aromatic hydrocarbons (PAHs), fragrances (galaxolide), pesticides (chlorpyrifos and atrazine), plasticizers (phthalates), and flame retardants (phosphates). The downstream sites tended to have the highest concentrations of contaminants in the lower Columbia River. In 2009 and 2010 passive samplers were deployed and resident largescale suckers (Catostomus macrocheilus) and surface bed sediments were collected at three of the original sites representing a gradient of exposure based on 2008 results. Brain, fillet, liver, stomach, and gonad tissues were analyzed. Chemical concentrations were highest in livers, followed by brain, stomach, gonad, and, lastly, fillet. Concentrations of halogenated compounds in tissue samples ranged from PBDE-100 > PBDE-154 > PBDE-153. Concentrations in tissues and in sediments increased moving downstream from Skamania, WA to Columbia City, OR to Longview, WA. Preliminary biomarker results indicate that fish at the downstream sites experience greater stress relative to the upstream site

  20. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  1. Wildlife and Wildlife Habitat Loss Assessment at Cougar Dam and Reservoir Project, South Fork McKenzie River, Oregon; 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Cougar Dam and Reservoir Project on the South Fork McKenzie River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1953, 1965, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Cougar Project extensively altered or affected 3096 acres of land and river in the McKenzie River drainage. Impacts to wildlife centered around the loss of 1587 acres of old-growth conifer forest and 195 acres of riparian hardwoods. Impacts resulting from the Cougar Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the effected area to support wildlife was greatly altered as a result of the Cougar Project. Loses or grains in the potential of the habitat to support wildlife will exist over the life of the project.

  2. Discharge Alterations of the Mures River, Romania under Ensembles of Future Climate Projections and Sequential Threats to Aquatic Ecosystem by the End of the Century

    Directory of Open Access Journals (Sweden)

    Anastasia Lobanova

    2015-06-01

    Full Text Available This study aims to assess the potential alterations in the hydrological regime attributed to projected climate change in one of the largest rivers in the Carpathian Area, the Mures River, and to estimate associated threats to riverine ecosystem. The eco-hydrological model, Soil and Water Integrated Model (SWIM, was applied on the Mures River basin, calibrated and validated against records at a gauging station in Alba-Julia town. A set of nine future projections for climatic parameters under one emissions scenario A1B over the period 1971–2100 were fed into the SWIM model. To provide functional link between hydrological regimes and riverine ecosystems, each of the nine simulated discharge time series were introduced into the IHA (Indicators of Hydrological Alterations tool. Triggered changes in hydrological patterns of the Mures River were assessed at the basin and sub-basin scales. The obtained results present a strong agreement through all nine climate projections; suggesting an increase in the discharge of Mures River for the winter season; a decrease in summer and prolongation of the low flow periods by the end of the century. Anticipated changes would pose threats to aquatic ecosystems; altering normal life-cycles; and depleting natural habitats of species.

  3. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    Energy Technology Data Exchange (ETDEWEB)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  4. Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP

    Directory of Open Access Journals (Sweden)

    Taru Olsson

    2017-10-01

    New hydrological insights for the region: On average, GCMs indicate increased annual mean temperatures by 3.1 °C (RCP4.5 and by 4.3 °C (RCP8.5 and precipitation sum by 20% (RCP4.5 and by 28% (RCP8.5. With increasing total precipitation, river discharges are also found to increase, but the variability among the GCMs is considerable. The largest increases in monthly discharge are projected to occur in the wet season (November − April − with up to 31% increase of December multi-model mean. Despite the larger annual discharge for the mean multi-model result, discharges in the dry season may decrease according to some GCMs, showing the need for an adapted future water management.

  5. Shorty's Island Substrate Enhancement Pilot Project Extent, Kootenai River near Bonners Ferry, ID, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The substrate enhancement pilot project (SEPP) extent GIS layer represents an area where an artificial substrate will be placed. The artificial substrate, consisting...

  6. Myrtle Bend Substrate Enhancement Pilot Project Extent, Kootenai River near Bonners Ferry, ID, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The substrate enhancement pilot project (SEPP) extent GIS layer represents an area where an artificial substrate will be placed. The artificial substrate, consisting...

  7. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Total Petroleum Systems

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Total Petroleum System is used in the National Assessment Project and incorporates the Assessment Unit, which is the fundamental geologic unit used for the...

  8. National Assessment of Oil and Gas Project - Wind River Basin Province (035) Total Petroleum Systems

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Total Petroleum System is used in the National Assessment Project and incorporates the Assessment Unit, which is the fundamental geologic unit used for the...

  9. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Assessment Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is...

  10. Kootenai River Fisheries Investigation : Stock Status of Burbot : Project Progress Report 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Paragamian, Valughn L.; Laude Dorothy C.

    2008-12-26

    Objectives of this investigation were to (1) monitor the population status and recruitment of burbot Lota lota in the Kootenai River, Idaho and British Columbia, Canada during the winter of 2006-2007; (2) evaluate the selective withdrawal system in place at Libby Dam to maintain the river temperature near Bonners Ferry between 1-4 C (November-December) to improve burbot migration and spawning activity; and (3) determine if a hatching success of 10% of eyed burbot embryos could be achieved through extensive rearing and produce fingerlings averaging 9.8 cm in six months. Water temperature did not fall below the upper limit (4 C) until mid-January but was usually maintained between 1-4 C January through February and was acceptable. Snowpack was characterized by a 101% of normal January runoff forecast. Adult burbot were sampled with hoop nets and slat traps. Only three burbot were captured in hoop nets, all at Ambush Rock (rkm 244.5). No burbot were caught in either slat traps or juvenile sampling gear, indicating the population is nearly extirpated. Burbot catch per unit effort in hoop nets was 0.003 fish/net d. Extensive rearing was moved to a smaller private pond and will be reported in the 2008-2009 annual report.

  11. John Day River Subbasin Fish Habitat Enhancement Project, 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1993-05-01

    The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring chinook and summer steelhead within the subbasin through habitat enhancement and access improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in northeast Oregon. It is the goal of this program to preserve and enhance the unique genetic component of the stocks. By attaining this goal we will be able to rebuild fish runs in other Columbia River tributaries in the future, if desired. During 1991, 5 leases were signed adding 5.25 miles of stream to the program. Fence construction included 9.95 miles of riparian fence and 15 livestock water crossings. We constructed 3 log wiers for adult salmon holding, added 280 ft. of new channel, and placed 274 fish habitat boulders, 6 trees and 31 rootwads for juvenile rearing. We constructed 15 stream deflectors and 274 linear feet of bank riprap for streambank stabilization.

  12. Effects of Insecurity on Community Development Projects in Ogba/Egbema/Ndoni and Ahoada East Local Government Areas of Rivers State, Nigeria

    Science.gov (United States)

    Adekola, G.; Enyiche, C. C.

    2017-01-01

    The study examined the effects of insecurity on community development projects in Ogba/Egbema/Ndoni and Ahoada East Local Government Areas of Rivers State, Nigeria. The study was guided by two research questions and one null hypothesis. The study adopted a descriptive survey design with a population of 3,211 members of various Community Based…

  13. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  14. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  15. Feasibility determination of low head hydroelectric power development at existing sites: Mousam River Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The technical and economic feasibility of low head hydroelectric power development at existing sites along the Mousam River in southeastern Maine was studied. The following areas were investigated: determination of available energy; development of restoration concepts; environmental studies; historical and archeological studies; assessment of civil construction requirements; geotechnical and geologic assessment of existing dams; assessment of turbine alternatives; assessment of generator and utility interface alternatives; economic analysis; and restoration concept evaluation and selection. The results of the hydropower evaluation showed that: of the seven sites evaluated, only four can be considered economically feasible for refurbishment at this time; the use of used and/or rebuilt equipment is more economically attractive than new equipment; the cost of equipment at each site was of the same order as the cost of the dam reconstruction; and the cost of fuel prices will be the determining feature of whether the sites should be reconstructed.

  16. Climate, Biofuels and Water: Projections and Sustainability Implications for the Upper Mississippi River Basin

    Science.gov (United States)

    Deb, D.; Tuppad, P.; Daggupati, P.; Srinivasan, R.; Varma, D.

    2014-12-01

    Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider a) how climate change would alter both water supply and demand and, b) in turn, how related changes in water availability will impact the production of biofuel crops and c) the environmental implications of large scale biofuel productions. Since, understanding the role of biofuels in the water cycle is key to understanding many of the environmental impacts of biofuels, the focus of this study is on modeling the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems to explore the impacts of the US biofuel policy and climate change on water and agricultural resources. More specifically, this research will address changes in the water demand and availability, soil erosion and water quality driven by both climate change and biomass feedstock production in the Upper Mississippi River Basin. We used the SWAT (Soil and Water Assessment Tool) hydrologic model to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g. more use of marginal lands, greater residue harvest, increased yields), plus management practices due to biofuel crops to meet the RFS target on water quality and quantity. Results show that even if the Upper Mississippi River Basin is a region of low water stress, it contributes to high nutrient load in Gulf of Mexico through seasonal shifts in streamflow, changes in extreme high and low flow events, changes in loadings and transport of sediments and nutrients due to changes in precipitation patterns and intensity, changes in frequency of occurrence of floods and drought, early melting of snow and ice, increasing

  17. John Day River Subbasin Fish Habitat Enhancement Project, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    2001-01-01

    During 2000, 3 new projects were completed thereby adding 4.6 miles of stream to the program. Protection for these reaches required the construction of 3.2 miles of riparian fence and 1 livestock watering sites. 5,750 pounds of grass and shrub seed were planted for revegetating ground disturbed during construction. Stream temperatures were monitored on the Middle Fork of the John Day. All project fences, watergaps, spring developments and plantings were checked and repairs performed where needed. We now have 70 miles of stream protected using 111 miles of fence.

  18. Technical difficulties and innovation in the Jiangyin Yangtze River crossing project of 3300 m HDD

    Directory of Open Access Journals (Sweden)

    Wu Yiquan

    2014-10-01

    Full Text Available The Jiangyin Yangtze River Crossing Project sets up a record with the length of horizontal directional drilling (HDD of 3300 m in the world. Inevitably, many technical difficulties might exist in pilot hole docking, reaming torque, property requirement and recovery of drilling fluids, and pullback resistance. Accordingly, some innovative measures were taken in each stage. At the pilot hole drilling stage, a reasonable drill tool assembly was chosen, namely, a new type of Ø 193.7 mm (S-135 drill pipe with high-strength was applied along with the fully guided cable and rotating magnate docking technologies. At the reaming stage, an innovative Ø 168.3 mm (V-150 drill pipe was adopted along with the optimized reamers and the improved hydraulic parameters to successfully reduce the reaming torque and significantly improve the reaming efficiency. At the pullback stage, a specific ground anchor was designed for large-tonnage pullback resistance, and drift pipe, super lubricants and novel glass fiber reinforced plastics were combined for protecting the pipeline coating. Finally, the drilling fluid formula was optimally selected to ensure the hole stability and flowback of drilling cuttings, and a centrifugal was used to recycle the drilling mud to ensure its necessary performance. All these measures not only ensured the success of this HDD project, but also broke many records in this respect.

  19. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    Science.gov (United States)

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  20. Wildlife and Wildlife Habitat Loss Assessment Summary at Lookout Point Dam and Reservoir Project, Middle Fork Willamette River, Oregon; 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bedrossian, K.L.; Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Lookout Point Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Seventeen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Lookout Point Project extensively altered or affected 6790 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 724 acres of old-growth conifer forest and 118 acres of riparian habitat. Impacts resulting from the Lookout Point Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, western gray squirrel, red fox, mink, beaver, ruffed grouse, ring-necked pheasant, California quail, spotted owl, and other nongame species. Bald eagle and osprey were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Lookout Point Project. Loses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  1. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    Science.gov (United States)

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  2. Freshwater Mussels in the Lower Ohio River in Relation to the Olmsted Locks and Dam Project: Update Through 2001 Studies

    National Research Council Canada - National Science Library

    Payne, Barry

    2002-01-01

    ... of nonindigenous populations of freshwater bivalves in the lower Ohio River. Data will be used to analyze ecological effects of construction and operation of a new lock and dam at River Mile (RM) 964.4...

  3. Status of Freshwater Mussels in the Lower Ohio River in Relation to the Olmsted Locks and Dam Project: 1999 Studies

    National Research Council Canada - National Science Library

    Payne, Barry

    2001-01-01

    ... of nonindigenous populations of freshwater bivalves in the lower Ohio River (LOR). Data will be used to analyze ecological effects of construction and operation of a new lock and dam at River Mile (RM) 964.4...

  4. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective.

    Science.gov (United States)

    Sjerps, Rosa M A; Ter Laak, Thomas L; Zwolsman, Gertjan J J G

    2017-12-01

    Low river discharges of the rivers Rhine and Meuse are expected to occur more often and more prolonged in a changing climate. During these dry periods the dilution of point sources such as sewage effluents is reduced leading to a decline in chemical water quality. This study projects chemical water quality of the rivers Rhine and Meuse in the year 2050, based on projections of chemical emissions and two climate scenarios: moderate and fast climate change. It focuses on specific compounds known to be relevant to drinking water production, i.e. four pharmaceuticals, a herbicide and its metabolite and an artificial sweetener. Hydrological variability, climate change, and increased emission show a significant influence on the water quality in the Rhine and Meuse. The combined effect of changing future emissions of these compounds and reduced dilution due to climate change has leaded to increasing (peak) concentrations in the river water by a factor of two to four. Current water treatment efficiencies in the Netherlands are not sufficient to reduce these projected concentrations in drinking water produced from surface water below precautionary water target values. If future emissions are not sufficiently reduced or treatment efficiencies are not improved, these compounds will increasingly be found in drinking water, albeit at levels which pose no threat to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Sohl, Terry L.; Young, Claudia

    2013-01-01

    The physical surface of the Earth is in constant change due to climate forcing and human activities. In the Midwestern United States, urban area, farmland, and dedicated energy crop (e.g., switchgrass) cultivation are predicted to expand in the coming decades, which will lead to changes in hydrological processes. This study is designed to (1) project the land use and land cover (LULC) by mid-century using the FORecasting SCEnarios of future land-use (FORE-SCE) model under the A1B greenhouse gas emission scenario (future condition) and (2) assess its potential impacts on the water cycle and water quality against the 2001 baseline condition in the Cedar River Basin using the physically based soil and water assessment tool (SWAT). We compared the baseline LULC (National Land Cover data 2001) and 2050 projection, indicating substantial expansions of urban area and pastureland (including the cultivation of bioenergy crops) and a decrease in rangeland. We then used the above two LULC maps as the input data to drive the SWAT model, keeping other input data (e.g., climate) unchanged to isolate the LULC change impacts. The modeling results indicate that quick-response surface runoff would increase significantly (about 10.5%) due to the projected urban expansion (i.e., increase in impervious areas), and the baseflow would decrease substantially (about 7.3%) because of the reduced infiltration. Although the net effect may cause an increase in water yield, the increased variability may impede its use for public supply. Additionally, the cultivation of bioenergy crops such as switchgrass in the newly added pasture lands may further reduce the soil water content and lead to an increase in nitrogen loading (about 2.5% increase) due to intensified fertilizer application. These study results will be informative to decision makers for sustainable water resource management when facing LULC change and an increasing demand for biofuel production in this area.

  6. Savannah River Plant, Project 8980: Engineering and design history of power and electrical facilities. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This section of the Engineering-and Design History presents a comprehensive account of the planning and extensive evaluation of the problems involved in reaching basic decisions for the design and installation of power facilities at the Savannah River Plant. The problems were complicated by the urgency of Pro. viding early start-up of facilities at a time when critical material shortages were acute, combined with basic requirements for reliable operation and unusual degrees of flexibility to meet a variety of production demands. Part I describes in detail the steam and water facilities, alternative schemes, and other considerations which were evaluated as a prelude to the final design of equipment and facilities. Included are discussions relating to steam boiler installations, electric power generation, diesel engine plants, mater supply for cooling, process and domestic use, and the numerous water treatment procedures employed for specific application. A comprehensive description of the development and design of electric power facilities is presented in Part II of this volume.

  7. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from

  8. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis

    Science.gov (United States)

    Arriana, Brand L.; Stromberg, J.C.; Goodrich, D.C.; Dixon, M.D.; Lansey, K.; Kang, D.; Brookshire, D.S.; Cerasale, D.J.

    2011-01-01

    Groundwater is a key driver of riparian condition on dryland rivers but is in high demand for municipal, industrial, and agricultural uses. Approaches are needed to guide decisions that balance human water needs while conserving riparian ecosystems. We developed a space-for-time substitution model that links groundwater change scenarios implemented within a Decision Support System (DSS) with proportions of floodplain vegetation types and abundances of breeding and migratory birds along the upper San Pedro River, AZ, USA. We investigated nine scenarios ranging from groundwater depletion to recharge. In groundwater decline scenarios, relative proportions of tall-canopied obligate phreatophytes (Populus/Salix, cottonwood/willow) on the floodplain progressively decline, and shrubbier species less dependent on permanent water sources (e.g. Tamarix spp., saltcedar) increase. These scenarios result in broad shifts in the composition of the breeding bird community, with canopy-nesting and water-obligate birds declining but midstory nesting birds increasing in abundance as groundwater declines. For the most extreme draw-down scenario where all reaches undergo groundwater declines, models project that only 10% of the upper San Pedro floodplain would be comprised of cottonwood/willow (73% saltcedar and 18% mesquite), and abundances of canopy-nesting, water-obligate, and spring migrant birds would decline 48%, 72%, and 40%, respectively. Groundwater recharge scenarios were associated with increases in canopy-nesting birds particularly given the extreme recharge scenario (all reaches regain shallow water tables and perennial streamflow). Model outputs serve to assess the sensitivity of biotic groups to potential changes in groundwater and thus to rank scenarios based on their expected ecological impacts. ?? 2010 John Wiley & Sons, Ltd.

  9. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  10. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-14

    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  11. Oceanographic measurements obtained offshore of the Elwha River delta in coordination with the Elwha River Restoration Project, Washington, USA, 2010-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Time-series data of velocity, pressure, turbidity, conductivity, and temperature were collected near the mouth of the Elwha River, Washington, USA, from December...

  12. San Joaquin River Up-Stream DO TMDL Project Task 4: MonitoringStudy Interim Task Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William; Borglin, Sharon; Dahlgren, Randy; Hanlon,Jeremy; Graham, Justin; Burks, Remie; Hutchinson, Kathleen

    2007-03-30

    The purpose of the Dissolved Oxygen Total Maximum Daily LoadProject (DO TMDLProject) is to provide a comprehensive understanding ofthe sources and fate of oxygen consuming materials in the San JoaquinRiver (SJR) watershed between Channel Point and Lander Avenue (upstreamSJR). When completed, this study will provide the stakeholders anunderstanding of the baseline conditions of the basin, provide input foran allocation decision, and provide the stakeholders with a tool formeasuring the impact of any waterquality management program that may beimplemented as part of the DO TMDL process. Previous studies haveidentified algal biomass as the most significant oxygen-demandingsubstance in the DO TMDL Project study-area between of Channel Point andLander Ave onthe SJR. Other oxygen-demanding substances found in theupstream SJR include ammonia and organic carbon from sources other thanalgae. The DO TMDL Project study-area contains municipalities, dairies,wetlands, cattle ranching, irrigated agriculture, and industries thatcould potentially contribute biochemical oxygen demand (BOD) to the SJR.This study is designed to discriminate between algal BOD and othersources of BOD throughout the entire upstream SJR watershed. Algalbiomass is not a conserved substance, but grows and decays in the SJR;hence, characterization of oxygen-demanding substances in the SJR isinherently complicated and requires an integrated effort of extensivemonitoring, scientific study, and modeling. In order to achieve projectobjectives, project activities were divided into a number of Tasks withspecific goals and objectives. In this report, we present the results ofmonitoring and research conducted under Task 4 of the DO TMDL Project.The major objective of Task 4 is to collect sufficient hydrologic (flow)and water quality (WQ) data to characterize the loading of algae, otheroxygen-demanding materials, and nutrients fromindividual tributaries andsub-watersheds of the upstream SJR between Mossdale and

  13. Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Macy, Tom L.; James, Gary A.

    2003-03-01

    The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public outreach was emphasized during this first year of the project. During the past year we concentrated on satisfying landowner needs, providing cost share alternatives, providing joint projects and starting implementation. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and offstream livestock water developments. Under this BPA contract four riparian easements have been signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Some landowners chose NRCS programs for enhancement and others chose OWEB as a funding source. The exact amount of stream protection due to other funding sources probably exceeds that by BPA, however most would not have entered any program without initial Tribal outreach. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin.

  14. Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Macy, Tom L.; James, Gary A.

    2003-03-01

    The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public out reach was emphasized during this first year of the project. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and off-stream livestock water developments. Under this BPA contract four riparian easements were signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Two landowners chose NRCS programs for enhancement and one chose OWEB as a funding source. Two landowners implemented there own enhancement measures protecting 3 miles of stream. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin. We provided input to the John Day Summary prepared for the NWPPC by ODFW. The Tribe worked with the Umatilla National Forest on the Clear Creek Dredgetailings Rehabilitation project and coordinated regularly with USFS Fisheries, Hydrology and Range staff.

  15. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  16. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    Science.gov (United States)

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Beginning in 2005, after decades of planning, the U.S. Army Corps of Engineers (USACE) undertook a major construction effort to reduce the effects of flooding on the city of Roanoke, Virginia—the Roanoke River Flood Reduction Project (RRFRP). Prompted by concerns about the potential for RRFRP construction-induced geomorphological instability and sediment liberation and the detrimental effects these responses could have on the endangered Roanoke logperch (Percina rex), the U.S. Geological Survey (USGS) partnered with the USACE to provide a real-time warning network and a long-term monitoring program to evaluate geomorphological change and sediment transport in the affected river reach. Geomorphological change and suspended-sediment transport are highly interdependent and cumulatively provide a detailed understanding of the sedimentary response, or lack thereof, of the Roanoke River to construction of the RRFRP.

  17. Projects to expand energy sources in the western states: an update of Information Circular 8719. [24 states west of the Mississippi River

    Energy Technology Data Exchange (ETDEWEB)

    Rich, C.H. Jr.

    1977-01-01

    This report is an expansion and update of BM-IC-8719 and comprises maps and tables listing the name, location, and other pertinent data concerning certain fuel-related projects. The maps show the locations of the planned or proposed facilities. The tables include information on projects involving the proposed or planned development of fuel resources, as well as the development of storage, transportation, and conversion facilities. The report covers the 24 states west of the Mississippi River including Alaska and Hawaii. Of the 808 projects for which information is provided, 219 concern coal mines, 246 concern electric generating plants, and 115 concern uranium mines; Energy Supply and Environmental Coordination Act coal conversion notices are also included. Because of the dynamic nature of the energy industry, many uncertainties exist and some of the listed projects may never become realities. Also, no attempt has been made to determine the degree of certainty or viability of each project.

  18. Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

    1996-11-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

  19. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  20. Projected evolution of California's San Francisco bay-delta-river system in a century of climate change

    Science.gov (United States)

    Cloern, J.E.; Knowles, N.; Brown, L.R.; Cayan, D.; Dettinger, M.D.; Morgan, T.L.; Schoellhamer, D.H.; Stacey, M.T.; van der Wegen, M.; Wagner, R.W.; Jassby, A.D.

    2011-01-01

    Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  1. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    Science.gov (United States)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%–72% in terms of potential fatalities and 28%–42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C–2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to

  2. Projected evolution of California's San Francisco Bay-Delta-river system in a century of climate change.

    Directory of Open Access Journals (Sweden)

    James E Cloern

    Full Text Available BACKGROUND: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. METHODOLOGY/PRINCIPAL FINDINGS: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. CONCLUSIONS/SIGNIFICANCE: Most of these environmental indicators change substantially over the 21(st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1 an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2 varying sensitivity among environmental indicators to the uncertainty of future climates; (3 inevitability of

  3. Projected evolution of California's San Francisco Bay-Delta-river system in a century of climate change.

    Science.gov (United States)

    Cloern, James E; Knowles, Noah; Brown, Larry R; Cayan, Daniel; Dettinger, Michael D; Morgan, Tara L; Schoellhamer, David H; Stacey, Mark T; van der Wegen, Mick; Wagner, R Wayne; Jassby, Alan D

    2011-01-01

    Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Most of these environmental indicators change substantially over the 21(st) century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community changes as responses to cumulative effects of climate change and other

  4. Projected evolution of California's San Francisco Bay-Delta-River System in a century of continuing climate change

    Science.gov (United States)

    Cloern, James E.; Knowles, Noah; Brown, Larry R.; Cayan, Daniel; Dettinger, Michael D.; Morgan, Tara L.; Schoellhamer, David H.; Stacey, Mark T.; van der Wegen, Mick; Wagner, R. Wayne; Jassby, Alan D.

    2011-01-01

    Background Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  5. Projecting future grassland productivity to assess thesustainability of potential biofuel feedstock areas in theGreater Platte River Basin

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phuyal, Khem P.

    2014-01-01

    This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.

  6. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    Energy Technology Data Exchange (ETDEWEB)

    SHOOP, D.S.

    1999-09-10

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  7. Field Review of Fish Habitat Improvement Projects in the Grande Ronde and John Day River Basins of Eastern Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Beschta, Robert L.; Platts, William S.; Kauffman, J. Boone

    1991-10-01

    The restoration of vegetation adapted to riparian environments and the natural succession of riparian plant communities is necessary to recreate sustainable salmonid habitat and should be the focal point for fish habitat improvement programs. In mid-August of 1991, a field review of 16 Salmon habitat improvement sites in the Grande Ronde and John Day River Basins in Eastern Oregon was undertaken. The review team visited various types of fish habitat improvements associated with a wide range of reach types, geology, channel gradients, stream sizes, and vegetation communities. Enhancement objectives, limiting factors, landuse history, and other factors were discussed at each site. This information, in conjunction with the reviewer's field inspection of portions of a particular habitat improvement project, provided the basis for the following report. This report that follows is divided into four sections: (1) Recommendations, (2) Objectives, (3) Discussion and Conclusions, and (4) Site Comments. The first section represents a synthesis of major recommendations that were developed during this review. The remaining sections provide more detailed information and comments related to specific aspects of the field review.

  8. Design criteria applied for the Lower Pressure Tunnel of the North Fork Stanislaus River Hydroelectric Project in California

    Science.gov (United States)

    Schleiss, A.

    1988-07-01

    The application of various criteria and certain new approaches to design is illustrated by the example of the Lower Collierville Pressure Tunnel of the North Fork Stanislaus River Hydropower Project in California. With a maximum internal water pressure of 72 bar, Lower Collierville Tunnel will be, when commissioned in 1989, the highest stressed pressure tunnel in the world not situated in granitic rocks. The geological conditions and the results of the geotechnical investigations are described briefly. For the steel-lined portion of the tunnel, the approach for determining the bearing capacity of the rock mass and the load sharing between steel and rock is discussed. The required length of steel liner was determined on the basis of rock mechanical (hydraulic jacking) and rock hydraulic (seepage losses and extension of saturated zone due to seepage) criteria. The use of a new theory allows the effects of mechanical-hydraulic interaction to be taken into account. Finally the methods of estimating the expected water losses and the sealing effect of the consolidation grouting are described.

  9. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2017-11-08

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  10. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  11. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River

    Science.gov (United States)

    Wang, Yonggui; Zhang, Wanshun; Zhao, Yanxin; Peng, Hong; Shi, Yingyuan

    2016-10-01

    The effects of inter-basin water diversion projects and cascade reservoirs are typically complex and challenging, as the uncertain temporal-spatial variation of both water quality and quantity. The purpose of this paper is to propose a coupled 1D hydrodynamic model with water-quality model to analyze the effects of current and future inter-basin water diversion projects, i.e., South-to-North Water Diversion Project (SNWD) and Yangtze-Hanjiang Water Diversion Project (YHWD), and cascade reservoirs (CRS) on water quantity and quality in the middle-lower Hanjiang River. Considering water use and pollution contribution, the middle-lower Hanjaing River basin is generalized and divided into 18 land use units with tributaries, reservoirs and water exchanges. Each unit is considered with the processes of lateral inflow, point and non-point pollution loads, irrigation return flow, and stream-aquifer exchanges in the model. The long-term time series from 1956 to 1998 of water quality and quantity with four engineering scenarios is collected. The validation of results shows that the relative errors between the simulated and observed values at certain control sections are within 5% for water levels and 20% for water quality. The water level will be decreased by 0.38-0.65 m (decreasing rate 0.44-2.68%), the annual runoff will be significantly decreased over 4 billion m3 and the water quality will be changed after the SNWD. As a compensation project, the YHWD partly offsets the negative effects of the SNWD in water flow rate, but at the same time it rises the water level and reduces the flow velocity. This, together with the effect of cascade reservoirs, leads to water quality concentration increasing and deteriorating to Grade IV of the Chinese Surface Water Quality Criteria. The water resource reduction and water quality problems in the Middle-lower Hanjiang River require attention after these projects.

  12. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack

  13. Hole-in-the-Rock Backwater Excavation Missouri River Fish and Wildlife Mitigation Project, Thurston County, Nebraska, Missouri River Mile 706

    Science.gov (United States)

    2013-04-01

    migration to sturgeons with emphasis on lake sturgeon. Canadian Journal of Fisheries and Aquatic Sciences . 53(1): 152-160. Bramblett, R. G. and R.G...Midwestern Stream Habitat Symposium, River and Streams Technical Committee, North-Central Division, American Fisheries Society, Minneapolis, MN. pp. 1-12...Section Planning Branch, CENWO-PM-AC 1616 Capitol Avenue Omaha, Nebraska 68102-4901 Report Documentation Page Form ApprovedOMB No. 0704-0188

  14. Pool 5 Channel Management Study. Mississippi River 9-Foot Channel Project, Channel Management Program. Definite Project Report/Environmental Assessment. Pool 5, Upper Mississippi River, Buffalo County, Wisconsin and Wabasha and Winona Counties, Minnesota

    National Research Council Canada - National Science Library

    1999-01-01

    ... 738.2 upstream to Lock and Dam no. 4 at river mile 752.8. Study efforts focused on measures to reduce the frequency of dredging problem areas, preventive maintenance, and using dredged material to construct islands habitat purposes...

  15. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Alan; Soupir, Jim (US Forest Service, Prairie City Ranger District, Prairie City, OR); Schwabe, Lawrence (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2003-08-01

    The Malheur River is a 306-kilometer tributary to the Snake River, which drains 12,950 square kilometers. The Malheur River originates in the Blue Mountains and flows into the Snake River near Ontario, Oregon. The climate of the basin is characterized by hot dry summers, occasionally exceeding 38 C, and cold winters that may drop below -29 C. Average annual precipitation is 30 centimeters in the lower reaches. Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2002. Bull trout Salvelinus confluentus are considered to be cold water species and are temperature-dependant. Due to the interest of bull trout from various state and Federal agencies, a workgroup was formed to develop project objectives related to bull trout. Table 1 lists individuals that participated in the 2002 work group. This report will reflect work completed during the Bonneville Power Administration contract period starting April 1, 2002, and ending March 31, 2003. All tasks were conducted within this timeframe, and a more detailed timeframe may be referred to in each individual report.

  16. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2001-08-01

    The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The

  17. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Regions of Oil and Gas Potential

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Regions of high or low potential for oil and gas resources in the Powder River Basin generally indicate where continuous oil and gas resources are more or less...

  18. Change characteristics of DSi and nutrition structure at the Yangtze River Estuary after Three Gorges Project impounding and their ecological effect

    Directory of Open Access Journals (Sweden)

    Li Lei

    2017-06-01

    Full Text Available The variation law of dissolved silica (DSi, dissolved inorganic nitrogen (DIN, dissolved inorganic phosphorus (DIP and nutrition structure after the Three Gorges Project (TGP impounding as well as their ecological effect were analyzed according to monitoring survey of the Yangtze River Estuary in spring (May and summer (August from 2004-2009. The results showed that after impounding, DSi and DIN concentration decreased and increased, respectively. During the study period, DSi decreased by about 63%, while DIN almost tripled. DIP concentration fluctuated slightly. With respect to nutrition structure, N:P increased, whereas Si:P and Si:N declined. According to chemometry standard of nutrient limits, nutrition structure tended to be imbalanced and the limiting factor of phytoplankton growth (P was studied. Changes of nutrition structure have largely decreased diatom and caused different composition of dominant phytoplankton species. This may change ecosystem structure of the Yangtze River Estuary.

  19. Factors hindering the development of small-scale municipal hydropower: a case study of the Black River project in Springfield, Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.; Berger, G.; Amlin, J.; Meadows, D.

    1979-03-01

    There are many good reasons to use New England's small-scale hydropower resources to generate electricity. But current production capacity in the three northern states is only 1300 MW, just 35% of the 3710 MW estimated to be available to the states. Though the benefits of properly designed projects seem substantial, many factors combine to hinder their development. The Black River project in Springfield, Vermont, exemplifies the problem. Even after the two has invested over five years and $1 million in its effort to develop 30 MW of capacity, it still has not received either federal or state approval to proceed with construction. The first 4 years of the Springfield experience are described and factors that have greatly increased the cost and planning time for the project are identified. The purpose is to identify changes that could facilitate efforts to develop small-scale hydropower at other acceptable sites. On the basis of this experience it is recommended that: after issuance of a FERC permit, a preliminary determination of the project's impacts should be made by FERC officials; if environmental impacts are solely local or limited, environmental analysis/determination should be placed in the hands of the state; short-form licensing should be used for all run-of-river hydro projects that utilize and do not significantly modify existing water impoundment areas and do not significantly alter downstream flow patterns; and a hydro ombudsman with power at the state level should be established to facilitate governmental inter-agency coordination and project-related information transfer: one-stop licensing. (LCL)

  20. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers - Case study from two river restoration projects in the German lower mountain range

    Science.gov (United States)

    Groll, M.

    2017-09-01

    Intensive use of European rivers during the last hundreds of years has led to profound changes in the physicochemical properties, river morphology, and aquatic faunistic communities. Rectifying these changes and improving the ecological state of all surface water bodies is the central aim of the European Water Frame Directive (WFD), and river restoration measures are the main tool to achieve this goal for many rivers. As the cost-effectiveness of all measures is crucial to the WFD implementation, the approach of the passive river restoration has become very popular over the last decades. But while costs of this approach are minimal, not much is known about the long-term effectiveness of passive river restorations. The research presented here provides essential and in-depth data about the effects of two such restoration measures on the riverbed morphology of a large river of the lower mountain region in Germany (type 9.2). More than 3200 data sets were acquired using the TRiSHa method (Typology of Riverbed Structures and Habitats). The results show a high spatial and temporal diversity and dynamic for all analyzed hydromorphologic parameters - ranging from riverbed sediments, organic structures like dead wood or macrophytes, to the distribution of 32 microhabitat types. The structures and their dynamic depend on the character of the study area (free-flowing or impounded), the location of the study sites within the research area (main channel or restored side channel), and on the occurrence of major flood events (the mapping and sampling were conducted annually from 2006 to 2008 with a 50-year flood event occurring in early 2007). These results show the potential of the passive restoration approach for creating morphologically diverse riverbeds, as habitat diversity and the spatial heterogeneity of the riverbed substrates increased significantly (e.g., more than 40% of all habitat types were only detected in the newly restored side channels). But the results also

  1. Assessing potential impacts of climate change on hydropower generation of three reservoirs in the Tagus River Basin under ensemble of climate projections

    Science.gov (United States)

    Lobanova, Anastasia; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2015-04-01

    The Tagus River basin is an important strategic water and energy source for Portugal and Spain. With an extensive network of 40 reservoirs with more than 15 hm3 capacity and numerous abstraction channels it is ensuring water supply for domestic and industrial usage, irrigation and hydropower production in Spain and Portugal. Growing electricity and water supply demands, over-regulation and construction of new dams, and large inter-basin water transfers aggravated by strong natural variability of climate and aridity of the catchment have already imposed significant pressures on the river. The substantial reduction of discharge, dropping during some months to zero in some parts of the catchment, is observed already now, and projected climatic change is expected to alter the water budget of the catchment further. As the water inflow is a fundamental defining factor in a reservoir operation and hydropower production, the latter are highly sensitive to shifts in water balance of the catchment, and hence to changes in climate. In this study we aim to investigate the effects of projected climate change on water inflows and hydropower generation of the three large reservoirs in the Tagus River Basin, and by that to assess their ability to cover electricity power demands and provide water supply under changed conditions, assuming present management strategies; hydropower and abstraction demands. The catchment scale, process-based eco-hydrological model SWIM was set up, calibrated and validated up to the Santarem gauge at the Tagus outlet, with the implementation of a reservoir module. The reservoir module is able to represent three reservoir operation management options, simulate water abstraction and provide rates of generated hydropower. In total, fifteen largest reservoirs in the Tagus River Basin were included in the model, calibrated and validated against observed inflow, stored water and outflow water volumes. The future climate projections were selected from the

  2. Management of invasive plant species in the valley of the River Ślepiotka in Katowice – the example of the REURIS project

    Directory of Open Access Journals (Sweden)

    Frelich Małgorzata

    2014-06-01

    Full Text Available In recent years, programmes aimed at improving environmental conditions in river valleys within urban spaces have been initiated in many of the European Community countries. An example is the project “Revitalization of Urban River Spaces – REURIS” which was implemented in 2009-2012. Its main aim was to revitalize a part of the valley of the River Ślepiotka in Katowice. One of the tasks of the project was a comprehensive treatment to combat invasive plant species occurring in this area, carried out by using a combination of chemical and mechanical methods. Chemical treatment involved the application of herbicide mixtures, and mechanical treatment included, among others, mowing and/or removal of the undesirable plants. The work focused primarily on reducing the spread of two species of the Impatiens genus: I. glandulifera and I. parviflora, and the species Padus serotina, Reynoutria japonica and Solidago canadensis. Currently, the maintenance works on this section of the river are performed by the Urban Greenery Department in Katowice, which continues the elimination of invasive plants, according to the objectives of the REURIS program. In 2012 the Department of Botany and Nature Protection at the Faculty of Biology and Environmental Protection started to monitor the implementation and the effects of the implemented actions for elimination and participated in the action of removal of selected invasive plant species: Impatiens parviflora and Reynoutria japonica within specific areas. These actions led to a reduction in the area occupied by invasive plants and a weakening of their growth rate and ability to reproduce.

  3. Simulated changes in salinity in the York and Chickahominy Rivers from projected sea-level rise in Chesapeake Bay

    Science.gov (United States)

    Rice, Karen C.; Bennett, Mark; Shen, Jian

    2011-01-01

    As a result of climate change and variability, sea level is rising throughout the world, but the rate along the east coast of the United States is higher than the global mean rate. The U.S. Geological Survey, in cooperation with the City of Newport News, Virginia, conducted a study to evaluate the effects of possible future sea-level rise on the salinity front in two tributaries to Chesapeake Bay, the York River, and the Chickahominy/James River estuaries. Numerical modeling was used to represent sea-level rise and the resulting hydrologic effects. Estuarine models for the two tributaries were developed and model simulations were made by use of the Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D), developed by the Virginia Institute of Marine Science. HEM-3D was used to simulate tides, tidal currents, and salinity for Chesapeake Bay, the York River and the Chickahominy/James River. The three sea-level rise scenarios that were evaluated showed an increase of 30, 50, and 100 centimeters (cm). Model results for both estuaries indicated that high freshwater river flow was effective in pushing the salinity back toward Chesapeake Bay. Model results indicated that increases in mean salinity will greatly alter the existing water-quality gradients between brackish water and freshwater. This will be particularly important for the freshwater part of the Chickahominy River, where a drinking-water-supply intake for the City of Newport News is located. Significant changes in the salinity gradients for the York River and Chickahominy/James River estuaries were predicted for the three sea-level rise scenarios. When a 50-cm sea-level rise scenario on the York River during a typical year (2005) was used, the model simulation showed a salinity of 15 parts per thousand (ppt) at river kilometer (km) 39. During a dry year (2002), the same salinity (15 ppt) was simulated at river km 45, which means that saltwater was shown to migrate 6 km farther upstream during a dry year

  4. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second

  5. Hazardous Material / Waste Site Assessment: US 701 Bridge Replacement Project Over the Great Pee Dee River, Pee Dee River Overflow, and Lake Yauhannah Horry & Georgetown Counties, South Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This record is an unpublished report evaluating the hazardous material / waste management impacts of a future bridge replacement project on highway 701 at Yauhannah...

  6. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  7. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may

  8. Analysis of snow-glacial historical and projected flows in Olivares river basin. Comparison between DHSVM and WEAP models.

    Science.gov (United States)

    Cepeda, Javier; Vargas, Ximena

    2017-04-01

    In the Andes Mountains, in central Chile, glaciers are a key element to both environment and economy, since they contribute highly to streamflow during the summer season. Many studies have been performed in order to understand the actual contribution of glacial-based streamflow and the expected response of glaciers to climatological alterations such as climate change. This work studies and analyses the historical and future streamflow on the Olivares river basin, located close to Chile's capital city, Santiago, under climatic change scenario RCP8.5. For this, we use two hydrological models with different topology, to have more consistency in the results, and analysing the differences because of the conceptualization of the processes and its spatial scale. DHSVM is a distributed, physically based model, while WEAP is a semi-distributed model that represents some processes conceptually and others physically based. Both models are calibrated considering streamflow and snow cover data from the period 2001-2012 at a daily scale. Additionally, comparisons between the modelled glacier area variations and LANDSAT images are performed to strengthen the calibration process. Climate change projections are obtained from five Global Circulation Models (GCM) under RCP8.5 scenario. Changes in glacier area, volume and glacial streamflow contribution to basin discharge are analysed, comparing two future time lapses, near-future period (2015-2044) and far-future (2045-2074), to a baseline period (1985-2004). The basin has an area of 543 km2, with elevations ranging from 1,528 to 6,024 m.a.s.l. and an important glacier presence. According to the National Glacier Cadastre developed by Chile Water Authority (DGA) in 2012, there are 80 uncovered glaciers within the basin, the most important being Juncal Sur, Olivares Alfa, Beta and Gamma. Glacier area represented 17% of the basin in 1985, while they made up only to 11% in 2015.The glaciers are located at altitudes ranging from 3,500 to

  9. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  10. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  11. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  12. Multiple-Purpose Project, Little Blue River Basin, Little Blue River, Missouri: Longview Lake Operation and Maintenance Manual. Appendix 5. Embankment Criteria and Performance Report

    Science.gov (United States)

    1990-11-01

    ZONE STAGE II RECORD CONTROL COMPACTION TESTS RBL-3-1563 VXiii PE TINENT DATA GENERAL Location of Dam One mile south of 1-470 and 1/2 mile east of...bo ~ ~I~o~~ 00 fA/m Ao- . tcv4Vyo,~~. I orfrIKS -M Noe 5;_c -tl ~ ae16 ~ -- ilon i oaato asrq pe h #" .y of 5)iie wortAAl w ..lef &"A hrm teY...CHNE $ACKFLL rnar~ne ..9- 1 ecm% 4 pekO ! Dit I- Apc’n f h th’sSd *,-,,,~~~~~~~~~~~~~~~~~~ bml,(b xcivi0 imba Ok4,’’r nese7lpc/~ cb RIVER#C

  13. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...... policy making, decision drivers and framing of large hydropower projects in China. Hydropower is a complex and interesting field to explore as the consequences go beyond the immediate locality and interacts with local as well as the global contexts. Inspired by Tsing (2003) and Zhan (2008) the paper...... and natural scientists and Chinese hydropower companies (to name a few). The paper maps different actors’ framing of the issue to gain a deeper understanding of the complexities of hydropower policymaking in China, as well as map the local consequences of global policymaking about large hydropower...

  14. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    Energy Technology Data Exchange (ETDEWEB)

    Feist, E.T. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

    2012-07-01

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River

  15. Analysis and projections of climate change impacts on flood risks in the Dniester river basin based on the ENSEMBLES RCM data

    Science.gov (United States)

    Krakovska, S.; Balabukh, V.; Palamarchuk, L.; Djukel, G.; Gnatiuk, N.

    2012-04-01

    The pilot project "Reducing vulnerability to extreme floods and climate change in the Dniester river basin" started in May 2010 in the frame of the Dniester-III project which is implemented by OSCE, UNECE and UNEP in close collaboration with authorities and NGOs from Moldova and Ukraine. The project is a part of the Environment and Security initiative (ENVSEC) and aims to reduce risks from climate change - and specifically flooding - for security by improving the adaptive capacity of Ukraine and the Republic of Moldova, taking into account both current climate variability and long-term impacts of climate change on flood risks (http://www1.unece.org/ehlm/platform/display/ClimateChange/Dniester). The Dniester is a river in Eastern Europe, one of the largest rivers of the Carpathians. The Dniester flows from northwest to southeast on the territory of Ukraine, Moldova and Transdniestria. The length of the Dniester is 1352 km with basin area of 72100 km2. The river starts in the Carpathian Mountains at an altitude of 900 m above the sea level and flows into the Dniester estuary, which is connected to the Black Sea. In order to reduce impacts from extreme floods in the Dniester river basin under transient climate conditions the first task of the project was to assess the recent climate changes and particularly extreme precipitation events. For this purpose database of the specially worked out system with inputs from observational data from 1980 up to now of all stations within the Dniester basin was applied. Retrospective analysis of severe hydrometeorological events has revealed that more than 30% of precipitation at warm half of the year are heavy and very heavy rains. And input of such extreme precipitation to annual sum increased during last 30 year by about 7% per decade in the region. Possible reason for this is an intensification of convection in bottom 5km layer of the troposphere which is observed from the middle 90th of the 20th century. During this period an

  16. Souris River Basin Project. Saskatchewan, Canada - North Dakota, U.S.A. General Plan Report and Draft Environmental Impact Statement.

    Science.gov (United States)

    1987-11-01

    water as it enters the United States. Appendix 9 contains North Dakota water quality standards for the Souris River and an analysis of ambient water...conducted ueadr the amebe tty of the Meritage Nesesrees legislacion of Saskatchewan. 4rcbeolotical work directly associated with the flood control

  17. Sacramento River Flood Control Project, California, Mid-Valley Area, Phase III. Design Memorandum, Volume 2 of 2

    Science.gov (United States)

    1995-08-01

    Passer domesticus Western meadowlark Sturnella neglecta Yellow-headed blackbird Xanthocephalus xanthocephalus Red-winged blackbird Agelaius phoeniceus Tri...of the Central Valley salmon population spawns in this system (USFWS 1990). Four genetically distinct species of chinooks presently use the river

  18. Salinity Changes in a Tidal River. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 308. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    The materials in this packet are designed to aid teachers in the implementation of a science field studies unit concerning tidal rivers. The packet consists of the following: (1) background material for the teacher; (2) lab exercises; (3) field activities; and (4) classroom activities. The overall purpose of this packet is to provide information…

  19. Projected ground-water development, ground-water levels, and stream-aquifer leakage in the South Fork Solomon River Valley between Webster Reservoir and Waconda Lake, north-central Kansas, 1979-2020

    Science.gov (United States)

    Kume, Jack; Lindgren, R.J.; Stullken, L.E.

    1985-01-01

    A two-dimensional finite difference computer model was used to project changes in the potentiometric surface, saturated thickness, and stream aquifer leakage in an alluvial aquifer resulting from four instances of projected groundwater development. The alluvial aquifer occurs in the South Fork Solomon River valley between Webster Reservoir and Waconda Lake in north-central Kansas. In the first two projections, pumpage for irrigation was held constant at 1978 rates throughout the projection period (1979-2020). In the second two projections, the 1978 pumpage was progressively increased each yr through 2020. In the second and fourth projections, surface water diversions in the Osborne Irrigation Canal were decreased by 50 %. For the third and fourth projections, each grid-block in the modeled area was classified initially as one of six types according to whether it represented irrigable or nonirrigable land, to its saturated thickness, to its location inside or outside the canal-river area, and to its pumping rate. The projected base-flow rates (leakage from the aquifer to the river) were lower during the irrigation season (June, July, and August) than during the other months of the yr because of the decline in hydraulic head produced by groundwater pumpage. Stream depletion, calculated as a decrease below the average (1970-78) estimated winter base-flow rate of 16.5 cu ft/sec, varied inversely with base flow. For the first two projections, a constant annual cycle of well pumpage and recharge was used throughout the projection period. Aquifer leakage to the river was nearly constant by the mid-to-late 1990's, implying that flow conditions had attained a stabilized annual cycle. The third and fourth projections never attained an annual stabilized cycle because the irrigation pumpage rate was increased each year. By the early 1980's, the hydraulic head had fallen below river stage, reversing the hydraulic gradient at the stream-aquifer interface and resulting in net

  20. Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Sassaman, K.E.; Gillam, J.C.

    1993-08-01

    Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

  1. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  2. FURTHER STUDIES ON UNCERTAINTY, CONFOUNDING, AND VALIDATION OF THE DOSES IN THE TECHA RIVER DOSIMETRY SYSTEM: Concluding Progress Report on the Second Phase of Project 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    This is the concluding Progress Report for Project 1.1 of the U.S./Russia Joint Coordinating Committee on Radiation Effects Research (JCCRER). An overwhelming majority of our work this period has been to complete our primary obligation of providing a new version of the Techa River Dosimetry System (TRDS), which we call TRDS-2009D; the D denotes deterministic. This system provides estimates of individual doses to members of the Extended Techa River Cohort (ETRC) and post-natal doses to members of the Techa River Offspring Cohort (TROC). The latter doses were calculated with use of the TRDS-2009D. The doses for the members of the ETRC have been made available to the American and Russian epidemiologists in September for their studies in deriving radiogenic risk factors. Doses for members of the TROC are being provided to European and Russian epidemiologists, as partial input for studies of risk in this population. Two of our original goals for the completion of this nine-year phase of Project 1.1 were not completed. These are completion of TRDS-2009MC, which was to be a Monte Carlo version of TRDS-2009 that could be used for more explicit analysis of the impact of uncertainty in doses on uncertainty in radiogenic risk factors. The second incomplete goal was to be the provision of household specific external doses (rather than village average). This task was far along, but had to be delayed due to the lead investigator’s work on consideration of a revised source term.

  3. Geology, Surficial, Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, and shallow aquifers and confining units; Excel spread sheet with core names, coordinates, and data co, Published in 2006, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2006. Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize...

  4. Geology, Surficial, Neuse River Basin Mapping Project Surficial Geology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, shallow aquifers and confining units; shape file with surficial geology interpreted from LI, Published in 2007, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2007. Neuse River Basin Mapping Project Surficial Geology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to...

  5. Geology, Surficial, Neuse River Basin Mapping Project Geomorphology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, and shallow aquifers and confining units; shape file with geomorphic map units interpreted from, Published in 2007, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2007. Neuse River Basin Mapping Project Geomorphology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to...

  6. A Projection of Changes in Landfilling Atmospheric River Frequency and Extreme Precipitation over Western North America from the Large Ensemble CESM Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hagos, Samson M.; Leung, Lai-Yung R.; Yoon, Jin-Ho; Lu, Jian; Gao, Yang

    2016-02-06

    Simulations from the Community Earth System Model Large Ensemble project are analyzed to investigate the impact of global warming on atmospheric rivers (ARs). The model has notable biases in simulating the subtropical jet position and the relationship between extreme precipitation and moisture transport. After accounting for these biases, the model projects an ensemble mean increase of 35% in the number of landfalling AR days between the last twenty years of the 20th and 21st centuries. However, the number of AR associated extreme precipitation days increases only by 28% because the moisture transport required to produce extreme precipitation also increases with warming. Internal variability introduces an uncertainty of ±8% and ±7% in the projected changes in AR days and associated extreme precipitation days. In contrast, accountings for model biases only change the projected changes by about 1%. The significantly larger mean changes compared to internal variability and to the effects of model biases highlight the robustness of AR responses to global warming.

  7. A Europe-wide system for assessing the quality of rivers using macroinvertebrates: the AQEM Project* and its importance for southern Europe (with special emphasis on Italy

    Directory of Open Access Journals (Sweden)

    Joanna L. KEMP

    2001-09-01

    Full Text Available The AQEM Project aims to develop a Europe-wide system for monitoring the ecological quality of rivers using macroinvertebrates, to satisfy the requirements of the EU Water Framework Directive. Three main types of anthropogenic perturbation are being investigated: morphological degradation, water (organic pollution and acidification (the last is not under investigation in Italy. The selection of reference and impaired study sites is discussed. Particular attention is paid to the problems encountered when defining reference conditions. The initial stages of the project highlighted the lack of a Europe-wide definition of river types. The future development of such a typology from the AQEM database is discussed. The standard AQEM data gathering methods are presented, from background information about sites to the microhabitat-based macroinvertebrate sampling method. The extended fieldwork methods used in Italy are described. These included the separate analysis of the invertebrate assemblages from each replicate, the recording of additional microhabitat variables for each replicate and the completion of large-scale survey techniques for each site (including RHS. The extended method was designed to enhance the important ecological information available from the dataset, particularly relevant in Italy where significant gaps exist in the taxonomic and ecological knowledge of many macroinvertebrate taxa. Preliminary and expected findings are presented, including examples of the range and habitat selection of two species of Ephemeroptera endemic to Italy, as well as data relating to the number of taxa found at a site with increasing numbers of microhabitat replicates taken. The importance of the AQEM Project not only for biomonitoring, but also for ecology, taxonomy and conservation, in Italy and for the south of Europe in general, is emphasised.

  8. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  9. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Science.gov (United States)

    2011-11-14

    ... restore * * * coastal wetlands * * * to benefit the native fish, wildlife, and plant species supported... restoration is being provided by the Poseidon Resources Carlsbad Desalination Project, in order to implement... requirement for the desalination project. On November 15, 2007, the California Coastal Commission approved a...

  10. ALWAYS A RIVER - SUPPLEMENTAL ENVIRONMENTAL EDUCATION CURRICULUM ON THE OHIO RIVER AND WATER GRADES K - 12

    Science.gov (United States)

    This curriculum was developed as a significant component of the project, Always a River: The Ohio River and the American Experience, a six-state collaboration devoted to exploring the historical and cultural development of the Ohio River. The Always a River project is being joint...

  11. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

    Science.gov (United States)

    Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.

    2017-10-01

    An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins

  12. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, James S.; Baxter, Jeremy

    2001-02-01

    An enumeration fence and traps were installed on Skookumchuck Creek from September 7 th to October 16 th to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 252 bull trout were sampled through the enumeration fence. Length, weight, and sex were determined for all but one of the 252 bull trout captured. In total, one fish of undetermined sex, 63 males and 188 females were processed through the fence. A total of 67 bull trout were observed on a snorkel survey prior to the fence being removed on October 16 th . Coupled with the fence count, the total bull trout count during this project was 319 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout, Rocky Mountain whitefish, kokanee, sucker, and Eastern brook trout. Redds were observed during ground surveys in three different locations (river km 27.5- 28.5, km 29-30, and km 24-25). The largest concentration of redds were noted in the upper two sections which have served as the index sections over the past four years. A total of 197 bull trout redds were enumerated on the ground on October 4 th . The majority of redds (n=189) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past four years. The additional 8 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Skookumchuck Creek at km 39.5, and Skookumchuck Creek at the fence site suggested that water temperatures were within the range preferred by bull trout for spawning, egg incubation, and rearing.

  13. An Induced Infiltration and Groundwater Transfer Project to Enhance Recharge in the Lower Mississippi River Valley Alluvial Aquifer: Modeling and Analysis

    Science.gov (United States)

    Rigby, J.; Haugh, C. J.; Barlow, J.

    2015-12-01

    The Lower Mississippi River Basin is one of the major agricultural production regions in the United States producing over two-thirds of the rice, nearly half of sugarcane produced in the U.S., as well as significant amounts of soybeans, corn, and cotton. While the region experiences over 50 inches of precipitation annually, reaching yield potential for crops requires irrigation. Approximately 75% of crop acres in the alluvial valley are irrigated, and the expectation is that all acreage will eventually be irrigated. Currently over 90% of water for crop irrigation is derived from the shallow alluvial aquifer outpacing net recharge by several million acre-feet per year. This has resulted in severe groundwater declines in Arkansas and an increasingly threatening situation in northwestern Mississippi. In Mississippi, direct injection has received increasing attention as a means of artificial recharge, though water quality remains a concern both for the integrity of the aquifer and efficiency of injection. This project considers the use of pumping wells near major rivers known to be in connection with the aquifer to induce additional infiltration of surface water by steepening local gradients. The pumped water would be transferred by pipeline to areas within the regional cone of depression where it is then injected to enhance groundwater recharge. Groundwater flow modeling with zone budget analysis is used to evaluate the potential for net supply gains from induced infiltration at potential sites along major rivers in the region. The groundwater model will further evaluate the impact of the transfer and direct injection on regional water tables.

  14. Finding of no significant impact for the tritium facility modernization and consolidation project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1222) for the proposed modernization and consolidation of the existing tritium facilities at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issueing this Finding of No Significant Impact (FONSI).

  15. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-09-27

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  16. 78 FR 59231 - Regulated Navigation Area-Tappan Zee Bridge Construction Project, Hudson River; South Nyack and...

    Science.gov (United States)

    2013-09-26

    ...The Coast Guard is establishing a regulated navigation area (RNA) on the navigable waters of the Hudson River surrounding the Tappan Zee Bridge. This temporary interim rule allows the Coast Guard to enforce speed and wake restrictions and prohibit all vessel traffic through the RNA during bridge replacement operations, both planned and unforeseen, that could pose an imminent hazard to persons and vessels operating in the area. This rule is necessary to provide for the safety of life in the regulated area during the construction of the bridge.

  17. The Carmans River Story

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In this study, undertaken as an independent project at Bellport High School, the authors have attempted to provide a historical description of the Carmans River area...

  18. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01

    In 1999 the Cle Elem Hatchery began releasing spring chinook smolts into the upper Yakima River for restoration and supplementation. This project was designed to evaluate whether introduction of intensively reared hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakima River during 1998, 2000 and 2001 and 130 smolts were collected in 2002 for monitoring for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition the fish were tested for Ceratomyxa shasta spores in 2000 and 2001 (a correction from the 2001 report). To date, the only changes have been in the levels the bacterial pathogens in the naturally produced smolts and they have been minimal. These changes are attributed to normal fluctuation of prevalence.

  19. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis (Oncorh Consulting, Olympia, WA)

    2004-05-01

    This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and March 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.

  20. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    Science.gov (United States)

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  1. Science-Based IWRM Implementation in a Data-Scarce Central Asian Region: Experiences from a Research and Development Project in the Kharaa River Basin, Mongolia

    Directory of Open Access Journals (Sweden)

    Daniel Karthe

    2015-07-01

    Full Text Available Mongolia is not only a water-scarce but also a data-scarce country with regard to environmental information. At the same time, regional effects of global climate change, major land use changes, a booming mining sector, and growing cities with insufficient and decaying water and wastewater infrastructures result in an increasingly unsustainable exploitation and contamination of ground and surface water resources putting at risk both aquatic ecosystems and human health. For the mesoscale (≈15,000 km2 model region of the Kharaa River Basin (KRB, we investigated (1 the current state of aquatic ecosystems, water availability and quality; (2 past and expected future trends in these fields and their drivers; (3 water governance structures and their recent reforms; and (4 technical and non-technical interventions as potential components of an integrated water resources management (IWRM. By now, the KRB is recognized as one of the most intensively studied river basins of the country, and considered a model region for science-based water resources management by the Mongolian government which recently adopted the IWRM concept in its National Water Program. Based on the scientific results and practical experiences from a six-year project in the KRB, the potentials and limitations of IWRM implementation under the conditions of data-scarcity are discussed.

  2. Water quality assessment in the rivers along the water conveyance system of the Middle Route of the South to North Water Transfer Project (China) using multivariate statistical techniques and receptor modeling.

    Science.gov (United States)

    Li, Siyue; Li, Jia; Zhang, Quanfa

    2011-11-15

    A total of 190 grab water samples were collected from 19 rivers along the water conveyance system of the Middle Route of China's interbasin South to North Water Transfer Project (MRSNWTP). Multivariate statistics including principal component/factor analysis (PCA/FA), analysis of variance (ANOVA), and cluster analysis (CA) were employed to assess water quality, and the receptor model of factor analysis-multiple linear regression (FA-MLR) was used for source identification/apportionment of pollutants from natural processes and anthropogenic activities to river waters. Our results revealed that river waters were primarily polluted by COD(Mn), BOD, NH(4)(+)-N, TN, TP, and Cd with remarkably spatio-temporal variability, and there were increasing industrial effluents in rivers northward. FA/PCA identified four classes of water quality parameters, i.e., mineral composition, toxic metals, nutrients, and organic pollutants. CA classified the selective 19 rivers into three groups reflecting their varying water pollution levels of moderated pollution, high pollution, and very high pollution. The FA-MLR receptor modeling revealed predominantly anthropogenic inputs to river solutes in Beijing and Tianjin, i.e., 77% of nitrogen and 90% of phosphorus from industry, and 80% of COD(Mn) from domestics. This study is critical for water allocation and division in the water-receiving areas using the existing rivers for MRSNWTP. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. 76 FR 73612 - Barren River Lake Hydro LLC; FFP Project 94 LLC; Notice of Competing Preliminary Permit...

    Science.gov (United States)

    2011-11-29

    ...: (1) A 50-foot by 30-foot reinforced concrete bifurcation structure containing three vertical slide... project, including a copy of the application, can be viewed or printed on the ``eLibrary'' link of the...

  4. Analysis of the effects of Stillwater NWR proposed water management on Newlands Project Operations and Truckee River listed species

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In response to a change in Stillwater NWR Complex purposes, an analysis was performed to evaluate potential impacts to endangered species and Newlands Project...

  5. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  6. The world's biggest dam construction project at the Yangtze river. The Three Gorges project; Weltweit groesster Staudamm entsteht am Jangtse. Three-Gorges-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Kreher, G.

    2002-02-11

    The author, having seen the Three Gorges Project model exhibited at the Expo 2000 in Hannover, went there to get an impression of the real dimensions of this gigantic project. His report also contains personal impressions but primarily gives a picture of the engineering, landscaping, and social aspects and implications, also referring to relevant technical information obtained on site.(orig./CB) [German] Der Autor hat den Stand der Arbeiten am Three-Gorges-Projekt (TGP) anhand eines im China-Pavillon auf der Expo 2000 in Hannover detailliert vorgestellten Planungsprojektes zum Anlass genommen, sich vor Ort vom Fortgang der Arbeiten zu ueberzeugen. Vor allem war das Interesse zum heute noch sichtbaren urspruenglichen Landschaftsbild und den sich danach in vielen Bereichen ergebenden Veraenderungen in der Region geweckt. Im Folgenden sollen ein Bild der persoenlichen Eindruecke, eine Einschaetzung des Verfassers zur Situation vor Ort und zeitnahe Aussagen von zugaenglichen Quellen widergespiegelt werden. (orig.)

  7. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    river’s edge. Less than two weeks later (March 21), the river began the spring rise. Periodic (daily) or continuous flooding occurred at the site over the next 3 to 4 months. River levels at times were over the top of the enclosure’s fence. This same pattern was repeated for the next 2 years. It was however evident that even submerged for part, or all of the day, that the plants continued to flourish. There were no indications of herbivory or animal tracks observed within the plot although animals were present in the area. Biomass production over the three years followed a typical growth curve with a yield of about 1 kg for the first year when the trees were establishing themselves, 4 kg for the second, and over 20 kg for the third when the trees were entering the exponential phase of growth. On a metric Ton per hectare (mT/ha) basis this would be 0.2 mT/ha in 2007, 0.87 mT/ha in 2008, and 4.3 mT/ha in 2009. Growth curve extrapolation predicts 13.2 mT/ha during a fourth year and potentially 29.5 mT/ha following a fifth year. Using the observed Ca and Sr concentrations found in the plant tissues, and Sr CR’s calculated from groundwater analysis, projected biomass yields suggest the trees could prove effective in removing the contaminant from the 100-NR-2 riparian zone.

  8. The River Ruhr - an urban river under particular interest for recreational use and as a raw water source for drinking water: The collaborative research project "Safe Ruhr" - microbiological aspects.

    Science.gov (United States)

    Strathmann, Martin; Horstkott, Marina; Koch, Christoph; Gayer, Uta; Wingender, Jost

    2016-10-01

    Along the intense industrialization of the Ruhr valley (Germany), the River Ruhr became increasingly polluted. Over time, using it for recreational purposes became a serious health hazard and bathing was banned due to chemical and microbiological risks. The purpose of the collaborative project "Safe Ruhr" was to verify the current status and to provide a scientific basis for lifting the bathing ban. As the river also provides a raw water source for drinking water production, it was investigated how well the treatment procedures control possible hygienic risks. As study area, the barrier Lake Baldeney was chosen as it embraces earlier bathing sites and tributes to river bank filtration water for drinking water treatment plants. The hygienic condition of the river water was determined over 18 months by measuring general physical, chemical and microbiological water quality parameters including fecal indicators, bacterial obligate and facultative pathogens, parasitic protozoa, enteric viruses and schistosome parasites (Trichobilharzia). Samples were taken at eight locations including sites before and after receiving the discharge of stormwater and treated wastewater, potential future bathing sites and a raw water abstraction point for potable water production. In summary, for all investigated physico-chemical parameters no significant difference between the eight investigated sampling locations on a distinct sampling date were observed. This study focused on hygienically relevant bacteria and parasitic protozoa. Fecal indicators, Escherichia coli, intestinal enterococci and Clostridium perfringens as well as coliform bacteria were detected in 94-100% of the water samples. Enteric pathogens, including Campylobacter spp. and Salmonella enterica, were isolated from 33% and 28% of the samples, respectively, in relatively low concentrations. Among the environmental facultative pathogens, P. aeruginosa was detected at a high frequency of 82% of all samples, but in low

  9. Project 5322 Mid-Term Report: Key Eco-Hydrological Parameters Retrieval And Land Data Assimilation System Development In A Typical Inland River Basin Of Chinas Arid Region

    Science.gov (United States)

    Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.

    2010-10-01

    Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.

  10. Increasing Hydrologic Drought Severity in Northwestern U.S. Mountain Rivers: Causal Influences and Implications for Drought Projection

    Science.gov (United States)

    Luce, Charles; Kormos, Patrick; Wenger, Seth; Berghuijs, Wouter

    2017-04-01

    One of the expected consequences of a warming climate in the snow covered mountains of the western U.S. is an earlier snowmelt runoff pulse, leading to longer recession times through a dry summer and, consequently, lower summer low-flows. Given the historical decline in snowpacks and advancing timing of streamflows in the region, we tested for trends in low flows in free-flowing rivers in the region since the late 1940s, and further examined the degree to which the low flows have been affected by temperature-driven trends in snowmelt timing versus trends driven by precipitation changes that have also been observed in the region. We found statistically significant declines in monthly mean flows in late summer as well as in 7Q10, the annual weekly minimum flow with a 10-year return interval (after correcting for autocorrelation in time series and testing for field significance). We further examined the relative contribution of temperature driven timing changes versus precipitation trends affecting low flows. While temperature effects are observable, precipitation declines have outweighed the effects of earlier snowmelt on low flows on all rivers so far. The finding is given more weight by contrasting the geography of snowpack sensitivity with basins where drought has become more severe. Given that the region has experienced about 1°C in warming and a 20% decline in mountain precipitation over that period, it is not a surprising finding. An important implication is that water supply and water quality managers cannot interpret historical trends in low-flows as direct analogs for continuing low flow declines related to warming, rather there is a need to explicitly consider uncertainty in future precipitation and local snowpack sensitivity to warming. Related implications relative to drought impacts on forests are discussed.

  11. 75 FR 5279 - Sucker Creek Channel and Floodplain Restoration Project (Phase II), Rogue River-Siskiyou National...

    Science.gov (United States)

    2010-02-02

    ..., including reconstruction of portions of the stream channel, placement of large wood structures in the stream..., increase spatial habitat diversity); reintroduce and stabilize large wood for fisheries and stream channel... hydrologist and/or fisheries biologist will identify trees for the project. Depending on tree heights, one...

  12. Hazardous materials in aquatic environments of the Mississippi River basin. Quarterly project status report, April 1, 1993--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    During this quarter, the Review Panel made its final recommendations regarding which of the proposals should be funded. Included in this report is a brief status report of each of the research and education projects that are currently funded in this project. The Coordinated Instrumentation Facility (CIF) sponsored 3 seminars on Environmental Sample Preparation Techniques. These seminars were designed to educate the investigators on the use of microwave digestion systems for sample preparation and the use of Inductively Coupled Plasma and Atomic Absorption Specrtroscopy for analyses. During this period, Tulane and Xavier Universities have worked closely with Oak Ridge National Laboratories (ORNL) to develop a long term relationship that will encourage interaction and collaborations among the investigators at all of the institutions.

  13. An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.; Thom, R.; Whiting, A. (Pacific Northwest National Laboratory)

    2003-11-01

    Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater to saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA

  14. Underground water in the valleys of Utah Lake and Jordan River, Utah

    Science.gov (United States)

    Richardson, George Burr

    1906-01-01

    The valleys of Utah Lake and Jordan River are situated in north-central Utah, in the extreme eastern part of the Great Basin. The lofty Wasatch Range (Pl. I), the westernmost of the Rocky Mountain system, limits the valleys on the east, and relatively low basin ranges - the Oquirrh, Lake, and East Tintic mountains - determine them on the west. The valleys trend north and south, and are almost separated by the low east-west Traverse Range, the slopes of which constitute a dam for Utah Lake, which drains through Jordan River to Great Salt Lake.The area under consideration is the most populous and flourishing part of the State, Salt Lake City and Provo, the first and third cities in the State, and many other thriving settlements are there located. At Bingham Junction and Murray a number of smelters treat the ores from near-by mines, but agriculture is the main industry. Water for irrigation is supplied by mountain streams, and intensive farming is successfully pursued. The practice of irrigation was begun by the Mormon pioneers in 1847, and has been discussed in several publications; little attention, however, has been given to the underground water resources, and, so far as the writer is aware, they have not before been described. The present paper outlines conditions of occurrence of the subterranean waters and describes their development in the valleys of Utah Lake and Jordan River.

  15. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  16. 76 FR 62442 - Final Environmental Impact Report/Environmental Impact Statement for Upper Truckee River...

    Science.gov (United States)

    2011-10-07

    ... River Restoration and Golf Course Reconfiguration Project AGENCY: Bureau of Reclamation, Interior... Statement for the Upper Truckee River Restoration and Golf Course Reconfiguration Project is available for... alternative for approval. The preferred alternative includes river ecosystem restoration with a reconfigured...

  17. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  18. Geomorphic Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  19. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  20. 2010 Hudson River Shallow Water Sediment Grabs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  1. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a brief progress report from each of the research and education projects that are currently funded through the ERWM contract. During third quarter 1993, approval was given by DOE for purchase of equipment. Equipment purchases were initiated and much of the equipment has been received and installed. The committees in charge of coordination of sampling and analyses associated with the collaborative research groups continued to meet and address these issues. Sampling has been done in the lower part of Devil`s Swamp and in the Devil`s Swamp Lake area. In addition, extensive sampling has been done in Bayou Trepagnier and in Bayou St. John. During this period, Tulane and Xavier Universities continued working closely with Oak Ridge National Laboratories (ORNL). The ORNL 1993 summer student internship program was completed. Plans were made for expanding the program to support 8 students next summer. Leonard Price, a Xavier University Chemistry professor and John Walz, a Tulane University Engineering professor each spent 5 weeks at ORNL. During this time these faculty worked with ORNL researchers exploring mutual interests and discussing possible future collaborations. In September, Drs. Carl Gehrs, Lee Shugart and Marshall Adams of ORNL, visited the Tulane and Xavier campuses. They presented two seminars and met with several of the investigators being supported by the ERWM contract. Tulane/Xavier project administrators participated in the Office of Technology Development`s ``New Technologies and Program Exhibition`` in the Rayburn House Office Building on September 23 and in the Hart Senate Office Building on September 27.

  2. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nkululeko Simeon Dlamini

    2017-03-01

    Full Text Available Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5. A graphical user interface was developed that integrates all of the common procedures of assessing climate change impacts, to generate high resolution climate variables (e.g., rainfall, temperature, etc. at the local scale from large-scale climate models. These are linked in one executable module to generate future climate sequences that can be used as inputs to various models, including hydrological and crop models. The generated outputs were used as inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe Efficiency (NSE and Percent Bias (PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and validation periods, respectively. The multi-model projections show an increase in future temperature (tmax and tmin in all respective scenarios, up to an average of 2.5 °C for under the worst-case scenario (RC8.5. Rainfall is also predicted to change with clear variations between the dry and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct change between the dry and wet season possibly due to the increase in evapotranspiration in the watershed. In principle, the interface can be customized for the application to other watersheds by incorporating GCMs’ baseline data and their corresponding future data for those particular stations in the new watershed. Methodological limitations of the study are also discussed.

  3. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  4. Dynamics of spatial clustering of schistosomiasis in the Yangtze River Valley at the end of and following the World Bank Loan Project.

    Science.gov (United States)

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Ward, Michael; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-06-01

    The 10-year (1992-2001) World Bank Loan Project (WBLP) contributed greatly to schistosomiasis control in China. However, the re-emergence of schistosomiasis in recent years challenged the long-term progress of the WBLP strategy. In order to gain insight in the long-term progress of the WBLP, the spatial pattern of the epidemic was investigated in the Yangtze River Valley between 1999-2001 and 2007-2008. Two spatial cluster methods were jointly used to identify spatial clusters of cases. The magnitude and number of clusters varied during 1999-2001. It was found that prevalence of schistosomiasis had been greatly reduced and maintained at a low level during 2007-2008, with little change. Besides, spatial clusters most frequently occurred within 16 counties in the Dongting Lake region and within 5 counties in the Poyang Lake region. These findings precisely pointed out the prior places for future public health planning and resource allocation of schistosomiasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Database of radionuclide measurements in Columbia River water, fish, waterfowl, gamebirds, and shellfish downstream of Hanford`s single-pass production reactors, 1960--1970. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Thiede, M.E.; Duncan, J.P.

    1994-03-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from radionuclide emissions since 1944 at the Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories. The time periods of greatest interest to the HEDR study vary depending on the type of environmental media concerned. Concentrations of radionuclides in Columbia River media from 1960--1970 provide the best historical data for validation of the Columbia River pathway computer models. This report provides the historical radionuclide measurements in Columbia River water (1960--1970), fish (1960--1967), waterfowl (1960--1970), gamebirds (1967--1970), and shellfish (1960--1970). Because of the large size of the databases (845 pages), this report is being published on diskette. A diskette of this report is available from the Technical Steering Panel (c/o K. CharLee, Office of Nuclear Waste Management, Department of Ecology, Technical Support and Publication Information Section, P.O. Box 47651, Olympia, Washington 98504-7651).

  6. Skjern River Restoration Counterfactual

    DEFF Research Database (Denmark)

    Clemmensen, Thomas Juel

    2014-01-01

    of Dissonance in Nature Restoration’, Journal of Landscape Architecture 2/2014: 58-67. Danish Nature Agency (2005), Skjern Å: Ådalens historie. De store projekter. Det nye landskab og naturen. På tur i ådalen [The Skjern River: The History of the River Delta. The Big Projects. The New Landscape and Nature......In 2003 the Skjern River Restoration Project in Denmark was awarded the prestigious Europa Nostra Prize for ‘conserving the European cultural heritage’ (Danish Nature Agency 2005). In this case, however, it seems that the conservation of one cultural heritage came at the expense of another cultural...... history and more openness towards constant change. In this approach the idea of palimpsest as metaphor for the cultural landscape plays an important role. Rather than being an obstacle for the restoration of nature, the historical layer following the comprehensive cultivation project from the 1960s...

  7. Downstream effects of the Pelton-Round Butte hydroelectric project on bedload, transport, channel morphology, and channel-bed texture, lower Deschutes River, Oregon.

    Science.gov (United States)

    Heidi Fassnacht; Ellen M. McClure; Gordon E. Grant; Peter C. Klingeman

    2003-01-01

    Field, laboratory, and historical data provide the basis for interpreting the effects of the Pelton-Round Butte dam complex on the surface water hydrology and geomorphology of the lower Deschutes River, Oregon, USA. The river's response to upstream impoundment and flow regulation is evaluated in terms of changes in predicted bedload transport rates, channel...

  8. Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, S.L.; Pearsons, T.N. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA)

    2005-05-01

    originated from wild fish returning to the upper Yakima River. When they return as adults, almost all of them will spawn naturally in the Yakima River. The offspring they produce are expected to augment the Yakima spring Chinook population. Whether such an increase will occur or how great it may be depends on two factors, the ability of hatchery fish to reproduce under natural conditions and the capacity of their offspring to survive to maturity. One of the objectives of the Yakima Fisheries Project is to determine whether the hatchery-origin adults produced by the project have experienced any reduction in their ability to reproduce under natural conditions. To accomplish that objective an observation stream was built in 2000 on the grounds of the Cle Elum Supplementation and Research Facility. Beginning in 2001 hatchery and wild spring Chinook from the upper Yakima River stock have been introduced into the stream and allowed to reproduce. Microsatellite DNA is used to establish the genetic relationships between the adults placed into the stream and fry that are produced by each population. Six populations consisting of mixtures of wild and hatchery fish have been placed into the stream. Pedigree assessments have been completed on five of them. These assessments have shown that the reproductive success in males is often twice as variable as that experienced by females. In the five populations so far examined; wild males (age 4 and 5) produced the most offspring. The success of comparable hatchery males relative to wild males ranged from 37% to 113%. Hatchery and wild males maturing as 3-yr-olds (jacks) and as 1- and 0-yr-olds (precocious males) were also used in the study populations. They were not as successful at producing offspring as the larger hatchery and wild males. During 2001 and 2002 two populations of hatchery and wild fish were placed into the observation stream each year. Each one occupied about half of the structure. In these populations wild females exhibited

  9. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  10. Humboldt River main stem, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the main stem of the Humboldt River as defined by Humboldt Project personnel of the U.S. Geological Survey Nevada District, 2001. The data set...

  11. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Evaluating Wetland Restoration Projects in the Columbia River Estuary using Hydroacoustic Telemetry Arrays to Estimate Movement, Survival, and Residence Times of Juvenile Salmonids, Volume XXII (22).

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Russell W.; Skalski, John R.

    2008-08-01

    Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, and the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.

  12. 77 FR 52709 - Loup River Public Power District; Notice of Application Accepted for Filing, Soliciting Motions...

    Science.gov (United States)

    2012-08-30

    ... Energy Regulatory Commission Loup River Public Power District; Notice of Application Accepted for Filing..., 2012. d. Applicant: Loup River Public Power District (Loup Power District). e. Name of Project: Loup River Hydroelectric Project. f. Location: The existing project is located on the Loup River, Loup Canal...

  13. Substrate Enhancement Project near Shorty’s Island and Myrtle Creek, Kootenai River near Bonners Ferry, Idaho - Water Year 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2009, the Kootenai Tribe of Idaho released and implemented the Kootenai River Habitat Restoration Master Plan. This plan aimed to restore, enhance, and maintain...

  14. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  15. American River Watershed Project, California. Part 1: Main Report. Part 2: Final Supplemental Environmental Impact Statement/Environmental Impact Report. Supplemental Information Report

    Science.gov (United States)

    1996-03-01

    than Oroville and New Bullards Bar, include Folsom, Pardee, New Don Pedro , New Exchequer, and New Melones, and VII-24 Spocial Topics none of these...blinds, trails, and quarries (Johnson, 1978; Wilson and Towne, 1978). One of the first Europeans to see the Central Valley was Pedro Fages on an...Governor Juan Bautista Alvarado gave the wild river its current name, "Rio de los Americanos"-American River. John Sutter settled in Sacramento in 1839 and

  16. UnLoadC3: Ensembles of climate change projections for two river catchment areas in Austria - Contributions to an overall uncertainty assessment framework for the modelling of water quantity and nutrient transport

    Science.gov (United States)

    Matulla, Christoph; Hollosi, Brigitta; Schulz, Karsten; Schürz, Christoph; Mehdi, Bano; Ertl, Thomas; Pressl, Alexander

    2017-04-01

    The objective of UnLoadC3 is to examine the impacts of uncertainty - inherent in data and modelling - on projections of water flow and nutrient transport within two selected river catchment areas (Schwechat and Raab in Austria) under climate change conditions. To access future climate change, ensembles of climate projections from the EURO-CORDEX initiative - given on grids with a 12 km spacing - have been used. These ensembles have been driven by two RCPs (RCP4.5 and RCP8.5) used within the Fifth Assessment Report of the IPCC. In order to provide climate change projections on the required impact scales, statistical downscaling techniques as well as bias correction methods have been applied. Climate variables, such as minimum, maximum, mean temperature and precipitation totals given on a daily base were analyzed. This local scale daily information is entered into the water quality model SWAT, which simulates water balance, pertaining sediment- and nutrient-transport processes across the two considered river watersheds.

  17. Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong

  18. Hydraulics and morphology of mountain rivers; literature survey

    NARCIS (Netherlands)

    Sieben, J.

    1993-01-01

    Present knowledge on fluvial processes in mountain rivers should be expanded to enable the development of projects dealing with mountain rivers or mountain-river catchment areas. This study reviews research on hydraulic and morphological features of mountain rivers. A major characteristic of

  19. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  20. International Odra project (IOP) 'Interdisciplinary German Polish studies on the behaviour of pollutants in the Oder system'. Sub project 4: the state of suspended particulate matter in the Odra River system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, K.H.; Damke, H.; Kasbohm, J.; Puff, T.; Breitenbach, E.; Theel, O.; Kiessling, A.

    2001-05-20

    The purpose of the present project was to characterise the pollutant freight of suspended matter and suspended-matter-borne sediments in the Oder river system on the basis of large samples drawn at selected sampling sites. One of the major goals was to assess and draw up a balance of the transport regime of suspended matter between the compartments water, suspended matter and sediments. Special attention was given to the composition and structure of suspended matter as well as to the distribution of trace elements in the various components. Furthermore, the study was intended to provide ecology-related information on the basis of selected biogenic components. Statements on the time course of pollution of estuarine waters and the Baltic Sea by way of the Oder can be derived from a characterisation of current fluviatile solids (suspended matter and suspended-matter-borne sediments) and determination of their quantitative proportions. The following research strategy was derived from these goals: for a characterisation of suspended matter in terms of composition, structure and biogenic origin it is necessary to determine the concentration of suspended matter, its granulometric composition, carbon and sulphur content, biogenic opal content, mineral content, phase composition, metal content, structure of suspended flakes and association of diatoms in the suspended flakes and on the periphyton. [German] Das Vorhaben ist darauf ausgerichtet, den Belastungszustand der Schwebstoffe und schwebstoffbuertigen Sedimente im Oderflusssystem anhand von Grossproben ausgewaehlter Probenahmeorte zu charakterisieren. Ein wesentliches Ziel ist die Beurteilung des Transportregimes der Schwebstoffe zwischen den Kompartimenten Wasser, Schwebstoff und Sediment sowie seine Bilanzierung. Dabei gilt die besondere Aufmerksamkeit der Zusammensetzung und der Struktur der Schwebstoffe sowie die Spurenelementspeziation an die unterschiedlichen Bestandteile. Weiterhin werden oekologische Aussagen

  1. Río Mapocho: Características hidrológicas vs. proyecto Mapocho Navegable. / Mapocho River: Hydrological characteristics vs. Navigable Mapocho project.

    Directory of Open Access Journals (Sweden)

    Ferrando A.,Francisco J.

    2000-08-01

    Full Text Available En relación con la factibilidad de transformar parte de la sección media del río Mapocho y su cauce en un "río navegable", se estima pertinente y necesario reflexionar previamente sobre algunos aspectos del contexto natural a intervenir y sus características estructurales y dinámicas./Regarding the feasibility of transforming part of the middle section of the river and its banks Mapocho a "navigable river", is pertinent and necessary to think in advance about some aspects of the natural context to intervene and its structural characteristics and dynamics.

  2. 76 FR 75543 - Missisquoi River Technologies; Missisquoi River Hydro LLC; Notice of Transfer of Exemption

    Science.gov (United States)

    2011-12-02

    ... Transfer of Exemption 1. By letter filed November 16, 2011, Missisquoi River Technologies informed the... issued June 29, 1989,\\1\\ has been transferred to Missisquoi River Hydro LLC. The project is located on the Missisquoi River in Orleans County, Vermont. The transfer of an exemption does not require...

  3. Research, monitoring and evaluation of fish and wildlife restoration projects in the Columbia River Basin: Lessons learned and suggestions for large-scale monitoring programs.

    Science.gov (United States)

    Lyman L. McDonald; Robert Bilby; Peter A. Bisson; Charles C. Coutant; John M. Epifanio; Daniel Goodman; Susan Hanna; Nancy Huntly; Erik Merrill; Brian Riddell; William Liss; Eric J. Loudenslager; David P. Philipp; William Smoker; Richard R. Whitney; Richard N. Williams

    2007-01-01

    The year 2006 marked two milestones in the Columbia River Basin and the Pacific Northwest region's efforts to rebuild its once great salmon and steelhead runs: the 25th anniversary of the creation of the Northwest Power and Conservation Council and the 10th anniversary of an amendment to the Northwest Power Act that formalized scientific peer review of the council...

  4. Projected changes in soil organic carbon stocks upon adoption of recommended soil and water conservation practices in the upper Tana river catchment, Kenya

    NARCIS (Netherlands)

    Batjes, N.H.

    2014-01-01

    Large areas in the Upper Tana river catchment, Kenya, have been over-exploited, resulting in soil erosion, nutrient depletion and loss of soil organic matter (SOM). This study focuses on sections of the catchment earmarked as being most promising for implementing Green Water Credits, an incentive

  5. Milton-Madison Bridge Project

    OpenAIRE

    Hetrick, Kevin; Bunselmeier, Jason

    2013-01-01

    INDOT will provide a brief introduction to the Madison Milton Ohio River Bridge Project, discuss the project development process, the design/build procurement and the construction during this presentation.

  6. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  7. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  8. Rehabilitating China's largest inland river.

    Science.gov (United States)

    Li, Yiqing; Chen, Yaning; Zhang, Yaoqi; Xia, Yang

    2009-06-01

    Wetlands are particularly important for conserving China's biodiversity but riparian wetlands in the Tarim River basin in western China have been reduced by 46% during the last 3 decades. The world's largest habitat for Populus euphratica, which is in the Tarim River basin, significantly shrank. To protect and restore the deteriorated ecosystems along the Tarim River and its associated wetlands, China's government initiated a multimillion dollar river restoration project to release water from upper dams to the dried-up lower reaches of the Tarim River starting in 2000. We monitored the responses of groundwater and vegetation to water recharge in the lower reaches of the river from 2000 to 2006 by establishing nine 1000-m-long transects perpendicular to the river at intervals of 20-45 km along the 320-km river course below the Daxihaizi Reservoir, the source of water conveyance, to Lake Taitema, the terminus of the Tarim River. Water recharges from the Daxihaizi Reservoir to the lower reaches of the Tarim River significantly increased groundwater levels and vegetation coverage at all monitoring sites along the river. The mean canopy size of the endangered plant species P. euphratica doubled after 6 years of water recharge. Some rare migrating birds returned to rest on the restored wetlands in summer along the lower reaches of the Tarim River. The biggest challenge facing decision makers, however, is to balance water allocation and water rights between agricultural and natural ecosystems in a sustainable way. A large number of inhabitants in the Tarim Basin depend on these limited water resources for a living. At the same time, the endangered ecosystems need to be protected. Given the ecological, socioeconomic, and sociopolitical realities in the Tarim Basin, adaptive water policies and strategies are needed for water allocation in these areas of limited water resources. ©2009 Society for Conservation Biology.

  9. A Review of Integrated River Basin Management for Sarawak River

    OpenAIRE

    Kuok K. Kuok; Sobri Harun; Po-Chan Chiu

    2011-01-01

    Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP) that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water&#...

  10. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  11. References for radioactive releases to the Columbia River from Hanford Operations, 1944--1957. Letter report: Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B.

    1991-11-01

    A search was made for published documents related to discharges of radioactive material from Hanford Site facilities to the Columbia River from 1944--1957. The purpose was to list documents that contain data that might be useful in developing a source term for waterborne releases. Source term development work will take place in FY 1992, and FY 1993. This tabulation of published summaries of release data shows the type of measurements that were being made from 1944--1957 and the magnitude of discharges to the Columbia River. In the early years, very little data were collected that related to specific radionuclides. However, most of the key radionuclides were known to be present in effluents from occasional specific radionuclide analyses.

  12. Cultural Resources Survey, Harry S. Truman Dam and Reservoir Project, Missouri, Volume 6. Euro-American Settlement of the Lower Pomme de Terre River Valley.

    Science.gov (United States)

    1983-02-01

    95 Map 1. Six Physiographic- Cultura . Divisions of Missouri.....................37 2. Pomme de Terre River valley study area . . . . 33 3...is placed on tape (Figure 5). The fields are as follows: 6 characters ’ represent the location within a section; 2 digits indicate •.4@ the section...2 digits represent township; 2 digits indicate range; price; name of purchaser; date purchased (year, month, day); two characters represent the

  13. A Preliminary Assessment of the Cultural Resources within the Millican Project, Navasota River Basin, Brazos, Grimes, Leon, Madison and Robertson Counties, Texas. Reports of Investigations, Number 19.

    Science.gov (United States)

    1982-02-01

    surrounding the Navasota River include that of Nicolas de LaFora between 1766 and 1768 (Kinnaird 1958). From the Old San Antonio Road, de LaFora noted...Area Streams). As a minimum , middle Archaic and Neoarchaic occupations are suggested. The historic component of site 41RT133 is a bridge across Duck...except for the damsite, follows. 4 0 The conservation pool is the minimum body of water which should be maintained and will, except at times of

  14. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  15. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.

  16. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    Science.gov (United States)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  17. River Piracy

    Indian Academy of Sciences (India)

    . Asiatic Soc. o/Bengal., 55:322-343.1886. C F Oldham. The Saraswati and the lost river of the Indian desertJ. R. Asiatic. Soc., 34:49-76. 1893. S C Sharma. The description of rivers in the Rigveda, The Geographical. Observer, 10:79-85. 1974.

  18. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma

    Science.gov (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.

    2017-02-13

    This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2) summarizes the general water quality of the Canadian River alluvial aquifer groundwater by using data collected during August and September 2013, (3) evaluates the effects of estimated equal proportionate share (EPS) on aquifer storage and streamflow for time periods of 20, 40, and 50 years into the future by using numerical groundwater-flow models, and (4) evaluates the effects of present-day groundwater pumping over a 50-year period and sustained hypothetical drought conditions over a 10-year period on stream base flow and groundwater in storage by using numerical flow models. The Canadian River alluvial aquifer is a Quaternary-age alluvial and terrace unit consisting of beds of clay, silt, sand, and fine gravel sediments unconformably overlying Tertiary-, Permian-, and Pennsylvanian-age sedimentary rocks. For groundwater-flow modeling purposes, the Canadian River was divided into Reach I, extending from the Texas border to the Canadian River at the Bridgeport, Okla., streamgage (07228500), and Reach II, extending downstream from the Canadian River at the Bridgeport, Okla., streamgage (07228500), to the confluence of the river with Eufaula Lake. The Canadian River alluvial aquifer spans multiple climate divisions, ranging from semiarid in the west to humid subtropical in the east. The average annual precipitation in the study area from 1896 to 2014 was 34.4 inches per year (in/yr).A hydrogeologic framework of the Canadian River alluvial aquifer was developed that includes the areal and vertical extent of the aquifer and the distribution, texture variability, and hydraulic properties of

  19. Supplement Analysis for the Watershed Management Program Final EIS (DOE EIS /SA-156) - Upper Salmon River Anadromous Fish Passage Improvement Projects

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Carl J. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2004-07-13

    BPA proposes to fund IDFG to plan and complete construction of fish passage improvements and water conservation activities that are contained within IDFG’s Statement of Work (SOW) for the period 7/1/04 to 6/30/05. The funding request contained in their SOW is part of an ongoing IDFG effort to fund anadromous fish passage projects that fall outside the scope of the Mitchell Act. The proposed SOW activities fall within the following four categories: Phase I-Planning and Design (gather data, perform investigations, and exchange information; perform surveys and assessments to be compliant; survey project sites and perform engineering designs; perform contract and project management); Phase II-Construction and Implementation (procure materials and supplies, prepare contracts and solicit bids, plant native seedlings, complete capital improvements); Phase III-Operation and Maintenance (maintain office operations); and Phase IV- Monitoring and Evaluation (monitor and evaluate post-project effects, reporting). The SOW culminates with proposed construction of 18 capital improvement projects (Table 1 attached). The types of capital improvements include: screening gravity water diversions; consolidating and/or eliminating ditches; evaluating and screening pump diversions; evaluating and implementing water conservation activities; constructing screens along migration routes and rearing areas for hatchery and wild salmon; improving upstream and downstream passage for anadromous fish; and maximize benefits to aquatic habitat. Because each of the proposed projects in the SOW is still in the planning stages, the specifics of each still need to be completed.

  20. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

  1. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-01-01

    The change in pathogens prevalence to wild fish is probably the least studied ecological interaction associated with hatchery operations. In 1999, the Cle Elum Hatchery began releasing spring chinook smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to evaluate whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakima River during 1998, 2000 and 2001 and monitored for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition, the fish were tested for Ceratomyxa shasta spores in 2001. Not all testing has been completed for every year, but to date, there have only been minimal changes in levels of the bacterial pathogens in the naturally produced smolts. At this point, due to the limited testing so far, these changes are attributed to normal fluctuation of prevalence.

  2. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, S.L. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA); Rau, J.A. (Cle Elum Supplementation Research, Cle Elum, WA)

    2003-01-01

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environments during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.

  3. Protecting and Enhancing River and Stream Continuity

    OpenAIRE

    Jackson, Scott D.; Bowden, Alison; Graber, Brian

    2007-01-01

    As long linear ecosystems, rivers and streams are particularly vulnerable to fragmentation. There is growing concern about the role of road crossings – and especially culverts – in altering habitats and disrupting river and stream continuity. The River and Stream Continuity Project began in the year 2000 with a startup grant from the Massachusetts Watershed Initiative. The University of Massachusetts took the lead in convening a group of people from a variety of agencies and organizations who...

  4. Gila River Basin Native Fishes Conservation Program

    Science.gov (United States)

    Doug Duncan; Robert W. Clarkson

    2013-01-01

    The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...

  5. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  6. An End-Users Oriented Methodology for Enhancing the Integration of Knowledge on Soil-Water-Sediment Systems in River Basin Management: An Illustration from the AquaTerra Project

    Science.gov (United States)

    Merly, Corinne; Chapman, Antony; Mouvet, Christophe

    2012-01-01

    Research results in environmental and socio-economic sciences are often under-used by stakeholders involved in the management of natural resources. To minimise this gap, the FP6 EU interdisciplinary project AquaTerra (AT) developed an end-users' integration methodology in order to ensure that the data, knowledge and tools related to the soil-water-sediment system that were generated by the project were delivered in a meaningful way for end-users, thus improving their uptake. The methodology and examples of its application are presented in this paper. From the 408 project deliverables, 96 key findings were identified, 53 related to data and knowledge, and 43 describing advanced tools. River Basin Management (RBM) stakeholders workshops identified 8 main RBM issues and 25 specific stakeholders' questions related to RBM which were classified into seven groups of cross-cutting issues, namely scale, climate change, non-climatic change, the need for systemic approaches, communication and participation, international and inter-basin coordination and collaboration, and the implementation of the Water Framework Directive. The integration methodology enabled an assessment of how AT key findings meet stakeholders' demands, and for each main RBM issue and for each specific question, described the added-value of the AT project in terms of knowledge and tools generated, key parameters to consider, and recommendations that can be made to stakeholders and the wider scientific community. Added value and limitations of the integration methodology and its outcomes are discussed and recommendations are provided to further improve integration methodology and bridge the gaps between scientific research data and their potential uptake by end-users.

  7. Impact of the Three Gorges Dam, the South-North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary

    Science.gov (United States)

    Webber, M.; Li, M. T.; Chen, J.; Finlayson, B.; Chen, D.; Chen, Z. Y.; Wang, M.; Barnett, J.

    2015-11-01

    This paper assesses the impacts of the Three Gorges Dam, the South-North Water Transfer Project and other water abstractions on the probability of long-duration salt intrusions into the Yangtze River estuary. Studies of intrusions of saltwater into estuaries are typically constrained by both the short duration of discharge records and the paucity of observations of discharge and salinity. Thus, studies of intrusions of saltwater into estuaries typically seek to identify the conditions under which these intrusions occur, using detailed observations for periods of 20-60 days. The paper therefore first demonstrates a method by which to identify the conditions under which intense intrusions of long-duration occur and then applies that method to analyse the effect of the three projects. The paper constructs a model of the relationship between salinity and discharge and then employs Monte Carlo simulation methods to reconstruct the probability of observing intrusions of differing intensities and durations in relation to discharge. The model predicts that the duration of intrusions with chlorinity ≥ 250 mg L-1 (or ≥ 400 or 500 mg L-1) increases as the number of consecutive days with discharge ≤ 12 000 m3 s-1 (or ≤ 8000 m3 s-1 increases. The model predicts that in 1950-2014, the number of consecutive days with chlorinity ≥ 250 mg L-1 averaged 21.34 yr-1; if the three projects operate according to their normal rules, that average would rise to 41.20 yr-1. For a randomly selected year of discharge history from the period 1950-2014, under normal operating rules for these projects the probability of an intrusion rises from 0.25 (for 30-day intrusions) or 0.05 (for 60-day intrusions) to 0.57 or 0.28, respectively.

  8. Fish Research Project, Oregon : Evaluation of the Success of Supplementing Imnaha River Steelhead with Hatchery Reared Smolts: Phase One : Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Whitesel, Timothy A.; Jonasson, Brian C.

    1995-08-01

    Two streams in the Imnaha River subbasin (Camp Creek and Little Sheep Creek) and eight streams in the Grande Ronde River subbasin (Catherine, Deer, Five Points, Fly, Indian, Lookingglass, Meadow, and Sheep creeks) were selected as study streams to evaluate the success and impacts of steelhead supplementation in northeast Oregon. The habitat of the study streams was inventoried to compare streams and to evaluate whether habitat might influence the performance parameters we will measure in the study. The mean fecundity of hatchery and natural steelhead 1-salts returning to Little Sheep Creek fish facility in 1990 and 1991 ranged from 3,550 to 4,663 eggs/female; the mean fecundity of hatchery and natural steelhead 2-salts ranged from 5,020 to 5,879 eggs/female. Variation in length explained 57% of the variation in fecundity of natural steelhead, but only 41% to 51% of the variation in fecundity of hatchery steelhead. Adult steelhead males had an average spermatocrit of 43.9% at spawning. We were also able to stain sperm cells so that viable cells could be distinguished from dead cells. Large, red disc tags may be the most useful for observing adults on the spawning grounds. The density of wild, juvenile steelhead ranged from 0 fish/l00{sup 2} to 35.1 (age-0) and 14.0 (age-1) fish/l00m{sup 2}. Evidence provided from the National Marine Fisheries Service suggests that hatchery and wild fish within a subbasin are genetically similar. The long-term experimental design is presented as a component of this report.

  9. Summary of analytical results for hydrologic studies of wells open through large intervals of the Snake River plain aquifer at the Idaho National Engineering Laboratory, project 1

    Energy Technology Data Exchange (ETDEWEB)

    McCurry, M.; Welhan, J.A.

    1996-07-01

    This report summarizes results of groundwater analyses for samples collected from wells USGS-44, -45, -46 and -59 in conjunction with the INEL Oversight Program straddle-packer project between 1992 and 1995. The purpose of this project was to develop and deploy a high-quality straddle-packer system for characterization of the three-dimensional geometry of solute plumes and aquifer hydrology near the Idaho Chemical Processing Plant (ICPP). Principle objectives included (1) characterizing vertical variations in aquifer chemistry; (2) documenting deviations in aquifer chemistry from that monitored by the existing network, and (3) making recommendations for improving monitoring efforts.

  10. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  11. 77 FR 73636 - Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and...

    Science.gov (United States)

    2012-12-11

    ...] Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and Soliciting... No.: P-14345-001. c. Date filed: November 23, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Town of Onota...

  12. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  13. 100-N Area Strontium-90 Treatability Demonstration Project: Food Chain Transfer Studies for Phytoremediation Along the 100-N Columbia River Riparian Zone

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.

    2009-04-01

    Strontium-90 (90Sr) exceeds the U.S. Environmental Protection Agency’s drinking water standards for groundwater (8 picocuries/L) by as much as a factor of 1000 at several locations within the Hanford 100-N Area and along the 100-N Area Columbia River shoreline). Phytoextraction, a managed remediation technology in which plants or integrated plant/rhizosphere systems are employed to phytoextract and/or sequester 90Sr, is being considered as a potential remediation system along the riparian zone of the Columbia River as part of a treatment train that includes an apatite barrier to immobilize groundwater transport of 90Sr. Phytoextraction would employ coyote willow (Salix exigua) to extract 90Sr from the vadose zone soil and aquifer sediments (phytoextraction) and filter 90Sr (rhizofiltration) from the shallow groundwater along the riparian zone of the Columbia River. The stem and foliage of coyote willows accumulating 90Sr may present not only a mechanism to remove the contaminant but also can be viewed as a source of nutrition for natural herbivores, therefore becoming a potential pathway for the isotope to enter the riparian food chain. Engineered barriers such as large and small animal fencing constructed around the field plot will control the intrusion of deer, rodents, birds, and humans. These efforts, however, will have limited effect on mobile phytophagous insects. Therefore, this study was undertaken to determine the potential for food chain transfer by insects prior to placement of the remediation technology at 100-N. Insect types include direct consumers of the sap or liquid content of the plants vascular system (xylem and phloem) by aphids as well as those that would directly consume the plant foliage such as the larvae (caterpillars) of Lepidoptera species. Heavy infestations of aphids feeding on the stems and leaves of willows growing in 90Sr-contaminated soil can accumulate a small amount (~0.15 ± 0.06%) of the total label removed from the soil by

  14. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  15. The Columbia River System Inside Story

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  16. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knedsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (Yakama Nation, Toppenish, WA)

    2006-05-01

    This report covers three of many topics under the Yakima/Klickitat Fisheries Project's Monitoring and Evaluation Program (YKFPME) and was completed by Oncorh Consulting as a contract deliverable to the Yakama Nation and Washington Department of Fish and Wildlife. The YKFPME (Project Number 1995-063-25) is funded under two BPA contracts, one for the Yakama Nation (Contract No. 00022449) and the other for the Washington Department of Fish and Wildlife (Contract No. 22370). A comprehensive summary report for all of the monitoring and evaluation topics will be submitted after all of the topical reports are completed. This approach to reporting enhances the ability of people to get the information they want, enhances timely reporting of results, and provides a condensed synthesis of the whole YKFPME.

  17. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  18. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  19. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  20. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming

    Science.gov (United States)

    Thober, Stephan; Kumar, Rohini; Wanders, Niko; Marx, Andreas; Pan, Ming; Rakovec, Oldrich; Samaniego, Luis; Sheffield, Justin; Wood, Eric F.; Zink, Matthias

    2018-01-01

    Severe river floods often result in huge economic losses and fatalities. Since 1980, almost 1500 such events have been reported in Europe. This study investigates climate change impacts on European floods under 1.5, 2, and 3 K global warming. The impacts are assessed employing a multi-model ensemble containing three hydrologic models (HMs: mHM, Noah-MP, PCR-GLOBWB) forced by five CMIP5 general circulation models (GCMs) under three Representative Concentration Pathways (RCPs 2.6, 6.0, and 8.5). This multi-model ensemble is unprecedented with respect to the combination of its size (45 realisations) and its spatial resolution, which is 5 km over the entirety of Europe. Climate change impacts are quantified for high flows and flood events, represented by 10% exceedance probability and annual maxima of daily streamflow, respectively. The multi-model ensemble points to the Mediterranean region as a hotspot of changes with significant decrements in high flows from ‑11% at 1.5 K up to ‑30% at 3 K global warming mainly resulting from reduced precipitation. Small changes (climate variability, downscaling technique, and hydrologic model parameters, the contribution by the GCMs to the overall uncertainties of the ensemble is in general higher than that by the HMs. The latter, however, have a substantial share in the Mediterranean and Scandinavia. Adaptation measures for limiting the impacts of global warming could be similar under 1.5 K and 2 K global warming, but have to account for significantly higher changes under 3 K global warming.

  1. River Piracy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. River Piracy Saraswati that Disappeared. K S Valdiya. General Article Volume 1 Issue 5 May 1996 pp 19-28. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0019-0028. Author Affiliations.

  2. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.

    1991-09-18

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  3. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, Sao Francisco and the Parana River basins

    Energy Technology Data Exchange (ETDEWEB)

    Marengo, Jose A.; Chou, Sin Chan; Alves, Lincoln M.; Pesquero, Jose F.; Soares, Wagner R.; Santos, Daniel C.; Lyra, Andre A.; Sueiro, Gustavo; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila [National Institute for Space Research (INPE) Cachoeira Paulista, Sao Paulo (Brazil); Kay, Gillian; Betts, Richard [UK Met Office Hadley Centre, Exeter, Devon (United Kingdom)

    2012-05-15

    The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961-1990 to represent baseline climate, and 2011-2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4-6 C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation-Evaporation (P-E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and Sao Francisco Basin, making these regions susceptible to drier conditions and droughts in the future

  4. Development west coast Taiwan: Redesign coastal area between Da’an River and Dajia River

    NARCIS (Netherlands)

    Van den Berg, B.; Eelkema, M.; Smith, M.; Van To, P.

    2006-01-01

    Master project report. In the year 2004 there was a flooding in an area between Da'an River and Dajia River in Taichung County, Taiwan. The flooding was caused by outlets which were clogged up, thus lacking the capacity to discharge the amount of rainwater that the typhoon caused into the sea. A

  5. 77 FR 2966 - Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and...

    Science.gov (United States)

    2012-01-20

    ... Energy Regulatory Commission Rock River Beach, Inc.; Notice of Application Tendered for Filing With the...: Exemption from Licensing. b. Project No.: 14345-000. c. Filing Date: January 5, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock...

  6. El Paso County Geothermal Project at Fort Bliss. Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lear, Jon [Ruby Mountain Inc., Salt Lake City, UT (United State); Bennett, Carlon [Ruby Mountain Inc., Salt Lake City, UT (United State); Lear, Dan [Ruby Mountain Inc., Salt Lake City, UT (United State); Jones, Phil L. [Ruby Mountain Inc., Salt Lake City, UT (United State); Burdge, Mark [Evergreen Clean Energy Management, Provo, UT (United States); Barker, Ben [Evergreen Clean Energy Management, Provo, UT (United States); Segall, Marylin [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Nash, Gregory [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Jones, Clay [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Simmons, Stuart [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Taylor, Nancy [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.

    2016-02-01

    The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator - Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.

  7. Detection and assessment of micropollutants in the river Elbe. Part project 3: Relevant organic substances for drinking water. Final report; Erfassung und Beurteilung der Belastung der Elbe mit Schadstoffen. Teilprojekt 3: Trinkwasserrelevante Organika. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Brauch, H.J.; Bethmann, D.; Fichtner, S.; Klinger, J.; Mueller, U.; Pietsch, J.; Sacher, F.; Schmidt, W.

    1996-12-01

    The objective of this research program was the detection and the assessment of micropollutants in the river Elbe, which are recalcitrant and weak adsorbable. Moreover, studies were conducted to determine the recalcitrant and weak adsorbable fraction of substances, measured as sum parameters such as DOC, AOX or IOS, continuing experiments of another research project of the German Research Ministry, registered under WT 9148/5. Sampling of river water was carried out at several places from Monday to Friday over a period of 2 years. Before analysis, samples taken over a period of one month were mixed to avoid short term variations which are typical for surface waters. The analytical program combines measurements with GC and HPLC and technological experiments such as biological degradation and adsorption. The study includes the determination of aromatic sulfonates, chelating agents, chloroacetic acids and pesticides such as phenoxyalkanoic acids and nitrophenol herbicides, which are thought to be recalcitrant and weak adsorbable. Chealting agents such as EDTA, NTA and DTPA were detected in every sample of river Elbe. EDTA and DTPA were considered as substances passing the treatment steps in a waterworks easily. Nineteen different aromatic sulfonates, mostly naphthalene sulfonates, were identified in Elbe water samples. Five of them were insufficient removed in a waterworks. A dependence was found between the structure of the micropollutant and the biological degradability. A new analytical method, based on HPLC/FLD and GC/MS-measurements after pre-enrichment derivatization by FMOC-Cl and TCECF, was developed to determine the occurrence of aliphatic amines in the river Elbe. (orig./SR) [Deutsch] Das Forschungsvorhaben befasste sich mit der Erfassung und Bewertung von biologisch resistenten und zudem schlecht adsorbierbaren Einzelsubstanzen im Elbewasser. Ausserdem wurden Untersuchungen aus dem Forschungsprogramm WT 9148/5 weitergefuehrt, bei denen die Ermittlung der

  8. Water development projects map

    Science.gov (United States)

    A new map showing major water development projects across the United States has been published by the U.S. Geological Survey (USGS). The map shows the location, size, and ownership of approximately 2800 of the nation's major multipurpose and flood control dams and virtually all of the reservoir storage and flood control capacity of the country. Other features illustrated on the map include U.S. Bureau of Reclamation surface water irrigation projects; watershed protection projects of the U.S. Soil Conservation Service; hydroelectric power facilities, including both federal plants and nonfederal plants leased by the Federal Energy Regulatory Commission; U.S. Army Corps of Engineers navigation and flood damage reduction projects; and the federal systems of wild and scenic rivers. The map also delineates major rivers and the 21 USGS water resources region boundaries so that users of the map can locate development projects with respect to drainage basins.

  9. Antecedent Rivers

    Indian Academy of Sciences (India)

    far north of the high NandaDevi (7,817 m) - Api Nampa. (7,132 m) range of the Himadri. The Sindhu flows northwestwards, the Satluj goes west, the Karnali takes the southerly course and the Tsangpo flows east. These rivers flow through their pristine channels, carved out at the very outset about 50 to 55 m.y (million years) ...

  10. THE VOLTA RIVER BASIN OF GHANA

    African Journals Online (AJOL)

    sub-basins, and their subsequent projection are derived from the Population Census .... Social scientists are inclined to consider the impact of social, cultural and institutional fac- tors on population-environment relationships, and much recent research .... river sub-basin at each point in time during the projection period.

  11. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections

    Science.gov (United States)

    Lucarini, Valerio

    2017-04-01

    We review the skill of thirty coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these models represent the impact of climate change by the end of century (2061-2100) under the extreme scenario RCP8.5. First, we assess the models' ability to reproduce the observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope — a measure of seasonality within the active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) — a multiplicative measure of precipitation (P) and extent of its concentration relative to uniform distribution (relative entropy — RE). We apply SI distinctly over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation. For the present climate, neither any single model nor the multi-model mean performs best in all chosen metrics. Models show overall a modest skill in suggesting right timings of the monsoon onset while the RFA slope is generally underestimated. One third of the models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI during WPR are higher than observed for all basins. When looking at MPR, the models typically simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong (Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and number of dry days within WPR lower (higher) than observed for these basins. Such skill of the CMIP5 models in representing the present-day monsoonal

  12. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 °C and 2.0 °C in the Tarim River basin, China

    Science.gov (United States)

    Su, Buda; Jian, Dongnan; Li, Xiucang; Wang, Yanjun; Wang, Anqian; Wen, Shanshan; Tao, Hui; Hartmann, Heike

    2017-11-01

    Actual evapotranspiration (ETa) is an important component of the water cycle. The goals for limiting global warming to below 2.0 °C above pre-industrial levels and aspiring to 1.5 °C were negotiated in the Paris Agreement in 2015. In this study, outputs from the regional climate model COSMO-CLM (CCLM) for the Tarim River basin (TRB) were used to calculate ETa with an advection-aridity model, and changes in ETa under global warming scenarios of 1.5 °C (2020 to 2039) and 2.0 °C (2040 to 2059) were analyzed. Comparison of warming at the global and regional scale showed that regional 1.5 °C warming would occur later than the global average, while regional 2.0 °C warming would occur earlier than the global average. For global warming of 1.5 °C, the average ETa in the TRB is about 222.7 mm annually, which represents an increase of 6.9 mm relative to the reference period (1986-2005), with obvious increases projected for spring and summer. The greatest increases in ETa were projected for the northeast and southwest. The increment in the annual ETa across the TRB considering a warming of 1.5 °C was 4.3 mm less than that for a warming of 2.0 °C, and the reduction between the two levels of warming was most pronounced in the summer, when ETa was 3.4 mm smaller. The reduction in the increment of annual ETa for warming of 1.5 °C relative to warming of 2.0 °C was most pronounced in the southwest and northeast, where it was projected to be 8.2 mm and 9.3 mm smaller, respectively. It is suggested that the higher ETa under a warming of 2.0 °C mainly results from an increase in the sunshine duration (net radiation) in the southwestern basin and an increase in precipitation in the northeastern basin. Vapor is removed from the limited surface water supplies by ETa. The results of this study are therefore particularly relevant for water resource planning in the TRB.

  13. South Fork Clearwater River Habitat Enhancement, Crooked and Red Rivers : Annual Report, 1989.

    Energy Technology Data Exchange (ETDEWEB)

    Baer, William H.

    1990-01-01

    In 1983, the Nez Perce National Forest and the Bonneville Power Administration entered into an interagency agreement to enhance and improve habitat for two anadromous fish species, spring chinook salmon (Oncorhynchus tshawyscha) and summer steelhead trout (Onchorhyncus mykiss), in the South Fork Clearwater River tributaries. The South Fork Clearwater River was dammed in 1927 for hydroelectric development. Anadromous fish runs were virtually eliminated until the dam was removed in 1962. To complicate the problem, upstream spawning and rearing habitats were severely impacted by dredge and hydraulic mining, road building, timber harvest, and over-grazing. Fish habitat improvement projects under the above contract are being carried out in two major tributaries to the South Fork Clearwater River. Both the Red River and the Crooked River projects began in 1983 and will be completed in 1990. 12 figures., 1 tab.

  14. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  15. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1984-06-01

    This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

  16. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  17. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or chosen from a predefined tag taxonomy. These comments and tag clouds may be used by the community to filter results and identify models or simulations of interest, e.g, by region, modeling approach, spatiotemporal resolution, etc. Users may discuss methods or results in real-time with a built-in chat feature. Separate user groups may be defined for logical groups of collaboration partners, e.g., expert modelers, land managers, policy makers, school children, or the general public, to optimize the collaboration signal-to-noise ratio for all.

  18. A framework for the development of an eco-tourism strategy along the Sava River - Report produced in the frame of Task C of the Life 3rd countries project

    NARCIS (Netherlands)

    Simeonova, V.; Zingstra, H.L.

    2009-01-01

    This document aims to provide a base for a coordinated and coherent development of sustainable tourism along the Sava River based on the rich landscape and biodiversity and the valuable cultural historic features along Sava River. The recommendations presented here are a reflection of the growing

  19. CHEMICAL COMPOSITION FROM THE DNIESTER RIVER TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. Gladchi

    2013-06-01

    Full Text Available This article presents the results obtained in the framework of the project 09.832.08.06A. The role of the tributaries on formation of the Dniester river water and the study of the waters quality of sources / fountains in the catchment area of the Dniester river as sources of water supply and for irrigation in the State Program, Scientific Researches and of the management of waters quality.

  20. New River Valley Agriculture & Agritourism Strategic Plan

    OpenAIRE

    Walker, Martha A.; Scott, Kelli H.

    2017-01-01

    This strategic plan discusses plans for improving the marketing of agritourism and agribusiness in the New River Valley (Floyd, Giles, Montgomery and Pulaski Counties), and potentially increasing community wealth while improving the access to local crops and products. Includes Planning for an Agricultural Future in Giles, Montgomery, and Pulaski Counties: An Agricultural Regional Assessment, prepare for the New River Valley Agricultural & Agritourism Project Management Team by Matson Consu...

  1. 76 FR 41154 - Review and Approval of Projects

    Science.gov (United States)

    2011-07-13

    ... COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY: Susquehanna River Basin Commission. ACTION... would amend the project review regulations of the Susquehanna River Basin Commission (Commission) to... flowback or produced fluids from a Commission approved hydrocarbon development project to an out-of-basin...

  2. 75 FR 36301 - Review and Approval of Projects

    Science.gov (United States)

    2010-06-25

    ... COMMISSION 18 CFR Parts 806 and 808 Review and Approval of Projects AGENCY: Susquehanna River Basin... proposed rules that would amend the project review regulations of the Susquehanna River Basin Commission... requiring review and approval; improve notice procedures for all project applications; clarify requirements...

  3. 77 FR 75915 - Review and Approval of Projects

    Science.gov (United States)

    2012-12-26

    ... COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY: Susquehanna River Basin Commission. ACTION... would amend the project review regulations of the Susquehanna River Basin Commission (Commission) to... is to make further modifications to the Commission's project review regulations relating to surface...

  4. The Herpetology Project

    Science.gov (United States)

    Vacchina, Peter; Aguirre, Mary

    2008-01-01

    In this article, the authors describe their ongoing experience with the Herpetology Project. Through this field study, students catch and track amphibians and reptiles in the Assabet River area, record and analyze data, share their findings with the community, and ultimately, work toward protecting turtles' habitats. The authors chose to focus on…

  5. Weekend Science Project

    Science.gov (United States)

    Santos, Karey

    2012-01-01

    Weekend plans...every family has them. Whether it's fishing, swimming, or simply picnicking by the river, water plays a significant role in many recreational endeavors. Encouraging students and their families to use their "scientific eyes" to explore these wonderful wet places is what Weekend Science Project is all about. Weekend Science Project…

  6. 78 FR 53754 - Loup River Public Power District; Notice of Proposed Restricted Service List for a Programmatic...

    Science.gov (United States)

    2013-08-30

    ... Energy Regulatory Commission Loup River Public Power District; Notice of Proposed Restricted Service List... license for the Loup River Hydroelectric Project No. 1256. The programmatic agreement, when executed by... any Order issuing a license. Loup River Public Power District, as applicant for the Loup River...

  7. Operational river ice forecasting on the Peace River : managing flood risk and hydropower production

    Energy Technology Data Exchange (ETDEWEB)

    Jasek, M. [BC Hydro, Burnaby, BC (Canada); Friensenhan, E. [Alberta Environment, Edmonton, AB (Canada); Granson, W. [Alberta Environment, Peace River, AB (Canada)

    2007-07-01

    This paper described the procedures used jointly by Alberta Environment and BC Hydro to manage the water flows on the Peace River. The Alberta-British Columbia Joint Task Force on Peace River Ice (JTF) was concerned with the coordination of break-up ice observations along the river as well as ice jam flooding at the Town of Peace River (TPR), resulting from an induced dynamic break-up on the Smoky River, a main tributary of the Peace River. The TPR is the largest community that can be most affected by ice jams on river. As such, river ice processes on the river are monitored and subject to operational procedures of the JTF. These operating procedures are organized into 3 separate sequential phases, notably freeze-up procedures, mid-winter procedures, and break-up procedures. In April 2007, the ice break-up season on the Peace River and Smoky River, was particularly challenging as record high snow cover led to a dynamic break-up of these two streams. Costs due to reduced hydropower production were documented. This paper highlighted the main decision points for mitigation and presented the recommendations that improve mitigation efforts with benefits to both the flood prone community and the power utility. This paper revealed that forecasting the start of control flow by predicting the arrival of the ice front using the Comprehensive River Ice Simulation System Project (CRISSP) model was largely successful. Further work is underway to define the accuracy of forecasting the start of control flow using CRISSP, as accuracy of temperature forecasts appears to be the major uncertainty. The JTF was able to make successful recommendations for flow reductions. However, the need for an accurate hydrologic model for the Smoky River as well as other inflows between Peace Canyon and the TPR was emphasized. 4 refs., 31 figs.

  8. River Water Quality Zoning: A Case Study of Karoon and Dez River System

    Directory of Open Access Journals (Sweden)

    M Karamouz, N Mahjouri, R Kerachian

    2004-10-01

    Full Text Available Karoon-Dez River basin, with an area of 67000 square kilometers, is located in southern part of Iran. This river system supplies the water demands of 16 cities, several villages, thousands hectares of agricultural lands, and several hydropower plants. The increasing water demands at the project development stage including agricultural networks, fish hatchery projects, and inter-basin water transfers, have caused a gloomy future for water quality of the Karoon and Dez Rivers. A good part of used agricultural water, which is about 8040 million cubic meters, is returned to the rivers through agricultural drainage systems or as non-point, return flows. River water quality zoning could provide essential information for developing river water quality management policies. In this paper, a methodology is presented for this purpose using methods of -mean crisp classification and a fuzzy clustering scheme. The efficiency of these clustering methods was evaluated using water quality data gathered from the monitoring sampling points along Karoon and Dez Rivers. The results show that the proposed methodology can provide valuable information to support decision-making and to help river water quality management in the region.

  9. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...channel and tributary wash deposits. The older Quaternary alluvium also includes the usually thin spotty veneer of residual soil and slope wash found on...that post magmatic hydrothermal alteration may have been caused by residual aqueous-gaseous fluids rising through the intergranular pore spaces in the

  10. 77 FR 23658 - Six Rivers National Forest, Gasquet Ranger District, California, The Smith River National...

    Science.gov (United States)

    2012-04-20

    ... Smith River National Recreation Area Restoration and Motorized Travel Management Project AGENCY: Forest... minimizing ecological and cultural resource risk. In addition, this project restores terrestrial and aquatic... unauthorized routes (UAR) that pose a risk to ecological resources will be restored to reduce risk to resources...

  11. 77 FR 38881 - Notice of Final Federal Agency Actions on Proposed Two New Ohio River Bridge Crossings in...

    Science.gov (United States)

    2012-06-29

    ... Federal Highway Administration Notice of Final Federal Agency Actions on Proposed Two New Ohio River... a proposed highway project, the Louisville-Southern Indiana Ohio River Bridges Project, which would provide a new Ohio River Bridge carrying Interstate 65 (I-65) between Louisville, Kentucky and...

  12. Project 2010 Project Management

    CERN Document Server

    Happy, Robert

    2010-01-01

    The ideal on-the-job reference guide for project managers who use Microsoft Project 2010. This must-have guide to using Microsoft Project 2010 is written from a real project manager's perspective and is packed with information you can use on the job. The book explores using Project 2010 during phases of project management, reveals best practices, and walks you through project flow from planning through tracking to closure. This valuable book follows the processes defined in the PMBOK Guide, Fourth Edition , and also provides exam prep for Microsoft's MCTS: Project 2010 certification.: Explains

  13. South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Siddall, Phoebe

    1992-04-01

    In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

  14. River Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  15. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false White River, Arkansas Post Canal... White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River, Ark... apply to: (1) Waterways. White River between Mississippi River and Arkansas Post Canal, Ark.; Arkansas...

  16. NOAA ESRI Geotiff- 2m Multibeam Backscatter of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 2 meter resolution backscatter mosaic of the north shore (Salt River) of St. Croix, US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography...

  17. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of the a portion of the NPS's Salt River Bay National Historical Park and...

  18. Hourly surface current maps of the coastal waters off the Columbia River estuary from long-range high-frequency (HF) radar data collected as part of the RISE project, June 2004 - December 2006 (NODC Accession 0050195)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly maps of surface currents were made using SeaSonde HF systems deployed in northern Oregon and southern Washington on the Columbia River from June 2004 to...

  19. Current meter data from moored current meter casts in the Columbia River estuary - Washington/Oregon as part of the Low Level Waste Ocean Disposal project from 13 August 1979 - 27 September 1984 (NODC Accession 9500016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Columbia River estuary - Washington/Oregon from August 13, 1979 to September 27, 1984. Data...

  20. Station and Environmental Data Sets from Pump Casts from the Columbia River Land-Margin Ecosystem Research Project from 16 June 1999 to 29 June 1999 (NODC Accession 0000420)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, phytoplankton, and other data were collected from the Columbia River estuary from 16 June 1999 to 29 June 1999. Data were collected from the R/V Robert...

  1. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of the a portion of the NPS's Salt River Bay National Historical Park and...

  2. NOAA ESRI Geotiff- 2m Multibeam Backscatter of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 2 meter resolution backscatter mosaic of the north shore (Salt River) of St. Croix, US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography...

  3. River Protection Project Technology and Innovation Roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Reid, D. S.; Wooley, T. A.; Kelly, S. E.

    2017-08-14

    The Technology and Innovation Roadmap is a planning tool for WRPS management, DOE ORP, DOE EM, and others to understand the risks and technology gaps associated with the RPP mission. The roadmap identifies and prioritizes technical areas that require technology solutions and underscores where timely and appropriate technology development can have the greatest impact to reduce those risks and uncertainties. The roadmap also serves as a tool for determining allocation of resources.

  4. Modification Project, Big Stone Lake - Whetstone River.

    Science.gov (United States)

    1980-01-01

    accomplish these activities during low water periods to keep impacts to a minimum . 8 5.03 In addition, minor amounts of runoff and sedimentation from land...raquest tutac you submit ,’u.ar co a-maa by Lj july 1 oJ. If you raqu.ire aJUioaa Laforaation , jilae coatact dr. JaviU a.trwick~, 4rcLuaolo;ist

  5. Three Rivers: Protecting the Yukon's Great Boreal Wilderness

    Science.gov (United States)

    Juri Peepre

    2007-01-01

    The Three Rivers Project in the Yukon, Canada, aims to protect a magnificent but little known 30,000 km2 (11,583 miles2) wilderness in the Peel watershed, using the tools of science, visual art, literature, and community engagement. After completing ecological inventories, conservation values maps, and community trips on the Wind, Snake, and Bonnet Plume rivers, the...

  6. Hood River Pelton Ladder Studies : Annual Report 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik A.; French, Rod A.; Ritchey, Alan D.

    1996-09-01

    Data collected from this program will provide the baseline information needed to (1) evaluate various management options for implementing the Hood River Production Plan and (2) determine any post-project impacts the Hood River Production Plan has on indigenous populations of resident fish.

  7. Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China

    Science.gov (United States)

    Bin, Liu; Zhengyu, Liu; Shucai, Li; Lichao, Nie; Maoxin, Su; Huaifeng, Sun; Kerui, Fan; Xinxin, Zhang; Yonghao, Pang

    2017-09-01

    This paper describes the application of a comprehensive surface geophysical investigation of underground karst systems ahead of the tunnel face in the Xiaoheyan section in the main line of the water supply project from Songhua River, located in Jilin, China. To make an accurate investigation, Surface Electrical Resistivity Tomography (S-ERT), Transient Electromagnetic Method (TEM), Geological Drilling (Geo-D) and Three-dimensional Cross-hole Electrical Resistivity Tomography (3D cross-hole ERT) were applied to gain a comprehensive interpretation. To begin with, S-ERT and TEM are adopted to detect and delineate the underground karst zone. Based on the detection results, surface and in-tunnel Geo-D are placed in major areas with more specific and accurate information gained. After that, survey lines of 3D cross-hole ERT are used to conduct detailed exploration towards underground karst system. In the comprehensive investigation, it is the major question to make the best of prior information so as to promote the quality of detection. The paper has put forward strategies to make the full use of effective information in data processing and the main ideas of those strategies include: (1) Take the resistivity distribution of the subsurface stratum gained by S-ERT inversion as the initial model of TEM inversion; (2) Arrange borehole positions with the results of S-ERT and TEM. After that, gain more accurate information about resistivity of subsurface stratum using those boreholes located; (3) Through the comprehensive analysis of the information about S-ERT, TEM and Geo-D, set the initial model of 3D cross-hole resistivity inversion and meanwhile, gain the variation range of stratum resistivity. At last, a 3D cross-hole resistivity inversion based on the incorporated initial model and inequality constraint is conducted. Constrained inversion and joint interpretation are realized by the effective use of prior information in comprehensive investigation, helping to suppress

  8. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  9. 2011 Suwannee River Water Management District Lidar: Upper Suwannee (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River project area in Florida. The entire survey area encompasses 1,151 square miles. The...

  10. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holderman, Charles

    2009-06-26

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  11. 76 FR 42124 - River Bounty, Inc.; Renew Hydro, LLC; Notice of Transfer of Exemption

    Science.gov (United States)

    2011-07-18

    ... Energy Regulatory Commission River Bounty, Inc.; Renew Hydro, LLC; Notice of Transfer of Exemption 1. By letters filed April 19, April 20, and May 4, 2011, River Bounty, Inc. informed the Commission that its...\\ has been transferred to Renew Hydro, LLC. The project is located on the Susquehanna River in...

  12. Wenatchee River steelhead reproductive success - Estimate the relative reproductive success of hatchery and wild steelhead in the Wenatchee River, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project uses genetic parentage analysis to estimate the relative reproductive success of hatchery and wild steelhead spawning in the Wenatchee River, WA. The...

  13. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  14. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  15. Berg River Textiles - Cleaner Production Option Report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    In October and November 2002 meetings were held between Berg River Textiles, Mr. Juan Laubscher, and external consultants from the South African – Danish Cleaner Textile Production Project, Mr. Zsig Schneider and Mr. Henrik Wenzel. This team of people collected information on recipes and flow...

  16. Global drivers of future river flood risk

    NARCIS (Netherlands)

    Winsemius, H.C.; Aerts, J.C.J.H.; Van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; Ward, P.J.

    2016-01-01

    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We

  17. Global drivers of future river flood risk

    NARCIS (Netherlands)

    Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; van Beek, Ludovicus P. H.|info:eu-repo/dai/nl/14749799X; Bierkens, Marc F. P.|info:eu-repo/dai/nl/125022794; Bouwman, Arno; Jongman, Brenden; Kwadijk, Jaap C. J.; Ligtvoet, Willem; Lucas, Paul L.|info:eu-repo/dai/nl/272607444; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Ward, Philip J.

    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies1. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We

  18. River pollution control

    National Research Council Canada - National Science Library

    Stiff, M.J

    1980-01-01

    Readers will gain an insight into the problems of other countries, particularly those with trans-frontier rivers, the measures adopted to improve river quality, and how the World Health Organization...

  19. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  20. Illinois River NWFR HMP

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Illinois River National Wildlife and Fish Refuges Complex stretches along 124 miles of the Illinois River in west central Illinois. The Complex includes three...