WorldWideScience

Sample records for providing valuable feedstock

  1. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  2. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  3. Metagenomes provide valuable comparative information on soil microeukaryotes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Stenbæk, Jonas; Santos, Susana

    2016-01-01

    has been identified. Our analyses suggest that publicly available metagenome data can provide valuable information on soil microeukaryotes for comparative purposes when handled appropriately, complementing the current view provided by ribosomal amplicon sequencing methods......., providing microbiologists with substantial amounts of accessible information. We took advantage of public metagenomes in order to investigate microeukaryote communities in a well characterized grassland soil. The data gathered allowed the evaluation of several factors impacting the community structure......, including the DNA extraction method, the database choice and also the annotation procedure. While most studies on soil microeukaryotes are based on sequencing of PCR-amplified taxonomic markers (18S rRNA genes, ITS regions), this work represents, to our knowledge, the first report based solely...

  4. Environmental protection and recovery of valuable feedstocks using carbon containing adsorbents. Developments and trends of Bergbau-Forschung GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Knoblauch, K; Richter, E

    1986-06-01

    Activated carbons, active cokes and carbon molecular sieves are used for regenerative processes for environmental protection and for processing of valuable feedstocks. Development of adsorption processes and their lay-out base on adsorption equilibria, adsorption kinetics, kinetics of desorption by heating, depressurization or purging not only as single steps but in the same combination as in the regenerative process. For example, some adsorption processes are described which are applied in pilot scale or industrially: Nitrogen production from air by pressure swing adsorption (PSA); Hydrogen production from coke oven gas by PSA; Upgrading of methane from biogas and from fire damp; Removal of hydrogen sulfide from biogas; Removal of sulfur dioxide and nitrogen oxides from flue gases and drinking water supply and waste water treatment.

  5. Development of synthetic chromosomes and improved microbial strains to utilize cellulosic feedstocks and express valuable coproducts for sustainable production of biofuels from corn

    Science.gov (United States)

    A sustainable biorefinery must convert a broad range of renewable feedstocks into a variety of product streams, including fuels, power, and value-added bioproducts. To accomplish this, microbial-based technologies that enable new commercially viable coproducts from corn-to-ethanol biofuel fermentati...

  6. Line lessons: Enbridge's Northern Line provides valuable information

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2000-02-01

    Experiences gained from the 14-year old Norman Wells crude oil pipeline in the Northwest Territories may provide operators with valuable insights in natural gas pipeline developments in northern Canada. The Norman Wells line is the first and only long-distance pipeline in North America buried in permafrost and has proven to be a veritable laboratory on pipeline behaviour in extremely cold climates which also happen to be discontinuous at the same time. The line was built by Enbridge with a 'limit state' design, i e. it was built to move within the permafrost within certain limits, the amount of movement depending upon the area in which the line was built. This technology, which is still cutting edge, allows the pipeline to react to the freeze-thaw cycle without being affected by the heaving and resettling. The knowledge gained from the Norman Wells Line has come in very useful in the more recent AltaGas Services project transporting natural gas from a nearby well into the the town of Inuvik. Enbridge also contributed to the development of various pipeline inspection tools such as the 'Geopig' which travels within the pipeline and can pinpoint the location of problems practically within a matter of inches, and the 'Rolligon' an amphibious vehicle with five-foot diameter rubber tires that displaces only two pounds per square inch, leaving barely a track as it travels along the right-of-way during times other than winter.

  7. Robots provide valuable tools for waste processing at Millstone Nuclear Power Station

    International Nuclear Information System (INIS)

    Miles, K.; Volpe, K.

    1997-01-01

    The Millstone nuclear power station has begun an aggressive program to use robotics, which when properly used minimizes operating costs and exposure to personnel. This article describes several new ways of using existing robotic equipment to speed up work processes and provide solutions to difficult problems. The moisture separator pit and liquid radwaste are discussed

  8. Small stones sets Web site apart. Froedtert Hospital updates provide valuable healthcare information.

    Science.gov (United States)

    Rees, Tom

    2002-01-01

    Froedtert & Medical College, an academic medical center, has adopted a proactive approach to providing consumers with reliable sources of information. The Milwaukee institution has redesigned its Web site, which first opened in 1995. The new version has simplified the navigation process and added new content. Small Stones, a health resource center, also a brick-and-mortar shop, went online Feb. 1. Online bill paying was launched in May. Pharmacy refill functions are expected to be online this summer.

  9. Composite Indexes Economic and Social Performance: Do they Provide Valuable Information?

    Directory of Open Access Journals (Sweden)

    Nasierowski Wojciech

    2016-01-01

    Full Text Available This paper examines the information content of the selected composite indexes, namely the Global Competitiveness Report Index, the Human Development Index, the Knowledge Economy Index, the Innovation Union Scoreboard, and the like. These indexes are examined from the viewpoint of country rankings. It is argued that these indexes provide highly similar information, which brings to question the usefulness of such a variety of approaches. This paper also explores the drawbacks of composite indexes, and questions whether these indexes can adequately serve as policy-setting mechanisms.

  10. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  11. Assessment of different biomarkers provides valuable diagnostic standards in the evaluation of the risk of acute rejection.

    Science.gov (United States)

    Zheng, Jin; Ding, Xiaoming; Tian, Xiaohui; Jin, Zhankui; Pan, Xiaoming; Yan, Hang; Feng, Xinshun; Hou, Jun; Xiang, Heli; Ren, Li; Tian, Puxun; Xue, Wujun

    2012-09-01

    Acute rejection (AR) is a strong risk factor for chronic rejection in renal transplant recipients. Accurate and timely diagnosis of AR episodes is very important for disease control and prognosis. Therefore, objectively evaluated the immune status of patients is essential in the field of post-transplantation treatment. This longitudinal study investigated the usefulness of five biomarkers, human leukocyte antigen (HLA)-G5 and sCD30 level in sera, intracellular adenosine triphosphate (iATP) release level of CD4(+) T cells, and granzyme B/perforin expression in peripheral blood mononuclear cells (PBMCs) and biopsies, to detect AR and the resolution of biomarkers in a total of 84 cases of renal transplantation. The data demonstrated that recipients with clinical or biopsy proven rejection significantly increased iATP release level of CD4(+) T cells, and elevated sCD30 but lowered HLA-G5 level in sera compared with individuals with stable graft function. Expression levels of granzyme B and perforin were also elevated in PBMCs and graft biopsies of AR patients. Taken together, we identified that upregulation of sCD30, iATP, granzyme B, perforin, and downregulation of HLA-G5 could provide valuable diagnostic standards to identify those recipients in the risk of AR. And iATP may be a better biomarker than others for predicting the graft rejection episode.

  12. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  13. CoCoRaHS: A Community Science Program Providing Valuable Precipitation Data to Guide Decision Making

    Science.gov (United States)

    Robinson, D. A.; Doesken, N.

    2017-12-01

    CoCoRaHS is an acronym for the Community Collaborative Rain, Hail and Snow Network. It is long-running, community-based network of volunteers working together to measure and map precipitation (rain, hail and snow). Precipitation is an ideal element for public engagement because it affects everyone, it is so variable in time and space and it impacts so many things. By using a standard precipitation gauge, stressing training and education, utilizing an interactive website, and having observations undergo quality assurance, the CoCoRaHS program provides high-quality data for natural resource, education and research applications. The program currently operates in all states, Canada and the Bahamas. It originated with the Colorado Climate Center at Colorado State University in 1998 due in part to the Fort Collins flood a year prior. Upwards of 12,000 observers submit observations each day. Observations meet federal guidelines and are archived at the U.S. National Centers for Environmental Information. Because of excellent spatial coverage, data quality, practical relevance, and accessibility, CoCoRaHS observations are used by a wide variety of organizations and individuals. The U.S. National Weather Service, hydrologists, emergency managers, city utilities (water supply, storm water), insurance adjusters, the U.S. Department of Agriculture, engineers, mosquito control commissions, ranchers and farmers, outdoor and recreation interests, teachers and students are just some examples of those who use CoCoRaHS data in making well-informed, meaningful decisions. Some examples of community applications and the science utility of CoCoRaHS observations include storm warnings, water supply and demand forecasts, disaster declarations (drought, winter storm, etc.), drought and food production assessments, calibration/validation of remote sensing, infrastructure evaluation and potential redesign (ice and snow loading, bridge, storm and sewer design), recreation planning, and

  14. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  15. Prediction of the FCC feedstocks crackability

    International Nuclear Information System (INIS)

    Martinez Cruz, Francy L; Navas Guzman, Gustavo; Osorio Suarez, Juan Pablo

    2009-01-01

    This paper presents a statistical model for prediction of feed stock's crackability (potential to generate valuable products on catalytic cracking process), based on experimental reactivity data by micro activity test (MAT - Microscale Fixed Bed Reactor) and detailed physicochemical characterization. A minimum amount of experimental tests corresponding to feed properties (typically available at refinery) is used to build a more complete description of feedstocks including chemical composition and hydrocarbon distribution. Both measured and calculated physicochemical properties are used to predict the yields of main products at several MAT reaction severities. Different well known functions correlating yields and conversion (previously tested with experimental data MAT) allows the evaluation of maximum point of gasoline yield. This point is used like a crackability index and qualitative point comparison of feed stock's potential. Extensive feedstocks data base from Instituto Colombiano del Petroleo (ICP) with a wide range of composition were used to build the model, including the following feeds: 1. Light feedstocks - Ga soils of refinery and laboratory cuts from different types of Colombian crude oils and 2. Heavy feedstocks - Residues or feedstocks combined (blending of ga soil [GO], atmospheric tower bottom [ATB], demetallized oil [DMO] and demetallized oil hydrotreated [DMOH] in several proportions) from the four fluid catalytic cracking units (FCCU) at Ecopetrol S.A. refinery in Barrancabermeja - Colombia. The results of model show the prediction of valuable products such as gasoline for different refinery feedstocks within acceptable accuracy, thus obtaining a reliable ranking of crackability.

  16. Recovering valuable liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1931-06-11

    A process for recovering valuable liquid hydrocarbons from coking coal, mineral coal, or oil shale through treatment with hydrogen under pressure at elevated temperature is described. Catalysts and grinding oil may be used in the process if necessary. The process provides for deashing the coal prior to hydrogenation and for preventing the coking and swelling of the deashed material. During the treatment with hydrogen, the coal is either mixed with coal low in bituminous material, such as lean coal or active coal, as a diluent or the bituminous constituents which cause the coking and swelling are removed by extraction with solvents. (BLM)

  17. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  18. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  19. Example of feedstock optimization

    International Nuclear Information System (INIS)

    Boustros, E.

    1991-01-01

    An example of feedstock optimization at an olefins plant which has the flexibility to process different kinds of raw materials while maintaining the same product slate, is presented. Product demand and prices, and the number of units in service as well as the required resources to operate these units are considered to be fixed. The plant profitability is a function of feedstock choice, plus constant costs which are the non-volume related costs. The objective is to find a set or combination of feedstocks that could match the client product demands and fall within the unit's design and capacity, while maximizing the financial operating results

  20. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  1. Gardening Provides Valuable Time to Talk

    Science.gov (United States)

    Boyd, Margaret

    2016-01-01

    Like many schools, Hornsea Community Primary School, which is situated in a rural coastal town in East Yorkshire, has a long wish list of both curriculum and pastoral ideals. A gardening club was started at the school with the intention of transforming two small areas of the school grounds that were very visible to the school community and to…

  2. Challenging and valuable

    NARCIS (Netherlands)

    Van Hal, J.D.M.

    2008-01-01

    Challenging and valuable Inaugural speech given on May 7th 2008 at the occasion of the acceptance of the position of Professor Sustainable Housing Transformation at the faculty of Architeeture of the Delft University of Technology by Prof. J.D.M. van Hal MSc PhD.

  3. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  4. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  5. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  6. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Science.gov (United States)

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  7. Heavy gas oils as feedstock for petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  8. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  9. Liquid fuels from alternative feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  10. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  11. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  12. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  13. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  14. MVT a most valuable theorem

    CERN Document Server

    Smorynski, Craig

    2017-01-01

    This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mat...

  15. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Lauerman, V.

    2001-01-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  16. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  17. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  18. Prediction of physicochemical properties of FCC feedstock by Chemometric analysis of their ultraviolet spectrum

    International Nuclear Information System (INIS)

    Baldrich Ferrer, Carlos A

    2008-01-01

    Chemometric analysis by Partial Least Squares (PLS) has been applied in this work to correlate the ultraviolet spectrum of combined Fluid Catalytic Cracking (FCC) feedstock with their physicochemical properties. The prediction errors obtained in the validation process using refinery samples demonstrate the accuracy of the predicted properties. This new analytical methodology allows obtaining in one analysis detailed information about the most important physicochemical properties of FCC feedstock and could be used as a valuable tool for operational analysis

  19. Recovering valuable shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Engler, C

    1922-09-26

    A process is described for the recovery of valuable shale oils or tars, characterized in that the oil shale is heated to about 300/sup 0/C or a temperature not exceeding this essentially and then is treated with a solvent with utilization of this heat.

  20. Feedstock Supply and Logistics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) and its partners are developing the technologies and systems needed to sustainably and economically deliver a diverse range of biomass in formats that enable efficient use in biorefineries.

  1. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  2. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  3. Process for purifying lignocellulosic feedstocks

    Science.gov (United States)

    Gray, Matthew; Matthes, Megan; Nelson, Thomas; Held, Andrew

    2018-01-09

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  4. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  5. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  6. Energy threat to valuable land

    International Nuclear Information System (INIS)

    Caufield, C.

    1982-01-01

    Having considered the varying estimates of future UK energy requirements which have been made, the impact on the environment arising from the use of valuable sites for energy production is examined. It is shown that energy installations of all kinds clash with areas of natural beauty or ecological importance. As an example, a recent investigation of potential sites for nuclear power stations found that most of them were on or next to sites of special scientific interest, and other areas officially designated to be regarded as special or to be protected in some way. (U.K.)

  7. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  8. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Science.gov (United States)

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  9. High School Child Development Courses Provide a Valuable Apprenticeship

    Science.gov (United States)

    McCombie, Sally M.

    2009-01-01

    The current media are laden with reports of the many significant problems facing today's youth. In fact, parenting has become a national topic of discussion. Parenting instruction, a responsibility that had previously rested in the home, has become part of educational curricula. Courses in child development are offered for high school students in…

  10. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  11. The impact of silicon feedstock on the PV module cost

    NARCIS (Netherlands)

    del Coso, G.; del Cañizo, C.; Sinke, W.C.

    2010-01-01

    The impact of the use of new (solar grade) silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality. Calculations based on data provided by European industry

  12. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  13. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  14. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  15. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  16. Thermal characterization of tropical biomass feedstocks

    International Nuclear Information System (INIS)

    Wilson, Lugano; Yang Weihong; Blasiak, Wlodzimierz; John, Geoffrey R.; Mhilu, Cuthbert F.

    2011-01-01

    The processing of agricultural crops results in waste, which is a potential energy resource for alleviating commercial energy supply problems to agricultural-led economies like Tanzania. The energy content of the individual agricultural waste is largely dependent on its chemical composition (C, H and O) and it is negatively affected by the inclusion of inorganic elements and moisture. In this work, fifteen tropical agricultural wastes emanating from export crops for Tanzania were analyzed. The methods used to analyze involved performing proximate and ultimate analysis for determining the biomass composition. Thermal degradation characteristic was established to five selected wastes (coffee husks, sisal bole, cashew nut shells, palm stem, and bagasse) using a thermogravimetric analyzer type NETZSCH STA 409 PC Luxx at a heating rate of 10 K/min. On the basis of elemental composition, the palm fibre and cashew nut shells exhibited high energy content due to their higher H:C ratio with relatively low O:C ratio. Results of the thermal degradation characteristic study showed that the cashew nut shells were the most reactive feedstocks due to their highest overall mass loss and lowest burnout temperatures of 364 o C. Further, kinetic studies done to the five tropical biomass feedstocks under the pseudo single-component overall model established the activation energy for the bagasse, palm stem, and cashew nut shells to be 460 kJ/mole, 542 kJ/mole, and 293 kJ/mole, respectively. The respective activation energies for coffee husks and sisal bole were 370 kJ/mole and 239 kJ/mole. With the exception of the sisal bole, which exhibited zero order reaction mechanism, the remaining materials' reaction mechanism was of first order. These experimental findings form a basis for ranking these materials for energy generation and provide necessary input to equipment and process designers.

  17. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  19. Upgrading of solid biofuels and feedstock quality

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, Jan [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    1998-06-01

    This paper treats upgrading of biomass to pellets, briquettes and powder and the quality needed of the initial feedstock. The main raw materials are wood and reed canary grass (Phalaris arundinacea L.) 5 refs, 6 figs, 2 tabs

  20. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  1. Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource.

    Science.gov (United States)

    Stylianou, Marinos; Agapiou, Agapios; Omirou, Michalis; Vyrides, Ioannis; Ioannides, Ioannis M; Maratheftis, Grivas; Fasoula, Dionysia

    2018-06-02

    Coffee is perhaps one of the most vital ingredients in humans' daily life in modern world. However, this causes the production of million tons of relevant wastes, i.e., plastic cups, aluminum capsules, coffee chaff (silver skin), and spent coffee grounds (SCG), all thrown untreated into landfills. It is estimated that 1 kg of instant coffee generates around 2 kg of wet SCG; a relatively unique organic waste stream, with little to no contamination, separated directly in the source by the coffee shops. The produced waste has been under researchers' microscope as a useful feedstock for a number of promising applications. SCG is considered a valuable, nutrients rich source of bioactive compounds (e.g., phenolics, flavonoids, carotenoids, lipids, chlorogenic and protocatechuic acid, melanoidins, diterpenes, xanthines, vitamin precursors, etc.) and a useful resource material in other processes (e.g., soil improver and compost, heavy metals absorbent, biochar, biodiesel, pellets, cosmetics, food, and deodorization products). This paper aims to provide a holistic approach for the SCG waste management, highlighting a series of processes and applications in environmental solutions, food industry, and agricultural sector. Thus, the latest developments and approaches of SCG waste management are reviewed and discussed.

  2. Semantic Document Image Classification Based on Valuable Text Pattern

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2011-01-01

    Full Text Available Knowledge extraction from detected document image is a complex problem in the field of information technology. This problem becomes more intricate when we know, a negligible percentage of the detected document images are valuable. In this paper, a segmentation-based classification algorithm is used to analysis the document image. In this algorithm, using a two-stage segmentation approach, regions of the image are detected, and then classified to document and non-document (pure region regions in the hierarchical classification. In this paper, a novel valuable definition is proposed to classify document image in to valuable or invaluable categories. The proposed algorithm is evaluated on a database consisting of the document and non-document image that provide from Internet. Experimental results show the efficiency of the proposed algorithm in the semantic document image classification. The proposed algorithm provides accuracy rate of 98.8% for valuable and invaluable document image classification problem.

  3. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  4. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Science.gov (United States)

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  5. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  6. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  7. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  8. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  9. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  10. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  11. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    Science.gov (United States)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  12. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    International Nuclear Information System (INIS)

    Nurfitri, Irma; Maniam, Gaanty Pragas; Hindryawati, Noor; Yusoff, Mashitah M.; Ganesan, Shangeetha

    2013-01-01

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  13. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  14. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  15. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  16. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  17. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  18. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  19. an assessment of timber trees producing valuable fruits and seeds ...

    African Journals Online (AJOL)

    User

    It is observed that most of the timber trees producing valuable fruits and seeds have low ... sector of the economy by providing major raw materials (saw logs, ... the trees also produce industrial raw materials like latex, ... villagers while avoiding some of the ecological costs of ..... enzymes of rats with carbon tetrachloride.

  20. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  1. Efficient utilization of renewable feedstocks: the role of catalysis and process design

    Science.gov (United States)

    Palkovits, Regina; Delidovich, Irina

    2017-11-01

    Renewable carbon feedstocks such as biomass and CO2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  2. Vulnerability of particularly valuable areas. Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This report is part of the scientific basis for the management plan for the North Sea and Skagerrak. The report focuses on the vulnerability of particularly valuable areas to petroleum activities, maritime transport, fisheries, land-based and coastal activities and long-range transboundary pollution. A working group with representatives from many different government agencies, headed by the Institute of Marine Research and the Directorate for Nature Management, has been responsible for drawing up the present report on behalf of the Expert Group for the North Sea and Skagerrak. The present report considers the 12 areas that were identified as particularly valuable during an earlier stage of the management plan process on the environment, natural resources and pollution. There are nine areas along the coast and three open sea areas in the North Sea that were identified according to the same predefined criteria as used for the management plans for the Barents Sea: Lofoten area and the Norwegian Sea. The most important criteria for particularly valuable areas are importance for biological production and importance for biodiversity.(Author)

  3. Vulnerability of particularly valuable areas. Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report is part of the scientific basis for the management plan for the North Sea and Skagerrak. The report focuses on the vulnerability of particularly valuable areas to petroleum activities, maritime transport, fisheries, land-based and coastal activities and long-range transboundary pollution. A working group with representatives from many different government agencies, headed by the Institute of Marine Research and the Directorate for Nature Management, has been responsible for drawing up the present report on behalf of the Expert Group for the North Sea and Skagerrak. The present report considers the 12 areas that were identified as particularly valuable during an earlier stage of the management plan process on the environment, natural resources and pollution. There are nine areas along the coast and three open sea areas in the North Sea that were identified according to the same predefined criteria as used for the management plans for the Barents Sea: Lofoten area and the Norwegian Sea. The most important criteria for particularly valuable areas are importance for biological production and importance for biodiversity.(Author)

  4. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  5. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  6. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  7. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  8. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  9. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  10. Alternative coke production from unconventional feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)

    2004-07-01

    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  11. Gasification : converting low value feedstocks to high value products

    International Nuclear Information System (INIS)

    Koppel, P.; Lorden, D.

    2009-01-01

    This presentation provided a historic overview of the gasification process and described the process chemistry of its two primary reactions, notably partial oxidation and steam reforming. The gasification process involves converting low value carbonaceous solid or liquid feeds to a synthetic gas by reacting the feed with oxygen and steam under high pressure and temperature conditions. Since the gasifier operates under a reducing environment instead of an oxidizing environment, mist sulphur is converted to hydrogen sulphide instead of sulphur dioxide. The gasification process also involves cleaning up synthetic gas and acid gas removal; recovery of conventional sulphur; and combustion or further processing of clean synthetic gas. This presentation also outlined secondary reactions such as methanation, water shift, and carbon formation. The negative effects of gasification were also discussed, with particular reference to syngas; metal carbonyls; soot; and slag. Other topics that were presented included world syngas production capacity by primary feedstock; operating IGCC projects; natural gas demand by oil sands supply and demand considerations; reasons for using the gasification process; gasifier feedstocks; and gasification products. The presentation concluded with a discussion of gasification licensors; gasification technologies; gasification experience; and the regulatory situation for greenhouse gas. Gasification has demonstrated excellent environmental performance with sulphur recovery greater than 99 per cent, depending on the the recovery process chosen. The opportunity also exists for carbon dioxide recovery. tabs., figs.

  12. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  13. Biomass will grow as a chemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J

    1979-11-30

    This article discusses the possibility of biomass replacing a large fraction of oil use both as a fuel and a chemical feedstock. Problems arise from the low density, calorific value and diffuse nature of plant material which makes collection and processing expensive on both a financial and an energy cost basis. Two distinct sources of biomass are identified: (a) wastes and residues and (b) purpose grown crops. In the same way it is possible to distinguish thermal and biological conversion technologies. Finally, worldwide biomass energy programmes are reviewed.

  14. Ravens reconcile after aggressive conflicts with valuable partners.

    Science.gov (United States)

    Fraser, Orlaith N; Bugnyar, Thomas

    2011-03-25

    Reconciliation, a post-conflict affiliative interaction between former opponents, is an important mechanism for reducing the costs of aggressive conflict in primates and some other mammals as it may repair the opponents' relationship and reduce post-conflict distress. Opponents who share a valuable relationship are expected to be more likely to reconcile as for such partners the benefits of relationship repair should outweigh the risk of renewed aggression. In birds, however, post-conflict behavior has thus far been marked by an apparent absence of reconciliation, suggested to result either from differing avian and mammalian strategies or because birds may not share valuable relationships with partners with whom they engage in aggressive conflict. Here, we demonstrate the occurrence of reconciliation in a group of captive subadult ravens (Corvus corax) and show that it is more likely to occur after conflicts between partners who share a valuable relationship. Furthermore, former opponents were less likely to engage in renewed aggression following reconciliation, suggesting that reconciliation repairs damage caused to their relationship by the preceding conflict. Our findings suggest not only that primate-like valuable relationships exist outside the pair bond in birds, but that such partners may employ the same mechanisms in birds as in primates to ensure that the benefits afforded by their relationships are maintained even when conflicts of interest escalate into aggression. These results provide further support for a convergent evolution of social strategies in avian and mammalian species.

  15. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  17. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    Science.gov (United States)

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; pmanagement recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Recovery and utilization of valuable metals from spent nuclear fuel. 3: Mutual separation of valuable metals

    International Nuclear Information System (INIS)

    Kirishima, K.; Shibayama, H.; Nakahira, H.; Shimauchi, H.; Myochin, M.; Wada, Y.; Kawase, K.; Kishimoto, Y.

    1993-01-01

    In the project ''Recovery and Utilization of Valuable Metals from Spent Fuel,'' mutual separation process of valuable metals recovered from spent fuel has been studied by using the simulated solution contained Pb, Ru, Rh, Pd and Mo. Pd was separated successfully by DHS (di-hexyl sulfide) solvent extraction method, while Pb was recovered selectively from the raffinate by neutralization precipitation of other elements. On the other hand, Rh was roughly separated by washing the precipitate with alkaline solution, so that Rh was refined by chelate resin CS-346. Outline of the mutual separation process flow sheet has been established of the combination of these techniques. The experimental results and the process flow sheet of mutual separation of valuable metals are presented in this paper

  20. Sugar cane/sweet sorghum as an ethanol feedstock in Louisiana and Piedmont

    International Nuclear Information System (INIS)

    Marsh, L.S.; Cundiff, J.S.

    1991-01-01

    Cost to provide readily fermentable feedstock for a year round sweet sorghum-to-ethanol production facility, up to the point at which fermentation begins, was determined. It was assumed that sweet sorghum is produced on marginal crop lands in the Southeastern Piedmont, and is purchased, standing in the field by a central ethanol production facility. Feedstock cost varied from $1.96 to $2.98/gal of ethanol potential depending on harvest system and use of by-products. Major contributors to feedstock cost were field production, harvest/field processing, and cost to evaporate juice to a storable syrup. Cost to transport feedstock to a central production facility, and cost of storage were relatively minor components of total cost, contributing only $0.05 and $0.06/gal ethanol potential, respectively. For a point of comparison, cost of producing ethanol feedstock from sugar cane, based on current processing practices in Louisiana sugar mills, was determined to be $2.50/gal ethanol potential. This cost is higher than determined for most options in the Piedmont for two reasons: (1) sugar cane demands a higher price in Louisiana than was assumed for sweet sorghum in the Piedmont, and (2) little market exists in Louisiana for by-products of sugar milling, consequently, no by-product credit was assigned. Current market value of ethanol must approximately double before a sweet sorghum-to-ethanol industry in the Piedmont could be economically viable, as no opportunity was identified for a significant reduction in feedstock cost

  1. A laboratory-scale pretreatment and hydrolysis assay for determination of reactivity in cellulosic biomass feedstocks.

    Science.gov (United States)

    Wolfrum, Edward J; Ness, Ryan M; Nagle, Nicholas J; Peterson, Darren J; Scarlata, Christopher J

    2013-11-14

    The rapid determination of the release of structural sugars from biomass feedstocks is an important enabling technology for the development of cellulosic biofuels. An assay that is used to determine sugar release for large numbers of samples must be robust, rapid, and easy to perform, and must use modest amounts of the samples to be tested.In this work we present a laboratory-scale combined pretreatment and saccharification assay that can be used as a biomass feedstock screening tool. The assay uses a commercially available automated solvent extraction system for pretreatment followed by a small-scale enzymatic hydrolysis step. The assay allows multiple samples to be screened simultaneously, and uses only ~3 g of biomass per sample. If the composition of the biomass sample is known, the results of the assay can be expressed as reactivity (fraction of structural carbohydrate present in the biomass sample released as monomeric sugars). We first present pretreatment and enzymatic hydrolysis experiments on a set of representative biomass feedstock samples (corn stover, poplar, sorghum, switchgrass) in order to put the assay in context, and then show the results of the assay applied to approximately 150 different feedstock samples covering 5 different materials. From the compositional analysis data we identify a positive correlation between lignin and structural carbohydrates, and from the reactivity data we identify a negative correlation between both carbohydrate and lignin content and total reactivity. The negative correlation between lignin content and total reactivity suggests that lignin may interfere with sugar release, or that more mature samples (with higher structural sugars) may have more recalcitrant lignin. The assay presented in this work provides a robust and straightforward method to measure the sugar release after pretreatment and saccharification that can be used as a biomass feedstock screening tool. We demonstrated the utility of the assay by

  2. Recovering valuable metals from recycled photovoltaic modules.

    Science.gov (United States)

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  3. [Psychopathology and film: a valuable interaction?].

    Science.gov (United States)

    van Duppen, Z; Summa, M; Fuchs, T

    2015-01-01

    Film or film fragments are often used in psychopathology education. However, so far there have been very few articles that have discussed the benefits and limitations of using films to explain or illustrate psychopathology. Although numerous films involves psychopathology in varying degrees, it is not clear how we can use films for psychopathology education. To examine the advantages, limitations and possible methods of using film as a means of increasing our knowledge and understanding of psychiatric illnesses. We discuss five examples that illustrate the interaction of film and psychopathology. On the one hand we explain how the psychopathological concepts are used in each film and on the other hand we explain which aspects of each film are valuable aids for teaching psychopathology. The use of film makes it possible to introduce the following topics in psychopathological teaching programme: holistic psychiatric reasoning, phenomenology and the subjective experience, the recognition of psychopathological prototypes and the importance of context. There is undoubtedly an analogy between the method we have chosen for teaching psychopathology with the help of films and the holistic approach of the psychiatrist and his or her team. We believe psychopathology education can benefit from films and we would recommend our colleagues to use it in this way.

  4. PICKLED PUMPKIN IS VALUABLE FOOD PRODUCT

    Directory of Open Access Journals (Sweden)

    T. A. Sannikova

    2017-01-01

    Full Text Available One of the main directions of the food industry development is the production of functional food products. Changes in the human’s diet structure cause that none of population group does receive necessary amount of vitamins, macro and microelements in healthy routine diet. To solve this problem, food stuffs enhanced by different ingredients enable to improve the biological and food value. The pumpkin is a valuable source of such important substances as carotene and pectin. Addition of garlic and hot pepper ingredients to process of pumpkin pickling enables to enrich the products with carbohydrates, proteins, microelements, which have low or no content in the pumpkin fruit. Therefore, the study of the influence of the different quantities of garlic and hot pepper additions on chemical composition of finished product is very important. The influence of plant additions used on chemical composition of finished product had been well determined. It was shown that through increased doses of garlic and hot pepper ingredients as compared with control, the carotene and dry matter content then decreased by 1.16%-3.43% in pickled pumpkin, while the pectin content depended on added component. The highest pectin content, 0.71% was observed at addition of 10 g. garlic ingredient per 1 kg. of raw matter, that was 4.1 times higher than control. With increased addition of hot pepper ingredient the pectin accumulation was decreasing from 0.58% in control to 0.36% in variant 10g. per 1kg. of raw matter.

  5. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  6. Graphene growth with ‘no’ feedstock

    Science.gov (United States)

    Qing, Fangzhu; Jia, Ruitao; Li, Bao-Wen; Liu, Chunlin; Li, Congzhou; Peng, Bo; Deng, Longjiang; Zhang, Wanli; Li, Yanrong; Ruoff, Rodney S.; Li, Xuesong

    2017-06-01

    Synthesis of graphene by chemical vapor deposition (CVD) from hydrocarbons on Cu foil substrates can yield high quality and large area graphene films. In a typical CVD process, a hydrocarbon in the gas phase is introduced for graphene growth and hydrogen is usually required to achieve high quality graphene. We have found that in a low pressure CVD system equipped with an oil mechanical vacuum pump located downstream, graphene can be grown without deliberate introduction of a carbon feedstock but with only trace amounts of C present in the system, the origin of which we attribute to the vapor of the pump oil. This finding may help to rationalize the differences in graphene growth reported by different research groups. It should also help to gain an in-depth understanding of graphene growth mechanisms with the aim to improve the reproducibility and structure control in graphene synthesis, e.g. the formation of large area single crystal graphene and uniform bilayer graphene.

  7. New Zealand Coals - A Potential Feedstock for Deep Microbial Life

    DEFF Research Database (Denmark)

    Glombitza, Clemens

    2010-01-01

    into the surrounding. Previous studies showed that especially oxygen containing compounds are lost from the macromolecular matrix during diagenesis and early catagenesis. Oxygen containing low molecular weight organic acids (LMWOAs) such as formate, acetate and oxalate represent important substrates for microbial...... reactions. Formate, acetate and oxalate were found to decrease continously from early diagenesis to early catagenesis. This suggests a constant release of these compounds during this maturation interval providing a suitable feedstock for microbial ecosystems in geological time spans. Investigation...... of kerogen-bound high molecular weight fatty acids show for the long chain fatty acids (C20-C30), representing a terrestrial plant material signal, a constant decrease during diagenesis and early catagenesis. In contrast the short chain fatty acids (mainly C16 and C18) show an increase again during early...

  8. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  9. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  10. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  11. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Alexandre Royer

    2016-04-01

    Full Text Available The binder plays the most important role in the metal injection molding (MIM process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of this study is to develop a feedstock of superalloy Inconel 718 that is environmentally friendly. For these different binders, formulations based on polyethylene glycol (PEG, because of his water solubility property, and bio sourced polymers were studied. Polyhydroxyalkanoates (PHA were investigated as a bio sourced polymer due to its miscibility with the PEG. The result is compared to a standard formulation using polypropylene (PP. The chemical and rheological behavior of the binder formulation during mixing, injection and debinding process were investigated. The feedstock was characterized in the same way as the binders and the interactions between the powder and the binders were also studied. The results show the well adapted formulation of polymer binder to produce a superalloy Inconel 718 feedstock.

  12. Methods for determination of biomethane potential of feedstocks: a review

    Directory of Open Access Journals (Sweden)

    Raphael Muzondiwa Jingura

    2017-06-01

    Full Text Available Biogas produced during anaerobic digestion (AD of biodegradable organic materials. AD is a series of biochemical reactions in which microorganisms degrade organic matter under anaerobic conditions. There are many biomass resources that can be degraded by AD to produce biogas. Biogas consists of methane, carbon dioxide, and trace amounts of other gases. The gamut of feedstocks used in AD includes animal manure, municipal solid waste, sewage sludge, and various crops. Several factors affect the potential of feedstocks for biomethane production. The factors include nutrient content, total and volatile solids (VS content, chemical and biological oxygen demand, carbon/nitrogen ratio, and presence of inhibitory substances. The biochemical methane potential (BMP, often defined as the maximum volume of methane produced per g of VS substrate provides an indication of the biodegradability of a substrate and its potential to produce methane via AD. The BMP test is a method of establishing a baseline for performance of AD. BMP data are useful for designing AD parameters in order to optimise methane production. Several methods which include experimental and theoretical methods can be used to determine BMP. The objective of this paper is to review several methods with a special focus on their advantages and disadvantages. The review shows that experimental methods, mainly the BMP test are widely used. The BMP test is credited for its reliability and validity. There are variants of BMP assays as well. Theoretical models are alternative methods to estimate BMP. They are credited for being fast and easy to use. Spectroscopy has emerged as a new experimental tool to determine BMP. Each method has its own advantages and disadvantages with reference to efficacy, time, and ease of use. Choosing a method to use depends on various exigencies. More work needs to be continuously done in order to improve the various methods used to determine BMP.

  13. Fluid catalytic cracking : Feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  14. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    International Nuclear Information System (INIS)

    Yunus, S; Abdullah, N R; Rashid, A A; Mamat, R

    2013-01-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia

  15. Valuable metals - recovery processes, current trends, and recycling strategies

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Peter; Lorenz, Tom; Martin, Gunther; Brett, Beate; Bertau, Martin [Institut fuer Technische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, 09599, Freiberg (Germany)

    2017-03-01

    This Review provides an overview of valuable metals, the supply of which has been classified as critical for Europe. Starting with a description of the current state of the art, novel approaches for their recovery from primary resources are presented as well as recycling processes. The focus lies on developments since 2005. Chemistry strategies which are used in metal recovery are summarized on the basis of the individual types of deposit and mineral. In addition, the economic importance as well as utilization of the metals is outlined. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  17. ASSERT FY16 Analysis of Feedstock Companion Markets

    International Nuclear Information System (INIS)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  18. Facebook: A Potentially Valuable Educational Tool?

    Science.gov (United States)

    Voivonta, Theodora; Avraamidou, Lucy

    2018-01-01

    This paper is concerned with the educational value of Facebook and specifically how it can be used in formal educational settings. As such, it provides a review of existing literature of how Facebook is used in higher education paying emphasis on the scope of its use and the outcomes achieved. As evident in existing literature, Facebook has been…

  19. Rheumatology outpatient nurse clinics: a valuable addition?

    NARCIS (Netherlands)

    Temmink, D.; Hutten, J.B.F.; Francke, A.L.; Rasker, J.J.; Huijer Abu-Saad, H.; Zee, J. van der

    2001-01-01

    Objectives: "Transmural rheumatology nurse clinics," where nursing care is provided under the joint responsibility of a home care organization and a hospital, were recently introduced into Dutch health care. This article gives insight into outcomes of the transmural rheumatology nurse clinics.

  20. Rheumatology outpatient nurse clinics: a valuable addition?

    NARCIS (Netherlands)

    Temmink, Denise; Hutten, Jack B.F.; Francke, Anneke L.; Rasker, Johannes J.; Abu-Saad, Huda Huijer

    2001-01-01

    Objectives: Transmural rheumatology nurse clinics, where nursing care is provided under the joint responsibility of a home care organization and a hospital, were recently introduced into Dutch health care. This article gives insight into outcomes of the transmural rheumatology nurse clinics. -

  1. Facebook : A potentially valuable educational tool?

    NARCIS (Netherlands)

    Voivonta, Theodora; Avraamidou, Lucy

    2018-01-01

    This paper is concerned with the educational value of Facebook and specifically how it can be used in formal educational settings. As such, it provides a review of existing literature of how Facebook is used in higher education paying emphasis on the scope of its use and the outcomes achieved. As

  2. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  3. Waste paper as a biomass feedstock

    International Nuclear Information System (INIS)

    1993-09-01

    A study was undertaken to evaluate the availability and suitability of waste paper for conversion to biofuel in Canada and to examine the environmental impacts of waste paper processing. The total quantity of waste paper available in 1991 for each province and territory was determined and broken down into seven paper types. The total quantity across Canada was estimated at between 5.7 million and 7.6 million tonnes, of which old corrugated containers made up 23-26%. The variation in prices by waste paper type was also examined on a regional basis and a detailed analysis was made of the recent history of prices for several paper types. Waste paper prices have generally decreased, but since mid-1992, prices for certain types such as writing paper, computer output paper, and newsprint have increased steadily, partly due to increasing demand for recycled content in new paper. Utilization and disposal practices by region for waste paper generated in 1991, including recycling, conversion, and landfilling, were studied. National quantities of waste paper recycled, landfilled, and unavailable for recycling are estimated. The feasibility of using each type of waste paper as feedstock for each of three conversion processes (pyrolysis, incineration, fermentation) was examined. Scenarios were then developed for evaluating environmental impacts of each conversion technology. The environmental impacts of recycling, conversion, and landfilling practices are discussed qualitatively. 92 refs., 16 figs., 53 tabs

  4. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  5. Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests

    International Nuclear Information System (INIS)

    Lamers, Patrick; Thiffault, Evelyne; Paré, David; Junginger, Martin

    2013-01-01

    Past research on identifying potentially negative impacts of forest management activities has primarily focused on traditional forest operations. The increased use of forest biomass for energy in recent years, spurred predominantly by policy incentives for the reduction of fossil fuel use and greenhouse gas emissions, and by efforts from the forestry sector to diversify products and increase value from the forests, has again brought much attention to this issue. The implications of such practices continue to be controversially debated; predominantly the adverse impacts on soil productivity and biodiversity, and the climate change mitigation potential of forest bioenergy. Current decision making processes require comprehensive, differentiated assessments of the known and unknown factors and risk levels of potentially adverse environmental effects. This paper provides such an analysis and differentiates between the feedstock of harvesting residues, roundwood, and salvage wood. It concludes that the risks related to biomass for energy outtake are feedstock specific and vary in terms of scientific certainty. Short-term soil productivity risks are higher for residue removal. There is however little field evidence of negative long-term impacts of biomass removal on productivity in the scale predicted by modeling. Risks regarding an alteration of biodiversity are relatively equally distributed across the feedstocks. The risk of limited or absent short-term carbon benefits is highest for roundwood, but negligible for residues and salvage wood. Salvage operation impacts on soil productivity and biodiversity are a key knowledge gap. Future research should also focus on deriving regionally specific, quantitative thresholds for sustainable biomass removal. -- Highlights: ► Synthesis of the scientific uncertainties regarding biomass for energy outtake. ► With specific focus on soil productivity, biodiversity, and carbon balance. ► Balanced determination of the risk levels

  6. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  7. Catalytic conversion of CO2 into valuable products

    International Nuclear Information System (INIS)

    Pham-Huu, C.; Ledoux, M.J.

    2008-01-01

    Complete text of publication follows: Synthesis gas, a mixture of H 2 and CO, is an important feed-stock for several chemical processes operated in the production of methanol and synthetic fuels through a Fischer- Tropsch synthesis. Synthesis gas is produced via an endothermic steam reforming of methane (CH 4 + H 2 O → CO + 3H 2 , ΔH = +225.4 kJ.mol -1 ), catalytic or direct partial oxidation of methane (CH 4 + (1/2)O 2 → CO + 2H 2 , ΔH -38 kJ.mol -1 ) and CO 2 reforming of methane (CH 4 + CO 2 → 2CO + 2H 2 , ΔH= +247 kJ.mol -1 ). The main disadvantage of these processes is the high coke formation, essentially in the nano-filament form, which may cause severe deactivation of the catalyst by pore or active site blocking and sometimes, physical disintegration of the catalyst body causing a high pressure drop along the catalyst bed and even, in some cases, inducing damage to the reactor itself. Previous results obtained in the catalytic partial oxidation of methane have shown that due to the hot spot and carbon nano-filaments formation, especially in the case of the CO 2 reforming, the alumina-based catalyst in an extrudate form was broken into powder which induces a significant pressure drop across the catalytic bed. In the case of endothermic reactions, steam and CO 2 reforming, the temperature drop within the catalyst bed could also modified the activity of the catalyst. Silicon carbide (SiC) exhibits a high thermal conductivity, a high resistance towards oxidation, a high mechanical strength, and chemical inertness, all of which make it a good candidate for use as catalyst support in several endothermic and exothermic reactions such as dehydrogenation, selective partial oxidation, and Fischer-Tropsch synthesis. The gas-solid reaction allows the preparation of SiC with medium surface area, i.e. 10 to 40 m 2 .g -1 , and controlled macroscopic shape, i.e. grains, extrudates or foam, for it subsequence use as catalyst support. In addition, due to its chemical

  8. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz; Dufour, Florence; Kell, Laurence T.; Merino, Gorka; Ibaibarriaga, Leire; Chust, Guillem; Irigoien, Xabier; Santiago, Josu; Murua, Hilario; Fraile, Igaratza; Chifflet, Marina; Goikoetxea, Nerea; Sagarminaga, Yolanda; Aumont, Olivier; Bopp, Laurent; Herrera, Miguel Angel; Marc Fromentin, Jean; Bonhomeau, Sylvain

    2015-01-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  9. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz

    2015-03-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  10. Reclaimable Thermally Reversible Polymers for AM Feedstock, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG proposes to continue efforts from the 2016 NASA SBIR Phase I topic H5.04 Reclaimable Thermally Reversible Polymers for AM Feedstock. In Phase II, CRG will refine...

  11. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  13. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  14. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. Copyright © 2016. Published by Elsevier Ltd.

  15. One big rig, two valuable functions

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-11-01

    A hybrid coil tubing and conventional workover rig, tailor-made for conditions on Alaska's remote North Slope is described. The dual function rig, owned by BP Exploration, towers 142 feet above the barren Arctic tundra, and weighs between 1.5 and 2 million pounds, rests on eight enormous wheels that stand 11.5 feet tall and 3.5 feet wide, and is supported by 64 smaller tires in between. The rig includes the hybrid coiled tubing rig and a conventional workover rig; it exerts less than 100 pounds per square inch of pressure on the tender Arctic surface as it moves forward at a top speed of two miles per hour. It is considered by its developers as the next-step change in providing cost-effective access to reserves in the large, mature and remote oilfields such as those of Alaska's Prudhoe Bay. The rig is the product of cooperation between Schlumberger expertise in coiled tubing drilling and Nordic-Calista's know-how of jointed pipe operations and operating rigs in an Arctic environment. It is the first time in Prudhoe Bay, and probably in the world, that a coiled tubing unit was installed on a rig to do coiled-tubing sidetracks, i.e to drill a secondary wellbore away from the original wellbore. Since the first unit was commissioned in 1996, the rig has drilled 280 wells. Rig No. 2, much improved and commissioned in 2002, drilled about 30 wells to date. Unlike Rig No, 1, Rig No. 2 can change reels without a crane, and it has a hydraulic pipe skate that moves jointed pipe to and from the rig floor without human aid. The expectation is that using this rig it will be possible to do micro-hole exploration drilling on the North Slope (i.e. drilling a small surface hole with jointed pipe and then switch to coiled tubing), substantially cutting the cost of exploration.

  16. New technologies and alternative feedstocks in petrochemistry and refining. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M. (eds.)

    2013-11-01

    This international conference paper provides a forum for chemists and engineers from refinery, petrochemistry and the chemical industry as well as from academia to discuss new technologies and alternative feedstocks in petrochemistry and refining with the special topic ''Shale Gas, Heavy Oils and Coal''. 23 Lectures and 18 Posters are presented. All papers are analyzed for the ENERGY database.

  17. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  18. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  19. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  20. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  1. Feedstock to Tailpipe Initiative: Kansas Biofuels Production, Testing and Certification Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stagg-Williams, Susan M. [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Depcik, Chris [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Sturm, Belinda [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering

    2013-12-31

    The primary task of this grant was to establish an ASTM testing facility for biodiesel and ethanol and to use this facility to develop methods to predict fuel characteristics based on feedstock composition and feedstock cultivation. In addition to characterizing fuel properties, this grant allowed for the purchase and installation of a Fourier Transform Infrared Spectroscopy (FTIR) emissions analyzer that will provide an analysis of the emissions leaving the engine in order to meet EPA regulations. This FTIR system is combined with an Alternating Current (AC) dynamometer that allows the engine to follow Environmental Protection Agency (EPA) Federal Test Procedure (FTP) cycles. A secondary task was to investigate cultivating algae utilizing wastewater and top-down ecological control and subsequent harvesting using coagulation and dissolved air flotation. Lipid extraction utilizing environmentally-friendly and cost-effective solvents, with and without cell-disruption pretreatment was also explored. Significant work on the hydrothermal liquefaction of wastewater cultivated algae was conducted.

  2. Syngas. The flexible solution in a volatile feed-stock market

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Air Liquide Global E und C Solutions c/o Lurgi GmbH, Frankfurt a.M. (Germany)

    2013-11-01

    The paper presents the versatility of syngas allowing the extended application of new feedstock sources such as shale gas or coal to deliver fuels and chemicals traditionally derived from crude oil. In order to provide a holistic view on this topic of current interest, the syngas market, the pre-dominant production technologies and main economic consideration for selected applications are presented and analyzed. It can be concluded that a broad portfolio of well-mastered and referenced syngas production technologies which are continuously improved to meet actual market requirements (e.g. ability to valorize biomass) will remain key to enable economic solutions in a world characterized by growing dynamics with regards to the supply of (carbonaceous) feedstock. (orig.)

  3. Analysis of ethanol production potential from cellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J E

    1982-03-01

    This report provides a comprehensive and scientific overview of results emerging from research on ethanol producton from cellulosic materials and indicates those areas which appear to warrant additional support. Many published economic analyses of production costs are examined, but the emphasis of the report is on research and on its potential for reducing the cost of ethanol production. The author concludes that the uncertainty surrounding the cost of producing ethanol from cellulosic feedstocks via enzymatic hydrolysis will not be resolved until a pilot plant has been built of sufficient size to produce realistic engineering data. He gives five reasons why Canada should build such a pilot plant: Canada's apparent leadership in developing a steam pre-treatment process, the desirability of encouraging developments and building a cadre of experts in biotechnology, the absence of a pilot plant in Canada where the various organisms and biochemical processes involved in ethanol production and by-product utilization can be developed on a reasonably large scale, Canadian expertise in lignin chemistry which might be used to capitalize upon the reactive lignin residue, and research in progress at National Research Council and elsewhere on the conversion of C/sub 5/ sugars to ethanol. 37 refs., 2 figs., 4 tabs.

  4. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  5. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Johnson, David R.; Curtright, Aimee E.; Willis, Henry H.

    2013-01-01

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N 2 O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  6. Perception and Information Behaviour of Institutional Repository End-Users Provides Valuable Insight for Future Development. A Review of: St. Jean, B., Rieh, S. Y., Yakel, E., & Markey, K. (2011. Unheard voices: Institutional repository end-users. College & Research Libraries, 72(1, 21-42.

    Directory of Open Access Journals (Sweden)

    Lisa Shen

    2012-06-01

    source, which placed most IRs in a less favorable light.Additionally, researchers noted conflicting assumptions made by interviewees about IRs in the evaluation process for their content. Some interviewees believed all the content of an IR has been vetted through an approval process, while others distrusted all IR content that was not peer-reviewed.To what extent are end-users willing to return to an IR or recommend it to their peers?The great majority of interviews indicated they were likely to use IRs again in the future, and nearly all indicated they would recommend IRs to their peers. However, most interviewees did not know of any people using IRs. The few interviewees who did often knew of IR contributors rather than end-users.How do IRs fit into end-users’ information seeking behavior?Many interviewees noted that IRs provided them with content that was not commonly available through traditional publishing channels, including conference papers and dissertations. Others felt IRs made content available more quickly than other information sources. However, the results also suggested that most interviewees did not include IRs in their routine research process.Conclusion – This study identified current end-users’ perceptions of IRs and highlighted several areas for future IR development. Areas of improvement for IRs included intensifying publicity efforts; increasing content recruitment; making content recruitment policies more transparent; and improving appearance and navigation functionalities. The findings also suggested new directions for IR marketing, such as emphasizing on the networking and collaborating benefits of using IR.

  7. CORRELATION LINKS BETWEEN SOME ECONOMICALLY VALUABLE SIGNS IN BROCCOLI

    Directory of Open Access Journals (Sweden)

    E. A. Zablotskaya

    2018-01-01

    Full Text Available The study of the correlation relationship between the signs, the informativeness of the indicators makes it possible to conduct a preliminary assessment of the plants and more objectively to identify forms with high economically valuable characteristics. Their integrated assessment will identify the best source material for further selection. In literary sources, information on the correlation in broccoli between yields and its elements are not the same. The purpose of our study was to analyze the contingency of various traits and to identify significant correlation links between quantitative traits in broccoli hybrids (42 samples. They were obtained using doubled haploid lines (DH-line of early maturity at 2 planting dates (spring and summer. Studies were conducted in the Odintsovo district of the Moscow region in field experience in 2015, 2016. Significant influence on growth and development was provided by the developing weather conditions during the growing period. The fluctuation of humidification and temperature conditions differed significantly during the years of study and the time of planting, which is an important circumstance for analyzing the data obtained. Based on the results of the research, it was concluded that the value of the correlation coefficient and the strength of the correlation relationship between the characteristics (mass, diameter, head height, plant height, vegetation period are different and depend on the set of test specimens and growing conditions. A significant stable manifestation of positive correlation was revealed during all the years of research and the time of planting between the diameter and mass of the head (r = 0.45-0.96. The variability of the correlation of other economically valuable traits is marked. 

  8. A case report on inVALUABLE: insect value chain in a circular bioeconomy

    DEFF Research Database (Denmark)

    Heckmann, L.-H.; Andersen, J.L.; Eilenberg, J.

    2018-01-01

    partners span the entire value chain and include entrepreneurs, experts in biology, biotechnology, automation, processing and food tech and safety. This paper provides an overview of the goal, activities and some preliminary results obtained during the first year of the project.......The vision of inVALUABLE is to create a sustainable resource-efficient industry for animal production based on insects. inVALUABLE has focus on the R&D demand for scaling up production of insects in Denmark and assessing the application potential of particularly mealworms. The inVALUABLE consortium...

  9. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  10. Landscape management for sustainable supplies of bio energy feedstock and enhanced soil quality

    International Nuclear Information System (INIS)

    Douglas, K.; Muth, D.

    2013-01-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. Our objective is to present a landscape management concept as an approach for integrating multiple bio energy feedstock sources into current crop production systems. This is done to show how multiple, increasing global challenges can be met in a sustainable manner. We discuss how collaborative research among Usda-Agricultural Research Service (ARS), US Department of Energy (DOE) Idaho National Laboratory (INL), several university extension and research partners, and industry representatives [known as the Renewable Energy Assessment Project (Reap) team] has led to the development of computer-based decision aids for guiding sustainable bio energy feedstock production. The decision aids, known initially as the Corn Stover Tool and more recently as the Landscape Environmental Assessment Framework (Leaf) are tools designed to recognize the importance of nature s diversity and can therefore be used to guide sustainable feedstock production without having negative impacts on critical ecosystem services. Using a 57 ha farm site in central Iowa, USA, we show how producer decisions regarding corn (Zea mays L.) stover harvest within the US Corn Belt can be made in a more sustainable manner. This example also supports Reap team conclusions that stover should not be harvested if average grain yields are less than 11 Mg ha-1 unless more balanced landscape management practices are implemented. The tools also illustrate the importance of sub-field management and site-specific stover harvest strategies

  11. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  12. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  13. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  14. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Directory of Open Access Journals (Sweden)

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  15. Novel Biocatalytic Platform for Ethanol Production from Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chyi-Shin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tachea, Firehiwot [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gregg, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rolison-Welch, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shirazi, Fatemeh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); He, Qian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sun, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-23

    The goals of the CRADA were achieved by illustrating the scalability of immobilized yeast technology, demonstrating lignocellulosic feedstock consumption by the immobilized cells, and confirming Microvi’s proprietary polymer matrix ethanol toxicity tolerance. We conducted fermentations at 2L and 300L scales. For carbon source, we performed pretreatment and saccharification at 100L scale to produce lignocellulosic sugars with glucose and xylose.

  16. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  17. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  18. Renewable feedstocks: the problem of catalyst deactivation and its mitigation

    NARCIS (Netherlands)

    Lange, Jean Paul

    2015-01-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in

  19. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    Directory of Open Access Journals (Sweden)

    Felipe Eng

    Full Text Available Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl-cyclopentane-1-butanoic acid (OPC-4 and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  20. New Therapies Offer Valuable Options for Patients with Melanoma

    Science.gov (United States)

    Two phase III clinical trials of new therapies for patients with metastatic melanoma presented in June at the 2011 ASCO conference confirmed that vemurafenib and ipilimumab (Yervoy™) offer valuable new options for the disease.

  1. Sea Buckthorn Oil—A Valuable Source for Cosmeceuticals

    Directory of Open Access Journals (Sweden)

    Marijana Koskovac

    2017-10-01

    Full Text Available Sea buckthorn (Hippophae rhamnoides L., Elaeagnaceae. is a thorny shrub that has small, yellow to dark orange, soft, juicy berries. Due to hydrophilic and lipophilic ingredients, berries have been used as food and medicine. Sea buckthorn (SB oil derived from berries is a source of valuable ingredients for cosmeceuticals. The unique combination of SB oil ingredients, in qualitative and quantitative aspects, provides multiple benefits of SB oil for internal and external use. Externally, SB oil can be applied in both healthy and damaged skin (burns or skin damage of different etiology, as it has good wound healing properties. Due to the well-balanced content of fatty acids, carotenoids, and vitamins, SB oil may be incorporated in cosmeceuticals for dry, flaky, burned, irritated, or rapidly ageing skin. There have been more than 100 ingredients identified in SB oil, some of which are rare in the plant kingdom (e.g., the ratio of palmitoleic to γ-linolenic acid. This review discusses facts related to the origin and properties of SB oil that make it suitable for cosmeceutical formulation.

  2. Valuable Internet Advertising and Customer Satisfaction Cycle(VIACSC)

    OpenAIRE

    Muhammad Awais; Tanzila Samin; Muhammad Bilal

    2012-01-01

    Now-a-days it is very important for the business persons to attract their target customers towards their products through valuable mode of promotion and communication. Increasing use of World Wide Web has completely changed the scenario of business sector. Customized products and services, customers preferences, @ and dot com craze have elevated the importance of internet advertising. This research paper investigates valuable internet advertising which will help to enhance the value of intern...

  3. A field guide to valuable underwater aquatic plants of the Great Lakes

    Science.gov (United States)

    Schloesser, Donald W.

    1986-01-01

    Underwater plants are a valuable part of the Great Lakes ecosystem, providing food and shelter for aquatic animals. Aquatic plants also help stabilize sediments, thereby reducing shoreline erosion. Annual fall die-offs of underwater plants provide food and shelter for overwintering small aquatic animals such as insects, snails, and freshwater shrimp.

  4. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  5. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Science.gov (United States)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  6. Recycle of valuable products from oily cold rolling mill sludge

    Science.gov (United States)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  7. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Hazelton, Jennifer A.; Windhorst, Kai; Amezaga, Jaime M.

    2013-01-01

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  8. The availability of second generation feedstocks for the treatment of acid mine drainage and to improve South Africa's bio-based economy.

    Science.gov (United States)

    Westensee, Dirk Karl; Rumbold, Karl; Harding, Kevin G; Sheridan, Craig M; van Dyk, Lizelle D; Simate, Geoffrey S; Postma, Ferdinand

    2018-10-01

    South Africa has a wide range of mining activities making mineral resources important economic commodities. However, the industry is responsible for several environmental impacts; one of which is acid mine drainage (AMD). Despite several years of research, attempts to prevent AMD generation have proven to be difficult. Therefore, treatment of the resulting drainage has been common practice over the years. One of the recommended treatment methods is the use of second generation feedstocks (lignocellulosic biomass). This biomass is also acknowledged to be an important feedstock for bio-refineries as it is abundant, has a high carbon content and is available at minimal cost. It can also potentially be converted to fermentable sugars (e.g. glucose) through different treatment steps, which could further yield other valuable commodities (cellulase, poly-β-hydroxybutyric acid (PHB) and penicillin V). It is estimated by a generic flowsheet model that 7 tons of grass biomass can produce 1400 kg of glucose which can subsequently produce 205 kg, 438 kg and 270 kg of cellulase, PHB and Penicillin V, respectively. In this paper we investigate the feasibility of grass as feedstock for AMD treatment and the subsequent conversion of this acid pre-treated grass into valuable bio-products. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. VALUABLE AND ORIENTATION FOUNDATIONS OF EDUCATIONAL SYSTEM OF THE COUNTRY

    Directory of Open Access Journals (Sweden)

    Vladimir I. Zagvyazinsky

    2016-01-01

    Full Text Available The aim of the investigation is to show that in modern market conditions it is necessary to keep humanistic valuable and orientation installations of domestic education and not to allow its slipping on a line item of utilitarian, quickly achievable, but not long-term benefits. Theoretical significance. The author emphasizes value of forming of an ideal – harmonious development of the personality – and the collectivist beginnings for disclosure of potential of each school student, a student, a worker, a specialist; also the author emphasizes on requirement of the stimulating, but not strictly regulated management of education. It is proved that copying of the western model of consecutive individualization of education without preserving the collectivist beginning is unacceptable in training, especially in educational process. In more general, strategic foreshortening this means that parity of the problem resolution of economy and the social sphere with which it is impossible to cope without support and educational development and first of all education, it is especially important during the periods of economic crises and stagnation for providing an exit from a crisis state on the basis of the advancing preparation and rational use of the personnel which neatly are considered as a human capital. Practical significance. Resources and positive tendencies in a development of education, especially elite, and also educational systems of some territories, including the Tyumen region where traditions of the enthusiasts-pioneers mastering the remote territories of oil and gas fields remain are shown. 

  10. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    Science.gov (United States)

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.

  11. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-08-08

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.

  12. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  14. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  15. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  16. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  17. Processes for liquefying carbonaceous feedstocks and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  18. Kurdistan crude oils as feedstock for production of aromatics

    Directory of Open Access Journals (Sweden)

    Abdulsalam R. Karim

    2017-05-01

    Full Text Available Crude oils from various locations in Iraqi Kurdistan were fully evaluated, so that enables refiners to improve their operation by selecting the best crude oil that yields high naphtha content to be used as a catalytic reforming feedstock after determination of total sulfur content and then de sulfurizing them, then cyclizing or reforming these sweet naphtha cuts to produce aromatic fractions which can be split into benzene, toluene, and xylenes.

  19. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  20. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  1. Impact of feedstock quality on clean diesel fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, A.; Stanislaus, A.; Rana, M. [Kuwait Institute for Scientific Research (KISR), Safat (Kuwait)

    2013-06-01

    High sulfur level in diesel fuel has been identified as a major contributor to harmful emissions (sulfur oxides, particulates, etc.) as a result, recent environmental regulations limit the sulfur content of diesel to ultra-low levels in many countries. The diesel fuel specifications are expected to become extremely severe in the coming years. Problem faced by the refiners is the difficulty in meeting the increasing market demand for Ultra-Low Sulfur Diesel (ULSD). Global market for middle distillates is increasing steadily and this trend is expected to continue for the next few years. At the same time, the quality of feed streams is declining. The refiners are, thus, required to produce a ULSD from poor feedstocks such as light cycle oil (LCO) and coker gas oil (CGO). The key to achieving deep desulfurization in gas-oil hydrotreater is in understanding the factors that influence the reactivity of the different types of sulfur compounds present in the feed, namely, feedstock quality, catalyst, process parameters, and chemistry of ULSD production. Among those parameters, feedstock quality is most critical. (orig.)

  2. Field Trips as Valuable Learning Experiences in Geography Courses

    Science.gov (United States)

    Krakowka, Amy Richmond

    2012-01-01

    Field trips have been acknowledged as valuable learning experiences in geography. This article uses Kolb's (1984) experiential learning model to discuss how students learn and how field trips can help enhance learning. Using Kolb's experiential learning theory as a guide in the design of field trips helps ensure that field trips contribute to…

  3. Salt Lakes of the African Rift System: A Valuable Research ...

    African Journals Online (AJOL)

    Salt Lakes of the African Rift System: A Valuable Research Opportunity for Insight into Nature's Concenrtated Multi-Electrolyte Science. JYN Philip, DMS Mosha. Abstract. The Tanzanian rift system salt lakes present significant cultural, ecological, recreational and economical values. Beyond the wealth of minerals, resources ...

  4. Overview of feedstock research in the United States, Canada, and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J. [Department of Energy, Washington, DC (United States); Tardif, M.L. [CANMET, Ottawa, Ontario (Canada); Couto, L. [Universidade Federal de Vicosa (Brazil); Garca, L.R. [Centro Nacional de Pesquisa de Florestas, Colombo (Brazil); Betters, D. [Colorado State Univ., Fort Collins, CO (United States); Ashworth, J. [Meridian Corp., Alexandria, VA (United States)

    1993-12-31

    This is an overview of the current biomass feedstock efforts in Brazil, Canada, and the United States. The report from Brazil provides an historical perspective of incentive programs, the charcoal and fuelwood energy programs, the alcohol program, and other biomass energy efforts. The efforts in Brazil, particularly with the sugar cane to ethanol and the charcoal and fuelwood programs, dwarfs other commercial biomass systems in the Americas. One of the bright spots in the future is the Biomass Integrated Gasification/Gas Turbine Electricity Project initially funded in 1992. The sugar cane-based ethanol industry continues to develop higher yielding cane varieties and more efficient microorganisms to convert the sugar cane carbohydrates into alcohol. In Canada a number of important institutions and enterprises taking part in the economical development of the country are involved in biomass research and development including various aspects of the biomass such as forestry, agricultural, industrial, urban, food processing, fisheries and peat bogs. Biomass feedstock research in the United States is evolving to reflect Department of Energy priorities. Greater emphasis is placed on leveraging research with the private sector contributing a greater share of funds, for both research and demonstration projects. The feedstock program, managed by ORNL, is focused on limited model species centered at a regional level using a multidisciplinary approach. Activities include a stronger emphasis on emerging environmental issues such as biodiversity, sustainability and habitat management. DOE also is a supporter of the National Biofuels Roundtable, which is developing principles for producing biomass energy in an economically viable and ecologically sound manner. Geographical Information Systems are also being developed as tools to quantify and characterize the potential supply of energy crops in various regions.

  5. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  6. Valuable human capital: the aging health care worker.

    Science.gov (United States)

    Collins, Sandra K; Collins, Kevin S

    2006-01-01

    With the workforce growing older and the supply of younger workers diminishing, it is critical for health care managers to understand the factors necessary to capitalize on their vintage employees. Retaining this segment of the workforce has a multitude of benefits including the preservation of valuable intellectual capital, which is necessary to ensure that health care organizations maintain their competitive advantage in the consumer-driven market. Retaining the aging employee is possible if health care managers learn the motivators and training differences associated with this category of the workforce. These employees should be considered a valuable resource of human capital because without their extensive expertise, intense loyalty and work ethic, and superior customer service skills, health care organizations could suffer severe economic repercussions in the near future.

  7. New feedstocks for biofuels. Alternative 1st generation of energy crops; Nieuwe Grondstoffen voor Biobrandstoffen. Alternatieve 1e Generatie Energiegewassen

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Agrotechnology and Food Sciences Group, WUR-AFSG, Wageningen (Netherlands); Oyen, L. [Plant Resources of Tropical Africa, WUR-PROTA, Wageningen (Netherlands)

    2009-08-15

    A brief overview is provided of a number of alternative crops that can supply feedstocks for 1st generation biofuels and a brief analysis is conducted of the option for renewable biofuel production. [Dutch] Er wordt een kort overzicht gegeven van een aantal alternatieve gewassen die grondstoffen voor 1e generatie biobrandstoffen kunnen leveren en wordt er een korte analyse gegeven van de mogelijkheid voor duurzame biobrandstofproductie.

  8. VALUABLE AND ORIENTATION FOUNDATIONS OF EDUCATIONAL SYSTEM OF THE COUNTRY

    OpenAIRE

    Vladimir I. Zagvyazinsky

    2016-01-01

    The aim of the investigation is to show that in modern market conditions it is necessary to keep humanistic valuable and orientation installations of domestic education and not to allow its slipping on a line item of utilitarian, quickly achievable, but not long-term benefits. Theoretical significance. The author emphasizes value of forming of an ideal – harmonious development of the personality – and the collectivist beginnings for disclosure of potential of each school student, a student, a...

  9. The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-09-01

    Full Text Available Preoccupation with global energy supplies and climate change in the global North, and a desire to improve the balance of trade and capture value in the emerging carbon market by developing countries, together place biofuels firmly on the map of global land use change. Much of this recent land use change is occurring in developing countries where large agro-ecologically suitable tracts of land may be accessed at lower economic and opportunity cost. This is leading to the gradual penetration of commercial crops that provide suitable biofuel feedstocks (e.g., sugarcane, soybean, oil palm, jatropha into rural communities and forested landscapes throughout many areas of the global South. Expansion of biofuel feedstock cultivation in developing countries is widely embraced by producer country governments as a means to achieve energy security and stimulate rural economic development through employment and smallholder market integration. It is also expected that foreign and domestic investments in biofuel feedstock cultivation will lead to positive economic spillovers from knowledge transfer and investor contributions to social and physical infrastructure. While biofuel feedstocks are expanding through large industrial-scale plantations and smallholder production alike, the expansion of industrial-scale production systems has been countered by a critical response by civil society actors concerned about the implications for rural livelihoods, customary land rights, and the environmental effects of biofuel feedstock cultivation. To date, however, limited data exist to demonstrate the conditions under which widely anticipated economic and climate change mitigation benefits accrue in practice, and the implications of these developments for forests, local livelihoods, and the climate change mitigation potential of biofuels. In such a situation, debates are easily polarized into those for and against biofuels. This special issue seeks to nuance this debate by

  10. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handle and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90

  11. Mapping marginal croplands suitable for cellulosic feedstock crops in the Great Plains, United States

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2016-01-01

    Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.

  12. Evaluation of Physicochemical Properties of South African Cashew Apple Juice as a Biofuel Feedstock

    Directory of Open Access Journals (Sweden)

    Evanie Devi Deenanath

    2015-01-01

    Full Text Available Cashew apple juice (CAJ is one of the feedstocks used for biofuel production and ethanol yield depends on the physical and chemical properties of the extracted juice. As far as can be ascertained, information on physical and chemical properties of South African cashew apple juice is limited in open literature. Therefore, this study provides information on the physical and chemical properties of the South African cashew apple juice. Physicochemical characteristics of the juice, such as specific gravity, pH, sugars, condensed tannins, Vitamin C, minerals, and total protein, were measured from a mixed variety of cashew apples. Analytical results showed the CAJ possesses specific gravity and pH of 1.050 and 4.52, respectively. The highest sugars were glucose (40.56 gL−1 and fructose (57.06 gL−1. Other chemical compositions of the juice were condensed tannin (55.34 mgL−1, Vitamin C (112 mg/100 mL, and total protein (1.78 gL−1. The minerals content was as follows: zinc (1.39 ppm, copper (2.18 ppm, magnesium (4.32 ppm, iron (1.32 ppm, sodium (5.44 ppm, and manganese (1.24 ppm. With these findings, South African CAJ is a suitable biomass feedstock for ethanol production.

  13. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    Science.gov (United States)

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.

  14. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  15. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  16. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  17. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  18. Quality of feedstock in production of lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.G.; Kalenik, G.S.; Bayburskaya, E.L.; Ledyashova, G.Ye.; Okhrimenko, N.V.; Potashnikov, G.L.; Shiryayeva, G.P.

    1980-01-01

    Data are obtained under industrial conditions concerning production of lubricating oils from the mixture of crudes distinguished in terms of major properties: viscosity, content of light petroleum products, resin, sulfur. The difference in main properties and hydrocarbon composition of the original feedstock caused a change in conditions of selective purification of output of target and intermediate products. It is demonstrated that selection and grading of Eastern Ukrainian petroleum (separation of gas condensate) can achieve a continued increase of production of oils, approximately 30 percent.

  19. Environmental protection and processing of feedstocks by adsorption on carbonaceous materials - developments at Bergbau- Forschung GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Knoblauch, K; Richter, E

    1986-06-01

    Activated carbons, active cokes and carbon molecular sieves are used for regenerative processes for environmental protection and for processing of valuable feedstocks. Development of adsorption processes and their layout based on adsorption equilibria, adsorption kinetics, kinetics of desorption by heating, depressurization or purging not only as single steps but in the same combination as in the regenerative process. For example some adsorption processes are decsribed which are applied in pilot scale or industrially. These include: nitrogen production from air by pressure swing adsorption (PSA); hydrogen production from coke oven gas by PSA; upgrading of methane from biogas and from fire damp; removal of hydrogen sulfide from biogas; removal of sulfur dioxide and nitrogen oxides from flue gases and drinking water supply and waste water treatment. (71 refs.)

  20. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    Science.gov (United States)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  1. Extraction of toxic and valuable metals from foundry sands

    International Nuclear Information System (INIS)

    Vite T, J.

    1996-01-01

    There were extracted valuable metals from foundry sands such as: gold, platinum, silver, cobalt, germanium, nickel and zinc among others, as well as highly toxic metals such as chromium, lead, vanadium and arsenic. The extraction efficiency was up to 100% in some cases. For this reason there were obtained two patents at the United States, patent number 5,356,601, in October 1994, given for the developed process and patent number 5,376,000, in December 1994, obtained for the equipment employed. Therefore, the preliminary parameters for the installation of a pilot plant have also been developed. (Author)

  2. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  3. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  4. Why did the price of solar PV Si feedstock fluctuate so wildly in 2004–2009?

    International Nuclear Information System (INIS)

    Yu Yang; Song Yuhua; Bao Haibo

    2012-01-01

    Great attention has been paid to the origin of observed wild price fluctuations of solar PV Si feedstock in both contract and spot markets during 2004–2009. This paper sheds light on this issue and tries to resolve it by addressing the following questions: what kind of structural shock is underlying the price fluctuations of PV Si feedstock? How can we quantify the magnitude, timing and relative importance of these shocks? What are their dynamic effects on the real price of PV Si feedstock? By carefully studying development conditions, the structural decomposition of the real price of PV Si feedstock is proposed: exchange rate shocks, production cost shocks, aggregate demand shocks and demand shocks specific to feedstock markets. With a Structural Vector Autoregression model, the paper quantifies and verifies the impact of structural shocks on PV Si feedstock real price changes. Based on national data, an analysis is further taken to confirm the essential role of demand shocks specific to feedstock markets in determining sharper price fluctuations during 2004–2009. The results of this study have important implications for national solar PV development, which can be better promoted and administrated if structural shocks in feedstock markets can be carefully evaluated and understood. - Highlights: ► The determination of solar PV Si feedstock price fluctuation is identified and quantified. ► Systematic structural shocks well explain 2004–2009 price fluctuations of PV Si feedstock. ► Production cost and aggregated demand shocks take longer effects on feedstock price. ► Exchange rate and feedstock specific demand shocks explain sharper price fluctuations. ► Development of national PV power should consider effects of structure shocks.

  5. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  6. Conversion of non-nuclear grade feedstock to UF4

    International Nuclear Information System (INIS)

    Ponelis, A.A.; Slabber, M.N.; Zimmer, C.H.E.

    1987-01-01

    The South African Conversion route is based on the direct feed of ammonium di-uranate produced by any one of a number of different mines. The physical and chemical characteristics of the feedstock can thus vary considerably and influence the conversion rate as well as the final UF 6 product purity. The UF 4 conversion reactor is a Moving Bed Reactor (MBR) with countercurrent flow of the reacting gas phases. Initial problems to continuously operate the MBR were mostly concerned with the physical nature of the UO 3 feed particles. Different approaches to eventually obtain a successful MBR are discussed. Besides obtaining UO 3 feed particles with certain physical attributes, the chemical impurities also have an effect on the operability of the MBR. The influence of the feedstock variables on the reduction and hydrofluorination rates after calcining has largely been determined from laboratory and pilot studies. The effect of chemical impurities such as sodium and potassium on the sinterability of the reacting particles and therefore the optimum temperature range in the MBR is also discussed. Confirmation of the effect of sodium and potassium impurities on the conversion rate has been obtained from large scale reactor operation. (author)

  7. Feedstock quality : an important consideration in forest biomass supply

    Energy Technology Data Exchange (ETDEWEB)

    Ryans, M. [FP Innovations, Vancouver, BC (Canada). FERIC

    2009-07-01

    The move to forest-based sources of biomass requires an emphasis on the quality of forest residues. Customers set the feedstock requirements, and demand homogeneous and predictable quality. The top quality factors are appropriate moisture content, consistent particle size, chlorine content, and clean material. The seasonal variability of the resource means that suppliers must determine how to deliver a year-round supply with appropriate moisture content. Methods such as pre-piling and covering with a tarp are being tested. Although mills tailored for biomass deliveries have modernized boilers capable of burning a variety of biomass feedstocks at varying moisture contents, a 10 per cent reduction in moisture content can offer a good return on investment because suppliers could transports more energy content and less water per tonne of biomass. This presentation also discussed the range of equipment choices available for delivering the right-sized biomass, and outlined the right and wrong practices that influence biomass quality along the supply chain. figs.

  8. Vapour cloud explosion hazard greater with light feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Windebank, C.S.

    1980-03-03

    Because lighter chemical feedstocks such as propylene and butylenes are more reactive than LPG's they pose a greater risk of vapor cloud explosion, particularly during their transport. According to C.S. Windebank (Insurance Tech. Bur.), percussive unconfined vapor cloud explosions (PUVCE's) do not usually occur below the ten-ton threshold for saturated hydrocarbons but can occur well below this threshold in the case of unsaturated hydrocarbons such as propylene and butylenes. Boiling liquid expanding vapor explosions (BLEVE's) are more likely to be ''hot'' (i.e., the original explosion is associated with fire) than ''cold'' in the case of unsaturated hydrocarbons. No PUVCE or BLEVE incident has been reported in the UK. In the US, 16 out of 20 incidents recorded between 1970 and 1975 were related to chemical feedstocks, including propylene and butylenes, and only 4 were LPG-related. The average losses were $20 million per explosion. Between 1968 and 1978, 8% of LPG pipeline spillages led to explosions.

  9. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  10. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  11. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  12. Animals as an indicator of carbon sequestration and valuable landscapes

    Directory of Open Access Journals (Sweden)

    Jan Szyszko

    2011-05-01

    Full Text Available Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance, representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use.

  13. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  14. Organic waste as a sustainable feedstock for platform chemicals.

    Science.gov (United States)

    Coma, M; Martinez-Hernandez, E; Abeln, F; Raikova, S; Donnelly, J; Arnot, T C; Allen, M J; Hong, D D; Chuck, C J

    2017-09-21

    Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.

  15. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.

    Science.gov (United States)

    Chang, Chen-Wei; Webb, Colin

    2017-03-01

    Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using the fungus Trichoderma longibrachiatum was implemented as a simultaneous microbial pretreatment and in-situ enzyme production method for fungal autolysis and further enzyme hydrolysis of fermented solids. Suspending the fermented solids in water at 50°C led to the highest hydrolysis yields of 226mg/g reducing sugar and 7.7mg/g free amino nitrogen (FAN). The resultant feedstock was shown to be suitable for the production of various products including ethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Wood biomass : fuel for wildfires or feedstock for bioenergy ?

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.S. [Miller Dewulf Corp., Studio City, CA (United States)

    2007-07-01

    The clean conversion of woody biomass-to-energy has been touted as an alternative to fossil fuel energy and as a solution to environmental challenges. This presentation discussed the state of forest health in North America with particular reference to the higher incidence of megafires, such as recent fires in Colorado, San Diego, Lake Arrowhead, Lake Tahoe, Zaca, and Okefenokee. Federal authorities have an increased responsibility to preserve old forest stands; sustain and increase biodiversity; protect habitats; fight fires to protect real estate; and, contain and suppress wildfires. It was noted that while healthy forests absorb greenhouse gases (GHGs), burning forests release them. The Colorado Hayman fire alone emitted more carbon dioxide in one day than all the cars in the United States in one week. It was cautioned that unharvested fire residues contribute 300 per cent more GHG during decay. The problem of forest density was also discussed, noting that many forests on public lands have grown dangerously overcrowded due to a century of fire suppression and decades of restricted timber harvesting. A sustainable solution was proposed in which decaying biomass can be harvested in order to pay for forest management. Other solutions involve reforesting to historic models and mechanically thinning vulnerable forests for bioenergy. In California's Eagle Lake Ranger District, there are 8 stand-alone wood fired power plants with 171 MWh generating capacity. In addition, there are 5 small log sawmills with cogeneration facilities. A review of feedstock for bioenergy was also included in this presentation, along with an ethanol feedstock comparison of corn and woody biomass. Technologies to produce biofuels from biomass were also reviewed with reference to traditional conversion using sugar fermentation as well as biochemical enzymatic acid hydrolysis. It was concluded that woody biomass stores abundant energy that can be used to create heat, produce steam and

  17. Enzymatic pre-treatment of high content cellulosic feedstock improves biogas production

    Science.gov (United States)

    Animal wastes with high lignin and cellulosic contents can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. However, these high lignin and cellulosic feedstocks are quite recalcitrant to be readily utilized by methanogens to produce ben...

  18. Introduced cool-season grasses in diversified systems of forage and feedstock production

    Science.gov (United States)

    Interest in producing biomass feedstock for biorefineries has increased in the southern Great Plains, though research has largely focused on the potential function of biorefineries. This study examined feedstock production from the producers’ viewpoint, and how this activity might function within di...

  19. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  20. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  1. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  2. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse.

    In this PhD

  3. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  4. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  5. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  6. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  7. Conversion of heavy aromatic hydrocarbons to valuable synthetic feed for steamcrackers

    Energy Technology Data Exchange (ETDEWEB)

    Cesana, A.; Dalloro, L.; Rivetti, F.; Buzzoni, R.; Bignazzi, R. [ENI S.p.A., Novara (Italy). Refining and Marketing Div.

    2007-07-01

    The scope of the present study was upgrading a set of heavy aromatic hydrocarbons mixtures whose commercial value ranks close to fuel oil and should become even lower in the next future because of the introduction of more stringent regulations on fuels, through hydro-conversion to a synthetic feed for steam-cracking. The resulting process provides an opportunity to improve the economic return of a steamcracking plant, offering the chance of converting low-value mixtures produced by the plant itself, such as fuel oil of cracking (FOK), saving an equivalent amount of naphtha. The method can also be used for converting pyrolysis gasoline (pygas). Although pygas has at present a fair commercial value, it could suffer a significant penalization in the future due to further limitations on total aromatic content in gasoline. Pygas hydro-conversion to a synthetic steam-cracking feedstock has been recently reported. Fractions from refinery, such as heavy distillates (e.g. Heavy Vacuum Gas Oil, VGO), deasphalted resides (DAO), or some FCC streams (e.g. LCO) resulted suitable and very attractive mixtures to be treated as well. No more than deasphalting was required as pretreatment of the feed mixture and only when the asphalts were >2%. Hetero-elements are often present in such kind of feeds at quite high concentrations, but no problems were observed due to the presence of sulphur and nitrogen, respectively, up to 15000 and 5500 ppm. (orig.)

  8. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  9. GC Analyses of Salvia Seeds as Valuable Essential Oil Source

    Directory of Open Access Journals (Sweden)

    Mouna Ben Taârit

    2014-01-01

    Full Text Available The essential oils of seeds of Salvia verbenaca, Salvia officinalis, and Salvia sclarea were obtained by hydrodistillation and analyzed by gas chromatography (GC and GC-mass spectrometry. The oil yields (w/w were 0.050, 0.047, and 0.045% in S. verbenaca, S. sclarea, and S. officinalis, respectively. Seventy-five compounds were identified. The essential oil composition of S. verbenaca seeds showed that over 57% of the detected compounds were oxygenated monoterpenes followed by sesquiterpenes (24.04% and labdane type diterpenes (5.61%. The main essential oil constituents were camphor (38.94%, caryophyllene oxide (7.28%, and 13-epi-manool (5.61%, while those of essential oil of S. officinalis were α-thujone (14.77%, camphor (13.08%, and 1,8-cineole (6.66%. In samples of S. sclarea, essential oil consists mainly of linalool (24.25%, α-thujene (7.48%, linalyl acetate (6.90%, germacrene-D (5.88%, bicyclogermacrene (4.29%, and α-copaene (4.08%. This variability leads to a large range of naturally occurring volatile compounds with valuable industrial and pharmaceutical outlets.

  10. Environmental and energy system analysis of bio-methane production pathways : A comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, F.; van Someren, C. E. J.; Benders, R. M. J.; Bekkering, J.; van Gemert, W. J. Th; Moll, H. C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.

  11. Environmental and energy system analysis of bio-methane production pathways : a comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Benders, René M.J.; Bekkering, Jan; van Gemert, Wim; Moll, Henri C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.

  12. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan); Jan, M. Rasul [University of Malakand, Chakdara, N.W.F.P. (Pakistan); Mabood, Fazal [Department of Chemistry, University of Malakand, Chakdara, N.W.F.P. (Pakistan); Jabeen, Farah [Department of Chemistry, Sarhad University, N.W.F.P. (Pakistan)

    2010-12-15

    Recycling of waste polymers has become a necessity because huge piles of those polymers represent a threat to the environment. Used polymers are also a source of energy and valuable chemicals. Used low density polyethylenes (LDPE) were catalytically pyrolysed in a home assembled batch reactor under atmospheric pressure. For maximum conversion into chemicals which could be used for feedstock recovery optimum conditions like temperature, catalyst weight and reaction time were optimized. A wide range of acidic and basic catalysts like silica, calcium carbide, alumina, magnesium oxide, zinc oxide and homogeneous mixture of silica and alumina were tried for this purpose. Though CaC{sub 2} was better on the basis of reaction time, however the efficiency of conversion into liquid for SiO{sub 2} was found to be maximum at optimum conditions. These two catalysts could be picked up as suitable catalysts for catalytic pyrolysis of polyethylene. The results of the column separation using different solvents indicate that the oxide containing catalyst could be best suited for selective conversion into polar and aromatic products while CaC{sub 2} catalyst could be adopted for selective conversion into aliphatic products. The liquid product obtained from catalytic pyrolysis was also characterized by physical and chemical tests. Among the physical tests density, specific gravity, API gravity, viscosity, kinematic viscosity, aniline point, flash point, Watson characterization constant, freezing point, diesel index, refractive index, gross calorific value, Net calorific value and ASTM Distillation were determined according to IP and ASTM standard methods for fuel values. From the physical tests it was observed that the results for the liquid fractions are comparable with the standard results of physical tests for gasoline, kerosene and diesel fuel oil. From the Bromine water and KMnO{sub 4} tests it was observed that liquid obtained is a mixture of olefin and aromatic hydrocarbons

  13. Next Generation Protein Interactomes for Plant Systems Biology and Biomass Feedstock Research

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph Robert [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Trigg, Shelly [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Univ. of California, San Diego, CA (United States). Biological Sciences Dept.; Garza, Renee [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Song, Haili [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; MacWilliams, Andrew [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Nery, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Reina, Joaquin [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Bartlett, Anna [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Castanon, Rosa [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Goubil, Adeline [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Feeney, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; O' Malley, Ronan [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Huang, Shao-shan Carol [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Zhang, Zhuzhu [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Galli, Mary [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.

    2016-11-30

    Biofuel crop cultivation is a necessary step in heading towards a sustainable future, making their genomic studies a priority. While technology platforms that currently exist for studying non-model crop species, like switch-grass or sorghum, have yielded large quantities of genomic and expression data, still a large gap exists between molecular mechanism and phenotype. The aspect of molecular activity at the level of protein-protein interactions has recently begun to bridge this gap, providing a more global perspective. Interactome analysis has defined more specific functional roles of proteins based on their interaction partners, neighborhoods, and other network features, making it possible to distinguish unique modules of immune response to different plant pathogens(Jiang, Dong, and Zhang 2016). As we work towards cultivating heartier biofuel crops, interactome data will lead to uncovering crop-specific defense and development networks. However, the collection of protein interaction data has been limited to expensive, time-consuming, hard-to-scale assays that mostly require cloned ORF collections. For these reasons, we have successfully developed a highly scalable, economical, and sensitive yeast two-hybrid assay, ProCREate, that can be universally applied to generate proteome-wide primary interactome data. ProCREate enables en masse pooling and massively paralleled sequencing for the identification of interacting proteins by exploiting Cre-lox recombination. ProCREate can be used to screen ORF/cDNA libraries from feedstock plant tissues. The interactome data generated will yield deeper insight into many molecular processes and pathways that can be used to guide improvement of feedstock productivity and sustainability.

  14. Continuous pyrolysis of biomass feedstocks in rotary kiln convertors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Jr, H. H.; Kimzey, J. R.; Turpin, J. L.; MacCallum, R. N.

    1979-08-30

    The biomass research program at the University of Arkansas has developed three experimental projects or tasks for the attainment of its objectives. They are: (1) utilization of the existing full scale convertor for testing and data acquisition at Jonesboro, Arkansas; (2) development of a scale model rotary pyrolytic convertor (bench scale research kiln); and (3) development of analytical laboratory services for the analysis of feedstocks and products, and for basic pyrolytic process studies. The project at Jonesboro, Arkansas, which aimed at testing the Angelo convertor concept through heat and material balances over the available range of operations, could not completely achieve this objective because of the severe mechanical and structural deficiencies in the full scale convertor. A limited number of data have been taken in spite of the deficiencies of the machine. The scale model rotary kiln has been the most successful of the three projects. The kiln has been completed as planned and successfully operated with a number of feedstock materials. Good qualitative data have been obtained on conversion rate capacities, charcoal yields, and off gas combustion product temperatures. In all, about one hundred test runs were made in the scale model kiln. About 90% of the results expected were attained. The laboratory services project was designed to provide analytical testing for the other two projects and to do basic studies in biomass material conversion processes. The project delivered the testing services, but was severely restricted in the area of basic studies because of the failure of the main instrument, the gas chromatograph, to operate successfully. In all it is estimated that this project attained about 80% of its expected goals.

  15. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production: Evaluating Best Management Practices for Biofuel Feedstock Production

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Miae [Argonne National Laboratory, Lemont IL 60439 USA; Wu, May [Argonne National Laboratory, Lemont IL 60439 USA

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. This study evaluates the improvement of water sustainability through an integrated landscaping management strategy, where landscaping design, land management operations, crop systems, and agricultural best management practices (BMPs) play equal roles. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, with a focus on implementing riparian buffers and converting low productivity land to provide cellulosic biomass while benefiting soil and water quality. The Soil and Water Assessment Tool (SWAT) was employed to simulate the impact of integrated landscape design on nutrients, suspended sediments, and flow on the watershed and subbasin scales. First, the study evaluated the representation of buffer strip as a vegetative barrier and as a riparian buffer using trapping efficiency and area ratio methods in SWAT. For the riparian buffer, the area ratio method tends to be more conservative, especially in nitrate loadings, while the trapping efficiency method generates more optimistic results. The differences between the two methods increase with buffer width. The two methods may not be comparable for the field-scale vegetative barrier simulation because of limitations in model spatial resolution. Landscape scenarios were developed to quantify water quality under (1) current land use, (2) partial land conversion to switchgrass, and (3) riparian buffer implementation. Results show that when low productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively, in the watershed surface streams. The reduction was less extensive when riparian buffer strips (30 m or 50 m) were applied to the stream network at 1.4% of total land area

  16. Rare Earth Element Recovery from Low-Grade Feedstocks Using Engineered E. coli

    Science.gov (United States)

    Brewer, A. W.; Park, D.; Jiao, Y.

    2017-12-01

    Rare earth elements (REEs) are critical materials for emerging science and technology industries, especially in the field of clean energy. However, their supply is potentially at risk due to political and economic concerns. The exploitation of new, low-grade REE sources in the United States, such as geothermal brines and mine tailings, may help to mitigate that supply risk. To purify and concentrate REEs from these sources, we have developed a biosorption approach using engineered E. coli cells that express a lanthanide binding tag on the cell surface. This tag has a high selectivity for REEs that enhances the native cell wall adsorption properties; the terbium adsorption capacity was increased approximately 2-fold, and the REE surface affinity was increased compared to all non-REE metals except copper. This biosorption method offers advantages over conventional REE extraction methods as it is inexpensive, environmentally friendly, and effective with low-grade feedstocks. In order to expand this method to an industrial scale, the cells must be contained in a durable material that permits the cell surfaces to function in a variety of bioreactor systems and to be reused through multiple adsorption and desorption cycles. Polyethylene glycol diacrylate (PEGDA) beads, with diameters from 200-400 um, can be impregnated with high concentrations of cells, and show promise in the selective adsorption of REEs from solution. In the future, the application of the adsorptive qualities of these engineered cells may be expanded to include other valuable metals, such as indium and gallium, to further develop the economic potential of this approach. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-736022.

  17. Rabeto plus: a valuable drug for managing functional dyspepsia.

    Science.gov (United States)

    Ghosh, Asim; Halder, Susanta; Mandal, Sanjoy; Mandal, Arpan; Basu, Mitali; Dabholkar, Pareen

    2008-11-01

    The aim of the study was to evaluate and document the efficacy and tolerability of rabeto plus (FDC of rabeprazole and itopride) in management of functional dyspepsia. It was an open, prospective, non-comparative, multidose study. The patients with functional dyspepsia (NERD or non-erosive reflux disease) attending OPD of a leading, tertiary care, teaching hospital in West Bengal (BS Medical College, Bankura) were inducted in the study. A total of 46 adult patients of either sex with functional dyspepsia and a clinical diagnosis of NERD were given 1 capsule of rabeto plus before breakfast, for up to 4 weeks. Primary efficacy variables were relief from symptoms of heartburn, nausea, vomiting, waterbrash and fullness. Secondary efficacy variables were global assessment of efficacy and toleration by patients and treating physicians. The tolerability was assessed on the basis of record of spontaneously reported adverse events with their nature, intensity and outcome. Out of 55 patients enrolled in the study, 46 completed the study as planned, while 9 patients were lost to follow-up (dropped). Most patients reported near total symptom relief by the end of study. Total symptom score showed remarkable and significant improvement from baseline to end of the study. Importantly, none of the patients reported any side-effect. All participants tolerated the drug well. Moreover, response to study drug was rated as excellent or good by over 93% patients and their treating physicians. This means that 9 out 10 patients receiving rabeto plus reported desired symptom relief from dyspepsia. Thus it was concluded that rabeto plus is a valuable drug for treatment of functional dyspepsia or NERD.

  18. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  19. Recycled Cell Phones - A Treasure Trove of Valuable Metals

    Science.gov (United States)

    Sullivan, Daniel E.

    2006-01-01

    This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.

  20. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15

    used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  1. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K; McGill, R [Sentech, Inc. (United States); Van Walwijk, M [Independent Consultant (France)

    2011-05-15

    cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  2. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  3. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  4. Influence of reaction conditions and feedstock on hydrochar properties

    International Nuclear Information System (INIS)

    Guo, Shuqing; Dong, Xiangyuan; Wu, Tingting; Zhu, Caixia

    2016-01-01

    variation regions of hydrochar yields for corn stalk and longan shell shift to lower severities. The chemical composition of the feedstock has also a significant effect on the hydrochar properties. However, the maximum decrease rates and the variation regions of hydrochar properties (determined by the first and the second derivative methods) show similar profiles for different feedstock. The maximum variation rate of the hydrochar properties for six biomass samples can be found at severity of 5.8–6.4.

  5. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  6. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  7. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  8. The potential of restaurant trap grease as biodiesel feedstock

    Directory of Open Access Journals (Sweden)

    Parichart Hasuntree

    2011-10-01

    Full Text Available The possibility of using restaurant trap grease as feedstock in the production of biodiesel via acid catalyzed esterificationis explored in this study. Sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid (FFA andmethanol. The FFA levels of restaurant trap greases were reduced from 60.38±2.22 mg KOH/g to 11.60±1.60 mgKOH/g whenconditions for biodiesel production are as follow: methanol-to-FFA ratio of 5:1, 5 wt.% H2SO4, and a reaction temperature at60°C with a reaction time of 60 min. During the acid-catalyzed esterification, the percentage of methyl esters resulting fromconversion of FFA in the obtained product was 83.59±1.51% based on the result of 1H NMR analysis. Data obtained from the23 full factorial designs revealed that methanol-to-FFA ratio term had the most significant effect on the percentage of methylesters, followed by the H2SO4 concentration. Conversely, reaction time between 1 and 3 hours had no significant effect on theesterification of trap greases.

  9. Low-cost feedstock conversion to biodiesel via ultrasound technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, O.; Petrik, L.; Amigun, B.; Ameer, F. [Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Amigun, B. [Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa)

    2010-10-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock - in this case waste cooking oil - in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 {sup o}C, a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration were obtained for the transesterification of the waste oil via the use of ultrasound. (authors)

  10. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, Omotola [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Petrik, Leslie [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Amigun, Bamikole [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa) and Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa); Ameer, Faraouk [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa)

    2010-09-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 deg C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  11. Design, modeling, and analysis of a feedstock logistics system.

    Science.gov (United States)

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Garold Linn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, Kevin Louis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  13. Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment

    International Nuclear Information System (INIS)

    Uihlein, Andreas; Schebek, Liselotte

    2009-01-01

    Biomass is a sustainable alternative to fossil energy carriers which are used to produce fuels, electricity, chemicals, and other goods. At the moment, the main biobased products are obtained by the conversion of biomass to basic products like starch, oil, and cellulose. In addition, some single chemicals and fuels are produced. Presently, concepts of biorefineries which will produce a multitude of biomass-derived products are discussed. Biorefineries are supposed to contribute to a more sustainable resource supply and to a reduction in greenhouse gas emissions. However, biobased products and fuels may also be associated with environmental disadvantages due to, e.g. land use or eutrophication of water. We performed a Life Cycle Assessment of a lignocellulose feedstock biorefinery system and compared it to conventional product alternatives. The biorefinery was found to have the greatest environmental impacts in the three categories: fossil fuel use, respiratory effects, and carcinogenics. The environmental impacts predominantly result from the provision of hydrochloric acid and to a smaller extent also from the provision of process heat. As the final configuration of the biorefinery cannot be determined yet, various variants of the biorefinery system were analysed. The optimum variant (acid and heat recoveries) yields better results than the fossil alternatives, with the total environmental impacts being approx. 41% lower than those of the fossil counterparts. For most biorefinery variants analysed, the environmental performance in some impact categories is better than that of the fossil counterparts while disadvantages can be seen in other categories.

  14. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  15. Decoloring hemoglobin as a feedstock for second-generation bioplastics.

    Science.gov (United States)

    Low, Aaron; Lay, Mark; Verbeek, Johan; Swan, Janis

    2012-01-01

    The color of red blood cell concentrate (RBCC) limits its application in human food, but there is potential to use it for second-generation bioplastics. Several methods have been developed to remove color from RBCC, but they are expensive or may produce difficult-to-remove toxic residues. Hydrogen peroxide treatment is a cheaper alternative. The effects of RBCC concentration, pH, and reaction temperature were the most important factors influencing the decolorizing process. They were investigated with the aim of developing a method that could be scaled to commercial level for producing a bioplastic feedstock. Initial trials showed pH was an important factor for decolorization and foaming. At pH 15 there was a 96% reduction in solution color and 8.4% solids were lost due to foaming. There was a 76% reduction in solution color at pH 2 and only 2.6% solids were lost due to foaming. The optimal reaction conditions were to centrifuge 9% w/w, pH 2 aqueous RBCC solution to remove aggregates. The solution was reacted at 30°C with 7.5 g of 30% (w/w) hydrogen peroxide. These conditions achieved a 93% reduction in solution color after 3 hr and the molecular weight of the decolored protein was not significantly reduced.

  16. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    International Nuclear Information System (INIS)

    Sarin, Amit; Singh, Meetu; Sharma, Neerja; Singh, N. P.

    2017-01-01

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  17. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit, E-mail: amit.sarin@yahoo.com [Department of Physical Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Singh, Meetu [Department of Applied Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Sharma, Neerja [PG Department of Physics and Electronics, DAV College, Amritsar (India); Singh, N. P. [Department of Planning and External Development, I.K. Gujral Punjab Technical University, Kapurthala (India)

    2017-10-26

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  18. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  20. Microbial Leaching of Some Valuable Elements From Egyptian Phosphate Rock

    International Nuclear Information System (INIS)

    Kamal, H.M.; Hassanein, R.A.; Mahdy, H.M.A.; Mahmoud, K.F.; Abouzeid, M.A.

    2012-01-01

    Four phosphate rock samples representing different phosphate mineralization modes in Egypt were selected from Abu Tartar, Nile valley and Red sea areas. Factors affecting the phosphate rock solubilization and some of the contained valuable elements by Aspergillus niger, Penicillium sp. and Pseudomonas fluorescence, were studied with especial orientation towards the completion of phosphate rock samples solubilization especially die low grade one. Effect of nitrogen source type on leaching efficiency by Aspergillus niger when two nitrogen sources on the phosphate bioleaching efficiency, it is clear that the ammonium chloride is more favorable as nitrogen source than sodium nitrate in the bioleaching of phosphate rocks. When Aspergillus niger was applied under die following conditions: 50 g/1 of sucrose as a carbon source, 0.1 N of ammonium chloride as a nitrogen source, 10 days incubation period, 0.5% solid: liquid ratio for P 2 O 5 and 5% for U and REE and - 270 mesh of grain size. The optimum leaching of P 2 O 5 , U and REE from phosphate rock samples reached (23.27%, 17.4%, 11.4%, respectively), while at -60 mesh they reached to 16.58%, 28.9%, 30.2% respectively. The optimum conditions for the maximal leaching efficiencies of P 2 O 5 , U and REE when applying the Penicillium sp. from the phosphate rock samples were: 100 g/1 of sucrose as a carbon source for P 2 O 5 and U and 10 g/1 for REE, 7,15 and 10 days incubation period for P 2 O 5 , U and REE, respectively, 0.5% solid: liquid ratio for P 2 O 5 and 5% for U and REE. Finally, the application of phosphate rock samples grinded to -270 mesh of grain size for P 2 O 5 and (-60 to -140) for U and REE. The studied leaching efficiency of P 2 O 5 , U and REE gave at -270 mesh 33.66%, 24.3%, 15.9% respectively, while at -60 mesh they gave 33.76%, 26.7%, 17.8% and at -140 mesh gave 31.32%, 27.9%, 17.6%, respectively.The optimum conditions for the P 2 O 5 leaching efficiency when applying the Pseudomonas fluorescence were

  1. Microbial production host selection for converting second-generation feedstocks into bioproducts

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of

  2. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  3. Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification

    NARCIS (Netherlands)

    Torres Salvador, A.F.; Slegers, Ellen; Noordam-Boot, C.M.M.; Dolstra, O.; Vlaswinkel, L.; Boxtel, van A.J.B.; Visser, R.G.F.; Trindade, L.M.

    2016-01-01

    Background - Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the

  4. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum.

    Science.gov (United States)

    Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F; Li, Shuaicheng; Hu, Kailin

    2016-01-07

    The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum.

  5. Analogies in Medicine: Valuable for Learning, Reasoning, Remembering and Naming

    Science.gov (United States)

    Pena, Gil Patrus; Andrade-Filho, Jose de Souza

    2010-01-01

    Analogies are important tools in human reasoning and learning, for resolving problems and providing arguments, and are extensively used in medicine. Analogy and similarity involve a structural alignment or mapping between domains. This cognitive mechanism can be used to make inferences and learn new abstractions. Through analogies, we try to…

  6. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    OpenAIRE

    Bandana Biswas; Stephen H. Kazakoff; Qunyi Jiang; Sharon Samuel; Peter M. Gresshoff; Paul T. Scott

    2013-01-01

    The tree legume Pongamia { (L.) Pierre [syn. (L.) Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v), of which approximately 50% is oleic acid (C). The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part...

  7. A framework for the analysis of the security of supply of utilising carbon dioxide as a chemical feedstock.

    Science.gov (United States)

    Fraga, Eric S; Ng, Melvin

    2015-01-01

    Recent developments in catalysts have enhanced the potential for the utilisation of carbon dioxide as a chemical feedstock. Using the appropriate energy efficient catalyst enables a range of chemical pathways leading to desirable products. In doing so, CO2 provides an economically and environmentally beneficial source of C1 feedstock, while improving the issues relating to security of supply that are associated with fossil-based feedstocks. However, the dependence on catalysts brings other supply chains into consideration, supply chains that may also have security of supply issues. The choice of chemical pathways for specific products will therefore entail an assessment not only of economic factors but also the security of supply issues for the catalysts. This is a multi-criteria decision making problem. In this paper, we present a modified 4A framework based on the framework suggested by the Asian Pacific Energy Research centre for macro-economic applications. The 4A methodology is named after the criteria used to compare alternatives: availability, acceptability, applicability and affordability. We have adapted this framework for the consideration of alternative chemical reaction processes using a micro-economic outlook. Data from a number of sources were collected and used to quantify each of the 4A criteria. A graphical representation of the assessments is used to support the decision maker in comparing alternatives. The framework not only allows for the comparison of processes but also highlights current limitations in the CCU processes. The framework presented can be used by a variety of stakeholders, including regulators, investors, and process industries, with the aim of identifying promising routes within a broader multi-criteria decision making process.

  8. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  9. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  10. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  11. Comparative environmental performance of lignocellulosic ethanol from different feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, Sara; Moreira, M. Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-09-15

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic raw materials is considered the most potential next generation automotive fuel. In this paper, a Life Cycle Assessment model was developed to evaluate the environmental implications of the production of ethanol from five lignocellulosic materials: alfalfa stems, poplar, Ethiopian mustard, flax shives and hemp hurds and its use in passenger cars. Two ethanol-based fuel applications, E10 (a mixture of 10% ethanol and 90% gasoline by volume) and E85 (85% ethanol and 15% gasoline by volume) were assessed and the results were compared to those of conventional gasoline (CG) in an equivalent car. The environmental performance was assessed in terms of fossil fuels requirements, global warming, photochemical oxidant formation, acidification and eutrophication by means of the Life Cycle Assessment (LCA) methodology in order to identify the best environmental friendly lignocellulosic source. The results show that, compared to CG, life cycle greenhouse gases emissions are lower for etanol blends, specifically up to 145% lower for E85-fueled car derived from Ethiopian mustard. This crop is also the best option in terms of eutrophying emissions regardless the ratio of ethanol in the blend. In the remaining impact categories, other feedstocks are considered beneficial, that is, poplar in the case of photochemical oxidants formation and flax shives for acidification. Concerning fossil fuels requirements, decreases up to 10% and 63% for E10 and E85 derived from hemp hurds and Ethiopian mustard, respectively, were obtained. According to the results, the study clearly demonstrates the importance of using low intensive energy and high biomass yield crops. LCA procedure helps to identify the key areas in the ethanol production life cycle where the researchers and technicians need to work

  12. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  13. Is franchising in health care valuable? A systematic review.

    Science.gov (United States)

    Nijmeijer, Karlijn J; Fabbricotti, Isabelle N; Huijsman, Robbert

    2014-03-01

    Franchising is an organizational form that originates from the business sector. It is increasingly used in the healthcare sector with the aim of enhancing quality and accessibility for patients, improving the efficiency and competitiveness of organizations and/or providing professionals with a supportive working environment. However, a structured overview of the scientific evidence for these claims is absent, whereas such an overview can be supportive to scholars, policy makers and franchise practitioners. This article provides a systematic review of literature on the outcomes of franchising in health care. Seven major databases were systematically searched. Peer-reviewed empirical journal articles focusing on the relationship between franchising and outcomes were included. Eventually, 15 articles were included and their findings were narratively synthesized. The level of evidence was rated by using the Grading of Recommendations Assessment, Development, and Evaluation scale. The review shows that outcomes of franchising in health care have primarily been evaluated in low- and middle-income countries in the reproductive health/family planning sector. Articles about high-income countries are largely absent, apart from three articles evaluating pharmacy franchises. Most studies focus on outcomes for customers/clients and less on organizations and professionals. The evidence is primarily of low quality. Based on this evidence, franchising is predominantly positively associated with client volumes, physical accessibility and some types of quality. Findings regarding utilization, customer loyalty, efficiency and results for providers are mixed. We conclude that franchising has the potential to improve outcomes in healthcare practices, but the evidence base is yet too weak for firm conclusions. Extensive research is needed to further determine the value of healthcare franchising in various contexts. We advocate more research in other healthcare sectors in both low- and

  14. Selective pathology fellowships: diverse, innovative, and valuable subspecialty training.

    Science.gov (United States)

    Iezzoni, Julia C; Ewton, April; Chévez-Barrios, Patricia; Moore, Stephen; Thorsen, Linda M; Naritoku, Wesley Y

    2014-04-01

    Although selective pathology fellowships have a long-standing history of developing trainees with advanced expertise in specific areas of pathology other than those of the American Board of Pathology-certified subspecialties, the widespread interest in this training continues to grow. To describe the historical background and current status of selective pathology fellowships, and to provide examples of 3 programs. In addition, Accreditation Council for Graduate Medical Education (ACGME)-accredited programs and nonaccredited programs in Selective Pathology are compared. ACGME data banks and publicly available online materials were used. Program directors of the fellowships examples in this paper provided program-specific information. Additionally, an online survey of the program directors and program coordinators of ACGME-accredited programs and nonaccredited programs in selective pathology was performed. There are currently 76 ACGME-accredited selective pathology programs. The programs are distributed between 3 major categories: surgical pathology, focused anatomic pathology, and focused clinical pathology. Although the vast majority of programs are concerned that their funding source may be cut in the next 3 years, most programs will not change the number of fellowship positions in their programs. Program requirements devoted specifically and solely to selective pathology have been developed and are in effect. The value of this training is recognized not only by pathologists, but by clinicians as well, in both academia and private practice. Importantly, the diversity and innovation inherent in selective pathology allow these programs to adeptly address new subspecialty areas and technologic advances in the current and evolving practice of pathology.

  15. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES)

    Science.gov (United States)

    Kuwayama, Y.; Mabee, B.; Wulf Tregar, S.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. There is a need to substantiate the benefits of Earth science applications in socially and economically meaningful terms in order to demonstrate return on investment and to prioritize investments across data products, modeling capabilities, and information systems. However, methods and techniques for quantifying the value proposition of Earth observations are currently not fully established. Furthermore, it has been challenging to communicate the value of these investments to audiences beyond the Earth science community. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. The VALUABLES Consortium will focus on three pillars: (a) a research pillar that will apply existing and innovative methods to quantify the socioeconomic benefits of information from Earth observations; (b) a capacity building pillar to catalyze interdisciplinary linkages between Earth scientists and social scientists; and (c) a communications pillar that will convey the value of Earth observations to stakeholders in government, universities, the NGO community, and the interested public. In this presentation, we will describe ongoing and future activities of the VALUABLES Consortium, provide a brief overview of frameworks to quantify the socioeconomic value of Earth observations, and describe how Earth scientists and social scientist can get involved in the Consortium's activities.

  16. [Single embryo transfer: is Scandinavian model valuable in France?].

    Science.gov (United States)

    Belaisch-Allart, J; Mayenga, J-M; Grefenstette, I; Chouraqui, A; Serkine, A-M; Abirached, F; Kulski, O

    2008-11-01

    The aim of infertility treatment is clearly to obtain one healthy baby. If the transfer of a top quality single embryo could provide a baby to all the patients, there would be no more discussion. The problem is that, nowadays, French pregnancy rates after fresh embryo or frozen embryo transfer are not the same as in Nordic countries. All studies show that in unselected patients, single embryo transfer decreases twin pregnancy rate but decreases pregnancy rate too. Pregnancy rate is dependent on embryo quality, women's age, rank of IVF attempt (clear data) but also on body mass index, ovarian reserve, smoking habits. All these data cannot be taken into account in a law. That is the reason why a flexible policy of transfer adapted to each couple is preferable. Each couple and each IVF team are unique and must keep the freedom to choose how many embryos must be transferred to obtain healthy babies, and to avoid twin pregnancies but without demonizing them.

  17. The program success story: a valuable tool for program evaluation.

    Science.gov (United States)

    Lavinghouze, Rene; Price, Ann Webb; Smith, Kisha-Ann

    2007-10-01

    Success stories are evaluation tools that have been used by professionals across disciplines for quite some time. They are also proving to be useful in promoting health programs and their accomplishments. The increasing popularity of success stories is due to the innovative and effective way that they increase a program's visibility, while engaging potential participants, partners, and funders in public health efforts. From the community level to the federal level, program administrators are using success stories as vehicles for celebrating achievements, sharing challenges, and communicating lessons learned. Success stories are an effective means to move beyond the numbers and connect to readers-with a cause they can relate to and want to join. This article defines success stories and provides an overview of several types of story formats, how success stories can be systematically collected, and how they are used to communicate program success.

  18. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    Science.gov (United States)

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  19. GMO quantification: valuable experience and insights for the future.

    Science.gov (United States)

    Milavec, Mojca; Dobnik, David; Yang, Litao; Zhang, Dabing; Gruden, Kristina; Zel, Jana

    2014-10-01

    Cultivation and marketing of genetically modified organisms (GMOs) have been unevenly adopted worldwide. To facilitate international trade and to provide information to consumers, labelling requirements have been set up in many countries. Quantitative real-time polymerase chain reaction (qPCR) is currently the method of choice for detection, identification and quantification of GMOs. This has been critically assessed and the requirements for the method performance have been set. Nevertheless, there are challenges that should still be highlighted, such as measuring the quantity and quality of DNA, and determining the qPCR efficiency, possible sequence mismatches, characteristics of taxon-specific genes and appropriate units of measurement, as these remain potential sources of measurement uncertainty. To overcome these problems and to cope with the continuous increase in the number and variety of GMOs, new approaches are needed. Statistical strategies of quantification have already been proposed and expanded with the development of digital PCR. The first attempts have been made to use new generation sequencing also for quantitative purposes, although accurate quantification of the contents of GMOs using this technology is still a challenge for the future, and especially for mixed samples. New approaches are needed also for the quantification of stacks, and for potential quantification of organisms produced by new plant breeding techniques.

  20. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain

  1. Instrumental neutron activation analysis, a valuable link in chemical metrology

    International Nuclear Information System (INIS)

    Zeisler, R.; Lindstrom, R.M.; Greenberg, R.R.

    2002-01-01

    Instrumental neutron activation analysis (INAA) is sufficiently versatile to establish a direct link to the amount of substance determined. The inherent quality parameters of INAA, such as being virtually free of blank, having fully accountable effects of matrix and physical form, and operating over a huge range of amounts, allows the comparison of a mole (or its fraction) of a pure element with the amount of substance in the sample analyzed with the same direct relationship as a beam balance provides. Indeed, varieties of this approach are in common use in INAA in the comparator methods of quantitation. To eliminate possible perturbations of the traceability chain as they may occur in common INAA practice, experimental measurements have been set up that only involve the fraction of a mole of the element(s) of interest in form of the pure element, compound or certified standard and the unknown sample. This principle has been used in INAA measurements for certification value assignment of high temperature alloy SRMs. To further demonstrate the performance parameters of INAA, we selected the determination of chromium in SRM 1152a Stainless Steel by direct non-destructive comparison with the pure metal in form of crystalline chromium. The measurements were validated with weighed aliquots of SRM 3112a dried on filter paper pellets. The experimental results do not show deviations beyond the uncertainties of the SRMs (≤ 0.2 % relative), and the assessment of the uncertainty budget indicates that expanded uncertainties of ≤ 0.3 % are achievable. The measurements demonstrate that INAA can meet the CCQM definition of a primary ratio method of analysis

  2. INFOMAR, Ireland's National Seabed Mapping Programme; Sharing Valuable Insights.

    Science.gov (United States)

    Judge, M. T.; McGrath, F.; Cullen, S.; Verbruggen, K.

    2017-12-01

    Following the successful high-resolution deep-sea mapping carried out as part of the Irish National Seabed Survey (INSS), a strategic, long term programme was established: INtegrated mapping FOr the sustainable development of Ireland MArine Resources (INFOMAR). Funded by Ireland's Department of Communication, Climate Action and Environment, INFOMAR comprises a multi-platform approach to completing Ireland's marine mapping, and is a key action in the integrated marine plan, Harnessing Our Ocean Wealth. Co-managed by Geological Survey Ireland and the Marine Institute, the programme has three work strands: Data Acquisition; Data Exchange and Integration; Value Added Exploitation.The Data Acquisition strand includes collection of geological, hydrographic, oceanographic, habitat and heritage datasets that underpin sustainable development and management of Ireland's marine resources. INFOMAR operates a free data policy; data and outputs are delivered online through the Data Exchange and Integration strand. Uses of data and outputs are wide-ranging and multipurpose. In order to address the evolution and diversification of user requirements, further data product development is facilitated through the Value Added Exploitation strand.Ninety percent of Ireland's territory lies offshore. Therefore, strategic national seabed mapping continues to provide critical, high-resolution baseline datasets for numerous economic sectors and societal needs. From these we can glean important geodynamic knowledge of Ireland's vast maritime territory. INFOMAR remains aligned with national and European policies and directives. Exemplified by our commitment to EMODnet, a European Commission funded project that supports the collection, standardisation and sharing of available marine information, data and data products across all European Seas. As EMODnet Geology Minerals leaders we have developed a framework for mapping marine minerals. Furthermore, collaboration with the international research

  3. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries.

    Science.gov (United States)

    Godin, Bruno; Nagle, Nick; Sattler, Scott; Agneessens, Richard; Delcarte, Jérôme; Wolfrum, Edward

    2016-01-01

    For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In this work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib ( bmr ) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system. After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger. Sorghum bmr mutants, which have a reduced lignin content showed

  4. Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock

    Directory of Open Access Journals (Sweden)

    C.A. Contador

    2015-12-01

    Full Text Available Macroalgae have high potential to be an efficient, and sustainable feedstock for the production of biofuels and other more valuable chemicals. Attempts have been made to enable the co-fermentation of alginate and mannitol by Saccharomyces cerevisiae to unlock the full potential of this marine biomass. However, the efficient use of the sugars derived from macroalgae depends on the equilibrium of cofactors derived from the alginate and mannitol catabolic pathways. There are a number of strong metabolic limitations that have to be tackled before this bioconversion can be carried out efficiently by engineered yeast cells.An analysis of the redox balance during ethanol fermentation from alginate and mannitol by Saccharomyces cerevisiae using metabolic engineering tools was carried out. To represent the strain designed for conversion of macroalgae carbohydrates to ethanol, a context-specific model was derived from the available yeast genome-scale metabolic reconstructions. Flux balance analysis and dynamic simulations were used to determine the flux distributions. The model indicates that ethanol production is determined by the activity of 4-deoxy-l-erythro-5-hexoseulose uronate (DEHU reductase (DehR and its preferences for NADH or NADPH which influences strongly the flow of cellular resources. Different scenarios were explored to determine the equilibrium between NAD(H and NADP(H that will lead to increased ethanol yields on mannitol and DEHU under anaerobic conditions. When rates of mannitol dehydrogenase and DehRNADH tend to be close to a ratio in the range 1–1.6, high growth rates and ethanol yields were predicted. The analysis shows a number of metabolic limitations that are not easily identified through experimental procedures such as quantifying the impact of the cofactor preference by DEHU reductase in the system, the low flux into the alginate catabolic pathway, and a detailed analysis of the redox balance. These results show that

  5. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2012-01-01

    Fuel properties are largely dependent on the fatty acid (FA) composition of the feedstock from which biodiesel is prepared. Consequently, FA profile was employed as a screening tool for selection of feedstocks high in monounsaturated FAs for further evaluation as biodiesel. Those feedstocks included ailanthus (Ailanthus altissima L.), anise (Pimpinella anisum L.), arugula (Eruca vesicaria L.), cress (Lepidium sativum L.), cumin (Cuminum cyminum L.), Indian cress (Tropaeolum majus L.), shepherd’s purse (Capsella bursa-pastoris L.) and upland cress (Barbarea verna (Mill.) Asch.). Other selection criteria included saturated FA content, iodine value (IV), content of FAs containing twenty or more carbons and content of trienoic FAs. Anise oil satisfied all selection criteria and was therefore selected for further investigation. Arugula, cumin and upland cress oils were selected as antagonists to the selection criteria. Preparation of FA methyl esters (FAMEs, ≥ 92 wt % yield) following conventional alkaline-catalyzed methanolysis preceded fuel property determination. Of particular interest were oxidative stability and cold flow properties. Also measured were kinematic viscosity (40 °C), IV, acid value, free and total glycerol content, sulfur and phosphorous content, cetane number, energy content and lubricity. FAMEs prepared from anise oil yielded properties compliant with biodiesel standards ASTM D6751 and EN 14214 whereas the antagonists failed at least one specification contained within the standards. As a result, FA profile was an efficient predictor of compliance with biodiesel standards and is therefore recommended as a screening tool for investigation of alternative feedstocks. -- Highlights: ► Fatty acid methyl esters were prepared from several alternative feedstocks. ► Fatty acid composition was a principal factor influencing fuel properties. ► Oxidative stability and cold flow properties of biodiesel were examined in detail. ► Limits were developed

  6. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  7. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.

    Science.gov (United States)

    Zhang, Luxin; He, Yunfei; Zhu, Yujie; Liu, Yuting; Wang, Xiaochang

    2018-02-01

    This paper focuses on the high-value transformation of camellia oleifera shell, which is an agricultural waste enriched in hemicellulose. An efficient catalytic route employing sulfonated swelling mesoporous polydivinylbenzene (PDVB-SO 3 H) as catalyst in monophasic or biphasic solvents was developed for the conversion of raw camellia oleifera shell into furfural. The reaction parameters were evaluated and optimized for improving the furfural yield. It was found that the solvent greatly influenced the hydrolysis of camellia oleifera shells, and the highest furfural yield of 61.3% was obtained in "γ-butyrolactone + water" system when the feedstock-to-catalyst ratio was 2 for 30 min at 443 K. Camellia oleifera shell exhibited a high potential as feedstock to produce furfural in high yields. The outcome of this study provides an attractive utilization option to camellia oleifera shell, which is currently burned or discarded for producing a bio-based chemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Antonetti

    2016-12-01

    Full Text Available Levulinic acid (LA is one of the top bio-based platform molecules that can be converted into many valuable chemicals. It can be produced by acid catalysis from renewable resources, such as sugars, lignocellulosic biomass and waste materials, attractive candidates due to their abundance and environmentally benign nature. The LA transition from niche product to mass-produced chemical, however, requires its production from sustainable biomass feedstocks at low costs, adopting environment-friendly techniques. This review is an up-to-date discussion of the literature on the several catalytic systems that have been developed to produce LA from the different substrates. Special attention has been paid to the recent advancements on starting materials, moving from simple sugars to raw and waste biomasses. This aspect is of paramount importance from a sustainability point of view, transforming wastes needing to be disposed into starting materials for value-added products. This review also discusses the strategies to exploit the solid residues always obtained in the LA production processes, in order to attain a circular economy approach.

  9. Land-based Investments for Rural Development? A Grounded Analysis of the Local Impacts of Biofuel Feedstock Plantations in Ghana

    Directory of Open Access Journals (Sweden)

    George C. Schoneveld

    2011-12-01

    Full Text Available The rapidly growing biofuel sector in Africa has, in recent years, been received with divided interest. As part of a contemporary wave of agricultural modernization efforts, it could make invaluable contributions to rural poverty. Conversely, it could also engender socioeconomically and environmentally detrimental land use changes as valuable land resources are converted to plantation agriculture. This research analyzes the impacts and impact pathways of biofuel feedstock development in Ghana. It finds that companies are accessing large contiguous areas of customary land through opaque negotiations with traditional authorities, often outside the purview of government and customary land users. Despite lack of participation, most customary land users were highly supportive of plantation development, with high expectations of 'development' and 'modernization.' With little opposition and resistance, large areas of agricultural and forested land are at threat of being converted to plantation monoculture. A case study analysis shows that this can significantly exacerbate rural poverty as communities lose access to vital livelihood resources. Vulnerable groups, such as women and migrants, are found to be most profoundly affected because of their relative inability in recovering lost livelihood resources. Findings suggest that greater circumspection by government is warranted on these types of large-scale land deals.

  10. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    Science.gov (United States)

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  11. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  12. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.

    Science.gov (United States)

    Revelles, Olga; Beneroso, Daniel; Menéndez, J Angel; Arenillas, Ana; García, J Luis; Prieto, M Auxiliadora

    2017-11-01

    The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio-economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the synthesis of PHA from syngas produced by microwave pyrolysis of the MSW organic fraction from a European city (Seville). Growth rate, uptake rate, biomass yield and PHA production from syngas in R. rubrum have been analysed. The results revealed the strong robustness of this syngas fermentation where the purity of the syngas is not a critical constraint for PHA production. Microwave-induced pyrolysis is a tangible alternative to standard pyrolysis, because it can reduce cost in terms of energy and time as well as increase syngas production, providing a satisfactory PHA yield. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Photosynthesis-fermentation hybrid system to produce lipid feedstock for algal biofuel.

    Science.gov (United States)

    Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2013-01-01

    To avoid bacterial contamination due to medium replacement in the expanded application of a photosynthesis-fermentation model, an integrated photosynthesis-fermentation hybrid system was set up and evaluated for algal lipid production using Chlorella protothecoides. In this system, the CO2-rich off-gas from the fermentation process was recycled to agitate medium in thephotobioreactor, which could provide initial cells for the heterotrophic fermentation. The cell concentration reached 1.03 +/- 0.07 g/L during photoautotrophic growth and then the concentrated green cells were switched to heterotrophic fermentation after removing over 99.5% ofnitrogen in the medium by a nitrogen removal device. At the end offermentation in the system, the cell concentration could reach as high as 100.51 +/- 2.03 g/L, and 60.05 +/- 1.38% lipid content was achieved simultaneously. The lipid yield (60.36 +/- 2.63 g/L) in the hybrid system was over 700 times higher than that in a photobioreactor and exceeded that by fermentation alone (47.56 +/- 7.31 g/L). The developed photosynthesis-fermentation hybrid system in this study was not only a feasible option to enhance microalgal lipid production, but also an environment-friendly approach to produce biofuel feedstock through concurrent utilization of ammonia nitrogen, CO2, and organic carbons.

  14. Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char

    Directory of Open Access Journals (Sweden)

    Raymond L. Huhnke

    2013-08-01

    Full Text Available Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon and carbon-based catalysts. Considering these high-value applications, char could provide economic benefits to a biorefinery utilizing gasification or pyrolysis technologies. However, the properties of char depend heavily on biomass feedstock, gasifier design and operating conditions. This paper reports the effects of biomass type (switchgrass, sorghum straw and red cedar and equivalence ratio (0.20, 0.25 and 0.28, i.e., the ratio of air supply relative to the air that is required for stoichiometric combustion of biomass, on the physiochemical properties of char derived from gasification. Results show that the Brunauer-Emmett-Teller (BET surface areas of most of the char were 1–10 m2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The corresponding Fourier Transform Infrared spectra showed that the surface functional groups of char differed between biomass types but remained similar with change in equivalence ratio.

  15. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    International Nuclear Information System (INIS)

    Hofstetter, J.; Lelievre, J.F.; Canizo, C.; Luque, A. del

    2009-01-01

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10 -3 ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10 -4 ppma and the allowed concentration of 2.2x10 -2 ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  16. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  17. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  18. Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock

    Directory of Open Access Journals (Sweden)

    Beaudoin Frédéric

    2014-11-01

    Full Text Available The world faces considerable challenges including how to produce more biomass for food, feed, fuel and industrial feedstock without significantly impacting on our environment or increasing our consumption of limited resources such as water or petroleum-derived carbon. This has been described as sustainable intensification. Oleaginous crops have the potential to provide renewable resources for all these commodities, provided they can be engineered to meet end-use requirements, and that they can be produced on sufficient scale to meet current growing world population and industrial demand. Although traditional breeding methods have been used successfully to modify the fatty acid composition of oils, metabolic engineering provides a more rapid and direct method for manipulating plant lipid composition. Recent advances in our understanding of the biochemical mechanisms of seed oil biogenesis and the cloning of genes involved in fatty acid and oil metabolic pathways, have allowed the generation of oilseed crops that produce ‘designer oils’ tailored for specific applications and the conversion of high biomass crops into novel oleaginous crops. However, improvement of complex quantitative traits in oilseed crops remains more challenging as the underlying genetic determinants are still poorly understood. Technological advances in sequencing and computing have allowed the development of an association genetics method applicable to crops with complex genomes. Associative transcriptomics approaches and high throughput lipidomic profiling can be used to identify the genetic components controlling quantitative variation for lipid related traits in polyploid crops like oilseed rape and provide molecular tools for marker assisted breeding. In this review we are citing examples of traits with potential for bio-refining that can be harvested as co-products in seeds, but also in non-harvested biomass.

  19. Professional Regulation: A Potentially Valuable Tool in Responding to “Stem Cell Tourism”

    Directory of Open Access Journals (Sweden)

    Amy Zarzeczny

    2014-09-01

    Full Text Available The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet (“stem cell tourism” is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market.

  20. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).

    Science.gov (United States)

    Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.

  1. Professional regulation: a potentially valuable tool in responding to "stem cell tourism".

    Science.gov (United States)

    Zarzeczny, Amy; Caulfield, Timothy; Ogbogu, Ubaka; Bell, Peter; Crooks, Valorie A; Kamenova, Kalina; Master, Zubin; Rachul, Christen; Snyder, Jeremy; Toews, Maeghan; Zoeller, Sonja

    2014-09-09

    The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet ("stem cell tourism") is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Motivational interviewing: a valuable tool for the psychiatric advanced practice nurse.

    Science.gov (United States)

    Karzenowski, Abby; Puskar, Kathy

    2011-01-01

    Motivational Interviewing (MI) is well known and respected by many health care professionals. Developed by Miller and Rollnick (2002) , it is a way to promote behavior change from within and resolve ambivalence. MI is individualized and is most commonly used in the psychiatric setting; it is a valuable tool for the Psychiatric Advanced Nurse Practice Nurse. There are many resources that talk about what MI is and the principles used to apply it. However, there is little information about how to incorporate MI into a clinical case. This article provides a summary of articles related to MI and discusses two case studies using MI and why advanced practice nurses should use MI with their patients.

  3. Valuable Virality

    NARCIS (Netherlands)

    Akpinar, E.; Berger, Jonah

    2017-01-01

    Given recent interest in social media, many brands now create content that they hope consumers will view and share with peers. While some campaigns indeed go “viral,” their value to the brand is limited if they do not boost brand evaluation or increase purchase. Consequently, a key question is how

  4. Valuable Connections

    DEFF Research Database (Denmark)

    Kjærsgaard, Mette Gislev; Smith, Rachel Charlotte

    2014-01-01

    and blurred boundaries between physical, digital and hybrid contexts, as well as design, production and use, we might need to rethink the role of ethnography within design and business development. Perhaps the aim is less about ”getting closer” to user needs and real-life contexts, through familiarization......, mediation, advocacy and facilitation, as in conventional approaches to ethnography in user centred design, and more about creating a critical theoretically informed distance from which to perceive and reflect upon complex interconnections between people, technology, business and design, as well as our roles...

  5. Valuable Connections

    DEFF Research Database (Denmark)

    Kjærsgaard, Mette Gislev; Smith, Rachel Charlotte

    2014-01-01

    , as well as design, production and use, we might need to rethink the role of ethnography within user centred design and business development. Here the challenge is less about ”getting closer” to user needs and real-life contexts, through familiarization, mediation, and facilitation, and more about creating...... a critical theoretically informed distance from which to perceive and reflect upon complex interconnections between people, technology, business and design, as well as our roles as researchers and designers within these....

  6. Electronic theses and dissertations: a review of this valuable resource for nurse scholars worldwide.

    Science.gov (United States)

    Goodfellow, L M

    2009-06-01

    A worldwide repository of electronic theses and dissertations (ETDs) could provide worldwide access to the most up-to-date research generated by masters and doctoral students. Until that international repository is established, it is possible to access some of these valuable knowledge resources. ETDs provide a technologically advanced medium with endless multimedia capabilities that far exceed the print and bound copies of theses and dissertations housed traditionally in individual university libraries. CURRENT USE: A growing trend exists for universities worldwide to require graduate students to submit theses or dissertations as electronic documents. However, nurse scholars underutilize ETDs, as evidenced by perusing bibliographic citation lists in many of the research journals. ETDs can be searched for and retrieved through several digital resources such as the Networked Digital Library of Theses and Dissertations (http://www.ndltd.org), ProQuest Dissertations and Theses (http://www.umi.com), the Australasian Digital Theses Program (http://adt.caul.edu.au/) and through individual university web sites and online catalogues. An international repository of ETDs benefits the community of nurse scholars in many ways. The ability to access recent graduate students' research electronically from anywhere in the world is advantageous. For scholars residing in developing countries, access to these ETDs may prove to be even more valuable. In some cases, ETDs are not available for worldwide access and can only be accessed through the university library from which the student graduated. Public access to university library ETD collections is not always permitted. Nurse scholars from both developing and developed countries could benefit from ETDs.

  7. Seaweed as innovative feedstock for energy and feed – Evaluating the impacts through a Life Cycle Assessment

    DEFF Research Database (Denmark)

    Seghetta, Michele; Romeo, Daina; D'Este, Martina

    2017-01-01

    a comparative Life Cycle Assessment of five scenarios identifying the critical features affecting resource efficiency and environmental performance of the systems with the aim of providing decision support for the design of future industrial scale production processes. The results show that all scenarios......Offshore cultivation of seaweed provides an innovative feedstock for biobased products supporting blue growth in northern Europe. This paper analyzes two alternative exploitation pathways: energy and protein production. The first pathway is based on anaerobic digestion of seaweed which is converted...... into biogas, for production of electricity and heat, and digestate, used as fertilizer; the second pathway uses seaweed hydrolysate as a substrate for cultivation of heterotrophic microalgae. As a result the seaweed sugars are consumed while new proteins are produced enhancing the total output. We performed...

  8. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    Science.gov (United States)

    Trueba, Isidoro

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from

  9. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  10. Debinding properties' study of a 316-L stainless steel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Rei, M.; Schaeffer, L. [Metal Forming Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil); Souza, J.P. [Extraction Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2001-07-01

    This paper describes the behavior of a 316-L stainless steel feedstock's front low pressure injection molding process steps (MIM). The qualitative composition is 316-L stainless steel powder, ethylene and vinyl acetate copolymer (EVA), 140-macrocrystalline paraffin, carnauba wax and stearic acid. Thermogravimetric analyses were used to determine the quantitative composition of the binder system, while the quantitative composition of feedstock was determined by the knowledge of the mixture's critical loading. The feedstock was molded by low pressure injection molding in a MIGL-33 machine and submitted to a wicking debinding process, or immersed in carbon tetrachloride or in carbon dioxide under supercritical conditions. After the above mentioned procedure, the parts were submitted to thermal extraction. (orig.)

  11. Solar cells from 120 PPMA carbon-contaminated feedstock without significantly higher reverse current or shunt

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Coletti, G. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In a bid to drive down the cost of silicon wafers, several options for solar grade silicon feedstock have been investigated over the years. All methods have in common that the resulting silicon contains higher levels of impurities like dopants, oxygen, carbon or transition metals, the type and level of impurities depending on the raw materials and refining processes. In this work wafers from a p-type mc-Si ingot made with feedstock contaminated with 120 ppma of carbon have been processed into solar cells together with reference uncontaminated feedstock from semiconductor grade polysilicon with <0.4 ppma carbon. The results show that comparable reverse current, shunts, and efficiencies can be reached for both types of wafers. Gettering and defect hydrogenation effectiveness also did not deviate from the reference. Electroluminescence pictures do not show increased hotspot formation, even at -16V.

  12. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    Science.gov (United States)

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  13. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heath, Garvin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hettinger, Dylan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-29

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA's MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).

  14. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  15. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  16. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  17. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  18. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, d...... methane potential of switchgrass. Transactions of the ASABE. 53, 1921-1927 (2010) [3] Jurado, E., Gavala., H.N., Skiadas, I.V., :Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environmental Tecnology. 34(13-14), 2069-2075 (2013)...

  19. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  20. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  1. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  2. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Esther [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  3. Capillary rheological studies of 17-4 PH MIM feedstocks prepared using a custom CSIR binder system

    CSIR Research Space (South Africa)

    Machaka, Ronald

    2018-02-01

    Full Text Available This paper reports on an attempt to establish the rheological properties of 17-4 PH stainless steel MIM feedstocks prepared using a proprietary CSIR wax-based binder system. The influence of powder and feedstock characteristics on the rheological...

  4. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Science.gov (United States)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  5. Evaluation of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane ...

  6. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  7. Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock

    DEFF Research Database (Denmark)

    Seghetta, Michele; Østergård, Hanne; Bastianoni, Simone

    2014-01-01

    , and in KB runoff from agricultural land constitutes 86%. The environmental support needed for producing one Joule of bioethanol is somewhat more than for a number of other bioethanol feedstocks being 2.12 x 106 solar equivalent Joules (seJ) for OL and 2.56 x 106 seJ for KB. However, a high percentage...

  8. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  9. Valorization of guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment

    Science.gov (United States)

    Natural rubber latex extraction from guayule leaves behind greater than 80% (by weight) of agricultural residue as a feedstock suitable for conversion to biofuels via a thermochemical or biochemical route. Untreated guayule shrub and bagasse (after latex extraction) has shown to be very recalcitrant...

  10. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  11. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  12. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  13. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  14. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Science.gov (United States)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  15. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.

    2013-01-01

    to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for gasification...

  16. Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks

    Directory of Open Access Journals (Sweden)

    Hendroko Setyobudi Roy

    2018-01-01

    Full Text Available The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.

  17. Assessment of Moisture Content and Its Influence on Laser Beam Melting Feedstock

    NARCIS (Netherlands)

    Cordova, Laura; Campos, Mónica; Tinga, Tiedo

    2017-01-01

    Additive Manufacturing (AM) techniques are known for building functional parts by adding layers of material. This layer-wise fabrication of metal parts yields freedom of design, weight reduction and product customization. Most of the metal AM processes use powder as feedstock, as small particles

  18. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    International Nuclear Information System (INIS)

    Deverell, R.; McDonnell, K.; Devlin, G.

    2009-01-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  19. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  20. Two-Organism Concept for the Conversion of Cellulosic Feedstocks to Fuel

    Science.gov (United States)

    2010-08-01

    FEEDSTOCKS TO FUEL INTRODUCTION Since the start of the Industrial Revolution in the late 19th century, atmospheric levels of the greenhouse gas carbon...PgC = 1015 g Carbon) have been released into the atmosphere since the start of the Industrial Revolution (Malhi et al., 2002). Figure 1 shows the

  1. Fatty acid profile of alternative feedstocks for biodiesel production and implications for fuel properties

    Science.gov (United States)

    Feedstock accounts for approximately 80% of biodiesel production expenses when commodity lipids such as soybean oil are utilized. Furthermore, commodity lipids have competing food-related applications. Consequently, low-cost alternatives that do not displace existing food production are of interest ...

  2. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  3. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  4. Towards fermentation of galacturonic acid-containing feedstocks with Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huisjes, E.H.

    2013-01-01

    The ambition to reduce our current dependence on fossil transportation fuels has driven renewed interest in bioethanol. Pectin-rich feedstocks like sugar beet pulp and citrus peel, which are currently sold as cattle feed, are promising raw materials for the production of bioethanol. This thesis

  5. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Alexis T. [Univ. of California, Berkeley, CA (United States); Alger, Monty M. [Pennsylvania State Univ., University Park, PA (United States); Flytzani-Stephanopoulos, Maria [Tufts Univ., Medford, MA (United States); Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, James [Dow Chemical Company, Torrance, CA (United States); Alper, Joe; Tran, Camly [National Academies of Sciences, Engineering, and Medicine, Washington, DC (United States)

    2016-11-14

    A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity to discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.

  6. Processing of low-quality bauxite feedstock by thermochemistry-Bayer method

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-11-01

    Full Text Available The modern production of aluminum which by its global output ranks first among the non-ferrous metals includes three main stages: ore extraction, its processing into alumina and, finally, the production of primary aluminum. Alumina production from bauxites,  being the  primary raw material in the  alumina industry,  is based  on two main methods: the Bayer method and the sintering method developed in Russia under the lead of an academician Nikolay Semenovich Kurnakov. Alumina production by the Bayer’s method is more cost effective,  but  has  higher  requirements to the  quality of the bauxite feedstock.  A great deal  of research has  been carried  out on low quality bauxites focusing firstly on finding ways to enrich the feedstock, secondly on improving the combined sequential Bayer-sintering method and thirdly on developing new hydrometallurgical ways for bauxites processing. Mechanical methods of bauxite enrichment have not yet brought any positive outcome, and a development of new hydrometallurgical high alkaline  autoclave process  faced  significant hardware  difficulties not addressed so far. For efficient processing of such low quality bauxite feedstock it is suggested to use a universal thermochemistry-Bayer method, which was developed in St. Petersburg Mining University under  the lead  of  Nikolay Ivanovich Eremin, allows to process different substandard bauxite feedstock and has a competitive costing as compared to the sintering method and combined methods. The main stages of thermochemistry-Bayer method are thermal activation of feedstock, its further desiliconization with the alkaline solution and leaching of the resultant bauxite product  under Bayer’s method. Despite high energy consumption at  the baking stage,  it  allows to condition the  low quality bauxite feedstock by neutralizing a variety of technologically harmful impurities such as organic matter, sulfide sulfur, carbonates, and at the

  7. Designing clinically valuable telehealth resources: processes to develop a community-based palliative care prototype.

    Science.gov (United States)

    Tieman, Jennifer Joy; Morgan, Deidre Diane; Swetenham, Kate; To, Timothy Hong Man; Currow, David Christopher

    2014-09-04

    Changing population demography and patterns of disease are increasing demands on the health system. Telehealth is seen as providing a mechanism to support community-based care, thus reducing pressure on hospital services and supporting consumer preferences for care in the home. This study examined the processes involved in developing a prototype telehealth intervention to support palliative care patients involved with a palliative care service living in the community. The challenges and considerations in developing the palliative care telehealth prototype were reviewed against the Center for eHealth Research (CeHRes) framework, a telehealth development model. The project activities to develop the prototype were specifically mapped against the model's first four phases: multidisciplinary project management, contextual inquiry, value specification, and design. This project has been developed as part of the Telehealth in the Home: Aged and Palliative Care in South Australia initiative. Significant issues were identified and subsequently addressed during concept and prototype development. The CeHRes approach highlighted the implicit diversity in views and opinions among participants and stakeholders and enabled issues to be considered, resolved, and incorporated during design through continuous engagement. The CeHRes model provided a mechanism that facilitated "better" solutions in the development of the palliative care prototype by addressing the inherent but potentially unrecognized differences in values and beliefs of participants. This collaboration enabled greater interaction and exchange among participants resulting in a more useful and clinically valuable telehealth prototype.

  8. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    Directory of Open Access Journals (Sweden)

    Claudia Fuchs

    2018-01-01

    Full Text Available CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/− mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/− mice. We found that Cdkl5 +/− mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/− mice show age-related alterations in protein kinase B (AKT and extracellular signal-regulated kinase (ERK signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/− mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.

  9. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  10. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  11. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  12. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  13. Identification and overexpression of a Knotted1-like transcription factor in switchgrass (Panicum virgatum L. for lignocellulosic feedstock improvement

    Directory of Open Access Journals (Sweden)

    Wegi eWuddineh

    2016-04-01

    Full Text Available High biomass production and wide adaptation has made switchgrass (Panicum virgatum L. an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signalling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.

  14. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    environmental change. In Chapter 2, I performed a review and an analysis of data from the published literature on the large-cultivation of freshwater macroalgae. This study revealed that the large-scale cultivation of freshwater macroalgae is feasible at relatively low cost using currently available technologies such as the Algal Turf Scrubber system (ATS). In addition, graphical analyses of published data obtained from ATS systems of varying sizes in operation worldwide revealed that both macroalgal biomass productivity and nutrient removal rates are hyperbolically related to the areal loading rates of both total nitrogen and total phosphorus. An assessment of the limited existing literature on carbon dioxide amendments suggested that the effectiveness and need for CO2 supplementation of macroalgal production systems like the ATS has not yet been conclusively demonstrated. Overall, this thesis demonstrates that filamentous freshwater macroalgae have great potential as a feedstock for both liquid and solid fuels, especially if nutrient-rich wastewater can be used as the supply of water and mineral nutrients. In addition, this thesis highlights the importance of studying the algal cultivation conditions that influence trade-offs between nutrient loading, biomass productivity, and biomass energy content. In particular, the hyperbolic relationship between algal biomass productivity and the areal loading rates of both total nitrogen and total phosphorus should provide critical insight when considering the production costs of macroalgal biomass at the commercial-scale.

  15. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  16. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  17. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  18. Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations

    International Nuclear Information System (INIS)

    Pierie, F.; Someren, C.E.J. van; Benders, R.M.J.; Bekkering, J.; Gemert, W.J.Th. van; Moll, H.C.

    2015-01-01

    Highlights: • Using local waste feedstock and optimization improves environmental sustainability. • Optimization favors waste feedstocks. • Transport distances should not exceed 150 km. • The produced energy should be used for powering the green gas process first. • The AD process should be used primarily for local waste treatment. - Abstract: The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustainability is expressed by three main factors: efficiency in (Process) Energy Returned On Invested (P)EROI, carbon footprint in Global Warming Potential GWP(100), and environmental impact in EcoPoints. The green gas production pathway operates on a mass fraction of 50% feedstock with 50% manure. The sustainability of the analyzed feedstocks differs substantially, favoring biomass waste flows over, the specially cultivated energy crop, maize. The use of optimization, in the shape of internal energy production, green gas powered trucks, and mitigation can significantly improve the sustainability for all feedstocks, but favors waste materials. Results indicate a possible improvement from an average (P)EROI for all feedstocks of 2.3 up to an average of 7.0 GJ/GJ. The carbon footprint can potentially be reduced from an average of 40 down to 18 kgCO_2eq/GJ. The environmental impact can potentially be reduced from an average of 5.6 down to 1.8 Pt/GJ. Internal energy production proved to be the most effective optimization. However, the use of optimization aforementioned will result in les green gas injected into the gas grid as it is partially consumed internally. Overall, the feedstock straw was the most energy efficient, where the feedstock harvest remains proved to be the most environmentally sustainable. Furthermore, transport

  19. Rational use of fossil-fuel feedstocks and problems in catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kalechits, I V

    1977-09-01

    A discussion of trends in the availability and cost of petrochemical feedstocks emhasizes the advances in catalyst technology that will be required to offset global shortages of petroleum and natural gas, including the development of more efficient cracking, hydrocracking, hydrotreating, and reforming catalysts for residue refining; the use of catalysts with 2 to 10 times the activity of existing systems, close to 100% selectivity, and high resistance to feedstock poisons to lower energy consumption in, and increase the efficiency of, petrochemical processes; the advantages of metal complex catalysts and possible heterogeneous homogeneous hybrids capable of operating at moderate or low temperatures and pressures; the need for high-temperature catalysts in coal liquefaction and gasification processes; the catalytic recovery of hydrocarbons from coal tar and shale; catalytic energy conversion and storage, fuel cells, etc. 23 references.

  20. Two novel approaches used to produce biodiesel from low-cost feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Chen, F. [Clemson Univ., SC (United States). Dept. of Food Science and Human Nutrition; Wang, X. [Clemson Univ., SC (United States). Dept. of Genetics and Biochemistry

    2010-07-01

    The cost of feedstock has a significant effect of the economic viability of biodiesel production. The paper discussed a preliminary study looking at 2 approaches used to economically produce biodiesel, one from waste cooking oil (WCO) and the other from flaked cottonseed. Ultrasound-assisted synthesis was used to produce biodiesel from WCO, and in situ transesterification was used to produce biodiesel from the flaked cottonseed. The use of WCO solves the problem of waste disposal and also generates an environmentally benign fuel while at the same time lowering the costs involved in producing biodiesel. Ultrasonification has proven to be an efficient, low-cost, energy saving means of producing biodiesel. In situ transesterification makes solvent extraction and oil cleanup prior to biodiesel synthesis unnecessary, thereby simplifying the reaction steps. Based on the results of gas chromatography and high-performance liquid chromatography tests, both approaches are feasible for the production of biodiesel from low-cost feedstock. 15 refs., 4 figs.

  1. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  2. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Bastianoni, Simone; Coppola, Fazio; Tiezzi, Enzo [Department of Chemical and Biosystems Sciences, Siena University, via della Diana, 2A, 53100 Siena (Italy); Colacevich, Andrea; Borghini, Francesca; Focardi, Silvano [Department of Environmental Sciences, Siena University, via Mattioli 4, 53100 Siena (Italy)

    2008-07-15

    The diversification of different types and sources of biofuels has become an important energy issue in recent times. The aim of this work is to evaluate the use of two kinds of renewable feedstocks in order to produce biodiesel. We have analyzed the potential production of oil from two species of macroalgae considered as waste coming out from a lagoon system involved in eutrophication and from sunflower seeds. We have tested oil extraction yields of both feedstock. Furthermore, a comparison has been carried out based on the emergy approach, in order to evaluate the sustainability and environmental performance of both processes. The results show that, under present conditions, considering oil extraction yields, the production of oil from sunflower seeds is feasible, because of the lower value of transformity of the final product with respect to macroalgae. On the other hand, the results demonstrate that with improvements of oil extraction methodology, macroalgae could be considered a good residual biomass usable for biofuel production. (author)

  3. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  4. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  5. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  6. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  7. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  8. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  9. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    Science.gov (United States)

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  10. Calophyllum inophyllum L. as a future feedstock for bio-diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Atabania, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan)], email: a_atabani2@msn.com, email: ardinsu@yahoo.co.id; Silitonga, A.S.; Mahlia, T.M.I.; Masjukia, H.H.; Badruddin, I.A. [University of Malaya (Malaysia)

    2011-07-01

    Due to the energy crisis and the concerns about climate change, the possibility of using biodiesel as an alternative energy resource has been examined. It has been found that biodiesel could be a solution for the future but the first generation of biodiesel, prepared from edible vegetable oils, has raised important concerns about food and environmental problems. The aim of this study is to assess if Calophyllum inophyllum, a non-edible oil, could be used for biodiesel production. Density, kinematic viscosity, cetane number, flashpoint and iodine value were determined on Calophyllum inophyllum trees from Cilacap, Indonesia and compared in light of ASTM D6751 biodiesel standards. It was found that Calophyllum inophyllum would be a satisfactory feedstock to produce biodiesel in the future. This study demonstrated that Calophyllum inophyllum has the potential to be a biodiesel feedstock and further research should be carried out on engine performance, combustion and emission performance of biodiesel produced from Calophyllum inophyllum.

  11. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  12. Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States

    International Nuclear Information System (INIS)

    Linton, Joseph A.; Miller, J. Corey; Little, Randall D.; Petrolia, Daniel R.; Coble, Keith H.

    2011-01-01

    This study examines the feasibility of producing sweet sorghum (Sorghum bicolor (L.) Moench) as an ethanol feedstock in the southeastern United States through representative counties in Mississippi. We construct enterprise budgets along with estimates of transportation costs to estimate sweet sorghum producers' breakeven costs for producing and delivering sweet sorghum biomass. This breakeven cost for the sweet sorghum producer is used to estimate breakeven costs for the ethanol producer based on wholesale ethanol price, production costs, and transportation and marketing costs. Stochastic models are developed to estimate profits for sweet sorghum and competing crops in two representative counties in Mississippi, with sweet sorghum consistently yielding losses in both counties. -- Highlights: → We examine the economic feasibility of sweet sorghum as an ethanol feedstock. → We construct enterprise budgets along with estimates of transportation costs. → We estimate breakeven costs for producing and delivering sweet sorghum biomass. → Stochastic models determine profits for sweet sorghum in two Mississippi counties.

  13. Investigation of Imperata sp. as a Primary Feedstock for Compost Production in Ucayali region, Peru

    Directory of Open Access Journals (Sweden)

    Jan Banout

    2008-10-01

    Full Text Available Five compost piles with different initial C : N ratios have been investigated in this study. As a primary feedstock Imperata sp. was used. The primary feedstock was mixed with poultry litter and vegetable refuse in order to obtain different C : N ratio. The results show that during 64 days of well managed composting under tropical conditions the initial C : N ratio between 30:1 and 50:1 decreased to ratio 11:1 to 15:1, respectively. Results of bioassay tests expressed as the germination index (GI indicate particular compost phytotoxicity. The value of GI was 51.4%, 48.6%, 47.8%, 46.7% and 40.0% for samples from the compost with initial C : N ratios of 30:1, 37:1, 40:1, 44:1 and 50:1, respectively.

  14. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  15. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  16. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  17. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures

    International Nuclear Information System (INIS)

    Naeem, M.A.; Khalid, M.; Arshad, M.; Ahmad, R.

    2014-01-01

    Variation in pyrolytic temperatures and feedstocks affects the yield and nutrient composition of biochar. Selection of suitable feedstock and optimum pyrolytic temperature is crucial before using it for agricultural purposes. We compared biochars produced from two feedstocks (wheat straw and rice) at three temperatures (300, 400 and 500 degree C). Biochar yield decreased significantly (p<0.05) with increasing pyrolysis temperature, while ash contents were increased. The cation exchange capacity was significantly higher (119 cmolc kg/sup -1/) at temperature 400 degree C. The pH, electrical conductivity (EC) and carbon content of biochars increased significantly with increasing temperature and maximum pH (10.4) and EC (3.35 dS m/sup -1/) were observed in rice straw biochar (WSB) at 500 degree C and carbon content (662 g kg/sup -1/) in wheat straw biochar (RSB) at 500 degree C. Concentration of phosphorus (P) and potassium (K) increased significantly with increasing temperature, while of nitrogen (N) decreased. Overall, the maximum N (13.8 g kg/sup -1/at 300 degree C) and P (3.4 g kg/sup -1/at 500 degree C) concentrations were observed in WSB while, maximum K (48 g kg/sup -1/ at 500 degree C)in RSB. High pyrolysis temperature reduced AB-DTPA extractable nutrients (expect Mn). The highest AB-DTPA extractable nutrients such as P (113 mg kg/sup -1/) and Ca (1.07 g kg/sup -1/) were observed in WSB at 300 degree C while, K (18 g kg/sup -1/) and magnesium (Mg) (1.55 g kg/sup -1/) in RSB at 300 degree C. Selected feedstock and use of low pyrolysis temperature may produce nutrient-rich biochar, with high CEC and low pH and these could have positive effects on calcareous soils. (author)

  18. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy.

    Science.gov (United States)

    Payne, Courtney E; Wolfrum, Edward J

    2015-01-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.

  19. The impact of extreme drought on the biofuel feedstock production

    Science.gov (United States)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  20. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  1. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel.

    Science.gov (United States)

    Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d(-1)) > 1). All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  2. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks

    Directory of Open Access Journals (Sweden)

    Peter R. Laity

    2016-10-01

    Full Text Available The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc., were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  3. [Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology].

    Science.gov (United States)

    Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang

    2012-10-01

    Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock

  4. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.

    Science.gov (United States)

    Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit

    2016-10-01

    Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production.

    Science.gov (United States)

    Rivaldi, Juan Daniel; Carvalho, Ana Karine F; da Conceição, Leyvison Rafael V; de Castro, Heizir F

    2017-11-26

    Increased costs and limited availability of traditional lipid sources for biodiesel production encourage researchers to find more sustainable feedstock at low prices. Microbial lipid stands out as feedstock replacement for vegetable oil to convert fatty acid esters. In this study, the potential of three isolates of filamentous fungi (Mucor circinelloides URM 4140, M. hiemalis URM 4144, and Penicillium citrinum URM 4126) has been assessed as single-cell oil (SCO) producers. M. circinelloides 4140 had the highest biomass concentration with lipid accumulation of up to 28 wt% at 120 hr of cultivation. The profile of fatty acids revealed a high content of saturated (SFA) and monounsaturated fatty acids (MUFA), including palmitic (C16:0, 33.2-44.1 wt%) and oleic (C18:1, 20.7-31.2 wt%) acids, with the absence of polyunsaturated fatty acids (PUFA) having more than four double bonds. Furthermore, the predicted properties of biodiesel generated from synthesized SCOs have been estimated by using empirical models which were in accordance with the limits imposed by the USA (ASTM D6715), European Union (EN 14214), and Brazilian (ANP 45/2014) standards. These results suggest that the assessed filamentous fungus strains can be considered as alternative feedstock sources for high-quality biofuel production.

  6. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  7. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  8. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    Directory of Open Access Journals (Sweden)

    Bandana Biswas

    2013-11-01

    Full Text Available The tree legume Pongamia { (L. Pierre [syn. (L. Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v, of which approximately 50% is oleic acid (C. The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part of the effort to domesticate Pongamia our research group at The University of Queensland has started to develop specific genetic and genomic tools. Much of the preliminary work to date has focused on characterizing the genetic diversity of wild populations. This diversity is reflective of the outcrossing reproductive biology of Pongamia and necessitates the requirement to develop clonal propagation protocols. Both the chloroplast and mitochondrial genomes of Pongamia have been sequenced and annotated (152,968 and 425,718 bp, respectively, with similarities to previously characterized legume organelle genomes. Many nuclear genes associated with oil biosynthesis and nodulation in Pongamia have been characterized. The continued application of genetic and genomic tools will support the deployment of Pongamia as a sustainable biofuel feedstock.

  9. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-10-29

    The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  10. Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol

    Science.gov (United States)

    Anderson, William F.; Dien, Bruce S.; Brandon, Sarah K.; Peterson, Joy Doran

    Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g-1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g-1) and two giant reed clones (109 and 85 mg g-1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g-1) being superior to Coastal (247 mg g-1) and Tifton 44 (245 mg g-1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.

  11. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.

    Science.gov (United States)

    Neelamegam, Annamalai; Al-Battashi, Huda; Al-Bahry, Saif; Nallusamy, Sivakumar

    2018-01-10

    Waste paper, a major fraction of municipal solid waste, has a potential to serve as renewable feedstock for the biorefineries of fuels, chemicals and materials due to rich in cellulose and abundant at low cost. This study evaluates the possibility of waste office paper (WOP) to serve as a potential feedstock for the biorefinery production of poly (3-hydroxybutyrate). In this study, the WOP was pretreated, enzymatically saccharified and the hydrolysate was used for PHB production. The hydrolysate mainly consists of glucose (22.70g/L) and xylose (1.78g/L) and the corresponding sugar yield was about 816mg/g. Ammonium sulphate and C/N ratio 20 were identified as most favorable for high yield of PHB. The batch fermentation of Cupriavidus necator using the pretreated WOP hydrolysate resulted in cell biomass, PHB production and PHB content of 7.74g/L, 4.45g/L and 57.52%, respectively. The volumetric productivity and yield achieved were 0.061g/L/h and 0.210g/g sugar, respectively. The results suggested that WOP could be a potential alternative feedstock for the biorefinery production of bioplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  13. The impact of feedstock cost on technology selection and optimum size

    International Nuclear Information System (INIS)

    Cameron, Jay B.; Kumar, Amit; Flynn, Peter C.

    2007-01-01

    Development of biomass projects at optimum size and technology enhances the role that biomass can make in mitigating greenhouse gas. Optimum sized plants can be built when biomass resources are sufficient to meet feedstock demand; examples include wood and forest harvest residues from extensive forests, and grain straw and corn stover from large agricultural regions. The impact of feedstock cost on technology selection is evaluated by comparing the cost of power from the gasification and direct combustion of boreal forest wood chips. Optimum size is a function of plant cost and the distance variable cost (DVC, $ dry tonne -1 km -1 ) of the biomass fuel; distance fixed costs (DFC, $ dry tonne -1 ) such as acquisition, harvesting, loading and unloading do not impact optimum size. At low values of DVC and DFC, as occur with wood chips sourced from the boreal forest, direct combustion has a lower power cost than gasification. At higher values of DVC and DFC, gasification has a lower power cost than direct combustion. This crossover in most economic technology will always arise when a more efficient technology with a higher capital cost per unit of output is compared to a less efficient technology with a lower capital cost per unit of output. In such cases technology selection cannot be separated from an analysis of feedstock cost

  14. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    Directory of Open Access Journals (Sweden)

    Vidyadharani Gopalakrishnan

    2014-01-01

    Full Text Available Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM (specific algal medium produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC with oleic acid pure (98% control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae.

  15. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel

    Directory of Open Access Journals (Sweden)

    Rebecca Massimi

    2016-09-01

    Full Text Available Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d−1 > 1. All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  16. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions

    Directory of Open Access Journals (Sweden)

    Zhixue Liu

    2017-11-01

    Full Text Available While biomass has been recognized as an important renewable energy source which has a range of positive impacts on the economy, environment, and society, the existence of feedstock seasonality and risk of service disruptions at collection facilities potentially compromises the efficiency and reliability of the energy supply system. In this paper, we consider reliable supply chain design for biomass collection against feedstock seasonality and time-varying disruption risks. We optimize facility location, inventory, biomass quantity, and shipment decisions in a multi-period planning horizon setting. A real-world case in Hubei, China is studied to offer managerial insights. Our computational results show that: (1 the disruption risk significantly affects both the optimal facility locations and the supply chain cost; (2 no matter how the failure probability changes, setting backup facilities can significantly decrease the total cost; and (3 the feedstock seasonality does not affect locations of the collection facilities, but it affects the allocations of collection facilities and brings higher inventory cost for the biomass supply chain.

  17. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  18. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Science.gov (United States)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  19. Financial return from traditional wood products, feedstock, and carbon sequestration in loblolly pine plantations in the Southern U.S

    Science.gov (United States)

    Umesh K. Chaudhan; Michael B. Kane

    2015-01-01

    We know that planting trees is a key approach for mitigating climate change; however, we are uncertain of what planting density per unit of land and what cultural regimes are needed to optimize traditional timber products, feedstock, and carbon sequestration.

  20. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongyang; Wang, Zhendong; Guo, Min [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Mei, E-mail: zhangmei@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Jingbo [The Department of Chemistry, Texas A and M University-Kingsville, Kingsville, TX 78363 (United States); The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  1. Phytochemical Screening: Antioxidant and Antibacterial Properties of Potamogeton Species in Order to Obtain Valuable Feed Additives.

    Science.gov (United States)

    Lupoae, Paul; Cristea, Victor; Borda, Daniela; Lupoae, Mariana; Gurau, Gabriela; Dinica, Rodica Mihaela

    2015-01-01

    The alcoholic extracts from three submerged perennial plants Potamogeton crispus L., P. pusillus L. and P. pectinatus L. were analyzed by gas chromatography-mass spectrometry coupled with solid phase microextraction (SPME-GC/MS) and by High Performance Liquid Chromatography (HPLC) and their volatile fingerprint and polyphenols composition was mutually compared. Twenty-nine chemical compounds were detected and identified in ethanolic and methanolic extracts; the highest abundance (over 5%) in descending order, was detected for 9,9-dimethyl-8,10- dioxapentacyclo (5,3,0(2,5) 0(3,5,)0 (3,6) decane (21.65%), phenol 2,6 bis (1,1 dimethyletyl) 4-1-methylpropil (20.8%), pentadecanoic acid (14.3%), 2-(5-chloro-2-Methoxyphenyl) pyrrole (8.66%), propanedioic (malonic) acid 2-(4-methylphenyl) sulfonyl ethylidene (5.77%), 2 hydroxy-3 tert butyl-5-isopropyl-6 methyl phenyl ketone (5.76%). The highest total polyphenols and flavonoids content was found in the methanolic extract of P. crispus (112.5±0.5 mg tannic acid/g dry extract; 64.2±1.2 mg quercitin/g dry extract). Antioxidant activities (2,2-difenil-1-picrilhidrazil, hydrogen peroxide and reducing power assays) of obtained extracts are comparable with the standard compounds, butylated hydroxytoluene, rutin and ascorbic acid. Antibacterial efficiency of methanolic extracts was notably demonstrated against Gram negative (Escherichia coli, Enterobacter hormaechei) and Gram positive bacteria (Enterococcus casseliflavus). The data reported for the first time for Romanian Potamogeton species, provides extensive support for the chemical investigations of these plants of the aquatic anthropogene ecosystems in order to obtain valuable bioadditives for animal feed and/or pharmaceutical/food industry.

  2. 3D-Printed specimens as a valuable tool in anatomy education: A pilot study.

    Science.gov (United States)

    Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila

    2018-06-06

    Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Hemodynamic exercise testing. A valuable tool in the selection of cardiac transplantation candidates.

    Science.gov (United States)

    Chomsky, D B; Lang, C C; Rayos, G H; Shyr, Y; Yeoh, T K; Pierson, R N; Davis, S F; Wilson, J R

    1996-12-15

    Peak exercise oxygen consumption (Vo2), a noninvasive index of peak exercise cardiac output (CO), is widely used to select candidates for heart transplantation. However, peak exercise Vo2 can be influenced by noncardiac factors such as deconditioning, motivation, or body composition and may yield misleading prognostic information. Direct measurement of the CO response to exercise may avoid this problem and more accurately predict prognosis. Hemodynamic and ventilatory responses to maximal treadmill exercise were measured in 185 ambulatory patients with chronic heart failure who had been referred for cardiac transplantation (mean left ventricular ejection fraction, 22 +/- 7%; mean peak Vo2, 12.9 +/- 3.0 mL. min-1.kg-1). CO response to exercise was normal in 83 patients and reduced in 102. By univariate analysis, patients with normal CO responses had a better 1-year survival rate (95%) than did those with reduced CO responses (72%) (P 14 mL.min-1.kg-1 (88%) was not different from that of patients with peak Vo2 of 10 mL.min-1.kg-1 (89%) (P < .0001). By Cox regression analysis, exercise CO response was the strongest independent predictor of survival (risk ratio, 4.3), with peak Vo2 dichotomized at 10 mL. min-1.kg-1 (risk ratio, 3.3) as the only other independent predictor. Patients with reduced CO responses and peak Vo2 of < or = 10 mL.min-1.kg-1 had an extremely poor 1-year survival rate (38%). Both CO response to exercise and peak exercise Vo2 provide valuable independent prognostic information in ambulatory patients with heart failure. These variables should be used in combination to select potential heart transplantation candidates.

  4. Smooth incidence maps give valuable insight into Q fever outbreaks in The Netherlands

    Directory of Open Access Journals (Sweden)

    Wim van der Hoek

    2012-11-01

    Full Text Available From 2007 through 2009, The Netherlands faced large outbreaks of human Q fever. Control measures focused primarily on dairy goat farms because these were implicated as the main source of infection for the surrounding population. However, in other countries, outbreaks have mainly been associated with non-dairy sheep and The Netherlands has many more sheep than goats. Therefore, a public discussion arose about the possible role of non-dairy (meat sheep in the outbreaks. To inform decision makers about the relative importance of different infection sources, we developed accurate and high-resolution incidence maps for detection of Q fever hot spots. In the high incidence area in the south of the country, full postal codes of notified Q fever patients with onset of illness in 2009, were georeferenced. Q fever cases (n = 1,740 were treated as a spatial point process. A 500 x 500 m grid was imposed over the area of interest. The number of cases and the population number were counted in each cell. The number of cases was modelled as an inhomogeneous Poisson process where the underlying incidence was estimated by 2-dimensional P-spline smoothing. Modelling of numbers of Q fever cases based on residential addresses and population size produced smooth incidence maps that clearly showed Q fever hotspots around infected dairy goat farms. No such increased incidence was noted around infected meat sheep farms. We conclude that smooth incidence maps of human notifications give valuable information about the Q fever epidemic and are a promising method to provide decision support for the control of other infectious diseases with an environmental source.

  5. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    International Nuclear Information System (INIS)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-01-01

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO 3 /g, comparable to commercially-available zeolite (310 mg CaCO 3 /g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China

  6. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin

    International Nuclear Information System (INIS)

    Rodrigues, Elsa T.; Pardal, Miguel Â.; Laizé, Vincent; Cancela, M. Leonor; Oliveira, Paulo J.; Serafim, Teresa L.

    2015-01-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC_5_0) better matches the in vivo short-term Sparus aurata median lethal concentration (LC_5_0). IC_5_0_s and LC_5_0 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC_5_0_,_9_6_h/IC_5_0_,_4_8_h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC_5_0_,_9_6_h/IC_5_0_,_7_2_h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. - Highlights: • Fish toxicity data are still considered standard information in ecotoxicology. • Alternatives to animal testing have become an important topic of research. • Cell-based assays are currently a promising in vitro alternative. • Comparative studies to accelerate the validation of cell-based methods are required. • H9c2 cell line proved to produce in vitro reliable toxicity results for azoxystrobin. - The application of cell-based assays for environmental toxicity studies would greatly reduce the number of fish needed for toxicity testing without any loss of reliability.

  7. Novel extractants with high selectivity for valuable metals in seawater. Calixarene derivatives

    International Nuclear Information System (INIS)

    Kakoi, Takahiko; Goto, Masahiro

    1997-01-01

    Seawater contains various valuable metals such as uranium and lithium. Therefore, attempts are being made to develop highly selective extractants which recognize target metal ions in reclaimed seawater. In this review, we have focused our study on the application of novel cyclic compound calixarene based extractants. A novel host compound calixarene, which is a cyclic compound connecting some phenol rings, is capable of forming several different extractant ring sizes and introducing various kinds of functional groups towards targeting of metal ions in seawater. Therefore, calixarene derivatives are capable of extracting valuable metals such as uranium, alkaline metals, heavy metals, rare earth metals and noble metals selectively by varying structural ring size and functional groups. The novel host compound calixarene has given promising results which line it up as a potential extractant for the separation of valuable metal ions in seawater. (author)

  8. Effect of Acid Dissolution Conditions on Recovery of Valuable Metals from Used Plasma Display Panel Scrap

    Directory of Open Access Journals (Sweden)

    Kim Chan-Mi

    2017-06-01

    Full Text Available The objective of this particular study was to recover valuable metals from waste plasma display panels using high energy ball milling with subsequent acid dissolution. Dissolution of milled (PDP powder was studied in HCl, HNO3, and H2SO4 acidic solutions. The effects of dissolution acid, temperature, time, and PDP scrap powder to acid ratio on the leaching process were investigated and the most favorable conditions were found: (1 valuable metals (In, Ag, Mg were recovered from PDP powder in a mixture of concentrated hydrochloric acid (HCl:H2O = 50:50; (2 the optimal dissolution temperature and time for the valuable metals were found to be 60°C and 30 min, respectively; (3 the ideal PDP scrap powder to acid solution ratio was found to be 1:10. The proposed method was applied to the recovery of magnesium, silver, and indium with satisfactory results.

  9. Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R and D Program

    International Nuclear Information System (INIS)

    Voit, Stewart L.; Vedder, Raymond James; Johnson, Jared A.

    2010-01-01

    Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO 2 spanning greater than 50 years. The Fuel Cycle R and D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion (Modified Direct Denitration or MDD) and internal/external gelation (sol-gel). Each of these techniques has various advantages and disadvantages. The Fiscal Year 2010 feedstock development work at ORNL focused on the synthesis and characterization of one batch of UO x and one batch of U 80 Ce 20 O x . Oxide material synthesized at ORNL is being shipped to LANL for fuel fabrication process development studies. The feedstock preparation was performed using the MDD process which utilizes a rotary kiln to continuously thermally denitrate double salts of ammonium

  10. Potentialities of energy generation from waste and feedstock produced by the agricultural sector in Brazil: The case of the State of Paraná

    International Nuclear Information System (INIS)

    Ribeiro, Maria de Fátima dos Santos; Raiher, Augusta Pelinski

    2013-01-01

    The State of Paraná contributes significantly for the Brazilian production of sugar cane, ethanol, soybeans and pigs. In addition to the current production of ethanol, the State has a huge potential for electricity, biodiesel and biogas production. This paper presents an overview of the current situation regarding energy generation from the agricultural sector in the State, an assessment of the potentialities of energy generation from sugar cane residues and pig agricultural chains, as well as an analysis of the socioeconomic factors underlying the availability of feedstock for biodiesel production. This study has shown that it is possible to expand the energy supply in the State using residual biomass from the sugar cane and pig production. On the other side, the biodiesel production increase in the State will depend on the expansion in the consumption of products that use the cake as raw material; the increase in the feedstock availability other than canola, castor beans and sunflower; the increase of the number of family farmers as feedstock providers, so as to ensure access for biodiesel producers to the Social Fuel Stamp. - Highlights: • Potentialities of energy generation from agriculture at Paraná State were assessed. • Energy offer from the sugar cane sector will triple if residual biomass is used. • The use of pig production wastes can increase energy offer up to 103 GW h. • Paraná produces 25% of oil seeds and only 3% of the biodiesel in Brazil. • Economic factors explaining the low share of biodiesel production are pointed out

  11. GBEP pilot Ghana. Very valuable and successful - a follow-up is suggested. Conclusions and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Hanekamp, E.; Vissers, P.; De Lint, S. [Partners for Innovation, Amsterdam (Netherlands)

    2013-02-15

    The Global Bio-Energy Partnership (GBEP) has developed a set of 24 sustainability indicators applicable to all forms of bio-energy and aimed at voluntary use by national governments. The GBEP indicators enable governments to assess the bio-energy sector and to develop new policies related to sustainable bio-energy production and use. These indicators have been piloted in Ghana. Modern bio-energy is a big opportunity for the region, which is why NL Agency adopted and supported the pilot, together with the Global Bio-Energy Partnership (GBEP). The pilot project also was supported by the ECOWAS Regional Centre for Renewable Energy and Energy Efficiency (ECREEE) and has been coordinated by the Council for Scientific and Industrial Research (CSIR). The Ghana Energy Commission took the responsibility to involve policymakers. Partners for Innovation was commissioned by NL Agency to provide technical assistance for the pilot. The main aims of the project are: (a) Enhancing the capacity of the host country Ghana (and ECOWAS) to use the GBEP indicators as a tool for assessing the sustainability of its bio-energy sector and/or developing sustainable bio-energy policies; (b) Learning lessons on how to apply the indicators and how to enhance their practicality as a tool for policymakers and giving this as feedback to the GBEP community. Three Ghanaian research institutes (CSIR-FORIG, CSIR-IIR and UG-ISSER) have studied 11 out of the 24 GBEP indicators in the pilot. The pilot has been a success: the 24 sustainability criteria appear to be very valuable for Ghana. As such the indicators provide, also for other governments, a practical tool to assess sustainability of biomass sectors and policies. The report also shows important insights on data availability and quality, and on the applicability of the GBEP indicators in Ghana. The final report provides concrete recommendations on: (1) How Ghana can proceed with the GBEP sustainability indicators; and (2) The lessons learned for

  12. An Analysis of Rheological Properties of Inconel 625 Superalloy Feedstocks Formulated with Backbone Binder Polypropylene System for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Gökmen U.

    2017-12-01

    Full Text Available Binder formula is one of the most significant factors which has a considerable influence on powder injection molding (PIM processes. In the study, rheological behaviors and properties of different binder systems containing PIM feedstocks, Inconel 625 powder commonly used in space industry, were investigated. The feedstocks were prepared 59%-69% (volume powder loading ratios with three diversified binder systems by use of Polypropylene as backbone binder. The average particle size of the Inconel 625 powder used was 12.86 microns. Components used in the binder were mixed for 30 minutes as dry in three dimensional mixing to prepare binder systems. Rheological features of the feedstock were characterized by using a capillary rheometer. Viscosities of the feedstocks were calculated within the range of 37.996-1900 Pa.s based on the shear rate, shear stress, binder formula and temperature. “n” parameters for PIM feedstocks were determined to be less than 1. Influences of temperature on the viscosities of the feedstocks were also studied and “Ea” under various shear stresses were determined within the range of 24.41-70.89 kJ/mol.

  13. What Clinical Information Is Valuable to Doctors Using Mobile Electronic Medical Records and When?

    Science.gov (United States)

    Kim, Junetae; Lee, Yura; Lim, Sanghee; Kim, Jeong Hoon; Lee, Byungtae; Lee, Jae-Ho

    2017-10-18

    There has been a lack of understanding on what types of specific clinical information are most valuable for doctors to access through mobile-based electronic medical records (m-EMRs) and when they access such information. Furthermore, it has not been clearly discussed why the value of such information is high. The goal of this study was to investigate the types of clinical information that are most valuable to doctors to access through an m-EMR and when such information is accessed. Since 2010, an m-EMR has been used in a tertiary hospital in Seoul, South Korea. The usage logs of the m-EMR by doctors were gathered from March to December 2015. Descriptive analyses were conducted to explore the overall usage patterns of the m-EMR. To assess the value of the clinical information provided, the usage patterns of both the m-EMR and a hospital information system (HIS) were compared on an hourly basis. The peak usage times of the m-EMR were defined as continuous intervals having normalized usage values that are greater than 0.5. The usage logs were processed as an indicator representing specific clinical information using factor analysis. Random intercept logistic regression was used to explore the type of clinical information that is frequently accessed during the peak usage times. A total of 524,929 usage logs from 653 doctors (229 professors, 161 fellows, and 263 residents; mean age: 37.55 years; males: 415 [63.6%]) were analyzed. The highest average number of m-EMR usage logs (897) was by medical residents, whereas the lowest (292) was by surgical residents. The usage amount for three menus, namely inpatient list (47,096), lab results (38,508), and investigation list (25,336), accounted for 60.1% of the peak time usage. The HIS was used most frequently during regular hours (9:00 AM to 5:00 PM). The peak usage time of the m-EMR was early in the morning (6:00 AM to 10:00 AM), and the use of the m-EMR from early evening (5:00 PM) to midnight was higher than during regular

  14. Permanent foresty plots: a potentially valuable teaching resource in undergraduate biology porgrams for the Caribbean

    Science.gov (United States)

    H. Valles; C.M.S. Carrington

    2016-01-01

    There has been a recent proposal to change the way that biology is taught and learned in undergraduate biology programs in the USA so that students develop a better understanding of science and the natural world. Here, we use this new, recommended teaching– learning framework to assert that permanent forestry plots could be a valuable tool to help develop biology...

  15. Using Psychodynamic Interaction as a Valuable Source of Information in Social Research

    DEFF Research Database (Denmark)

    Schmidt, Camilla

    2012-01-01

    This article will address the issue of using understandings of psychodynamic interrelations as a means to grasp how social and cultural dynamics are processed individually and collectively in narratives. I apply the two theoretically distinct concepts of inter- and intrasubjectivity to gain insight...... are valuable sources of information in understanding the process of becoming a social educator....

  16. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges.

    NARCIS (Netherlands)

    Rulkens, W.H.; Klapwijk, A.; Willers, H.C.

    1998-01-01

    Agricultural liquid livestock wastes are an important potential source of valuable nitrogen-containing compounds such as ammonia and proteins. Large volumetric quantities of these wastes are produced in areas with a high livestock production density. Much technological research has been carried out

  17. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    International Nuclear Information System (INIS)

    Coignac, Julien

    2013-01-01

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at characterizing biomass diversity (availability and potentials by area, cost and mineral composition) by carrying out a state of the art, as a preliminary step in order to define a series of biomass to be tested in the demonstration plant and therefore define specifications for the process. Fifty different biomass were considered for their bio-energy application potential and were finally classified into four categories: agricultural by-products, dedicated energy crops, (Very) Short Rotation Coppice ((V)SRC) and forestry biomass. Biomass availability and potentials were investigated by the mean of a literature review of past and current projects (e.g. RENEW project, Biomass Energy Europe Project, etc.) and scientific articles. Most collected data are technical potentials, meaning that they take into account biophysical limits of crops and forests, technological possibilities, competition with other land uses and ecological constraints (e.g. natural reserves). Results show various emerging markets: North and South America have considerable amounts of agricultural by-products, forest residues, and large land areas which could be dedicated to energy crops; Africa shows relevant possibilities to grow Short Rotation Forestry (SRF) and energy crops; Russia has large available quantities of agricultural by-products and forest residues, as well as little valuable land where energy crops and SRC could be grown, and Asia shows relevant amounts of forest residues and possibilities of growing SRC, as well

  18. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  20. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2013-01-01

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  1. Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing

    International Nuclear Information System (INIS)

    Eibling, R.E.; Bartlett, M.G.; Carlson, R.E.; Testino, S.A. Jr.; Kunkel, G.J.; Browner, R.F.; Busch, K.L.

    1994-01-01

    The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions

  2. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Fullana, Andrés; Yoshikawa, Kunio

    2016-01-01

    Highlights: • Ash behavior of 29 different feedstock interpreted using multivariate data analysis. • Two different groups identified based on char ash content and ash yield. • Solubility of individual elements evaluated based on a smaller data set. • Ash from industrial sludge contained anthropogenic metals with low solubility. - Abstract: Differences in ash behavior during hydrothermal treatment were identified based on multivariate data analysis of literature information on 29 different feedstock. In addition, the solubility of individual elements was evaluated based on a smaller data set. As a result two different groups were distinguished based on char ash content and ash yield. Virgin terrestrial and aquatic biomass, such as different types of wood and algae, in addition to herbaceous and agricultural biomass, bark, brewer’s spent grain, compost and faecal waste showed lower char ash content than municipal solid wastes, anaerobic digestion residues and municipal and industrial sludge. Lower char ash content also correlated with lower ash yield indicating differences in chemical composition and ash solubility. Further evaluation of available data showed that ash in industrial sludge mainly contained anthropogenic Al, Fe and P or Ca and Si with low solubility during hydrothermal treatment. Char from corn stover, miscanthus, switch grass, rice hulls, olive, artichoke and orange wastes and empty fruit bunch had generally higher contents of K, Mg, S and Si than industrial sludge although differences existed within the group. In the future information on ash behavior should be used for enhancing the fuel properties of char based on feedstock type and hydrothermal treatment conditions.

  3. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  4. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    Cha, Kyung Soo; Bae, Jeong Hwan

    2011-01-01

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  5. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  6. Effect of feedstock end boiling point on product sulphur during ultra deep diesel hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Ivanov, A.; Jelyaskova, M. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria)

    2004-12-01

    An investigation was carried out to test the feasibility of producing 50 and 10 ppm sulphur diesel in a conventional hydrotreating unit operating at low pressure conditions by varying the feedstock end boiling point. Middle distillate fractions distilled from a mixture of Ural crude oil, reduced crude, vacuum gas oil, naphtha and low sulphur crude oils with 95% vol. points of 274, 359, 343, 333, and 322 C (ASTM D-86 method) and sulphur contents of 0.36, 0.63, 0.99, 0.57, and 0.47%, respectively, were hydrotreated using the Akzo Nobel Stars family Co-Mo KF-757 catalyst in a trickle bed pilot plant at following conditions: reactor inlet temperature range of 320-360 C; liquid hourly space velocity (LHSV) range of 1-2 h{sup -1}; total reactor pressure of 3.5 MPa; treating gas: feedstock ratio of 250 Nm{sup 3}/m{sup 3}. It was found that the determinant factor for the attainment of ultra low sulphur levels during middle distillate hydrodesulphurization was not the total sulphur content in the feed but the content of the material boiling above 340 C (according to TBP). For all LHSVs and reactor inlet temperatures studied the product sulphur dependence on the feed 340 C+ fraction content was approximated by second order power law. The specification of 50 ppm sulphur was achieved with all studied feedstocks. However the 10ppm sulphur limit could be met only by feedstocks with 95% vol. points below 333 C, which is accompanied by about 10% reduction of the diesel potential. The hydrotreatment tests on a blend 80% straight run gas oil (ASTM D-86 95% vol. of 274 C)/20%FCC LCO (ASTM D-86 95% vol. of 284 C) showed product sulphur levels which were not higher than those obtained by hydrotreatment of the straight run gas oil, indicating that undercutting the FCC LCO gives the refiner the opportunity to increase the potential for the production of 10 ppm sulphur diesel at the conditions of the conventional hydrotreating unit operating at low pressure. The product cetane index was

  7. Reduction of single-walled carbon nanotube diameter to sub-nm via feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Thurakitseree, T.; Zhao, Pei; Chiashi, Shohei; Maruyama, Shigeo [Department of Mechanical Engineering, University of Tokyo (Japan); Kramberger, Christian [Faculty of Physics, University of Vienna (Austria); Einarsson, Erik [Department of Mechanical Engineering, University of Tokyo (Japan); Global Center of Excellence for Mechanical Systems Innovation, University of Tokyo (Japan)

    2012-12-15

    Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition (CVD) from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates is a versatile approach towards the direct synthesis of tailored single-walled carbon nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Concept of an integrated waste economy represented on the example of recycling of valuable materials

    Energy Technology Data Exchange (ETDEWEB)

    Wender, H

    1980-08-01

    The historical development of waste elimination is discussed, followed by the waste problem in an environmental discussion, the possibilities of recycling within the framework of a waste industry, and the solution of the waste problem from a waste-economy viewpoint, including the definition of 'waste' and the grouping by types of waste, their amounts and increase rates, composition and valuable materials in community wastes with a review of waste technologies under waste-economy viewpoints. This is followed by a discussion of the sales possibilities for valuable components from mechanical sorting facilities, including used paper, old glass, hard substances, metals, plastics, succeeded by a comparative evaluation method, and the national economy aspect of the waste industry, with the savings effect in raw materials for different branches, effects on raw material reserves, the problem of dependence on imports, waste rates and living standard, and the importance of environmental instruments which are discussed in detail.

  9. Mango (Mangifera indica L.) by-products and their valuable components: a review.

    Science.gov (United States)

    Jahurul, M H A; Zaidul, I S M; Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Nyam, Kar-Lin; Norulaini, N A N; Sahena, F; Mohd Omar, A K

    2015-09-15

    The large amount of waste produced by the food industries causes serious environmental problems and also results in economic losses if not utilized effectively. Different research reports have revealed that food industry by-products can be good sources of potentially valuable bioactive compounds. As such, the mango juice industry uses only the edible portions of the mangoes, and a considerable amount of peels and seeds are discarded as industrial waste. These mango by-products come from the tropical or subtropical fruit processing industries. Mango by-products, especially seeds and peels, are considered to be cheap sources of valuable food and nutraceutical ingredients. The main uses of natural food ingredients derived from mango by-products are presented and discussed, and the mainstream sectors of application for these by-products, such as in the food, pharmaceutical, nutraceutical and cosmetic industries, are highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hypnosis as a Valuable Tool for Surgical Procedures in the Oral and Maxillofacial Area.

    Science.gov (United States)

    Montenegro, Gil; Alves, Luiza; Zaninotto, Ana Luiza; Falcão, Denise Pinheiro; de Amorim, Rivadávio Fernandes Batista

    2017-04-01

    Hypnosis is a valuable tool in the management of patients who undergo surgical procedures in the maxillofacial complex, particularly in reducing and eliminating pain during surgery and aiding patients who have dental fear and are allergic to anesthesia. This case report demonstrates the efficacy of hypnosis in mitigating anxiety, bleeding, and pain during dental surgery without anesthesia during implant placement of tooth 14, the upper left first molar.

  11. The cost of being valuable: predictors of extinction risk in marine invertebrates exploited as luxury seafood

    OpenAIRE

    Purcell, Steven W.; Polidoro, Beth A.; Hamel, Jean-François; Gamboa, Ruth U.; Mercier, Annie

    2014-01-01

    Extinction risk has been linked to biological and anthropogenic variables. Prediction of extinction risk in valuable fauna may not follow mainstream drivers when species are exploited for international markets. We use results from an International Union for Conservation of Nature Red List assessment of extinction risk in all 377 known species of sea cucumber within the order Aspidochirotida, many of which are exploited worldwide as luxury seafood for Asian markets. Extinction risk was primari...

  12. World`s Most Valuable Brand Resonation With Categories of Different Customer Needs

    Directory of Open Access Journals (Sweden)

    Kaspars VIKSNE

    2017-09-01

    Full Text Available One of the key performance indicators of brand success is its value. Brand value is an outcome of brand`s performance in market, and is largely depended from brand`s ability to satisfy certain customer needs. For the greatest success in the world`s market brand should resonate its ability to satisfy some of customer`s most universal needs. In this paper authors strives to find out which of the needs world`s most successful brands are resonating with. Therefore paper goal is to is to determine what customer needs world`s most valuable brands are primarily satisfying. First part of paper authors briefly evaluate Maslow theory of needs. In second part of paper authors identify main challenges of brand valuation, and briefly describe today`s most valuable brands. In third part of paper authors analyzes if resonating certain human need in brand makes it to be more valuable. In last part of paper authors summarizes the main findings and gives recommendations for better marketing practices to other brands whose owners have high market ambitions. In order to attain the paper`s goal, authors will use following research methods: Comparative analysis for comparing brands in different brand rankings; Content analysis for determining what need satisfaction brand advertisements resonate; Data analysis for quantify the results gathered from content analysis

  13. Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

    Science.gov (United States)

    Dou, Chang; Gustafson, Rick; Bura, Renata

    2018-01-01

    In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity. In this study, 2-year-old poplar trees harvested in the first coppice cycle, including one low-productivity hybrid and one high-productivity hybrid, were collected from two poplar tree farms. Through steam pretreatment and enzymatic hydrolysis, the bioconversion yields of low- and high-productivity poplar hybrids were compared for both sites. The low-productivity hybrids had 9-19% higher sugar yields than the high-productivity hybrids, although they have the similar chemical composition. Economic calculations show the impact on the plantation and biorefinery of using the two feedstocks. Growing a high-productivity hybrid means the land owner would use 11-26% less land (which could be used for other crops) or collect $2.53-$3.46 MM/year extra revenue from the surplus feedstock. On the other side, the biorefinery would receive 5-10% additional revenue using the low-productivity hybrid. We propose a business model based on the integration of the plantation and the biorefinery. In this model, different feedstocks are assessed using a metric of product tonnage per unit land per year. Use of this new economic metric bridges the gap between feedstock growers and users to maximize the overall production efficiency.

  14. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  15. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    Science.gov (United States)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  16. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  17. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    Energy Technology Data Exchange (ETDEWEB)

    McGill, Ralph [Sentech, Inc., Fuels, Engines, and Emissions Consulting, Knoxville, TN (United States)

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  18. Pricing model for biodiesel feedstock. A case study of Chhattisgarh in India

    International Nuclear Information System (INIS)

    Pohit, Sanjib; Biswas, Pradip Kumar; Kumar, Rajesh; Goswami, Anandajit

    2010-01-01

    Following the global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. To promote biofuel, Indian government has announced biodiesel purchase price as well as compulsory blending ratio. But, these measures have not worked to create large scale biodiesel production in India. With this backdrop, this paper highlights about the importance of a sound pricing policy focusing on the entire value chain of biodiesel production. The analysis is based on field level data from Chhattisgarh, the leading state in the production of jatropha. Such a sound pricing policy has to deal with the prices of feedstock, by-products and final product like biodiesel. It would also have to reflect on the business model of production of biodiesel. The simulation exercises in our model shows that the business returns from the production of biodiesel and the minimum support price (MSP) of the feedstock for biodiesel (i.e. jatropha seeds in this case) are sensitive to various parameters like seed yields, technological efficiency, by product and petro-diesel prices. An effective price policy framework has to consider all these factors to create a platform for sustainable biodiesel production in India. (author)

  19. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Dan [Logos Technologies, Fairfax, VA (United States)

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  20. Investigating 'Egusi' (citrullus colocynthis l.) seed oil as potential biodiesel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Giwa, S.; Adam, N. M. [Alternative and Renewable Energy Laboratory, Institute of Advanced Technology (ITMA)/Mechanical and Manufacturing Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia); Abdullah, L. Ch. [Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia); Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia)

    2010-07-01

    Biodiesel's acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 {sup o}C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME) yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm{sup 2}/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study. (author)

  1. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    Directory of Open Access Journals (Sweden)

    Rakesh Singh Gour

    Full Text Available In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%, MUFA (23.81% and PUFA (19.69%, and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.

  2. Biocatalysis for the application of CO2 as a chemical feedstock

    Directory of Open Access Journals (Sweden)

    Apostolos Alissandratos

    2015-12-01

    Full Text Available Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  3. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks.

    Science.gov (United States)

    Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas

    2018-03-01

    In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    LUO Yu; JIAO Yu-jie; ZHAO Xiao-rong; LI Gui-tong; ZHAO Li-xin; MENG Hai-bo

    2014-01-01

    Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73%and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537%more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.

  5. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  6. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    Science.gov (United States)

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.

  7. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production.

    Science.gov (United States)

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Ramteke, P W

    2014-03-01

    Present investigation studied the potential of fresh water green microalga Scenedesmus abundans as a feedstock for biodiesel production. To study the biomass and lipid yield, the culture was grown in BBM, Modified CHU-13 and BG-11 medium. Among the tested nitrogen concentration using Modified CHU-13 medium, the highest biomass and lipid yield of 1.113±0.05g/L and 489±23mg/L respectively was found in the culture medium with 0.32g/L of nitrogen (KNO3). Different lipid extraction as well as transesterification methods were also tested. Fatty acid profile of alga grown in large scale indigenous made photobioreactor has shown abundance of fatty acids with carbon chain length of C16 and C18. Various biodiesel properties such as cetane number, iodine value and saponification value were found to be in accordance with Brazilian National Petroleum Agency (ANP255) and European biodiesel standard EN14214 which makes S. abundans as a potential feedstock for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Asam, Zaki-ul-Zaman; Poulsen, Tjalfe Gorm; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.

    2011-01-01

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  9. Investigating “Egusi” (Citrullus Colocynthis L. Seed Oil as Potential Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Solomon Giwa

    2010-03-01

    Full Text Available Biodiesel’s acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 °C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm2/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study.

  10. Evaluation of Diverse Microalgal Species as Potential Biofuel Feedstocks Grown Using Municipal Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hiibel, Sage R. [Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV (United States); Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV (United States); Lemos, Mark S.; Kelly, Brian P.; Cushman, John C., E-mail: jcushman@unr.edu [Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV (United States)

    2015-05-11

    Microalgae offer great potential as a third-generation biofuel feedstock, especially when grown on wastewater, as they have the dual application for wastewater treatment and as a biomass feedstock for biofuel production. The potential for growth on wastewater centrate was evaluated for forty microalgae strains from fresh (11), brackish (11), or saltwater (18) genera. Generally, freshwater strains were able to grow at high concentrations of centrate, with two strains, Neochloris pseudostigmata and Neochloris conjuncta, demonstrating growth at up to 40% v/v centrate. Fourteen of 18 salt water Dunaliella strains also demonstrated growth in centrate concentrations at or above 40% v/v. Lipid profiles of freshwater strains with high-centrate tolerance were determined using gas chromatography–mass spectrometry and compared against those obtained on cells grown on defined maintenance media. The major lipid compounds were found to be palmitic (16:0), oleic (18:1), and linoleic (18:2) acids for all freshwater strains grown on either centrate or their respective maintenance medium. These results demonstrate the highly concentrated wastewater can be used to grow microalgae, which limits the need to dilute wastewater prior to algal production. In addition, the algae produced generate lipids suitable for biodiesel or green diesel production.

  11. Production of steam cracking feedstocks by mild cracking of plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor

    2010-11-15

    In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)

  12. Evaluation of diverse microalgal species as potential biofuel feedstocks grown using municipal wastewater

    Directory of Open Access Journals (Sweden)

    Sage R Hiibel

    2015-05-01

    Full Text Available Microalgae offer great potential as a third-generation biofuel feedstock, especially when grown on wastewater, as they have the dual application for wastewater treatment and as a biomass feedstock for biofuel production. The potential for growth on wastewater centrate was evaluated for forty microalgae strains from fresh (11, brackish (11, or saltwater (18 genera. Generally, freshwater strains were able to grow at high concentrations of centrate, with two strains, Neochloris pseudostigmata and N. conjuncta, demonstrating growth at up to 40% v/v centrate. Fourteen of eighteen salt water Dunaliella strains also demonstrated growth in centrate concentrations at or above 40% v/v. Lipid profiles of freshwater strains with high-centrate tolerance were determined using gas chromatography-mass spectrometry (GC-MS and compared against those obtained on cells grown on defined maintenance media. The major lipid compounds were found to be palmitic (16:0, oleic (18:1, and linoleic (18:2 acids for all freshwater strains grown on either centrate or their respective maintenance medium. These results demonstrate the highly concentrated wastewater can be used to grow microalgae, which limits the need to dilute wastewater prior to algal production. In addition, the algae produced generate lipids suitable for biodiesel or green diesel production.

  13. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  14. Assessment of the influence of energy density and feedstock transport distance on the environmental performance of methane from maize silages.

    Science.gov (United States)

    Bacenetti, Jacopo; Lovarelli, Daniela; Ingrao, Carlo; Tricase, Caterina; Negri, Marco; Fiala, Marco

    2015-10-01

    In Europe, thanks to public subsidy, the production of electricity from anaerobic digestion (AD) of agricultural feedstock has considerably grown and several AD plants were built. When AD plants are concentrated in specific areas (e.g., Northern Italy), increases of feedstock' prices and transport distances can be observed. In this context, as regards low-energy density feedstock, the present research was designed to estimate the influence of the related long-distance transport on the environmental performances of the biogas-to-electricity process. For this purpose the following transport systems were considered: farm trailers and trucks. For small distances (<5 km), the whole plant silage shows the lowest impact; however, when distances increase, silages with higher energy density (even though characterised by lower methane production per hectare) become more environmentally sustainable. The transport by trucks achieves better environmental performances especially for distances greater than 25 km. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Introduction to metabolic genetic engineering for the production of valuable secondary metabolites in in vivo and in vitro plant systems.

    Science.gov (United States)

    Benedito, Vagner A; Modolo, Luzia V

    2014-01-01

    Plants are capable of producing a myriad of chemical compounds. While these compounds serve specific functions in the plant, many have surprising effects on the human body, often with positive action against diseases. These compounds are often difficult to synthesize ex vivo and require the coordinated and compartmentalized action of enzymes in living organisms. However, the amounts produced in whole plants are often small and restricted to single tissues of the plant or even cellular organelles, making their extraction an expensive process. Since most natural products used in therapeutics are specialized, secondary plant metabolites, we provide here an overview of the classification of the main classes of these compounds, with its biochemical pathways and how this information can be used to create efficient in and ex planta production pipelines to generate highly valuable compounds. Metabolic genetic engineering is introduced in light of physiological and genetic methods to enhance production of high-value plant secondary metabolites.

  16. Activating Processes in the Brand Communication of Valuable Brands on the example of Coca-Cola.

    OpenAIRE

    Pöhler, Marie-Luise

    2017-01-01

    Everyone in the world, from the streets of Paris to the villages in Africa, knows the logo with the white letters that are written on a bright red background. Coca-Cola was introduced in 1886. In that year, only nine glasses of the soda drink were sold per day. So how did the little company from Atlanta become the world’s most valuable and popular soft drink? One of the company’s secrets is its emotional and memorable advertising strategies. Therefore, this thesis explains and analyzes ho...

  17. Determination of commercially valuable characteristics of plant varieties for energetic use during the state examination

    Directory of Open Access Journals (Sweden)

    В. В. Баликіна

    2014-12-01

    Full Text Available The analysis of commercially valuable indices of plant varieties for energetic use was carried out and the necessity to determine energetic indices during the state scientific-and-technical examination is substantiated. In order to explain the requirements for registration of new varieties of energy crops concerning the defi nition of indices of ability for distribution, the collection of species and hybrid forms of willow was used. Factors that prove the economic and environmental advantages of energy willow cultivation for biofuel are specifi ed.

  18. The intrapreneur: A distinct and valuable role to be institutionalized and strategically managed

    DEFF Research Database (Denmark)

    Ashourizadeh, Shayegheh; Schøtt, Thomas

    are distinct from routine employees and somewhat similar to entrepreneurs. Thereby intrapreneurs are a human resource that by developing new activities for their employer and also by creating new jobs is very valuable. – The rate of intrapreneurship among employees is higher in Denmark than in almost all other......, especially in Denmark, to adopt strategies for institutionalization and management of this human resource....... more frequently than routine employees are self-efficacious, opportunity-perceiving, risk-willing and role-modeling starters, have meaningful and autonomous jobs, and are satisfied with their jobs and salary, but also experience more stress in work; and in these job-characteristics intrapreneurs...

  19. Process for the extraction of valuable products from coals, pitches, mineral oils, and the like

    Energy Technology Data Exchange (ETDEWEB)

    1936-06-05

    A process is described for the treating of coke, lignite, peat, etc., and mineral oils with the help of hydrogen or other reducing gases and under pressure to recover valuable hydrocarbons, characterized by the carbonaceous substances and the reducing gas coming together already heated totally or in part at least from 350/sup 0/C to the temperature necessary for the reaction. The substances to be treated becoming extracted in the form of paste or liquid from the reaction chamber and then returned to it and being reacted outside the reaction zone in the presence of the reducing gases at the temperature necessary for the reaction.

  20. Inventory of species and cultivars potentially valuable for forest/biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, G

    1981-01-01

    To prepare a guide for experiments in mini-rotation or short rotation forest production, potentially valuable species and cultivars have been inventoried. In this text, 288 species are listed under 31 genera, 27 deciduous and 4 coniferous. This partial inventory was made for the Northern Hemisphere and different climates, ranging from the tropical zone to the cold temperate zone. To be included a species had to satisfy the following conditions: ease of established and rapid juvenile growth. The list of species and cultivars is given in alphabetical order. 55 references.

  1. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  2. Fostering sustainable feedstock production for advanced biofuels on underutilised land in Europe

    Science.gov (United States)

    Mergner, Rita; Janssen, Rainer; Rutz, Dominik; Knoche, Dirk; Köhler, Raul; Colangeli, Marco; Gyuris, Peter

    2017-04-01

    Background In context of growing competition between land uses, bioenergy development is often seen as one of possible contributors to such competition. However, the potential of underutilized land (contaminated, abandoned, marginal, fallow land etc.) which is not used or cannot be used for productive activities is not exhausted and offers an attractive alternative for sustainable production of different biomass feedstocks in Europe. Depending on biomass feedstocks, different remediation activities can be carried out in addition. Bioenergy crops have the potential to be grown profitably on underutilized land and can therefore offer an attractive source of income on the local level contributing to achieving the targets of the Renewable Energy Directive (EC/2009). The FORBIO project The FORBIO project demonstrates the viability of using underutilised land in EU Member States for sustainable bioenergy feedstock production that does not affect the supply of food, feed and land currently used for recreational or conservation purposes. Project activities will serve to build up and strengthen local bioenergy value chains that are competitive and that meet the highest sustainability standards, thus contributing to the market uptake of sustainable bioenergy in the EU. Presented results The FORBIO project will develop a methodology to assess the sustainable bioenergy production potential on available underutilized lands in Europe at local, site-specific level. Based on this methodology, the project will produce multiple feasibility studies in three selected case study locations: Germany (lignite mining and sewage irrigation fields in the metropolis region of Berlin and Brandenburg), Italy (contaminated land from industrial activities in Sulcis, Portoscuso) and Ukraine (underutilised marginal agricultural land in the North of Kiev). The focus of the presentation will be on the agronomic and techno-economic feasibility studies in Germany, Italy and Ukraine. Agronomic

  3. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Science.gov (United States)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (Pdetergent fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation organism in the SSCF procedures used to determine biochemically available carbohydrates. The original and the HTP assay methods were compared using corn cobs, hybrid poplar, kenaf, and switchgrass. Biochemically available carbohydrates increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in the kenaf. Total available carbohydrates increased and unavailable carbohydrates decreased with the HTP methods in the corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf. There were no differences in total carbohydrates (CT) between the two methods. The final study evaluated the variability of biomass quality parameters in a set of corn stover samples, and developed calibration equations for determining parameter values using near

  4. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  5. Valuable books from the library of Paul Gore (Identification and/or inventory of sources

    Directory of Open Access Journals (Sweden)

    Maria Danilov

    2013-12-01

    Full Text Available Paul Gore (1875-1927 - an outstanding figure of the socio-political, scientific and cultural life of Bessarabia at the beginning of 20th century, was also known among his contemporaries as a keen collector of old and rare books. Undoubtedly, the most valuable part of the library of Paul Gore consisted of books on the history of Bessarabia. Documents from the National Archives of the Republic of Moldova in Chişinău confirm that he inherited a large part of books from his father Gheorghe Gore (1839-1909. A study of the Paul Gore Fund at the National Archives of Romania in Bucharest gave us a lot of documentary evidence of the destiny of this Bessarabian noble library, which later became a property of the King Ferdinand Fund. However, the fate of its most valuable part - books on the history of Bessarabia, consisted of 651 units of the total number of 6456 volumes - is still unknown.

  6. An alternative approach to recovering valuable metals from zinc phosphating sludge.

    Science.gov (United States)

    Kuo, Yi-Ming

    2012-01-30

    This study used a vitrification process (with good potential for commercialization) to recover valuable metals from Zn phosphating sludge. The involved vitrification process achieves two major goals: it transformed hazardous Zn phosphating sludge into inert slag and it concentrated Fe (83.5%) and Zn (92.8%) into ingot and fine particulate-phase material, respectively. The Fe content in the ingot was 278,000 mg/kg, making the ingot a potential raw material for iron making. The fine particulate-phase material (collected from flue gas) contained abundant Zn (544,000 mg/kg) in the form of ZnO. The content (67.7%) of ZnO was high, so it can be directly sold to refineries. The recovered coarse particulate-phase material, with insufficient amount of ZnO, can be recycled as a feeding material for Zn re-concentration. Therefore, the vitrification process can not only treat hazardous materials but also effectively recover valuable metals. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    Science.gov (United States)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  8. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  9. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    d'Espaux, Leo; Ghosh, Amit; Runguphan, Weerawat

    2017-01-01

    to similar to 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7 g/L in shake flasks......Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2......% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four...

  10. Decanter cake as a feedstock for biodiesel production: A first report

    International Nuclear Information System (INIS)

    Maniam, Gaanty Pragas; Hindryawati, Noor; Nurfitri, Irma; Jose, Rajan; Ab. Rahim, Mohd Hasbi; Dahalan, Farrah Aini; Yusoff, Mashitah M.

    2013-01-01

    Highlights: • Decanter cake as a potential waste feedstock for biodiesel production. • Ultrasound-aided transesterification achieving nearly 86% conversion in 1 h. • Boiler ash, a waste product, was successfully used as a catalyst. - Abstract: Decanter cake (DC), with an oil content of 11.5 ± 0.18 wt.%, was subjected to ultrasound-aided transesterification using boiler ash as a base catalyst, petroleum ether and hexane as co-solvents. Optimization work revealed that at MeOH:oil mass ratio of 6:1 and 2.3 wt.% catalyst (based on DC weight) with 1:2 co-solvents:DC mass ratio as the optimal reaction conditions. Both decanter cake and boiler ash, waste materials from oil palm mill, were successfully utilized to produce methyl ester (biodiesel) with highest conversion of 85.9 wt.% in a 1 h reaction period at 55 °C

  11. Dairy Manure as a Potential Feedstock for Cost-Effective Cellulosic Bioethanol

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2015-12-01

    Full Text Available This study investigated sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL pretreatment and subsequent enzymatic digestibility of undigested dairy manure to preliminarily assess its potential use as an inexpensive feedstock for cellulosic bioethanol production. The sulfite pretreatment was carried out in a factorial analysis using 163 to 197 °C for 3 to 37 min with 0.8% to 4.2% sulfuric acid combined with 2.6% to 9.4% sodium sulfite. These treatments were compared with other standard pretreatments of dilute acid, and hot and cold alkali pretreatments. This comparative study showed that the sulfite pretreatment, through its combined effects of hemicellulose and lignin removal and lignin sulfonation, is more effective than the diluted acid and alkali pretreatments to improve the enzymatic digestibility of dairy manure.

  12. Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion

    DEFF Research Database (Denmark)

    Zhang, Heng; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    . By preparing samples of various leaf-to-stem (L/S) ratios, we found shifting conversion behavior as processing parameters were modified. Increasing the enzyme dosage, pretreatment temperature and pretreatment time all significantly improved conversion rates in samples with more than 50% leaf content, whereas...... less impact was observed on samples with less than 50% leaf content. Enzyme affinity, desorption and readsorption with leaf and stem fractions may affect the sugar yield in wheat straw saccharification. The data suggest that the L/S ratio is an important parameter when adjusting or optimizing...... conversion processes and additionally in feedstock breeding. Furthermore, this highlights the need for rapid techniques for determining L/S ratio in wheat straw harvests. The CoMPP data on specific carbohydrates and leaf pectin highlight carbohydrate epitopes that may be useful as markers in the development...

  13. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nakpong, Piyanuch; Wootthikanokkhan, Sasiwimol [Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchee Road, Sathorn, Bangkok 10120 (Thailand)

    2010-08-15

    Coconut oil having 12.8% free fatty acid (FFA) was used as a feedstock to produce biodiesel by a two-step process. In the first step, FFA level of the coconut oil was reduced to 0.6% by acid-catalyzed esterification. In the second step, triglycerides in product from the first step were transesterified with methanol by using an alkaline catalyst to produce methyl esters and glycerol. Effect of parameters related to these processes was studied and optimized, including methanol-to-oil ratio, catalyst concentration, reaction temperature, and reaction time. Methyl ester content of the coconut biodiesel was determined by GC to be 98.4% under the optimum condition. The viscosity of coconut biodiesel product was very close to that of Thai petroleum diesel and other measured properties met the Thai biodiesel (B100) specification. (author)

  14. Long-term outlook for Alberta's primary petrochemical industry : panel discussion : sustainability, feedstocks, infrastructure, transportation

    International Nuclear Information System (INIS)

    Lauzon, D.

    1997-01-01

    The long-term outlook for Dow Chemical's involvement in Alberta's petrochemical industry was discussed. Dow Chemical Canada is a company with annual sales of more than $20 billion that manufactures and supplies chemicals, plastics, energy, agricultural products, consumer goods and environmental services in 157 countries in the world. Alberta is the centre of growth and development for the Canadian petrochemical industry because of the proximity to feedstocks. Alberta is seen as a good, long-term source of ethane. Dow Chemical intends to continue being a major player in the further development of the industry in Alberta. As proof of that confidence, there are 11 capital projects in progress at Dow's Western Canada Operation, totaling $600 million. An important ingredient of the continuing success of the petrochemical industry in Alberta will be the willingness and ability of the federal and provincial governments to work in partnership with industry to develop support infrastructure and policies

  15. Prediction of normalized biodiesel properties by simulation of multiple feedstock blends.

    Science.gov (United States)

    García, Manuel; Gonzalo, Alberto; Sánchez, José Luis; Arauzo, Jesús; Peña, José Angel

    2010-06-01

    A continuous process for biodiesel production has been simulated using Aspen HYSYS V7.0 software. As fresh feed, feedstocks with a mild acid content have been used. The process flowsheet follows a traditional alkaline transesterification scheme constituted by esterification, transesterification and purification stages. Kinetic models taking into account the concentration of the different species have been employed in order to simulate the behavior of the CSTR reactors and the product distribution within the process. The comparison between experimental data found in literature and the predicted normalized properties, has been discussed. Additionally, a comparison between different thermodynamic packages has been performed. NRTL activity model has been selected as the most reliable of them. The combination of these models allows the prediction of 13 out of 25 parameters included in standard EN-14214:2003, and confers simulators a great value as predictive as well as optimization tool. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes

    Directory of Open Access Journals (Sweden)

    Virginia Cádiz

    2010-10-01

    Full Text Available Nowadays, the utilization of raw materials derived from renewable feedstock is in the spotlight of the chemical industry, as vegetable oils are one of the most important platform chemicals due to their universal availability, inherent biodegradability and low price. Taking into account that polyurethanes are one of the most important industrial products exhibiting versatile properties suitable for use in many fields, our research is focused on exploiting fatty acids in the preparation of biobased polyols and polyurethanes. This review is organized as a function of the nature of the final polyurethane systems; hence we describe the preparation of linear thermoplastic and crosslinked polyurethanes derived from oleic and undecylenic acids-based diols and polyols, respectively.

  17. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  19. Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hoskinson, Reed L.; Radtke, Corey W. [Idaho National Laboratory, P.O Box 1625, Idaho Falls, ID 83415-2210 (United States); Karlen, Douglas L. [USDA-ARS, National Soil Tilth Laboratory, Ames, IA 50011-3120 (United States); Birrell, Stuart J. [Iowa State University, Agricultural and Biosystems Engineering Department, Ames, IA 50011 (United States); Wilhelm, W.W. [USDA-ARS, Soil and Water Conservation Research Unit, Lincoln, NE 68583-0934 (United States)

    2007-02-15

    Crop residue has been identified as a near-term source of biomass for renewable fuel, heat, power, chemicals and other bio-materials. A prototype one-pass harvest system was used to collect residue samples from a corn (Zea mays L.) field near Ames, IA. Four harvest scenarios (low cut, high-cut top, high-cut bottom, and normal cut) were evaluated and are expressed as collected stover harvest indices (CSHI). High-cut top and high-cut bottom samples were obtained from the same plot in separate operations. Chemical composition, dilute acid pretreatment response, ethanol conversion yield and efficiency, and thermochemical conversion for each scenario were determined. Mean grain yield in this study (10.1 Mg ha{sup -1} dry weight) was representative of the average yield (10.0 Mg ha{sup -1}) for the area (Story County, IA) and year (2005). The four harvest scenarios removed 6.7, 4.9, 1.7, and 5.1 Mg ha{sup -1} of dry matter, respectively, or 0.60 for low cut, 0.66 for normal cut, and 0.61 for the total high-cut (top+bottom) scenarios when expressed as CSHI values. The macro-nutrient replacement value for the normal harvest scenario was $57.36 ha{sup -1} or $11.27 Mg{sup -1}. Harvesting stalk bottoms increased stover water content, risk of combine damage, estimated transportation costs, and left insufficient soil cover, while also producing a problematic feedstock. These preliminary results indicate harvesting stover (including the cobs) at a height of approximately 40 cm would be best for farmers and ethanol producers because of faster harvest speed and higher quality ethanol feedstock. (author)

  20. Production of biodiesel from melia azedarach seed oil: a non- edible feedstock for biodiesel

    International Nuclear Information System (INIS)

    Akhtar, T.; Tariq, M.I.; Ranaa, S.I.

    2011-01-01

    Biodiesel (BD) is a first-generation biofuel that has emerged as a renewable alternative diesel fuel, obtained by the transesterification of vegetable oils and animals fats, using a short-chain alcohol and a catalyst that may be an acid, a base or an enzyme. BD can be used in the existing compression-ignition engines without any further modification. Presently, most of the BD production is being carried out using edible vegetable oil which has put a strain on the food supply and, hence, has led it into a competition with the food industry. It has also resulted in a rise in the prices of such feed stocks. Hence, search for the newer and non-edible feed stocks is becoming increasingly important. The objective of the present work is to explore the utility of Melia azedarach seed oil, a non-edible feedstock, for the preparation of BD. The oil was extracted by using n-hexane as a solvent and a oil content of 32% was obtained. As a result of transesterification using sodium hydroxide and methanol, 80% conversion of the oil into BD was obtained. Fatty acid profile of the oil and the BD were found to be almost the same. Different fuel properties of the BD prepared were studied including viscosity, iodine number, acid number, cold point and cetane number, and the values obtained are 4.7, 112, 0.45 mg KOH/g, < -10 deg. C and 45, respectively. Although the oxidation stability is less than the required standard value by EN 14214, but it can be enhanced by introducing some additives into the final product. Other properties were found to be in agreement with the required specifications for BD by EN 14214, hence Melia azedarach seed oil is a suitable non-edible feedstock for the production of BD. (author)

  1. Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity

    International Nuclear Information System (INIS)

    Aravindhakshan, Sijesh C.; Epplin, Francis M.; Taliaferro, Charles M.

    2010-01-01

    Switchgrass (Panicum virgatum) serves as a model dedicated energy crop in the U.S.A. Miscanthus (Miscanthus x giganteus) has served a similar role in Europe. This study was conducted to determine the most economical species, harvest frequency, and carbon tax required for either of the two candidate feedstocks to be an economically viable alternative for cofiring with coal for electricity generation. Biomass yield and energy content data were obtained from a field experiment conducted near Stillwater, Oklahoma, U.S.A., in which both grasses were established in 2002. Plots were split to enable two harvest treatments (once and twice yr -1 ). The switchgrass variety 'Alamo', with a single annual post-senescence harvest, produced more biomass (15.87 Mg ha -1 yr -1 ) than miscanthus (12.39 Mg ha -1 yr -1 ) and more energy (249.6 million kJ ha -1 yr -1 versus 199.7 million kJ ha -1 yr -1 for miscanthus). For the average yields obtained, the estimated cost to produce and deliver biomass an average distance of 50 km was $43.9 Mg -1 for switchgrass and $51.7 Mg -1 for miscanthus. Given a delivered coal price of $39.76 Mg -1 and average energy content, a carbon tax of $7 Mg -1 CO 2 would be required for switchgrass to be economically competitive. For the location and the environmental conditions that prevailed during the experiment, switchgrass with one harvest per year produced greater yields at a lower cost than miscanthus. In the absence of government intervention such as requiring biomass use or instituting a carbon tax, biomass is not an economically competitive feedstock for electricity generation in the region studied. (author)

  2. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality.

    Science.gov (United States)

    Lee, Scott J; Warnick, Thomas A; Pattathil, Sivakumar; Alvelo-Maurosa, Jesús G; Serapiglia, Michelle J; McCormick, Heather; Brown, Virginia; Young, Naomi F; Schnell, Danny J; Smart, Lawrence B; Hahn, Michael G; Pedersen, Jeffrey F; Leschine, Susan B; Hazen, Samuel P

    2012-02-08

    There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.). Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

  3. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality

    Directory of Open Access Journals (Sweden)

    Lee Scott J

    2012-02-01

    Full Text Available Abstract Background There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. Results We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.. Conclusion Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

  4. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    International Nuclear Information System (INIS)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L

    2015-01-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr −1 to 240 000 t yr −1 ). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached. (letter)

  5. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    Science.gov (United States)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A.; MacLean, Heather L.

    2015-12-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr-1 to 240 000 t yr-1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached.

  6. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  7. Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals.

    Science.gov (United States)

    Nguyen, Trung T; Barber, Andrew R; Corbin, Kendall; Zhang, Wei

    2017-01-01

    The worldwide annual production of lobster was 165,367 tons valued over $3.32 billion in 2004, but this figure rose up to 304,000 tons in 2012. Over half the volume of the worldwide lobster production has been processed to meet the rising global demand in diversified lobster products. Lobster processing generates a large amount of by-products (heads, shells, livers, and eggs) which account for 50-70% of the starting material. Continued production of these lobster processing by-products (LPBs) without corresponding process development for efficient utilization has led to disposal issues associated with costs and pollutions. This review presents the promising opportunities to maximize the utilization of LPBs by economic recovery of their valuable components to produce high value-added products. More than 50,000 tons of LPBs are globally generated, which costs lobster processing companies upward of about $7.5 million/year for disposal. This not only presents financial and environmental burdens to the lobster processors but also wastes a valuable bioresource. LPBs are rich in a range of high-value compounds such as proteins, chitin, lipids, minerals, and pigments. Extracts recovered from LPBs have been demonstrated to possess several functionalities and bioactivities, which are useful for numerous applications in water treatment, agriculture, food, nutraceutical, pharmaceutical products, and biomedicine. Although LPBs have been studied for recovery of valuable components, utilization of these materials for the large-scale production is still very limited. Extraction of lobster components using microwave, ultrasonic, and supercritical fluid extraction were found to be promising techniques that could be used for large-scale production. LPBs are rich in high-value compounds that are currently being underutilized. These compounds can be extracted for being used as functional ingredients, nutraceuticals, and pharmaceuticals in a wide range of commercial applications

  8. Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    A laboratory-based separation sequence has been developed to produce an aqueous glycolaldehyde solution as fermentation feedstock. It consists of water extraction of pyrolysis oil, acid removal, water removal, octanol extraction, phenolic removal, back-extraction, and washing. The octanol-free

  9. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter

    This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electro...

  10. Assessing Extension's Ability to Promote Family Forests as a Woody Biomass Feedstock in the Northeast United States

    Science.gov (United States)

    Germain, Rene' H.; Ghosh, Chandrani

    2013-01-01

    The study reported here surveyed Extension educators' awareness and knowledge of woody biomass energy and assessed their desire and ability to reach out to family forest owners-a critical feedstock source. The results indicate Extension educators are aware of the potential of woody biomass to serve as a renewable source of energy. Respondents…

  11. Tailoring the porosity and shrinkage of extruded MgO support tubes for oxygen separation membranes by thermoplastic feedstock development

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kaiser, Andreas; Glasscock, Julie

    for co-extrusion and co-sintering of a porous Magnesium oxide (MgO) support with a thin film of cerium gadolinium oxide (Ce0.9Gd0.1O1.95-δ, CGO) as active oxygen transport membrane layer has been developed using a thermoplastic ceramic system and graphite as pore former. The feedstocks have been...

  12. Tailoring the microstructure of porous MgO supports for asymmetric oxygen separation membranes: Optimization of thermoplastic feedstock systems

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Clemens, F.; Glasscock, Julie

    2014-01-01

    Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock...

  13. Novel storage technologies for raw and clarified syrup biomass feedstocks from sweet sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Attention is currently focused on developing sustainable supply chains of sugar feedstocks for new, flexible biorefineries. Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench) include stabiliz...

  14. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study

    International Nuclear Information System (INIS)

    McBeath, Anna V.; Smernik, Ronald J.; Krull, Evelyn S.; Lehmann, Johannes

    2014-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350 °C to 600 °C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from 1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value. -- Highlights: • Sensitive NMR techniques were used to gauge differences in biochar carbon chemistry. • Varying pyrolysis conditions influences biochars recalcitrant properties. • The MRT of contrasting biochars varies considerably from 1400 years

  15. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Jurascik, M.; Ptasinski, K.J.

    2011-01-01

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by

  16. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  17. Optimizing biomass feedstock logistics for forest residue processing and transportation on a tree-shaped road network

    Science.gov (United States)

    Hee Han; Woodam Chung; Lucas Wells; Nathaniel Anderson

    2018-01-01

    An important task in forest residue recovery operations is to select the most cost-efficient feedstock logistics system for a given distribution of residue piles, road access, and available machinery. Notable considerations include inaccessibility of treatment units to large chip vans and frequent, long-distance mobilization of forestry equipment required to process...

  18. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States.

    Science.gov (United States)

    Emery, Isaac; Mueller, Steffen; Qin, Zhangcai; Dunn, Jennifer B

    2017-01-03

    Land availability for growing feedstocks at scale is a crucial concern for the bioenergy industry. Feedstock production on land not well-suited to growing conventional crops, or marginal land, is often promoted as ideal, although there is a poor understanding of the qualities, quantity, and distribution of marginal lands in the United States. We examine the spatial distribution of land complying with several key marginal land definitions at the United States county, agro-ecological zone, and national scales, and compare the ability of both marginal land and land cover data sets to identify regions for feedstock production. We conclude that very few land parcels comply with multiple definitions of marginal land. Furthermore, to examine possible carbon-flow implications of feedstock production on land that could be considered marginal per multiple definitions, we model soil carbon changes upon transitions from marginal cropland, grassland, and cropland-pastureland to switchgrass production for three marginal land-rich counties. Our findings suggest that total soil organic carbon changes per county are small, and generally positive, and can influence life-cycle greenhouse gas emissions of switchgrass ethanol.

  19. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Liu, Peng; Ptacek, Carol J.; Blowes, David W.; Landis, Richard C.

    2016-01-01

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO 4 2− (up to 1000 mg L −1 ) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO 4 2− (up to 1000 mg L −1 ) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.

  20. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Ptacek, Carol J., E-mail: ptacek@uwaterloo.ca [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Blowes, David W. [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Landis, Richard C. [E I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805 (United States)

    2016-05-05

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.