WorldWideScience

Sample records for providing subsurface conditions

  1. Subsurface conditions description for the S-SX waste management area

    International Nuclear Information System (INIS)

    WOOD, M.I.

    1999-01-01

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-5 and 241-SX tank farms This document provides a concise summary of existing information in support of characterization planning This document includes a description of the available environmental contamination data and a limited qualitative interpretation of these data

  2. What's down below? Current and potential future applications of geophysical techniques to identify subsurface permafrost conditions (Invited)

    Science.gov (United States)

    Douglas, T. A.; Bjella, K.; Campbell, S. W.

    2013-12-01

    For infrastructure design, operations, and maintenance requirements in the North the ability to accurately and efficiently detect the presence (or absence) of ground ice in permafrost terrains is a serious challenge. Ground ice features including ice wedges, thermokarst cave-ice, and segregation ice are present in a variety of spatial scales and patterns. Currently, most engineering applications use borehole logging and sampling to extrapolate conditions at the point scale. However, there is high risk of over or under estimating the presence of frozen or unfrozen features when relying on borehole information alone. In addition, boreholes are costly, especially for planning linear structures like roads or runways. Predicted climate warming will provide further challenges for infrastructure development and transportation operations where permafrost degradation occurs. Accurately identifying the subsurface character in permafrost terrains will allow engineers and planners to cost effectively create novel infrastructure designs to withstand the changing environment. There is thus a great need for a low cost rapidly deployable, spatially extensive means of 'measuring' subsurface conditions. Geophysical measurements, both terrestrial and airborne, have strong potential to revolutionize our way of mapping subsurface conditions. Many studies in continuous and discontinuous permafrost have used geophysical measurements to identify discrete features and repeatable patterns in the subsurface. The most common measurements include galvanic and capacitive coupled resistivity, ground penetrating radar, and multi frequency electromagnetic induction techniques. Each of these measurements has strengths, weaknesses, and limitations. By combining horizontal geophysical measurements, downhole geophysics, multispectral remote sensing images, LiDAR measurements, and soil and vegetation mapping we can start to assemble a holistic view of how surface conditions and standoff measurements

  3. Subsurface Conditions Description of the B and BX and BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    WOOD, M.I.

    2000-03-13

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-B, -BX, and -BY tank farms. This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited, qualitative interpretation of these data.

  4. Subsurface Conditions Description of the B and BX and BY Waste Management Area

    International Nuclear Information System (INIS)

    WOOD, M.I.

    2000-01-01

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-B, -BX, and -BY tank farms. This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited, qualitative interpretation of these data

  5. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  6. Subsurface Facility System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation

  7. Surface and subsurface conditions in permafrost areas - a literature review

    International Nuclear Information System (INIS)

    Vidstrand, Patrik

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that there is

  8. Surface and subsurface conditions in permafrost areas - a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik [Bergab, Goeteborg (Sweden)

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that

  9. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    Science.gov (United States)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological

  10. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  11. Site Recommendation Subsurface Layout

    International Nuclear Information System (INIS)

    C.L. Linden

    2000-01-01

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M andO 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M andO 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU

  12. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    International Nuclear Information System (INIS)

    Fendorf, Scott

    2016-01-01

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of this project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites - inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation

  13. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States)

    2016-04-05

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of this project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites—inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation

  14. Subsurface microbial habitats on Mars

    Science.gov (United States)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  15. Use of Remote Sensing for Identification and Description of Subsurface Drainage System Condition

    Directory of Open Access Journals (Sweden)

    Lenka Tlapáková

    2015-01-01

    Full Text Available The paper presents basic facts and knowledge of special survey focused on detection and evaluation methods of subsurface drainage systems by means of remote sensing. It is aimed at the complex analysis of applied processes in spatial localization, classification or assessment of subsurface drainage systems’ actual condition by means of distance research methods. Data collection, their analysis and interpretation have been shown in seven experimental areas in the Czech Republic. Mainly it means determination of potential, application principles and limits of pracical use of different technologies and image data obtained by remote sensing in solving questions.

  16. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    Science.gov (United States)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water

  17. The Serpentinite Subsurface Microbiome

    Science.gov (United States)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  18. Microbial activity in the terrestrial subsurface

    International Nuclear Information System (INIS)

    Kaiser, J.P.; Bollag, J.M.

    1990-01-01

    Little is known about the layers under the earth's crust. Only in recent years have techniques for sampling the deeper subsurface been developed to permit investigation of the subsurface environment. Prevailing conditions in the subsurface habitat such as nutrient availability, soil composition, redox potential, permeability and a variety of other factors can influence the microflora that flourish in a given environment. Microbial diversity varies between geological formations, but in general sandy soils support growth better than soils rich in clay. Bacteria predominate in subsurface sediments, while eukaryotes constitute only 1-2% of the microorganisms. Recent investigations revealed that most uncontaminated subsurface soils support the growth of aerobic heteroorganotrophic bacteria, but obviously anaerobic microorganisms also exist in the deeper subsurface habitat. The microorganisms residing below the surface of the earth are capable of degrading both natural and xenobiotic contaminants and can thereby adapt to growth under polluted conditions. (author) 4 tabs, 77 refs

  19. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  20. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  1. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    Science.gov (United States)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this

  2. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    Science.gov (United States)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  3. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Mordensky, S. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Rabjohns, K. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Colwell, F. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2016-06-21

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO2 levels is a goal for many nations and carbon sequestration which traps CO2 in the Earth’s subsurface is one method to reduce atmospheric CO2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role in biogeochemistry and accordingly may determine how CO2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO2 sequestration could be most efficiently implemented.

  4. Subsurface Noble Gas Sampling Manual

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that all sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.

  5. Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination

    International Nuclear Information System (INIS)

    Wright, J. A. Jr.; Corey, J. C.

    2002-01-01

    The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and

  6. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Science.gov (United States)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  7. Considerations in the development of subsurface containment barrier performance standards

    International Nuclear Information System (INIS)

    Dunstan, S.; Zdinak, A.P.; Lodman, D.

    1997-01-01

    The U.S. Department of Energy (DOE) is supporting subsurface barriers as an alternative remedial option for management of contamination problems at their facilities. Past cleanup initiatives have sometimes proven ineffective or extremely expensive. Economic considerations coupled with changing public and regulatory philosophies regarding remediation techniques makes subsurface barriers a promising technology for future cleanup efforts. As part of the initiative to develop subsurface containment barriers as an alternative remedial option, DOE funded MSE Technology Applications, Inc. (MSE) to conduct a comprehensive review to identify performance considerations for the acceptability of subsurface barrier technologies as a containment method. Findings from this evaluation were intended to provide a basis for selection and application of containment technologies to address waste problems at DOE sites. Based on this study, the development of performance standards should consider: (1) sustainable low hydraulic conductivity; (2) capability to meet applicable regulations; (3) compatibility with subsurface environmental conditions; (4) durability and long-term stability; (5) repairability; and (6) verification and monitoring. This paper describes the approach for determining considerations for performance standards

  8. A multi-scale experimental and simulation approach for fractured subsurface systems

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  9. Modular evaluation method for subsurface activities (MEMSA). A novel approach for integrating social acceptance in a permit decision-making process for subsurface activities

    International Nuclear Information System (INIS)

    Os, Herman W.A. van; Herber, Rien; Scholtens, Bert

    2017-01-01

    We investigate how the decision support system ‘Modular Evaluation Method Subsurface Activities’ (MEMSA) can help facilitate an informed decision-making process for permit applications of subsurface activities. To this end, we analyze the extent the MEMSA approach allows for a dialogue between stakeholders in a transparent manner. We use the exploration permit for the underground gas storage facility at the Pieterburen salt dome (Netherlands) as a case study. The results suggest that the MEMSA approach is flexible enough to adjust to changing conditions. Furthermore, MEMSA provides a novel way for identifying structural problems and possible solutions in permit decision-making processes for subsurface activities, on the basis of the sensitivity analysis of intermediate rankings. We suggest that the planned size of an activity should already be specified in the exploration phase, because this would allow for a more efficient use of the subsurface as a whole. We conclude that the host community should be involved to a greater extent and in an early phase of the permit decision-making process, for example, already during the initial analysis of the project area of a subsurface activity. We suggest that strategic national policy goals are to be re-evaluated on a regular basis, in the form of a strategic vision for the subsurface, to account for timing discrepancies between the realization of activities and policy deadlines, because this discrepancy can have a large impact on the necessity and therefore acceptance of a subsurface activity.

  10. Modular evaluation method for subsurface activities (MEMSA). A novel approach for integrating social acceptance in a permit decision-making process for subsurface activities

    Energy Technology Data Exchange (ETDEWEB)

    Os, Herman W.A. van, E-mail: h.w.a.van.os@rug.nl [University of Groningen, Faculty of Mathematics and Natural Sciences, Geo-Energy, PO Box 800, 9700 AV Groningen (Netherlands); Herber, Rien, E-mail: rien.herber@rug.nl [University of Groningen, Faculty of Mathematics and Natural Sciences, Geo-Energy, PO Box 800, 9700 AV Groningen (Netherlands); Scholtens, Bert, E-mail: l.j.r.scholtens@rug.nl [University of Groningen, Faculty of Economics and Business, PO Box 800, 9700 AV Groningen (Netherlands)

    2017-05-15

    We investigate how the decision support system ‘Modular Evaluation Method Subsurface Activities’ (MEMSA) can help facilitate an informed decision-making process for permit applications of subsurface activities. To this end, we analyze the extent the MEMSA approach allows for a dialogue between stakeholders in a transparent manner. We use the exploration permit for the underground gas storage facility at the Pieterburen salt dome (Netherlands) as a case study. The results suggest that the MEMSA approach is flexible enough to adjust to changing conditions. Furthermore, MEMSA provides a novel way for identifying structural problems and possible solutions in permit decision-making processes for subsurface activities, on the basis of the sensitivity analysis of intermediate rankings. We suggest that the planned size of an activity should already be specified in the exploration phase, because this would allow for a more efficient use of the subsurface as a whole. We conclude that the host community should be involved to a greater extent and in an early phase of the permit decision-making process, for example, already during the initial analysis of the project area of a subsurface activity. We suggest that strategic national policy goals are to be re-evaluated on a regular basis, in the form of a strategic vision for the subsurface, to account for timing discrepancies between the realization of activities and policy deadlines, because this discrepancy can have a large impact on the necessity and therefore acceptance of a subsurface activity.

  11. How Subsurface Water Technologies (SWT) can Provide Robust, Effective, and Cost-Efficient Solutions for Freshwater Management in Coastal Zones

    NARCIS (Netherlands)

    Zuurbier, K.G.; Raat, K.J.; Paalman, M.; Oosterhof, A.T.; Stuyfzand, P.J.

    2016-01-01

    Freshwater resources in coastal zones are limited while demands are high, resulting in problems like seasonal water shortage, overexploitation of freshwater aquifers, and seawater intrusion. Three subsurface water technologies (SWT) that can provide robust, effective, and cost-efficient solutions to

  12. Energy as a Constraint on Habitability in the Subsurface

    Science.gov (United States)

    Hoehler, T.

    2008-12-01

    All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.

  13. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  14. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    Science.gov (United States)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  15. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  16. Modeling subsurface stormflow initiation in low-relief landscapes

    Science.gov (United States)

    Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.

    2015-04-01

    Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition

  17. Contaminant geochemistry. Interactions and transport in the subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Environmental Sciences and Energy Research

    2008-07-01

    This book combines earth science, subsurface hydrology and environmental geochemistry, providing a comprehensive background for specialists interested in the protection and sustainable management of the subsurface environment. The reader is introduced to the chemistry of contaminants, which usually disturb the natural equilibrium in the subsurface as a result of human activity. The major focus of the book is on contaminant reactions in soil solutions, groundwater and porous media solid phases, accounting for their persistence and transformation in the subsurface, as they are transported from the land surface into groundwater. Discussions on selected case studies are provided. (orig.)

  18. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  19. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  20. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  1. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  2. Lower-Temperature Subsurface Layout and Ventilation Concepts

    International Nuclear Information System (INIS)

    Christine L. Linden; Edward G. Thomas

    2001-01-01

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management

  3. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  4. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  5. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)

    2015-05-22

    . In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis

  6. Subsurface Shielding Source Term Specification Calculation

    International Nuclear Information System (INIS)

    S.Su

    2001-01-01

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations

  7. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    D.W. Markman

    2001-01-01

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  8. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  9. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    International Nuclear Information System (INIS)

    Wilson, T.; Novotny, R.

    1999-01-01

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES)

  10. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    Science.gov (United States)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  11. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.

    Science.gov (United States)

    Iglauer, Stefan; Lebedev, Maxim

    2018-06-01

    Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface

  12. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  13. Use of remote sensing for identification and description of subsurface drainage system condition

    Czech Academy of Sciences Publication Activity Database

    Tlapáková, L.; Žaloudík, Jiří; Kulhavý, Z.; Pelíšek, I.

    2015-01-01

    Roč. 63, č. 5 (2015), s. 1587-1599 ISSN 1211-8516 Institutional support: RVO:60077344 Keywords : subsurface drainage * remote sensing * aerial image interpretation * RPAS Subject RIV: DA - Hydrology ; Limnology

  14. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  15. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  16. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  17. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  18. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  19. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  20. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  1. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  2. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  3. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  4. The Mojave vadose zone: a subsurface biosphere analogue for Mars.

    Science.gov (United States)

    Abbey, William; Salas, Everett; Bhartia, Rohit; Beegle, Luther W

    2013-07-01

    If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.

  5. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved.

  6. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  7. Characterization of accumulated precipitates during subsurface iron removal

    International Nuclear Information System (INIS)

    Halem, Doris van; Vet, Weren de; Verberk, Jasper; Amy, Gary; Dijk, Hans van

    2011-01-01

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O 2 -rich water oxidizes adsorbed Fe 2+ , creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO 3 , showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in

  8. Martian sub-surface ionising radiation: biosignatures and geology

    Directory of Open Access Journals (Sweden)

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  9. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  10. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  11. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    Science.gov (United States)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  12. Intelligent SUBsurface Quality : Intelligent use of subsurface infrastructure for surface quality

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Kuzniecow Bacchin, T.; Lafleur, F.; van de Ven, F.H.M.; Clemens, F.H.L.R.; Broere, W.; Laumann, S.J.; Klaassen, R.G.; Marinetti, C.

    2016-01-01

    This project focuses on the urban renewal of (delta) metropolises and concentrates on the question how to design resilient, durable (subsurface) infrastructure in urban renewal projects using parameters of the natural system – linking in an efficient way (a) water cycle, (b) soil and subsurface

  13. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  14. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  15. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  16. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  17. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Science.gov (United States)

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  18. Final Technical Report. Origins of subsurface microorganisms: Relating laboratory microcosm studies to a geologic time scale; FINAL

    International Nuclear Information System (INIS)

    Kieft, Thomas; Amy, Penny S.; Phillips, Fred M.

    1998-01-01

    This project was conducted as part of the Department of Energy's Deep Subsurface Science Program. It was part of a larger effort to determine the origins of subsurface microorganisms. Two hypotheses have been suggested for the origins of subsurface microorganisms: (1) microorganisms were deposited at the time of (or shortly after) geologic deposition of rocks and sediments (the in situ survival hypothesis), and (2) microorganisms have been transported from surface environments to subsurface rocks and sediments since the time of geologic deposition (transport hypothesis). These two hypotheses are not mutually exclusive. Depending on the geological setting, either one or both of these hypotheses may best explain microbial origins. Our project focused on the in situ survival hypothesis. We tested the hypothesis that microorganisms (individuals populations and communities) can survive long-term sequestration within subsurface sediments. Other objectives were to identify geologic conditions that favor long-term survival, identify physiological traits of microorganisms that favor long-term survival, and determine which groups of microorganisms are most likely to survive long-term sequestration in subsurface sediments. We tested this hypothesis using a combination of pure culture techniques in laboratory microcosms under controlled conditions and field experiments with buried subsurface sediments

  19. Subsurface arrangement constraints and selection criteria SOW, 4.5.1.2.1: Technical report, Revision 0

    International Nuclear Information System (INIS)

    1984-12-01

    The United States Department of Energy has the responsibility to develop an underground geological repository for the storage and isolation of nuclear waste. This report identifies design constraints and subsurface arrangement selection criteria for the subsurface portion of a repository in salt. These criteria provide a base from which subsurface layout will be selected for approval by the Department of Energy. This document provides the basic criteria for the architect/engineer to select the subsurface layout. While this document does not address site-specific criteria, it does act as a guideline for subsurface design allowing for exploration of any reasonable option of that design. The criteria developed in this report address specific areas and concerns within a subsurface layout plan. The subsurface layout selection criteria were developed from industry standards, federal regulations, and quality assurance standards. 18 refs., 7 figs., 5 tabs

  20. Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface

    International Nuclear Information System (INIS)

    Boult, Stephen; Hand, Victoria L.; Vaughan, David J.

    2006-01-01

    Laboratory simulations and field studies of the shallow subsurface have shown that microbes and their extracellular products can influence the mobility of toxic metals from waste disposal sites. Modelling the transport of contaminants in groundwater may, therefore, require the input of microbial ecology data in addition to geochemical data, thus increasing the costs and the uncertainty of predictions. However, whether microbial effects on contaminant mobility occur extensively in the natural subsurface is unknown because the conditions under which they have been observed hitherto are generally unrepresentative of the average subsurface environment. Here, we show that microbial activity affects the mobility of a toxic trace metal (Cu) under the relatively low nutrient fluxes that dominate subsurface systems. More particularly, we show that under these low nutrient conditions, microbes and microbial products can immobilize metal but may themselves be subject to subsequent mobilization, thus complicating the pattern of metal storage and release. Our results show that the capability of microbes in the subsurface to change both the capacity of porous media to store metal, and the behaviour of metal that is released, is not restricted to the well researched environments close to sites of waste disposal. We anticipate our simulations will be a starting point for generating input data for transport models, and specifying the mechanism of metal remobilisation in environments more representative of the subsurface generally

  1. 3D modelling of the shallow subsurface of Zeeland, the Netherlands

    NARCIS (Netherlands)

    Stafleu, J.; Busschers, F.S.; Maljers, D.; Menkovic, A.

    2011-01-01

    The Geological Survey of the Netherlands aims at building a 3D geological voxel model of the upper 30 m of the subsurface of the Netherlands in order to provide a sound basis for subsurface related questions on, amongst others, groundwater extraction and management, land subsidence studies,

  2. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    Science.gov (United States)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    characterization of isolated strains can help us establish the possible mechanisms of EET, and hence provide an insight on survival strategies of subsurface microbiota in extreme environments. Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical

  3. The effect of ochre applied to buffer zones on soluble phosphorus retention during combined surface and subsurface flow conditions

    Science.gov (United States)

    Habibiandehkordi, R.; Quinton, J.; Surridge, B.

    2012-12-01

    Despite invention of a wide range of mitigating measures, diffuse phosphorus (P) pollution from agricultural lands still remains a major threat to the water resources. Thus, reducing P inputs along with improving the effectiveness of current best management practices (BMPs) is necessary to avoid eutrophication. Buffer zones are considered to be among the BMPs to control diffuse P pollution. However, these features are less effective in controlling soluble P loss with a retention range of -71 to +95% which is generally governed by the process of infiltration. Moreover, the soil in buffer strip system can be saturated over a course of time thereby enriching surface and subsurface runoff with soluble P. The aim of this study is to evaluate effectiveness of ochre applied to buffer strips in reducing the loss of soluble P during coupled surface and subsurface flow conditions. Batch experiments showed a maximum P retention capacity of 17.2 g kg-1 for ochre collected from a mine water treatment plant in Capehouse, UK without any risk of P desorption or releasing trace elements to the environment. The preliminarily results of flume experiments confirms the suitability of ochre to be used as a soil amendment in conjunction with buffer strips for tackling soluble P loss.

  4. Some Ecological Mechanisms to Generate Habitability in Planetary Subsurface Areas by Chemolithotrophic Communities: The Ro Tinto Subsurface Ecosystem as a Model System

    Science.gov (United States)

    Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  5. Subsurface urban heat islands in German cities.

    Science.gov (United States)

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  7. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    Directory of Open Access Journals (Sweden)

    Paula Lindgren

    2010-07-01

    Full Text Available On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission’s payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian

  8. Subsurface water and clay mineral formation during the early history of Mars.

    Science.gov (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  9. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    Science.gov (United States)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  10. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs.

    Science.gov (United States)

    Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O

    2013-07-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.

  11. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  12. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system.

    Science.gov (United States)

    Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  13. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  14. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    Science.gov (United States)

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  15. Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface

    Science.gov (United States)

    De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team

    2017-07-01

    The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.

  16. Dislocation model of a subsurface crack

    International Nuclear Information System (INIS)

    Yang, F.; Li, J.C.

    1997-01-01

    A dislocation model of a subsurface crack parallel to the surface is presented. For tensile loading, the results agree with those of previous workers except that we studied the crack very close to the surface and found that K II (mode II stress intensity factor) approaches K I (mode I stress intensity factor) to within about 22% (K II =0.78K I ). (Note that K II is zero when the crack is far away from the surface). Using bending theory for such situations, it is found that both stress intensity factors are inversely proportional to the 3/2 power of the distance between the subsurface crack and the free surface. For shear loading, the crack faces overlap each other for the free traction condition. This indicates the failure of the model. However, there was no overlap for tensile loading even though the stresses in front of the crack oscillate somewhat when the crack is very close to the surface. copyright 1997 American Institute of Physics

  17. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  18. Subsurface barrier demonstration test strategy and performance specification

    International Nuclear Information System (INIS)

    Treat, R.L.; Cruse, J.M.

    1994-05-01

    This document was developed to help specify a major demonstration test project of subsurface barrier systems supporting the Tank Waste Remediation System (TWRS) Program. The document focuses discussion on requirements applicable to demonstration of three subsurface barrier concepts: (1) Injected Material, (2) Cryogenic, and (3) Desiccant. Detailed requirements are provided for initial qualification of a technology proposal followed by the pre-demonstration and demonstration test requirements and specifications. Each requirement and specification is accompanied by a discussion of the rationale for it. The document also includes information on the Hanford Site tank farms and related data; the related and currently active technology development projects within the DOE's EM-50 Program; and the overall demonstration test strategy. Procurement activities and other preparations for actual demonstration testing are on hold until a decision is made regarding further development of subsurface barriers. Accordingly, this document is being issued for information only

  19. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Valstar, Johan R.

    2013-01-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data

  20. Experiment on Measurement of Interfacial Tension for Subsurface Conditions of Light Oil from Thailand

    Directory of Open Access Journals (Sweden)

    Jiravivitpanya Jiramet

    2017-01-01

    Full Text Available One of enhanced oil recovery techniques to increase oil production is surfactant flooding. Surfactants are considered as effective chemical agents used in oilfield in Thailand. It is used to reduce the interfacial tension (IFT of two fluids and to make them flow easier in the reservoir. In this study, Monoethanolamide (MEA commonly used for carbon dioxide capture, is applied as a surfactant to reduce IFT between oil and brine. Therefore, the aim of this work is to investigate and measure the IFT based on the conditions of subsurface at the oilfield in Thailand. These parameters such as temperature, pressure, salinity as well as the concentration of surfactant are adjusted to investigate the effects on IFT reduction. From the results, it is reported that pressure from 1000 to 2000 psi and temperature varied from 70°C to 90°C can reduce IFT insignificantly. However, salinity and surfactant concentration are the main parameters that impact on the IFT reduction. It can greatly decrease IFT up to 87.13% for surfactant concentration and up to 74.06% for salinity. Finally, the results can be applied to use in the real field for enhanced oil production in Thailand.

  1. Shot Peening Effects on Subsurface Layer Properties and Fatigue Performance of Case-Hardened 18CrNiMo7-6 Steel

    Directory of Open Access Journals (Sweden)

    H. S. Ho

    2018-01-01

    Full Text Available The present study is conducted with a dual-aim: firstly, to examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel, and secondly, to propose an optimized peening condition for improved fatigue performance. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the case-hardened 18CrNiMo7-6 steel is quantitatively assessed. The in-depth study shows that dual peening can be an optimized solution, for it is able to produce a subsurface layer with enhanced properties and eventually gain a significant improvement in fatigue performance.

  2. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  3. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2016-01-01

    In this paper, first results concerning the characterization of the subsurface of ice sheets and glaciers through single and multipolarization synthetic aperture radar (SAR) tomography (TomoSAR) are illustrated. To this aim, the processing of data acquired in the framework of the European Space...... that scattering in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different types of glaciological zone observed. Moreover, clear morphological structures have been found beneath the ice surface at one of the investigated sites....

  4. Subsurface event detection and classification using Wireless Signal Networks.

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  5. Subsurface material identification and sensor selection

    Science.gov (United States)

    T, H.; Reghunadh, R.; Ramesh, M. V.

    2017-12-01

    In India, most of the landslides occur during monsoon season and causes huge loss of life and property. Design of an early warning system for highly landslide prone area will reduce losses to a great extent. The in-situ monitoring systems needs deployment of several sensors inside a borehole for monitoring a particular slope. Amrita Center for Wireless Networks and Applications (AmritaWNA), Amrita University has designed, developed and deployed a Wireless Sensor Network (WSN) for real time landslide monitoring using geotechnical instruments and sensors like rain gauge, moisture sensor, piezometer, strain gauge, tilt meter and geophone inside a Deep Earth Probe (DEP) at different locations. These sensors provide point measurements of the subsurface at a higher accuracy. Every landslide prone terrain is unique with respect to its geology, hydrological conditions, meteorological conditions, velocity of movement etc. The decision of installing different geotechnical instruments in a landslide prone terrain is a crucial step to be considered. Rain gauge, moisture sensor, and piezometer are usually used in clay rich areas to sense the moisture and pore pressure values. Geophone and Crack meter are instruments used in rocky areas to monitor cracks and vibrations associated with a movement. Inclinometer and Strain gauge are usually placed inside a casing and can be used in both rocky and soil areas. In order to place geotechnical instruments and sensors at appropriate places Electrical Resistivity Tomography (ERT) method can be used. Variation in electrical resistivity values indicate the changes in composition, layer thickness, or contaminant levels. The derived true resistivity image can be used for identifying the type of materials present in the subsurface at different depths. We have used this method for identifying the type of materials present in our site at Chandmari (Sikkim). Fig 1 shows the typical resistivity values of a particular area in Chandmari site. The

  6. An experimental investigation of geochromatography during secondary migration of petroleum performed under subsurface conditions with a real rock

    Directory of Open Access Journals (Sweden)

    Larter Steve

    2000-10-01

    Full Text Available An understanding of the size of petroleum secondary migration systems is vital for successful exploration for petroleum reserves. Geochemists have suggested that compositional fractionation of petroleum accompanying the migration process (geochromatography can potentially be used to infer distances petroleum may have travelled and the ratio of oil in the reservoir to that lost in the carrier. To date, this has been attempted by measuring concentrations and distributions of specific steranes, and aromatic oxygen and nitrogen compounds in reservoired oils which have been proposed to respond to migration rather than to source maturity or other effects. We report here an experiment involving oil migration through an initially water wet siltstone under realistic subsurface carrier bed or reservoir conditions (48 MPa, 70°C where source facies and maturity effects are eliminated. We show that geochromatography does indeed occur even for initially water-saturated rocks and that the migration fractionations observed for alkylcarbazoles, benzocarbazoles and alkylphenols are very similar to those seen in field data sets. In contrast, sterane based migration parameters show no compositional fractionation under these conditions.

  7. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  8. A subsurface add-on for standard atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G. J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J., E-mail: Rost@physics.leidenuniv.nl [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  9. Determination of Importance Evaluation for Exploratory Studies Facility (ESF) Subsurface Testing Activities

    International Nuclear Information System (INIS)

    Goodin, S.

    2002-01-01

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), and ancillary test and operation support areas including the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. This evaluation applies specifically to site characterization testing activities ongoing and planned in the Subsurface ESF. ESF site characterization activities are being performed to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. A more detailed description of these testing activities is provided in Section 6 of this DIE. Generally, the construction and operation of excavations associated with these testing activities are evaluated in the DIE for the Subsurface ESF (CRWMS M andO 1999a) and the DIE for the ESF ECRB Cross Drift (CRWMS M andO 2000a). The scope of this DIE also entails the proposed Unsaturated Zone (UZ) Transport Test at Busted Butte. Although, not a part of the TS Loop or ECRB Cross Drift, the associated testing activities are Subsurface testing activities. Busted Butte is located to the south south-east of the TS Loop and is outside the Conceptual Controlled Area Boundary (CCAB). These activities provide access to the Calico Hills (CH) geologic structure. In the case of Busted Butte, construction and operation of excavations are evaluated herein (since this activity was not previously evaluated in CRWMS M andO 1999a). The objectives of this DIE are to determine whether Subsurface ESF testing, and associated activities, could potentially impact site characterization testing and/or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified in Section 13. The validity and veracity of the

  10. Cultivation Of Deep Subsurface Microbial Communities

    Science.gov (United States)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  11. Subsurface variations in arsenic mineralogy and geochemistry following long-term weathering of gold mine tailings

    International Nuclear Information System (INIS)

    DeSisto, Stephanie L.; Jamieson, Heather E.; Parsons, Michael B.

    2016-01-01

    Variations in arsenic (As) mineralogy and geochemical controls on its mobility were evaluated in subsurface tailings at the historical Montague and Goldenville mine sites in Nova Scotia, Canada. Tailings at these sites contain some of the highest As concentrations in Nova Scotia and are located in close proximity to local communities. Pore water in the subsurface tailings is characterized by circumneutral to alkaline pH (6.2 to 8.7) and mildly reducing to oxidizing redox conditions (+130 mV to +347 mV). Bulk chemistry, scanning electron microscopy, and synchrotron micro-X-ray diffraction analyses showed As mineral hosts differ with depth. The deepest tailings (max. 2 m) are in direct contact with partially decomposed vegetation, which supports reducing conditions and the precipitation of authigenic As and Fe sulfides. Under reducing conditions, dissolved As concentrations are also controlled by desorption of As from dissolution of Fe and Mn oxides and the sorption or co-precipitation of As with carbonates. These geochemical controls differ from those influencing dissolved As concentrations under oxidizing conditions. In the near surface, As mobility is controlled by oxidative dissolution of primary arsenopyrite, precipitation of secondary Fe arsenates, Fe oxyhydroxides and Mn oxides, secondary Ca-Fe arsenates, and sorption onto Fe oxyhydroxides and gangue minerals. Some of these mineral species are stable under different conditions yet occur in close association, indicating the importance of microenvironments. The results of this study show that the weathering characteristics of these tailings vary with depth, leading to the formation of new As hosts that are distinct from those observed in the near surface. Identification of these As hosts provides an understanding of current controls on As mobility and has implications for future reprocessing and/or remediation efforts. - Highlights: • Subsurface mineralogy does not reflect surface tailings end

  12. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Directory of Open Access Journals (Sweden)

    Muhannad T. Suleiman

    2012-11-01

    Full Text Available Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs. The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  13. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  14. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  15. Integrated geomechanical modelling for deep subsurface damage

    NARCIS (Netherlands)

    Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.

    2001-01-01

    Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to

  16. Joint inversion of geophysical and hydrological data for improved subsurface characterization

    International Nuclear Information System (INIS)

    Kowalsky, Michael B.; Chen, Jinsong; Hubbard, Susan S.

    2006-01-01

    Understanding fluid distribution and movement in the subsurface is critical for a variety of subsurface applications, such as remediation of environmental contaminants, sequestration of nuclear waste and CO2, intrusion of saline water into fresh water aquifers, and the production of oil and gas. It is well recognized that characterizing the properties that control fluids in the subsurface with the accuracy and spatial coverage needed to parameterize flow and transport models is challenging using conventional borehole data alone. Integration of conventional borehole data with more spatially extensive geophysical data (obtained from the surface, between boreholes, and from surface to boreholes) shows promise for providing quantitative information about subsurface properties and processes. Typically, estimation of subsurface properties involves a two-step procedure in which geophysical data are first inverted and then integrated with direct measurements and petrophysical relationship information to estimate hydrological parameters. However, errors inherent to geophysical data acquisition and inversion approaches and errors associated with petrophysical relationships can decrease the value of geophysical data in the estimation procedure. In this paper, we illustrate using two examples how joint inversion approaches, or simultaneous inversion of geophysical and hydrological data, offer great potential for overcoming some of these limitations

  17. Electrical Resistance Tomography for Subsurface Imaging. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2000-01-01

    Electrical Resistance Tomography (ERT) noninvasively maps the 3-D resistivity field in the subsurface. It can be used on a scale from feet to kilometers. The 3-D resistivity field can be used to infer subsurface hydrogeological features and provides good resolution mapping of confining layers of various types. ERT imaging has been used for real-time monitoring and process control of remediation processes such as soil heating, pump and treat, steam injection, electrokinetics, Dynamic Underground Stripping (TechID 7), Hydrous Pyrolysis/Oxidation (TechID 1519) and more. ERT can be deployed via rapid and inexpensive installation of electrodes using a Cone Penetrometer (TechID 243). Additional applications are described under TechID 140 (Tanks) and TechID 2120 (Injected Subsurface Barriers); see also the related technology TechID 2121 (EIT)

  18. Determination of Importance Evaluation for Exploratory Studies Facility (ESF) Subsurface Testing Activities

    International Nuclear Information System (INIS)

    C.J. Byrne

    2001-01-01

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), and ancillary test and operation support areas including the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. This evaluation applies specifically to site characterization testing activities ongoing and planned in the Subsurface ESF. ESF site characterization activities are being performed to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. A more detailed description of these testing activities is provided in Section 6 of this DIE. Generally, the construction and operation of excavations associated with these testing activities are evaluated in the DIE for the Subsurface ESF (CRWMS M and O 1999a) and the DIE for the ESF ECRB Cross Drift (CRWMS M and O 2000a). The scope of this DIE also entails the proposed Unsaturated Zone (UZ) Transport Test at Busted Butte. Although, not a part of the TS Loop or ECRB Cross Drift, the associated testing activities are Subsurface testing activities. Busted Butte is located to the south south-east of the TS Loop and is outside the Conceptual Controlled Area Boundary (CCAB). These activities provide access to the Calico Hills (CH) geologic structure. In the case of Busted Butte, construction and operation of excavations are evaluated herein (since this activity was not previously evaluated in CRWMS M and O 1999a). The objectives of this DIE are to determine whether Subsurface ESF testing, and associated activities, could potentially impact site characterization testing and/or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified in Section 13. The validity and veracity of the

  19. Determination of Importance Evaluation for Exploratory Studies Facility (ESF) Subsurface Testing Activities

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Byrne

    2001-02-20

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), and ancillary test and operation support areas including the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. This evaluation applies specifically to site characterization testing activities ongoing and planned in the Subsurface ESF. ESF site characterization activities are being performed to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. A more detailed description of these testing activities is provided in Section 6 of this DIE. Generally, the construction and operation of excavations associated with these testing activities are evaluated in the DIE for the Subsurface ESF (CRWMS M&O 1999a) and the DIE for the ESF ECRB Cross Drift (CRWMS M&O 2000a). The scope of this DIE also entails the proposed Unsaturated Zone (UZ) Transport Test at Busted Butte. Although, not a part of the TS Loop or ECRB Cross Drift, the associated testing activities are Subsurface testing activities. Busted Butte is located to the south south-east of the TS Loop and is outside the Conceptual Controlled Area Boundary (CCAB). These activities provide access to the Calico Hills (CH) geologic structure. In the case of Busted Butte, construction and operation of excavations are evaluated herein (since this activity was not previously evaluated in CRWMS M&O 1999a). The objectives of this DIE are to determine whether Subsurface ESF testing, and associated activities, could potentially impact site characterization testing and/or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified in Section 13. The validity and veracity of the individual

  20. HDR economy with special reference to conditions in Europe

    International Nuclear Information System (INIS)

    Smolka, K.; Kappelmeyer, O.

    1992-01-01

    A cost benefit model for the economic evaluation of HDR energy production cost was developed. It can be used for systematic cost analyses of different components of a HDR plant. This relates to natural subsurface conditions (i.e., geothermal gradient, tectonic stress) as well as technical components (i.e., boreholes, heat/power conversion system). The model provides the limiting conditions for an economic HDR energy production. The economic model was applied for an evaluation of the natural parameters in the subsurface of Germany regarding their HDR-suitability. Within a site selection program in Europe the model is part of feasibility studies for the conceptual design of a HDR demonstration plant at three candidate sites: Bad Urach (Germany); Soultz-sous-Forets (France) and Cornwall (UK)

  1. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  2. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  3. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  4. Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions.

    Science.gov (United States)

    Issa, Salah; Wood, Martin

    2005-02-01

    The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-35 days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35 days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. Copyright (c) 2005 Society of Chemical Industry.

  5. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2013-01-01

    Migration velocity analysis with the constant-density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In

  6. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  7. SUBSURFACE CONSTRUCTION AND DEVELOPMENT ANALYSIS

    International Nuclear Information System (INIS)

    N.E. Kramer

    1998-01-01

    The purpose of this analysis is to identify appropriate construction methods and develop a feasible approach for construction and development of the repository subsurface facilities. The objective of this analysis is to support development of the subsurface repository layout for License Application (LA) design. The scope of the analysis for construction and development of the subsurface Repository facilities covers: (1) Excavation methods, including application of knowledge gained from construction of the Exploratory Studies Facility (ESF). (2) Muck removal from excavation headings to the surface. This task will examine ways of preventing interference with other subsurface construction activities. (3) The logistics and equipment for the construction and development rail haulage systems. (4) Impact of ground support installation on excavation and other construction activities. (5) Examination of how drift mapping will be accomplished. (6) Men and materials handling. (7) Installation and removal of construction utilities and ventilation systems. (8) Equipping and finishing of the emplacement drift mains and access ramps to fulfill waste emplacement operational needs. (9) Emplacement drift and access mains and ramps commissioning prior to handover for emplacement operations. (10) Examination of ways to structure the contracts for construction of the repository. (11) Discussion of different construction schemes and how to minimize the schedule risks implicit in those schemes. (12) Surface facilities needed for subsurface construction activities

  8. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  9. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    International Nuclear Information System (INIS)

    Sobecky, Patricia A.

    2015-01-01

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  10. Water Table Recession in Subsurface Drained Soils

    OpenAIRE

    Moustafa, Mahmoud Mohamed; Yomota, Atsushi

    1999-01-01

    Theoretical drainage equations are intensively tested in many parts of humid and arid regions and are commonly used in drainage design. However, this is still a great concern in Japan as the drainage design is exclusively based on local experiences and empirical basis. There is a need therefore to evaluate the theoretical drainage equations under Japanese field conditions to recommend equations for design of subsurface drainage systems. This was the main motivation for this study. While drain...

  11. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere.

    Science.gov (United States)

    Fullerton, Heather; Moyer, Craig L

    2016-05-15

    Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into

  12. Final Report: A Model Management System for Numerical Simulations of Subsurface Processes

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, David

    2013-10-07

    The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.

  13. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2014-01-01

    Full Text Available The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  14. Modeling Subsurface Hydrology in Floodplains

    Science.gov (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  15. Iberian Pyrite Belt Subsurface Life (IPBSL), a drilling project in a geochemical Mars terrestrial analogue

    Science.gov (United States)

    Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.

    2012-09-01

    Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.

  16. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  17. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  18. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  19. Subsurface Profile Mapping using 3-D Compressive Wave Imaging

    Directory of Open Access Journals (Sweden)

    Hazreek Z A M

    2017-01-01

    Full Text Available Geotechnical site investigation related to subsurface profile mapping was commonly performed to provide valuable data for design and construction stage based on conventional drilling techniques. From past experience, drilling techniques particularly using borehole method suffer from limitations related to expensive, time consuming and limited data coverage. Hence, this study performs subsurface profile mapping using 3-D compressive wave imaging in order to minimize those conventional method constraints. Field measurement and data analysis of compressive wave (p-wave, vp was performed using seismic refraction survey (ABEM Terraloc MK 8, 7 kg of sledgehammer and 24 units of vertical geophone and OPTIM (SeisOpt@Picker & SeisOpt@2D software respectively. Then, 3-D compressive wave distribution of subsurface studied was obtained using analysis of SURFER software. Based on 3-D compressive wave image analyzed, it was found that subsurface profile studied consist of three main layers representing top soil (vp = 376 – 600 m/s, weathered material (vp = 900 – 2600 m/s and bedrock (vp > 3000 m/s. Thickness of each layer was varied from 0 – 2 m (first layer, 2 – 20 m (second layer and 20 m and over (third layer. Moreover, groundwater (vp = 1400 – 1600 m/s starts to be detected at 2.0 m depth from ground surface. This study has demonstrated that geotechnical site investigation data related to subsurface profiling was applicable to be obtained using 3-D compressive wave imaging. Furthermore, 3-D compressive wave imaging was performed based on non destructive principle in ground exploration thus consider economic, less time, large data coverage and sustainable to our environment.

  20. Component-based framework for subsurface simulations

    International Nuclear Information System (INIS)

    Palmer, B J; Fang, Yilin; Hammond, Glenn; Gurumoorthi, Vidhya

    2007-01-01

    Simulations in the subsurface environment represent a broad range of phenomena covering an equally broad range of scales. Developing modelling capabilities that can integrate models representing different phenomena acting at different scales present formidable challenges both from the algorithmic and computer science perspective. This paper will describe the development of an integrated framework that will be used to combine different models into a single simulation. Initial work has focused on creating two frameworks, one for performing smooth particle hydrodynamics (SPH) simulations of fluid systems, the other for performing grid-based continuum simulations of reactive subsurface flow. The SPH framework is based on a parallel code developed for doing pore scale simulations, the continuum grid-based framework is based on the STOMP (Subsurface Transport Over Multiple Phases) code developed at PNNL Future work will focus on combining the frameworks together to perform multiscale, multiphysics simulations of reactive subsurface flow

  1. Feasibility of permeation grouting for constructing subsurface barriers

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1994-04-01

    Efforts are being made to devise technologies that provide interim containment of waste sites while final remediation alternatives are developed. Permeation grouting, a technique used extensively in the civil and mining engineering industry has been investigated as a method for emplacing a subsurface containment barrier beneath existing waste sites. Conceptually an underlying barrier is placed by injecting grout into the formation at less than fracturing pressure from a series of directionally drilled boreholes beneath the waste site. This study evaluated the penetration and performance characteristics in varying soil conditions of four different grout materials (two microfine cements, mineral wax, and sodium silicate) at a field scale. Field testing consisted of grout injection via sleeve (tube-a'-manchette) pipe into both vertical and horizontal borehole configurations at the Mixed Waste Landfill Integrated Demonstration site at Sandia National Laboratories. Prior to, during, and after grout injection non-intrusive geophysical techniques were used to map grout flow. Following the tests, the site was excavated to reveal details of the grout permeation, and grouted soil samples were cored for laboratory characterization. The non-intrusive and intrusive grout mapping showed preferential flow patterns, i.e., the grout tended to follow the path of least resistance. Preliminary testing indicates that permeation grouting is a feasible method for emplacing a low permeability subsurface barrier in the semi-arid unconsolidated alluvial soils common to the Southwest. Despite the success of this project, difficulties in predicting grout flow in heterogeneous soils and non-intrusive methods for imaging grout location and continuity are issues that need more attention

  2. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  3. Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective

    Science.gov (United States)

    Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.

    2010-06-01

    A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.

  4. Subsurface Transport of Hydrocarbon Fuel Additives and a Dense Chlorinated Solvent

    National Research Council Canada - National Science Library

    Guven, O

    1996-01-01

    This report provides a description of the work done at Auburn University for the research project 'Subsurface Transport of Hydrocarbon Fuel additives and a Chlorinated Solvent', supported by Armstrong...

  5. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  6. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators.

    Science.gov (United States)

    Kahl, Stefanie; Nivala, Jaime; van Afferden, Manfred; Müller, Roland A; Reemtsma, Thorsten

    2017-11-15

    Six pilot-scale subsurface flow treatment wetlands loaded with primary treated municipal wastewater were monitored over one year for classical wastewater parameters and a set of emerging organic compounds (EOCs) serving as process indicators for biodegradation: caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine. The wetland technologies investigated included conventional horizontal flow, unsaturated vertical flow (single and two-stage), horizontal flow with aeration, vertical flow with aeration, and reciprocating. Treatment efficiency for classical wastewater parameters and EOCs generally increased with increasing design complexity and dissolved oxygen concentrations. The two aerated wetlands and the two-stage vertical flow system showed the highest EOC removal, and the best performance in warm season and most robust performance in the cold season. These three systems performed better than the adjacent conventional WWTP with respect to EOC removal. Acesulfame was observed to be removed (>90%) by intensified wetland systems and with use of a tertiary treatment sand filter during the warm season. Elevated temperature and high oxygen content (aerobic conditions) proved beneficial for EOC removal. For EOCs of moderate to low biodegradability, the co-occurrence of aerobic conditions and low content of readily available carbon appears essential for efficient removal. Such conditions occurred in the aerated systems and with use of a tertiary treatment sand filter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Urban heat islands in the subsurface of German cities

    Science.gov (United States)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a

  9. The effects of fire on subsurface archaeological materials [Chapter 7

    Science.gov (United States)

    Elizabeth A. Oster; Samantha Ruscavage-Barz; Michael L. Elliott

    2012-01-01

    In this chapter, we concentrate on the effects of fire on subsurface archaeological deposits: the matrix containing post-depositional fill, artifacts, ecofactual data, dating samples, and other cultural and noncultural materials. In order to provide a context for understanding these data, this paper provides a summary of previous research about the potential effects of...

  10. Influence of Si wafer thinning processes on (sub)surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Fumihiro, E-mail: fumihiro.inoue@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2017-05-15

    Highlights: • Mono-vacancy free Si-thinning can be accomplished by combining several thinning techniques. • The grinding damage needs to be removed prior to dry etching, otherwise vacancies remain in the Si at a depth around 0.5 to 2 μm after Si wafer thickness below 5 μm. • The surface of grinding + CMP + dry etching is equivalent mono vacancy level as that of grinding + CMP. - Abstract: Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5–2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in

  11. Tomographic SAR analysis of subsurface ice structure in Greenland: first results

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2013-01-01

    structure with P-band SAR tomography. First results from ESA IceSAR 2012 campaign carried out in south-west Greenland are presented. It is found that significant penetration in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different type...

  12. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars

    Science.gov (United States)

    Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep

    2017-02-01

    Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of

  13. Subsurface Contamination Focus Area technical requirements. Volume 1: Requirements summary

    International Nuclear Information System (INIS)

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This document summarizes functions and requirements for remediation of source term and plume sites identified by the Subsurface Contamination Focus Area. Included are detailed requirements and supporting information for source term and plume containment, stabilization, retrieval, and selective retrieval remedial activities. This information will be useful both to the decision-makers within the Subsurface Contamination Focus Area (SCFA) and to the technology providers who are developing and demonstrating technologies and systems. Requirements are often expressed as graphs or charts, which reflect the site-specific nature of the functions that must be performed. Many of the tradeoff studies associated with cost savings are identified in the text

  14. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    Science.gov (United States)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data

  15. Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars

    Science.gov (United States)

    Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.

    2013-12-01

    Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence

  16. Effects of Mars Regolith Analogs, UVC radiation, Temperature, Pressure, and pH on the Growth and Survivability of Methanogenic Archaea and Stable Carbon Isotope Fractionation: Implications for Surface and Subsurface Life on Mars

    Science.gov (United States)

    Sinha, Navita

    Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface

  17. Final report - Reduction of mercury in saturated subsurface sediments and its potential to mobilize mercury in its elemental form

    Energy Technology Data Exchange (ETDEWEB)

    Bakray, Tamar [Rutgers University

    2013-06-13

    The goal of our project was to investigate Hg(II) reduction in the deep subsurface. We focused on microbial and abiotic pathways of reduction and explored how it affected the toxicity and mobility of Hg in this unique environment. The project’s tasks included: 1. Examining the role of mer activities in the reduction of Hg(II) in denitrifying enrichment cultures; 2. Investigating the biotic/abiotic reduction of Hg(II) under iron reducing conditions; 3. Examining Hg(II) redox transformations under anaerobic conditions in subsurface sediments from DOE sites.

  18. Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D.

    2011-03-31

    The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

  19. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  20. Starvation-survival of subsurface bacteria

    International Nuclear Information System (INIS)

    Magill, N.G.

    1988-01-01

    The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with 14 C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular 14 C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used

  1. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPLORATORY STUDIES FACILITY

    International Nuclear Information System (INIS)

    Clark, W.J.

    1999-01-01

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-000111) (CRWMS M and O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M and O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M and O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the

  2. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPORATORY STUDIES FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    W.J. Clark

    1999-06-28

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-00011 Rev 01) (CRWMS M&O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M&O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M&O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the responsibility

  3. Advanced core-analyses for subsurface characterization

    Science.gov (United States)

    Pini, R.

    2017-12-01

    The heterogeneity of geological formations varies over a wide range of length scales and represents a major challenge for predicting the movement of fluids in the subsurface. Although they are inherently limited in the accessible length-scale, laboratory measurements on reservoir core samples still represent the only way to make direct observations on key transport properties. Yet, properties derived on these samples are of limited use and should be regarded as sample-specific (or `pseudos'), if the presence of sub-core scale heterogeneities is not accounted for in data processing and interpretation. The advent of imaging technology has significantly reshaped the landscape of so-called Special Core Analysis (SCAL) by providing unprecedented insight on rock structure and processes down to the scale of a single pore throat (i.e. the scale at which all reservoir processes operate). Accordingly, improved laboratory workflows are needed that make use of such wealth of information by e.g., referring to the internal structure of the sample and in-situ observations, to obtain accurate parameterisation of both rock- and flow-properties that can be used to populate numerical models. We report here on the development of such workflow for the study of solute mixing and dispersion during single- and multi-phase flows in heterogeneous porous systems through a unique combination of two complementary imaging techniques, namely X-ray Computed Tomography (CT) and Positron Emission Tomography (PET). The experimental protocol is applied to both synthetic and natural porous media, and it integrates (i) macroscopic observations (tracer effluent curves), (ii) sub-core scale parameterisation of rock heterogeneities (e.g., porosity, permeability and capillary pressure), and direct 3D observation of (iii) fluid saturation distribution and (iv) the dynamic spreading of the solute plumes. Suitable mathematical models are applied to reproduce experimental observations, including both 1D and 3D

  4. Subsurface probing

    International Nuclear Information System (INIS)

    Lytle, R.J.

    1978-01-01

    Imaging techniques that can be used to translate seismic and electromagnetic wave signals into visual representation are briefly discussed. The application of these techniques is illustrated on the example of determining the subsurface structure of a proposed power plant. Imaging makes the wave signals intelligible to the non-geologists. R and D work needed in this area are tabulated

  5. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    International Nuclear Information System (INIS)

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated

  6. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L. [Westinghouse Hanford Co., Richland, WA (United States); Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site`s 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology.

  7. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L.; Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site's 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology

  8. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    Science.gov (United States)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily

  9. Subsurface geology off Bombay with paleoclimatic inferences interpreted from shallow seismic profiles

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Almeida, F.; Vora, K.H.; Siddiquie, H.N.

    High resolution seismic reflection profiles nearshore areas off Bombay provide information on subsurface geology and permit certain paleoclimatic inferences. Three sedimentary units overlie the acoustic basement: late Pleistocene consolidated...

  10. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    Science.gov (United States)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  11. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  12. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  13. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    International Nuclear Information System (INIS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-01-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  14. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongwei; Yan, Yu, E-mail: yanyu@ustb.edu.cn; Su, Yanjing; Qiao, Lijie

    2017-06-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  15. Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Kelvin [Carnegie Mellon University

    2013-08-12

    The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recovery from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.

  16. MSTS - Multiphase Subsurface Transport Simulator theory manual

    International Nuclear Information System (INIS)

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the open-quotes User's Guide and Referenceclose quotes companion document

  17. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations. Key Points...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...

  18. CLASSIFICATION OF THE MGR SUBSURFACE EXCAVATION SYSTEM

    International Nuclear Information System (INIS)

    R. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface excavation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  19. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  20. Microbiological Transformations of Radionuclides in the Subsurface

    International Nuclear Information System (INIS)

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-01

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  1. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    Science.gov (United States)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  2. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  3. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  4. Cultivating the Deep Subsurface Microbiome

    Science.gov (United States)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  5. Feasibility of a subsurface storage

    International Nuclear Information System (INIS)

    1998-11-01

    This report analyses the notion of subsurface storage under the scientifical, technical and legal aspects. This reflection belongs to the studies about long duration storage carried out in the framework of the axis 3 of the December 30, 1991 law. The report comprises 3 parts. The first part is a synthesis of the complete subsurface storage study: definitions, aim of the report, very long duration storage paradigm, description files of concepts, thematic synthesis (legal aspects, safety, monitoring, sites, seismicity, heat transfers, corrosion, concretes, R and works, handling, tailings and dismantlement, economy..), multi-criteria/multi-concept cross-analysis. The second part deals with the technical aspects of the subsurface storage: safety approach (long duration impact, radiation protection, mastery of effluents), monitoring strategy, macroscopic inventory of B-type waste packages, inventory of spent fuels, glasses, hulls and nozzles, geological contexts in the French territory (sites selection and characterization), on-site activities, hydrogeological and geochemical aspects, geo-technical works and infrastructures organization, subsurface seismic effects, cooling modes (ventilation, heat transfer with the geologic environment), heat transfer research programs (convection, poly-phase cooling in porous media), handling constraints, concretes (use, behaviour, durability), corrosion of metallic materials, technical-economical analysis, international context (experience feedback from Sweden (CLAB) and the USA (Yucca Mountain), other European and French facilities). The last part of the report is a graphical appendix with 3-D views and schemes of the different concepts. (J.S.)

  6. Subsurface quality assurance practices

    International Nuclear Information System (INIS)

    1987-08-01

    This report addresses only the concept of applying Nuclear Quality Assurance (NQA) practices to repository shaft and subsurface design and construction; how NQA will be applied; and the level of detail required in the documentation for construction of a shaft and subsurface repository in contrast to the level of detail required in the documentation for construction of a traditional mine. This study determined that NQA practices are viable, attainable, as well as required. The study identified the appropriate NQA criteria and the repository's major structures, systems, items, and activities to which the criteria are applicable. A QA plan, for design and construction, and a list of documentation, for construction, are presented. 7 refs., 1 fig., 18 tabs

  7. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    Science.gov (United States)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  8. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    Science.gov (United States)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and

  9. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  10. Drawing the subsurface : an integrative design approach

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Lafleur, F.; Trinh, T.T.; Gogu, Constantin Radu; Campbell, Diarmad; de Beer, Johannes

    2017-01-01

    The sub-surface, with its man-made and natural components, plays an important, if not crucial, role in the urban climate and global energy transition. On the one hand, the sub-surface is associated with a variety of challenges such as subsidence, pollution, damage to infrastructure and shortages of

  11. How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage

    International Nuclear Information System (INIS)

    Bloemendal, Martin; Olsthoorn, Theo; Boons, Frank

    2014-01-01

    A heat pump combined with Aquifer Thermal Energy Storage (ATES) has high potential in efficiently and sustainably providing thermal energy for space heating and cooling. This makes the subsurface, including its groundwater, of crucial importance for primary energy savings. The regulation of ATES systems is similar in many countries around the world. This paper seeks solutions for the institutional hindrances to the diffusion of ATES. The use of aquifers by individual ATES systems can be optimized to maximize their efficiency on the one hand, and to optimize the performance of the regional subsurface for energy storage on the other. The application of ATES in an aquifer has similar properties as other common resource pool problems. Only with detailed information and feedback about the actual subsurface status, a network of ATES systems can work towards an optimum for both the subsurface and buildings, instead of striving for a local optimum for individual buildings. Future governance of the subsurface may include the self-organization or self-governance. For that the ATES systems need a complementary framework; interpretation of interaction, feedback and adaptable and dynamic control interpretations are the key elements for the optimal and sustainable use of the subsurface. - Highlights: • We show that ATES systems are not using the subsurface optimally and sustainably. • We elaborate how current legislation will not be able to overcome this problem. • We present self-organization as a perspective for governance of ATES systems

  12. Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments.

    Science.gov (United States)

    Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto

    2013-10-01

    We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    KAUST Repository

    Wu, Sin-Mei

    2017-10-03

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh-wave seismic signals between 1-10 Hz utilizing non-diffusive seismic waves excited by nearby active hydrothermal features with the following results. 1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, 2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and 3) resolving a relatively shallow (10-60 m) and large reservoir located ~100 m southwest of Old Faithful geyser.

  14. CLASSIFICATION OF THE MGR SUBSURFACE VENTILATION SYSTEM

    International Nuclear Information System (INIS)

    R.J. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  15. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic

  16. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  17. Identification of subsurface structures using electromagnetic data and shape priors

    Energy Technology Data Exchange (ETDEWEB)

    Tveit, Svenn, E-mail: svenn.tveit@uni.no [Uni CIPR, Uni Research, Bergen 5020 (Norway); Department of Mathematics, University of Bergen, Bergen 5020 (Norway); Bakr, Shaaban A., E-mail: shaaban.bakr1@gmail.com [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Uni CIPR, Uni Research, Bergen 5020 (Norway); Lien, Martha, E-mail: martha.lien@octio.com [Uni CIPR, Uni Research, Bergen 5020 (Norway); Octio AS, Bøhmergaten 44, Bergen 5057 (Norway); Mannseth, Trond, E-mail: trond.mannseth@uni.no [Uni CIPR, Uni Research, Bergen 5020 (Norway); Department of Mathematics, University of Bergen, Bergen 5020 (Norway)

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  18. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  19. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  20. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Highlights: • Molecular dynamic model of nanoscale high speed grinding of silicon workpiece has been established. • The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation during high speed grinding process are thoroughly investigated. • Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle. • The hydrostatic stress and von Mises stress by the established analytical model are studied subsurface damage mechanism during nanoscale grinding. - Abstract: Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s −1 , subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high

  1. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability

    Science.gov (United States)

    Grimm, R. E.; Marchi, S.

    2018-03-01

    Intense bombardment is considered characteristic of the Hadean and early Archean eons, yet some detrital zircons indicate that near-surface water was present and thus at least intervals of clement conditions may have existed. We investigate the habitability of the top few kilometers of the subsurface by updating a prior approach to thermal evolution of the crust due to impact heating, using a revised bombardment history, a more accurate thermal model, and treatment of melt sheets from large projectiles (>100 km diameter). We find that subsurface habitable volume grows nearly continuously throughout the Hadean and early Archean (4.5-3.5 Ga) because impact heat is dissipated rapidly compared to the total duration and waning strength of the bombardment. Global sterilization was only achieved using an order of magnitude more projectiles in 1/10 the time. Melt sheets from large projectiles can completely resurface the Earth several times prior to ∼4.2 Ga but at most once since then. Even in the Hadean, melt sheets have little effect on habitability because cooling times are short compared to resurfacing intervals, allowing subsurface biospheres to be locally re-established by groundwater infiltration between major impacts. Therefore the subsurface is always habitable somewhere, and production of global steam or silicate-vapor atmospheres are the only remaining avenues to early surface sterilization by bombardment.

  2. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  3. Subsurface plasma in beam of continuous CO2-laser

    Science.gov (United States)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  4. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Science.gov (United States)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  5. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  6. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    Science.gov (United States)

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  7. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  8. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  9. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  10. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  11. 30 CFR 250.119 - Will MMS approve subsurface gas storage?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve subsurface gas storage? 250....119 Will MMS approve subsurface gas storage? The Regional Supervisor may authorize subsurface storage of gas on the OCS, on and off-lease, for later commercial benefit. To receive MMS approval you must...

  12. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  13. Method of imaging the electrical conductivity distribution of a subsurface

    Science.gov (United States)

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  14. Unconventional energy resources in a crowded subsurface: Reducing uncertainty and developing a separation zone concept for resource estimation and deep 3D subsurface planning using legacy mining data.

    Science.gov (United States)

    Monaghan, Alison A

    2017-12-01

    Over significant areas of the UK and western Europe, anthropogenic alteration of the subsurface by mining of coal has occurred beneath highly populated areas which are now considering a multiplicity of 'low carbon' unconventional energy resources including shale gas and oil, coal bed methane, geothermal energy and energy storage. To enable decision making on the 3D planning, licensing and extraction of these resources requires reduced uncertainty around complex geology and hydrogeological and geomechanical processes. An exemplar from the Carboniferous of central Scotland, UK, illustrates how, in areas lacking hydrocarbon well production data and 3D seismic surveys, legacy coal mine plans and associated boreholes provide valuable data that can be used to reduce the uncertainty around geometry and faulting of subsurface energy resources. However, legacy coal mines also limit unconventional resource volumes since mines and associated shafts alter the stress and hydrogeochemical state of the subsurface, commonly forming pathways to the surface. To reduce the risk of subsurface connections between energy resources, an example of an adapted methodology is described for shale gas/oil resource estimation to include a vertical separation or 'stand-off' zone between the deepest mine workings, to ensure the hydraulic fracturing required for shale resource production would not intersect legacy coal mines. Whilst the size of such separation zones requires further work, developing the concept of 3D spatial separation and planning is key to utilising the crowded subsurface energy system, whilst mitigating against resource sterilisation and environmental impacts, and could play a role in positively informing public and policy debate. Copyright © 2017 British Geological Survey, a component institute of NERC. Published by Elsevier B.V. All rights reserved.

  15. Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward

    Science.gov (United States)

    Geesey, G.

    2005-12-01

    to remotely measure microbial community parameters that define their key functions at a scale that accurately reflects their role in large scale subsurface system behavior. The practical questions that geomicrobiologist must answer in the short term are: 1) What is known about the activities of the dominant microbial populations or those of their closest relatives? 2) Which of these activities is likely to dominate under in situ conditions? In the process of answering these questions, researchers will obtain answers to questions of a more fundamental nature such as 1) How deep does "active" life extend below the surface of the seafloor and terrestrial subsurface? 2) How are electrons exchanged between microbial cells and solid phase minerals? 3) What is the metabolic state and mechanism of survival of "inactive" life forms in the subsurface? 4) What can genomes of life forms trapped in geological material tell us about evolution of life that current methods cannot? The subsurface environment represents a challenging environment to understand and model. As the need to understand subsurface processes increases and the technologies to characterize them become available, modeling subsurface behavior will approach the level of sophistication of models used today to predict behavior of other large scale systems such as the oceans.

  16. Geochemical characterization of subsurface sediments in the Netherlands

    NARCIS (Netherlands)

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other

  17. Electrical Subsurface Grounding Analysis

    International Nuclear Information System (INIS)

    J.M. Calle

    2000-01-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements

  18. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  19. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2007-07-10

    residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).

  20. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY 2007

    International Nuclear Information System (INIS)

    MANN, F.M.

    2007-01-01

    remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year)

  1. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  2. Historical Perspective on Subsurface Contaminants Focus Area (SCFA) Success: Counting the Things That Really Count

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J. A. Jr.; Middleman, L. I.

    2002-02-27

    The Subsurface Contaminants Focus Area, (SCFA) is committed to, and has been accountable for, identifying and providing solutions for the most pressing subsurface contamination problems in the DOE Complex. The SCFA program is a DOE end user focused and problem driven organization that provides the best technical solutions for the highest priority problems. This paper will discuss in some detail specific examples of the most successful, innovative technical solutions and the DOE sites where they were deployed or demonstrated. These solutions exhibited outstanding performance in FY 2000/2001 and appear poised to achieve significant success in saving end users money and time. They also provide a reduction in risk to the environment, workers, and the public while expediting environmental clean up of the sites.

  3. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    Science.gov (United States)

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  4. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    The subsurface environment, which encompasses the vadose and saturated zones, is a heterogeneous, geologically complex domain. Believed to contain a large percentage of Earth's biomass in the form of microorganisms, the subsurface is a dynamic zone where important biogeochemical cycles work to sustain life. Actively linked to the atmosphere and biosphere through the hydrologic and carbon cycles, the subsurface serves as a storage location for much of Earth's fresh water. Coupled hydrological, microbiological, and geochemical processes occurring within the subsurface environment cause the local and regional natural chemical fluxes that govern water quality. These processes play a vital role in the formation of soil, economically important fossil fuels, mineral deposits, and other natural resources. Cleaning up Department of Energy (DOE) lands impacted by legacy wastes and using the subsurface for carbon sequestration or nuclear waste isolation require a firm understanding of these processes and the documented means to characterize the vertical and spatial distribution of subsurface properties directing water, nutrient, and contaminant flows. This information, along with credible, predictive models that integrate hydrological, microbiological, and geochemical knowledge over a range of scales, is needed to forecast the sustainability of subsurface water systems and to devise ways to manage and manipulate dynamic in situ processes for beneficial outcomes. Predictive models provide the context for knowledge integration. They are the primary tools for forecasting the evolving geochemistry or microbial ecology of groundwater under various scenarios and for assessing and optimizing the potential effectiveness of proposed approaches to carbon sequestration, waste isolation, or environmental remediation. An iterative approach of modeling and experimentation can reveal powerful insights into the behavior of subsurface systems. State-of-science understanding codified

  5. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    International Nuclear Information System (INIS)

    2010-01-01

    The subsurface environment, which encompasses the vadose and saturated zones, is a heterogeneous, geologically complex domain. Believed to contain a large percentage of Earth's biomass in the form of microorganisms, the subsurface is a dynamic zone where important biogeochemical cycles work to sustain life. Actively linked to the atmosphere and biosphere through the hydrologic and carbon cycles, the subsurface serves as a storage location for much of Earth's fresh water. Coupled hydrological, microbiological, and geochemical processes occurring within the subsurface environment cause the local and regional natural chemical fluxes that govern water quality. These processes play a vital role in the formation of soil, economically important fossil fuels, mineral deposits, and other natural resources. Cleaning up Department of Energy (DOE) lands impacted by legacy wastes and using the subsurface for carbon sequestration or nuclear waste isolation require a firm understanding of these processes and the documented means to characterize the vertical and spatial distribution of subsurface properties directing water, nutrient, and contaminant flows. This information, along with credible, predictive models that integrate hydrological, microbiological, and geochemical knowledge over a range of scales, is needed to forecast the sustainability of subsurface water systems and to devise ways to manage and manipulate dynamic in situ processes for beneficial outcomes. Predictive models provide the context for knowledge integration. They are the primary tools for forecasting the evolving geochemistry or microbial ecology of groundwater under various scenarios and for assessing and optimizing the potential effectiveness of proposed approaches to carbon sequestration, waste isolation, or environmental remediation. An iterative approach of modeling and experimentation can reveal powerful insights into the behavior of subsurface systems. State-of-science understanding codified in models

  6. Subsurface Investigation using 2D Resistivity and Ground Penetrating Radar at Teluk Kumbar, Penang

    Science.gov (United States)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    The objective of this study is to determine the structure and condition of the subsurface by using 2D resistivity and Ground Penetrating Radar (GPR) methods. The study was conducted at SK Sungai Batu, Teluk Kumbar, Penang Island. For 2D resistivity method, Wenner-Schlumberger array was used while for GPR, 250 MHz antenna was used at the site. The survey consists of 200m length survey line. GPR result shows that there is high intensity of EM. 2D resistivity result shows that the low resistivity region (200 Ωm to 340 Ωm) appears to be at the centre of the survey line from depth 7 m to 13 m. Meanwhile, the higher resistivity region (4000 Ωm to 6000 Ωm) may indicate the bedrock structure of the subsurface, which is the granitic rock. This region is bedrock which rested at depth 14 m and below. In conclusion, data obtained from GPR and 2D resistivity methods can be easily correlated to determine the features of the subsurface.

  7. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  8. Quantifying induced effects of subsurface renewable energy storage

    Science.gov (United States)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  9. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  10. Development of subsurface drainage database system for use in environmental management issues

    International Nuclear Information System (INIS)

    Azhar, A.H.; Rafiq, M.; Alam, M.M.

    2007-01-01

    A simple user-friendly menue-driven system for database management pertinent to the Impact of Subsurface Drainage Systems on Land and Water Conditions (ISIAW) has been developed for use in environment-management issues of the drainage areas. This database has been developed by integrating four soft wares, viz; Microsoft Excel, MS Word Acrobat and MS Access. The information, in the form of tables and figures, with respect to various drainage projects has been presented in MS Word files. The major data-sets of various subsurface drainage projects included in the ISLaW database are: i) technical aspects, ii) groundwater and soil-salinity aspects, iii) socio-technical aspects, iv) agro-economic aspects, and v) operation and maintenance aspects. The various ISlAW file can be accessed just by clicking at the Menu buttons of the database system. This database not only gives feed back on the functioning of different subsurface drainage projects, with respect to the above-mentioned aspects, but also serves as a resource-document for these data for future studies on other drainage projects. The developed database-system is useful for planners, designers and Farmers Organisations for improved operation of existing drainage projects as well as development of future ones. (author)

  11. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    DEFF Research Database (Denmark)

    Kirsch, Reinhard; Balling, Niels; Fuchs, Sven

    and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological......Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use...... on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface...

  12. Integrated geomechanical modelling at TNO for assessement of deep subsurface risks

    NARCIS (Netherlands)

    Orlic, B.; Fokker, P.; Zijl, W.; Scheffers, B.

    2001-01-01

    Public authorities, E & P and the mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is

  13. Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics

    KAUST Repository

    Missimer, Thomas M.

    2013-08-01

    The use of subsurface intake systems for seawater reverse osmosis (SWRO) desalination plants significantly improves raw water quality, reduces chemical usage and environmental impacts, decreases the carbon footprint, and reduces cost of treated water to consumers. These intakes include wells (vertical, angle, and radial type) and galleries, which can be located either on the beach or in the seabed. Subsurface intakes act both as intakes and as part of the pretreatment system by providing filtration and active biological treatment of the raw seawater. Recent investigations of the improvement in water quality made by subsurface intakes show lowering of the silt density index by 75 to 90%, removal of nearly all algae, removal of over 90% of bacteria, reduction in the concentrations of TOC and DOC, and virtual elimination of biopolymers and polysaccharides that cause organic biofouling of membranes. Economic analyses show that overall SWRO operating costs can be reduced by 5 to 30% by using subsurface intake systems. Although capital costs can be slightly to significantly higher compared to open-ocean intake system costs, a preliminary life-cycle cost analysis shows significant cost saving over operating periods of 10 to 30. years. © 2013 Elsevier B.V.

  14. Impact of environmental conditions on sub-surface storage tanks ...

    African Journals Online (AJOL)

    Cast iron made storage tanks with gasoline fluid were buried under the soil at a depth of 4 m under various environment conditions. The simulated conditions include natural rain fail, temperature and acidic, alkaline and neutral soils. A control condition of neutral sea sand as base and filling materials were also investigated.

  15. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Eun [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Lim, Dong-Hee [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 362-763 (Korea, Republic of); Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hong, Seong-Ahn [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Advanced Materials Chemistry, Korea University, Sejong-city 339-700 (Korea, Republic of); Soon, Aloysius, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Ham, Hyung Chul, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Clean Energy and Chemical Engineering, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  16. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    Science.gov (United States)

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  17. Subsurface Contaminants Focus Area annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line

  18. Complete Subsurface Elemental Composition Measurements With PING

    Science.gov (United States)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  19. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  20. Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.

    Science.gov (United States)

    Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G

    2014-07-01

    It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.

  1. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ansley, Shannon Leigh

    2002-02-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  2. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility

    International Nuclear Information System (INIS)

    Ansley, Shannon L.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist

  3. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  4. Subsurface bio-mediated reduction of higher-valent uranium and plutonium

    International Nuclear Information System (INIS)

    Reed, Donald T.; Pepper, Sarah E.; Richmann, Michael K.; Smith, Geof; Deo, Randhir; Rittmann, Bruce E.

    2007-01-01

    Bio-mediated reduction of multivalent actinide contaminants plays an important role in their fate and transport in the subsurface. To initiate the process of extending recent progress in uranium biogeochemistry to plutonium, a side-by-side comparison of the bioreduction of uranyl and plutonyl species was conducted with Shewanella alga BrY, a facultative metal-reducing bacterium that is known to enzymatically reduce uranyl. Uranyl was reduced in our system, consistent with literature reports, but we have noted a strong coupling between abiotic and biotic processes and observe that non-reductive pathways to precipitation typically exist. Additionally, a key role of biogenic Fe 2+ , which is known to reduce uranyl at low pH, is suggested. In contrast, residual organics, present in biologically active systems, reduce Pu(VI) species to Pu(V) species at near-neutral pH. The predominance of relatively weak complexes of PuO 2 + is an important difference in how the uranyl and plutonyl species interacted with S. alga. Pu(V) also led to increased toxicity towards S. alga and is also more easily reduced by microbial activity. Biogenic Fe 2+ , produced by S. alga when Fe(III) is present as an electron acceptor, also played a key role in understanding redox controls and pathways in this system. Overall, the bioreduction of plutonyl is observed under anaerobic conditions, which favors its immobilization in the subsurface. Understanding the mechanism by which redox control is established in biologically active systems is a key aspect of remediation and immobilization strategies for actinides when they are present as subsurface contaminants

  5. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad

    2016-09-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  6. A remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data

  7. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    Science.gov (United States)

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)

    Science.gov (United States)

    Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.

    2012-01-01

    The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.

  9. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  10. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    Science.gov (United States)

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  11. Geosystem services:A concept in support of sustainable development of the subsurface

    NARCIS (Netherlands)

    van Ree, C.C.D.F.; van Beukering, P.J.H.

    2016-01-01

    Because functions of the subsurface are hidden from view, its important role in society is often taken for granted. Underground use in cities and subsurface resource extraction rapidly increase. Ensuring sustainability of the subsurface role requires balancing between exploitation and conservation,

  12. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  13. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh

    2015-07-26

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  14. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2015-01-01

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  15. Subsurface oxidation for micropatterning silicon (SOMS).

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Davis, Robert C; Linford, Matthew R

    2009-02-03

    Here we present a straightforward patterning technique for silicon: subsurface oxidation for micropatterning silicon (SOMS). In this method, a stencil mask is placed above a silicon surface. Radio-frequency plasma oxidation of the substrate creates a pattern of thicker oxide in the exposed regions. Etching with HF or KOH produces very shallow or much higher aspect ratio features on silicon, respectively, where patterning is confirmed by atomic force microscopy, scanning electron microscopy, and optical microscopy. The oxidation process itself is studied under a variety of reaction conditions, including higher and lower oxygen pressures (2 and 0.5 Torr), a variety of powers (50-400 W), different times and as a function of reagent purity (99.5 or 99.994% oxygen). SOMS can be easily executed in any normal chemistry laboratory with a plasma generator. Because of its simplicity, it may have industrial viability.

  16. COST EFFECTIVE AND HIGH RESOLUTION SUBSURFACE CHARACTERIZATION USING HYDRAULIC TOMOGRAPHY

    Science.gov (United States)

    2017-08-01

    objective of this project is to provide the DoD and its remediation contractors with the HT technology for delineating the spatial distribution of...STATEMENT Approved for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hydraulic Tomography ( HT ) is a high-resolution...performance of subsurface remedial actions at environmental sites. The good technical performance and cost-effectiveness of HT have been demonstrated in

  17. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as 14 CO 2 , 14 CH 4 , HT, and CH 3 T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables

  18. Qualitative risk assessment of subsurface barriers in applications supporting retrieval of SST waste

    International Nuclear Information System (INIS)

    Treat, R.L.

    1994-04-01

    This report provides a brief, qualitative assessment of risks associated with the potential use of impermeable surface barriers installed around and beneath Hanford Site single-shell tanks (SSTs) to support the retrieval of wastes from those tanks. These risks are compared to qualitative assessment of costs and risks associated with a case in which barriers are not used. A quantitative assessment of costs and risks associated with these two cases will be prepared and documented in a companion report. The companion report will compare quantitatively the costs and risks of several retrieval options with varying parameters, such as effectiveness of retrieval, effectiveness of subsurface barriers, and the use of surface barriers. For ease of comparison of qualitative risks, a case in which impermeable subsurface barriers are used in conjunction with another technology to remove tank waste is referred, to in this report as the Barrier Case. A case in which waste removal technologies are used without employing a subsurface barrier is referred to as the No Barrier Case. The technologies associated with each case are described in the following sections

  19. Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system

    Science.gov (United States)

    Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej

    2017-08-01

    In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.

  20. A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.

    Science.gov (United States)

    Stoker, C. R.

    2003-12-01

    Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto

  1. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  2. Radionuclides can be mobilized by bacteria from the subsurface grown under aerobic as well as anaerobic conditions

    International Nuclear Information System (INIS)

    Johnsson, A.; Arlinger, J.; Pedersen, K.; Albinsson, Y.; Andlid, T.

    2005-01-01

    . Instead anaerobic supernatants of both species retain about 50% of the 241 Am(III) in solution and P. stutzeri also shows an ability to mobilize 147 Pm(III). The findings so far show that bacteria from the subsurface have the ability to mobilize radionuclides under aerobic and anaerobic conditions. This should be considered when planning a future nuclear waste repository. (authors)

  3. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  4. Enamel subsurface damage due to tooth preparation with diamonds.

    Science.gov (United States)

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  5. Imaging subsurface geology and volatile organic compound plumes

    International Nuclear Information System (INIS)

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses

  6. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    Science.gov (United States)

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing

  7. Mapping the Upper Subsurface of MARS Using Radar Polarimetry

    Science.gov (United States)

    Carter, L. M.; Rincon, R.; Berkoski, L.

    2012-01-01

    Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.

  8. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    Science.gov (United States)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  9. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  10. Mixing processes at the subsurface layer in the Amundsen Sea shelf region

    Science.gov (United States)

    Mojica, J.; Djoumna, G.; Francis, D. K.; Holland, D.

    2017-12-01

    In the Amundsen Sea shelf region, mixing processes promote an upward transport of diapycnal fluxes of heat and salt from the subsurface to the surface mixing layer. Here we estimate the diapycnal mixing rates on the Amundsen shelf from a multi-year mooring cluster and five research cruises. By applying fine-scale parameterizations, the mixing rates obtained were higher near the southern end of Pine Island glacier front and exceeded 10-2 m2s-1. The eddy diffusivity increased near the critical latitude (74o 28' S) for semi-diurnal M2 tides, which coincided with near-critical topography on the shelf. This condition favored the generation of internal waves of M2 frequency. The semi-diurnal dynamic enhanced the mixing that potentially affected the heat budget and the circulation of the modified Circumpolar Deep Water. This can be observed in the characteristics of water exchange both below the ice shelves and between the continental shelf and the ice shelf cavities. The location of the critical latitude and critical topography provided favorable conditions for the generation of internal waves. KEYWORDS: Mixing processes, diapycnal fluxes, critical latitude, Circumpolar Deep Water.

  11. Subsurface chlorophyll maxima in the north-western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Aswanikumar, V.

    of thermocline suggests that the formation of the subsurface maximum is influencEd. by the presence of seasonal thermocline. Further the subsurface chlorophyll maximum is noticed within the depth ranges of ammonium maximum and nitracline, suggesting...

  12. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    International Nuclear Information System (INIS)

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report

  13. DEMONSTRATION BULLETIN: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM - BROWN & ROOT ENVIRONMENTAL

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System (SVVS*) is an in-situ vacuum extraction/air sparging and bioremediation technology for the treatment of subsurface organic contamination in soil and groundwater. The technology, developed by Billings and Associates, Inc., and o...

  14. Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.

    2015-09-01

    Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.

  15. A new model of equilibrium subsurface hydration on Mars

    Science.gov (United States)

    Hecht, M. H.

    2011-12-01

    One of the surprises of the Odyssey mission was the discovery by the Gamma Ray Spectrometer (GRS) suite of large concentrations of water-equivalent hydrogen (WEH) in the shallow subsurface at low latitudes, consistent with 5-7% regolith water content by weight (Mitrofanov et al. Science 297, p. 78, 2002; Feldman et al. Science 297, p. 75, 2002). Water at low latitudes on Mars is generally believed to be sequestered in the form of hydrated minerals. Numerous attempts have been made to relate the global map of WEH to specific mineralogy. For example Feldman et al. (Geophys. Res. Lett., 31, L16702, 2004) associated an estimated 10% sulfate content of the soil with epsomite (51% water), hexahydrite (46% water) and kieserite (13% water). In such studies, stability maps have been created by assuming equilibration of the subsurface water vapor density with a global mean annual column mass vapor density. Here it is argued that this value significantly understates the subsurface humidity. Results from the Phoenix mission are used to suggest that the midday vapor pressure measured just above the surface is a better proxy for the saturation vapor pressure of subsurface hydrous minerals. The measured frostpoint at the Phoenix site was found to be equal to the surface temperature by night and the modeled temperature at the top of the ice table by day (Zent et al. J. Geophys. Res., 115, E00E14, 2010). It was proposed by Hecht (41st LPSC abstract #1533, 2010) that this phenomenon results from water vapor trapping at the coldest nearby surface. At night, the surface is colder than the surface of the ice table; by day it is warmer. Thus, at night, the subsurface is bounded by a fully saturated layer of cold water frost or adsorbed water at the surface, not by the dry boundary layer itself. This argument is not strongly dependent on the particular saturation vapor pressure (SVP) of ice or other subsurface material, only on the thickness of the dry layer. Specifically, the diurnal

  16. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  17. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  18. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    Science.gov (United States)

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility

  19. Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments

    Science.gov (United States)

    O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.

    2008-12-01

    Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the

  20. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  1. Field experiments with subsurface releases of oil and and dyed water

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Strom, T.

    1998-01-01

    A field experiment with a subsurface release of oil and air was carried out in June 1996 close to the Frigg Field in the North Sea area. One of the purposes of this sea trial was to increase the knowledge concerning the behaviour of the oil and gas during a subsurface blowout. This was done by releasing oil and air at 106 meters depth with a realistic gas oil ratio (GOR=67) and release velocity of the oil. In addition to the oil release, several releases with dyed water and gas (GOR=7 - 65) were performed. Important and unique data were collected during these subsurface releases. In particular, the experiments with the dyed water releases combined with air turned out to be an efficient way of obtaining field data for the behaviour of subsurface plumes. The main conclusions from analysis for the data collected are: the field methodology used to study blowout releases in the field appears to be appropriate. The use of dyed water to determine the performance of the subsurface plume proved out to be an efficient way to obtain reliable and useful data. The behaviour of the subsurface plume is very sensitive to gas flow rates. For low gas flow rates, the plume did not reach the sea surface at all due to the presence of stratification in the ambient water. Some discrepancies were found between a numerical model for subsurface releases and field results. These discrepancies are pointed out, and recommendations for possible model improvements are given. (author)

  2. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  3. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Heiser, J.; Stewart, W.

    1996-01-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification

  4. Selection of organic chemicals for subsurface transport. Subsurface transport program interaction seminar series. Summary

    International Nuclear Information System (INIS)

    Zachara, J.M.; Wobber, F.J.

    1984-11-01

    Model compounds are finding increasing use in environmental research. These individual compounds are selected as surrogates of important contaminants present in energy/defense wastes and their leachates and are used separately or as mixtures in research to define the anticipated or ''model'' environmental behavior of key waste components and to probe important physicochemical mechanisms involved in transport and fate. A seminar was held in Germantown, Maryland, April 24-25, 1984 to discuss the nature of model organic compounds being used for subsurface transport research. The seminar included participants experienced in the fields of environmental chemistry, microbiology, geohydrology, biology, and analytic chemistry. The objectives of the seminar were two-fold: (1) to review the rationale for the selection of organic compounds adopted by research groups working on the subsurface transport of organics, and (2) to evaluate the use of individual compounds to bracket the behavior of compound classes and compound constructs to approximate the behavior of complex organic mixtures

  5. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    Science.gov (United States)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  6. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility; TOPICAL

    International Nuclear Information System (INIS)

    Ansley, Shannon L.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist

  7. Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: Uncertainty analysis of the thermal-conductivity parameterization

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels

    2016-01-01

    The subsurface temperature field and the geothermal conditions in sedimentary basins are frequently examined by using numerical thermal models. For those models, detailed knowledge of rock thermal properties are paramount for a reliable parameterization of layer properties and boundary conditions...

  8. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  9. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  10. Characterization of subsurface geologic structure for potential water resources near the Villages of Moenkopi, Arizona, 2009--2010

    Science.gov (United States)

    Macy, Jamie P.

    2012-01-01

    The Hopi Tribe depends on groundwater as their primary drinking-water source in the area of the Villages of Moenkopi, in northeastern Arizona. Growing concerns of the potential for uranium contamination at the Moenkopi water supply wells from the Tuba City Landfill prompted the need for an improved understanding of subsurface geology and groundwater near Moenkopi. Information in this report provides the Hopi Tribe with new hydrogeologic information that provides a better understanding of groundwater resources near the Villages of Moenkopi. The U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation and the Hopi Tribe used the controlled source audio-frequency magnetotelluric (CSAMT) geophysical technique to characterize the subsurface near Moenkopi from December 2009 to September 2010. A total of six CSAMT profiles were surveyed to identify possible fracturing and faulting in the subsurface that provides information about the occurrence and movement of groundwater. Inversion results from the six CSAMT lines indicated that north to south trending fractures are more prevalent than east to west. CSAMT Lines A and C showed multiple areas in the Navajo Sandstone where fractures are present. Lines B, D, E, and F did not show the same fracturing as Lines A and C.

  11. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories. An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions

    International Nuclear Information System (INIS)

    Swanson, J.S.; Reed, D.T.; Cherkouk, A.; Arnold, T.; Meleshyn, A.; Patterson, Russ

    2018-01-01

    For the past several decades, the Nuclear Energy Agency Salt Club has been supporting and overseeing the characterisation of rock salt as a potential host rock for deep geological repositories. This extensive evaluation of deep geological settings is aimed at determining - through a multidisciplinary approach - whether specific sites are suitable for radioactive waste disposal. Studying the microbiology of granite, basalt, tuff, and clay formations in both Europe and the United States has been an important part of this investigation, and much has been learnt about the potential influence of microorganisms on repository performance, as well as about deep subsurface microbiology in general. Some uncertainty remains, however, around the effects of microorganisms on salt-based repository performance. Using available information on the microbial ecology of hyper-saline environments, the bioenergetics of survival under high ionic strength conditions and studies related to repository microbiology, this report summarises the potential role of microorganisms in salt-based radioactive waste repositories

  12. Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements

    Science.gov (United States)

    Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.

    1999-09-01

    MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.

  13. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    Science.gov (United States)

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  14. Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

    International Nuclear Information System (INIS)

    Ma Bin; Shen Zhengxiang; He Pengfei; Sha Fei; Wang Chunliang; Wang Bin; Ji Yiqin; Liu Huasong; Li Weihao; Wang Zhanshan

    2011-01-01

    We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

  15. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Heiser, J.; Dwyer, B.

    1995-01-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper will discuss the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration will take place at a cold site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington

  16. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  17. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    International Nuclear Information System (INIS)

    HALVERSON, NANCY

    2004-01-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  18. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  19. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert

    2017-07-27

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under environmental stress conditions.

  20. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Science.gov (United States)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  1. Subsurface Halophilic Microbial Communities in the Hyperarid Core of the Atacama Desert: An Analog for Possible Subsurface Life in Regolith on Mars

    Science.gov (United States)

    Oren, A.; Warren-Rhodes, K.; Rainey, F. T.; Ewing, S.; McKay, C. P.

    2003-12-01

    The Atacama Desert in its driest portion provides an interesting analog for possible past or present life in the Martian regolith. In the hyperarid core of the Atacama, surface soils are virtually abiotic, with no plants and "near sterile" concentrations of heterotrophic bacteria (i.e., exceedingly low densities of approximately 100 colony forming units per gram soil). The dearth of microbial life at the surface is likely maintained through extremely low water availability, low organic content and the highly oxidizing nature of the soil. In marked contrast to the surface, however, extremely halophilic microorganisms exist in salt layers 1.2-1.5m below the surface. Mineralogical analyses indicate the layers are predominantly halite (70% NaCl) but also contain sodium nitrate (5% NaNO3). Culturing and polar lipid analyses suggest the halophiles are archaeal Halobacterium-like motile rods. Microclimate monitoring at 1m indicates a soil relative humidity of 20% which is stable year-round even during decadal rain events such as that experienced in July 2002. This suggests the layers are isolated from even significant moisture influxes at the surface. Although further research is necessary, important parallels exist between this Earthly desert analog and the possible existence and detection of subsurface life on Mars despite harsh abiotic conditions at the surface.

  2. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  3. Active infrared thermography for visualizing subsurface micro voids in an epoxy molding compound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Yeol [Test and Package Center, Samsung Electronics, Asan(Korea, Republic of); Hwang, Soon Kyu; Choi, Jae Mook; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-04-15

    This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below 150 μm ~ 300 μm from the inspection surface) micro voids (150 μm ~ 300 μm in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

  4. Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants.

    Science.gov (United States)

    Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  5. Clays and Carbonates in a Groundwater-Fed 3.8 Ga Martian Lake: Insights to Subsurface Habitability on Mars

    Science.gov (United States)

    Michalski, Joseph; Niles, Paul

    2015-01-01

    On Earth, the deep biosphere remains a largely unexplored, but clearly important carbon reservoir. Results from some uplifted central peaks in craters on Mars indicate that substantial carbon was also present at depth and might have helped sustain a deep biosphere. In fact, many factors relevant to deep biosphere habitability are more favorable on Mars than on Earth (e.g. porosity of the crust, geothermal gradient). Future exploration of Mars should include landing sites where materials have been exhumed from depth by meteor impact or basins where subsurface fluids have emerged, carrying clues to subsurface habitability. One of the most astrobiologically interesting sites on Mars McLaughlin Crater, a 93 km-diameter impact crater that formed approximately 4 b.y. ago. On the floor of the crater is a stratigraphic section of subhorizontal, layered sedimentary rocks with strong spectroscopic evidence for Fe-rich clay minerals and Mg-rich carbonates, which we interpret as ancient lacustrine deposits. The fluids that formed these materials likely originated in the subsurface, based on the paucity of channels leading into the crater basin and the fact that this is one of the deepest basins on Mars - a good candidate to have experienced upwelling of subsurface fluids. Therefore, the deposits within McLaughlin crater provide insight into subsurface processes on Mars. In this presentation, we will discuss the habitability of the martian subsurface as well as the geology of McLaughlin Crater and the possibility to detect biomarkers at that site with a future landed mission.

  6. Subsurface data visualization in Virtual Reality

    Science.gov (United States)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing

  7. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  8. Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens

    Science.gov (United States)

    Topcuoglu, B. D.; Holden, J. F.

    2017-12-01

    Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.

  9. Concept of subsurface micro-sensing; Chika joho no micro sensing

    Energy Technology Data Exchange (ETDEWEB)

    Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-05-27

    This paper describes concept of subsurface micro-sensing. It is intended to achieve an epoch-making development of subsurface engineerings by developing such technologies as micro measurement of well interior, micro measurement while drilling (MWD), and micro intelligent logging. These technologies are supported by development of micro sensors and micro drilling techniques using micro machine technologies. Micronizing the subsurface sensors makes mass production of sensors with equivalent performance possible, and the production cost can be reduced largely. The sensors can be embedded or used disposably, resulting in increased mobility in measurement and higher performance. Installing multiple number of sensors makes high-accuracy measurement possible, such as array measurement. The sensors can be linked easily with photo-electronics components, realizing remote measurement at low price and high accuracy. Control in micro-drilling and MWD also become possible. Such advantages may also be expected as installing the sensors on the outer side of wells in use and monitoring subsurface information during production. Expectation on them is large as a new paradigm of underground exploration and measurement. 1 fig.

  10. Data inversion in coupled subsurface flow and geomechanics models

    International Nuclear Information System (INIS)

    Iglesias, Marco A; McLaughlin, Dennis

    2012-01-01

    We present an inverse modeling approach to estimate petrophysical and elastic properties of the subsurface. The aim is to use the fully coupled geomechanics-flow model of Girault et al (2011 Math. Models Methods Appl. Sci. 21 169–213) to jointly invert surface deformation and pressure data from wells. We use a functional-analytic framework to construct a forward operator (parameter-to-output map) that arises from the geomechanics-flow model of Girault et al. Then, we follow a deterministic approach to pose the inverse problem of finding parameter estimates from measurements of the output of the forward operator. We prove that this inverse problem is ill-posed in the sense of stability. The inverse problem is then regularized with the implementation of the Newton-conjugate gradient (CG) algorithm of Hanke (1997 Numer. Funct. Anal. Optim. 18 18–971). For a consistent application of the Newton-CG scheme, we establish the differentiability of the forward map and characterize the adjoint of its linearization. We provide assumptions under which the theory of Hanke ensures convergence and regularizing properties of the Newton-CG scheme. These properties are verified in our numerical experiments. In addition, our synthetic experiments display the capabilities of the proposed inverse approach to estimate parameters of the subsurface by means of data inversion. In particular, the added value of measurements of surface deformation in the estimation of absolute permeability is quantified with respect to the standard history matching approach of inverting production data with flow models. The proposed methodology can be potentially used to invert satellite geodetic data (e.g. InSAR and GPS) in combination with production data for optimal monitoring and characterization of the subsurface. (paper)

  11. An Assessment of Subsurface Intake Systems: Planning and Impact on Feed Water Quality for SWRO Facilities

    KAUST Repository

    Dehwah, Abdullah

    2017-01-01

    Subsurface intake systems are known to improve the feed water quality for SWRO plants. However, a little is known about the feasibility of implementation in coastal settings, the degree of water quality improvements provided by these systems

  12. Feasibility study of tank leakage mitigation using subsurface barriers

    International Nuclear Information System (INIS)

    Treat, R.L.; Peters, B.B.; Cameron, R.J.; McCormak, W.D.; Trenkler, T.; Walters, M.F.; Rouse, J.K.; McLaughlin, T.J.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulating air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report

  13. Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model

    Science.gov (United States)

    Vrettas, Michail D.; Fung, Inez Y.

    2017-06-01

    The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths of the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains ˜30% of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.

  14. Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling

    NARCIS (Netherlands)

    Bonté, D.; Wees, J.-D. van; Verweij, J.M.

    2012-01-01

    Subsurface temperature is a key parameter for geothermal energy prospection in sedimentary basins. Here, we present the results of a 3D temperature modelling using a thermal-tectonic forward modelling method, calibrated with subsurface temperature measurements in the Netherlands. The first step

  15. CATEGORICAL TOOL OF INNOVATIVE LABOR PROVIDING IN MODERN CONDITIONS

    OpenAIRE

    Chernoivanova, Anna

    2017-01-01

    The article aims to study theoretical foundations of providing innovative work in modern conditions based on systematizing categorical tools. As a result of the study we found out the innovative work features and singled it out among other related to it categories such as “creative work”, “intellectual work”, “labor management”; summarized theoretical propositions about the nature of innovation work and clarified its definition. Classification of innovative work was grounded. The features of ...

  16. Subsurface Bio-Immobilization of Plutonium: Experiment and Model Validation Study

    International Nuclear Information System (INIS)

    Reed, Donald; Rittmann, Bruce

    2006-01-01

    The goal of this project is to conduct a concurrent experimental and modeling study centered on the interactions of Shewanella algae BrY with plutonium and uranium species and phases. The most important objective of this research is to investigate the long-term stability of bioprecipitated immobilized actinide phases under changing redox conditions in biologically active systems. The long-term stability of bio-immobilized actinides (e.g. by bio-reduction) is a key criteria that defines the utility and effectiveness of a remediation/containment strategy for subsurface actinide contaminants. Plutonium, which is the focus of this project, is the key contaminant of concern at several DOE sites

  17. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    Science.gov (United States)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  18. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  19. Process-based modelling of a headwater catchment in semi-arid conditions: the influence of macropore flow

    NARCIS (Netherlands)

    Schaik, N.L.M.B.; Bronstert, A.; Jong, S.M.; Jetten, V.G.; Dam, van J.C.; Ritsema, C.J.; Schnabel, S.

    2014-01-01

    Subsurface stormflow is thought to occur mainly in humid environments with steep terrains. However, in semi-arid areas, preferential flow through macropores can also result in a significant contribution of subsurface stormflow to catchment runoff for varying catchment conditions. Most hydrological

  20. Safety analysis in subsurface repositories

    International Nuclear Information System (INIS)

    1985-06-01

    The development of mathematical models to represent the repository-geosphere-biosphere system, and the development of a structure for data acquisition, processing, and use to analyse the safety of subsurface repositories, are presented. To study the behavior of radionuclides in geosphere a laboratory to determine the hydrodynamic dispersion coefficient was constructed. (M.C.K.) [pt

  1. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    Science.gov (United States)

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer

  2. Manipulation of natural subsurface processes: Field research and validation. Interim report

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Spane, F.A.; Amonette, J.E.

    1994-11-01

    Often the only alternative for treating deep subsurface contamination is in situ manipulation of natural processes to change the mobility or form of contaminants. However, the complex interactions of natural subsurface physical, chemical, and microbial processes limit the predictability of the system-wide impact of manipulation based on current knowledge. This report is a summary of research conducted to examine the feasibility of controlling the oxidation-reduction (redox) potential of the unconfined aquifer at the Hanford Site in southeastern Washington State by introducing chemical reagents and microbial nutrients. The experiment would allow the testing of concepts and hypotheses developed from fundamental research in the US Department of Energy's (DOE's) Subsurface Science Program. Furthermore, the achievement of such control is expected to have implications for in situ remediation of dispersed aqueous contaminants in the subsurface environment at DOE sites nationwide, and particularly at the Hanford Site. This interim report summarizes initial research that was conducted between July 1990 and October 1991

  3. Quantitative study of fluoride transport during subsurface dissolution of dental enamel

    International Nuclear Information System (INIS)

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.

    1989-01-01

    Previous studies using bovine dental enamel as a model have shown that surface and subsurface dissolution of enamel may be governed by micro-environmental solution conditions. We have now investigated the demineralization phenomenon more rigorously with the primary objective of developing a method for deducing solution species concentration profiles as a function of time from appropriate experimental data. More specifically, in this report, a model-independent method is described for determination of the pore solution fluoride gradients in bovine enamel during subsurface demineralization. Microradiography was used to determine the mineral density profiles, and an electron microprobe technique to determine total fluoride (F) profiles associated with the enamel. In each case, matched sections of bovine enamel were exposed to partially saturated acetate buffers at pH = 4.5 containing 0.5 ppm F for various periods of time (from six to 24 hours). The treated enamel was found to have an intact surface layer and subsurface demineralization. The extent of the demineralization and the depths of the lesions increased with time in all cases. The data were first used to calculate (a) the total F gradients in the enamel at various times, and (b) the local uptake rate of F as a function of time and position. Then, by manipulation of the equations describing the uptake and transport of F, we calculated the pore diffusion rate of F and the micro-environmental solution F concentration in the aqueous pores as a function of time and of distance from the enamel surface. It was also possible to calculate an intrinsic F diffusion coefficient in the pores, which was about 1.0 X 10(-5) cm2/sec, in good agreement with reported values

  4. Astrobiological Field Campaign to a Volcanosedimentary Mars Analogue Methane Producing Subsurface Protected Ecosystem: Imuruk Lake (Alaska

    Directory of Open Access Journals (Sweden)

    F. Gómez

    2011-01-01

    Full Text Available Viking missions reported adverse conditions for life in Mars surface. High hydrogen signal obtained by Mars orbiters has increased the interest in subsurface prospection as putative protected Mars environment with life potential. Permafrost has attracted considerable interest from an astrobiological point of view due to the recently reported results from the Mars exploration rovers. Considerable studies have been developed on extreme ecosystems and permafrost in particular, to evaluate the possibility of life on Mars and to test specific automated life detection instruments for space missions. The biodiversity of permafrost located on the Bering Land Bridge National Preserve has been studied as an example of subsurface protected niche of astrobiological interest. Different conventional (enrichment and isolation and molecular ecology techniques (cloning, fluorescence “in situ” probe hybridization, FISH have been used for isolation and bacterial identification.

  5. Subsurface Prospecting by Planetary Drones, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  6. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    Pinkas, Malki; Lotem, Haim; Golan, Yuval; Einav, Yeheskel; Golan, Roxana; Chakotay, Elad; Haim, Avivit; Sinai, Ela; Vaknin, Moshe; Hershkovitz, Yasmin; Horowitz, Atara

    2010-01-01

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  7. Molten salt as a heat transfer fluid for heating a subsurface formation

    Science.gov (United States)

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2010-11-16

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  8. Biodegradation of crude oil in Arctic subsurface water from the Disko Bay (Greenland) is limited

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Christensen, Jan H.; Johnsen, Anders R.

    2017-01-01

    Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurfac...... for the C1-naphthalenes. To conclude, the marine subsurface microorganisms from the Disko Bay had the potential for biodegradation of n-alkanes and isoprenoids while the metabolically complex and toxic PACs and their alkylated homologs remained almost unchanged.......Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurface...... seawater from the Disko Bay (Greenland) and crude oil at three concentrations of 2.5-10 mg/L. Within 71 days, the total petroleum hydrocarbon concentration decreased only by 18 ± 18% for an initial concentration of 5 mg/L. The saturated alkanes nC13-nC30 and the isoprenoids iC18-iC21 were biodegraded...

  9. Method of solution mining subsurface orebodies to reduce restoration activities

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, G.J.

    1984-01-24

    A method of solution mining is claimed wherein a lixiviant containing both leaching and oxidizing agents is injected into the subsurface orebody. The composition of the lixiviant is changed by reducing the level of oxidizing agent to zero so that soluble species continue to be removed from the subsurface environment. This reduces the uranium level of the ground water aquifer after termination of the lixiviant injection.

  10. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  11. An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Tatiana Mishurova

    2017-03-01

    Full Text Available Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment.

  12. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    Science.gov (United States)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was

  13. Spectroscopic study of subsurface damage in high purity silica glasses under UV irradiation

    International Nuclear Information System (INIS)

    Fournier, Jessica

    2011-01-01

    Defects present in subsurface damage, supposed to be possible damage precursors, have been studied by luminescence spectroscopy. Because of the difficulty to detect micro cracks, we have selected a model cracks based on indentations. Luminescence spectra performed under a 325 nm excitation wavelength (experimental condition close to that used on the LMJ) are be compared on indentation as well as laser damages. Luminescence experiments at low temperature and on etched samples are reported in order to complete data obtained for the different observed defects. (author) [fr

  14. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  15. Need to improve SWMM's subsurface flow routing algorithm for green infrastructure modeling

    Science.gov (United States)

    SWMM can simulate various subsurface flows, including groundwater (GW) release from a subcatchment to a node, percolation out of storage units and low impact development (LID) controls, and rainfall derived inflow and infiltration (RDII) at a node. Originally, the subsurface flow...

  16. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.

    Science.gov (United States)

    Luong, Vu T; Cañas Kurz, Edgardo E; Hellriegel, Ulrich; Luu, Tran L; Hoinkis, Jan; Bundschuh, Jochen

    2018-04-15

    Arsenic contamination in groundwater is a critical issue and one that raises great concern around the world as the cause of many negative health impacts on the human body, including internal and external cancers. There are many ways to remove or immobilize arsenic, including membrane technologies, adsorption, sand filtration, ion exchange, and capacitive deionization. These exhibit many different advantages and disadvantages. Among these methods, in-situ subsurface arsenic immobilization by aeration and the subsequent removal of arsenic from the aqueous phase has shown to be very a promising, convenient technology with high treatment efficiency. In contrast to most of other As remediation technologies, in-situ subsurface immobilization offers the advantage of negligible waste production and hence has the potential of being a sustainable treatment option. This paper reviews the application of subsurface arsenic removal (SAR) technologies as well as current modeling approaches. Unlike subsurface iron removal (SIR), which has proven to be technically feasible in a variety of hydrogeochemical settings for many years, SAR is not yet an established solution since it shows vulnerability to diverse geochemical conditions such as pH, Fe:As ratio, and the presence of co-ions. In some situations, this makes it difficult to comply with the stringent guideline value for drinking water recommended by the WHO (10 μg L -1 ). In order to overcome its limitations, more theoretical and experimental studies are needed to show long-term application achievements and help the development of SAR processes into state-of-the-art technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. DOE UST interim subsurface barrier technologies workshop

    International Nuclear Information System (INIS)

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation

  19. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and the formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor

  20. Contaminant geochemistry. Interactions and transport in the subsurface environment. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Earth and Planetary Sciences

    2014-07-01

    In this updated and expanded second edition, new literature has been added on contaminant fate in the soil-subsurface environment. In particular, more data on the behavior of inorganic contaminants and on engineered nanomaterials were included, the latter comprising a group of ''emerging contaminants'' that may reach the soil and subsurface zones. New chapters are devoted to a new perspective of contaminant geochemistry, namely irreversible changes in pristine land and subsurface systems following chemical contamination. Two chapters were added on this topic, focusing attention on the impact of chemical contaminants on the matrix and properties of both liquid and solid phases of soil and subsurface domains. Contaminant impacts on irreversible changes occurring in groundwater are discussed and their irreversible changes on the porous medium solid phase are surveyed. In contrast to the geological time scale controlling natural changes of porous media liquid and solid phases, the time scale associated with chemical pollutant induced changes is far shorter and extends over a ''human lifetime scale''.

  1. Automatic WEMVA by Focusing Subsurface Offset Virtual Sources

    KAUST Repository

    Sun, Bingbing

    2017-05-26

    Macro velocity building is important for subsequent prestack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes band-limited waveform to invert the velocity in an automatic manner. Normally, inversion would be implemented by focusing the subsurface offset common image gathers(SOCIGs). We re-examine it with a different perspective and propose to view the SOCIGs and the background wavefield together as subsurface offset virtual sources(SOVS). A linear system connecting the perturbation of the position of those SOVS and velocity is derived and solved subsequently using a conjugate gradient method. Both synthetic and real dataset examples verify the correctness and effectiveness of the proposed method.

  2. The response of substance use disorder treatment providers to changes in macroeconomic conditions.

    Science.gov (United States)

    Cantor, Jonathan; Stoller, Kenneth B; Saloner, Brendan

    2017-10-01

    To study how substance use disorder (SUD) treatment providers respond to changes in economic conditions. 2000-2012 National Survey of Substance Abuse Treatment Services (N-SSATS) which contains detailed information on specialty SUD facilities in the United States. We use fixed-effects regression to study how changes in economic conditions, proxied by state unemployment rates, impact treatment setting, accepted payment forms, charity care, offered services, special programs, and use of pharmacotherapies by specialty SUD treatment providers. Secondary data analysis in the N-SSATS. Our findings suggest a one percentage point increase in the state unemployment rate is associated with a 2.5% reduction in outpatient clients by non-profit providers and a 1.8% increase in the acceptance of private insurance as a form of payment overall. We find no evidence that inpatient treatment, the provision of charity care, offered services, or special programs are impacted by changes in the state unemployment rate. However, a one percentage point increase in the state unemployment rate leads to a 2.5% increase in the probability that a provider uses pharmacotherapies to treat addiction. Deteriorating economic conditions may increase financial pressures on treatment providers, prompting them to seek new sources of revenue or to change their care delivery models. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prediction of future subsurface temperatures in Korea

    Science.gov (United States)

    Lee, Y.; Kim, S. K.; Jeong, J.; SHIN, E.

    2017-12-01

    The importance of climate change has been increasingly recognized because it has had the huge amount of impact on social, economic, and environmental aspect. For the reason, paleoclimate change has been studied intensively using different geological tools including borehole temperatures and future surface air temperatures (SATs) have been predicted for the local areas and the globe. Future subsurface temperatures can have also enormous impact on various areas and be predicted by an analytical method or a numerical simulation using measured and predicted SATs, and thermal diffusivity data of rocks. SATs have been measured at 73 meteorological observatories since 1907 in Korea and predicted at same locations up to the year of 2100. Measured SATs at the Seoul meteorological observatory increased by about 3.0 K from the year of 1907 to the present. Predicted SATs have 4 different scenarios depending on mainly CO2 concentration and national action plan on climate change in the future. The hottest scenario shows that SATs in Korea will increase by about 5.0 K from the present to the year of 2100. In addition, thermal diffusivity values have been measured on 2,903 rock samples collected from entire Korea. Data pretreatment based on autocorrelation analysis was conducted to control high frequency noise in thermal diffusivity data. Finally, future subsurface temperatures in Korea were predicted up to the year of 2100 by a FEM simulation code (COMSOL Multiphysics) using measured and predicted SATs, and thermal diffusivity data in Korea. At Seoul, the results of predictions show that subsurface temperatures will increase by about 5.4 K, 3.0 K, 1.5 K, and 0.2 K from the present to 2050 and then by about 7.9 K, 4.8 K, 2.5 K, and 0.5 K to 2100 at the depths of 10 m, 50 m, 100 m, and 200 m, respectively. We are now proceeding numerical simulations for subsurface temperature predictions for 73 locations in Korea.

  4. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Blohm, M.; Hatch, W.E.; Hoekstra, P.; Porter, D.W.

    1994-01-01

    Effective site characterization requires that many relevant geologic, hydrogeologic and biological properties of the subsurface be evaluated. A parameter that often directly influences chemical processes, ground water flow, contaminant transport, and biological activities is the lateral and vertical distribution of clays. The objective of the research an development under this contract is to improve non-invasive methods for detecting clay lenses. The percentage of clays in soils influences most physical properties that have an impact on environmental restoration and waste management. For example, the percentage of clays determine hydraulic permeability and the rate of contaminant migration, absorption of radioactive elements, and interaction with organic compounds. Therefore, improvements in non-invasive mapping of clays in the subsurface will result in better: characterization of contaminated sites, prediction of pathways of contaminant migration, assessment of risk of contaminants to public health if contaminants reach water supplies, design of remedial action and evaluation of alternative action

  5. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  6. Design and maintenance of subsurface gravel wetlands.

    Science.gov (United States)

    2015-02-01

    This report summarizes the University of New Hampshire Stormwater Center (UNHSC) evaluation of : a review of Subsurface Gravel Wetlands design and specifications used by the New Hampshire : Department of Transportation (NHDOT or Department). : Subsur...

  7. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  8. Health-related quality of life and working conditions among nursing providers.

    Science.gov (United States)

    Silva, Amanda Aparecida; Souza, José Maria Pacheco de; Borges, Flávio Notarnicola da Silva; Fischer, Frida Marina

    2010-08-01

    To evaluate working conditions associated with health-related quality of life (HRQL) among nursing providers. Cross-sectional study conducted in a university hospital in the city of São Paulo, Southeastern Brazil, during 2004-2005. The study sample comprised 696 registered nurses, nurse technicians and nurse assistants, predominantly females (87.8%), who worked day and/or night shifts. Data on sociodemographic information, working and living conditions, lifestyles, and health symptoms were collected using self-administered questionnaires. The following questionnaires were also used: Job Stress Scale, Effort-Reward Imbalance (ERI) and Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36). Ordinal logistic regression analysis using proportional odds model was performed to evaluate each dimension of the SF-36. Around 22% of the sample was found to be have high strain and 8% showed an effort-reward imbalance at work. The dimensions with the lowest mean scores in the SF-36 were vitality, bodily pain and mental health. High-strain job, effort-reward imbalance (ERI>1.01), and being a registered nurse were independently associated with low scores on the role emotional dimension. Those dimensions associated to mental health were the ones most affected by psychosocial factors at work. Effort-reward imbalance was more associated with health than high-strain (high demand and low control). The study results suggest that the joint analysis of psychosocial factors at work such as effort-reward imbalance and demand-control can provide more insight to the discussion of professional roles, working conditions and HRQL of nursing providers.

  9. Influence of Mg2+ on CaCO3 precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Victoria [Univ. of Illinois, Urbana-Champaign, IL (United States); Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhang, Changyong [Exxon Mobil Upstream Research Company, Houston, TX (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hess, Nancy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fouke, Bruce W. [Univ. of Illinois, Urbana-Champaign, IL (United States); Valocchi, Albert J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-04-04

    Calcium carbonate (CaCO3) geochemical reactions exert a fundamental control on the evolution of porosity and permeability in shallow-to-deep subsurface siliciclastic and limestone rock reservoirs. As a result, these carbonate water-rock interactions play a critically important role in research on groundwater remediation, geological carbon sequestration, and hydrocarbon exploration. A study was undertaken to determine the effects of Mg2+ concentration on CaCO3 crystal morphology, precipitation rate, and porosity occlusion under flow and mixing conditions similar to those in subsurface aquifers.

  10. Use of batch and column methodologies to assess utility waste leaching and subsurface chemical attenuation

    International Nuclear Information System (INIS)

    Zachara, J.M.; Streile, G.P.

    1991-05-01

    Waste leaching and chemical attenuation involve geochemical reactions between immobile solid surfaces in the waste or in other porous media and dissolved solutes in the mobile fluid phase. Because the geochemical reactions occur along with water flow, the question often arises whether waste leaching and chemical attenuation are best studied under static or dynamic conditions. To answer this question, the scientific literature was reviewed to identify how static (batch) and dynamic (column) approaches have been applied to obtain data on waste leaching and chemical attenuation and the types of information each technique has provided. This review made it possible to both (1) assess the specific merits of the batch and column experimental techniques and (2) develop an integrated research strategy for employing these techniques to quantify leaching and chemical attenuation processes under conditions relevant to the field. This review led to the conclusion that batch systems are best suited to systematically establishing the specific geochemical reactions involved in leaching and attenuation, obtaining thermodynamic and kinetic constants, and identifying the manifestation of these reactions in wastes or natural subsurface materials. 184 refs., 5 figs., 4 tabs

  11. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  12. Interactive directional subsurface scattering and transport of emergent light

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Frisvad, Jeppe Revall; Mosegaard, Jesper

    2016-01-01

    need to store elements of irradiance from specific directions. To include changes in subsurface scattering due to changes in the direction of the incident light, we instead sample incident radiance and store scattered radiosity. This enables us to accommodate not only the common distance....... To build our maps of scattered radiosity, we progressively render the model from different directions using an importance sampling pattern based on the optical properties of the material. We obtain interactive frame rates, our subsurface scattering results are close to ground truth, and our technique...

  13. Dual-gas tracers for subsurface characterization and NAPL detection

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Peurrung, L.M.; Mendoza, D.P.; Pillay, G.

    1994-11-01

    Effective design of in situ remediation technologies often requires an understanding of the mass transfer limitations that control the removal of contaminants from the soil. In addition, the presence of nonaqueous phase liquids (NAPLs) in soils will affect the ultimate success or failure of remediation processes. Knowing the location of NAPLs within the subsurface is critical to designing the most effective remediation approach. This work focuses on demonstrating that gas tracers can detect the location of the NAPLs in the subsurface and elucidating the mass transfer limitations associated with the removal of contaminants from soils

  14. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  15. Study of 'inadvertent human intrusion or rare natural event scenarios' for sub-surface disposal of radioactive waste

    International Nuclear Information System (INIS)

    Nakatani, Takayoshi; Ishitoya, Kimihide; Funabashi, Hideyuki; Sugaya, Toshikatsu; Sone, Tomoyuki; Shimada, Hidemitsu; Nakai, Kunihiro

    2010-03-01

    Japan Atomic Energy Agency (JAEA) is making preparations for the sub-surface disposal of radioactive wastes, in an integrated fashion according to the properties of the waste material regardless of the generators or waste sources. In this study, 'Inadvertent Human Intrusion or Rare Natural Event Scenarios' of 'Three Types scenarios' was considered according to the standard of the Atomic Energy Society of Japan (AESJ) on the sub-surface disposal system that was based on 'Basic Policy for Safety Regulation Concerning Land Disposal of Low-Level Radioactive Waste (Interim Report)' by Nuclear Safety Commission of Japan (NSC). Selection of the assessed scenarios, development of the assessment tool and preliminary exposure dose assessment for general public were conducted. Among the assessed scenarios, the exposure dose of 'well water drinking scenario' was the highest under the very conservative assessment condition. This scenario assumed that the groundwater in Excavation Disturbed Zone (EDZ) was directly used as drinking water without any dilution. Although this was very conservative condition and the result exceeded 10 mSv/y, it stayed under the upper limit of standard dose value for 'Inadvertent Human Intrusion or Rare Natural Event Scenarios' (10 - 100 mSv/y). (author)

  16. Development of sub-surface drainage data base system for use in water logging and salinity managements issues

    International Nuclear Information System (INIS)

    Azhar, A.H.; Alam, M.M; Rafiq, M.

    2005-01-01

    A simple user-friendly menu-driven database management system pertinent to the Impact of Subsurface Drainage Systems on land and Water Conditions (ISLaW) has been developed for use in water logging and salinity management issues of drainage areas. This database has been developed by integrating four software viz; Microsoft Excel, MS Word, Acrobat and MS Access. The information in the form of tables and figures with respect to various drainage projects has been presented in MS Word files. The major data sets of various subsurface drainage projects included in the ISLaW database are: i) technical aspects, ii) groundwater and soil salinity aspects, iii) socio-technical aspects, iv) agro-economic aspects, and v) operation and maintenance aspects. The various ISLaW files can be accessed just by clicking at the Menu buttons of the database system. This database not only gives feedback on the functioning of different subsurface drainage projects with respect to above mentioned various aspects, but also serves as a resource document for these data for future studies at other drainage projects. The developed database system is useful for planners, designers and Farmers' Organizations for improved operation of existing as well as development of future drainage projects. (author)

  17. Confocal examination of subsurface cracking in ceramic materials.

    Science.gov (United States)

    Etman, Maged K

    2009-10-01

    The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.

  18. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  19. Applications of electrical resistance tomography to subsurface environmental restoration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.L. [Lawrence Livermore National Lab., CA (United States); Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  20. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo

    2015-09-13

    In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

  1. Sub-surface defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Huda Abdullah; Abdul Razak Hamzah; Wan Saffiey Wan Abdullah; Ibrahim Ahmad; Vavilov, Vladimir

    2009-04-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 k Watt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with thermo fit TM Pro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔT max and the time of its appearance, τ max (ΔT). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔT max ), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defect area at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (author)

  2. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    Science.gov (United States)

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C

    2014-07-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all

  3. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    Science.gov (United States)

    Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,

    2016-01-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  4. A neural network model for non invasive subsurface stratigraphic identification

    International Nuclear Information System (INIS)

    Sullivan, John M. Jr.; Ludwig, Reinhold; Lai Qiang

    2000-01-01

    Ground-Penetrating Radar (GRP) is a powerful tool to examine the stratigraphy below ground surface for remote sensing. Increasingly GPR has also found applications in microwave NDE as an interrogation tool to assess dielectric layers. Unfortunately, GPR data is characterized by a high degree of uncertainty and natural physical ambiguity. Robust decomposition routines are sparse for this application. We have developed a hierarchical set of neural network modules which split the task of layer profiling into consecutive stages. Successful GPR profiling of the subsurface stratigraphy is of key importance for many remote sensing applications including microwave NDE. Neural network modules were designed to accomplish the two main processing goals of recognizing the 'subsurface pattern' followed by the identification of the depths of the subsurface layers like permafrost, groundwater table, and bedrock. We used an adaptive transform technique to transform raw GPR data into a small feature vector containing the most representative and discriminative features of the signal. This information formed the input for the neural network processing units. This strategy reduced the number of required training samples for the neural network by orders of magnitude. The entire processing system was trained using the adaptive transformed feature vector inputs and tested with real measured GPR data. The successful results of this system establishes the feasibility the feasibility of delineating subsurface layering nondestructively

  5. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    , either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi

  6. Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics

    Science.gov (United States)

    Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte

    2016-04-01

    adjusted in able to measure in the medieval center of Bad Frankenhausen. This required special equipment and configuration due to the densely built-up area, the differing ground conditions and the varying topography. The analysis of the seismic sections revealed structures associated with the continuing subrosion of the Permian deposits. The reflection patterns indicate heterogeneous near-surface geology of lateral and vertical variations in forms of discontinuous reflectors, small-scale fractures and faults. The fractures and faults also serve as additional pathways for the circulating water and the deposits are subsiding along these features, resulting in the formation of depression structures in the near-subsurface. Diffractions in the unmigrated sections indicate voids in the subsurface that develop due to the longtime subrosion processes. Besides these structures, variations of the traveltime, absorption and scattering of the seismic waves induced by the subrosion processes are visible.

  7. Subsurface structures of buried features in the lunar Procellarum region

    Science.gov (United States)

    Wang, Wenrui; Heki, Kosuke

    2017-07-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.

  8. Characterization of DNA-repair potential in deep subsurface bacteria challenged by UV light, hydrogen peroxide, and gamma radiation

    OpenAIRE

    Arrage, Andrew Anthony

    1991-01-01

    Subsurface bacterial isolates obtained through the DOE Subsurface Science Program were tested for resistance to UV light, gamma radiation and H202. Some deep subsurface bacteria were resistant to UV light, demonstrating â ¥1.0% survival at fluences which resulted in a 0.0001% survival level of E. coli B. The percentage of UV resistant aerobic subsurface bacteria and surface soil bacteria were similar; 30.8% and 25.8% respectively. All of the microaerophilic subsurface isolates ...

  9. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  10. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands

    NARCIS (Netherlands)

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L.M.; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J.M.; van der Stoel, Almer E.C.

    2014-01-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to

  11. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    NARCIS (Netherlands)

    Griffioen, J.; Wensem, van J.; Oomes, J.L.; Barends, F.; Breunese, J.; Bruining, H.; Olsthoorn, T.; Stams, A.J.M.; Stoel, van der A.E.

    2014-01-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to

  12. Prediction of Geological Subsurfaces Based on Gaussian Random Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Petter

    1997-12-31

    During the sixties, random functions became practical tools for predicting ore reserves with associated precision measures in the mining industry. This was the start of the geostatistical methods called kriging. These methods are used, for example, in petroleum exploration. This thesis reviews the possibilities for using Gaussian random functions in modelling of geological subsurfaces. It develops methods for including many sources of information and observations for precise prediction of the depth of geological subsurfaces. The simple properties of Gaussian distributions make it possible to calculate optimal predictors in the mean square sense. This is done in a discussion of kriging predictors. These predictors are then extended to deal with several subsurfaces simultaneously. It is shown how additional velocity observations can be used to improve predictions. The use of gradient data and even higher order derivatives are also considered and gradient data are used in an example. 130 refs., 44 figs., 12 tabs.

  13. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK

    Energy Technology Data Exchange (ETDEWEB)

    Kuras, Oliver, E-mail: oku@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Wilkinson, Paul B.; Meldrum, Philip I.; Oxby, Lucy S. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Uhlemann, Sebastian [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); ETH-Swiss Federal Institute of Technology, Institute of Geophysics, Sonneggstr. 5, 8092 Zurich (Switzerland); Chambers, Jonathan E. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Binley, Andrew [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Graham, James [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Smith, Nicholas T. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); School of Earth, Atmospheric and Environmental Sciences, Williamson Building, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Atherton, Nick [Sellafield Ltd, Albion Square, Swingpump Lane, Whitehaven CA28 7NE (United Kingdom)

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. - Graphical abstract: 3D fractional resistivity change (resistivity change Δρ divided by baseline resistivity ρ{sub 0}) image showing results of Stage 1 silo liquor simulant injection. The black line delineates the preferential flow path; green cylinders show regions of historic contamination found in sediment cores from ERT boreholes. - Highlights: • 4D geoelectrical monitoring at Sellafield detected and tracked simulated silo leaks. • ERT revealed likely pathways of silo liquor simulant flow in the subsurface. • The method can reduce uncertainty in subsurface process models at nuclear sites. • Has been applied in this form at a UK nuclear licensed site for the first time • Study demonstrates value of 4D geophysics for nuclear decommissioning.

  14. CATEGORICAL TOOL OF INNOVATIVE LABOR PROVIDING IN MODERN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Anna Chernoivanova

    2017-03-01

    Full Text Available The article aims to study theoretical foundations of providing innovative work in modern conditions based on systematizing categorical tools. As a result of the study we found out the innovative work features and singled it out among other related to it categories such as “creative work”, “intellectual work”, “labor management”; summarized theoretical propositions about the nature of innovation work and clarified its definition. Classification of innovative work was grounded. The features of the innovative work were defined. Innovative work was singled out among other related to it types of work. Keywords: innovative work, the types of innovative work, creative work.

  15. Subsurface Geotechnical Parameters Report

    International Nuclear Information System (INIS)

    Rigby, D.; Mrugala, M.; Shideler, G.; Davidsavor, T.; Leem, J.; Buesch, D.; Sun, Y.; Potyondy, D.; Christianson, M.

    2003-01-01

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  16. Subsurface Geotechnical Parameters Report

    Energy Technology Data Exchange (ETDEWEB)

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  17. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon

    Science.gov (United States)

    Fa, Wenzhe

    2013-12-01

    Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.

  18. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Pollutant removal in subsurface wastewater infiltration systems with/without intermittent ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... wastewater infiltration systems (SWISs) with and without intermittent aeration, ...

  19. Imaging the Antarctic Ice Sheet Subsurface with the HF GPR TAPIR

    Science.gov (United States)

    Le Gall, A.; Ciarletti, V.; Berthelier, J.; Reineix, A.; Ney, R.; Bonaimé, S.; Corbel, C.

    2006-12-01

    An HF impulse polarimetric Ground Penetrating Radar (GPR) operating at very low frequencies (ranging from ~2 to 8MHz) has been developed in the frame of the NetLander mission. This instrument, named TAPIR (Terrestrial And Planetary Investigation by Radar), was designed to probe the Martian subsurface down to kilometric depth and search for potential water reservoirs. Although the NetLander mission was cancelled in 2003, the interest on the exploration of Martian subsurface was recently enhanced by the promising observations of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board of the ESA Mars Express orbiter. In particular, MARSIS detected the base of the North Polar Layered Deposits, penetrating up to ~1.8km the ice-rich upper layer of the underground. Such results suggest that TAPIR, which operates in the same frequency range as MARSIS and can performed a higher number of coherent integrations, is able to reach deeper structures. Yet, in contrast with classical GPRs, TAPIR can not move onto the surface and thus won't provide 2D or 3D scan of the subsurface. To retrieve, in spite of this NetLander restraint, the 3D distribution of the reflecting facets of the underground, the instrument was equipped with two electrical dipoles and a rotating magnetic sensor. These antennas allow to derive, from the measured values of 5 components of the wave field, the direction of arrival of the reflected waves hence the inclination of the buried reflectors. The first validation of this innovative concept was carried out during the RANETA (RAdar of NEtlander in Terre Adélie) campaign organized by the Institute Paul-Emile Victor in January-February 2004. This campaign took place on the Antarctic ice sheet close to the French-Italian Cap Prudhomme station. 8 soundings of the ice shelf were performed on various sites corresponding to different altitudes above the sea level (ranging from ~285m to ~1100m). We shall provide a detailed description of the

  20. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  2. Subsurface Ocean Tides in Enceladus and Other Icy Moons

    Science.gov (United States)

    Beuthe, M.

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  3. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    Science.gov (United States)

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  4. A Mobile Acoustic Subsurface Sensing (MASS) system for rapid roadway assessment.

    Science.gov (United States)

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J Gregory; Wang, Ming L

    2013-05-08

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

  5. A Mobile Acoustic Subsurface Sensing (MASS System for Rapid Roadway Assessment

    Directory of Open Access Journals (Sweden)

    Ming L. Wang

    2013-05-01

    Full Text Available Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

  6. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    Science.gov (United States)

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Size-dependent δ18O and δ13C variations in a planktic foraminiferal Neogloboquadrina pachyderma (sinistral) record from Chukchi Plateau: implications for (sub)surface water conditions in the western Arctic Ocean over the past 50 ka

    Science.gov (United States)

    Wang, R.; Xiao, W.; Mei, J.; Polyak, L.

    2017-12-01

    Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.

  8. Studies of the subsurface effects of earthquakes

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    As part of the National Terminal Waste Storage Program, the Savannah River Laboratory is conducting a series of studies on the subsurface effects of earthquakes. This report summarizes three subcontracted studies. (1) Earthquake damage to underground facilities: the purpose of this study was to document damage and nondamage caused by earthquakes to tunnels and shallow underground openings; to mines and other deep openings; and to wells, shafts, and other vertical facilities. (2) Earthquake related displacement fields near underground facilities: the study included an analysis of block motion, an analysis of the dependence of displacement on the orientation and distance of joints from the earthquake source, and displacement related to distance and depth near a causative fault as a result of various shapes, depths, and senses of movement on the causative fault. (3) Numerical simulation of earthquake effects on tunnels for generic nuclear waste repositories: the objective of this study was to use numerical modeling to determine under what conditions seismic waves might cause instability of an underground opening or create fracturing that would increase the permeability of the rock mass

  9. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...

  10. Working Smarter Not Harder - Developing a Virtual Subsurface Data Framework for U.S. Energy R&D

    Science.gov (United States)

    Rose, K.; Baker, D.; Bauer, J.; Dehlin, M.; Jones, T. J.; Rowan, C.

    2017-12-01

    The data revolution has resulted in a proliferation of resources that span beyond commercial and social networking domains. Research, scientific, and engineering data resources, including subsurface characterization, modeling, and analytical datasets, are increasingly available through online portals, warehouses, and systems. Data for subsurface systems is still challenging to access, discontinuous, and varies in resolution. However, with the proliferation of online data there are significant opportunities to advance access and knowledge of subsurface systems. The Energy Data eXchange (EDX) is an online platform designed to address research data needs by improving access to energy R&D products through advanced search capabilities. In addition, EDX hosts private, virtualized computational workspaces in support of multi-organizational R&D. These collaborative workspaces allow teams to share working data resources and connect to a growing number of analytical tools to support research efforts. One recent application, a team digital data notebook tool, called DataBook, was introduced within EDX workspaces to allow teams to capture contextual and structured data resources. Starting with DOE's subsurface R&D community, the EDX team has been developing DataBook to support scientists and engineers working on subsurface energy research, allowing them to contribute and curate both structured and unstructured data and knowledge about subsurface systems. These resources span petrophysical, geologic, engineering, geophysical, interpretations, models, and analyses associated with carbon storage, water, oil, gas, geothermal, induced seismicity and other subsurface systems to support the development of a virtual subsurface data framework. The integration of EDX and DataBook allows for these systems to leverage each other's best features, such as the ability to interact with other systems (Earthcube, OpenEI.net, NGDS, etc.) and leverage custom machine learning algorithms and

  11. Physico-chemical and Mineralogical Characterisation of Subsurface ...

    African Journals Online (AJOL)

    Studies were carried out on subsurface sediments obtained around the Gaborone landfill area Botswana, in order to characterize their mineralogy and physico-chemistry, appraise any contaminant inputs from the landfill and assess their ability to attenuate contaminants from the landfill. Physico-chemical properties ...

  12. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert; De Zelicourt, Axel; Saad, Maged

    2017-01-01

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under

  13. Bioremediation potential of toxics by manipulation of deep terrestrial subsurface ecosystems

    International Nuclear Information System (INIS)

    Phelps, T.J.

    1990-01-01

    Mixed physiological types of bacteria in consortia recovered from subsurface contaminated sediments degrade mixed organic wastes containing carbon-rich (benzene, xylene, toluene) and halogenated hydrocarbon substrates (chlorobenzene, trichloroethylene, dichloroethylenes, vinyl chloride) in column bioreactors when provided with oxygen and methane and/or propane substrates. In expanded bed bioreactors degradation proceeds to 99% completion for several organic and chlorocarbon contaminants (60% for tetrachloroethylene) to carbon dioxide on repeated cycles in 21 days with little loss of volatiles in the control bioreactor except for a 70% loss of vinyl chloride in the control. Biodegradation is most efficient when the microbial consortia is maintained in a suboptimal nutritional state which can be monitored by ratios of endogenous storage lipid (poly beta-hydroxy alkanoic acid, PHA) to total phospholipid ester-linked fatty acids (PLFA). Under the best conditions the efficiency of biodegradation was 50-65 moles substrate (propane or propane + methane)/mole of TEC degraded. The microbial communities showed a rich diversity of microbes based on PLFA biomarkers. The effects of adding methane and/or propane in inducing specific subsets of the microbial community can readily be detected in the PLFA biomarker. Despite the presence of carbon rich substrates (benzene, toluene, xylene) in the mixed wastes, no evidence of plugging of interstitial spaces by exopolysaccharide was detected

  14. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    Science.gov (United States)

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Impact disruption and recovery of the deep subsurface biosphere

    Science.gov (United States)

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  16. Subsurface information for risk-sensitive urban spatial planning in Dhaka Metropolitan City, Bangladesh

    Science.gov (United States)

    Günther, Andreas; Aziz Patwary, Mohammad Abdul; Bahls, Rebecca; Asaduzzaman, Atm; Ludwig, Rüdiger; Ashraful Kamal, Mohammad; Nahar Faruqa, Nurun; Jabeen, Sarwat

    2016-04-01

    Dhaka Metropolitan City (including Dhaka and five adjacent municipal areas) is one of the fastest developing urban regions in the world. Densely build-up areas in the developed metropolitan area of Dhaka City are subject to extensive restructuring as common six- or lower storied buildings are replaced by higher and heavier constructions. Additional stories are built on existing houses, frequently exceeding the allowable bearing pressure on the subsoil as supported by the foundations. In turn, newly developing city areas are projected in marshy terrains modified by extensive, largely unengineered landfills. In most areas, these terrains bear unfavorable building ground conditions within 30 meters. Within a collaborative technical cooperation project between Bangladesh and Germany, BGR supports GSB in the provision of geo-information for the Capital Development Authority (RAJUK). For general urban planning, RAJUK successively develops a detailed area plan (DAP) at scale 1 : 50000 for the whole Dhaka Metropolitan City area (approx. 1700 km2). Geo-information have not been considered in the present DAP. Within the project, geospatial information in form of a geomorphic map, a digital terrain model and a 3-D subsurface model covering the whole city area have been generated at a scale of 1 : 50000. An extensive engineering geological data base consisting of more than 2200 borehole data with associated Standard Penetration Testing (SPT) and lab data has been compiled. With the field testing (SPT) and engineering geological lab data, the 3-D subsurface model can be parameterized to derive important spatial subsurface information for urban planning like bearing capacity evaluations for different foundation designs or soil liquefaction potential assessments for specific earthquake scenarios. In conjunction with inundation potential evaluations for different flooding scenarios, comprehensive building ground suitability information can be derived to support risk

  17. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.

  18. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    International Nuclear Information System (INIS)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F.

    1995-01-01

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites

  19. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK.

    Science.gov (United States)

    Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  20. Electrical resistivity determination of subsurface layers, subsoil ...

    African Journals Online (AJOL)

    Electrical resistivity determination of subsurface layers, subsoil competence and soil corrosivity at and engineering site location in Akungba-Akoko, ... The study concluded that the characteristics of the earth materials in the site would be favourable to normal engineering structures/materials that may be located on it.

  1. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Green, Stefan; Luo, Jian; Kelly, Shelly D.; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Boonchayanant, Benjaporn; Loeffler, Frank E.; Jardine, Philip M.; Criddle, Craig

    2010-01-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H 2 S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 μM.

  2. Subsurface barrier feasibility evaluation: External review meeting report

    International Nuclear Information System (INIS)

    Lindberg, S.L.; Rouse, J.K.

    1994-12-01

    The Westinghouse Hanford Company -- Tank Waste Remediation System Division (TWRS) Program is evaluating subsurface barrier technologies for potential use in supporting remediation of the Hanford Tank Farms for the US Department of Energy, Richland Operations Office (DOE-RL). An External Review Team (ERT) was assembled to perform an independent technical review of the work performed to-date supporting the evaluation process. A set of draft documents was forwarded to the ERT for their review, and a meeting was held August 10 through 12, 1994, to facilitate comments and resolutions. This document summarizes the meeting, the comments provided by the ERT, and the ongoing work to resolve the comments and support a pending decision by The US Department of Energy, Richland Operations Office; the Washington State Department of Ecology; and the US Environmental Protection Agency

  3. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    Directory of Open Access Journals (Sweden)

    William Orsi

    Full Text Available The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC, nitrate, sulfide, and dissolved inorganic carbon (DIC. These correlations are supported by terminal restriction length polymorphism (TRFLP analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  4. Organic acid derivatization techniques applied to petroleum hydrocarbon transformations in subsurface environments

    International Nuclear Information System (INIS)

    Barcelona, M.J.; Lu, J.; Tomczak, D.M.

    1995-01-01

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way, a mass balance between fuel constituents and end products may be approached to monitor cleanup progress. Application of advanced organic acid metabolite derivatization techniques to several know sites of organic compounds and fuel mixture contamination provide valuable information on the pathways and progress of microbial transformation. Good correlation between observed metabolites and transformation pathways of aromatic fuel constituents were observed at the sites

  5. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    Science.gov (United States)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage

  6. Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    Science.gov (United States)

    Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.

    2017-12-01

    The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic

  7. Surface finish and subsurface damage in polycrystalline optical materials

    Science.gov (United States)

    Shafrir, Shai Negev

    We measure and describe surface microstructure and subsurface damage (SSD) induced by microgrinding of hard metals and hard ceramics used in optical applications. We examine grinding of ceramic materials with bonded abrasives, and, specifically, deterministic microgrinding (DMG). DMG, at fixed nominal infeed rate and with bound diamond abrasive tools, is the preferred technique for optical fabrication of ceramic materials. In DMG material removal is by microcracking. DMG provides cost effective high manufacturing rates, while attaining higher strength and performance, i.e., low level of subsurface damage (SSD). A wide range of heterogeneous materials of interest to the optics industry were studied in this work. These materials include: A binderless tungsten carbide, nonmagnetic Ni-based tungsten carbides, magnetic Co-based tungsten carbides, and, in addition, other hard optical ceramics, such as aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (Al2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). These materials are all commercially available. We demonstrate that spots taken with magnetorheological finishing (MRF) platforms can be used for estimating SSD depth induced by the grinding process. Surface morphology was characterized using various microscopy techniques, such as: contact interferometer, noncontact white light interferometer, light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The evolution of surface roughness with the amount of material removed by the MRF process, as measured within the spot deepest point of penetration, can be divided into two stages. In the first stage the induced damaged layer and associated SSD from microgrinding are removed, reaching a low surface roughness value. In the second stage we observe interaction between the MRF process and the material's microstructure as MRF exposes the subsurface without introducing new damage. Line scans taken parallel to the MR

  8. SHARAD Detection of Subsurface Interfaces in Southern-Central Utopia Planitia

    Science.gov (United States)

    Stuurman, C. M.; Brothers, T. C.; Holt, J. W.; Kerrigan, M.; Osinski, G. R.

    2013-12-01

    Characterising the extent and distribution of subsurface ice in the middle-latitudes of Mars is an ongoing endeavour, with applications to both paleoclimate and future missions. Utopia Planitia has been posited as an ice-rich area by climate models, Gamma-Ray Spectrometer results suggestive of high hydrogen concentrations, and high densities of periglacial and glacial surface morphologies. The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter is a radar sounder which transmits a 15-25 MHz chirped pulse. The data is recorded in the time delay and can be used to map and characterize Mars' subsurface. In the Utopia Planitia region, SHARAD data can potentially constrain modeling efforts, help locate potential water resources for future exploration, and give volumetric constraints on features that were previously only observed in two dimensions. Thus far, most mid-latitudinal reflectors using the SHARAD instrument have been associated with isolated surface morphologies, such as lobate debris aprons, lineated valley fill, and reflectors beneath volcanic flows. Recently, SHARAD radargrams over pedestal craters in the mid-latitudes have also yielded results suggestive of water-ice composition, and a massive, radar-transparent layer has been found in Arcadia Planitia. Overall, however, there has been a dearth of SHARAD evidence suggestive of the massive subsurface ice sheets predicted by climate models. This project analyzed several hundred SHARAD radargrams throughout Utopia Planitia. Subsurface reflectors were detected by visually inspecting radar data and comparing to simulated radargrams that predict off nadir surface echoes that can be confused with subsurface reflections. Regions of high amplitude subsurface reflections that do not appear in the simulated radargrams were thus interpreted as reflectors represenative of geologic contacts. SHARAD analysis revealed several reflectors in the Southern-Central Utopia Planitia region. These reflectors were

  9. Development of energy-saving technologies providing comfortable microclimate conditions for mining

    OpenAIRE

    Б. П. Казаков; Л. Ю. Левин; А. В. Шалимов; А. В. Зайцев

    2017-01-01

    The paper contains analysis of natural and technogenic factors influencing properties of mine atmosphere, defining level of mining safety and probability of emergencies. Main trends in development of energy-saving technologies providing comfortable microclimate conditions are highlighted. A complex of methods and mathematical models has been developed to carry out aerologic and thermophysical calculations. Main ways of improvement for existing calculation methods of stationary and non-station...

  10. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  11. A "mental models" approach to the communication of subsurface hydrology and hazards

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain S.; Pahl, Sabine; Stokes, Alison

    2016-05-01

    Communicating information about geological and hydrological hazards relies on appropriately worded communications targeted at the needs of the audience. But what are these needs, and how does the geoscientist discern them? This paper adopts a psychological "mental models" approach to assess the public perception of the geological subsurface, presenting the results of attitudinal studies and surveys in three communities in the south-west of England. The findings reveal important preconceptions and misconceptions regarding the impact of hydrological systems and hazards on the geological subsurface, notably in terms of the persistent conceptualisation of underground rivers and the inferred relations between flooding and human activity. The study demonstrates how such mental models can provide geoscientists with empirical, detailed and generalised data of perceptions surrounding an issue, as well reveal unexpected outliers in perception that they may not have considered relevant, but which nevertheless may locally influence communication. Using this approach, geoscientists can develop information messages that more directly engage local concerns and create open engagement pathways based on dialogue, which in turn allow both geoscience "experts" and local "non-experts" to come together and understand each other more effectively.

  12. Frozen Soil Barrier. Subsurface Contaminants Focus Area. OST Reference No. 51

    International Nuclear Information System (INIS)

    1999-01-01

    Problem: Hazardous and radioactive materials have historically been disposed of at the surface during operations at Department of Energy facilities. These contaminants have entered the subsurface, contaminating soils and groundwater resources. Remediation of these groundwater plumes using the baseline technology of pump and treat is expensive and takes a long time to complete. Containment of these groundwater plumes can be alternative or an addition to the remediation activities. Standard containment technologies include slurry walls, sheet piling, and grouting. These are permanent structures that once installed are difficult to remove. How It Works: Frozen Soil Barrier technology provides a containment alternative, with the key difference being that the barrier can be easily removed after a period of time, such as after the remediation or removal of the source is completed. Frozen Soil Barrier technology can be used to isolate and control the migration of underground radioactive or other hazardous contaminants subject to transport by groundwater flow. Frozen Soil Barrier technology consists of a series of subsurface heat transfer devices, known as thermoprobes, which are installed around a contaminant source and function to freeze the soil pore water. The barrier can easily be maintained in place until remediation or removal of the contaminants is complete, at which time the barrier is allowed to thaw.

  13. Patterns in coupled water and energy cycle: Modeling, synthesis with observations, and assessing the subsurface-landsurface interactions

    Science.gov (United States)

    Rahman, A.; Kollet, S. J.; Sulis, M.

    2013-12-01

    In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics

  14. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    International Nuclear Information System (INIS)

    David Watson

    2005-01-01

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  15. VISUALIZATION OF REGISTERED SUBSURFACE ANATOMY

    DEFF Research Database (Denmark)

    2010-01-01

    A system and method for visualization of subsurface anatomy includes obtaining a first image from a first camera and a second image from a second camera or a second channel of the first camera, where the first and second images contain shared anatomical structures. The second camera and the secon....... A visual interface displays the registered visualization of the first and second images. The system and method are particularly useful for imaging during minimally invasive surgery, such as robotic surgery....

  16. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement

    Science.gov (United States)

    Vugrinovich, R.

    1989-01-01

    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  17. Subsurface structures in the northern Mare Imbrium measured by Chang'E-3 and SELENE

    Science.gov (United States)

    Kumamoto, A.; Ishiyama, K.; Feng, J.

    2016-12-01

    Subsurface structures in the northern Mare Imbrium measured by Chang'E-3 and SELENE have been compared. In Chang'E-3 mission, subsurface radar sounding at (19.51W, 44.12N) was performed by Lunar Penetrating Radar (LPR) onboard the Yutu rover. The LPR was pulse radar operated at two frequencies: 60 MHz and 500 MHz. During its operation period from December 2013 to January 2014, the LPR observed subsurface echoes along the rover's track with total distance of 114 m. From the observation in 60 MHz, the subsurface echoes from buried regolith layers at depths of 35, 50, 140, 240, and 360 m were reported (Xiao et al., 2015). In SELENE mission, global subsurface radar sounding of the moon was performed by Lunar Radar Sounder (LRS) onboard the SELENE (Kaguya) spacecraft from the polar orbit with an altitude of 100 km. The LRS was chirp radar operated in a frequency range from 4-6 MHz. So the range resolution of LRS was 75 m in vacuum. During operation period from December 2007 to September 2008, subsurface echoes from all areas of the Moon was observed with a lateral resolution of 76 m. From the global observation, the subsurface echoes from the buried regolith layers in the neraside maria including Mare Imbrium at depths of several hundred meters were reported (Ono et al., 2009).In the present study, we focus on SELENE/LRS data obtained at (19.50W, 44.12N) which is the nearest to the Chang'E-3 landing site. While clear and large-scale subsurface reflectors, as found in Ono et al. (2009), are not found in it, we can identify some echo components from the depths of 140 ( 2000 ns), 240 ( 4000 ns), and 360 m ( 6000 ns). Further analyses utilizing high-resolution data from Chang'E-3/LPR and large-scale data from SELENE/LRS, we will be able to determine the thickness and large-scale structures of the buried regolith layers found by the both radars, and discuss their formation processes in volcanic history of Mare Imbrium.

  18. Demonstration of the Tilting of the Gas-Water Interface under Hydrodynamic Conditions.

    Science.gov (United States)

    Gretener, P. E.

    1979-01-01

    Describes the construction of an apparatus to demonstrate the tilting of an oil-water, gas-water, or gas-oil interface when the subsurface reservoir is under hydrodynamic conditions (i.e., when conditions of lateral flow exist). The model can be constructed of readily-available materials. (RE)

  19. STOMP, Subsurface Transport Over Multiple Phases, theory guide

    International Nuclear Information System (INIS)

    White, M.D.; Oostrom, M.

    1996-10-01

    This guide describes the simulator's governing equations, constitutive functions and numerical solution algorithms of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing multiple phase subsurface flow and transport. The STOMP simulator's fundamental purpose is to produce numerical predictions of thermal and hydrologic flow and transport phenomena in variably saturated subsurface environments, which are contaminated with volatile or nonvolatile organic compounds. Auxiliary applications include numerical predictions of solute transport processes including radioactive chain decay processes. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and nonhysteretic relative permeability, saturation-capillary pressure constitutive functions. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. The STOMP simulator requires an ANSI FORTRAN 77 compiler to generate an executable code. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. One-dimensional problems of moderate complexity can be solved on conventional desktop computers, but multidimensional problems involving complex flow and transport phenomena typically require the power and memory capabilities of workstation or mainframe type computer systems

  20. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand.

    Science.gov (United States)

    Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa

    2009-04-15

    Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.

  1. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields.

    Science.gov (United States)

    Norrman, Jenny; Volchko, Yevheniya; Hooimeijer, Fransje; Maring, Linda; Kain, Jaan-Henrik; Bardos, Paul; Broekx, Steven; Beames, Alistair; Rosén, Lars

    2016-09-01

    This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 3D seismic imaging of the subsurface for underground construction and drilling

    International Nuclear Information System (INIS)

    Juhlin, Christopher

    2014-01-01

    3D seismic imaging of underground structure has been carried out in various parts of the world for various purposes. Examples shown below were introduced in the presentation. - CO 2 storage in Ketzin, Germany; - Mine planning at the Millennium Uranium Deposit in Canada; - Planned Forsmark spent nuclear fuel repository in Sweden; - Exploring the Scandinavian Mountain Belt by Deep Drilling: the COSC drilling project in Sweden. The author explained that seismic methods provide the highest resolution images (5-10 m) of deeper (1-5 km) sub-surfaces in the sedimentary environment, but further improvement is required in crystalline rock environments, and the integration of geology, geophysics, and drilling will provide an optimal interpretation. (author)

  3. Microbial communities in the deep subsurface

    Science.gov (United States)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  4. Regulatory issues and assumptions associated with polymers for subsurface barriers surrounding buried waste

    International Nuclear Information System (INIS)

    Heiser, J.; Siskind, B.

    1993-01-01

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Subsurface barriers will improve remediation performance by removing pathways for contaminant transport due to groundwater movement, meteorological water infiltration, vapor- and gas-phase transport, transpiration, etc. Subsurface barriers may be used to open-quotes directclose quotes contaminant movement to collection sumps/lysimeters in cases of unexpected remediation failures or transport mechanisms, to contain leakage from underground storage tanks, and to restrict in-situ soil cleanup operation and chemicals. Brookhaven National Laboratory is currently investigating advanced polymer materials for subsurface barriers. This report addresses the regulatory aspects of using of non-traditional polymer materials as well as soil-bentonite or cement-bentonite mixtures for such barriers. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of subsurface barriers to the Environmental Protection Agency (EPA) as a method for achieving waste site performance improvement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used. Since many of EPA's concerns regarding subsurface barriers focus on the chemicals used during installation of these barriers the authors discuss the results of a search of the Federal Register and the Code of Federal Regulations for references in Titles 29 and 40 pertaining to key chemicals likely to be utilized in installing non-traditional barrier materials. The use of polymeric materials in the construction industry has been accomplished with full compliance with the applicable health, safety, and environmental regulations

  5. Developing a trend prediction model of subsurface damage for fixed-abrasive grinding of optics by cup wheels.

    Science.gov (United States)

    Dong, Zhichao; Cheng, Haobo

    2016-11-10

    Fixed-abrasive grinding by cup wheels plays an important role in the production of precision optics. During cup wheel grinding, we strive for a large removal rate while maintaining fine integrity on the surface and subsurface layers (academically recognized as surface roughness and subsurface damage, respectively). This study develops a theoretical model used to predict the trend of subsurface damage of optics (with respect to various grinding parameters) in fixed-abrasive grinding by cup wheels. It is derived from the maximum undeformed chip thickness model, and it successfully correlates the pivotal parameters of cup wheel grinding with the subsurface damage depth. The efficiency of this model is then demonstrated by a set of experiments performed on a cup wheel grinding machine. In these experiments, the characteristics of subsurface damage are inspected by a wedge-polishing plus microscopic inspection method, revealing that the subsurface damage induced in cup wheel grinding is composed of craterlike morphologies and slender cracks, with depth ranging from ∼6.2 to ∼13.2  μm under the specified grinding parameters. With the help of the proposed model, an optimized grinding strategy is suggested for realizing fine subsurface integrity as well as high removal rate, which can alleviate the workload of subsequent lapping and polishing.

  6. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  7. Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Becker, B.H.

    2002-01-01

    A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA

  8. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China.

    Directory of Open Access Journals (Sweden)

    Jian Duan

    Full Text Available Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface

  9. The hidden side of cities : Methods for governance, planning and design for optimal use of subsurface space with ATES

    NARCIS (Netherlands)

    Bloemendal, J.M.

    2018-01-01

    Aquifer Thermal Energy Storage (ATES) systems provide sustainable space heating and cooling for buildings. In future, many buildings in moderate climates rely on ATES for their space heating and cooling.
    However, the subsurface space available for heat storage is limited and, there is a

  10. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    Science.gov (United States)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  11. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    Science.gov (United States)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  12. Modelling of real area of contact between tool and workpiece in metal forming processes including the influence of subsurface deformation

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A. F.; Bay, Niels Oluf

    2016-01-01

    New equipment for testing asperity deformation at various normal loads and subsurface elongations is presented. Resulting real contact area ratios increase heavily with increasing subsurface expansion due to lowered yield pressure on the asperities when imposing subsurface normal stress parallel ...... for estimating friction in the numerical modelling of metal forming processes.......New equipment for testing asperity deformation at various normal loads and subsurface elongations is presented. Resulting real contact area ratios increase heavily with increasing subsurface expansion due to lowered yield pressure on the asperities when imposing subsurface normal stress parallel...... to the surface. Finite element modelling supports the presentation and contributes by extrapolation of results to complete the mapping of contact area as function of normal pressure and one-directional subsurface strain parallel to the surface. Improved modelling of the real contact area is the basis...

  13. Feasibility study of tank leakage mitigation using subsurface barriers. Revision 1

    International Nuclear Information System (INIS)

    Treat, R.L.; Peters, B.B.; Cameron, R.J.

    1995-01-01

    This document reflects the evaluations and analyses performed in response to Tri-Party Agreement Milestone M-45-07A - open-quotes Complete Evaluation of Subsurface Barrier Feasibilityclose quotes (September 1994). In addition, this feasibility study was revised reflecting ongoing work supporting a pending decision by the DOE Richland Operations Office, the Washington State Department of Ecology, and the US Environmental Protection Agency regarding further development of subsurface barrier options for SSTs and whether to proceed with demonstration plans at the Hanford Site (Tri-Party Agreement Milestone M-45-07B). Analyses of 14 integrated SST tank farm remediation alternatives were conducted in response to the three stated objectives of Tri-Party Agreement Milestone M-45-07A. The alternatives include eight with subsurface barriers and six without. Technologies used in the alternatives include three types of tank waste retrieval, seven types of subsurface barriers, a method of stabilizing the void space of emptied tanks, two types of in situ soil flushing, one type of surface barrier, and a clean-closure method. A no-action alternative and a surface-barrier-only alternative were included as nonviable alternatives for comparison. All other alternatives were designed to result in closure of SST tank farms as landfills or in clean-closure. Revision 1 incorporates additional analyses of worker safety, large leak scenarios, and sensitivity to the leach rates of risk controlling constituents. The additional analyses were conducted to support TPA Milestone M-45-07B

  14. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris; De Vet, W. W. J. M.; Verberk, Jasper Q J C; Amy, Gary L.; Van Dijk, Hans C.

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a

  15. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  16. Role of Climatic Variability on Fate and Transport of LNAPL Pollutants in Subsurface

    Science.gov (United States)

    Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Climatic variability affects groundwater resources both directly through replenishment by surface recharge and indirectly via changes in groundwater extraction patterns. Remediation of polluted groundwater due to the release of mono-aromatic hydrocarbons such as light non-aqueous phase liquids (LNAPL) is of particular concern under changing climatic conditions because of their higher water solubility and wide coverage in the subsurface. Thus, the aim of this study was to investigate the impact of these shallow groundwater extremes on biodegradation and transport of toluene, the selected LNAPL, in subsurface using a series of practical and numerical experiments. An air tight three-dimensional sand tank setup (60cm-L×30cm-W×60cm-D) embedded with horizontal and vertical layers of sampling ports was fabricated using a glass sheet of thickness 7 mm. Clean sand having an average grain size of 0.5-1.0 mm was packed homogeneously for creating an unconfined aquifer. Pure phase of toluene was released from the top surface to create a pool of the LNAPL around the groundwater table which was maintained at 35 cm from the tank bottom. Initially, a constant water flux was allowed to flow to maintain a pore water velocity of 1.2 m/day in lateral direction to mimic a base groundwater flow regime. Subsequently, faster and slow groundwater velocity regimes were developed by changing the water flux through the saturated zone keeping the water table location at the same level. The observed breakthrough curves at different ports showed that lateral and transverse transport of the LNAPL was more prominent as compared to its vertical movement. The increased vertical movement of the LNAPL along with an enhanced dissolution rate under the faster groundwater flow condition shows the crucial role of mechanical dispersion and the shear force acting on the water-LNAPL interface. The rate of degradation was found high for the case of faster pore water velocities due to dependency of the

  17. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected

  18. Biostratigraphy of the Garau Formation in Naft well subsurface stratigraphic section, South Kermanshah

    Directory of Open Access Journals (Sweden)

    Y., Ezampanah,

    2012-01-01

    Full Text Available In order to biostratigraphy of the Garau Formation in the centeral Lurestan, one subsurface section (Naft well in Naft anticline, south Kermanshah was selected and studied. The drilled thickness of the Garau Formation in this section is up to 485 meters and lithologically composed of argillaceous limestones and dark gray marls. In this research 1150 thin sections of subsurface Naft well section were studied. In biostratigraphic studies of the Garau Formation in study section 61 species belong to 17 genera of planktonic foraminifera were recognized and 9 biozones were identified. Based on distribution of fossils and biozones identificated, the age of the Garau Formation in drilled part of the subsurface Naft well section is Early Aptian to Early Cenomanian.

  19. Plants as bio-indicators of subsurface conditions: impact of groundwater level on BTEX concentrations in trees.

    Science.gov (United States)

    Wilson, Jordan; Bartz, Rachel; Limmer, Matt; Burken, Joel

    2013-01-01

    Numerous studies have demonstrated trees' ability to extract and translocate moderately hydrophobic contaminants, and sampling trees for compounds such as BTEX can help delineate plumes in the field. However, when BTEX is detected in the groundwater, detection in nearby trees is not as reliable an indicator of subsurface contamination as other compounds such as chlorinated solvents. Aerobic rhizospheric and bulk soil degradation is a potential explanation for the observed variability of BTEX in trees as compared to groundwater concentrations. The goal of this study was to determine the effect of groundwater level on BTEX concentrations in tree tissue. The central hypothesis was increased vadose zone thickness promotes biodegradation of BTEX leading to lower BTEX concentrations in overlying trees. Storage methods for tree core samples were also investigated as a possible reason for tree cores revealing lower than expected BTEX levels in some sampling efforts. The water level hypothesis was supported in a greenhouse study, where water table level was found to significantly affect tree BTEX concentrations, indicating that the influx of oxygen coupled with the presence of the tree facilitates aerobic biodegradation of BTEX in the vadose zone.

  20. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    Science.gov (United States)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  1. Broadband Counter-Wound Spiral Antenna for Subsurface Radar Applications

    National Research Council Canada - National Science Library

    Yong, Lim

    2003-01-01

    Subsurface radar also known as ground-penetrating radar is increasingly being used for the detection and location of buried objects such as mines and structure that are found within the upper regions...

  2. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  3. Wall Painting Investigation by Means of Non-invasive Terahertz Time-Domain Imaging (THz-TDI): Inspection of Subsurface Structures Buried in Historical Plasters

    Science.gov (United States)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2016-02-01

    Characterization of subsurface features of wall paintings is important in conservation and technical art history as well as in building archaeology and architecture fields. In this study, an area of the apsidal wall painting of Nebbelunde Church (Rødby, Denmark) has been investigated by means of terahertz time-domain imaging (THz-TDI). Subsurface structures have been detected at different depths inside the lime-based plaster of the wall painting until approximately 1 cm from the surface. The surface morphology of the buried structures has been 3D imaged in detail, providing a substantial contribution in their characterization.

  4. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    Science.gov (United States)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques

  5. Snowmelt-induced subsurface and overland flows in a hillslope in Noname Watershed, Laramie River Basin, Wyoming

    Science.gov (United States)

    Rogers, T.; Ohara, N.

    2015-12-01

    Only few field observations have been implemented using surface and sub-surface trenches to investigate snowmelt-induced hillslope runoffs in mountainous regions. Hillslope trenches may be one of the most direct ways to measure subsurface and overland flow during winter and spring seasons. In July 2014, a 10 meter long trench was constructed with hand tools through glacial till on a south facing hillslope in the Noname Watershed, Medicine Bow National Forest, Wyoming, where heavy equipment and motorized vehicles were restricted. This trench measures subsurface and overland flow for a 610 square meters catchment which has an average slope of 25 degrees. This water-collecting trench is equipped with 4 soil-moisture and temperature sensors to detect the presence of unsaturated flow. Field observations from the trench showed that diurnal oscillation of snowmelt seemed to control the overland flow between the snow and soil surface. The water inputs to the hillslope, including rainfall, evaporation, and snowmelt rates, were estimated from the energy balance computations using the observed meteorological data at the site. Using the water input data, the lateral flow component through the deeper soil or weathered bedrock layer was also quantified by the mass balance in the catchment. This study provides one of key field activities for Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) project.

  6. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  7. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  8. Retrieval of Parameters for Three-Layer Media with Nonsmooth Interfaces for Subsurface Remote Sensing

    Directory of Open Access Journals (Sweden)

    Yuriy Goykhman

    2012-01-01

    Full Text Available A solution to the inverse problem for a three-layer medium with nonsmooth boundaries, representing a large class of natural subsurface structures, is developed in this paper using simulated radar data. The retrieval of the layered medium parameters is accomplished as a sequential nonlinear optimization starting from the top layer and progressively characterizing the layers below. The optimization process is achieved by an iterative technique built around the solution of the forward scattering problem. The forward scattering process is formulated by using the extended boundary condition method (EBCM and constructing reflection and transmission matrices for each interface. These matrices are then combined into the generalized scattering matrix for the entire system, from which radar scattering coefficients are then computed. To be efficiently utilized in the inverse problem, the forward scattering model is simulated over a wide range of unknowns to obtain a complete set of subspace-based equivalent closed-form models that relate radar backscattering coefficients to the sought-for parameters including dielectric constants of each layer and separation of the layers. The inversion algorithm is implemented as a modified conjugate-gradient-based nonlinear optimization. It is shown that this technique results in accurate retrieval of surface and subsurface parameters, even in the presence of noise.

  9. Model for the prediction of subsurface strata movement due to underground mining

    Science.gov (United States)

    Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan

    2017-12-01

    The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the

  10. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  11. Sub-Surface Oil Monitoring Cruise (GU1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives were to evaluate ability of acoustic echosounder measurements to detect and localize a sub-surface plume of oil or related hydrocarbons released from the...

  12. Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?

    Science.gov (United States)

    Colwell, F. S.; Thurber, A. R.

    2016-12-01

    Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.

  13. Study of the input-side subsurface reorganization vs. the outside current density in hydrogen permeation under constant cell voltage through iron membrane according to RHC concept

    International Nuclear Information System (INIS)

    DePetris-Wery, M.; Wery, S.; Catonne, J.C.

    2010-01-01

    In this work, hydrogen permeation tests were performed on pure iron membrane in 1 M sodium hydroxide at 298 K, subjected to hydrogen charging under 'quasi-potentiostatic' polarization conditions, i.e. constant cell voltage applied between the cathode (membrane entry side) and the anode (counter electrode), which is a typical situation during metal electrodeposition or cathodic degreasing on steel in metal finishing industry. Two consecutive charging-discharging runs were carried out. Prolonged hydrogen charging under quasi-potentiostatic polarization was investigated and the change of cathodic current density (i in ) chg and electrode potential (E in ) chg as well as permeation current density (i out ) chg were analysed. Three singularities were underlined for each experiment: (i) the curve (i in ) chg = f((E in ) chg ), illustrating the inverse of hydrogen charge resistance R HC -1 evolution which was negative, equal to zero and then became positive; (ii) quasi-periodic instabilities during the R HC -1 zero period, probably induced by atomic reorganizing due to subsurface hydrogen insertion in the input-side; (iii) the same ratio (i out ) chg /(i in ) chg = -6 x 10 -5 . During discharge runs, both sides of the membrane were polarized at the same potential (E in ) dischg = (E out ) dischg = -0.285 V/Hg/HgO/NaOH 1 M and the current densities, (i in ) dischg and (i out ) dischg which corresponded to the desorption rates of hydrogen, were measured. The following correlation (i out ) dischg vs.(i in ) dischg = -6 x 10 -5 was confirmed leading us to introduce the R HC -1 mirror concept to observe the input-side subsurface reorganization by the survey of its potential vs. outside current density during the hydrogen charge. Thus, this R HC -1 mirror concept showed: (i) a non-stop and irreversible progress in the subsurface reorganization during the two permeations; (ii) a probable structural evolution to a stable subsurface structure, the only condition of a real steady

  14. Examining the information content of time-lapse crosshole GPR data collected under different infiltration conditions to estimate unsaturated soil hydraulic properties

    DEFF Research Database (Denmark)

    Scholer, M.; Irving, J.; Zibar, Majken Caroline Looms

    2013-01-01

    Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either...... by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data...... of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten–Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural...

  15. Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2006-12-29

    The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processes and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.

  16. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  17. Estimating Impacts of Agricultural Subsurface Drainage on Evapotranspiration Using the Landsat Imagery-Based METRIC Model

    Directory of Open Access Journals (Sweden)

    Kul Khand

    2017-11-01

    Full Text Available Agricultural subsurface drainage changes the field hydrology and potentially the amount of water available to the crop by altering the flow path and the rate and timing of water removal. Evapotranspiration (ET is normally among the largest components of the field water budget, and the changes in ET from the introduction of subsurface drainage are likely to have a greater influence on the overall water yield (surface runoff plus subsurface drainage from subsurface drained (TD fields compared to fields without subsurface drainage (UD. To test this hypothesis, we examined the impact of subsurface drainage on ET at two sites located in the Upper Midwest (North Dakota-Site 1 and South Dakota-Site 2 using the Landsat imagery-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration model. Site 1 was planted with corn (Zea mays L. and soybean (Glycine max L. during the 2009 and 2010 growing seasons, respectively. Site 2 was planted with corn for the 2013 growing season. During the corn growing seasons (2009 and 2013, differences between the total ET from TD and UD fields were less than 5 mm. For the soybean year (2010, ET from the UD field was 10% (53 mm greater than that from the TD field. During the peak ET period from June to September for all study years, ET differences from TD and UD fields were within 15 mm (<3%. Overall, differences between daily ET from TD and UD fields were not statistically significant (p > 0.05 and showed no consistent relationship.

  18. A simulation study of moisture movement in proposed barriers for the subsurface disposal area, INEL

    International Nuclear Information System (INIS)

    Magnuson, S.O.

    1993-09-01

    This document presents a simulation study that was conducted to investigate moisture movement within two engineered barriers, which are proposed for use in eventual closure of the Subsurface Disposal Area. The results of the study are intended to guide the design and implementation of field test plots that will be constructed to test the barrier designs. Discussed are the sensitivity of barrier performance to changes in the conceptual model, which was used to simulate the barriers, and to changes in hydrologic parameters, which were used to describe the materials composing the barriers. In addition, estimates are presented concerning the time required for the moisture profile within the barriers to come into equilibrium with the meteorological conditions at the surface. In addition, the performance of the barriers under conditions of supplemental precipitation and ponding is presented

  19. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    International Nuclear Information System (INIS)

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven David; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  20. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi)

    Science.gov (United States)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.

    2018-01-01

    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  1. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    A catastrophic wildfire in the foothills of the Rocky Mountains near Boulder, Colorado provided a unique opportunity to investigate soil conditions immediately after a wildfire and before alteration by rainfall. Measurements of near-surface (θ; and matric suction, ψ), rainfall, and wind velocity were started 8 days after the wildfire began. These measurements established that hyper-dryconditions (θ 3 cm-3; ψ > ~ 3 x 105 cm) existed and provided an in-situ retention curve for these conditions. These conditions exacerbate the effects of water repellency (natural and fire-induced) and limit the effectiveness of capillarity and gravity driven infiltration into fire-affected soils. The important consequence is that given hyper-dryconditions, the critical rewetting process before the first rain is restricted to the diffusion–adsorption of water-vapor. This process typically has a time scale of days to weeks (especially when the hydrologic effects of the ash layer are included) that is longer than the typical time scale (minutes to hours) of some rainstorms, such that under hyper-dryconditions essentially no rain infiltrates. The existence of hyper-dryconditions provides insight into why, frequently during the first rain storm after a wildfire, nearly all rainfall becomes runoff causing extremefloods and debris flows.

  2. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-01-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method

  3. Bioaccumulation of radionuclides and metals by microorganisms: Potential role in the separation of inorganic contaminants and for the in situ treatment of the subsurface

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Wildung, R.E.

    1993-01-01

    Radionuclide, metal and organic contaminants are present in relatively inaccessible subsurface environments at many U.S Department of Energy (DOE) sites. Subsurface contamination is of concern to DOE because the migration of these contaminants into relatively deep subsurface zones indicates that they exist in a mobile chemical form and thus could potentially enter domestic groundwater supplies. Currently, economic approaches to stabilize or remediate these deep contaminated zones are limited, because these systems are not well characterized and there is a lack of understanding of how geochemical, microbial, and hydrological processes interact to influence contaminant behavior. Microorganisms offer a potential means for radionuclide and metal immobilization or mobilization for subsequent surface treatment. Bioaccumulation is a specific microbial sequestering mechanism wherein mobile radionuclides and metals become associated with the microbial biomass by both intra- and extracellular sequestering ligands. Since most of the microorganism in the subsurface are associated with the stationary strata, bioaccumulation of mobile radionuclides and metals would initially result in a decrease in the transport of inorganic contaminants. How long the inorganic contaminants would remain immobilized, the selectivity of the bioaccumulation process for specific inorganic contaminants, the mechanism involved, and how the geochemistry and growth conditions of the subsurface environment influence bioaccumulation are not currently known. This presentation focuses on the microbial process of immobilizing radionuclides and metals and using this process to reduce inorganic contaminant migration at DOE sites. Background research with near-surface microorganisms will be presented to demonstrate this process and show its potential to reduce inorganic contaminant migration. Future research needs and approaches in this relatively new research area will also be discussed

  4. Method and apparatus for producing a porosity log of a subsurface formation corrected for detector standoff

    International Nuclear Information System (INIS)

    Allen, L.S.; Mills, W.R.; Stromswold, D.C.

    1991-01-01

    This paper describes a method and apparatus for producing a porosity log of a substance formation corrected for detector stand of. It includes: lowering a logging tool having a neutron source and a neutron detector into the borehole, irradiating the subsurface formation with neutrons from the neutron source as the logging tool is traversed along the subsurface formation, recording die-away signals representing the die-away of nuclear radiation in the subsurface formation as detected by the neutron detector, producing intensity signals representing the variations in intensity of the die-away signals, producing a model of the die-away of nuclear radiation in the subsurface formation having terms varying exponentially in response to borehole, formation and background effects on the die-away of nuclear radiation as detected by the detector

  5. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim

    2014-01-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  6. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-02-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  7. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.; Hellgardt, K.

    2014-01-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS

  8. Method for retrospective estimation of absorbed dose in subsurface tissues when conducting works connected with the Chernobyl' NPP accident effect elimination (using experimental and calculated data)

    International Nuclear Information System (INIS)

    Panova, V.I.; Shaks, A.I.

    1992-01-01

    The method for retrospective estimation of doses in subsurface tissues at early time periods from the accident begin in the case, when gamma radiation dose rate values (radiation field cartogram) and a person irradiation conditions on contaminated territory (professional route) are known, is discussed

  9. Murt user's guide: A hybrid Lagrangian-Eulerian finite element model of multiple-pore-region solute transport through subsurface media

    International Nuclear Information System (INIS)

    Gwo, J.P.; Jardine, P.M.; Yeh, G.T.; Wilson, G.V.

    1995-04-01

    Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoretical background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices

  10. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    2000-05-05

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  11. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    Science.gov (United States)

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluid chemistry included N2, NH4+ (5–112 μM), NO2− (27–48 μM), and NO3− (17–72 μM). In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier transform infrared (FTIR) microscopy and none-contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via

  12. CsI(Tl) with photodiodes for identifying subsurface radionuclide contamination

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Meisner, J.E.; Nicaise, W.F.

    1994-10-01

    At the US Department of Energy's Hanford Site near Richland, Washington, underground radioactive contamination exists as the result of leaks, spills, and intentional disposal of waste products from plutonium-production operations. Characterizing these contaminants in preparation for environmental remediation is a major effort now in progress. In this paper, a cylindrical (15 x 61 mm) CsI(Tl) scintillation detector with two side-mounted photodiodes has been developed to collect spectral gamma-ray data in subsurface contaminated formations at the U.S. Department of Energy's Hanford Site. It operates inside small-diameter, thick-wall steel pipes pushed into the ground to depths up to 20 m by a cone penetrometer. The detector provides a rugged, efficient, magnetic-field-insensitive means for identifying gamma-ray-emitting contaminants (mainly 137 Cs and 60 Co). Mounting two 3 x 30-mm photodiodes end-to-end on a flat area along the detector's side provides efficient light collection over the length of the detector

  13. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    Directory of Open Access Journals (Sweden)

    Friedrich Wolfgang Gerbl

    2014-05-01

    Full Text Available Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ, a slightly radioactive thermal mineral spring with a temperature of 43.6 - 47oC near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40oC, respectively were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH42SO4 as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA, nitrite oxidoreductase subunits A and B (nxrA and nxrB, nitrate reductase (narG, nitrite reductase (nirS, nitric oxide reductases (cnorB and qnorB, nitrous oxide reductase (nosZ. Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD was not detected. However, a geological origin of NH4+ in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  14. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    Science.gov (United States)

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  15. Horizontal subsurface flow constructed wetlands for mitigation of ...

    African Journals Online (AJOL)

    The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered for this purpose. In the present work, SSF CWs were submitted to continuous ...

  16. The significance of the subsurface in urban renewal

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Maring, Linda

    2018-01-01

    The subsurface is a technical space, the “engine room of the city,” that incorporates the vital functions of water and energy supply, communication systems, sewers and drainage. Natural systems too – crucial for stable, dry, cool and nature inclusive cities – are also largely dependent on the

  17. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  18. CRED Subsurface Temperature Recorder (STR); NWHI, MID; Long: -177.40181, Lat: 28.19361 (WGS84); Sensor Depth: 1.00m; Data Range: 20030729-20041001.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  19. CRED Subsurface Temperature Recorder (STR); AMSM, OFU; Long: -169.62662, Lat: -14.18175 (WGS84); Sensor Depth: 9.80m; Data Range: 20040207-20060226.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  20. CRED Subsurface Temperature Recorder (STR); PRIA, WAK; Long: 166.60452, Lat: 19.30868 (WGS84); Sensor Depth: 1.52m; Data Range: 20070505-20090325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  1. CRED Subsurface Temperature Recorder (STR); CNMI, FDP; Long: 144.90023, Lat: 20.53725 (WGS84); Sensor Depth: 31.70m; Data Range: 20070603-20090428.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  2. CRED Subsurface Temperature Recorder (STR); NWHI, PHR; Long: -175.81595, Lat: 27.85396 (WGS84); Sensor Depth: 7.62m; Data Range: 20060914-20080922.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  3. CRED Subsurface Temperature Recorder (STR); MHI, MAI; Long: -156.42031, Lat: 20.59198 (WGS84); Sensor Depth: 14.90m; Data Range: 20060805-20071009.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  4. CRED Subsurface Temperature Recorder (STR); NWHI, NEC; Long: -164.69775, Lat: 23.57152 (WGS84); Sensor Depth: 17.07m; Data Range: 20050414-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  5. CRED Subsurface Temperature Recorder (STR); MHI, LAN; Long: -156.83705, Lat: 20.87186 (WGS84); Sensor Depth: 13.11m; Data Range: 20081019-20101021.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  6. CRED Subsurface Temperature Recorder (STR); PRIA, JAR; Long: -159.99113, Lat: -00.36327 (WGS84); Sensor Depth: 9.75m; Data Range: 20060321-20080327.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  7. CRED Subsurface Temperature Recorder (STR); CNMI, SAI; Long: 145.78947, Lat: 15.17485 (WGS84); Sensor Depth: 19.20m; Data Range: 20080815-20090419.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  8. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.26134, Lat: 23.76895 (WGS84); Sensor Depth: 4.57m; Data Range: 20080915-20100908.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  9. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.27510, Lat: 23.85623 (WGS84); Sensor Depth: 7.62m; Data Range: 20080915-20091009.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  10. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.17967, Lat: 23.63883 (WGS84); Sensor Depth: 11.28m; Data Range: 20060906-20070930.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  11. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.16683, Lat: 23.73815 (WGS84); Sensor Depth: 2.01m; Data Range: 20040918-20060905.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  12. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.26132, Lat: 23.76897 (WGS84); Sensor Depth: 3.96m; Data Range: 20040917-20060905.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  13. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.26197, Lat: 23.76887 (WGS84); Sensor Depth: 10.06m; Data Range: 20080915-20090614.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  14. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.27163, Lat: 23.85675 (WGS84); Sensor Depth: 7.92m; Data Range: 20061112-20070924.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  15. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.16685, Lat: 23.73815 (WGS84); Sensor Depth: 2.13m; Data Range: 20060906-20081008.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  16. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.27506, Lat: 23.85620 (WGS84); Sensor Depth: 0.30m; Data Range: 20091009-20100907.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  17. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.16747, Lat: 23.73812 (WGS84); Sensor Depth: 3.05m; Data Range: 20081008-20100908.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  18. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.27185, Lat: 23.85682 (WGS84); Sensor Depth: 7.90m; Data Range: 20040918-20051009.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  19. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.26135, Lat: 23.76892 (WGS84); Sensor Depth: 4.57m; Data Range: 20070930-20080915.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  20. CRED Subsurface Temperature Recorder (STR); NWHI, FFS; Long: -166.21990, Lat: 23.86595 (WGS84); Sensor Depth: 2.10m; Data Range: 20040919-20060905.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...