WorldWideScience

Sample records for providing space heat

  1. Natural convective flows in a horizontal channel provided with heating isothermal blocks: Effect of the inter blocks spacing

    International Nuclear Information System (INIS)

    Bakkas, M.; Hasnaoui, M.; Amahmid, A.

    2010-01-01

    A numerical study of laminar steady natural convection induced in a two dimensional horizontal channel provided with rectangular heating blocks, periodically mounted on its lower wall, is carried out. The blocks' surface temperature, T H ' , is maintained constant and the former are connected with adiabatic surfaces. The upper wall of the channel is maintained cold at a temperature T C ' H ' . Fluid flow, temperature fields and heat transfer rates are presented for different combinations of the governing parameters which are the Rayleigh number (10 2 ≤Ra≤2x10 6 ), the blocks' spacing (1/4≤C=l ' /H ' ≤1), the blocks' height (1/8≤B=h ' /H ' ≤1/2) and the relative width of the blocks (A=(L ' -l ' )/H ' =1/2). The results obtained in the case of air (Pr = 0.72) show that the flow structure and the heat transfer are significantly influenced by the control parameters. It is found that there are situations where the increase of the blocks' spacing leads to a reduction of heat transfer.

  2. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  3. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  4. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  5. Chapter 12. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  6. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  7. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  8. Development of a space-flight ADR providing continuous cooling at 50 mK with heat rejection at 10 K

    Science.gov (United States)

    Tuttle, James; Canavan, Edgar; DeLee, Hudson; DiPirro, Michael; Jahromi, Amir; James, Bryan; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-12-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on adiabatic demagnetization refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 μT. We describe the cooling system here and report on the progress in its development.

  9. A heat exchanger provided with plates

    International Nuclear Information System (INIS)

    Chaix, J.E.; Fajeau, Maurice; Chlique, Bernard.

    1976-01-01

    The invention relates to a heat exchanger of the plate type, in which two fluids exchange calories through parallel metal plates, delimiting spaces separated from each other in which two fluids respectively flow without direct contact between them. The invention particularly applies in the case where one of the two fluids is water under pressure or else a circulating liquid metal, specially sodium, used in the system of a pressurised water or fast neutron reactor, the second fluid being water to be vaporised in the exchanger by the calories supplied by the first fluid. The arrangement is designed to give minimum bulk, particularly enabling the exchanger to be housed in the area between the core of a nuclear reactor and a casing or outer vessel, or else in an external sealed containment, with a view to recovering with the best efficiency the heat acquired by a coolant flowing through the core [fr

  10. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  11. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  12. Power beaming providing a space power infrastructure

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Coomes, E.P.

    1992-01-01

    This paper, based on two levels of technology maturity, applied the power beaming concept to four panned satellite constellations. The analysis shows that with currently available technology, power beaming can provide mass savings to constellations in orbits ranging from low-Earth orbit to geosynchronous orbit. Two constellations, space surveillance and tracking system and space-based radar, can be supported with current technology. The other two constellations, space-based laser array and boost surveillance and tracking system, will require power and transmission system improvements before their breakeven specific mass is achieved. A doubling of SP-100 conversion efficiency from 10 to 20% would meet or exceed breakeven for these constellations

  13. Heat Conduction of Air in Nano Spacing

    Directory of Open Access Journals (Sweden)

    Zhang Yao-Zhong

    2009-01-01

    Full Text Available Abstract The scale effect of heat conduction of air in nano spacing (NS is very important for nanodevices to improve their life and efficiency. By constructing a special technique, the changes of heat conduction of air were studied by means of measuring the heat conduction with heat conduction instrument in NS between the hot plate and the cooling plate. Carbon nanotubes were used to produce the nano spacing. The results show that when the spacing is small down to nanometer scale, heat conduction plays a prominent role in NS. It was found that the thickness of air is a non-linear parameter for demarcating the heat conduction of air in NS and the rate of heat conduction in unit area could be regard as a typical parameter for the heat conduction characterization at nanometer scale.

  14. Competition to provide heat in Kosice

    International Nuclear Information System (INIS)

    Haluza, I.

    2007-01-01

    Replacing political nominees at state-owned companies after each change of the cabinet has become a standard. The consequences are all too well-known. In the best case, the company gets a manager that is an expert in the given area and in the worst case the new manager is a person who does not have the vaguest idea of the business and the only reason he has taken the position is to collect the salary. And in addition to this they might harm the company due to a lack of experience and expertise. These post-election changes often remove capable people from company management that do not have friends in the new cabinet but do not wish to leave the business. Over the years, they gained experience so why not start up a new company in the same business area. And heat supply in Kosice is a good example. For many years, there was only one heat supplier in Kosice, the state-owned joint stock company Teplaren Kosice (TEKO). It uses natural gas and coal from Russia. But at the end of last year, a new private limited liability company, Teplarenska spolocnost, was established. And it plans to build a new heating plant using wooden bio-mass for about 300 mil. Sk (8.82 mil. EUR) to compete with TEKO. The owners and managers of the company include former employees of the state-owned heating plant. (author)

  15. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  16. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  17. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  18. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  19. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  20. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  1. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  2. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  3. Potential for solar space heating in Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Macgregor, A W.K.

    1980-07-01

    This paper investigates the relative effectiveness of passive-type solar-assisted space heating systems at various latitudes within the British Isles. A comparison is made of the useful solar gain of the same system linked to the same house at four different locations. Month-by-month energy balances indicate that the annual useful solar contribution at the highest latitude (Lerwick, 60 deg N) is about 35% higher than at the lowest latitude (Kew, 53 deg N). The main reason for this difference is the higher heating loads in the north, particularly outside the winter months. The estimated available irradiation on south-facing vertical surfaces was almost the same at all four locations. Previous work in the UK indicates that, contrary to the conclusions in this paper, more southerly latitudes were the most favorable for solar space heating. The reasons for the disparity are discussed. It is recommended that research and development of passive solar-assisted space heating systems should be most vigorously pursued in the more northerly latitudes of the British Isles, where both the potential benefit and the need are greatest.

  4. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  5. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  6. Microeconomics and the demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D.J.

    1977-12-01

    The techniques of economic utility theory are combined with the technical equations for heat loss from a dwelling to give insight into the variation of consumer demand for space heating. A theoretical relationship is established between the performance of the occupied dwelling as the external temperature falls and the short-run income elasticity of energy demand. The analysis is applied to studies of UK heating practice in the 1950s and the implied indifference map for thermal comfort deduced. This indifference map is found to show a considerable economic propensity to absorb some of the potential savings from energy conservation measurements in higher internal temperatures. The effect found is sufficiently large to have consequences for future energy planning if it were still present in the UK domestic sector. The analysis highlights a number of points that should aid the interpretation of field experiments on domestic energy consumption. In particular, it is shown that unless great care is taken to separate out the technical and economic origins of internal temperature variation, the results of field studies on the effectiveness of conservation techniques may only be of shortlived value.

  7. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  8. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  9. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  10. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  11. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  12. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  13. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  14. Micro tube heat exchangers for Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles, economizers...

  15. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  16. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  17. Electric heating provides a high level of home comfort - economically

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M.

    1997-11-01

    Research and development at IVO in the area of electric heating boasts a tradition going back almost thirty years. Research aimed at further progress is continuing. IVO and power companies launched the `Electrically heated houses of the century` project four years ago. The first results show that electric heating continues to be very competitive with other heating systems. It is an economical way of heating the home and it also increases the comfort of those living there

  18. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  19. Modelling of air-conditioned and heated spaces

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, U

    1987-01-01

    A space represents a complex system involving numerous components, manipulated variables and disturbances which need to be described if dynamic behaviour of space air is to be determined. A justifiable amount of simulation input is determined by the application of adjusted modelling of the individual components. The determination of natural air exchange in heated spaces and of space-air flow in air-conditioned space are a primary source of uncertainties. (orig.).

  20. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  1. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  2. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  3. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  4. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  5. Applications of Radiative Heating for Space Exploration

    Science.gov (United States)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  6. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  7. The adjoint space in heat transport theory

    International Nuclear Information System (INIS)

    Dam, H. van; Hoogenboom, J.E.

    1980-01-01

    The mathematical concept of adjoint operators is applied to the heat transport equation and an adjoint equation is defined with a detector function as source term. The physical meaning of the solutions for the latter equation is outlined together with an application in the field of perturbation analysis. (author)

  8. Ion track membranes providing heat pipe surfaces with capillary structures

    International Nuclear Information System (INIS)

    Akapiev, G.N.; Dmitriev, S.N.; Erler, B.; Shirkova, V.V.; Schulz, A.; Pietsch, H.

    2003-01-01

    The microgalvanic method for metal filling of etched ion tracks in organic foils is of particular interest for the fabrication of microsized structures. Microstructures like copper whiskers with a high aspect ratio produced in ion track membranes are suitable for the generation of high-performance heat transfer surfaces. A surface with good heat transfer characteristics is defined as a surface on which a small temperature difference causes a large heat transfer from the surface material to the liquid. It is well-known that a porous surface layer transfers to an evaporating liquid a given quantity of heat at a smaller temperature difference than does a usual smooth surface. Copper whiskers with high aspect ratio and a density 10 5 per cm 2 form such a porous structure, which produces strong capillary forces and therefore a maximum of heat transfer coefficients

  9. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  10. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  11. On variations of space-heating energy use in office buildings

    International Nuclear Information System (INIS)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-01-01

    these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings

  12. COMFORT PROVIDING SYSTEMS IN SPACES WITH ACOUTIC INSULATION

    Directory of Open Access Journals (Sweden)

    Grzegorz KLEKOT

    2014-12-01

    Full Text Available High capacities of currently available devices for sound registering and processing have generated a need for sound insulated spaces dedicated to exchange of confidential information. In such spaces, preventing propagation of vibroacoustic signals both by the way of air and construction elements entails complete insulation of the room. In order to meet this requirement, proper chemical composition of air and stabilized temperature conditions have to be guaranteed. The paper discusses questions related to the process of solving the task of providing thermal comfort and satisfying air quality in a room for confidential discussions. It presents prototype solutions of installations dedicated to stabilize human-friendly conditions inside a modular chamber provided with acoustic insulation.

  13. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  14. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  15. Performance predictions and measurements for space-power-system heat pipes

    International Nuclear Information System (INIS)

    Prenger, F.C. Jr.

    1981-01-01

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000

  16. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  17. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  18. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  19. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  20. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  1. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  2. The emissions from a space-heating biomass stove

    International Nuclear Information System (INIS)

    Koyuncu, T.; Pinar, Y.

    2007-01-01

    In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NO X ), sulphur dioxide (SO 2 ) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%. (author)

  3. Institutional Venture Capital for the Space Industry: Providing Risk Capital for Space Companies that Provide Investor Returns

    Science.gov (United States)

    Moore, Roscoe M., III

    2002-01-01

    provided by an institution. Those institutions tend to be Banks, Pension Funds, Insurance Funds, Corporations, and other incorporated entities that are obligated to earn a return on their invested capital. These institutions invest in a venture capital firm for the sole purpose of getting their money back with a healthy profit - within a set period of time. The venture capital firm is responsible for investing in and managing companies whose risk and return are higher than other less risky classes of investment. The venture capital firm's primary skill is its ability to manage the high risk of its venture investments while maintaining the high return potential of its venture investments. to businesses for the purpose of providing the above-mentioned Institutions a substantial return on their invested capital. Institutional Venture Capital for the Space Industry cannot be provided to projects or companies whose philosophy or intention is not to increase shareholder equity value within a set time period. efficiently when tied up in companies that intend to spend billions of dollars before the first dollar of revenue is generated. If 2 billion dollars of venture capital is invested in the equity of a Space Company for a minority equity position, then that Space Company must build that minority shareholder's equity value to a minimum investment return of 4 to 8 billion dollars. There are not many start-up companies that are able to reach public market equity valuations in the tens of billions of dollars within reasonable time horizons. Foundations, Manufacturers, and Strategic Investors can invest in projects that cannot realistically provide a substantial return on their equity to their investors within a reasonable period (5-7 years) of time. Venture Capitalists have to make money. Venture capitalists have made money on Satellite Television, Satellite Radio, Fixed Satellite Services, and other businesses. Venture capitalists have not made money on stand

  4. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  5. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  6. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M; Mullender, B; Druart, J [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W; Beddows, A [ESTEC-The (Netherlands)

    1997-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  7. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  8. Active charge, passive discharge floor space heating system

    Energy Technology Data Exchange (ETDEWEB)

    Salt, H.; Mahoney, K.J.

    1987-01-01

    This space heating system has a rockbed beneath and in contact with the floor of a dwelling, which is heated by radiation and convection from the floor. The ability of the heating system to maintain comfort conditions with no additional energy input is discussed and it is shown that the system is more suitable for use in mild climates than severe ones. Experimental work on horizontal air flow rockbeds is reported and shows that shallow beds can be designed in the same way as vertical air flow beds. The influence of natural convection on the effective thermal conductivity of the experimental rockbeds is reported.

  9. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  10. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  11. Determinants of residential space heating expenditures in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Helena [Department of Economics, University of Hamburg, Von Melle Park 5, 20146 Hamburg (Germany); Rehdanz, Katrin [Department of Economics, University of Kiel, Olshausenstrasse 40, 24118 Kiel (Germany)

    2010-09-15

    In Great Britain, several policy measures have been implemented in order to increase energy efficiency and reduce carbon emissions. In the domestic sector, this could, for example, be achieved by improving space heating efficiency and thus decreasing heating expenditure. However, in order to efficiently design and implement such policy measures, a better understanding of the determinants affecting heating expenditure is needed. In this paper we examine the following determinants: socio-economic factors, building characteristics, heating technologies and weather conditions. In contrast to most other studies we use panel data to investigate household demand for heating in Great Britain. Our data sample is the result of an annual set of interviews with more than 5000 households, starting in 1991 and ending in 2005. The sample represents a total of 64,000 observations over the fifteen-year period. Our aim is to derive price and income elasticities both for Britain as a whole and for different types of household. Our results suggest that differences exist between owner-occupied and renter households. These households react differently to changes in income and prices. Our results also imply that a number of socio-economic criteria have a significant influence on heating expenditure, independently of the fuel used for heating. Understanding the impacts of different factors on heating expenditure and impact differences between types of household is helpful in designing target-oriented policy measures. (author)

  12. Solar Space and Water Heating for School -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  13. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  14. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  15. Transient heat pipe investigations for space power systems

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm 2 for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm 2 over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs

  16. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  17. Heat receivers for solar dynamic space power systems

    Science.gov (United States)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  18. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  19. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  20. Benefits and well-being perceived by green spaces users during heat waves

    Directory of Open Access Journals (Sweden)

    Dentamaro I

    2010-07-01

    Full Text Available In urban environments, green spaces have proven to act as ameliorating factors of some climatic features related to heat stress, reducing their effects and providing comfortable outdoor settings for people. In addition, green spaces have demonstrated greater capacity, compared with built-up areas, for promoting human health and well-being. In this paper, we present results of a study conducted in Italy with the general goal to contribute to the theoretical and empirical rationale for linking green spaces with well-being in urban environments. Specifically, the study focused on the physical and psychological benefits and the general well-being associated with the use of green spaces on people when heat stress episodes are more likely to occur. A questionnaire was set up and administered to users of selected green spaces in Italy (metropolitan area of Milan and Bari - n=400. Results indicate that longer and frequent visits of green spaces generate significant improvements of the perceived benefits and well-being among users. These results are consistent with the idea that the use of green spaces could alleviate the perception of thermal discomfort during periods of heat stress.

  1. Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space

    Science.gov (United States)

    Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.

    2018-01-01

    Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.

  2. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  3. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  4. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  5. Alamos: An International Collaboration to Provide a Space Based Environmental Monitoring Solution for the Deep Space Network

    Science.gov (United States)

    Kennedy, S. O.; Dunn, A.; Lecomte, J.; Buchheim, K.; Johansson, E.; Berger, T.

    2018-02-01

    This abstract proposes the advantages of an externally mounted instrument in support of the human physiology, space biology, and human health and performance key science area. Alamos provides Space-Based Environmental Monitoring capabilities.

  6. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predict...... real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  7. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    Science.gov (United States)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  8. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  9. Space shuttle/food system study. Volume 2, Appendix A: Active heating system-screening analysis. Appendix B: Reconstituted food heating techniques analysis

    Science.gov (United States)

    1974-01-01

    Technical data are presented which were used to evaluate active heating methods to be incorporated into the space shuttle food system design, and also to evaluate the relative merits and penalties associated with various approaches to the heating of rehydrated food during space flight. Equipment heating candidates were subject to a preliminary screening performed by a selection rationale process which considered the following parameters; (1) gravitational effect; (2) safety; (3) operability; (4) system compatibility; (5) serviceability; (6) crew acceptability; (7) crew time; (8) development risk; and (9) operating cost. A hot air oven, electrically heated food tray, and microwave oven were selected for further consideration and analysis. Passive, semi-active, and active food preparation approaches were also studied in an effort to determine the optimum method for heating rehydrated food. Potential complexity, cost, vehicle impact penalties, and palatability were considered in the analysis. A summary of the study results is provided along with cost estimates for each of the potential sytems

  10. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  11. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  12. Estimating end-use emissions factors for policy analysis: the case of space cooling and heating.

    Science.gov (United States)

    Jacobsen, Grant D

    2014-06-17

    This paper provides the first estimates of end-use specific emissions factors, which are estimates of the amount of a pollutant that is emitted when a unit of electricity is generated to meet demand from a specific end-use. In particular, this paper provides estimates of emissions factors for space cooling and heating, which are two of the most significant end-uses. The analysis is based on a novel two-stage regression framework that estimates emissions factors that are specific to cooling or heating by exploiting variation in cooling and heating demand induced by weather variation. Heating is associated with similar or greater CO2 emissions factor than cooling in all regions. The difference is greatest in the Midwest and Northeast, where the estimated CO2 emissions factor for heating is more than 20% larger than the emissions factor for cooling. The minor differences in emissions factors in other regions, combined with the substantial difference in the demand pattern for cooling and heating, suggests that the use of overall regional emissions factors is reasonable for policy evaluations in certain locations. Accurately quantifying the emissions factors associated with different end-uses across regions will aid in designing improved energy and environmental policies.

  13. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  14. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  15. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    Science.gov (United States)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  16. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  17. Performance of Space Heating in a Modern Energy System

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2011-01-01

    In the paper we study the performance of a number of heat supply technologies. The background of the study is the changes in the Danish energy systems over the last three decades which have caused integration of large shares of combined heat and power (CHP), renewable fuels and wind power....... These changes mean that there is a significant integration of electricity and heat supply in the system and that several technologies may be beneficial. In particular, heat pumps are under consideration and are often considered to be renewable energy. We study how to distribute fuel and emissions to the heat...... supply. We find that heat supply is low-efficient seen from an exergy viewpoint, between 1% and 26% utilization. As exergy is a quantification of primary energy, we conclude that far better utilization of primary energy is possible. We also find that combined heat and power and domestic heat pumps...

  18. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  19. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  20. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  1. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat.

    Science.gov (United States)

    Filingeri, D; Fournet, D; Hodder, S; Havenith, G

    2015-06-01

    We investigated the effects of mild evaporative cooling applied to the torso, before or during running in the heat. Nine male participants performed three trials: control-no cooling (CTR), pre-exercise cooling (PRE-COOL), and during-exercise cooling (COOL). Trials consisted of 10-min neutral exposure and 50-min heat exposure (30 °C; 44% humidity), during which a 30-min running protocol (70% VO2max ) was performed. An evaporative cooling t-shirt was worn before the heat exposure (PRE-COOL) or 15 min after the exercise was started (COOL). PRE-COOL significantly lowered local skin temperature (Tsk ) (up to -5.3 ± 0.3 °C) (P benefits during exercise in the heat. However, the timing of application was critical in inducing different thermoregulatory responses. These findings provide novel insights on the thermoregulatory role of Tsk during exercise in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Utah State Prison Space Heating with Geothermal Heat Second Semi-Annual Report for the Period June 1980 - December 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    Reported herein is a summary of work conducted during the six monty period June, 1980 through December, 1980 of the project under contract to develop the Crystal Hot Springs geothermal resource to provide space and hot water heating for the minimum security building at the Utah State Prison. Efforts during this reporting period have been directed towards the resource assessment phase of the program. Specifically, progress includes: (1) completion of the gravity modeling efforts to define the subsurface structural configuration in the vicinity of the Crystal Hot Springs area, (2) selection of the most promising production targets for a test drilling program, (3) completion of the test drilling program, and (4) testing and monitoring of test well USP/TH-1.

  3. Heat-pipe transient model for space applications

    International Nuclear Information System (INIS)

    Tournier, J.; El-Genk, M.S.; Juhasz, A.J.

    1991-01-01

    A two-dimensional model is developed for simulating heat pipes transient performance following changes in the input/rejection power or in the evaporator/condenser temperatures. The model employs the complete form of governing equations and momentum and energy jump conditions at the liquid-vapor interface. Although the model is capable of handling both cylindrical and rectangular geometries, the results reported are for a circular heat pipe with liquid lithium as the working fluid. The model incorporates a variety of other working fluids, such as water, ammonia, potassium, sodium, and mercury, and offers combinations of isothermal, isoflux, convective and radiative heating/cooling conditions in the evaporator and condenser regions of the heat pipe. Results presented are for lithium heat pipes with exponential heating of the evaporator and isothermal cooling of the condenser

  4. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  5. Utah State Prison Space Heating with Geothermal Heat Third Semi-Annual Report for the Period January 1981 - July 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-11-01

    Facing certain cost overruns and lacking information about the long term productivity of the Crystal Hot Springs geothermal resource, costs of construction for the geothermal retrofit, and the method of disposal of geothermal waste water, the Energy Office embarked on a strategy that would enable the project participants to develop accurate cost information on the State Prison Space Heating Program through the completion of Task 5-Construction. The strategy called for: (1) Completion of the resource assessment to determine whether test well USP/TH-1 could be used as a production well. If well USP/TH-1 was found to have sufficient production capacity, money would not have to be expended on drilling another production well. (2) Evaluation of disposal alternatives and estimation of the cost of each alternative. There was no contingency in the original budget to provide for a reinjection disposal system. Cooperative agreement DE EC07-ET27027 indicated that if a disposal system requiring reinjection was selected for funding that task would be negotiated with DOE and the budget amended accordingly. (3) Completion of the preliminary engineering and design work. Included in this task was a thorough net present value cash flow analysis and an assessment of the technical feasibility of a system retrofit given the production characteristics of well USP/TH-1 . In addition, completion of the preliminary design would provide cost estimates for the construction and commissioning of the minimum security geothermal space heating system. With this information accurate costs for each task would be available, allowing the Energy Office to develop strategies to optimize the use of money in the existing budget to ensure completion of the program. Reported herein is a summary of the work towards the completion of these three objectives conducted during the period of January 1981 through June 1981.

  6. Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies

    International Nuclear Information System (INIS)

    Grohnheit, Poul Erik; Gram Mortensen, Bent Ole

    2003-01-01

    None of the EU directives on liberalisation of the electricity and gas markets are considering the district heating systems, although the district heating networks offer the possibility of competition between natural gas and a range of other fuels on the market for space heating. Cogeneration of electricity and heat for industrial processes or district heating is a technology option for increased energy efficiency and thus reduction of CO 2 emissions. In the mid-1990s less than 10% of the electricity generation in the European Union was combined production with significant variations among Member States. These variations are explained by different national legislation and relative power of institutions, rather than difference in industrial structure, climate or urban physical structure. The 'single energy carrier' directives have provisions that support the development of combined heat and power (CHP), but they do not support the development and expansion of the district heating infrastructure. The article is partly based on a contribution to the Shared Analysis Project for the European Commission DG Energy, concerning the penetration of CHP, energy saving, and renewables as instruments to meet the targets of the Kyoto Protocol within the liberalised European energy market. The quantitative and legal differences of the heat markets in selected Member States are described, and the consequences of the directives are discussed. Finally, we summarise the tasks for a European policy concerning the future regulation of district heating networks for CHP, emphasising the need for rules for a fair competition between natural gas and district heating networks

  7. Creating Processes Associated with Providing Government Goods and Services Under the Commercial Space Launch Act at Kennedy Space Center

    Science.gov (United States)

    Letchworth, Janet F.

    2011-01-01

    Kennedy Space Center (KSC) has decided to write its agreements under the Commercial Space Launch Act (CSLA) authority to cover a broad range of categories of support that KSC could provide to our commercial partner. Our strategy was to go through the onerous process of getting the agreement in place once and allow added specificity and final cost estimates to be documented on a separate Task Order Request (TOR). This paper is written from the implementing engineering team's perspective. It describes how we developed the processes associated with getting Government support to our emerging commercial partners, such as SpaceX and reports on our success to date.

  8. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Science.gov (United States)

    2012-06-06

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).

  9. Thermal comfort in sun spaces: To what extend can energy collectors and seasonal energy storages provide thermal comfort in sun space?

    Directory of Open Access Journals (Sweden)

    Christian Wiegel

    2017-10-01

    Full Text Available Preparation for fossil fuel substitution in the building sector persists as an essential subject in architectural engineering. Since the building sector still remains as one of the three major global end energy consumer – climate change is closely related to construction and design. We have developed the archetype sun space to what it is today : a simple but effective predominant naturally ventilated sun trap and as well as living space enlargement. With the invention of industrial glass orangery’s more and more changed from frost protecting envelopes to living spaces from which we meantime expect thermal comfort in high quality. But what level of thermal comfort provide sun spaces? And to what extend may sun spaces manage autarkic operation profiting from passive solar gains and, beyond that, surplus energy generation for energy neutral conditioning of aligned spaces? We deliver detailed information for this detected gap of knowledge. We know about limited thermal comfort in sun spaces winter times. This reasons the inspection of manifold collector technologies, which enable to be embedded in facades and specifically in sun space envelopes. Nonetheless, effective façade integrated collectors are ineffective in seasons with poor irradiation. Hence, the mismatch of offer and demand we have experienced with renewable energies ignites thinking about appropriate seasonal energy storages, which enlarges the research scope of this work. This PhD thesis project investigates on both, a yearly empirical test set up analysis and a virtual simulation of different oriented and located sun spaces abroad Germany. Both empirical and theoretical evaluation result in a holistic research focusing on a preferred occupation time in terms of cumulative frequencies of operational temperature and decided local discomfort, of potential autarkic sun space operation and prospective surplus exergy for alternative heating of aligned buildings. The results are mapped

  10. Utes for space heating and cooling in North Africa

    International Nuclear Information System (INIS)

    Nordell, B.; Grein, M. a.

    2006-01-01

    The North Africa climate is dry and warm with annual mean temperature from 15 degree centigrade to 25 degree centigrade, with a temperature difference of 20 degree centigrade between the coldest and warmest month. Heating is needed during the short winter and there is a large cooling demand during the long summer. Since the undisturbed ground temperature is equal to the annual mean air temperature, the ground is warmer than the air during the winter and colder than air during summer. This is what is required for the direct use of the ground for heating and cooling. In such systems, ground coupled heating and cooling systems, and also in storage systems, Underground Thermal Energy Storage (UTES), some kind of underground duct (PIPE) system is used to inject or extract heat from the ground. Thermal energy is then stored and recovered by heating and cooling of the ground, while the ducts are the heat exchangers with the system. The duct system could be placed horizontally or vertically (e.g. in boreholes) in the ground. In many cases heat pumps or cooling machines are included in the systems but in favourable cases, such as in the North African climate, the ground can be used directly for heating and cooling. then, only a circulation pump is used to pump water through the underground duct system with high efficiencies. Such systems can also be used for thermal energy storage, during shorter periods (diurnal) or even between the seasons. In September 2005 Sebha University and Luleu University of Technology started a Libyan Swedish collaboration to develop and implement these systems for the North African climate. Sweden has considerable experience in ground coupled systems, theoretically and practically, and there are presently more than 300.000 systems in operation in Sweden, mainly for heating. Most of these are small-scale heating systems for singe-family houses but during the last decade several hundred large-scale systems have been built for heating and cooling of

  11. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  12. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  13. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  14. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  15. ZrH reactor lattice spacing (heat transfer considerations)

    International Nuclear Information System (INIS)

    Felten, L.D.

    1970-01-01

    Temperature calculations for a 295 element ZrH reactor at fuel element spacings from 0.010'' to 0.065'' showed a very small dependence of reactor temperature on element spacing. It was found that one variation in coolant channel area (2 zones) was sufficient to satisfactorily shape the radial flow profile for the core. (U.S.)

  16. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  17. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    Science.gov (United States)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  18. Numerical study of natural convection heat transfer in a horizontal channel provided with rectangular blocks releasing uniform heat flux and mounted on its lower wall

    International Nuclear Information System (INIS)

    Bakkas, M.; Amahmid, A.; Hasnaoui, M.

    2008-01-01

    Two-dimensional laminar steady natural convection in a horizontal channel with the upper wall maintained cold at a constant temperature and the lower one provided with rectangular heating blocks, periodically distributed, has been studied numerically. The blocks are connected with adiabatic segments and their surfaces are assumed to release a uniform heat flux. The study is performed using air as the working fluid (Pr = 0.72). The spacing between the blocks is maintained constant (C = l'/H' = 0.5) while the Rayleigh number and the relative height of the blocks are respectively varied in the ranges 10 2 ≤ Ra ≤ 2 x 10 6 and 1/8 ≤ B = h'/H' ≤ 1/2. The effect of the computational domain length on the multiplicity of solutions is investigated. Flow and temperature fields are also produced for various combinations of the governing parameters. It is demonstrated that, depending on the length of the computational domain and the governing parameters, different flow structures can be obtained

  19. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  20. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  1. Large-size deployable construction heated by solar irradiation in free space

    Science.gov (United States)

    Pestrenina, Irena; Kondyurin, Alexey; Pestrenin, Valery; Kashin, Nickolay; Naymushin, Alexey

    Large-size deployable construction in free space with subsequent direct curing was invented more than fifteen years ago (Briskman et al., 1997 and Kondyurin, 1998). It caused a lot of scientific problems, one of which is a possibility to use the solar energy for initiation of the curing reaction. This paper is devoted to investigate the curing process under sun irradiation during a space flight in Earth orbits. A rotation of the construction is considered. This motion can provide an optimal temperature distribution in the construction that is required for the polymerization reaction. The cylindrical construction of 80 m length with two hemispherical ends of 10 m radius is considered. The wall of the construction of 10 mm carbon fibers/epoxy matrix composite is irradiated by heat flux from the sun and radiates heat from the external surface by the Stefan- Boltzmann law. A stage of polymerization reaction is calculated as a function of temperature/time based on the laboratory experiments with certified composite materials for space exploitation. The curing kinetics of the composite is calculated for different inclination Low Earth Orbits (300 km altitude) and Geostationary Earth Orbit (40000 km altitude). The results show that • the curing process depends strongly on the Earth orbit and the rotation of the construction; • the optimal flight orbit and rotation can be found to provide the thermal regime that is sufficient for the complete curing of the considered construction. The study is supported by RFBR grant No.12-08-00970-a. 1. Briskman V., A.Kondyurin, K.Kostarev, V.Leontyev, M.Levkovich, A.Mashinsky, G.Nechitailo, T.Yudina, Polymerization in microgravity as a new process in space technology, Paper No IAA-97-IAA.12.1.07, 48th International Astronautical Congress, October 6-10, 1997, Turin Italy. 2. Kondyurin A.V., Building the shells of large space stations by the polymerisation of epoxy composites in open space, Int. Polymer Sci. and Technol., v.25, N4

  2. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...

  3. Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction

    International Nuclear Information System (INIS)

    Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars

    2014-01-01

    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form −log ρ; they involve dissipation or mobility terms of order ρ 2 for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation

  4. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  5. Investigation and assessment of wall heat transfer correlations in SPACE code

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Kim, Kyung Doo; Moon, Sang Ki; Choi, Ki Yong; Park, Hyun Sik

    2010-06-01

    SPACE, which is a safety analysis code for nuclear power plants, has been developed to analyze the multidimensional, two-component and three-field flow. This code can be applied to safety analysis for approval which is thermal-hydraulic analysis to support the nuclear power station design, establishment of accident ease strategy, development of operating guide line, experiment plan and analysis. To do so, SPACE code has 12 wall heat transfer mode and the corresponding models and correlations to deal with the physical heat transfer phenomenon in wall surface. In this report, the physical correlation models regarding the wall heat transfer are explained and their performance is assessed against several SET

  6. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  7. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  8. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  9. Manchester Coding Option for SpaceWire: Providing Choices for System Level Design

    Science.gov (United States)

    Rakow, Glenn; Kisin, Alex

    2014-01-01

    This paper proposes an optional coding scheme for SpaceWire in lieu of the current Data Strobe scheme for three reasons. First reason is to provide a straightforward method for electrical isolation of the interface; secondly to provide ability to reduce the mass and bend radius of the SpaceWire cable; and thirdly to provide a means for a common physical layer over which multiple spacecraft onboard data link protocols could operate for a wide range of data rates. The intent is to accomplish these goals without significant change to existing SpaceWire design investments. The ability to optionally use Manchester coding in place of the current Data Strobe coding provides the ability to DC balanced the signal transitions unlike the SpaceWire Data Strobe coding; and therefore the ability to isolate the electrical interface without concern. Additionally, because the Manchester code has the clock and data encoded on the same signal, the number of wires of the existing SpaceWire cable could be optionally reduced by 50. This reduction could be an important consideration for many users of SpaceWire as indicated by the already existing effort underway by the SpaceWire working group to reduce the cable mass and bend radius by elimination of shields. However, reducing the signal count by half would provide even greater gains. It is proposed to restrict the data rate for the optional Manchester coding to a fixed data rate of 10 Megabits per second (Mbps) in order to make the necessary changes simple and still able to run in current radiation tolerant Field Programmable Gate Arrays (FPGAs). Even with this constraint, 10 Mbps will meet many applications where SpaceWire is used. These include command and control applications and many instruments applications with have moderate data rate. For most NASA flight implementations, SpaceWire designs are in rad-tolerant FPGAs, and the desire to preserve the heritage design investment is important for cost and risk considerations. The

  10. Optimizing a Small Ammonia Heat Pump with Accumulator Tank for Space and Hot Tap Water Heating

    OpenAIRE

    Lalovs, Arturs

    2015-01-01

    The heat pump market offers a wide variety of different residential heat pumps where most of them utilize refrigerant R-410A which has high global warming potential. Considering the fact that global policy starts to focus on issues related to energy efficiency and harmful impact to the environment, it is necessary to investigate over new refrigerants. As an alternative solution is to utilize natural refrigerants, such as ammonia, which has almost zero glob...

  11. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system

    International Nuclear Information System (INIS)

    Yuan, Yuan; Shan, Jianqiang; Zhang, Bin; Gou, Junli; Bo, Zhang; Lu, Tianyu; Ge, Li; Yang, Zijiang

    2016-01-01

    Highlights: • A transient analysis code TAPIRS for HPS has been developed. • Three typical accidents are analyzed using TAPIRS. • The reactor system has the self-stabilization ability under accident conditions. - Abstract: A space power with high power density, light weight, low cost and high reliability is of crucial importance to future exploration of deep space. Space reactor is an excellent candidate because of its unique characteristics of high specific power, low cost, strong environment adaptability and so on. Among all types of space reactors, heat pipe cooled space reactor, which adopts the passive heat pipe (HP) as core cooling component, is considered as one of the most promising choices and is widely studied all over the world. This paper develops a transient analysis code (TAPIRS) for heat pipe cooled space reactor power system (HPS) based on point reactor kinetics model, lumped parameter core heat transfer model, combined HP model (self-diffusion model, flat-front startup model and network model), energy conversion model of Alkali Metal Thermal-to-Electric Conversion units (AMTEC), and HP radiator model. Three typical accidents, i.e., control drum failure, AMTEC failure and partial loss of the heat transfer area of radiator are then analyzed using TAPIRS. By comparing the simulation results of the models and steady state with those in the references, the rationality of the models and the solution method is validated. The results show the following. (1) After the failure of one set of control drums, the reactor power finally reaches a stable value after two local peaks under the temperature feedback. The fuel temperature rises rapidly, however it is still under safe limit. (2) The fuel temperature is below a safe limit under the AMTEC failure and partial loss of the heat transfer area of radiator. This demonstrates the rationality of the system design and the potential applicability of the TAPIRS code for the future engineering application of

  12. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Science.gov (United States)

    2012-07-05

    ...Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 31, 2012, under section 337 of the Tariff Act of 1930, as amended, on behalf of Industrial Technology Research Institute of Taiwan and ITRI International of San Jose, California. The complaint alleges violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain integrated circuit packages provided with multiple heat-conducting paths and products containing same by reason of infringement of certain claims of U.S. Patent No. 5,710,459 (``the `459 patent''). The complaint further alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The complainants request that the Commission institute an investigation and, after the investigation, issue an exclusion order and cease and desist order.

  13. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  14. Optimal wall spacing for heat transport in thermal convection

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)

    2016-11-01

    The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.

  15. Welding iridium heat-source capsules for space missions

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1982-03-01

    A remote computer-controlled welding station was developed to encapsulate radioactive PuO 2 in iridium. Weld quench cracking caused an interruption in production of capsules for upcoming space missions. Hot crack sensitivity of the DOP-26 iridium alloy was associated with low melting constituents in the grain boundaries. The extent of cracking was reduced but could not be eliminated by changes to the welding operation. An ultrasonic test was developed to detect underbead cracks exceeding a threshold size. Production was continued using the ultrasonic test to reject capsules with detectable cracks

  16. Applied Horizontal and Vertical Geothermal Heat Exchanger with Heat Pump System to Provide Air Conditioning for an Academic Facility in Mexico

    Directory of Open Access Journals (Sweden)

    Daniel Alcantar Martínez

    2017-07-01

    Full Text Available At present in Mexico, the renewable energy has become more important due to the great dependence of the country for fossil fuels. Within the several applications of renewable energy, there are the geothermal applications for the air conditioning of spaces. This technology employs heat pumps that interexchange heat with the ground. This technology is relatively young in Mexico, leaving a large field for study and application throughout the country. In this way, to calculate the correct sizing of geothermal heat exchangers, it is necessary to calculate the thermal loads of the complex in which this technology of geothermal heat pumps using vertical heat exchangers type U will be installed, to perform the calculation of thermal loads Autodesk Revit® software was used, with which was possible to make a virtual model in detail of the botanical center that is located in Morelia, Michoacán, Mexico and belongs to the Universidad Michoacana de San Nicolás de Hidalgo (UMNSH. This study shows the results of the analysis of the installations and determination of the thermal loads of the complex due to this type of infrastructure. By obtaining the values of the thermal loads, the dimensioning of the heat exchanger was archived, which will have to be installed to cover the thermal requirement of this system and his installation, in addition to the selection of the heat pump. This complex of 2 levels, where, on the first floor there are cubicles and laboratories and on the second floor, several common areas. The design was developed in detail in Autodesk Revit 2015. After obtaining the thermal loads, the GLHEPro software was used for dimensioning the Vertical heat exchangers with the number and depth of the exchangers was obtained. the GLD 2014 software was used for dimensioning the Horizontal heat exchangers with the number and depth of the exchangers was obtained.

  17. Decreasing of energy consumption for space heating in existing residential buildings

    International Nuclear Information System (INIS)

    Stamov, S.; Zlateva, M.; Gechkov, N.

    2000-01-01

    An analysis is for the technical possibilities for reducing the energy consumption in existing buildings by means of the heat control and measurement. The basic performances of the heat capacity control methods, of the hierarchy structure of the control and of the heat measurement technologies are presented. This paper also presents the results from the long-term investigation of energy consumption for heating. The results area consist of three typical and uniform buildings in the city of Kazanlak (Bulgaria). The outcome of the investigation provides a valuable basis for future decisions to be made concerning reconstruction of heating installations and enables the results to be transferred. (Authors)

  18. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  19. The impact of consumer behavior on residential energy demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.; Auer, H.; Biermayr, P. [Vienna Univ. of Technology (Austria). Inst. of Energy Economics

    1998-04-01

    Besides technical parameters, consumer behavior is the most important issue with respect to energy consumption in households. In this paper, the results of a cross-section analysis of Austrian households are presented. The impact of the following parameters on residential energy demand for space heating have been investigated: (i) thermal quality of buildings; (ii) consumer behavior; (iii) heating degree days; (iv) building type (single- or multi-family dwellings). The result of this investigation provides evidence of a rebound-effect of about 15 to 30% due to building retrofit. This leads to the conclusion that energy savings achieved in practice (and straightforward the reduction in CO{sub 2} emissions) due to energy conservation measures will be lower than those calculated in engineering conservation studies. Straightforward, the most important conclusions for energy policy makers are: (i) Standards, building codes, respectively, are important tools to increase the thermal quality of new buildings; and (ii) Due to prevailing low energy prices, a triggering tool has to be implemented which may be rebates or loans. (orig.)

  20. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  1. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    International Nuclear Information System (INIS)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  2. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Science.gov (United States)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  3. Heat-electricity convertion systems for a Brazilian space micro nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Marcelino, Natalia B.; Placco, Guilherme M.; Nascimento, Jamil A.; Borges, Eduardo M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br, E-mail: jamil@ieav.cta.br, E-mail: jalnsgf@outlook.com, E-mail: borges.em@hotmail.com, E-mail: ecorborges@hotmail.com, E-mail: ivayolini@gmail.com, E-mail: guilherme_placco@ig.com.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil); Barrios Junior, Ary Garcia, E-mail: arygarcia89@yahoo.com [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil)

    2013-07-01

    This contribution will discuss the evolution work in the development of thermal cycles to allow the development of heat-electricity conversion for the Brazilian space micro nuclear Reactor. Namely, innovative core and nuclear fuel elements, Brayton cycle, Stirling engine, heat pipes, passive multi-fluid turbine, among others. This work is basically to set up the experimental labs that will allow the specification and design of the space equipment. Also, some discussion of the cost so far, and possible other applications will be presented. (author)

  4. Heat-electricity convertion systems for a Brazilian space micro nuclear reactor

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Marcelino, Natalia B.; Placco, Guilherme M.; Nascimento, Jamil A.; Borges, Eduardo M.; Barrios Junior, Ary Garcia

    2013-01-01

    This contribution will discuss the evolution work in the development of thermal cycles to allow the development of heat-electricity conversion for the Brazilian space micro nuclear Reactor. Namely, innovative core and nuclear fuel elements, Brayton cycle, Stirling engine, heat pipes, passive multi-fluid turbine, among others. This work is basically to set up the experimental labs that will allow the specification and design of the space equipment. Also, some discussion of the cost so far, and possible other applications will be presented. (author)

  5. System Statement of Tasks of Calculating and Providing the Reliability of Heating Cogeneration Plants in Power Systems

    Science.gov (United States)

    Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.

    2018-01-01

    A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.

  6. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Li, Yongjuan; Huang, Jinqiang; Liu, Zhe; Zhou, Yanjing; Xia, Binpeng; Wang, Yongjie; Kang, Yujun; Wang, Jianfu

    2017-07-01

    The rainbow trout is an economically important fish in the world. The limited stress tolerance of this species to high summer-like temperatures usually leads to mass mortality and great economic loss. However, there is limited information on the mechanisms underlying moderate heat responses in the liver of the rainbow trout. Here, we performed transcriptome profiling of rainbow trout liver under moderate heat stress by using the Hiseq™ 4000 sequencing platform. More than 277 million clean reads were obtained from 6 libraries and aligned against the rainbow trout genome. A total of 128 unique transcripts were differentially expressed in the liver under heat-stress and control conditions, many heat shock protein genes for thermoregulation and some novel genes involved in heat stress were identified. Nine of the differently expressed genes were further validated by qRT-PCR. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that several pathways, including those for protein metabolism, energy metabolism, and immune system, were influenced by heat stress. Moreover, an important protein-processing pathway in the endoplasmic reticulum (ER) was identified, and the key role of ER-associated degradation and function of calpain as an upstream regulator of apoptosis were confirmed under heat stress. The results of this study provide a comprehensive overview of heat stress-induced transcriptional patterns in rainbow trout liver and would be particularly useful for further studies on the molecular mechanisms underlying responses to heat stress in this species. Copyright © 2017. Published by Elsevier B.V.

  7. Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-07-01

    The objective of this paper is to develop a model for simulating the thermal and hydraulic behavior of space heating systems with radiators controlled by thermostat valves (TRVs) in multi-family buildings. This is done by treating the building and the heating system as a complete entity. Sub-models for rooms, radiators, TRVs, and the hydraulic network are derived. Then the suggested sub-models are combined to form an integrated model by considering interactions between them. The proposed model takes into account the heat transfer between neighboring rooms, the transport delay in the radiator, the self-adjusting function of the TRV, and the consumer's regulation behavior, as well as the hydraulic interactions between consumers. To test the model, two space heating systems in Beijing and Tianjin were investigated, and the model was validated under three operation modes. There was good agreement between the measured and simulated values for room temperature, return water temperature, and flow rate. A modeling analysis case was given based on an existing building and heating system. It was found that when the set value of the TRVs were kept on 2-3, about 12.4% reduction of heat consumption could be gained, compared with the situation in which the TRVs were kept fully open. The water flow rate was an important index that truly reflected the heat load change. It was also noted that if the flow rate or supply water temperature changed much during the transport delay time in the radiator, ignoring the transport delay would introduce an obvious deviation of the simulation results. Additionally, when an apartment stopped using the heating system during a heating season, the heat consumption of its neighboring apartments would be increased about 6-14%. (author)

  8. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  9. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    Science.gov (United States)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of leak leads currently to NASA's specs.

  10. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  11. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City.

    Science.gov (United States)

    Dang, Tran Ngoc; Van, Doan Quang; Kusaka, Hiroyuki; Seposo, Xerxes T; Honda, Yasushi

    2018-04-01

    To quantify heat-related deaths in Ho Chi Minh City, Vietnam, caused by the urban heat island (UHI) and explore factors that may alleviate the impact of UHIs. We estimated district-specific meteorological conditions from 2010 to 2013 using the dynamic downscaling model and calculated the attributable fraction and number of mortalities resulting from the total, extreme, and mild heat in each district. The difference in attributable fraction of total heat between the central and outer districts was classified as the attributable fraction resulting from the UHI. The association among attributable fraction, attributable number with a green space, population density, and budget revenue of each district was then explored. The temperature-mortality relationship between the central and outer areas was almost identical. The attributable fraction resulting from the UHI was 0.42%, which was contributed by the difference in temperature distribution between the 2 areas. Every 1-square-kilometer increase in green space per 1000 people can prevent 7.4 deaths caused by heat. Green space can alleviate the impacts of UHIs, although future studies conducting a heath economic evaluation of tree planting are warranted.

  12. Effects of Heating on Teflon(Registered Trademark) FEP Thermal Control Material from the Hubble Space Telescope

    Science.gov (United States)

    deGroh, Kim; Gaier, James R.; Hall, Rachelle L.; Norris, Mary Jo; Espe, Matthew P.; Cato, Daveen R.

    1999-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene) thermal control material on the Hubble Space Telescope (HST) is degrading in the space environment. Teflon(Registered Trademark) FEP thermal control blankets (space-facing FEP) retrieved during the first servicing mission (SM1) were found to be embrittled on solar facing surfaces and contained microscopic cracks. During the second servicing mission (SM2) astronauts noticed that the FEP outer layer of the multi-layer insulation (MLI) covering the telescope was cracked in many locations around the telescope. Large cracks were observed on the light shield, forward shell and equipment bays. A tightly curled piece of cracked FEP from the light shield was retrieved during SM2 and was severely embrittled, as witnessed by ground testing. A Failure Review Board (FRB) was organized to determine the mechanism causing the MLI degradation. Density, x-ray crystallinity and solid state nuclear magnetic resonance (NMR) analyses of FEP retrieved during SM1 were inconsistent with results of FEP retrieved during SM2. Because the retrieved SM2 material curled while in space, it experienced a higher temperature extreme during thermal cycling, estimated at 200 C, than the SM1 material, estimated at 50 C. An investigation on the effects of heating pristine and FEP exposed on HST was therefore conducted. Samples of pristine. SM1, and SM2 FEP were heated to 200 C and evaluated for changes in density and morphology. Elevated temperature exposure was found to have a major impact on the density of the retrieved materials. Characterization of polymer morphology of as-received and heated FEP samples by NMR provided results that were consistent with the density results. These findings have provided insight to the damage mechanisms of FEP in the space environment.

  13. Benefits to the Europa Clipper Mission Provided by the Space Launch System

    Science.gov (United States)

    Creech, Stephen D.; Patel, Keyur

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) proposed Europa Clipper mission would provide an unprecedented look at the icy Jovian moon, and investigate its environment to determine the possibility that it hosts life. Focused on exploring the water, chemistry, and energy conditions on the moon, the spacecraft would examine Europa's ocean, ice shell, composition and geology by performing 32 low-altitude flybys of Europa from Jupiter orbit over 2.3 years, allowing detailed investigations of globally distributed regions of Europa. In hopes of expediting the scientific program, mission planners at NASA's Jet Propulsion Laboratory are working with the Space Launch System (SLS) program, managed at Marshall Space Flight Center. Designed to be the most powerful launch vehicle ever flown, SLS is making progress toward delivering a new capability for exploration beyond Earth orbit. The SLS rocket will offer an initial low-Earth-orbit lift capability of 70 metric tons (t) beginning with a first launch in 2017 and will then evolve into a 130 t Block 2 version. While the primary focus of the development of the initial version of SLS is on enabling human exploration missions beyond low Earth orbit using the Orion Multi-Purpose Crew Vehicle, the rocket offers unique benefits to robotic planetary exploration missions, thanks to the high characteristic energy it provides. This paper will provide an overview of both the proposed Europa Clipper mission and the Space Launch System vehicle, and explore options provided to the Europa Clipper mission for a launch within a decade by a 70 t version of SLS with a commercially available 5-meter payload fairing, through comparison with a baseline of current Evolved Expendable Launch Vehicle (EELV) capabilities. Compared to that baseline, a mission to the Jovian system could reduce transit times to less than half, or increase mass to more than double, among other benefits. In addition to these primary benefits, the paper will

  14. The potential reduction of household space heating CO2 emissions in the Netherlands

    NARCIS (Netherlands)

    Engelmoer, Wiebe

    2011-01-01

    SUMMARY Space heating is responsible for more than half of the total Dutch household energy demand, a large share is based on natural gas. With increasing concern about global warming and depleting gas reserves, energy saving has become an important topi

  15. A Data Analysis Approach for Diagnosing Malfunctioning in Domestic Space Heating

    NARCIS (Netherlands)

    Tabatabaei, S.

    Around one third of worldwide energy usage is for the residential section and 60% of the energy consumption in this domestic area is for space heating. Therefore, monitoring and controlling this part of energy usage can have a major effect on the overall energy consumption and also on the emission

  16. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    Science.gov (United States)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design

  17. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  18. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  19. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  20. Improvement of Thrust Bearing Calculation Considering the Convectional Heating within the Space between the Pads

    OpenAIRE

    Monika Chmielowiec-Jablczyk; Andreas Schubert; Christian Kraft; Hubert Schwarze; Michal Wodtke; Michal Wasilczuk

    2018-01-01

    A modern thrust bearing tool is used to estimate the behavior of tilting pad thrust bearings not only in the oil film between pad and rotating collar, but also in the space between the pads. The oil flow in the space significantly influences the oil film inlet temperature and the heating of pad and collar. For that reason, it is necessary to define an oil mixing model for the space between the pads. In the bearing tool, the solutions of the Reynolds equation including a cavitation model, the ...

  1. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    Science.gov (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  2. The mechanical design of a vapor compressor for a heat pump to be used in space

    Science.gov (United States)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  3. Field evaluation and assessment of thermal energy storage for residential space heating

    Science.gov (United States)

    Hersh, H. N.

    1982-02-01

    A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.

  4. Anthropogenic Heat Flux Estimation from Space: Results of the second phase of the URBANFLUXES Project

    Science.gov (United States)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-04-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The Discrete Anisotropic Radiative Transfer (DART) model is employed to improve the estimation of the net all-wave radiation balance, whereas the Element Surface Temperature Method (ESTM), adjusted to satellite observations is used to improve the estimation the estimation of the net change in heat storage. Furthermore the estimation of the turbulent sensible and latent heat fluxes is based on the Aerodynamic Resistance Method (ARM). Based on these outcomes, QF is estimated by regressing the sum of the turbulent heat fluxes versus the available energy. In-situ flux measurements are used to evaluate URBANFLUXES outcomes, whereas uncertainties are specified and analyzed. URBANFLUXES is expected to prepare the ground for further innovative exploitation of EO in scientific activities (climate variability studies at local and regional scales) and future and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation/adaptation. This study presents the results of the second phase of the project and detailed information on URBANFLUXES is available at: http://urbanfluxes.eu

  5. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  6. Space-based observatories providing key data for climate change applications

    Science.gov (United States)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    The Sentinel-1 & 3 mission are part of the Copernicus program, previously known as GMES (Global Monitoring for Environment and Security), whose overall objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. This European Earth Observation program is led by the European Commission and the space infrastructure is developed under the European Space Agency leadership. Many services will be developed through the Copernicus program among different thematic areas. The climate change is one of this thematic area and the Sentinel-1 & 3 satellites will provide key space-based observations in this area. The Sentinel-1 mission is based on a constellation of 2 identical satellites each one embarking C-SAR Instrument and provides capability for continuous radar mapping of the Earth with enhanced revisit frequency, coverage, timeliness and reliability for operational services and applications requiring long time series. In particular, Sentinel 1 provides all-weather, day-and-night estimates of soil moisture, wind speed and direction, sea ice, continental ice sheets and glaciers. The Sentinel-3 mission will mainly be devoted to the provision of Ocean observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. Among these data, very accurate surface temperatures and topography measurements will be provided and will constitute key indicators, once ingested in climate change models, for identifying climate drivers and expected climate impacts. The paper will briefly recall the satellite architectures, their main characteristics and performance. The inflight performance and key features of their images or data of the 3 satellites namely Sentinel 1A, 1B and 3A will be reviewed to demonstrate the quality and high scientific potential of the data as well as their

  7. Esprit de Place: Maintaining and Designing Library Buildings To Provide Transcendent Spaces.

    Science.gov (United States)

    Demas, Sam; Scherer, Jeffrey A.

    2002-01-01

    Discusses library buildings and their role in building community. Reviews current design trends, including reading and study spaces; collaborative workspaces; technology-free zones; archives and special collections; cultural events spaces; age-specific spaces; shared spaces; natural light and landscapes; and interior design trends. (LRW)

  8. Improvement of Thrust Bearing Calculation Considering the Convectional Heating within the Space between the Pads

    Directory of Open Access Journals (Sweden)

    Monika Chmielowiec-Jablczyk

    2018-02-01

    Full Text Available A modern thrust bearing tool is used to estimate the behavior of tilting pad thrust bearings not only in the oil film between pad and rotating collar, but also in the space between the pads. The oil flow in the space significantly influences the oil film inlet temperature and the heating of pad and collar. For that reason, it is necessary to define an oil mixing model for the space between the pads. In the bearing tool, the solutions of the Reynolds equation including a cavitation model, the energy equation and the heat transfer equation are done iteratively with the finite volume method by considering a constant flow rate. Both effects—laminar/turbulent flow and centrifugal force—are considered. The calculation results are compared with measurements done for a flooded thrust bearing with nominal eight tilting pads with an outer diameter of 180 mm. The heat convection coefficients for the pad surfaces mainly influence the pad temperature field and are adjusted to the measurement results. In the following paper, the calculation results for variable space distances, influence of different parameters on the bearing behavior and operating condition at high load are presented.

  9. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax...

  10. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  11. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  12. A study for providing additional storage spaces to ET-RR-1 spent fuel

    International Nuclear Information System (INIS)

    El-Kady, A.; Ashoub, N.; Saleh, H.G.

    1995-01-01

    The ET-RR-1 reactor spent fuel storage pool is a trapezoidal aluminum tank concrete shield and of capacity 10 m 3 . It can hold up to 60 fuel assemblies. The long operation history of the ET-RR-1 reactor resulted in a partially filled spent fuel storage with the remaining spaces not enough to host a complete load from the reactor. This work have been initiated to evaluate possible alternative solutions for providing additional storage spaces to host the available EK-10 fuel elements after irradiation and any foreseen fuel in case of reactor upgrading. Several alternate solutions have been reviewed and decision on the most suitable one is under study. These studies include criticality calculation of some suggested alternatives like reracking the present spent fuel storage pool and double tiering by the addition of a second level storage rack above the existing rack. The two levels may have different factor. Criticality calculation of the double tiering possible accident was also studied. (author)

  13. Heat exchanger with layers of helical tubes provided with improved tube supports

    International Nuclear Information System (INIS)

    Carnoy, M.; Mathieu, B.; Renaux, C.

    1986-01-01

    The present heat exchanger comprises coaxial layers of helically wound tubes; these tubes are supported by support plates, each comprising a row of perforations through which the tubes of a same layer pass. Truncated sleeves are in compression around the tubes within the perforations and mounted on the support plates. Pins fix the plates of different layers together against transverse movement but allowing radial movement. The present invention finds an application with nuclear reactor steam generators [fr

  14. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  15. fiReproxies: A computational model providing insight into heat-affected archaeological lithic assemblages.

    Science.gov (United States)

    Sorensen, Andrew C; Scherjon, Fulco

    2018-01-01

    Evidence for fire use becomes increasingly sparse the further back in time one looks. This is especially true for Palaeolithic assemblages. Primary evidence of fire use in the form of hearth features tends to give way to clusters or sparse scatters of more durable heated stone fragments. In the absence of intact fireplaces, these thermally altered lithic remains have been used as a proxy for discerning relative degrees of fire use between archaeological layers and deposits. While previous experimental studies have demonstrated the physical effects of heat on stony artefacts, the mechanisms influencing the proportion of fire proxy evidence within archaeological layers remain understudied. This fundamental study is the first to apply a computer-based model (fiReproxies) in an attempt to simulate and quantify the complex interplay of factors that ultimately determine when and in what proportions lithic artefacts are heated by (anthropogenic) fires. As an illustrative example, we apply our model to two hypothetical archaeological layers that reflect glacial and interglacial conditions during the late Middle Palaeolithic within a generic simulated cave site to demonstrate how different environmental, behavioural and depositional factors like site surface area, sedimentation rate, occupation frequency, and fire size and intensity can, independently or together, significantly influence the visibility of archaeological fire signals.

  16. Development and preliminary assessment of the wall condensation heat transfer models for the SPACE code

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Choi, Ki Yong; Moon, Sang Ki; Kim, Jung Woo; Kim, Kyung Doo

    2009-01-01

    The wall condensation heat transfer models are developed for the SPACE code and are assessed for various condensation conditions. Both default and alternative models were selected through an extensive literature survey. For a pure steam condensation, a maximum value among the Nusselt, Chato, and Shah's correlations is used in order to consider the geometric and turbulent effects. In the presence of non-condensable gases, the Colburn-Hougen's diffusion model was used as a default model and a non-iterative condensation model proposed by No and Park was selected as an alternative model. The wall condensation heat transfer models were assessed preliminarily by using arbitrary test conditions. Both wall condensation models could simulate the heat transfer coefficients and heat fluxes in the vertical, horizontal and turbulent conditions quite reasonably for a pure steam condensation. Both the default and alternative wall condensation models were also verified for the condensation heat transfer coefficient and heat flux in the presence of noncondensable gas. However, some improvements and further detailed verification are necessary for the condensation phenomena in the presence of noncondensable gas

  17. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  18. Effect of the inter-block spacing on the thermal performance of a PCM based heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, M.; El Qarnia, H. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire de mecanique des fluides et d' energetique; El Khadir, L. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire d' tomatique de l' Environnement et Procedes de Transferts

    2010-07-01

    Advanced electronic devices require efficient thermal control systems. Heat transfer analysis of such systems is challenging because of constraints regarding space limitations, power consumption and noise level. This study considered the problem of melting and natural convection in a rectangular enclosure heated with 3 heat sources with a constant and uniform volumetric heat generation. The heat sources were protruding and mounted on a vertical conducting plate. Conjugate conduction in a plate and heat sources coupled with natural convection and melting process were examined in an effort to determine the effects of the inter-blocks spacing ratio on the thermal performance of the cooling PCM-heat sink. The percentage contribution of substrate heat conduction on the total removed heat from heat sources was also investigated. Correlations were derived for the non- dimensional secured working time and the corresponding melt fraction. In order to investigate the thermal behaviour of the proposed heat sink, a mathematical model was developed based on the mass, momentum and energy conservation equations. The results revealed that for lower inter-blocks spacing, the dimensionless secured working time needed by the chips to reach the critical temperature was maximized. The highest inter-blocks spacing ratio provoked a sudden rise in chip temperatures and thus reduced the dimensionless secured working time. It was concluded that this approach can be used in the design of PCM-based cooling systems. 9 refs., 2 tabs., 4 figs.

  19. Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    CERN Document Server

    Barnes, M J; Cornelis, K; Ducimetière, L; Mahner, E; Papotti, G; Rumolo, G; Senaj, V; Shaposhnikova, E

    2010-01-01

    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available d...

  20. Practice nurses mental health provide space to patients to discuss unpleasant emotions.

    Science.gov (United States)

    Griep, E C M; Noordman, J; van Dulmen, S

    2016-03-01

    WHAT IS KNOWN ON THE SUBJECT?: A core skill of practice nurses' mental health is to recognize and explore patients' unpleasant emotions. Patients rarely express their unpleasant emotions directly and spontaneously, but instead give indirect signs that something is worrying them. WHAT THIS PAPER ADDS TO EXISTING KNOWLEDGE?: Patients with mild psychosocial and psychological problems provide signs of worrying or express a clear unpleasant emotion in 94% of consultations with a practice nurse mental health. Nurses' responses to patients' signs of worrying or clear unpleasant emotions were mostly characterized by providing space for patients to talk about these emotions, by using minimal responses. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Practice nurses' mental health have passive listening skills, and to a lesser extent, use active listening techniques. Accurate emotion detection and the ability to pick out emotional signs during consultations must also be considered as an important skill for health providers to improve patient-centred communication. Patients with physical problems are known to express their emotional concerns in an implicit way only. Whether the same counts for patients presenting mental health problems in primary care is unknown. This study aims to examine how patients with mild psychosocial and psychological complaints express their concerns during consultations with the practice nurse mental health and how practice nurses respond to these expressions. Fifteen practice nurses mental health working in Dutch general practices participated in the study. Their consultations with 116 patients with mild psychosocial or psychological complaints were video recorded. patients' explicitly expressed emotional concerns and more implicit expressions of underlying emotional problems (cues) as well as nurses' responses to these expressions were rated using the Verona Coding Definition of Emotional Sequences. Almost all consultations contained at least one cue or

  1. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    Science.gov (United States)

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  2. Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Ji, Jie; Xu, Ning; Li, Guiqiang

    2016-01-01

    Highlights: • Frosting and heating performance of DX-SAHP under frosting conditions is investigated. • The conditions when DX-SAHP frosts are studied. • The frosting process is observed during 360 min of operating. • The effect of ambient temperature, relative humidity and solar irradiation is analyzed. - Abstract: Direct expansion solar-assisted heat pump system (DX-SAHP) is promising in energy saving applications, but the performance of DX-SAHP under frosting conditions is rarely reported in the published literatures. In this paper, a DX-SAHP system with bare solar collectors for space heating is designed and experimentally investigated in the enthalpy difference lab with a solar simulator. The system is tested under a range of frosting conditions, with the ambient temperatures from 7 °C to −3 °C, the relative humidities of 50%, 70% and 90% and the solar irradiances of 0 W/m"2, 100 W/m"2, 200 W/m"2 and 300 W/m"2. The conditions when the DX-SAHP system frosts are studied. Results show that solar irradiance as low as 100 W/m"2 can totally prevent frosting when the ambient temperature is above −3 °C and the relative humidity is 70%. Besides, the frosting process is observed to be slower than that of fin-and-tube heat exchangers. The evaporator is not seriously frosted and the system performance is not significantly influenced after 360 min of continuous operating. Moreover the effects of ambient parameters, including the ambient temperature and the relative humidity, especially solar irradiation, on the system performance are studied and analyzed. Solar irradiation can effectively prevent or retard frosting, and also improve the heating performance of the DX-SAHP system. The DX-SAHP system is proved to be applicable under frosting conditions.

  3. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  4. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    Science.gov (United States)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  5. Convection heat transfer of closely-spaced spheres with surface blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering); Chiang, H. (Thermofluid Technology Div., Industrial Technology Research Inst., Chutung (Taiwan, Province of China))

    1993-05-01

    A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 [<=] Re [<=] 200) and intersphere distances (1.5 [<=] d[sub ij] [<=] 6.0) in the presence of surface blowing (0 [<=] v[sub b] [<=] 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re > 100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments. (orig.)

  6. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  7. Investment in Open Innovation Service Providers: NASA's Innovative Strategy for Solving Space Exploration Challenges

    Science.gov (United States)

    Fogarty, Jennifer A.; Rando, Cynthia; Baumann, David; Richard, Elizabeth; Davis, Jeffrey

    2010-01-01

    In an effort to expand routes for open communication and create additional opportunities for public involvement with NASA, Open Innovation Service Provider (OISP) methodologies have been incorporated as a tool in NASA's problem solving strategy. NASA engaged the services of two OISP providers, InnoCentive and Yet2.com, to test this novel approach and its feasibility in solving NASA s space flight challenges. The OISPs were chosen based on multiple factors including: network size and knowledge area span, established process, methodology, experience base, and cost. InnoCentive and Yet2.com each met the desired criteria; however each company s approach to Open Innovation is distinctly different. InnoCentive focuses on posting individual challenges to an established web-based network of approximately 200,000 solvers; viable solutions are sought and granted a financial award if found. Based on a specific technological need, Yet2.com acts as a talent scout providing a broad external network of experts as potential collaborators to NASA. A relationship can be established with these contacts to develop technologies and/or maintained as an established network of future collaborators. The results from the first phase of the pilot study have shown great promise for long term efficacy of utilizing the OISP methodologies. Solution proposals have been received for the challenges posted on InnoCentive and are currently under review for final disposition. In addition, Yet2.com has identified new external partners for NASA and we are in the process of understanding and acting upon these new opportunities. Compared to NASA's traditional routes for external problem solving, the OISP methodologies offered NASA a substantial savings in terms of time and resources invested. In addition, these strategies will help NASA extend beyond its current borders to build an ever expanding network of experts and global solvers.

  8. New mission requirements methodologies for services provided by the Office of Space Communications

    Science.gov (United States)

    Holmes, Dwight P.; Hall, J. R.; Macoughtry, William; Spearing, Robert

    1993-01-01

    The Office of Space Communications, NASA Headquarters, has recently revised its methodology for receiving, accepting and responding to customer requests for use of that office's tracking and communications capabilities. This revision is the result of a process which has become over-burdened by the size of the currently active and proposed missions set, requirements reviews that focus on single missions rather than on mission sets, and negotiations most often not completed early enough to effect needed additions to capacity or capability prior to launch. The requirements-coverage methodology described is more responsive to project/program needs and provides integrated input into the NASA budget process early enough to effect change, and describes the mechanisms and tools in place to insure a value-added process which will benefit both NASA and its customers. Key features of the requirements methodology include the establishment of a mechanism for early identification of and systems trades with new customers, and delegates the review and approval of requirements documents to NASA centers in lieu of Headquarters, thus empowering the system design teams to establish and negotiate the detailed requirements with the user. A Mission Requirements Request (MRR) is introduced to facilitate early customer interaction. The expected result is that the time to achieve an approved set of implementation requirements which meet the customer's needs can be greatly reduced. Finally, by increasing the discipline in requirements management, through the use of base lining procedures, a tighter coupling between customer requirements and the budget is provided. A twice-yearly projection of customer requirements accommodation, designated as the Capacity Projection Plan (CPP), provides customer feedback allowing the entire mission set to be serviced.

  9. The RF Probe: providing space situational awareness through broad-spectrum detection and characterization

    Science.gov (United States)

    Zenick, Raymond; Kohlhepp, Kimberly; Partch, Russell

    2004-09-01

    AeroAstro's patented RF Probe is a system designed to address the needs of spacecraft developers and operators interested in measuring and analyzing near-field RF emissions emanating from a nearby spacecraft of interest. The RF Probe consists of an intelligent spectrum analyzer with digital signal processing capabilities combined with a calibrated, wide-bandwidth antenna and RF front end that covers the 50 kHz to 18 GHz spectrum. It is capable of acquiring signal level and signal vector information, classifying signals, assessing the quality of a satellite"s transponders, and characterizing near-field electromagnetic emissions. The RF Probe is intended for either incorporation as part of a suite of spacecraft sensors, or as a stand-alone sensor on spacecraft or other platforms such as Unmanned Aerial Vehicles (UAVs). The RF Probe was initially conceived as a tool to detect and aid in diagnosis of malfunctions in a spacecraft of interest. However, the utility of the RF Probe goes far beyond this initial concept, spanning a wide range of military applications. Most importantly, the RF Probe can provide space situational awareness for critical on-orbit assets by detecting externally induced RF fields, aiding in protection against potentially devastating attacks.

  10. Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis

    International Nuclear Information System (INIS)

    Kothari, Manish; Sieffert, Martine; Block, Jon E.; Peterfy, Charles G.; Guermazi, Ali; Ingersleben, Gabriele von; Miaux, Yves; Stevens, Randall

    2004-01-01

    The validity of a non-fluoroscopic fixed-flexion radiographic acquisition and analysis protocol for measurement of joint space width (JSW) in knee osteoarthritis is determined. A cross-sectional study of 165 patients with documented knee osteoarthritis participating in a multicenter, prospective study of chondroprotective agents was performed. All patients had posteroanterior, weight-bearing, fixed-flexion radiography with 10 caudal beam angulation. A specially designed frame (SynaFlexer) was used to standardize the positioning. Minimum medial and lateral JSW were measured manually and twice by an automated analysis system to determine inter-technique and intra-reader concordance and reliability. A random subsample of 30 patients had repeat knee radiographs 2 weeks apart to estimate short-term reproducibility using automated analysis. Concordance between manual and automated medial JSW measurements was high (ICC=0.90); lateral compartment measurements showed somewhat less concordance (ICC=0.72). There was excellent concordance between repeated automated JSW measurements performed 6 months apart for the medial (ICC=0.94) and lateral (ICC=0.86) compartments. Short-term reproducibility for the subsample of 30 cases with repeat acquisitions demonstrated an average SD of 0.14 mm for medial JSW (CV=4.3%) and 0.23 mm for lateral JSW (CV=4.0%). Fixed-flexion radiography of the knee using a positioning device provides consistent, reliable and reproducible measurement of minimum JSW in knee osteoarthritis without the need for concurrent fluoroscopic guidance. (orig.)

  11. Systems and Methods for Providing Energy to Support Missions in Near Earth Space

    Science.gov (United States)

    Fork, Richard (Inventor)

    2015-01-01

    A system has a plurality of spacecraft in orbit around the earth for collecting energy from the Sun in space, using stimulated emission to configure that energy as well defined states of the optical field and delivering that energy efficiently throughout the region of space surrounding Earth.

  12. Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Croes, Kenneth James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garino, Terry J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mowry, Curtis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-15

    This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added as further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I2.

  13. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions

    International Nuclear Information System (INIS)

    Coleman, Brittany; Ostanek, Jason; Heinzel, John

    2016-01-01

    Highlights: • Finite element analysis to evaluate heat sinks for large format li-ion batteries. • Solid metal heat sink and composite heat sink (metal filler and wax). • Transient simulations show response from rest to steady-state with normal load. • Transient simulations of two different failure modes were considered. • Significance of spacing, material properties, interface quality, and phase change. - Abstract: Thermal management is critical for large-scale, shipboard energy storage systems utilizing lithium-ion batteries. In recent years, there has been growing research in thermal management of lithium-ion battery modules. However, there is little information available on the minimum cell-to-cell spacing limits for indirect, liquid cooled modules when considering heat release during a single cell failure. For this purpose, a generic four-cell module was modeled using finite element analysis to determine the sensitivity of module temperatures to cell spacing. Additionally, the effects of different heat sink materials and interface qualities were investigated. Two materials were considered, a solid aluminum block and a metal/wax composite block. Simulations were run for three different transient load profiles. The first profile simulates sustained high rate operation where the system begins at rest and generates heat continuously until it reaches steady state. And, two failure mode simulations were conducted to investigate block performance during a slow and a fast exothermic reaction, respectively. Results indicate that composite materials can perform well under normal operation and provide some protection against single cell failure; although, for very compact designs, the amount of wax available to absorb heat is reduced and the effectiveness of the phase change material is diminished. The aluminum block design performed well under all conditions, and showed that heat generated during a failure is quickly dissipated to the coolant, even under the

  14. Synergies of wind power and electrified space heating: case study for Beijing.

    Science.gov (United States)

    Chen, Xinyu; Lu, Xi; McElroy, Michael B; Nielsen, Chris P; Kang, Chongqing

    2014-01-01

    Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

  15. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  16. Space chamber experiments of ohmic heating by high power microwave from the solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.

    1981-12-01

    It is quantitatively predicted that a high power microwave from the Solar Power Satellite (SPS) nonlinearly interacts with the ionospheric plasma. The possible nonlinear interactions are ohmic heating, self-focusing and parametric instabilities. A rocket experiment called MINIX (Microwave-Ionosphere Nonlinear Interaction Experiment) has been attempted to examine these effects, but is note reported here. In parallel to the rocket experiment, a laboratory experiment in a space plasma simulation chamber has been carried out in order to examine ohmic heating in detail and to develop a system of the rocket experiment. Interesting results were observed and these results were utilized to revise the system of the rocket experiments. A significant microwave heating of plasma up to 150% temperature increase was observed with little electron density decrease. It was shown that the temperature increase is not due to the RF breakdown but to the ohmic heating in the simulated ionospheric plasma. These microwave effects have to be taken into account in the SPS Project in the future.

  17. Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera

    Science.gov (United States)

    Meng, Qingliang; Yang, Tao; Li, Chunlin

    2016-10-01

    As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.

  18. Development and test of a space-reactor-core heat pipe

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Runyan, J.E.; Martinez, H.E.; Keddy, E.S.

    1983-01-01

    A heat pipe designed to meet the heat transfer requirements of a 100-kW/sub e/ space nuclear power system has been developed and tested. General design requirements for the device included an operating temperature of 1500 0 K with an evaporator radial flux density of 100 w/cm 2 . The total heat-pipe length of 2 m comprised an evaporator length of 0.3 m, a 1.2-m adiabatic section, and a condenser length of 0.5 m. A four-artery design employing screen arteries and distribution wicks was used with lithium serving as the working fluid. Molybdenum alloys were used for the screen materials and tube shell. Hafnium and zirconium gettering materials were used in connection with a pre-purified distilled lithium charge to ensure internal chemical compatibility. After initial performance verification, the 14.1-mm i.d. heat pipe was operated at 15 kW throughput at 1500 0 K for 100 hours. No performance degradation was observed during the test

  19. Regulation and Measurement of the Heat Generated by Automatic Tooth Preparation in a Confined Space.

    Science.gov (United States)

    Yuan, Fusong; Zheng, Jianqiao; Sun, Yuchun; Wang, Yong; Lyu, Peijun

    2017-06-01

    The aim of this study was to assess and regulate heat generation in the dental pulp cavity and circumambient temperature around a tooth during laser ablation with a femtosecond laser in a confined space. The automatic tooth preparing technique is one of the traditional oral clinical technology innovations. In this technique, a robot controlled an ultrashort pulse laser to automatically complete the three-dimensional teeth preparing in a confined space. The temperature control is the main measure for protecting the tooth nerve. Ten tooth specimens were irradiated with a femtosecond laser controlled by a robot in a confined space to generate 10 teeth preparation. During the process, four thermocouple sensors were used to record the pulp cavity and circumambient environment temperatures with or without air cooling. A statistical analysis of the temperatures was performed between the conditions with and without air cooling (p heat generated in the pulp cavity was lower than the threshold for dental pulp damage. These results indicate that femtosecond laser ablation with air cooling might be an appropriate method for automatic tooth preparing.

  20. Heating of large format filters in sub-mm and fir space optics

    Science.gov (United States)

    Baccichet, N.; Savini, G.

    2017-11-01

    Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.

  1. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  2. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  3. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    Science.gov (United States)

    Favero, M. S.

    1973-01-01

    The project to evaluate thermal sterilization for unmanned landers is reported. A temperature controlled oven with a nitrogen gas supply containing a known concentration of water is discussed. The studies show that bacillus lentus, bacillus brevis, bacillus coagulans, atypical bacillus spp., and actinomycete are isolated heat survivors. The thermal resistance is given for naturally occurring airborne bacterial spores collected on exposed teflon ribbons.

  4. Technical needs and research opportunities provided by projected aeronautical and space systems

    Science.gov (United States)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  5. Automatic Georeferencing of Astronaut Auroral Photography: Providing a New Dataset for Space Physics

    Science.gov (United States)

    Riechert, Maik; Walsh, Andrew P.; Taylor, Matt

    2014-05-01

    Astronauts aboard the International Space Station (ISS) have taken tens of thousands of photographs showing the aurora in high temporal and spatial resolution. The use of these images in research though is limited as they often miss accurate pointing and scale information. In this work we develop techniques and software libraries to automatically georeference such images, and provide a time and location-searchable database and website of those images. Aurora photographs very often include a visible starfield due to the necessarily long camera exposure times. We extend on the proof-of-concept of Walsh et al. (2012) who used starfield recognition software, Astrometry.net, to reconstruct the pointing and scale information. Previously a manual pre-processing step, the starfield can now in most cases be separated from earth and spacecraft structures successfully using image recognition. Once the pointing and scale of an image are known, latitudes and longitudes can be calculated for each pixel corner for an assumed auroral emission height. As part of this work, an open-source Python library is developed which automates the georeferencing process and aids in visualization tasks. The library facilitates the resampling of the resulting data from an irregular to a regular coordinate grid in a given pixel per degree density, it supports the export of data in CDF and NetCDF formats, and it generates polygons for drawing graphs and stereographic maps. In addition, the THEMIS all-sky imager web archive has been included as a first transparently accessible imaging source which in this case is useful when drawing maps of ISS passes over North America. The database and website are in development and will use the Python library as their base. Through this work, georeferenced auroral ISS photography is made available as a continously extended and easily accessible dataset. This provides potential not only for new studies on the aurora australis, as there are few all-sky imagers in

  6. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  7. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  8. Our leadership in science and technology as provided by the national space program

    Science.gov (United States)

    Kock, W. E.

    1972-01-01

    The contributions of science and technology to the success of the United States as a world leader are discussed. Specific instances of the manner in which science advances and new technologies resulting from space research have contributed to a higher standard of living are presented. It is concluded that the benefits of the space program are not reflected only in the material advancements, but that intangible results have also been achieved in greater incentives to improve the present culture.

  9. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, Danny [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWHs) on space conditioning and water heating energy use in residential applications. Two identical HPWHs, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  10. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  11. Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010

    International Nuclear Information System (INIS)

    Ó Broin, Eoin; Nässén, Jonas; Johnsson, Filip

    2015-01-01

    Highlights: • Space heating demand between 1990 and 2010 modelled using a panel of 14 EU countries. • The impacts of 260 efficiency polices affecting space heating demand are examined. • Regulatory policies found to have had a greater success than financial or informative. • High priority should be given to regulatory policies for space heating energy goals. - Abstract: We present an empirical analysis of the more than 250 space heating-focused energy efficiency policies that have been in force at the EU and national levels in the period 1990–2010. This analysis looks at the EU-14 residential sector (Pre-2004 EU-15, excluding Luxembourg) using a panel data regression analysis on unit consumption of energy for space heating (kWh/m 2 /year). The policies are represented as a regression variable using a semi-quantitative impact estimation obtained from the MURE Policy Database. The impacts of the policies as a whole, and subdivided into financial, regulatory, and informative policies, are examined. The correlation between the actual reductions in demand and the estimated impact of regulatory policies is found to be stronger than the corresponding correlations with the respective impacts of financial policies and informative polices. Together with the well-known market barriers to energy efficiency that exist in the residential sector, these findings suggest that regulatory policy measures be given a high priority in the design of an effective pathway towards the EU-wide goals for space heating energy

  12. Infrared astronomy seeing the heat : from William Herschel to the Herschel space observatory

    CERN Document Server

    Clements, David L

    2014-01-01

    Uncover the Secrets of the Universe Hidden at Wavelengths beyond Our Optical GazeWilliam Herschel's discovery of infrared light in 1800 led to the development of astronomy at wavelengths other than the optical. Infrared Astronomy - Seeing the Heat: from William Herschel to the Herschel Space Observatory explores the work in astronomy that relies on observations in the infrared. Author David L. Clements, a distinguished academic and science fiction writer, delves into how the universe works, from the planets in our own Solar System to the universe as a whole. The book first presents the major t

  13. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  14. Gas-operated heat pump for monovalent space heating and tap water heating. A seizable contribution to carbon dioxide emission control; Gasbetriebene Waermepumpe zur monovalenten Raumbeheizung und Trinkwassererwaermung. Ein greifbarer Beitrag zur Reduktion der CO{sub 2}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Heikrodt, K.; Heckt, R. [Viessmann Werke GmbH und Co., Allendorf (Germany)

    1999-07-01

    The project had the objectives to develop a Vuilleumier heat pump for space heating and make an experimental study testing it as a heat generator for a heating system for one- and multi-family houses. Apart from monovalent operation, the following boundary conditions were defined: provision for connection to existing heating systems, even radiator heatings with 75 C/60 C, tap water heating, and air-source heat. Performance constant, manufacturing cost, freedom from maintenance, and service life were taken into consideration in the design, rating and construction of the unit. (orig.) [German] Ziel des Vorhabens war die Entwicklung einer Vuilleumier-Waermepumpe zur Raumbeheizung und deren experimentelle Untersuchung als Waermeerzeuger fuer ein Heizungssystem in Ein- und Mehrfamilienhaeusern. Als Rahmebedingungen wurden neben einer monovalenten Betriebsweise auch die moegliche Anbindung an bestehende Heizungssysteme, sogar Radiatorheizungen mit 75 C/60 C, Trinkwassererwaermung und Luft als Waermequelle festgelegt. Leistungszahl, Herstellkosten, Wartungsfreiheit und Lebensdauer wurden in Konzeption, Auslegung und Konstruktion beruecksichtigt. (orig.)

  15. Natural convection in a horizontal channel provided with heat generating blocks: Discussion of the isothermal blocks validity

    International Nuclear Information System (INIS)

    Mouhtadi, D.; Amahmid, A.; Hasnaoui, M.; Bennacer, R.

    2012-01-01

    Highlights: ► We examine the validity of isothermal model for blocks with internal heat generation. ► Criteria based on comparison of total and local quantities are adopted. ► Thermal conductivity and Biot number required for the validity of the isothermal model are dependent on the Rayleigh number. ► The validity conditions are also affected by the multiplicity of solutions. - Abstract: This work presents a numerical study of air natural convection in a horizontal channel provided with heating blocks periodically distributed on its lower adiabatic surface. The blocks are submitted to a uniform heat generation and the channel upper surface is maintained at a cold constant temperature. The main objective of this study is to examine the validity of the model with isothermal blocks for the system under consideration. Then the calculations are performed using two different models. In the first (denoted Model 1 or M1) the calculations are performed by imposing a uniform volumetric heat generation inside the blocks. In the second model (denoted Model 2 or M2), the blocks are maintained isothermal at the average blocks surface temperature deduced from the Model 1. The controlling parameters of the present problem are the thermal conductivity ratio of the solid block and the fluid (0.1 ⩽ k* = k s /k a ⩽ 200) and the Rayleigh number (10 4 ⩽ Ra ⩽ 10 7 ). The validity of the isothermal model is examined for various Ra by using criteria based on local and mean heat transfer characteristics. It is found that some solutions of the isothermal model do not reproduce correctly the results of the first model even for very large conductivity ratios. The Biot number below which the Model 2 is valid depends strongly on the Rayleigh number and the type of solution.

  16. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  17. Generation of Domestic Hot Water, Space Heating and Driving Pattern Profiles for Integration Analysis of Active Loads in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Pigazo, Alberto; Bak-Jensen, Birgitte

    2013-01-01

    at household level. Despite of the well-known flexible service that this kind of loads can provide, their flexibility is highly dependent of the domestic hot water and space heating demand and the driving habits of each user. This paper presents two methodologies employed to randomly generate thermal power......The changes in the Danish energy sector, consequence of political agreements, are expected to have direct impact in the actual power distribution systems. Large number of electric boiler, heat pumps and electric vehicles are planned and will cope large percentage of the future power consumption...... demand and electric vehicle driving profiles, to be used for power grid calculations. The generated thermal profiles relied on a statistical analysis made from real domestic hot water and space heating data from 25 households of a typical Danish residential area. The driving profiles instead were formed...

  18. Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant; Kombineret brugsvands- og rumvarmepumpe med CO{sub 2} som koelemiddel

    Energy Technology Data Exchange (ETDEWEB)

    Schoen Poulsen, C. [Teknologisk Institut (Denmark)

    2006-05-19

    This project report describes the implementation of the Danish project called 'Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant'. In the course of the project, a combined heat pump has been developed for heating sanitary hot water and producing domestic space heating. The project shows that CO2 has excellent properties in systems where a high temperature is desired on the gas cooler side and that it is possible to combine the production of sanitary hot water with the production of domestic space heating. During the project, a number of system solutions have been analysed and at the end of the project a prototype was built. It was tested in the laboratory according to a current Dutch standard for heat pumps for sanitary hot water. The prototype was constructed without the space heat part which solely has been analysed according to calculations. The reason is that there currently are no applicable European standards for the testing of combined systems and as the total efficiency of the system mainly depends on the temperature out of the gas cooler it was decided not to spend resources on the construction of the combined system in the prototype version of the unit. Instead, a number of proposals have been submitted to how the system with a space heat section could be constructed. The main components used in the prototype (compressor, exchangers, valve, control and tank) are all partly commercially available and therefore focus has been on the system construction. During the project, a number of CFD calculations have been carried out on the gas cooler in the hot water tank and the results show how important it is that the gas cooler is designed and placed correctly. The laboratory tests carried out on the unit show that the COP of the heat pump plant in connection with sanitary hot water tapping (according to Dutch standard) is 1.4 1.5 which is not immediately satisfactory. But when it is considered that the unit is a

  19. A model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Bindner, Henrik W.; Madsen, Henrik

    2014-01-01

    The objective of this paper is to analyze the value of energy replacement in the context of demand response. Energy replacement is dened as the possibility of the consumer to choose the most convenient source for providing space heating to a smart building according to a dynamic electricity price....... In the proposed setup, heat is provided by conventional electric radiators and a combined heat and power generation system, composed by a fuel cell and an electrolyzer. The energy replacement strategy is formulated using model predictive control and mathematical models of the components involved. Simulations show...... that the predictive energy replacement strategy reduces the operating costs of the system and is able to provide a larger amount of regulating power to the grid. In the paper, we also develop a novel dynamic model of a PEM fuel cell suitable for micro-grid applications. The model is realized applying a grey...

  20. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  1. Profiling Space Heating Behavior in Chilean Social Housing: Towards Personalization of Energy Efficiency Measures

    Directory of Open Access Journals (Sweden)

    Victor Bunster

    2015-06-01

    Full Text Available Global increases in the demand for energy are imposing strong pressures over the environment while compromising the capacity of emerging economies to achieve sustainable development. In this context, implementation of effective strategies to reduce consumption in residential buildings has become a priority concern for policy makers as minor changes at the household scale can result in major energy savings. This study aims to contribute to ongoing research on energy consumer profiling by exploring the forecasting capabilities of discrete socio-economic factors that are accessible through social housing allocation systems. Accordingly, survey data gathered by the Chilean Ministry of Social Development was used identify key characteristics that may predict firewood usage for space heating purposes among potential beneficiaries of the Chilean social housing program. The analyzed data evidences strong correlations between general household characteristics and space heating behavior in certain climatic zones, suggesting that personalized delivery of energy efficiency measures can potentially increase the effectiveness of initiatives aimed towards the reduction of current patterns of consumption.

  2. Flow and heat transfer in parallel channel attached with equally-spaced ribs, 2

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Takizuka, Takakazu

    1980-09-01

    Using a computer code for the analysis of the flow and heat transfer in a parallel channel attached with equally-spaced ribs, calculations are performed when a pitch to rib-width ratio is 7 : 1, a rib-width to rib-height ratio is 2 : 1 and a channel-height to rib-height is 3 : 1. Assuming that the fluid properties and the heat-flux at the wall of this channel are constant, characteristics of the flow and heat transfer are analyzed in the range of Reynolds number from 10 to 250. The following results are obtained: (1) The separation region behind a rib grows downstream with the increase of Reynolds number. (2) The pressure drop of ribbed channel is greater than that of the smooth channel, and increases as Reynolds number increases. (3) The mean Nusselt number of ribbed channel is about 10 - 11 at the upper wall and about 7.5 at the lower wall in the range of Reynolds number from 10 to 250. (author)

  3. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  4. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  5. Providing Public Space Continuities in Post-Industrial Areas through Remodelling Land/Water Connections

    Science.gov (United States)

    Burda, Izabela M.; Nyka, Lucyna

    2017-10-01

    This article examines the problem of urban transformation strategies applied in recent years which are based on the creation of new water areas and modification of existing ones. The research is an attempt to prove that modifications of plans of water areas and forms of their borders may play an important role in achieving the best quality public spaces in post-industrial territories. The basis for demonstrating the importance of modifying water borders, and introducing new forms of water-based structures in cities, are theoretical surveys, comparative studies and in-field analyses. It can be seen that post-industrial areas, which used to create voids in the urban fabric, can be perceived as unique but isolated places that should be integrated into the layout of cities. Thus, creating continuity of public spaces that will relate converted areas to their surroundings is a well-known objective of many transformation strategies. This research proves that an effective strategy toward achieving this goal can be based on the modification of relationships between land and water. Namely, the introduction of new water areas, designing new pieces of land that protrude into the water, softening the boundaries of water lines or the opposite, like structuring smaller water flows into well-defined canals, may significantly contribute to the quality of public spaces. As such, all of this fosters the development of sustainable cities and contributes significantly to the emergence of high-quality urban landscapes.

  6. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  7. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    Science.gov (United States)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed

  8. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  9. Remote control systems for space heating. Product overview 2010 and recommendations - Final report; Fernsteuerungen fuer Raumheizungen. Produktuebersicht 2010 und Empfehlungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geilinger, E.; Bush, E. [Bush Energie GmbH, Felsberg (Switzerland); Venzin, T. [Hochschule fuer Technik und Wirtschaft (HTW) Chur, Chur (Switzerland); Nipkow, J. [Arena, Zuerich (Switzerland)

    2010-09-15

    Saving space heating energy by remote control: A remote-controlled space heating system allows a person to lower the room temperature in homes that go unoccupied for periods of time to the lowest temperature that's safe to keep the pipes from freezing while they're away. Comfort is guaranteed because the desired room temperature or mode can be activated in time before the guests arrive, via text message, phone or the internet. As most people simply leave unoccupied homes heated, the remote-controlled system saves up to 70% of heating energy when used actively. Market overview and product features: This report presents remote control devices that are currently available on the market. Their advantages and disadvantages are discussed as well as their technical features and function. Most of them are universal remote controls that have various uses, including temperature control. The report also discusses requirements that not all the examined products meet. Some lack an emergency power supply, the possibility for manual control or the ability to check the current temperature of the home from a remote location. Better planning for remote control: The critical issue proved not to be the remote control device itself, but the heating systems. Unfortunately, they often don't provide an option to be extended by remote control. We therefore call on the manufacturers to equip all new heating systems with options for remote control. It would also be helpful and desirable to provide information on the internet or in the technical documentation on how to connect a remote control device and which products are suitable - both for existing and new heating systems. If the system cannot be retrofitted, it should be described whether and how a central remote control with room thermostat can be installed. Improving communication: In this study, remote control and heating suppliers were interviewed as well as planners, installers and users of remote-controlled heating. Their responses

  10. Remote control systems for space heating. Product overview 2010 and recommendations - Final report; Fernsteuerungen fuer Raumheizungen. Produktuebersicht 2010 und Empfehlungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geilinger, E.; Bush, E. [Bush Energie GmbH, Felsberg (Switzerland); Venzin, T. [Hochschule fuer Technik und Wirtschaft (HTW) Chur, Chur (Switzerland); Nipkow, J. [Arena, Zuerich (Switzerland)

    2010-09-15

    Saving space heating energy by remote control: A remote-controlled space heating system allows a person to lower the room temperature in homes that go unoccupied for periods of time to the lowest temperature that's safe to keep the pipes from freezing while they're away. Comfort is guaranteed because the desired room temperature or mode can be activated in time before the guests arrive, via text message, phone or the internet. As most people simply leave unoccupied homes heated, the remote-controlled system saves up to 70% of heating energy when used actively. Market overview and product features: This report presents remote control devices that are currently available on the market. Their advantages and disadvantages are discussed as well as their technical features and function. Most of them are universal remote controls that have various uses, including temperature control. The report also discusses requirements that not all the examined products meet. Some lack an emergency power supply, the possibility for manual control or the ability to check the current temperature of the home from a remote location. Better planning for remote control: The critical issue proved not to be the remote control device itself, but the heating systems. Unfortunately, they often don't provide an option to be extended by remote control. We therefore call on the manufacturers to equip all new heating systems with options for remote control. It would also be helpful and desirable to provide information on the internet or in the technical documentation on how to connect a remote control device and which products are suitable - both for existing and new heating systems. If the system cannot be retrofitted, it should be described whether and how a central remote control with room thermostat can be installed. Improving communication: In this study, remote control and heating suppliers were interviewed as well as planners, installers and users of remote-controlled heating

  11. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  12. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Science.gov (United States)

    2010-10-01

    ..., unless it can be shown that a natural system will provide adequate ventilation. However, vessels which... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for crew quarters and, where provided...) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-15 Ventilation for crew...

  13. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  14. Electric space heating scheduling for real-time explicit power control in active distribution networks

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Bernstein, Andrey; Chamorro, Lorenzo Reyes

    2015-01-01

    This paper presents a systematic approach for abstracting the flexibility of a building space heating system and using it within a composable framework for real-time explicit power control of microgrids and, more in general, active distribution networks. In particular, the proposed approach...... is developed within the context of a previously defined microgrid control framework, called COMMELEC, conceived for the explicit and real-time control of these specific networks. The designed control algorithm is totally independent from the need of a building model and allows exploiting the intrinsic thermal...... inertia for real-time control. The paper first discusses the general approach, then it proves its validity via dedicated simulations performed on specific case study composed by the CIGRE LV microgrid benchmark proposed by the Cigré TF C6.04.02....

  15. The exploitation of biomass for building space heating in Greece: Energy, environmental and economic considerations

    International Nuclear Information System (INIS)

    Michopoulos, A.; Skoulou, V.; Voulgari, V.; Tsikaloudaki, A.; Kyriakis, N.A.

    2014-01-01

    Highlights: • The oil substitution with biomass residues for heating buildings is examined. • Primary energy consumption from biomass results increased by 3–4% as compared to diesel oil. • CO 2 and SO 2 emissions are significantly higher with biomass than with diesel oil. • The examined substitution is economically attractive for the final consumers. - Abstract: The exploitation of forest and agricultural biomass residues for energy production may offer significant advantages to the energy policy of the relevant country, but it strongly depends on a number of financial, technological and political factors. The work in hand focuses on the investigation of the energy, environmental and financial benefits, resulting from the exploitation of forest and agricultural biomass residues, fully substituting the conventional fuel (diesel oil) for building space heating in Greece. For this investigation, the energy needs of a representative building are determined using the EnergyPlus software, assuming that the building is located across the various climate zones of Greece. Based on the resulting thermal energy needs, the primary energy consumption and the corresponding emissions are determined, while an elementary fiscal analysis is also performed. The results show that significant financial benefits for the end-user are associated with the substitution examined, even though increased emissions and primary energy consumption have been derived

  16. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    Science.gov (United States)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.

    1990-01-01

    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  17. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    International Nuclear Information System (INIS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-01-01

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  18. Space and time variability of heating requirements for greenhouse tomato production in the Euro-Mediterranean area.

    Science.gov (United States)

    Mariani, Luigi; Cola, Gabriele; Bulgari, Roberta; Ferrante, Antonio; Martinetti, Livia

    2016-08-15

    The Euro-Mediterranean area is the seat of a relevant greenhouse activity, meeting the needs of important markets. A quantitative assessment of greenhouse energy consumption and of its variability in space and time is an important decision support tool for both greenhouse-sector policies and farmers. A mathematical model of greenhouse energy balance was developed and parameterized for a state-of-the-art greenhouse to evaluate the heating requirements for vegetables growing. Tomato was adopted as reference crop, due to its high energy requirement for fruit setting and ripening and its economic relevance. In order to gain a proper description of the Euro-Mediterranean area, 56 greenhouse areas located within the ranges 28°N-72°N and 11°W-55°E were analyzed over the period 1973-2014. Moreover, the two 1973-1987 and 1988-2014 sub-periods were separately studied to describe climate change effects on energy consumption. Results account for the spatial variability of energy needs for tomato growing, highlighting the strong influence of latitude on the magnitude of heat requirements. The comparison between the two selected sub-periods shows a decrease of energy demand in the current warm phase, more relevant for high latitudes. Finally, suggestions to reduce energy consumptions are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Forced heat convection in annular spaces; Convection forcee de la chaleur dans les espaces annulaires

    Energy Technology Data Exchange (ETDEWEB)

    Pelce, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-02-15

    This report deals with the experimental study of forced heat convection in annular spaces through which flow of air is passing when a uniform heat flux is dissipated across the inner wall. These observations took place chiefly in the region where thermal equilibrium are not yet established. Amongst other things it became apparent that, both in the region where thermal equilibrium conditions are on the way to establishment and where they are already established, the following relationship held good: the longitudinal temperature gradient, either on the wall or in the fluid stream, is proportional to the heat flux dissipated q, and inversely proportional to the average flow rate V: dT/dx = B (q/V). From this result the next step is to express the variations of the local convection coefficient {alpha} (or of the Margoulis number M) in a relationship of the form: 1/M = {psi}(V) + F(x). If this relationship is compared with the classical empirical relationship {alpha} = KV{sup n} (where n is close to 0.8), the relationship: 1/M = {xi}V{sup 1-n} + F(x) is obtained ({xi} is a constant for a given annular space); from this it was possible to coordinate the whole set of experimental results. (author) [French] Il s'agit precisement de l'etude experimentale de la convection forcee de la chaleur dans des espaces annulaires parcourus par de l'air en ecoulement turbulent, lorsqu'on dissipe a travers la paroi interieure un flux de chaleur uniforme. Ces observations ont eu lieu principalement dans la region ou le regime thermique n'est pas encore etabli. Il est apparu, entre autre, qu'il existait, tant dans la region ou le regime thermique est en voie d'etablissement qu'en regime etabli, la relation suivante: le gradient longitudinal des temperatures, que ce soit sur la paroi ou dans l'ecoulement fluide, est proportionnel au flux de la chaleur dissipee q, et inversement proportionnel a la vitesse moyenne V de l'ecoulement: dT/dx = B (q/V). Ce resultat a pour consequence de traduire

  20. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  1. The Effect of Tree Spacing and Size in Urban Areas: Strategies for Mitigating High Temperature in Urban Heat Islands

    Science.gov (United States)

    Berry, R.; Shandas, V.; Makido, Y.

    2017-12-01

    Many cities are unintentionally designed to be heat sinks, which absorb the sun's short-wave radiation and reemit as long-wave radiation. Long time reorganization of this `urban heat island' (UHI) phenomena has led researchers and city planners into developing strategies for reducing ambient temperatures through urban design. Specifically, greening areas have proven to reduce the temperature in UHI's, including strategies such as green streets, green facades, and green roofs have been implemented. Among the scientific community there is promoted study of how myriad greening strategies can reduce temperature, relatively limited work has focused on the distribution, density, and quantity of tree campaigns. This paper examines how the spacing and size of trees reduce temperatures differently. A major focus of the paper is to understand how to lower the temperature through tree planting, and provide recommendations to cities that are attempting to solve their own urban heat island issues. Because different cities have different room for planting greenery, we examined which strategies are more efficient given an area constraint. Areas that have less available room might not be able to plant a high density of trees. We compared the different experimental groups varying in density and size of trees against the control to see the effect the trees had. Through calibration with local weather stations, we used a micrometeorology program (ENVI-Met) to model and simulate the different experimental models and how they affect the temperature. The results suggest that some urban designs can reduce ambient temperatures by over 7 0C, and the inclusion of large form trees have the greatest contribution, by reducing temperatures over 15 0C. The results suggest that using specific strategies that combine placement of specific tree configurations with alternative distribution of urban development patterns can help to solve the current challenges of UHI's, and thereby support management

  2. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    Science.gov (United States)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  3. Analysis of a radiative heat exchanger for systems for thermal control of space vehicles

    International Nuclear Information System (INIS)

    Vasil'ev, L.L.; Kanonchik, L.E.; Babenko, V.A.

    1995-01-01

    Starting from the solution of a two-dimensional heat conduction problem, a mathematical model of a heat pipe-based radiative heat exchanger is developed. Good agreement between the predicted and experimental results is obtained. The effect of operational and structural parameters on the characteristics of the radiative heat exchanger is analyzed

  4. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    Science.gov (United States)

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the

  5. Simulation Study of the Energy Performance of Different Space Heating Methods in Plus-energy Housing

    DEFF Research Database (Denmark)

    Schøtt, Jacob; Andersen, Mads E.; Kazanci, Ongun Berk

    2016-01-01

    Due to a shortage of energy resources, the focus on indoor environment and energy use in buildings is increasing which sets higher standards for the performance of HVAC systems in buildings. The variety of available heating systems for both residential buildings and office buildings is therefore...... cases the heat source was a natural gas fired condensing boiler, and for the floor heating cases also an air-to-water heat pump was used to compare two heat sources. The systems were also compared in terms of auxiliary energy use for pumps and fans. The results show that the investigated floor heating...... from the low temperature heating potential since an increased floor covering requires higher average water temperatures in the floor loops and decreases the COP of the heat pump. The water-based heating systems required significantly less auxiliary energy input compared to the air-based heating system...

  6. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  7. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    Science.gov (United States)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  8. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  9. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  10. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  11. Thermodynamic effects when utilizing waste heat from condensation in cases of a reduced vacuum in steam turbine plants of thermal power stations, to provide heat at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljevic, N.; Savic, B.; Stojakovic, M.

    1986-01-01

    There is an interesting variant of cogeneration in the steam turbine system of a thermal power plant, i.e. the utilisation of the waste heat of condensation with a reduced vacuum without reconstruction of the thermal power plant. The thermodynamic effect in cogeneration was calculated in consideration of the dynamics of heat consumption. This cogeneration process has the advantage of saving primary energy without reconstruction of the thermal power plant.

  12. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  13. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  14. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Science.gov (United States)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  15. New operational spaces for the electron cyclotron resonance heating at ASDEX upgrade

    International Nuclear Information System (INIS)

    Hoehnle, Hendrik Sebastian

    2012-01-01

    In this thesis, new electron cyclotron resonance heating (ECRH) scenarios were developed for an extension of the operational space at the tokamak ASDEX Upgrade in view of ITER compatibility. In the last years, the first wall material at ASDEX Upgrade was changed from graphite to tungsten, and the ECRH is needed to control the tungsten concentration in the plasma core. But, in ITER-like plasma discharges at ASDEX Upgrade, the usage of the ECRH in the typically used second harmonic extraordinary polarised mode (X2 mode) is limited. In these ITER-scenarios a small safety factor should be achieved, which implements an increase of the plasma current at ASDEX Upgrade. A higher plasma current and a high confinement lead to a raised density and for the ITER scenario to an electron density above the cutoff of the X2 mode at ASDEX Upgrade. Therefore, the X2 mode is reflected at the cutoff layer and cannot be used for central heating and the control of the tungsten concentration. One possibility to overcome this problem is to apply the third harmonic mode at reduced magnetic field. Here the cutoff is increased by 33% due to the dependence on the magnetic field. However, at the reachable plasma parameters at the reduced field the absorption of the X3 mode is incomplete (60-70 %) and the shine-trough power can destroy microwave sensitive components in ASDEX Upgrade. To solve this problem the magnetic field has to be optimized. A slightly increased magnetic field from 1.7 T to 1.8 T moves the second harmonic resonance in the region of confined plasma with high temperatures and density, so that this resonance can act as beam dump. The deposition in the plasma core is still central enough for the tungsten control ability of the ECRH. The benefit of the beam dump was verified in experiments with two different magnetic fields (1.7 T and 1.8 T). In case of the higher magnetic field, the stray radiation was reduced; simultaneously the electron temperature was increased. In addition

  16. New Approach to Simulation of Heat State of Compartments from Lattice Composite Shells for Space Engineering Products

    Directory of Open Access Journals (Sweden)

    Razin Alexander F.

    2017-01-01

    Full Text Available A new approach to the simulation of the heat state of the compartment of lattice polymer composite materials (PCM, not providing for the use of known commercial software packages, has been proposed. The simulation has been performed using the PCM interstage of the Proton rocket as an example with due account of aerodynamic heating, solar radiation and acting of jets of auxiliary propulsion units. At the first stage of numerical analysis, a problem of unsteady heat conduction in the system “skin-air gap-heat insulation” has been solved. An effect of changing a pressure inside a compartment on thermal conductivity of heat insulation was taken into account. The effective thermal conductivity in gaps was used. An effect of a temperature of equipment on a value of radiant heat flux was also taken into account. At the second stage, the heat state of the system “skin-rib” was analyzed. A mathematical model in the form of a system of nonlinear equations for heat balance of control elements on which a rib and a skin section were partitioned, including an information about a temperature of heat insulation received at the first stage of the simulation, was used.

  17. Dry heat tolerance of the dry colony in Nostoc sp. HK-01 for useful usage in space agriculture

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Yamashita, Masamichi; Sato, Seigo; Katoh, Hiroshi

    Space agriculture producing foods is important as one of approach for space habitation. Nostoc sp. HK-01 is one of terrestrial cyanobacterium having a high dry tolerance and it has several ability, photosynthesis, nitrogen fixation and usefulness as a food, it is thought that it can be used for space agriculture. Besides, a study on each tolerance predicted at the time of introduction to space agriculture is necessary. Therefore, as one of the tolerance that are intended to space environment, dry heat ( 100(°) C, 10 h ) tolerance of dry colony in Nostoc sp. HK-01 has been investigated, but the detail function of them has not yet been elucidated. We focused on the extracellular polysaccharides ( EPS ) having the various tolerance, desiccation, low temperature, NaCl, and heavy particle beam. We will consider the function and useful usage of this cyanobacterum in space agriculture after the consideration of the results of contribution of the possibility that EPS improves dry heat tolerance under a dry condition.

  18. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  19. Feasibility of using the water from the abandoned and flooded coal mines as an energy resource for space heating

    OpenAIRE

    Athresh, AP

    2017-01-01

    This research project aims to study the feasibility of using the water from the abandoned and flooded coal mines for space heating applications using a Ground Source Heat Pump (GSHP) in open loop configuration and take a conceptual idea to a commercial deployment level. The flooded coal mines are the legacy that has been left behind after the three centuries of continuous operations by the coal mining industry. The closure of all coal mines in the UK has led to the flooding of all those aband...

  20. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space

    Directory of Open Access Journals (Sweden)

    Sarafraz M.M.

    2012-01-01

    Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.

  1. ComPAQS: a compact concentric UV/visible spectrometer, providing a new tool for air quality monitoring from space

    Science.gov (United States)

    Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.

    2017-11-01

    Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each

  2. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  3. Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, J.F.; Marlor, J.K.

    1982-08-01

    A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

  4. Performance investigations of liquid-metal heat pipes for space and terrestrial applications

    International Nuclear Information System (INIS)

    Kemme, J.E.; Keddy, E.S.; Phillips, J.R.

    1978-01-01

    The high heat transfer capacity of liquid-metal heat pipes is demonstrated in performance tests with mercury, potassium, sodium, and lithium working fluids and wick structures which serve to minimize liquid pressure losses and vapor/liquid interactions. Appropriate wicks for horizontal and vertical operation are described. It is shown that heat-transfer with these wicks is limited by vapor flow effects. Examples are given of particular effects associated with a long adiabatic section between evaporator and condenser and with a heat source of uniform temperature as opposed to a source of uniform power

  5. Comparison of Analytical and Numerical Performance Predictions for a Regenerative Heat Exchanger in the International Space Station Node 3 Internal Active Thermal Control System

    Science.gov (United States)

    Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.

  6. Comparison of Analytical and Numerical Performance Predictions for an International Space Station Node 3 Internal Active Thermal Control System Regenerative Heat Exchanger

    Science.gov (United States)

    Wise, Stephen A.; Holt, James M.

    2002-01-01

    The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.

  7. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  8. Simulation of the impact of financial incentives on solar energy utilization for space conditioning and water heating: 1985

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H C

    1979-01-01

    Financial incentives designed to accelerate the use of solar energy for heating, cooling, and water heating of buildings have been proposed by both state and federal legislative bodies in the U.S.A. Among the most frequently mentioned incentives are sales and property tax exemptions, tax deductions and credits, rapid amortization provisions, and interest rate subsidies. At the present time there is little available information regarding the ability of such incentives to advance the rate of solar energy utilization. This paper describes the derivation and use of a computer simulation model designed to estimate solar energy use for space conditioning and water heating for given economic, climatic, and technological conditions. When applied to data from the Denver, Colorado metropolitan area, the simulation model predicts that sales tax exemptions would have little impact over the next decade, interest rate subsidies could more than double solar energy use, and the other proposed incentives would have an intermediate impact.

  9. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  10. Phase-space resolved measurement of 2nd harmonic ion cyclotron heating using FIDA tomography at the ASDEX Upgrade tokamak

    DEFF Research Database (Denmark)

    Weiland, M.; Bilato, R.; Geiger, B.

    2017-01-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade allow to reconstruct the fast-ion phase space at several radial positions with decent energy and pitch resolution. These new diagnostic capabilities are applied to study the physics of 2nd harmonic ion cyclotron heating, w....... Furthermore, comparisons to other fast-ion diagnostics (neutron yield and neutral particle analyzers) are discussed....

  11. Rational energy use and the gas utility. An economic analysis of energy efficiency strategies on the space heating market

    International Nuclear Information System (INIS)

    Helle, C.

    1994-01-01

    Apart from the political authorities, also the supply utilities may contribute to a more widespread rational energy use. This investigtion focuses on the gas utilities, which have a wide range of options for higher energy efficiency, especially on the space heating market. These options are analyzed in the framework of the process of company straategy planning. Particular interest is taken in the product-political strategy of forward integration. (orig.) [de

  12. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  13. Central model predictive control of a group of domestic heat pumps, case study for a small district

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; Helfert, Markus; Krempels, Karl-Heinz; Donnellan, Brian; Klein, Cornel

    2015-01-01

    In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and

  14. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  15. Industrial space heating and cooling from stored spent nuclear power plant fuel

    International Nuclear Information System (INIS)

    Shaver, B.O.; Doman, J.W.

    1980-01-01

    Projections by the Department of Energy indicate that some 5800 metric tons of spent fuel from nuclear power reactors are now in storage and that some 33000 metric tons are expected to be in storage in 1990. The bulk of the spent fuel is currently stored in water-filled basins at the reactor sites from which the material was discharged. The thermal energy in the fuel is dissipated to atmospheres via a pumped water-to-air heat exchanger system. This paper describes a feasibility study of potential methods for the use of the heat. Also, potential applications of heat recovery systems at larger AFR storage facilities were investigated

  16. Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-07

    The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

  17. Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.

  18. Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress.

    Science.gov (United States)

    Essemine, Jemaa; Xiao, Yi; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang

    2017-04-01

    Previously we have shown that a quick down-regulation in PSI activity compares to that of PSII following short-term heat stress for two rice groups including C4023 and Q4149, studied herein. These accessions were identified to have different natural capacities in driving cyclic electron flow (CEF) around PSI; i.e., low CEF (lcef) and high CEF (hcef) for C4023 and Q4149, respectively. The aim of this study was to investigate whether these two lines have different mechanisms of protecting photosystem II from photodamage under heat stress. We observed a stepwise alteration in the shape of Chl a fluorescence induction (OJIP) with increasing temperature treatment. The effect of 44°C treatment on the damping in Chl a fluorescence was more pronounced in C4023 than in Q4149. Likewise, we noted a disruption in the I-step, a decline in the F v due to a strong damping in the F m , and a slight increase in the F 0 . Normalized data demonstrated that the I-step seems more susceptible to 44°C in C4023 than in Q4149. We also measured the redox states of plastocyanin (PC) and P 700 by monitoring the transmission changes at 820nm (I 820 ), and observed a disturbance in the oxidation/reduction kinetics of PC and P 700 . The decline in the amplitude of their oxidation was shown to be about 29% and 13% for C4023 and Q4149, respectively. The electropotential component (Δφ) of ms-DLE appeared more sensitive to temperature stress than the chemical component (ΔpH), and the impact of heat was more evident and drastic in C4023 than in Q4149. Under heat stress, we noticed a concomitant decline in the primary photochemistry of PSII as well as in both the membrane energization process and the lumen protonation for both accessions, and it is evident that heat affects these parameters more in C4023 than in Q4149. All these data suggest that higher CET can confer higher photoprotection to PSII in rice lines, which can be a desirable trait during rice breeding, especially in the context of a

  19. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  20. The space heating market and the big customers; Vaermemarknaden och storkunderna

    Energy Technology Data Exchange (ETDEWEB)

    Maardsjoe, Olle

    2007-07-01

    This report focuses on the cost of heating in multiple-occupancy buildings, commercial premises and industrial premises. A summary has been created of the development of heating, primarily in the 2000s, for as long as statistics are available (essentially 2004). Total heating has seen a reduction over the period as regards both total usage and specifically in kWh/sq. m. District heating, on the other hand, has seen an increase in total turnover, now accounting for around two-thirds of demand - or about 42 TWh - as well. The increase in district heating has come about partly as a result of property renovation and people exchanging their sources of heating. A reduction in oil consumption has been the primary cause of this transition. There has also been a slight increase in the number of heat pumps in use. In total, heat pumps account for a small proportion of the heating of the properties in question. Heating costs account for a large proportion of operating expenses for property owners, in fact up to 40-50 percent of ongoing operating expenses. Reducing the cost of heating is very important, as this directly affects the property owners' bottom lines. Contractors are offering services to help property owners to optimise their energy-saving measures. The price of district heating, where this is available, is being used as a basis. This is why the structure of the price of district heating affects what measures are implemented. In price constructions with too high a flexible element, there is plenty of incentive to make savings on energy. District heating suppliers' coverage of set costs is reduced once the measures to ensure savings have been implemented, and so they have to increase their prices retrospectively. In price constructions with a high set element, there is little incentive to make savings, with a subsequent increase in demand for heating in extreme cases. District heating suppliers can be forced to make investments in both generation and

  1. Study on thermal comfort, air quality and energy savings using bioenergy via gasification/combustion for space heating of a broiler house

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jadir Nogueira da; Zanatta, Fabio Luiz; Tinoco, Ilda de Fatima F.; Martin, Samuel [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: jadir@ufv.br; Scholz, Volkhard [Leibniz Institut fuer Agrartechnik- ATB, Potsdam (Germany)

    2008-07-01

    The annual production of chicken meat is increasing throughout the world and Brazil is the world leader regarding exportation, a prediction indicates about 2.7 millions tons to be exported in 2007. A key to this performance is the low production costs, however, the costs of space heating necessary during the first 3 weeks of the chick's life and is increasing significantly. For this reason, it is always necessary to search for most efficient systems for this purpose. In addition to that, the use of bioenergy is gaining importance since it is renewable and ecologically correct. A close coupled gasification/combustion system, using eucalyptus firewood (Eucalyptus grandis and/or Eucalyptus urophylla) as fuel, was tested with the objective of providing thermal comfort for the birds during their first 3 weeks after birth. An experiment was set up for this purpose in an industrial scale production facility. The results indicated that the gasification/combustion system is viable for space heating for chicks, does not alters significantly the air quality, regarding CO, CO{sub 2} and NH{sub 3} concentration inside poultry house, provides the best thermal comfort as compared to indirect fired furnaces and accounts for a 35% energy savings, leading to lower production costs. (author)

  2. In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress.

    Science.gov (United States)

    Klöppel, Christine; Michels, Christine; Zimmer, Julia; Herrmann, Johannes M; Riemer, Jan

    2010-12-03

    The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1(G93A) becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1(G85R). Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)

    2016-04-15

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals

  4. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    International Nuclear Information System (INIS)

    Di Piazza, Ivan; Angelucci, Morena; Marinari, Ranieri; Tarantino, Mariano; Forgione, Nicola

    2016-01-01

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m"2. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for

  5. Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Bruno, F.; Saman, W. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, SA 5095 (Australia)

    2011-01-15

    An experimental investigation was undertaken in which the thermal resistance for the heat flow through a typical timber framed pitched roofing system was measured under outdoor conditions for heat flow up. The measured thermal resistance of low resistance systems such as an uninsulated attic space and a reflective attic space compared well with published data. However, with higher thermal resistance systems containing bulk insulation within the timber frame, the measured result for a typical installation was as low as 50% of the thermal resistance determined considering two dimensional thermal bridging using the parallel path method. This result was attributed to three dimensional heat flow and insulation installation defects, resulting from the design and construction method used. Translating these results to a typical house with a 200 m{sup 2} floor area, the overall thermal resistance of the roof was at least 23% lower than the overall calculated thermal resistance including two dimensional thermal bridging. When a continuous layer of bulk insulation was applied to the roofing system, the measured values were in agreement with calculated resistances representing a more reliable solution. (author)

  6. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-05-15

    This paper reports a techno-economic comparison between a ground-coupled heat pump (GCHP) system and an air-coupled heat pump (ACHP) system. The systems connected to a test room in Firat University, Elazig (38.41{sup o}N, 39.14{sup o}E), Turkey, were designed and constructed for space cooling. The performances of the GCHP and the ACHP system were experimentally determined. The experimental results were obtained from June to September in cooling season of 2004. The average cooling performance coefficients (COP{sub sys}) of the GCHP system for horizontal ground heat exchanger (HGHE) in the different trenches, at 1 and 2m depths, were obtained to be 3.85 and 4.26, respectively and the COP{sub sys} of the ACHP system was determined to be 3.17. The test results indicate that system parameters can have an important effect on performance, and that GCHP systems are economically preferable to ACHP systems for the purpose of space cooling. (author)

  7. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and

  8. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  9. Residential space heating with wood burning stoves. Energy efficiency and indoor climate; Boligopvarmning ved braendefyring. Energieffektivitet og indeklima

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Ole Michael; Afshari, A.; Bergsoee, N.C.; Carvalho, R. [Miljoestyrelsen, Copenhagen (Denmark); Aalborg Univ.. Statens Byggeforskningsinstitut, Aalborg (Denmark))

    2012-11-01

    Two issues turn up concerning how to use wood-burning stoves in modern homes. The first is whether wood-burning stoves in future may still act as a genuine heat source, given that new and refurbished single-family houses retain the heat much better than older ones and therefore need less and less energy for space heating. The second issue is whether it will still be possible to use wood-burning stoves in modern houses where the air exchange is controlled by mechanical ventilation or possibly heat recovery. It is a question whether firing techniques can be developed that will work in airtight houses with mechanical ventilation and negative pressure, so that harmful particle emissions can be avoided. To illustrate the first issue, a field study was designed to look carefully at seven modern wood-burning stoves that were set up in six new houses and one older house and investigated, both in terms of firing and heat release. As a background for this part of the study, a heat balance calculation was made for each house. The question is, whether wood-burning stoves will also in the future have a role to play as a heating source. Modern houses grow ever tighter and only need to be supplied with a small quantity of heat. The new Danish Buildings Requirement, 2010 has resulted in a further reduction of 25 % of the energy demand, including the energy supply for heating. However, the new requirements imply that the heating season eventually become so short that a traditional central heating installation becomes superfluous. This means that by using the small amounts of wood cut in gardens and hedgerows of the neighbourhood, a wood-burning stove will, in principle, cover the heating demand. Therefore, the question is rather whether a wood-burning stove is manufactured that can successfully be adapted to new houses. As a consequence of this development, future stoves must be further scaled down in order to meet the heating demand of a modern low-energy house and the stoves must

  10. Thermal energy storage with geothermal triplet for space heating and cooling

    Science.gov (United States)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now

  11. Theoretical Study of Heat Transfer through a Sun Space Filled with a Porous Medium

    Directory of Open Access Journals (Sweden)

    Ahmed Tawfeeq Ahmed Al-Sammarraie

    2016-10-01

    Full Text Available A theoretical study had been conducted to detect the effect of using a porous medium in sunspace to reduce  heating  load  and  overcoming  coldness  of  winter  in  the  cold  regions.  In  this  work,  the  heat transferred and stored in the storage wall was investigated. The mathematical model was unsteady, heat conduction equation with nonlinear boundary conditions was solved by using finite difference method and the solution technique  of heat conduction had based  on the  Crank Nicholson method. The results had adopted  on  the  aspect  ratio  (H/L=30,  Darcy  number  (Da=10-3,  porosity  (φ=0.35  and  particle  to  fluid thermal conductivity ratio (kp/kf=38.5. The results showed that using the porous medium had enhanced the heat transferred and stored in the storage wall. For   the outside storage wall temperature, an increase of 19.7%  was achieved by using the porous medium instead of the air, while it was 20.3%  for the inside storage wall temperature.

  12. Spatial Characteristics of Small Green Spaces' Mitigating Effects on Microscopic Urban Heat Islands

    Science.gov (United States)

    Park, J.; Lee, D. K.; Jeong, W.; Kim, J. H.; Huh, K. Y.

    2015-12-01

    The purpose of the study is to find small greens' disposition, types and sizes to reduce air temperature effectively in urban blocks. The research sites were six high developed blocks in Seoul, Korea. Air temperature was measured with mobile loggers in clear daytime during summer, from August to September, at screen level. Also the measurement repeated over three times a day during three days by walking and circulating around the experimental blocks and the control blocks at the same time. By analyzing spatial characteristics, the averaged air temperatures were classified with three spaces, sunny spaces, building-shaded spaces and small green spaces by using Kruskal-Wallis Test; and small green spaces in 6 blocks were classified into their outward forms, polygonal or linear and single or mixed. The polygonal and mixed types of small green spaces mitigated averaged air temperature of each block which they belonged with a simple linear regression model with adjusted R2 = 0.90**. As the area and volume of these types increased, the effect of air temperature reduction (ΔT; Air temperature difference between sunny space and green space in a block) also increased in a linear relationship. The experimental range of this research is 100m2 ~ 2,000m2 of area, and 1,000m3 ~ 10,000m3 of volume of small green space. As a result, more than 300m2 and 2,300m3 of polygonal green spaces with mixed vegetation is required to lower 1°C; 650m2 and 5,000m3 of them to lower 2°C; about 2,000m2 and about 10,000m3 of them to lower 4°C air temperature reduction in an urban block.

  13. Phase Change Material (PCM) Heat Exchanger Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary focus of the project is to provide future space vehicles a reliable form of long duration supplemental heat rejection (SHREDs). SHREDs allow a vehicle to...

  14. Evaluating energy, health and carbon co-benefits from improved domestic space heating: A randomised community trial

    International Nuclear Information System (INIS)

    Preval, Nick; Chapman, Ralph; Pierse, Nevil; Howden-Chapman, Philippa

    2010-01-01

    In order to value the costs and benefits associated with improved space heating we analysed the Housing, Heating and Health Study, a randomised community trial involving installation of energy efficient and healthy heaters (heat pump, wood pellet burner or flued gas heater) in homes with basic insulation and poor heating, occupied by households which included a child with asthma. We compared the initial purchase and installation cost of heaters with changes in the number of visits to health professionals, time off work/school, caregiving, and pharmaceutical use for household members and changes in total household energy use and carbon emissions following the intervention. We used two scenarios to analyse the results over the predicted 12-year life-span of the heaters. The targeted approach (Scenario A - assuming high rates of household asthma throughout the period of analysis) produced enough health-related benefits to offset the cost of the heaters, and when total energy use and carbon emission savings were included in the analysis the ratio of benefits to costs was 1.09:1. The untargeted approach (Scenario B - assuming typical New Zealand asthma rates throughout the period of analysis) had a ratio of total benefits to costs of 0.31:1.

  15. Evaluating energy, health and carbon co-benefits from improved domestic space heating. A randomised community trial

    Energy Technology Data Exchange (ETDEWEB)

    Preval, Nick; Pierse, Nevil; Howden-Chapman, Philippa [He Kainga Oranga/Housing and Health Research Programme, University of Otago, Wellington, PO Box 7343, Wellington South (New Zealand); Chapman, Ralph [School of Geography, Graduate Programme in Environmental Studies, Environment and Earth Sciences, Victoria University, PO Box 600, Wellington 6140 (New Zealand)

    2010-08-15

    In order to value the costs and benefits associated with improved space heating we analysed the Housing, Heating and Health Study, a randomised community trial involving installation of energy efficient and healthy heaters (heat pump, wood pellet burner or flued gas heater) in homes with basic insulation and poor heating, occupied by households which included a child with asthma. We compared the initial purchase and installation cost of heaters with changes in the number of visits to health professionals, time off work/school, caregiving, and pharmaceutical use for household members and changes in total household energy use and carbon emissions following the intervention. We used two scenarios to analyse the results over the predicted 12-year life-span of the heaters. The targeted approach (Scenario A - assuming high rates of household asthma throughout the period of analysis) produced enough health-related benefits to offset the cost of the heaters, and when total energy use and carbon emission savings were included in the analysis the ratio of benefits to costs was 1.09:1. The untargeted approach (Scenario B - assuming typical New Zealand asthma rates throughout the period of analysis) had a ratio of total benefits to costs of 0.31:1. (author)

  16. Evaluating energy, health and carbon co-benefits from improved domestic space heating: A randomised community trial

    Energy Technology Data Exchange (ETDEWEB)

    Preval, Nick [He Kainga Oranga/Housing and Health Research Programme, University of Otago, Wellington, PO Box 7343, Wellington South (New Zealand); Chapman, Ralph, E-mail: Ralph.chapman@vuw.ac.n [School of Geography, Graduate Programme in Environmental Studies, Environment and Earth Sciences, Victoria University, PO Box 600, Wellington 6140 (New Zealand); Pierse, Nevil; Howden-Chapman, Philippa [He Kainga Oranga/Housing and Health Research Programme, University of Otago, Wellington, PO Box 7343, Wellington South (New Zealand)

    2010-08-15

    In order to value the costs and benefits associated with improved space heating we analysed the Housing, Heating and Health Study, a randomised community trial involving installation of energy efficient and healthy heaters (heat pump, wood pellet burner or flued gas heater) in homes with basic insulation and poor heating, occupied by households which included a child with asthma. We compared the initial purchase and installation cost of heaters with changes in the number of visits to health professionals, time off work/school, caregiving, and pharmaceutical use for household members and changes in total household energy use and carbon emissions following the intervention. We used two scenarios to analyse the results over the predicted 12-year life-span of the heaters. The targeted approach (Scenario A - assuming high rates of household asthma throughout the period of analysis) produced enough health-related benefits to offset the cost of the heaters, and when total energy use and carbon emission savings were included in the analysis the ratio of benefits to costs was 1.09:1. The untargeted approach (Scenario B - assuming typical New Zealand asthma rates throughout the period of analysis) had a ratio of total benefits to costs of 0.31:1.

  17. Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China

    Science.gov (United States)

    Chen, Yuanchen; Shen, Guofeng; Liu, Weijian; Du, Wei; Su, Shu; Duan, Yonghong; Lin, Nan; Zhuo, Shaojie; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2016-01-01

    Pollutant emissions into outdoor air from cooking and space heating processes with various solid fuels were measured, and daily household emissions were estimated from the kitchen performance tests. The burning of honeycomb briquette had the lowest emission factors, while the use of wood produced the highest pollutants. Daily emissions from space heating were significantly higher than those from cooking, and the use of honeycomb briquette for cooking and raw coal chunk for space heating reduces 28%, 24% and 25% for CO, PM10 and PM2.5, compared to wood for cooking and peat for space heating. Much higher emissions were observed during the initial phase than the stable phase due to insufficient air supply and lower combustion temperature at the beginning of burning processes. However, more mass percent of fine particles formed in the later high temperature stable burning phase may increase potential inhalation exposure risks.

  18. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  19. Design of a large heat lift 40 K to 80 K pulse tube cryocooler for space applications

    NARCIS (Netherlands)

    Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.; Charles, I.; Coynel, A.; Duband, L.; Ercolani, E.; Guillemet, L.; Mullié, J.; Dam, J.A.M.; Benschop, T.; Linder, M.; Miller, S.D.; Ross, Jr. R.G.

    2007-01-01

    A Large heat lift Pulse Tube Cooler (LPTC) is under development in partnership with AL/ DTA, CEA/SBT and THALES Cryogenics. The engineering model is expected to provide 2.3 W at 50 K at a 10 °C rejection temperature and 160 watts of electrical input power to the compressor. The split coaxial design

  20. Declarativity and efficiency in providing services of general economic interest. Empirical study regarding the relation between heating costs and budget constraints

    Directory of Open Access Journals (Sweden)

    Dumitru Miron

    2013-06-01

    Full Text Available Defined by each country separately, according to real options, circumstances and traditions, the services of general economic interest have an objective purpose in ensuring protection and security for population. The services of general economic interest involve both public and economic services and show characteristics of both fields, reflecting the capabilities of communities to organize, regulate and provide them. Considering the accessibility to the essential service of general economic interest of providing household heating, as an undeniable condition of consumer protection, an analysis has been made in this field, with reference to the concrete manner of providing these services. The goal of this endeavor was to emphasize the actual conditionalities induced by the budget constraints of households while ensuring the universality of the access to the essential heating service. The empirical study is based on a survey of 55 households in sector 2 of Bucharest that have access to gas heating systems, while they have different revenues and equipments. The processing of the gathered data allowed the procurement of certain indicators that explain how household revenues determine the access to the heating services and how the deficiencies of the insurance system of these services deepen the social polarization and increase the weightings of those living at the limit of subsistence.

  1. Building America Case Study: Effect of Ducted HPWH on Space Conditioning and Water Heating Energy Use - Central Florida Lab Home, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    C. Colon, E. Martin, and D. Parker

    2017-04-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  2. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  3. Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign

    International Nuclear Information System (INIS)

    Creatini, F; Guidi, G M; Belfi, F; Cicero, G; Fioriti, D; Di Prizio, D; Piacquadio, S; Becatti, G; Orlandini, G; Frigerio, A; Fontanesi, S; Nannipieri, P; Rognini, M; Morganti, N; Filippeschi, S; Di Marco, P; Fanucci, L; Baronti, F; Mameli, M; Manzoni, M

    2015-01-01

    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described. (paper)

  4. Geothermal concept for energy efficient improvement of space heating and cooling in highly urbanized area

    Directory of Open Access Journals (Sweden)

    Vranjes Ana

    2015-01-01

    Full Text Available New Belgrade is a highly urbanized commercial and residential district of Belgrade lying on the alluvial plane of the Sava and the Danube rivers. The groundwater of the area is a geothermal resource that is usable through geothermal heat pumps (GHP. The research has shown that the “heat island effect” affects part of the alluvial groundwater with the average groundwater temperature of about 15.5°C, i.e. 2°C higher than the one in less urbanized surroundings. Based on the measured groundwater temperatures as well as the appraisal of the sustainable aquifer yield, the available thermal power of the resource is estimated to about 29MWt. The increasing urbanization trend of the New Belgrade district implies the growing energy demands that may partly be met by the available groundwater thermal power. Taking into consideration the average apartment consumption of 80 Wm-2, it is possible to heat about 360,000 m2 and with the consumption efficiency of 50 Wm-2, it would be possible to heat over 570,000 m2. Environmental and financial aspects were considered through the substitution of conventional fuels and the reduction of greenhouse gas emission as well as through the optimization of the resource use.

  5. Solar space heating for the visitors' center, Stephens College, Columbia, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henley, Marion

    1980-06-01

    This document is the final report of the solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri. The system is installed in a four-story, 15,000 square foot building designed to include the college's Admission Office, nine guest rooms for overnight lodging for official guests of the college, a two-story art gallery, and a Faculty Lounge. The solar energy system is an integral design of the building and utilizes 176 Honeywell/Lennox hydronic flat-plate collectors which use a 50% water-ethylene glycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71% of the heating load. The demonstration period for this project ends June 30, 1984.

  6. Phase-space interference in extensive and nonextensive quantum heat engines

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Paternostro, Mauro; Mustecaplioglu, Ozgur E.

    2018-01-01

    Quantum interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which...

  7. Economic Evaluation of a Solar Charged Thermal Energy Store for Space Heating

    OpenAIRE

    Melo, Manuel

    2013-01-01

    A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W

  8. Performance demonstration of a high-power space-reactor heat-pipe design

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

    1983-01-01

    Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500 0 K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm 2 at 1465 0 K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm 2 . The extrapolated limit for the heat pipe at its 1500 0 K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm 2 . Sonic and capillary limits for the design were investigated in the 1100 to 1500 0 K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed

  9. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  10. Analysis on exergy consumption patterns for space heating in Slovenian buildings

    International Nuclear Information System (INIS)

    Dovjak, Mateja; Shukuya, Masanori; Olesen, Bjarne W.; Krainer, Ales

    2010-01-01

    Problem of high energy use for heating in Slovenian buildings is analyzed with exergy and energy analysis. Results of both are compared and discussed. Three cases of exterior building walls are located in three climatic zones in winter conditions. Results of energy analyses show that the highest heating energy demand appears in the case with less thermal insulation, especially in colder climate. If the comparison is made only on the energy supply and exergy supply, the results of exergy analysis are the same as those of energy analysis. The main difference appears, if the whole chain of supply and demand is taken into consideration. Exergy calculations enable us to analyze how much exergy is consumed in which part, from boiler to building envelope. They also reveal how much energy is supplied for the purpose of heating. Results show that insulation has much bigger effect than effect of boiler efficiency. However, the most effective solution is to improve building envelope together with boiler efficiency. Better thermal insulation also makes an important contribution to the improvement of thermal comfort conditions. It causes higher surface temperatures resulting in a larger warm radiant exergy emission rate and consequently better thermal comfort.

  11. Field data provide estimates of effective permeability, fracture spacing, well drainage area and incremental production in gas shales

    KAUST Repository

    Eftekhari, Behzad; Marder, M.; Patzek, Tadeusz

    2018-01-01

    the external unstimulated reservoir. This allows us to estimate for the first time the effective permeability of the unstimulated shale and the spacing of fractures in the stimulated region. From an analysis of wells in the Barnett shale, we find

  12. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  13. Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.).

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-03-01

    Heat stress (HS) causes detrimental effects on plant morphology, physiology, and biochemistry that lead to drastic reduction in plant biomass production and economic yield worldwide. To date, little is known about HS-responsive genes involved in thermotolerance mechanism in radish. In this study, a total of 6600 differentially expressed genes (DEGs) from the control and Heat24 cDNA libraries of radish were isolated by high-throughput sequencing. With Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, some genes including MAPK, DREB, ERF, AP2, GST, Hsf, and Hsp were predominantly assigned in signal transductions, metabolic pathways, and biosynthesis and abiotic stress-responsive pathways. These pathways played significant roles in reducing stress-induced damages and enhancing heat tolerance in radish. Expression patterns of 24 candidate genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Based mainly on the analysis of DEGs combining with the previous miRNAs analysis, the schematic model of HS-responsive regulatory network was proposed. To counter the effects of HS, a rapid response of the plasma membrane leads to the opening of specific calcium channels and cytoskeletal reorganization, after which HS-responsive genes are activated to repair damaged proteins and ultimately facilitate further enhancement of thermotolerance in radish. These results could provide fundamental insight into the regulatory network underlying heat tolerance in radish and facilitate further genetic manipulation of thermotolerance in root vegetable crops.

  14. The Importance of Green Spaces in Minimizing Urban Heat in The Istanbul Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Çağdaş KUŞÇU ŞİMŞEK

    2012-04-01

    Full Text Available Increasing environmental and atmospheric pollution due to urbanization, industrialization and global warming is increasing with every passing day. Life in water, air and on land is threatened by environmental problems and disasters caused by this pollution. In addition to global climate change, changes also occur in urban microclimate and regional heat islands are occurring in urban areas. This dual effect and resulting vicious circle increasingly affect human health and natural life negatively. In this context, urban climate studies have come into question in recent years. Results have showed that increasing numbers of built-up areas are linked toincreases in urban temperature and conversely larger areas of vegetation improve the city’s ventilation and climatic comfort. The Istanbul Metropolitan Area is in a period of regeneration as it attempts to prepare for the expected earthquake and as a result of global dynamics. The resulting massive building campaigns and rapid destruction of green areas have a potential to trigger climatic threats. The effects of vegetation on the urban surface temperature in the Istanbul Metropolitan Area have contributed to the improved health construction strategies. Surface Heat Islands (SHI and Normalized Difference Vegetation Index (NDVI values were determined from remote sensing techniques. The dependent variable is temperature and independent variable is NDVI values and the regression analysis was carried out. Then the heat model for NDVI was established with decision tree. The results of regression analysis were R=0.452; R2= 20%; sig.=0.00 and so the analysis was significant in 95%. As a result of the analysis of the residential area of İstanbul, the difference between the expected temperature of the minimum and maximum vegetation clusters was calculated as 4.24.

  15. Analysis on exergy consumption patterns for space heating in Slovenian buildings

    DEFF Research Database (Denmark)

    Dovjak, Mateja; Shukuya, Masanori; Olesen, Bjarne W.

    2010-01-01

    and demand is taken into consideration. Exergy calculations enable us to analyze how much exergy is consumed in which part, from boiler to building envelope. They also reveal how much energy is supplied for the purpose of heating. Results show that insulation has much bigger effect than effect of boiler...... efficiency. However, the most effective solution is to improve building envelope together with boiler efficiency. Better thermal insulation also makes an important contribution to the improvement of thermal comfort conditions. It causes higher surface temperatures resulting in a larger warm radiant exergy...... emission rate and consequently better thermal comfort....

  16. Half-Space Temperature Field with a Movable Thermally Thin-Coated Boundary Under External Heat Flux

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov

    2014-01-01

    Full Text Available In engineering practice analytical methods of the mathematical theory of heat conduction hold a special place. This is due to many reasons, in particular, because of the fact that the solutions of the relevant problems represented in analytically closed form, can be used not only for a parametric analysis of the studied temperature field and to explore the specific features of its formation, but also to test the developed computational algorithms, which are aimed at solving real-world application heat and mass transfer problems. Difficulties arising when using the analytical mathematical theory methods of heat conduction in practice are well known. Also they are significantly exacerbated if the boundaries of the system under study are movable, even in the simplest case, when the law of motion is known.The main goal of the conducted research is to have an analytically closed-form problem solution for finding the orthotropic half-space temperature field, a boundary of which has thermally thin coating exposed to extremely concentrated stationary external heat flux and uniformly moves parallel to itself.The assumption that the covering of the boundary is thermally thin, allowed to realize the idea of \\concentrated capacity", that is to accept the hypothesis that the mean-thickness coating temperature is equal to the temperature of its boundaries. This assumption allowed us to reduce the problem under consideration to a mixed problem for a parabolic equation with a specific boundary condition.The Hankel integral transform of zero order with respect to the radial variable and the Laplace transform with respect to the temporal variable were used to solve the reduced problem. These techniques have allowed us to submit the required solution as an iterated integral.

  17. Review of biomass fired space heating/domestic hot water boilers' application, operation and design parameters

    International Nuclear Information System (INIS)

    1997-01-01

    Monitoring exercises have been carried out for ETSU, by a number of contractors, on a number of wood fired heating schemes; feasibility studies on proposed schemes have also been carried out. Monitoring reports and feasibility studies have been reviewed to try and establish the suitability and economic viability of the various types of plant used (or proposed) and their application. Of the sixteen schemes reviewed just over 30% showed a reasonable return on the incremental capital cost of plant compared to gas oil fired plant. These schemes had one or more of the following attributes: - Low wood fuel cost -Long operating hours -Relatively low incremental capital cost of wood plant over gas oil plant. Small systems with low operating hours (e.g. short weekday occupancy premises, like schools) and relatively high incremental operating and maintenance costs and capital costs exhibited no advantage over equivalent fossil fuel fired plant. The unit fuel cost advantage to wood, in these cases, was insufficient to outweigh the increased O and M and capital costs, because of the comparatively low annual fuel consumption. Most of the plants reviewed had low thermal efficiencies due to the simplicity of the fuel to air control systems and the wide range of heating demand over which they had to operate. The former can be increased by improved combustion control systems and the latter by correct sizing of boilers and/or the installation of hybrid systems. (Author)

  18. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  19. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    Science.gov (United States)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  20. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

    Science.gov (United States)

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M; Gómez, Luis

    2014-02-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

  1. Frictional Heating During Sliding of two Semi-Spaces with Arbitrary Thermal Nonlinearity

    Directory of Open Access Journals (Sweden)

    Och Ewa

    2014-12-01

    Full Text Available Analytical and numerical solution for transient thermal problems of friction were presented for semi limited bodies made from thermosensitive materials in which coefficient of thermal conductivity and specific heat arbitrarily depend on the temperature (materials with arbitrary non-linearity. With the constant power of friction assumption and imperfect thermal contact linearization of nonlinear problems formulated initial-boundary thermal conductivity, using Kirchhoff transformation is partial. In order to complete linearization, method of successive approximations was used. On the basis of obtained solutions a numerical analysis of two friction systems in which one element is constant (cermet FMC-845 and another is variable (grey iron ChNMKh or aluminum-based composite alloy AL MMC was conducted

  2. Numerical Simulation for Magneto Nanofluid Flow Through a Porous Space with Melting Heat Transfer

    Science.gov (United States)

    Hayat, T.; Shah, Faisal; Alsaedi, A.; Waqas, M.

    2018-05-01

    Melting heat transfer and non-Darcy porous medium effects in MHD stagnation point flow toward a stretching surface of variable thickness are addressed. Brownian motion and thermophoresis in nanofluid modeling are retained. Zero mass flux condition for concentration at surface is imposed. The problem of ordinary differential system are analyzed numerically through shooting technique. Graphically results of various physical variables on the velocity, temperature and concentration are studied. Skin friction coefficient local Nusselt number and Sherwood number are also addressed through tabulated values. The results described here illustrate that the velocity field is higher via larger melting parameter. However reverse situation is examined for Hartman number. Moreover the influence of thermophoresis parameter on temperature and concentration is noted similar.

  3. Numerical Simulation for Magneto Nanofluid Flow Through a Porous Space with Melting Heat Transfer

    Science.gov (United States)

    Hayat, T.; Shah, Faisal; Alsaedi, A.; Waqas, M.

    2018-02-01

    Melting heat transfer and non-Darcy porous medium effects in MHD stagnation point flow toward a stretching surface of variable thickness are addressed. Brownian motion and thermophoresis in nanofluid modeling are retained. Zero mass flux condition for concentration at surface is imposed. The problem of ordinary differential system are analyzed numerically through shooting technique. Graphically results of various physical variables on the velocity, temperature and concentration are studied. Skin friction coefficient local Nusselt number and Sherwood number are also addressed through tabulated values. The results described here illustrate that the velocity field is higher via larger melting parameter. However reverse situation is examined for Hartman number. Moreover the influence of thermophoresis parameter on temperature and concentration is noted similar.

  4. Field data provide estimates of effective permeability, fracture spacing, well drainage area and incremental production in gas shales

    KAUST Repository

    Eftekhari, Behzad

    2018-05-23

    About half of US natural gas comes from gas shales. It is valuable to study field production well by well. We present a field data-driven solution for long-term shale gas production from a horizontal, hydrofractured well far from other wells and reservoir boundaries. Our approach is a hybrid between an unstructured big-data approach and physics-based models. We extend a previous two-parameter scaling theory of shale gas production by adding a third parameter that incorporates gas inflow from the external unstimulated reservoir. This allows us to estimate for the first time the effective permeability of the unstimulated shale and the spacing of fractures in the stimulated region. From an analysis of wells in the Barnett shale, we find that on average stimulation fractures are spaced every 20 m, and the effective permeability of the unstimulated region is 100 nanodarcy. We estimate that over 30 years on production the Barnett wells will produce on average about 20% more gas because of inflow from the outside of the stimulated volume. There is a clear tradeoff between production rate and ultimate recovery in shale gas development. In particular, our work has strong implications for well spacing in infill drilling programs.

  5. District heating

    International Nuclear Information System (INIS)

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  6. Electron velocity-space diffusion in a micro-unstable ECRH [electron cyclotron resonance heated] mirror plasma

    International Nuclear Information System (INIS)

    Hokin, S.A.

    1987-09-01

    An experimental study of the velocity-space diffusion of electrons in an electron cyclotron resonance heated (ECRH) mirror plasma, in the presence of micro-unstable whistler rf emission, is presented. It is found that the dominant loss mechanism for hot electrons is endloss produced by rf diffusion into the mirror loss cone. In a standard case with 4.5 kW of ECRH power, this loss limits the stored energy to 120 J with an energy confinement time of 40 ms. The energy confinement time associated with collisional scattering is 350 ms in this case. Whistler microinstability rf produces up to 25% of the rf-induced loss. The hot electron temperature is not limited by loss of adiabaticity, but by rf-induced loss of high energy electrons, and decreases with increasing rf power in strong diffusion regimes. Collisional loss is in agreement with standard scattering theory. No super-adiabatic effects are clearly seen. Experiments in which the vacuum chamber walls are lined with microwave absorber reveal that single pass absorption is limited to less than 60%, whereas experiments with reflecting walls exhibit up to 90% absorption. Stronger diffusion is seen in the latter, with a hot electron heating rate which is twice that of the absorber experiments. This increase in diffusion can be produced by two distinct aspects of wall-reflected rf: the broader spatial rf profile, which enlarges the resonant region in velocity space, or a reduction in super-adiabatic effects due to randomization of the electron gyrophase. Since no other aspects of super-adiabaticity are observed, the first mechanism appears more likely. 39 refs., 54 figs

  7. Making it not too obvious. The effect of ambient light feedback on space heating energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Maan, S.; Merkus, B.; Ham, J.; Midden, C. [Human-Technology Interaction, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-03-15

    Earlier research investigating persuasive technology - technology designed to influence human behavior or attitude - indicates that persuasive technology can stimulate energy efficient behavior. However, most applications of persuasive technology need people's focal attention to be successful, and people may often not have these cognitive resources available. The current research investigates a form of persuasive technology that is less obvious and easier to process: ambient lighting as persuasive technology. In an experimental study, participants could conserve energy while setting temperatures on a central heating panel and receive feedback about their energy consumption in each task. We tested the effect of feedback through a lamp that gradually changed color dependent on energy consumption and compared these effects to more widely used factual feedback. Half of the participants received lighting feedback, and half of the participants received numerical feedback. To investigate whether ambient feedback is easier to process than numerical feedback, half of the participants performed a cognitive load task in addition to the focal task. Results indicated that feedback through lighting has stronger persuasive effects than numerical feedback. Furthermore, ambient lighting feedback seemed easier to process than numerical feedback because cognitive load interfered with processing numerical feedback, but not with processing lighting feedback. Implications for theory and design of energy consumption feedback systems, persuasive lighting, and (ambient) persuasive technology are discussed.

  8. Graphite fiber/copper matrix composites for space power heat pipe fin applications

    International Nuclear Information System (INIS)

    Mcdanels, D.L.; Baker, K.W.; Ellis, D.L.

    1991-01-01

    High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction. 5 refs

  9. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs

  10. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    Science.gov (United States)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  11. Experimental study on pool boiling critical heat flux in inclined confined spaces

    International Nuclear Information System (INIS)

    Wen Qinglong; Chen Jun; Zhao Hua

    2011-01-01

    CHF experiments in confined spaces are performed for near-saturated demineralized water at atmospheric pressure with gap sizes of 3 mm, 5 mm and 8 mm, and inclination angles of 0°, 5°, 10°, 15°, 20°, and 30°. Analysis of CHF data shows that CHF decreases as the inclination angle changes from 300 to full downward facing position (0°) and increases as the gap size varies from 3 mm to 8 mm. In the present study, certain transition angles are also identified for different gap sizes. For the gap sizes of 3 mm, 5 mm and 8 mm, the transition angles are found to be 10°, 15° and 20°, respectively. (authors)

  12. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  13. NASA’s Universe of Learning: Providing a Direct Connection to NASA Science for Learners of all Ages with ViewSpace

    Science.gov (United States)

    Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience

  14. Solar Energy Gain and Space-Heating Energy Supply Analyses for Solid-Wall Dwelling Retrofitted with the Experimentally Achievable U-value of Novel Triple Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-06-01

    Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.

  15. Space heating in buildings: thermal diagnosis of an industrial building; Chauffage des batiments: bilan thermique d`un batiment industriel

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, R.

    1996-12-31

    The various heat transfer equations used for calculations in thermal diagnosis of an industrial building are reviewed: calculation of the heat losses through walls as a function of building materials, calculation of the energy consumption for heating fresh air (as a function of the air pollution rate in the building), calculation of the total heat losses, the heating energy demand and the annual energy consumption. Data concerning building materials characteristics, insulation and heating loads in the various regions of France, are also presented

  16. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  17. Critical heat flux tests for self-spaced square finned 7 fuel rod bundle

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chun, Se Young; Choi, Ki Young; Park, Jong Kuk; Hwang, Dae Hyun; Zee, Sung Quun; Kim, Keung Koo

    2001-09-01

    Now, KAERI is developing a new advanced reactor aimed at achieving highly enhanced safety and reliability, and improved economics. SSF (Self-Spaced Square Finned) fuel rod bundle is considered as a suitable one for the new advanced reactor. The SSF fuel rods have rectangular shapes and four fins at the corners, and are arranged in triangular geometry. While the SSF fuel rod bundle is considered to have enhanced cooling efficiency, the correlations used for commercial PWR might be able to be applied. The application results of some conventional correlations show that the SSF fuel rod bundle show an enhanced CHF performance about 10 to 40 %. When some conventional CHF correlations are applied to CHF data with a similar geometry to the SSF fuel rod bundle, conventional CHF correlations including a correlation developed in Russia are judged not to be suitable for the development of SSF fuel rod bundle and for the use in a safety analysis code. From CHF experiments for SSF 7 fuel rod bundle performed in KAERI, the following results are obtained: the CHF increases with increasing mass flux, and the CHF increasing rate decreases at high mass flux conditions. The exit quality decreases with increasing mass flux. The overall effect of the mass flux on the CHF and exit quality coincides with previous understanding. Compared to the CHF data of IPPE with the same system pressure and inlet temperature, the CHF data of KAERI show the similar values. Thus, the reliability of IPPE CHF data can be confirmed indirectly

  18. Heat pipes to reduce engine exhaust emissions

    Science.gov (United States)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  19. Cold local heating. Agrothermal heat supply of an ecovillage; Kalt Nahwaerme. Agrothermische Waermeversorgung einer Plusenergiesiedlung

    Energy Technology Data Exchange (ETDEWEB)

    Pietruschka, Dirk [Hochschule fuer Technik Stuttgart (Germany). Forschungszentrum fuer Nachhaltige Energietechnik; Kluge, Juergen [Doppelacker GmbH, Petershagen-Eggersdorf (Germany)

    2013-03-01

    An ecovillage with highly efficient residential buildings is arisen in the Swabian community Wuestenrot. The power generation in these residential buildings by means of photovoltaic power plants is greater than the energy consumption. Decentralized heat plants supply thermal energy for the space heating and industrial waste. Central agrothermal collectors provide the necessary low-temperature heat for the effective operation of heat pumps over a so-called cold heat grid.

  20. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1978-01-01

    According to the present invention there is provided a method of producing superheated steam by use of the heat in liquid sodium, in which liquid sodium is caused to flow through a space having boundaries of which no part is common with the boundaries of a space in which vapour is produced, a fluid that is inert to sodium is heated by heat exchange at the boundaries of the space through which the liquid sodium flows and serves as the heating medium for the production of vapour, and the vapour is subsequently heated to the final degree of superheat by heat exchange with liquid sodium in a space that has a common boundary with a space through which liquid sodium is passed. (U.K.)

  1. 14 CFR 23.1326 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pitot heat indication systems. 23.1326... Instruments: Installation § 23.1326 Pitot heat indication systems. If a flight instrument pitot heating system... provided to indicate to the flight crew when that pitot heating system is not operating. The indication...

  2. 14 CFR 125.206 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 125.206... Equipment Requirements § 125.206 Pitot heat indication systems. (a) Except as provided in paragraph (b) of... flight instrument pitot heating system unless the airplane is equipped with an operable pitot heat...

  3. 14 CFR 25.1326 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pitot heat indication systems. 25.1326....1326 Pitot heat indication systems. If a flight instrument pitot heating system is installed, an indication system must be provided to indicate to the flight crew when that pitot heating system is not...

  4. 14 CFR 135.158 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 135.158... Equipment § 135.158 Pitot heat indication systems. (a) Except as provided in paragraph (b) of this section... instrument pitot heating system unless the airplane is also equipped with an operable pitot heat indication...

  5. Space heating with ultra-low-temperature district heating - a case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2017-01-01

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low temperature district heating with a supply temperature as low as 45 degrees C for the main part...... of the year. The houses were heated by the existing hydraulic radiator systems, while domestic hot water was prepared by use of district heating and electric boosting. This paper evaluated the heating system temperatures that were necessary in order to maintain thermal comfort in four of the houses. First...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...

  6. Solar-Heated and Cooled Office Building--Columbus, Ohio

    Science.gov (United States)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  7. Well posedness and regularity for heat equation with the initial condition in weighted Orlitz-Slobodetskii space subordinated to Orlicz space like lambda (log lambda0alpha and the logarithmic weight

    Czech Academy of Sciences Publication Activity Database

    Kałamajska, A.; Krbec, Miroslav

    2015-01-01

    Roč. 28, č. 3 (2015), s. 677-713 ISSN 1139-1138 R&D Projects: GA ČR GAP201/10/1920 Institutional research plan: CEZ:AV0Z1019905 Keywords : evolution problems * heat equation * Orlitz-Slobodetskii spaces * Orlitz-Sobolev spaces Subject RIV: BA - General Mathematics Impact factor: 0.631, year: 2015 http://link.springer.com/article/10.1007%2Fs13163-014-0164-4

  8. The informative providing of trade education is in industry of physical culture and sport of countries of former soviet spaces

    Directory of Open Access Journals (Sweden)

    Iryna Svistel’nik

    2016-04-01

    Full Text Available Purpose: to investigate the innovative forms of the informative providing of educational process in institutions of higher learning of physical culture and sport of countries: Ukraine, Republic of Belarus, Republic of Moldova, Republic of Kazakhstan, Republic of Uzbekistan, Russian Federation. Material & Methods: content-analysis of web sites and web pages of sporting institutions of higher learning of these countries. Results: the informative providing of institutions of higher learning of physical culture and sport of Ukraine, Belarus, Moldova, Kazakhstan, Uzbekistan and RF differs substantially, in spite of the fact that the specific of educating in these educational establishments is identical. Institutions of higher learning of physical culture and sport of Ukraine actively offer the innovative forms of the informative providing − give possibility to the students and teachers to take advantage of e-catalog, electronic repository, virtual bibliographic certificate, electronic delivery of document. Sporting institutions of higher learning of Belarus, Kazakhstan, Uzbekistan and Russian Federation carry out the informative providing by means of the electronic-library systems, in particular "Znanium.com" and "Rukont". The system "Rukont" is erected in the grade of the national inter-branch digital resource created on the base of state educational standard and contains the informative resource of different family: books, magazines, separate articles, and also audio, video data, multimedia. Collection of electronic versions of editions of electronic-library systems "Znanium.com" unites books, magazines, articles grouped on thematic and having a special purpose signs. The unique institute of higher of Republic of Moldova does not give electronic informative services, but uses the traditional forms of the informative providing by means of catalogues and card library indexes. Conclusions: higher educational establishments of physical culture and

  9. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.

    Science.gov (United States)

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-03-25

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    Science.gov (United States)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  11. Geothermal Direct Heat Application Potential

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J

    1989-01-01

    The geothermal direct-use industry growth trends, potential, needs, and how they can be met, are addressed. Recent investigations about the current status of the industry and the identification of institutional and technical needs provide the basis on which this paper is presented. Initial drilling risk is the major obstacle to direct-use development. The applications presented include space and district heating projects, heat pumps (heating and cooling), industrial processes, resorts and pools, aquaculture and agriculture.

  12. Use of buried collector heat pumps in space heating and cooling; Utilisation en chauffage et en refraichissement des thermopompes a capteurs enterres

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, J [Societe SYREC, 22 - Dinan (France)

    1998-12-31

    This paper presents a comparative evaluation of the seasonal thermal performances of the different types of heat pumps with buried collectors: ground/ground type, water-glycol water type, and ground/water type. The different systems are also compared with respect to their adaptation to reversibility. A heat pump system for sanitary hot water production is also presented. (J.S.)

  13. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  14. Use of buried collector heat pumps in space heating and cooling; Utilisation en chauffage et en refraichissement des thermopompes a capteurs enterres

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, J. [Societe SYREC, 22 - Dinan (France)

    1997-12-31

    This paper presents a comparative evaluation of the seasonal thermal performances of the different types of heat pumps with buried collectors: ground/ground type, water-glycol water type, and ground/water type. The different systems are also compared with respect to their adaptation to reversibility. A heat pump system for sanitary hot water production is also presented. (J.S.)

  15. Space heating with ultra-low-temperature district heating - A case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low-temperature district heating with a supply temperature as low as 45 °C for the main part...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...... heating return temperatures in the houses were analysed for different times of the year. The study found that existing Danish single-family houses from the 1980s can be heated with supply temperatures as low as 45 °C for the main part of the year. Both simulation models and test measurements showed...

  16. Analysis of the design and economics of molten carbonate fuel cell tri-generation systems providing heat and power for commercial buildings and H2 for FC vehicles

    Science.gov (United States)

    Li, Xuping; Ogden, Joan; Yang, Christopher

    2013-11-01

    This study models the operation of molten carbonate fuel cell (MCFC) tri-generation systems for “big box” store businesses that combine grocery and retail business, and sometimes gasoline retail. Efficiency accounting methods and parameters for MCFC tri-generation systems have been developed. Interdisciplinary analysis and an engineering/economic model were applied for evaluating the technical, economic, and environmental performance of distributed MCFC tri-generation systems, and for exploring the optimal system design. Model results show that tri-generation is economically competitive with the conventional system, in which the stores purchase grid electricity and NG for heat, and sell gasoline fuel. The results are robust based on sensitivity analysis considering the uncertainty in energy prices and capital cost. Varying system sizes with base case engineering inputs, energy prices, and cost assumptions, it is found that there is a clear tradeoff between the portion of electricity demand covered and the capital cost increase of bigger system size. MCFC Tri-generation technology provides lower emission electricity, heat, and H2 fuel. With NG as feedstock the CO2 emission can be reduced by 10%-43.6%, depending on how the grid electricity is generated. With renewable methane as feedstock CO2 emission can be further reduced to near zero.

  17. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  18. Main circulator design features for HTR 100, HTR 500 and space heating plants

    International Nuclear Information System (INIS)

    Engel, J.; Glass, D.

    1988-01-01

    All design alternatives for modern high-temperature reactors have a common circulator concept: It is based on a vertical shaft design with a flying impeller. The circulators are equipped with active magnetic bearings and are driven by induction motors connected to variable-speed static converters. Due to their multiple functions during normal reactor operation and under accident conditions, extremely high requirements are made to safety-relevant circulators, since with the reactor pressurized as well as under depressurized conditions specified delivery heads and flow rates have to be ensured. The use of active magnetic bearings permits to obtain maintenance-free operation and functional safety to an extent which had not been achieved before. Magnetic bearings are therefore provided for the total range including primary gas circulators of a drive power of several MW as well as circulators for helium loops of reactor auxiliary systems. The essential feature for using active magnetic bearings is the retainer bearing technology, preventing contact between rotor and static circulator parts upon unintended deenergisation of the magnets. Results of current experiments are reported. Another aspect to be considered for reliable long-term operation for several decades is the effect of rotor dynamics. The various natural frequencies resulting from torsion and bending modes in view of a drive by a frequency-controlled induction motor have to be considered as well as the specific characteristics of the active magnetic bearings. Special attention has to be directed to the internal cooling loop so as to ensure that reactor temperature excursions in the event of deviation from normal operation can be overcome without damage. For circulator components exposed to temperature fields the design characteristics are determined by combining experimental and analytical methods. The coordination of all component parts is currently being optimized on a prototype circulator whose detailed

  19. Ultra Efficient CHHP Using a High Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, Fred C. [Fuelcell Energy, Inc., Danbury, CT (United States)

    2015-06-30

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the research program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.

  20. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  1. Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Hayat, T.; Alsaedi, A.

    2018-06-01

    Present work aims to investigate the features of the exponential space dependent heat source (ESHS) and cross-diffusion effects in Marangoni convective heat mass transfer flow due to an infinite disk. Flow analysis is comprised with magnetohydrodynamics (MHD). The effects of Joule heating, viscous dissipation and solar radiation are also utilized. The thermal and solute field on the disk surface varies in a quadratic manner. The ordinary differential equations have been obtained by utilizing Von Kármán transformations. The resulting problem under consideration is solved numerically via Runge-Kutta-Fehlberg based shooting scheme. The effects of involved pertinent flow parameters are explored by graphical illustrations. Results point out that the ESHS effect dominates thermal dependent heat source effect on thermal boundary layer growth. The concentration and temperature distributions and their associated layer thicknesses are enhanced by Marangoni effect.

  2. Heat Transfer Enhancement and Thermal Management for Space Applications Employing Femtosecond Laser Processed Metallic Surfaces with Micro/Nanostructures

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal management is one of the most important challenges in space applications. The success of space exploration and travel is directly tied to how we efficiently...

  3. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  4. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  5. Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, 13 December 1976-12 March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-01-01

    During the second three months of this feasibility study to determine the technical, economic and environmental feasibility of heating Mammoth Lakes Village, California using geothermal energy, the following work was accomplished. A saturation survey of the number and types of space and water heaters currently in use in the Village was completed. Electric energy and ambient temperature metering equipment was installed. Peak heating demand for Mammoth Lakes was estimated for the years 1985, 1990 and 2000. Buildings were selected which are considered typical of Mammoth Lakes in terms of their heating systems to be used in estimating the cost of installing hydronic heating systems in Mammoth. Block diagrams and an order of magnitude cost comparison were prepared for high-temperature and low-temperature geothermal district heating systems. Models depicting a geothermal district heating system and a geothermal-electric power plant were designed, built and delivered to ERDA in Washington. Local input to the feasibility study was obtained from representatives of the State of California Departments of Transportation and Fish and Game, US Forest Service, and Mono County Planning Department.

  6. Thermal Performance of Solar Air Heater Having Absorber Plate with V-Down Discrete Rib Roughness for Space-Heating Applications

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The paper presents results of thermal performance analysis of a solar air heater with v-down discrete rib roughness on the air flow side of the absorber plate, which supplies heated air for space heating applications. The air heater operates in a closed loop mode with inlet air at a fixed temperature of 295 K from the conditional space. The ambient temperature varied from 278 K to 288 K corresponding to the winter season of Western Rajasthan, India. The results of the analysis are presented in the form of performance plots, which can be utilized by a designer for calculating desired air flow rate at different ambient temperature and solar insolation values.

  7. Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced heat transport technology is presented that can enable space nuclear power systems to transfer reactor heat, convert heat into electricity, reject waste...

  8. A solar combi-system based on a heat exchanger between the collector loop and space-heating loop (IEA task 26 generic system 2). A report of IEA SHC - task 26 solar combisystems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    2002-12-01

    The most common Danish solar combi-system is theoretically investigated in the report. The principle in the system is that in a normal solar hot water system a heat exchanger is added to deliver solar energy from the collector loop directly to the space heating loop. In this way solar energy for space heating is not stored which is expected to decrease the performance. On the other hand the system is relatively inexpensive, which can compensate for a reduced performance. A TRNSYS model of the system is developed and sensitivity analyses of parameters are performed by simulation. The analyses show no major improvements of the system. Special emphasis has been put on investigating the control strategy and to investigate if the thermal mass of radiators of floor could act as buffer for the solar energy delivered to space heating and in this way improve the performance. The analyses show that this is possible and has advantages at larger collector areas. However the improvements are not as large as expected. An economic optimisation gives and optimum solar collector area of approximately 10 m 2 . However the optimum curve is quite flat for areas above 7 m 2 , and collector areas up to 15 m 2 are also feasible. The calculated performacnes have been the basis for comparisons with the other systems modelled in the task 26. The comparison shows that the performance is not among the best, but however probably not as bad as expected. Furthermore the inexpensive design compensates to some extent for the lower performance. Furthermore the material use of the system and the energy used to produce the materials has been estimated. The energy demand is in a range that gives energy pay back times of 1.9-2.5 years. (au)

  9. The hidden side of cities : Methods for governance, planning and design for optimal use of subsurface space with ATES

    NARCIS (Netherlands)

    Bloemendal, J.M.

    2018-01-01

    Aquifer Thermal Energy Storage (ATES) systems provide sustainable space heating and cooling for buildings. In future, many buildings in moderate climates rely on ATES for their space heating and cooling.
    However, the subsurface space available for heat storage is limited and, there is a

  10. Comparative genome analysis of a thermotolerant Escherichia coli obtained by Genome Replication Engineering Assisted Continuous Evolution (GREACE) and its parent strain provides new understanding of microbial heat tolerance.

    Science.gov (United States)

    Luan, Guodong; Bao, Guanhui; Lin, Zhao; Li, Yang; Chen, Zugen; Li, Yin; Cai, Zhen

    2015-12-25

    Heat tolerance of microbes is of great importance for efficient biorefinery and bioconversion. However, engineering and understanding of microbial heat tolerance are difficult and insufficient because it is a complex physiological trait which probably correlates with all gene functions, genetic regulations, and cellular metabolisms and activities. In this work, a novel strain engineering approach named Genome Replication Engineering Assisted Continuous Evolution (GREACE) was employed to improve the heat tolerance of Escherichia coli. When the E. coli strain carrying a mutator was cultivated under gradually increasing temperature, genome-wide mutations were continuously generated during genome replication and the mutated strains with improved thermotolerance were autonomously selected. A thermotolerant strain HR50 capable of growing at 50°C on LB agar plate was obtained within two months, demonstrating the efficiency of GREACE in improving such a complex physiological trait. To understand the improved heat tolerance, genomes of HR50 and its wildtype strain DH5α were sequenced. Evenly distributed 361 mutations covering all mutation types were found in HR50. Closed material transportations, loose genome conformation, and possibly altered cell wall structure and transcription pattern were the main differences of HR50 compared with DH5α, which were speculated to be responsible for the improved heat tolerance. This work not only expanding our understanding of microbial heat tolerance, but also emphasizing that the in vivo continuous genome mutagenesis method, GREACE, is efficient in improving microbial complex physiological trait. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  12. Heat and mass transfer in building services design

    CERN Document Server

    Moss, Keith

    1998-01-01

    Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *

  13. Geothermal heat pumps - Trends and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1989-01-01

    Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 deg. F. Conventional geothermal heating (and cooling) systems are not economically efficient at these temperatures. Heat pumps, at these temperatures, can provide space heating and cooling, and with a desuperheater, domestic hot water. Two basic heat pump systems are available, air-source and water- or ground-source. Water- and ground-coupled heat pumps, referred to as geothermal heat pumps (GHP), have several advantages over air-source heat pumps. These are: (1) they consume about 33% less annual energy, (2) they tap the earth or groundwater, a more stable energy source than air, (3) they do not require supplemental heat during extreme high or low outside temperatures, (4) they use less refrigerant (freon), and (5) they have a simpler design and consequently less maintenance.

  14. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    International Nuclear Information System (INIS)

    Chel, Arvind; Tiwari, G.N.

    2010-01-01

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW P photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO 2 emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems.

  15. Effects of Green Space and Land Use/Land Cover on Urban Heat Island in a Subtropical Mega-city in China

    Science.gov (United States)

    Qiu, G. Y.; Li, X.; Li, H.; Guo, Q.

    2014-12-01

    With the quick expansion of urban in size and population, its urban heat island intensity (UHII, expressed as the temperature difference between urban and rural areas) increased rapidly. However, very few studies could quantitatively reveal the effects of green space and land use/land cover (LULC) on urban thermal environment because of lacking of the detailed measurement. This study focuses on quantifying the effects of green space and LULC on urban Heat Island (UHI) in Shenzhen, a mega subtropical city in China. Extensive measurements (air temperature and humidity) were made by mobile traverse method in a transect of 8 km in length, where a variety of LULC types were included. Measurements were carried out at 2 hours interval for 2 years (totally repeated for 7011 times). According to LULC types, we selected 5 different LULC types for studying, including water body, village in the city, shopping center (commercial area), urban green space (well-vegetated area) and suburb (forest). The main conclusions are obtained as follows: (1) The temperature difference between the 5 different urban landscapes is obvious, i.e. shopping center > village in the city > urban water body > urban green space > suburb; (2) Air temperature and UHII decreases linearly with the increase of green space in urban; (3) Green space and water body in urban have obvious effects to reduce the air temperature by evapotranspiration. Compared to the commercial areas, urban water body can relieve the IUHI by 0.9℃, while the urban green space can relieve the IUHI by 1.57℃. The cooling effect of the urban green space is better than that of the urban water body; (4) Periodic activity of human being has obvious effects on urban air temperature. The UHII on Saturday and Sunday are higher than that from Monday to Friday, respectively higher for 0.65, 0.57, 0.26 and 0.21℃. Thursday and Friday have the minimum air temperature and UHII. These results indicate that increase in urban evapotranspiration

  16. Indoor unit for electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  17. Transferencia de calor incrementada en espacios anulares con elementos helicoidales insertados//Review of augmentation techniques for heat transfer coefficient in annular spaces using helical elements

    Directory of Open Access Journals (Sweden)

    Josué Imbert‐González

    2014-08-01

    Full Text Available La transferencia de calor incrementada por métodos pasivos se emplea en diversosintercambiadores de calor de alta efectividad. El objetivo del trabajo presentado fue la evaluación del estado de las investigaciones en el campo de la transferencia de calor mejorada en espacios anulares, a partir del empleo de elementos turbulizadores helicoidales como técnicas pasivas. La revisión se centró en el empleo de láminas helicoidales y espirales, la obtención de ecuaciones de correlación del coeficiente de transferencia de calor incrementado, el coeficiente de fricción y la evaluación que se realiza de este proceso por parte de diferentes autores. El análisis crítico permitió realizar valoraciones integradas y recomendar sobre los aspectos que podrían ser analizados en el futuro en esta temática.Palabras claves: transferencia de calor incrementada, láminas helicoidales, espirales, espacios anulares, métodos pasivos._______________________________________________________________________________AbstractThe transfer enhancement by passive methods is used in several heat exchanger of high effectiveness. The objective of the presented work was the evaluation of the state of the investigations in heat transfer enhancement in annular spaces, from the employment of elements helical. The revision was centered in the employment of twisted tape and wire coil in spiral, the equations of correlation obtained of the coefficient of transfer of increased heat, the coefficient of friction and the evaluation that was carried out of this process on the part of different authors. From the critical analysis of the published results, the authors recommend on the topics that can be analyzed in the future in this area.Key words: heat transfer enhancement, twisted tape, helical springs, annular spaces, passive methods.

  18. Motier church - refurbishment of heating system; Kirche Motier Sanierung der Raumheizung

    Energy Technology Data Exchange (ETDEWEB)

    Grizzetti, V.

    2003-07-01

    This final report for the Swiss Federal Office for Energy describes the refurbishment of the space heating system of the historical church in Motier, Switzerland. The 50-year old, inefficient electrical direct heating system of the church, which is a listed building, and the new, heat pump-based system are described. Heating energy is distributed via a warm-air system, geothermal energy provides the primary heat source for the heat pump. Technical details of the heating characteristics and energy consumption of the old and new heating systems are presented in the form of tables and diagrams. The maintenance of the heating system's ventilation unit is also discussed.

  19. Chimpanzees' Context-Dependent Tool Use Provides Evidence for Separable Representations of Hand and Tool Even during Active Use within Peripersonal Space

    Science.gov (United States)

    Povinelli, Daniel J.; Reaux, James E.; Frey, Scott H.

    2010-01-01

    Considerable attention has been devoted to behaviors in which tools are used to perform actions in extrapersonal space by extending the reach. Evidence suggests that these behaviors result in an expansion of the body schema and peripersonal space. However, humans often use tools to perform tasks within peripersonal space that cannot be…

  20. Improved performance of heat pumps helps to use full potential of subsurface space for Aquifer Thermal Energy Storage

    NARCIS (Netherlands)

    Bloemendal, J.M.; Jaxa-Rozen, M.; Rostampour Samarin, Vahab

    2017-01-01

    The application of seasonal Aquifer Thermal Energy Storage (ATES) contributes to meet goals for energy savings and greenhouse gas (GHG) emission reductions. Heat pumps have a crucial position in ATES systems because they dictate the operation scheme of the ATES wells and therefore play an important

  1. Space-time evolution of the power absorbed by creating and heating a hydrogen plasma column by a pulsed laser beam

    International Nuclear Information System (INIS)

    Pincosy, Philip; Dufresne, Daniel; Bournot, Philippe; Caressa, J.-P.; Autric, Michel

    1976-01-01

    Space-time measurements of light intensity are presented for the analysis of the processes involved in the creation and heating of an under-dense hydrogen plasma column by a pulsed CO 2 laser beam. The laser beam trapping due to the rapid development of a radial electron density gradient is specifically demonstrated. Time measurements of the changes in the laser power longitudinally transmitted through the plasma give evidence for a significant absorption of the incident power during the first 150 nanoseconds of the interaction [fr

  2. An innovative in vitro device providing continuous low doses of γ-rays mimicking exposure to the space environment: A dosimetric study

    Science.gov (United States)

    Pereda-Loth, V.; Franceries, X.; Afonso, A. S.; Ayala, A.; Eche, B.; Ginibrière, D.; Gauquelin-Koch, G.; Bardiès, M.; Lacoste-Collin, L.; Courtade-Saïdi, M.

    2018-02-01

    Astronauts are exposed to microgravity and chronic irradiation but experimental conditions combining these two factors are difficult to reproduce on earth. We have created an experimental device able to combine chronic irradiation and altered gravity that may be used for cell cultures or plant models in a ground based facility. Irradiation was provided by thorium nitrate powder, conditioned so as to constitute a sealed source that could be placed in an incubator. Cell plates or plant seedlings could be placed in direct contact with the source or at various distances above it. Moreover, a random positioning machine (RPM) could be positioned on the source to simulate microgravity. The activity of the source was established using the Bateman formula. The spectrum of the source, calculated according to the natural decrease of radioactivity and the gamma spectrometry, showed very good adequacy. The experimental fluence was close to the theoretical fluence evaluation, attesting its uniform distribution. A Monte Carlo model of the irradiation device was processed by GATE code. Dosimetry was performed with radiophotoluminescent dosimeters exposed for one month at different locations (x and y axes) in various cell culture conditions. Using the RPM placed on the source, we reached a mean absorbed dose of gamma rays of (0.33 ± 0.17) mSv per day. In conclusion, we have elaborated an innovative device allowing chronic radiation exposure to be combined with altered gravity. Given the limited access to the International Space Station, this device could be useful to researchers interested in the field of space biology.

  3. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  4. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  5. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  6. Space and Time Adaptive Two-Mesh hp-Finite Element Method for Transient Microwave Heating Problems

    Czech Academy of Sciences Publication Activity Database

    Dubcová, Lenka; Šolín, Pavel; Červený, Jakub; Kůs, Pavel

    1-2, č. 30 (2010), s. 23-40 ISSN 0272-6343 R&D Projects: GA ČR(CZ) GA102/07/0496; GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z20570509 Keywords : hp-finite element method * microwave heating * edge elements Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.844, year: 2010

  7. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  8. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  9. High temperature thermoacoustic heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  10. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  11. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  12. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  13. Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Sanda Budea

    2014-06-01

    Full Text Available Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour coefficient was calculated and compared.

  14. Experimental studies and economic considerations on a living space heated through passive solar gain and through electric power

    Directory of Open Access Journals (Sweden)

    Luminosu Iona

    2003-01-01

    Full Text Available The Trombe wall, of an area AT = 8.8 m, built on the southern facade of a room, heats the accommodation during the transition months, complementary to electric power. The statistical processing of the experimental data led to a global quantitative image of the wall’s behavior during the average day of the months March, April, September, and October 1999. The inner climate parameters are: tint = = 21 °C, trad = 17.9 °C, troom= 19.5 °C, j= 35-70%, E Î80 + 120 lx. The thermal comfort factor is B = -0.325. These values insure a room’s comfort close to the optimal one prescribed by the hygienists. The heliothermal conversion’s efficiency is hT = 10.4%. The proportion of heat supplied by the wall in the entire energy required by the room is hheat = 45.8%. The wall’s specific cost is Pu = 24.9 € /m. The write-off period of the initial investment is n = 53 years. The development of passive solar architecture in the Euro-region Danube-Cris-Mures-Tisa which includes the town of Timisoara (45° north, 22° east, was proven feasible by the experiments from both the energy and the economical point of view.

  15. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  16. Heat transfer in a Couette flow with part of the space between the plates filled with porous medium

    International Nuclear Information System (INIS)

    Carrocci, L.R.; Liu, C.Y.; Ismail, K.A.R.

    1982-01-01

    The effect of various parameters in the temperature profile is shown under boundary conditions for the Couette flow between infinite plates with part of the space filled with porous medium. The parameters observed are: pressure gradient, permeability, the non-dimensional product PE (Prandtl number x Eckert number), the relation between the thermal conductibility coefficient between porous region and pure fluid, and finally the non-dimensional product PR (Prandtl number x Reynolds number). (E.G.) [pt

  17. Automated Hybrid Microwave Heating for Lunar Surface Solidification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project addresses the need for a system that will provide automated lunar surface stabilization via hybrid microwave heating. Surface stabilization is...

  18. Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

    1976-01-01

    This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competition rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)

  19. Refrigeration waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  20. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, S.

    2014-01-01

    is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized......The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce...... the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper...

  1. Energy vulnerability. Far from urban centres, space heating and fuel costs weigh heavily on the household budget

    International Nuclear Information System (INIS)

    Cochez, Nicolas; Durieux, Eric; Levy, David; Moreau, Sylvain; Baudu-Baret, Claude

    2015-01-01

    For 15% of resident households in metropolitan France, the proportion of income going on home and water heating is high, in the sense that it is twice the median housing-expense to income ratio. With this same criterion, the cost of the most mandatory car journeys is high for 10% of households, in relation to their budgets. In all, 22% of households (i.e. 5.9 million) are experiencing energy vulnerability for one or other of the items of consumption, and 3% of households (i.e. 700 000) are vulnerable for both items. The risk of vulnerability varies over national territory, with differences depending on the items of expenditure considered: climate is the primary factor where disparity in housing-related vulnerability is concerned, whereas the predominant factor for travel is distance from urban centres

  2. Geothermal heating a handbook of engineering economics

    CERN Document Server

    Harrison, R; Smarason, O B

    2013-01-01

    To date all books on geothermics have emphasized its use for generating electricity, with applications of lower grade resources for direct heating meriting only a brief chapter. This book brings together research from a range of scientific journals and 'grey' literature to produce the first comprehensive text on geothermal heating. Economics form an important part of the book. It provides a step by step analysis of the various ways in which thermal waters can be used to provide space heating and of the advantages and disadvantages of different approaches. The final section of the book provides

  3. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  4. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  5. Effects of Force Fields on Interface Dynamics, in view of Two-Phase Heat Transfer Enhancement and Phase Management for Space Applications

    Science.gov (United States)

    Di Marco, P.; Saccone, G.

    2017-11-01

    On earth, gravity barely influences the dynamics of interfaces. For what concerns bubbles, buoyancy governs the dynamics of boiling mechanism and thus affects boiling heat transfer capacity. While, for droplets, the coupled effects of wettability and gravity affects interface exchanges. In space, in the lack of gravity, rules are changed and new phenomena come into play. The present work is aimed to study the effects of electric field on the shape and behaviour of bubbles and droplets in order to understand how to handle microgravity applications; in particular, the replacement of gravity with electric field and their coupled effects are evaluated. The experiments spread over different setups, gravity conditions, working fluids, interface conditions. Droplets and bubbles have been analysed with and without electric field, with and without (adiabatic) heat and mass transfer across the interface. Furthermore, the results of the 4 ESA Parabolic Flight Campaigns (PFC 58, 60, 64 & 66), for adiabatic bubbles, adiabatic droplets and evaporating droplets, will be summarized, discussed, and compared with the ground tests.

  6. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  7. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  8. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  9. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  10. Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

    Science.gov (United States)

    Roman, Monsi C.; Steele, John W.; Marsh, Robert W.; Callahan, David M.; VonJouanne, Roger G.

    1999-01-01

    In August 1997 NASA/ Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remainder two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper. The effects on the microbial population when drying vs. not-drying the simulated THC CHX surface are also discussed.

  11. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  12. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    Science.gov (United States)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  13. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  14. Fluid-cooled heat sink for use in cooling various devices

    Science.gov (United States)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2017-09-12

    The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  15. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2018-06-01

    We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

  16. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  17. 29 CFR 1926.353 - Ventilation and protection in welding, cutting, and heating.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ventilation and protection in welding, cutting, and heating... Welding and Cutting § 1926.353 Ventilation and protection in welding, cutting, and heating. (a) Mechanical... the work area. (b) Welding, cutting, and heating in confined spaces. (1) Except as provided in...

  18. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  19. Proceedings: Meeting customer needs with heat pumps, 1991

    International Nuclear Information System (INIS)

    1992-12-01

    Electric heat pumps provide a growing number of residential and commercial customers with space heating and cooling as well as humidity control and water heating. Industrial customers use heat pump technology for energy-efficient, economical process heating and cooling. Heat pumps help utilities meet environmental protection needs and satisfy their load-shape objectives. The 1991 conference was held in Dallas on October 15--18, featuring 60 speakers representing electric utilities, consulting organizations, sponsoring organizations, and heat pump manufacturers. The speakers presented the latest information about heat pump markets, technologies, applications, trade ally programs, and relevant issues. Participants engaged in detailed discussions in ''breakout'' and parallel sessions and viewed more than 30 exhibits of heat pumps, software, and other products and services supporting heat pump installations and service. Electric utilities have the greatest vested interest in the sale of electric heat pumps and thus have responsibility to ensure quality installations through well-trained technicians, authoritative and accurate technical information, and wellinformed design professionals. The electric heat pump is an excellent tool for the electric utility industry's response to environmental and efficiency challenges as well as to competition from other fuel sources. Manufacturers are continually introducing new products and making research results available to meet these challenges. Industrial process heat pumps offer customers the ability to supply heat to process at a lower cost than heat supplied by primary-fuel-fired boilers. From the utility perspective these heat pumps offer an opportunity for a new electric year-round application

  20. Partial radiogenic heat model for Earth revealed by geoneutrino measurements

    NARCIS (Netherlands)

    Abe, S.; et al., [Unknown; Decowski, M.P.

    2011-01-01

    The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet’s interior provides a continuing heat source. The current total heat flux from the Earth to space is 44.2±1.0 TW, but the relative contributions from

  1. Heat roadmap China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2015-01-01

    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore...

  2. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  3. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    Science.gov (United States)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  4. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    Science.gov (United States)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  5. Heat transfer unit and method for prefabricated vessel

    Science.gov (United States)

    Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.

    2017-11-07

    Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.

  6. CUSTOMER-ORIENTED MANAGEMENT PRINCIPLES IN SPORTS PLACES AND SPACES AS AN EFFECTIVE STEP TO PROVIDE PHYSICAL AND MENTAL HEALTH OF CITIZENS

    Directory of Open Access Journals (Sweden)

    Habib Honari

    2011-01-01

    Full Text Available The aim of this research was to study the factors affecting productivity of sport places and spacesin the city of Tehran in the field of customer-orientation. The methodology of the study wasdescriptive-survey that was conducted as a field-study. The research population included expertsand managers of sports places and spaces in Tehran; and the sample consisted of 40 managersand experts. The sampling method was non-random. The measure was a researcher-madequestionnaire with 45 items and 7-point Likert scale that its validity was approved by 13 experts.Cronbach's Alpha was used to determine its reliability which was α = 0.87. The descriptivestatistics was used to describe the examinees status in terms of education; age; and sex. FriedmanTest was applied to prioritize the factors affecting productivity of the sports areas in the field ofcustomer-orientation. The results showed that in customer orientation field; cross-relation andinteraction of managers with the community places highest priority (5/80 and type ofapplication (athletic; educational and entertaining has the lowest priority (4/80. The findingscould play an important role in satisfying users of sporting spaces (as a most-user field in thecity.

  7. House of Commons No 2027. Proposal of law aiming at applying the reduced AVT rate to the selling and delivery of electricity, gas and fuel oil for domestic space heating use

    International Nuclear Information System (INIS)

    Nicolin, Y.

    2005-01-01

    The aim of this proposal is to apply the same 5.5% reduced added value tax to all energy sources when used for domestic space heating. This reduce tax rate is today only applied to wood wastes and products. (J.S.)

  8. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  9. Sacred Space.

    Science.gov (United States)

    Adelstein, Pamela

    2018-01-01

    A space can be sacred, providing those who inhabit a particular space with sense of transcendence-being connected to something greater than oneself. The sacredness may be inherent in the space, as for a religious institution or a serene place outdoors. Alternatively, a space may be made sacred by the people within it and events that occur there. As medical providers, we have the opportunity to create sacred space in our examination rooms and with our patient interactions. This sacred space can be healing to our patients and can bring us providers opportunities for increased connection, joy, and gratitude in our daily work.

  10. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  11. Local and regional space heating models. Documentation. Pt. 1 and 2. Oertliche und regionale Energieversorgungskonzepte fuer Niedertemperaturen. Dokumentation des Arbeitsprogramms. T. 1 und 2

    Energy Technology Data Exchange (ETDEWEB)

    Fuerboeck, M; Elsenberger, U

    1988-01-01

    The documentation focuses on the statistical presentation of the structure and flow of the program on local and regional space heating models, the development of a regional model typology for documentation, the description of energy model steps, and the discussion of first experiences gained in the practical application of models. The program is based on 25 planned studies of quarters, communities, and regions in the Federal Republic of Germany. Their equal spatial distribution plotted in a general map is in good correspondence with the requirement of making planned studies of the main settlement, demand, supply, and organization structures. Apart from the town construction, settlement and construction planning basis the methodical studies intend to supply methodical planning vehicles. With secondary importance given to practical application, the program aims at developing and testing a suitable methodical tool for the development and application of supply models. Cabinet decided the program to be given the character of a research program. The practical application of research results is in charge of the competent energy boards and local decision makers. (orig./UA).

  12. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  13. Heat transfer probe

    Science.gov (United States)

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  14. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  15. Heat recovery in industry

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F; Paul, J [Essen Univ. (Gesamthochschule) (Germany, F.R.)

    1977-05-01

    The waste heat of industrial furnaces and other heat-consuming installations can be utilized by recuperative processes in the furnace and by energy cascades. Economy and the need for an external supply of energy are closely connected. Straight cascades can hardly be realized and if the required temperature gradient is too great such heat should be utilized repeatedly if possible by recycling through heat pumps. The possibilities depend on the relevant temperature since the technology available for this differs in its state of development. The low-temperature waste heat from the final stage can be used for space-heating and water heating by heat exchangers and heat pumps and thus be put to a useful purpose.

  16. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  17. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    Science.gov (United States)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  18. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  19. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  20. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  1. Cyro Power and Heat Transfer

    National Research Council Canada - National Science Library

    Chow, L

    1998-01-01

    .... The heat generated from a 9x9-heater array was removed by liquid nitrogen pool boiling. The orientation and space limitation of the array were varied to explore their effects on the critical heat flux (CHF) value...

  2. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  3. The study of development of welded compact plate heat exchanger for high temperature and pressure

    International Nuclear Information System (INIS)

    Park, Jae Hong; Lim, Hyug; Kim, Jung Kyu; Cho, Sung Youl; Kwon, Oh Boong

    2009-01-01

    In view of space saving, the design of more compact heat exchangers is relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat exchanger becomes popular in the design of heat exchangers. Welded compact plate heat exchanger is used in high temperature and pressure. In the design of heat exchanger, it is necessary to understand the heat transfer characteristics, so performance data are provided to help design of this type heat exchanger.

  4. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  5. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  6. Two-story residence with solar heating--Newman, Georgia

    Science.gov (United States)

    1981-01-01

    Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

  7. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.

    2012-01-01

    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  8. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  9. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  10. Sobolev spaces

    CERN Document Server

    Adams, Robert A

    2003-01-01

    Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.This second edition of Adam''s ''classic'' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.* Self-contained and accessible for readers in other disciplines.* Written at elementary level making it accessible to graduate students.

  11. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark

    International Nuclear Information System (INIS)

    Harrestrup, M.; Svendsen, S.

    2014-01-01

    The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time. - Highlights: • We investigate how much heating consumption needs to be reduced in a district heating area. • We examine fossil-fuel-free supply vs. energy conservations in the building stock. • It is slightly cost-beneficial to invest in energy renovation from today for a societal point of view. • It is economically beneficial for district heating companies to invest in energy renovations from today. • The cost per delivered heat unit is lower when energy renovations are carried out from today

  12. Technology, applications and modelling of ohmic heating: a review.

    Science.gov (United States)

    Varghese, K Shiby; Pandey, M C; Radhakrishna, K; Bawa, A S

    2014-10-01

    Ohmic heating or Joule heating has immense potential for achieving rapid and uniform heating in foods, providing microbiologically safe and high quality foods. This review discusses the technology behind ohmic heating, the current applications and thermal modeling of the process. The success of ohmic heating depends on the rate of heat generation in the system, the electrical conductivity of the food, electrical field strength, residence time and the method by which the food flows through the system. Ohmic heating is appropriate for processing of particulate and protein rich foods. A vast amount of work is still necessary to understand food properties in order to refine system design and maximize performance of this technology in the field of packaged foods and space food product development. Various economic studies will also play an important role in understanding the overall cost and viability of commercial application of this technology in food processing. Some of the demerits of the technology are also discussed.

  13. 46 CFR 108.213 - Heating requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating requirements. 108.213 Section 108.213 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.213 Heating requirements. (a) Each accommodation space must be heated by a heating system that can maintain at least 20°C. (68°F.). (b) Radiators...

  14. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  15. Identification of potential for heat pumps for space heating of houses as replacement for oil-fired boilers; Afdaekning af potentiale for varmepumper til opvarmning af helaarshuse til erstatning for oliefyr

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-15

    The analysis was intended to document and describe the realistic potential for conversion of oil-fired single-family houses to individual heat pumps of the type liquid / water and air / water. The assessment is based on a ''here and now'' condition and evaluates the potential from domestic economic factors. It is an overall analysis, and it has not been possible to analyze in detail the individual heat pump installation. The result of the analysis shows that for 75% of the houses it is not economically viable for the households to convert to a heat pump under the assumed conditions. In 25% of the houses with oil burner (and without access to public supply) it is considered economically viable to convert to a heat pump. About 1/3 of these houses can immediately install a heat pump, while 2/3 of the houses require substantial preparatory steps either in the form of investments in the building envelope and / or in the heat distribution the system. (LN)

  16. Design of outdoor urban spaces for thermal comfort

    Science.gov (United States)

    Harriet J. Plumley

    1977-01-01

    Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...

  17. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  18. Providing space imagery to public on DVD

    Science.gov (United States)

    Hyon, J. J.

    2002-01-01

    NASA's Jet Propulsion Laboratory has been in the forefront of DVD-ROM usage ever since the technology became commercially available. In this presentation, the speaker will illustrate the vital role that DVD-R plays and describe the system architecture, which supports the Mars Odyssey mission.

  19. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  20. Passive heat removal from containment

    International Nuclear Information System (INIS)

    Gou, P.F.; Townsend, H.E.

    1990-01-01

    This patent describes a heat removal system for removing heat from a containment of a nuclear reactor. It comprises: a sealed suppression chamber in the containment; means for venting steam from the nuclear reactor into the suppression chamber upon occurrence of an event requiring dissipation of heat from the nuclear reactor. The suppression chamber containing a quantity of water; the suppression chamber having a gas-containing space above the water; a heat exchanger disposed within the gas-containing space of the suppression chamber; the heat exchanger including an enclosed structure for holding a heat-exchange fluid; means for metering a supply of heat-exchange fluid to the heat exchanger to maintain a predetermined level thereof in the enclosed structure. The heat-exchange fluid boiling in the heat exchanger in consequence of heat transfer thereto from steam present in the suppression chamber; means for separating a heat-exchange fluid vapor in the heat exchanger from the heat-exchange fluid; and means for discharging the vapor immediately following its separation from heat-exchange fluid directly from the heat exchanger to a location exterior of the containment, whereby heat is discharged from the suppression chamber, and the containment is maintained at a temperature and pressure below its design value

  1. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  2. An integrated heat pipe-thermal storage design for a solar receiver

    Science.gov (United States)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  3. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...

  4. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank is a......, the control strategy of intelligent solar heating systems is investigated and the yearly auxiliary energy use of the systems and the electricity price for supplying the consumers with domestic hot water and space heating are calculated....... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys......Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...

  5. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  6. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  7. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  8. Potatoes in Space

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  9. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    Science.gov (United States)

    Höhnle, H.; Stober, J.; Herrmann, A.; Kasparek, W.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Stroth, U.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  10. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Hoehnle, H.; Kasparek, W.; Stroth, U.; Stober, J.; Herrmann, A.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schuetz, H.; Schweinzer, J.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.

    2011-01-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q 95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  11. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  12. Solar heating system installed at Telex Communications, Inc. , Blue Earth, Minnesota. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEver, William S.

    1979-10-26

    The final results are summarized of a contract for space heating a 97,000 square foot building which houses administrative offices, assembly areas and warehouse space. Information is also provided on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature, and as-built drawings. The system began delivering space heating in February 1978. The Telex solar system is composed of four main subsystems; they are the solar collectors, controls, thermal storage and heat distribution. The ITC/Solar Mark III collector was used. The collector array consists of 10 rows of 36 collectors each. The control subsystem controls the operation of the system pumps and control valves. Thermal storage for the system is provided by a 20,000 gallon water storage tank located inside the building. Heating is accomplished by water-to-air heat exchangers and controlled by thermostats.

  13. Heat Recovery System

    Science.gov (United States)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  14. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  15. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  16. Development of a high performances heat pipe (HPHP) for space applications; Developpement d`un caloduc hautes performances (HPHP) pour applications spatiales

    Energy Technology Data Exchange (ETDEWEB)

    Moschetti, B; Voyer, E [Aerospatiale, 06 - Cannes (France)

    1997-12-31

    This paper presents the research program for the development of a prototype of high performances heat pipe (HPHP) intended to be installed on the STENTOR telecommunication satellite. A trade-off study was performed and led to the selection of a reliable and simple concept with axial grooves, ammonia and a minimum heat transport capacity of 500 W.m. A first model with a 17 mm diameter, a 2.8 m length and a mass lower than 500 g/m has been manufactured and tested. First results indicate a 600 W.m heat transport capacity at 20 deg. C (horizontal position) and a 400 W.m capacity with a 5 mm tilt, and allow to validate this concept. (J.S.) 6 refs.

  17. Development of a high performances heat pipe (HPHP) for space applications; Developpement d`un caloduc hautes performances (HPHP) pour applications spatiales

    Energy Technology Data Exchange (ETDEWEB)

    Moschetti, B.; Voyer, E. [Aerospatiale, 06 - Cannes (France)

    1996-12-31

    This paper presents the research program for the development of a prototype of high performances heat pipe (HPHP) intended to be installed on the STENTOR telecommunication satellite. A trade-off study was performed and led to the selection of a reliable and simple concept with axial grooves, ammonia and a minimum heat transport capacity of 500 W.m. A first model with a 17 mm diameter, a 2.8 m length and a mass lower than 500 g/m has been manufactured and tested. First results indicate a 600 W.m heat transport capacity at 20 deg. C (horizontal position) and a 400 W.m capacity with a 5 mm tilt, and allow to validate this concept. (J.S.) 6 refs.

  18. Deep freezers with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-09-02

    Together with space and water heating systems, deep freezers are the biggest energy consumers in households. The article investigates the possibility of using the waste heat for water heating. The design principle of such a system is presented in a wiring diagram.

  19. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  20. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  1. Space Handbook,

    Science.gov (United States)

    1985-01-01

    thle early life * of" the system. Figure 4-2 shows the variation in power output for polonium - 210 (Po- 210 ) with a 138-day half-life, curium-242 (Cm...miles above the earth’s surface. Above this altitude they must take everything they need with them. The environment will supply them with neither food ...can move large payloads through space. The radioisotope heat cycle engines use high-energy particle sources such as plutonium and polonium . The walls

  2. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  3. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator......Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  4. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  5. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  6. District heating in case of power failure

    International Nuclear Information System (INIS)

    Lauenburg, P.; Johansson, P.-O.; Wollerstrand, J.

    2010-01-01

    Power failures in combination with harsh weather conditions during recent years have led to an increased focus on a safe energy supply to our society. Many vital functions are dependent on electricity; e.g., lighting, telephony, medical equipment, lifts, alarm systems, payment, pumps for town's water and, perhaps the most critical of all, heating systems. In Sweden, district heating (DH) is the most common type of heating for buildings in town centres. Therefore, it is of great interest to investigate what happens in DH systems during a power failure. The present study shows that, by maintaining the DH production as well as the operation of the DH network, possibilities to supply connected buildings with space heat are surprisingly good. This is due to the fact that natural circulation will most often take place in radiator systems. In Sweden, and in many other countries, so-called indirect connection (heat supply across heat exchangers) of DH substations is applied. If a DH network operation can be maintained during a power failure, DH water will continue to pass the radiator system's heat exchanger (HEX), provided that the control valve does not close. The radiator circulation pump will stop, causing the radiator water to attain a relatively high temperature in the HEX, which promotes a natural circulation in the hydronic heating system, due to an increased water density differential at different temperatures. Several field tests and computer simulations have been performed and have displayed that almost all buildings can achieve a space heat supply corresponding to 40-80% of the amount prior to the interruption. A sufficient heat load in the DH network can be vital in certain cases: e.g., for 'island-operation' of an electric power plant to be performed during a power failure. Furthermore, for many combined heat and power stations, a requirement involves that the DH network continues to provide a heat sink when no other cooling is available. Based on the

  7. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  8. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  9. Power and Thermal Technologies for Air and Space-Scientific Research Program. Delivery Order 0017: Study of Microchip Power Module Materials Using Mini-Channel Heat Exchanger

    Science.gov (United States)

    2009-12-01

    at the mid-point of the channels. In fabricating the heat exchanger, a method of attaching the inlet and exit flow tubes (stainless- steel 625 ) to...and the inlet/exit tubing. The mixing chambers ( Inconel 600) were machined as two pieces which were later welded together to make one chamber. The

  10. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    Science.gov (United States)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  11. Active space cooling with night-coldness - development of a decentralized ventilation system with latent heat storage; Aktive Raumkuehlung mit Nachkaelte - Entwicklung eines dezentralen Lueftungsgeraetes mit Latentwaermespeicher. Imtech-Haus, Hamburg Referenzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Detzer, R. [Imtech Deutschland, Hamburg (Germany)

    2007-04-15

    Imtech Germany a decentralized ventilation system with a latent heat-storage unit made of Phase Change Material. The equipment was used successfully in a first reference asset in the Imtech house in Hamburg. During the day active space cooling is realized by storage of night-cold. In combination with a night ventilation the attached areas could be held continuous within the comfort range under 26 C under normal summer conditions. The decentralized ventilation system including control is developed to series production readiness and will be introduced now on the market. (orig.)

  12. Building America Case Study: Impact of Slab-Foundation Heat Transfer on Space-Conditioning Energy Use in Florida, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Heat transfer to slab foundations has remained an area of building science with poor understanding over the last three decades of energy efficiency research. This is somewhat surprising since the area of floors in single family homes is generally equal to wall, or windows or attics which have been extensively evaluated. Research that has been done has focused in the impact of slab on grade foundations and insulation schemes on heat losses associated with heating in predominantly heating dominated climates. Slab on grade construction is very popular in cooling-dominated southern states where it accounts for 77 percent of new home floors according to U.S. Census data in 2014. There is a widespread conception that tile flooring, as opposed to carpet, makes for a cooler home interior in warm climates. Empirical research is needed as building energy simulations such as DOE-2 and EnergyPlus rely on simplified models to evaluate these influences. BA-PIRC performed experiments over an entire year from 2014-2015 in FSEC's Flexible Residential Test Facilities (FRTF) intended to assess for the first time 1) slab on grade influence in a cooling dominated climate, and 2) how the difference in a carpeted vs. uncarpeted building might influence heating and cooling. Two identical side by side residential buildings were evaluated, the East with pad and carpet and the west with a bare slab floor. A highly detailed grid of temperature measurements were taken on the slab surface at various locations as well as at depths of 1, 2.5, 5, 10 and 20 feet.

  13. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  14. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  15. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  16. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  17. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  18. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  19. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  20. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating

    International Nuclear Information System (INIS)

    Muller, Richard A.

    2009-01-01

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights